ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.176 by root, Tue Dec 11 04:31:55 2007 UTC vs.
Revision 1.430 by root, Wed May 9 16:50:23 2012 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 43# include EV_CONFIG_H
39# else 44# else
40# include "config.h" 45# include "config.h"
41# endif 46# endif
42 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
43# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
46# endif 71# endif
47# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
49# endif 74# endif
50# else 75# else
51# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
53# endif 78# endif
54# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
56# endif 81# endif
57# endif 82# endif
58 83
84# if HAVE_NANOSLEEP
59# ifndef EV_USE_SELECT 85# ifndef EV_USE_NANOSLEEP
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif 87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
65# endif 91# endif
66 92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
67# ifndef EV_USE_POLL 94# ifndef EV_USE_SELECT
68# if HAVE_POLL && HAVE_POLL_H 95# define EV_USE_SELECT EV_FEATURE_BACKENDS
69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
100# endif
101
102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
108# define EV_USE_POLL 0
73# endif 109# endif
74 110
75# ifndef EV_USE_EPOLL
76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
77# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
78# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
79# define EV_USE_EPOLL 0
80# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
81# endif 118# endif
82 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
83# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
89# endif 127# endif
90 128
91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
94# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
95# define EV_USE_PORT 0
96# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
97# endif 136# endif
98 137
99# ifndef EV_USE_INOTIFY
100# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
101# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
102# else
103# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
104# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
105# endif 145# endif
106 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
107#endif 154# endif
108 155
109#include <math.h> 156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
110#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
111#include <fcntl.h> 169#include <fcntl.h>
112#include <stddef.h> 170#include <stddef.h>
113 171
114#include <stdio.h> 172#include <stdio.h>
115 173
116#include <assert.h> 174#include <assert.h>
117#include <errno.h> 175#include <errno.h>
118#include <sys/types.h> 176#include <sys/types.h>
119#include <time.h> 177#include <time.h>
178#include <limits.h>
120 179
121#include <signal.h> 180#include <signal.h>
122 181
123#ifdef EV_H 182#ifdef EV_H
124# include EV_H 183# include EV_H
125#else 184#else
126# include "ev.h" 185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
127#endif 197#endif
128 198
129#ifndef _WIN32 199#ifndef _WIN32
130# include <sys/time.h> 200# include <sys/time.h>
131# include <sys/wait.h> 201# include <sys/wait.h>
132# include <unistd.h> 202# include <unistd.h>
133#else 203#else
204# include <io.h>
134# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 206# include <windows.h>
207# include <winsock2.h>
136# ifndef EV_SELECT_IS_WINSOCKET 208# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 209# define EV_SELECT_IS_WINSOCKET 1
138# endif 210# endif
211# undef EV_AVOID_STDIO
212#endif
213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
221
222/* this block tries to deduce configuration from header-defined symbols and defaults */
223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# error "unable to find value for NSIG, please report"
247/* to make it compile regardless, just remove the above line, */
248/* but consider reporting it, too! :) */
249# define EV_NSIG 65
250#endif
251
252#ifndef EV_USE_FLOOR
253# define EV_USE_FLOOR 0
254#endif
255
256#ifndef EV_USE_CLOCK_SYSCALL
257# if __linux && __GLIBC__ >= 2
258# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
259# else
260# define EV_USE_CLOCK_SYSCALL 0
139#endif 261# endif
140 262#endif
141/**/
142 263
143#ifndef EV_USE_MONOTONIC 264#ifndef EV_USE_MONOTONIC
265# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
266# define EV_USE_MONOTONIC EV_FEATURE_OS
267# else
144# define EV_USE_MONOTONIC 0 268# define EV_USE_MONOTONIC 0
269# endif
145#endif 270#endif
146 271
147#ifndef EV_USE_REALTIME 272#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 273# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
274#endif
275
276#ifndef EV_USE_NANOSLEEP
277# if _POSIX_C_SOURCE >= 199309L
278# define EV_USE_NANOSLEEP EV_FEATURE_OS
279# else
280# define EV_USE_NANOSLEEP 0
281# endif
149#endif 282#endif
150 283
151#ifndef EV_USE_SELECT 284#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 285# define EV_USE_SELECT EV_FEATURE_BACKENDS
153#endif 286#endif
154 287
155#ifndef EV_USE_POLL 288#ifndef EV_USE_POLL
156# ifdef _WIN32 289# ifdef _WIN32
157# define EV_USE_POLL 0 290# define EV_USE_POLL 0
158# else 291# else
159# define EV_USE_POLL 1 292# define EV_USE_POLL EV_FEATURE_BACKENDS
160# endif 293# endif
161#endif 294#endif
162 295
163#ifndef EV_USE_EPOLL 296#ifndef EV_USE_EPOLL
297# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
298# define EV_USE_EPOLL EV_FEATURE_BACKENDS
299# else
164# define EV_USE_EPOLL 0 300# define EV_USE_EPOLL 0
301# endif
165#endif 302#endif
166 303
167#ifndef EV_USE_KQUEUE 304#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 305# define EV_USE_KQUEUE 0
169#endif 306#endif
171#ifndef EV_USE_PORT 308#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 309# define EV_USE_PORT 0
173#endif 310#endif
174 311
175#ifndef EV_USE_INOTIFY 312#ifndef EV_USE_INOTIFY
313# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
314# define EV_USE_INOTIFY EV_FEATURE_OS
315# else
176# define EV_USE_INOTIFY 0 316# define EV_USE_INOTIFY 0
317# endif
177#endif 318#endif
178 319
179#ifndef EV_PID_HASHSIZE 320#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 321# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
181# define EV_PID_HASHSIZE 1 322#endif
323
324#ifndef EV_INOTIFY_HASHSIZE
325# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
326#endif
327
328#ifndef EV_USE_EVENTFD
329# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
330# define EV_USE_EVENTFD EV_FEATURE_OS
182# else 331# else
183# define EV_PID_HASHSIZE 16 332# define EV_USE_EVENTFD 0
184# endif 333# endif
185#endif 334#endif
186 335
187#ifndef EV_INOTIFY_HASHSIZE 336#ifndef EV_USE_SIGNALFD
188# if EV_MINIMAL 337# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
189# define EV_INOTIFY_HASHSIZE 1 338# define EV_USE_SIGNALFD EV_FEATURE_OS
190# else 339# else
191# define EV_INOTIFY_HASHSIZE 16 340# define EV_USE_SIGNALFD 0
192# endif 341# endif
193#endif 342#endif
194 343
195/**/ 344#if 0 /* debugging */
345# define EV_VERIFY 3
346# define EV_USE_4HEAP 1
347# define EV_HEAP_CACHE_AT 1
348#endif
349
350#ifndef EV_VERIFY
351# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
352#endif
353
354#ifndef EV_USE_4HEAP
355# define EV_USE_4HEAP EV_FEATURE_DATA
356#endif
357
358#ifndef EV_HEAP_CACHE_AT
359# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
360#endif
361
362/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
363/* which makes programs even slower. might work on other unices, too. */
364#if EV_USE_CLOCK_SYSCALL
365# include <sys/syscall.h>
366# ifdef SYS_clock_gettime
367# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
368# undef EV_USE_MONOTONIC
369# define EV_USE_MONOTONIC 1
370# else
371# undef EV_USE_CLOCK_SYSCALL
372# define EV_USE_CLOCK_SYSCALL 0
373# endif
374#endif
375
376/* this block fixes any misconfiguration where we know we run into trouble otherwise */
377
378#ifdef _AIX
379/* AIX has a completely broken poll.h header */
380# undef EV_USE_POLL
381# define EV_USE_POLL 0
382#endif
196 383
197#ifndef CLOCK_MONOTONIC 384#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 385# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 386# define EV_USE_MONOTONIC 0
200#endif 387#endif
202#ifndef CLOCK_REALTIME 389#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 390# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 391# define EV_USE_REALTIME 0
205#endif 392#endif
206 393
207#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h>
209#endif
210
211#if !EV_STAT_ENABLE 394#if !EV_STAT_ENABLE
395# undef EV_USE_INOTIFY
212# define EV_USE_INOTIFY 0 396# define EV_USE_INOTIFY 0
213#endif 397#endif
214 398
399#if !EV_USE_NANOSLEEP
400/* hp-ux has it in sys/time.h, which we unconditionally include above */
401# if !defined _WIN32 && !defined __hpux
402# include <sys/select.h>
403# endif
404#endif
405
215#if EV_USE_INOTIFY 406#if EV_USE_INOTIFY
407# include <sys/statfs.h>
216# include <sys/inotify.h> 408# include <sys/inotify.h>
409/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
410# ifndef IN_DONT_FOLLOW
411# undef EV_USE_INOTIFY
412# define EV_USE_INOTIFY 0
413# endif
414#endif
415
416#if EV_USE_EVENTFD
417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
418# include <stdint.h>
419# ifndef EFD_NONBLOCK
420# define EFD_NONBLOCK O_NONBLOCK
421# endif
422# ifndef EFD_CLOEXEC
423# ifdef O_CLOEXEC
424# define EFD_CLOEXEC O_CLOEXEC
425# else
426# define EFD_CLOEXEC 02000000
427# endif
428# endif
429EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
430#endif
431
432#if EV_USE_SIGNALFD
433/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
434# include <stdint.h>
435# ifndef SFD_NONBLOCK
436# define SFD_NONBLOCK O_NONBLOCK
437# endif
438# ifndef SFD_CLOEXEC
439# ifdef O_CLOEXEC
440# define SFD_CLOEXEC O_CLOEXEC
441# else
442# define SFD_CLOEXEC 02000000
443# endif
444# endif
445EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
446
447struct signalfd_siginfo
448{
449 uint32_t ssi_signo;
450 char pad[128 - sizeof (uint32_t)];
451};
217#endif 452#endif
218 453
219/**/ 454/**/
220 455
456#if EV_VERIFY >= 3
457# define EV_FREQUENT_CHECK ev_verify (EV_A)
458#else
459# define EV_FREQUENT_CHECK do { } while (0)
460#endif
461
221/* 462/*
222 * This is used to avoid floating point rounding problems. 463 * This is used to work around floating point rounding problems.
223 * It is added to ev_rt_now when scheduling periodics
224 * to ensure progress, time-wise, even when rounding
225 * errors are against us.
226 * This value is good at least till the year 4000 464 * This value is good at least till the year 4000.
227 * and intervals up to 20 years.
228 * Better solutions welcome.
229 */ 465 */
230#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 466#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
467/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
231 468
232#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 469#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
233#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 470#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
234/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
235 471
472#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
473#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
474
475/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
476/* ECB.H BEGIN */
477/*
478 * libecb - http://software.schmorp.de/pkg/libecb
479 *
480 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
481 * Copyright (©) 2011 Emanuele Giaquinta
482 * All rights reserved.
483 *
484 * Redistribution and use in source and binary forms, with or without modifica-
485 * tion, are permitted provided that the following conditions are met:
486 *
487 * 1. Redistributions of source code must retain the above copyright notice,
488 * this list of conditions and the following disclaimer.
489 *
490 * 2. Redistributions in binary form must reproduce the above copyright
491 * notice, this list of conditions and the following disclaimer in the
492 * documentation and/or other materials provided with the distribution.
493 *
494 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
495 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
496 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
497 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
498 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
499 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
500 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
501 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
502 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
503 * OF THE POSSIBILITY OF SUCH DAMAGE.
504 */
505
506#ifndef ECB_H
507#define ECB_H
508
509#ifdef _WIN32
510 typedef signed char int8_t;
511 typedef unsigned char uint8_t;
512 typedef signed short int16_t;
513 typedef unsigned short uint16_t;
514 typedef signed int int32_t;
515 typedef unsigned int uint32_t;
236#if __GNUC__ >= 3 516 #if __GNUC__
237# define expect(expr,value) __builtin_expect ((expr),(value)) 517 typedef signed long long int64_t;
238# define noinline __attribute__ ((noinline)) 518 typedef unsigned long long uint64_t;
519 #else /* _MSC_VER || __BORLANDC__ */
520 typedef signed __int64 int64_t;
521 typedef unsigned __int64 uint64_t;
522 #endif
239#else 523#else
240# define expect(expr,value) (expr) 524 #include <inttypes.h>
241# define noinline
242# if __STDC_VERSION__ < 199901L
243# define inline
244# endif 525#endif
526
527/* many compilers define _GNUC_ to some versions but then only implement
528 * what their idiot authors think are the "more important" extensions,
529 * causing enormous grief in return for some better fake benchmark numbers.
530 * or so.
531 * we try to detect these and simply assume they are not gcc - if they have
532 * an issue with that they should have done it right in the first place.
533 */
534#ifndef ECB_GCC_VERSION
535 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
536 #define ECB_GCC_VERSION(major,minor) 0
537 #else
538 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
245#endif 539 #endif
540#endif
246 541
542/*****************************************************************************/
543
544/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
545/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
546
547#if ECB_NO_THREADS
548# define ECB_NO_SMP 1
549#endif
550
551#if ECB_NO_THREADS || ECB_NO_SMP
552 #define ECB_MEMORY_FENCE do { } while (0)
553#endif
554
555#ifndef ECB_MEMORY_FENCE
556 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
557 #if __i386 || __i386__
558 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
559 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */
560 #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */
561 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
562 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
563 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
564 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */
565 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
566 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
567 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
568 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
569 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
570 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
571 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
572 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
573 #elif __sparc || __sparc__
574 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad | " : : : "memory")
575 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
576 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
577 #elif defined __s390__ || defined __s390x__
578 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
579 #elif defined __mips__
580 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
581 #elif defined __alpha__
582 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
583 #endif
584 #endif
585#endif
586
587#ifndef ECB_MEMORY_FENCE
588 #if ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
589 #define ECB_MEMORY_FENCE __sync_synchronize ()
590 /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */
591 /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); }) */
592 #elif _MSC_VER >= 1400 /* VC++ 2005 */
593 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
594 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
595 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
596 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
597 #elif defined _WIN32
598 #include <WinNT.h>
599 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
600 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
601 #include <mbarrier.h>
602 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
603 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
604 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
605 #elif __xlC__
606 #define ECB_MEMORY_FENCE __sync ()
607 #endif
608#endif
609
610#ifndef ECB_MEMORY_FENCE
611 #if !ECB_AVOID_PTHREADS
612 /*
613 * if you get undefined symbol references to pthread_mutex_lock,
614 * or failure to find pthread.h, then you should implement
615 * the ECB_MEMORY_FENCE operations for your cpu/compiler
616 * OR provide pthread.h and link against the posix thread library
617 * of your system.
618 */
619 #include <pthread.h>
620 #define ECB_NEEDS_PTHREADS 1
621 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
622
623 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
624 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
625 #endif
626#endif
627
628#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
629 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
630#endif
631
632#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
633 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
634#endif
635
636/*****************************************************************************/
637
638#define ECB_C99 (__STDC_VERSION__ >= 199901L)
639
640#if __cplusplus
641 #define ecb_inline static inline
642#elif ECB_GCC_VERSION(2,5)
643 #define ecb_inline static __inline__
644#elif ECB_C99
645 #define ecb_inline static inline
646#else
647 #define ecb_inline static
648#endif
649
650#if ECB_GCC_VERSION(3,3)
651 #define ecb_restrict __restrict__
652#elif ECB_C99
653 #define ecb_restrict restrict
654#else
655 #define ecb_restrict
656#endif
657
658typedef int ecb_bool;
659
660#define ECB_CONCAT_(a, b) a ## b
661#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
662#define ECB_STRINGIFY_(a) # a
663#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
664
665#define ecb_function_ ecb_inline
666
667#if ECB_GCC_VERSION(3,1)
668 #define ecb_attribute(attrlist) __attribute__(attrlist)
669 #define ecb_is_constant(expr) __builtin_constant_p (expr)
670 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
671 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
672#else
673 #define ecb_attribute(attrlist)
674 #define ecb_is_constant(expr) 0
675 #define ecb_expect(expr,value) (expr)
676 #define ecb_prefetch(addr,rw,locality)
677#endif
678
679/* no emulation for ecb_decltype */
680#if ECB_GCC_VERSION(4,5)
681 #define ecb_decltype(x) __decltype(x)
682#elif ECB_GCC_VERSION(3,0)
683 #define ecb_decltype(x) __typeof(x)
684#endif
685
686#define ecb_noinline ecb_attribute ((__noinline__))
687#define ecb_noreturn ecb_attribute ((__noreturn__))
688#define ecb_unused ecb_attribute ((__unused__))
689#define ecb_const ecb_attribute ((__const__))
690#define ecb_pure ecb_attribute ((__pure__))
691
692#if ECB_GCC_VERSION(4,3)
693 #define ecb_artificial ecb_attribute ((__artificial__))
694 #define ecb_hot ecb_attribute ((__hot__))
695 #define ecb_cold ecb_attribute ((__cold__))
696#else
697 #define ecb_artificial
698 #define ecb_hot
699 #define ecb_cold
700#endif
701
702/* put around conditional expressions if you are very sure that the */
703/* expression is mostly true or mostly false. note that these return */
704/* booleans, not the expression. */
247#define expect_false(expr) expect ((expr) != 0, 0) 705#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
248#define expect_true(expr) expect ((expr) != 0, 1) 706#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
707/* for compatibility to the rest of the world */
708#define ecb_likely(expr) ecb_expect_true (expr)
709#define ecb_unlikely(expr) ecb_expect_false (expr)
710
711/* count trailing zero bits and count # of one bits */
712#if ECB_GCC_VERSION(3,4)
713 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
714 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
715 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
716 #define ecb_ctz32(x) __builtin_ctz (x)
717 #define ecb_ctz64(x) __builtin_ctzll (x)
718 #define ecb_popcount32(x) __builtin_popcount (x)
719 /* no popcountll */
720#else
721 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
722 ecb_function_ int
723 ecb_ctz32 (uint32_t x)
724 {
725 int r = 0;
726
727 x &= ~x + 1; /* this isolates the lowest bit */
728
729#if ECB_branchless_on_i386
730 r += !!(x & 0xaaaaaaaa) << 0;
731 r += !!(x & 0xcccccccc) << 1;
732 r += !!(x & 0xf0f0f0f0) << 2;
733 r += !!(x & 0xff00ff00) << 3;
734 r += !!(x & 0xffff0000) << 4;
735#else
736 if (x & 0xaaaaaaaa) r += 1;
737 if (x & 0xcccccccc) r += 2;
738 if (x & 0xf0f0f0f0) r += 4;
739 if (x & 0xff00ff00) r += 8;
740 if (x & 0xffff0000) r += 16;
741#endif
742
743 return r;
744 }
745
746 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
747 ecb_function_ int
748 ecb_ctz64 (uint64_t x)
749 {
750 int shift = x & 0xffffffffU ? 0 : 32;
751 return ecb_ctz32 (x >> shift) + shift;
752 }
753
754 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
755 ecb_function_ int
756 ecb_popcount32 (uint32_t x)
757 {
758 x -= (x >> 1) & 0x55555555;
759 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
760 x = ((x >> 4) + x) & 0x0f0f0f0f;
761 x *= 0x01010101;
762
763 return x >> 24;
764 }
765
766 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
767 ecb_function_ int ecb_ld32 (uint32_t x)
768 {
769 int r = 0;
770
771 if (x >> 16) { x >>= 16; r += 16; }
772 if (x >> 8) { x >>= 8; r += 8; }
773 if (x >> 4) { x >>= 4; r += 4; }
774 if (x >> 2) { x >>= 2; r += 2; }
775 if (x >> 1) { r += 1; }
776
777 return r;
778 }
779
780 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
781 ecb_function_ int ecb_ld64 (uint64_t x)
782 {
783 int r = 0;
784
785 if (x >> 32) { x >>= 32; r += 32; }
786
787 return r + ecb_ld32 (x);
788 }
789#endif
790
791ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
792ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
793{
794 return ( (x * 0x0802U & 0x22110U)
795 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
796}
797
798ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
799ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
800{
801 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
802 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
803 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
804 x = ( x >> 8 ) | ( x << 8);
805
806 return x;
807}
808
809ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
810ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
811{
812 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
813 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
814 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
815 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
816 x = ( x >> 16 ) | ( x << 16);
817
818 return x;
819}
820
821/* popcount64 is only available on 64 bit cpus as gcc builtin */
822/* so for this version we are lazy */
823ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
824ecb_function_ int
825ecb_popcount64 (uint64_t x)
826{
827 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
828}
829
830ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
831ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
832ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
833ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
834ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
835ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
836ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
837ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
838
839ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
840ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
841ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
842ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
843ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
844ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
845ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
846ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
847
848#if ECB_GCC_VERSION(4,3)
849 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
850 #define ecb_bswap32(x) __builtin_bswap32 (x)
851 #define ecb_bswap64(x) __builtin_bswap64 (x)
852#else
853 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
854 ecb_function_ uint16_t
855 ecb_bswap16 (uint16_t x)
856 {
857 return ecb_rotl16 (x, 8);
858 }
859
860 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
861 ecb_function_ uint32_t
862 ecb_bswap32 (uint32_t x)
863 {
864 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
865 }
866
867 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
868 ecb_function_ uint64_t
869 ecb_bswap64 (uint64_t x)
870 {
871 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
872 }
873#endif
874
875#if ECB_GCC_VERSION(4,5)
876 #define ecb_unreachable() __builtin_unreachable ()
877#else
878 /* this seems to work fine, but gcc always emits a warning for it :/ */
879 ecb_inline void ecb_unreachable (void) ecb_noreturn;
880 ecb_inline void ecb_unreachable (void) { }
881#endif
882
883/* try to tell the compiler that some condition is definitely true */
884#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
885
886ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
887ecb_inline unsigned char
888ecb_byteorder_helper (void)
889{
890 const uint32_t u = 0x11223344;
891 return *(unsigned char *)&u;
892}
893
894ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
895ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
896ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
897ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
898
899#if ECB_GCC_VERSION(3,0) || ECB_C99
900 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
901#else
902 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
903#endif
904
905#if __cplusplus
906 template<typename T>
907 static inline T ecb_div_rd (T val, T div)
908 {
909 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
910 }
911 template<typename T>
912 static inline T ecb_div_ru (T val, T div)
913 {
914 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
915 }
916#else
917 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
918 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
919#endif
920
921#if ecb_cplusplus_does_not_suck
922 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
923 template<typename T, int N>
924 static inline int ecb_array_length (const T (&arr)[N])
925 {
926 return N;
927 }
928#else
929 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
930#endif
931
932#endif
933
934/* ECB.H END */
935
936#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
937/* if your architecture doesn't need memory fences, e.g. because it is
938 * single-cpu/core, or if you use libev in a project that doesn't use libev
939 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
940 * libev, in which cases the memory fences become nops.
941 * alternatively, you can remove this #error and link against libpthread,
942 * which will then provide the memory fences.
943 */
944# error "memory fences not defined for your architecture, please report"
945#endif
946
947#ifndef ECB_MEMORY_FENCE
948# define ECB_MEMORY_FENCE do { } while (0)
949# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
950# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
951#endif
952
953#define expect_false(cond) ecb_expect_false (cond)
954#define expect_true(cond) ecb_expect_true (cond)
955#define noinline ecb_noinline
956
249#define inline_size static inline 957#define inline_size ecb_inline
250 958
251#if EV_MINIMAL 959#if EV_FEATURE_CODE
960# define inline_speed ecb_inline
961#else
252# define inline_speed static noinline 962# define inline_speed static noinline
963#endif
964
965#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
966
967#if EV_MINPRI == EV_MAXPRI
968# define ABSPRI(w) (((W)w), 0)
253#else 969#else
254# define inline_speed static inline
255#endif
256
257#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
258#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 970# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
971#endif
259 972
260#define EMPTY /* required for microsofts broken pseudo-c compiler */ 973#define EMPTY /* required for microsofts broken pseudo-c compiler */
261#define EMPTY2(a,b) /* used to suppress some warnings */ 974#define EMPTY2(a,b) /* used to suppress some warnings */
262 975
263typedef ev_watcher *W; 976typedef ev_watcher *W;
264typedef ev_watcher_list *WL; 977typedef ev_watcher_list *WL;
265typedef ev_watcher_time *WT; 978typedef ev_watcher_time *WT;
266 979
980#define ev_active(w) ((W)(w))->active
981#define ev_at(w) ((WT)(w))->at
982
983#if EV_USE_REALTIME
984/* sig_atomic_t is used to avoid per-thread variables or locking but still */
985/* giving it a reasonably high chance of working on typical architectures */
986static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
987#endif
988
989#if EV_USE_MONOTONIC
267static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 990static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
991#endif
992
993#ifndef EV_FD_TO_WIN32_HANDLE
994# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
995#endif
996#ifndef EV_WIN32_HANDLE_TO_FD
997# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
998#endif
999#ifndef EV_WIN32_CLOSE_FD
1000# define EV_WIN32_CLOSE_FD(fd) close (fd)
1001#endif
268 1002
269#ifdef _WIN32 1003#ifdef _WIN32
270# include "ev_win32.c" 1004# include "ev_win32.c"
271#endif 1005#endif
272 1006
273/*****************************************************************************/ 1007/*****************************************************************************/
274 1008
1009/* define a suitable floor function (only used by periodics atm) */
1010
1011#if EV_USE_FLOOR
1012# include <math.h>
1013# define ev_floor(v) floor (v)
1014#else
1015
1016#include <float.h>
1017
1018/* a floor() replacement function, should be independent of ev_tstamp type */
1019static ev_tstamp noinline
1020ev_floor (ev_tstamp v)
1021{
1022 /* the choice of shift factor is not terribly important */
1023#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1024 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1025#else
1026 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1027#endif
1028
1029 /* argument too large for an unsigned long? */
1030 if (expect_false (v >= shift))
1031 {
1032 ev_tstamp f;
1033
1034 if (v == v - 1.)
1035 return v; /* very large number */
1036
1037 f = shift * ev_floor (v * (1. / shift));
1038 return f + ev_floor (v - f);
1039 }
1040
1041 /* special treatment for negative args? */
1042 if (expect_false (v < 0.))
1043 {
1044 ev_tstamp f = -ev_floor (-v);
1045
1046 return f - (f == v ? 0 : 1);
1047 }
1048
1049 /* fits into an unsigned long */
1050 return (unsigned long)v;
1051}
1052
1053#endif
1054
1055/*****************************************************************************/
1056
1057#ifdef __linux
1058# include <sys/utsname.h>
1059#endif
1060
1061static unsigned int noinline ecb_cold
1062ev_linux_version (void)
1063{
1064#ifdef __linux
1065 unsigned int v = 0;
1066 struct utsname buf;
1067 int i;
1068 char *p = buf.release;
1069
1070 if (uname (&buf))
1071 return 0;
1072
1073 for (i = 3+1; --i; )
1074 {
1075 unsigned int c = 0;
1076
1077 for (;;)
1078 {
1079 if (*p >= '0' && *p <= '9')
1080 c = c * 10 + *p++ - '0';
1081 else
1082 {
1083 p += *p == '.';
1084 break;
1085 }
1086 }
1087
1088 v = (v << 8) | c;
1089 }
1090
1091 return v;
1092#else
1093 return 0;
1094#endif
1095}
1096
1097/*****************************************************************************/
1098
1099#if EV_AVOID_STDIO
1100static void noinline ecb_cold
1101ev_printerr (const char *msg)
1102{
1103 write (STDERR_FILENO, msg, strlen (msg));
1104}
1105#endif
1106
275static void (*syserr_cb)(const char *msg); 1107static void (*syserr_cb)(const char *msg) EV_THROW;
276 1108
277void 1109void ecb_cold
278ev_set_syserr_cb (void (*cb)(const char *msg)) 1110ev_set_syserr_cb (void (*cb)(const char *msg)) EV_THROW
279{ 1111{
280 syserr_cb = cb; 1112 syserr_cb = cb;
281} 1113}
282 1114
283static void noinline 1115static void noinline ecb_cold
284syserr (const char *msg) 1116ev_syserr (const char *msg)
285{ 1117{
286 if (!msg) 1118 if (!msg)
287 msg = "(libev) system error"; 1119 msg = "(libev) system error";
288 1120
289 if (syserr_cb) 1121 if (syserr_cb)
290 syserr_cb (msg); 1122 syserr_cb (msg);
291 else 1123 else
292 { 1124 {
1125#if EV_AVOID_STDIO
1126 ev_printerr (msg);
1127 ev_printerr (": ");
1128 ev_printerr (strerror (errno));
1129 ev_printerr ("\n");
1130#else
293 perror (msg); 1131 perror (msg);
1132#endif
294 abort (); 1133 abort ();
295 } 1134 }
296} 1135}
297 1136
1137static void *
1138ev_realloc_emul (void *ptr, long size)
1139{
1140#if __GLIBC__
1141 return realloc (ptr, size);
1142#else
1143 /* some systems, notably openbsd and darwin, fail to properly
1144 * implement realloc (x, 0) (as required by both ansi c-89 and
1145 * the single unix specification, so work around them here.
1146 */
1147
1148 if (size)
1149 return realloc (ptr, size);
1150
1151 free (ptr);
1152 return 0;
1153#endif
1154}
1155
298static void *(*alloc)(void *ptr, long size); 1156static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
299 1157
300void 1158void ecb_cold
301ev_set_allocator (void *(*cb)(void *ptr, long size)) 1159ev_set_allocator (void *(*cb)(void *ptr, long size)) EV_THROW
302{ 1160{
303 alloc = cb; 1161 alloc = cb;
304} 1162}
305 1163
306inline_speed void * 1164inline_speed void *
307ev_realloc (void *ptr, long size) 1165ev_realloc (void *ptr, long size)
308{ 1166{
309 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1167 ptr = alloc (ptr, size);
310 1168
311 if (!ptr && size) 1169 if (!ptr && size)
312 { 1170 {
1171#if EV_AVOID_STDIO
1172 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1173#else
313 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1174 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1175#endif
314 abort (); 1176 abort ();
315 } 1177 }
316 1178
317 return ptr; 1179 return ptr;
318} 1180}
320#define ev_malloc(size) ev_realloc (0, (size)) 1182#define ev_malloc(size) ev_realloc (0, (size))
321#define ev_free(ptr) ev_realloc ((ptr), 0) 1183#define ev_free(ptr) ev_realloc ((ptr), 0)
322 1184
323/*****************************************************************************/ 1185/*****************************************************************************/
324 1186
1187/* set in reify when reification needed */
1188#define EV_ANFD_REIFY 1
1189
1190/* file descriptor info structure */
325typedef struct 1191typedef struct
326{ 1192{
327 WL head; 1193 WL head;
328 unsigned char events; 1194 unsigned char events; /* the events watched for */
1195 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1196 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
329 unsigned char reify; 1197 unsigned char unused;
1198#if EV_USE_EPOLL
1199 unsigned int egen; /* generation counter to counter epoll bugs */
1200#endif
330#if EV_SELECT_IS_WINSOCKET 1201#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
331 SOCKET handle; 1202 SOCKET handle;
332#endif 1203#endif
1204#if EV_USE_IOCP
1205 OVERLAPPED or, ow;
1206#endif
333} ANFD; 1207} ANFD;
334 1208
1209/* stores the pending event set for a given watcher */
335typedef struct 1210typedef struct
336{ 1211{
337 W w; 1212 W w;
338 int events; 1213 int events; /* the pending event set for the given watcher */
339} ANPENDING; 1214} ANPENDING;
340 1215
341#if EV_USE_INOTIFY 1216#if EV_USE_INOTIFY
1217/* hash table entry per inotify-id */
342typedef struct 1218typedef struct
343{ 1219{
344 WL head; 1220 WL head;
345} ANFS; 1221} ANFS;
1222#endif
1223
1224/* Heap Entry */
1225#if EV_HEAP_CACHE_AT
1226 /* a heap element */
1227 typedef struct {
1228 ev_tstamp at;
1229 WT w;
1230 } ANHE;
1231
1232 #define ANHE_w(he) (he).w /* access watcher, read-write */
1233 #define ANHE_at(he) (he).at /* access cached at, read-only */
1234 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1235#else
1236 /* a heap element */
1237 typedef WT ANHE;
1238
1239 #define ANHE_w(he) (he)
1240 #define ANHE_at(he) (he)->at
1241 #define ANHE_at_cache(he)
346#endif 1242#endif
347 1243
348#if EV_MULTIPLICITY 1244#if EV_MULTIPLICITY
349 1245
350 struct ev_loop 1246 struct ev_loop
356 #undef VAR 1252 #undef VAR
357 }; 1253 };
358 #include "ev_wrap.h" 1254 #include "ev_wrap.h"
359 1255
360 static struct ev_loop default_loop_struct; 1256 static struct ev_loop default_loop_struct;
361 struct ev_loop *ev_default_loop_ptr; 1257 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
362 1258
363#else 1259#else
364 1260
365 ev_tstamp ev_rt_now; 1261 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
366 #define VAR(name,decl) static decl; 1262 #define VAR(name,decl) static decl;
367 #include "ev_vars.h" 1263 #include "ev_vars.h"
368 #undef VAR 1264 #undef VAR
369 1265
370 static int ev_default_loop_ptr; 1266 static int ev_default_loop_ptr;
371 1267
372#endif 1268#endif
373 1269
1270#if EV_FEATURE_API
1271# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1272# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1273# define EV_INVOKE_PENDING invoke_cb (EV_A)
1274#else
1275# define EV_RELEASE_CB (void)0
1276# define EV_ACQUIRE_CB (void)0
1277# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1278#endif
1279
1280#define EVBREAK_RECURSE 0x80
1281
374/*****************************************************************************/ 1282/*****************************************************************************/
375 1283
1284#ifndef EV_HAVE_EV_TIME
376ev_tstamp 1285ev_tstamp
377ev_time (void) 1286ev_time (void) EV_THROW
378{ 1287{
379#if EV_USE_REALTIME 1288#if EV_USE_REALTIME
1289 if (expect_true (have_realtime))
1290 {
380 struct timespec ts; 1291 struct timespec ts;
381 clock_gettime (CLOCK_REALTIME, &ts); 1292 clock_gettime (CLOCK_REALTIME, &ts);
382 return ts.tv_sec + ts.tv_nsec * 1e-9; 1293 return ts.tv_sec + ts.tv_nsec * 1e-9;
383#else 1294 }
1295#endif
1296
384 struct timeval tv; 1297 struct timeval tv;
385 gettimeofday (&tv, 0); 1298 gettimeofday (&tv, 0);
386 return tv.tv_sec + tv.tv_usec * 1e-6; 1299 return tv.tv_sec + tv.tv_usec * 1e-6;
387#endif
388} 1300}
1301#endif
389 1302
390ev_tstamp inline_size 1303inline_size ev_tstamp
391get_clock (void) 1304get_clock (void)
392{ 1305{
393#if EV_USE_MONOTONIC 1306#if EV_USE_MONOTONIC
394 if (expect_true (have_monotonic)) 1307 if (expect_true (have_monotonic))
395 { 1308 {
402 return ev_time (); 1315 return ev_time ();
403} 1316}
404 1317
405#if EV_MULTIPLICITY 1318#if EV_MULTIPLICITY
406ev_tstamp 1319ev_tstamp
407ev_now (EV_P) 1320ev_now (EV_P) EV_THROW
408{ 1321{
409 return ev_rt_now; 1322 return ev_rt_now;
410} 1323}
411#endif 1324#endif
412 1325
413int inline_size 1326void
1327ev_sleep (ev_tstamp delay) EV_THROW
1328{
1329 if (delay > 0.)
1330 {
1331#if EV_USE_NANOSLEEP
1332 struct timespec ts;
1333
1334 EV_TS_SET (ts, delay);
1335 nanosleep (&ts, 0);
1336#elif defined _WIN32
1337 Sleep ((unsigned long)(delay * 1e3));
1338#else
1339 struct timeval tv;
1340
1341 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1342 /* something not guaranteed by newer posix versions, but guaranteed */
1343 /* by older ones */
1344 EV_TV_SET (tv, delay);
1345 select (0, 0, 0, 0, &tv);
1346#endif
1347 }
1348}
1349
1350/*****************************************************************************/
1351
1352#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1353
1354/* find a suitable new size for the given array, */
1355/* hopefully by rounding to a nice-to-malloc size */
1356inline_size int
414array_nextsize (int elem, int cur, int cnt) 1357array_nextsize (int elem, int cur, int cnt)
415{ 1358{
416 int ncur = cur + 1; 1359 int ncur = cur + 1;
417 1360
418 do 1361 do
419 ncur <<= 1; 1362 ncur <<= 1;
420 while (cnt > ncur); 1363 while (cnt > ncur);
421 1364
422 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 1365 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
423 if (elem * ncur > 4096) 1366 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
424 { 1367 {
425 ncur *= elem; 1368 ncur *= elem;
426 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 1369 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
427 ncur = ncur - sizeof (void *) * 4; 1370 ncur = ncur - sizeof (void *) * 4;
428 ncur /= elem; 1371 ncur /= elem;
429 } 1372 }
430 1373
431 return ncur; 1374 return ncur;
432} 1375}
433 1376
434static noinline void * 1377static void * noinline ecb_cold
435array_realloc (int elem, void *base, int *cur, int cnt) 1378array_realloc (int elem, void *base, int *cur, int cnt)
436{ 1379{
437 *cur = array_nextsize (elem, *cur, cnt); 1380 *cur = array_nextsize (elem, *cur, cnt);
438 return ev_realloc (base, elem * *cur); 1381 return ev_realloc (base, elem * *cur);
439} 1382}
1383
1384#define array_init_zero(base,count) \
1385 memset ((void *)(base), 0, sizeof (*(base)) * (count))
440 1386
441#define array_needsize(type,base,cur,cnt,init) \ 1387#define array_needsize(type,base,cur,cnt,init) \
442 if (expect_false ((cnt) > (cur))) \ 1388 if (expect_false ((cnt) > (cur))) \
443 { \ 1389 { \
444 int ocur_ = (cur); \ 1390 int ecb_unused ocur_ = (cur); \
445 (base) = (type *)array_realloc \ 1391 (base) = (type *)array_realloc \
446 (sizeof (type), (base), &(cur), (cnt)); \ 1392 (sizeof (type), (base), &(cur), (cnt)); \
447 init ((base) + (ocur_), (cur) - ocur_); \ 1393 init ((base) + (ocur_), (cur) - ocur_); \
448 } 1394 }
449 1395
456 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1402 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
457 } 1403 }
458#endif 1404#endif
459 1405
460#define array_free(stem, idx) \ 1406#define array_free(stem, idx) \
461 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1407 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
462 1408
463/*****************************************************************************/ 1409/*****************************************************************************/
464 1410
1411/* dummy callback for pending events */
1412static void noinline
1413pendingcb (EV_P_ ev_prepare *w, int revents)
1414{
1415}
1416
465void noinline 1417void noinline
466ev_feed_event (EV_P_ void *w, int revents) 1418ev_feed_event (EV_P_ void *w, int revents) EV_THROW
467{ 1419{
468 W w_ = (W)w; 1420 W w_ = (W)w;
469 int pri = ABSPRI (w_); 1421 int pri = ABSPRI (w_);
470 1422
471 if (expect_false (w_->pending)) 1423 if (expect_false (w_->pending))
475 w_->pending = ++pendingcnt [pri]; 1427 w_->pending = ++pendingcnt [pri];
476 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 1428 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
477 pendings [pri][w_->pending - 1].w = w_; 1429 pendings [pri][w_->pending - 1].w = w_;
478 pendings [pri][w_->pending - 1].events = revents; 1430 pendings [pri][w_->pending - 1].events = revents;
479 } 1431 }
480}
481 1432
482void inline_size 1433 pendingpri = NUMPRI - 1;
1434}
1435
1436inline_speed void
1437feed_reverse (EV_P_ W w)
1438{
1439 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1440 rfeeds [rfeedcnt++] = w;
1441}
1442
1443inline_size void
1444feed_reverse_done (EV_P_ int revents)
1445{
1446 do
1447 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1448 while (rfeedcnt);
1449}
1450
1451inline_speed void
483queue_events (EV_P_ W *events, int eventcnt, int type) 1452queue_events (EV_P_ W *events, int eventcnt, int type)
484{ 1453{
485 int i; 1454 int i;
486 1455
487 for (i = 0; i < eventcnt; ++i) 1456 for (i = 0; i < eventcnt; ++i)
488 ev_feed_event (EV_A_ events [i], type); 1457 ev_feed_event (EV_A_ events [i], type);
489} 1458}
490 1459
491/*****************************************************************************/ 1460/*****************************************************************************/
492 1461
493void inline_size 1462inline_speed void
494anfds_init (ANFD *base, int count)
495{
496 while (count--)
497 {
498 base->head = 0;
499 base->events = EV_NONE;
500 base->reify = 0;
501
502 ++base;
503 }
504}
505
506void inline_speed
507fd_event (EV_P_ int fd, int revents) 1463fd_event_nocheck (EV_P_ int fd, int revents)
508{ 1464{
509 ANFD *anfd = anfds + fd; 1465 ANFD *anfd = anfds + fd;
510 ev_io *w; 1466 ev_io *w;
511 1467
512 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1468 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
516 if (ev) 1472 if (ev)
517 ev_feed_event (EV_A_ (W)w, ev); 1473 ev_feed_event (EV_A_ (W)w, ev);
518 } 1474 }
519} 1475}
520 1476
1477/* do not submit kernel events for fds that have reify set */
1478/* because that means they changed while we were polling for new events */
1479inline_speed void
1480fd_event (EV_P_ int fd, int revents)
1481{
1482 ANFD *anfd = anfds + fd;
1483
1484 if (expect_true (!anfd->reify))
1485 fd_event_nocheck (EV_A_ fd, revents);
1486}
1487
521void 1488void
522ev_feed_fd_event (EV_P_ int fd, int revents) 1489ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
523{ 1490{
524 if (fd >= 0 && fd < anfdmax) 1491 if (fd >= 0 && fd < anfdmax)
525 fd_event (EV_A_ fd, revents); 1492 fd_event_nocheck (EV_A_ fd, revents);
526} 1493}
527 1494
528void inline_size 1495/* make sure the external fd watch events are in-sync */
1496/* with the kernel/libev internal state */
1497inline_size void
529fd_reify (EV_P) 1498fd_reify (EV_P)
530{ 1499{
531 int i; 1500 int i;
1501
1502#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1503 for (i = 0; i < fdchangecnt; ++i)
1504 {
1505 int fd = fdchanges [i];
1506 ANFD *anfd = anfds + fd;
1507
1508 if (anfd->reify & EV__IOFDSET && anfd->head)
1509 {
1510 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1511
1512 if (handle != anfd->handle)
1513 {
1514 unsigned long arg;
1515
1516 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1517
1518 /* handle changed, but fd didn't - we need to do it in two steps */
1519 backend_modify (EV_A_ fd, anfd->events, 0);
1520 anfd->events = 0;
1521 anfd->handle = handle;
1522 }
1523 }
1524 }
1525#endif
532 1526
533 for (i = 0; i < fdchangecnt; ++i) 1527 for (i = 0; i < fdchangecnt; ++i)
534 { 1528 {
535 int fd = fdchanges [i]; 1529 int fd = fdchanges [i];
536 ANFD *anfd = anfds + fd; 1530 ANFD *anfd = anfds + fd;
537 ev_io *w; 1531 ev_io *w;
538 1532
539 int events = 0; 1533 unsigned char o_events = anfd->events;
1534 unsigned char o_reify = anfd->reify;
540 1535
541 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1536 anfd->reify = 0;
542 events |= w->events;
543 1537
544#if EV_SELECT_IS_WINSOCKET 1538 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
545 if (events)
546 { 1539 {
547 unsigned long argp; 1540 anfd->events = 0;
548 anfd->handle = _get_osfhandle (fd); 1541
549 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1542 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1543 anfd->events |= (unsigned char)w->events;
1544
1545 if (o_events != anfd->events)
1546 o_reify = EV__IOFDSET; /* actually |= */
550 } 1547 }
551#endif
552 1548
553 anfd->reify = 0; 1549 if (o_reify & EV__IOFDSET)
554
555 backend_modify (EV_A_ fd, anfd->events, events); 1550 backend_modify (EV_A_ fd, o_events, anfd->events);
556 anfd->events = events;
557 } 1551 }
558 1552
559 fdchangecnt = 0; 1553 fdchangecnt = 0;
560} 1554}
561 1555
562void inline_size 1556/* something about the given fd changed */
1557inline_size void
563fd_change (EV_P_ int fd) 1558fd_change (EV_P_ int fd, int flags)
564{ 1559{
565 if (expect_false (anfds [fd].reify)) 1560 unsigned char reify = anfds [fd].reify;
566 return;
567
568 anfds [fd].reify = 1; 1561 anfds [fd].reify |= flags;
569 1562
1563 if (expect_true (!reify))
1564 {
570 ++fdchangecnt; 1565 ++fdchangecnt;
571 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1566 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
572 fdchanges [fdchangecnt - 1] = fd; 1567 fdchanges [fdchangecnt - 1] = fd;
1568 }
573} 1569}
574 1570
575void inline_speed 1571/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1572inline_speed void ecb_cold
576fd_kill (EV_P_ int fd) 1573fd_kill (EV_P_ int fd)
577{ 1574{
578 ev_io *w; 1575 ev_io *w;
579 1576
580 while ((w = (ev_io *)anfds [fd].head)) 1577 while ((w = (ev_io *)anfds [fd].head))
582 ev_io_stop (EV_A_ w); 1579 ev_io_stop (EV_A_ w);
583 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1580 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
584 } 1581 }
585} 1582}
586 1583
587int inline_size 1584/* check whether the given fd is actually valid, for error recovery */
1585inline_size int ecb_cold
588fd_valid (int fd) 1586fd_valid (int fd)
589{ 1587{
590#ifdef _WIN32 1588#ifdef _WIN32
591 return _get_osfhandle (fd) != -1; 1589 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
592#else 1590#else
593 return fcntl (fd, F_GETFD) != -1; 1591 return fcntl (fd, F_GETFD) != -1;
594#endif 1592#endif
595} 1593}
596 1594
597/* called on EBADF to verify fds */ 1595/* called on EBADF to verify fds */
598static void noinline 1596static void noinline ecb_cold
599fd_ebadf (EV_P) 1597fd_ebadf (EV_P)
600{ 1598{
601 int fd; 1599 int fd;
602 1600
603 for (fd = 0; fd < anfdmax; ++fd) 1601 for (fd = 0; fd < anfdmax; ++fd)
604 if (anfds [fd].events) 1602 if (anfds [fd].events)
605 if (!fd_valid (fd) == -1 && errno == EBADF) 1603 if (!fd_valid (fd) && errno == EBADF)
606 fd_kill (EV_A_ fd); 1604 fd_kill (EV_A_ fd);
607} 1605}
608 1606
609/* called on ENOMEM in select/poll to kill some fds and retry */ 1607/* called on ENOMEM in select/poll to kill some fds and retry */
610static void noinline 1608static void noinline ecb_cold
611fd_enomem (EV_P) 1609fd_enomem (EV_P)
612{ 1610{
613 int fd; 1611 int fd;
614 1612
615 for (fd = anfdmax; fd--; ) 1613 for (fd = anfdmax; fd--; )
616 if (anfds [fd].events) 1614 if (anfds [fd].events)
617 { 1615 {
618 fd_kill (EV_A_ fd); 1616 fd_kill (EV_A_ fd);
619 return; 1617 break;
620 } 1618 }
621} 1619}
622 1620
623/* usually called after fork if backend needs to re-arm all fds from scratch */ 1621/* usually called after fork if backend needs to re-arm all fds from scratch */
624static void noinline 1622static void noinline
628 1626
629 for (fd = 0; fd < anfdmax; ++fd) 1627 for (fd = 0; fd < anfdmax; ++fd)
630 if (anfds [fd].events) 1628 if (anfds [fd].events)
631 { 1629 {
632 anfds [fd].events = 0; 1630 anfds [fd].events = 0;
633 fd_change (EV_A_ fd); 1631 anfds [fd].emask = 0;
1632 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
634 } 1633 }
635} 1634}
636 1635
637/*****************************************************************************/ 1636/* used to prepare libev internal fd's */
638 1637/* this is not fork-safe */
639void inline_speed 1638inline_speed void
640upheap (WT *heap, int k)
641{
642 WT w = heap [k];
643
644 while (k && heap [k >> 1]->at > w->at)
645 {
646 heap [k] = heap [k >> 1];
647 ((W)heap [k])->active = k + 1;
648 k >>= 1;
649 }
650
651 heap [k] = w;
652 ((W)heap [k])->active = k + 1;
653
654}
655
656void inline_speed
657downheap (WT *heap, int N, int k)
658{
659 WT w = heap [k];
660
661 while (k < (N >> 1))
662 {
663 int j = k << 1;
664
665 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
666 ++j;
667
668 if (w->at <= heap [j]->at)
669 break;
670
671 heap [k] = heap [j];
672 ((W)heap [k])->active = k + 1;
673 k = j;
674 }
675
676 heap [k] = w;
677 ((W)heap [k])->active = k + 1;
678}
679
680void inline_size
681adjustheap (WT *heap, int N, int k)
682{
683 upheap (heap, k);
684 downheap (heap, N, k);
685}
686
687/*****************************************************************************/
688
689typedef struct
690{
691 WL head;
692 sig_atomic_t volatile gotsig;
693} ANSIG;
694
695static ANSIG *signals;
696static int signalmax;
697
698static int sigpipe [2];
699static sig_atomic_t volatile gotsig;
700static ev_io sigev;
701
702void inline_size
703signals_init (ANSIG *base, int count)
704{
705 while (count--)
706 {
707 base->head = 0;
708 base->gotsig = 0;
709
710 ++base;
711 }
712}
713
714static void
715sighandler (int signum)
716{
717#if _WIN32
718 signal (signum, sighandler);
719#endif
720
721 signals [signum - 1].gotsig = 1;
722
723 if (!gotsig)
724 {
725 int old_errno = errno;
726 gotsig = 1;
727 write (sigpipe [1], &signum, 1);
728 errno = old_errno;
729 }
730}
731
732void noinline
733ev_feed_signal_event (EV_P_ int signum)
734{
735 WL w;
736
737#if EV_MULTIPLICITY
738 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
739#endif
740
741 --signum;
742
743 if (signum < 0 || signum >= signalmax)
744 return;
745
746 signals [signum].gotsig = 0;
747
748 for (w = signals [signum].head; w; w = w->next)
749 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
750}
751
752static void
753sigcb (EV_P_ ev_io *iow, int revents)
754{
755 int signum;
756
757 read (sigpipe [0], &revents, 1);
758 gotsig = 0;
759
760 for (signum = signalmax; signum--; )
761 if (signals [signum].gotsig)
762 ev_feed_signal_event (EV_A_ signum + 1);
763}
764
765void inline_speed
766fd_intern (int fd) 1639fd_intern (int fd)
767{ 1640{
768#ifdef _WIN32 1641#ifdef _WIN32
769 int arg = 1; 1642 unsigned long arg = 1;
770 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1643 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
771#else 1644#else
772 fcntl (fd, F_SETFD, FD_CLOEXEC); 1645 fcntl (fd, F_SETFD, FD_CLOEXEC);
773 fcntl (fd, F_SETFL, O_NONBLOCK); 1646 fcntl (fd, F_SETFL, O_NONBLOCK);
774#endif 1647#endif
775} 1648}
776 1649
777static void noinline
778siginit (EV_P)
779{
780 fd_intern (sigpipe [0]);
781 fd_intern (sigpipe [1]);
782
783 ev_io_set (&sigev, sigpipe [0], EV_READ);
784 ev_io_start (EV_A_ &sigev);
785 ev_unref (EV_A); /* child watcher should not keep loop alive */
786}
787
788/*****************************************************************************/ 1650/*****************************************************************************/
789 1651
790static ev_child *childs [EV_PID_HASHSIZE]; 1652/*
1653 * the heap functions want a real array index. array index 0 is guaranteed to not
1654 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1655 * the branching factor of the d-tree.
1656 */
791 1657
1658/*
1659 * at the moment we allow libev the luxury of two heaps,
1660 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1661 * which is more cache-efficient.
1662 * the difference is about 5% with 50000+ watchers.
1663 */
1664#if EV_USE_4HEAP
1665
1666#define DHEAP 4
1667#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1668#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1669#define UPHEAP_DONE(p,k) ((p) == (k))
1670
1671/* away from the root */
1672inline_speed void
1673downheap (ANHE *heap, int N, int k)
1674{
1675 ANHE he = heap [k];
1676 ANHE *E = heap + N + HEAP0;
1677
1678 for (;;)
1679 {
1680 ev_tstamp minat;
1681 ANHE *minpos;
1682 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1683
1684 /* find minimum child */
1685 if (expect_true (pos + DHEAP - 1 < E))
1686 {
1687 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1688 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1689 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1690 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1691 }
1692 else if (pos < E)
1693 {
1694 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1695 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1696 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1697 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1698 }
1699 else
1700 break;
1701
1702 if (ANHE_at (he) <= minat)
1703 break;
1704
1705 heap [k] = *minpos;
1706 ev_active (ANHE_w (*minpos)) = k;
1707
1708 k = minpos - heap;
1709 }
1710
1711 heap [k] = he;
1712 ev_active (ANHE_w (he)) = k;
1713}
1714
1715#else /* 4HEAP */
1716
1717#define HEAP0 1
1718#define HPARENT(k) ((k) >> 1)
1719#define UPHEAP_DONE(p,k) (!(p))
1720
1721/* away from the root */
1722inline_speed void
1723downheap (ANHE *heap, int N, int k)
1724{
1725 ANHE he = heap [k];
1726
1727 for (;;)
1728 {
1729 int c = k << 1;
1730
1731 if (c >= N + HEAP0)
1732 break;
1733
1734 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1735 ? 1 : 0;
1736
1737 if (ANHE_at (he) <= ANHE_at (heap [c]))
1738 break;
1739
1740 heap [k] = heap [c];
1741 ev_active (ANHE_w (heap [k])) = k;
1742
1743 k = c;
1744 }
1745
1746 heap [k] = he;
1747 ev_active (ANHE_w (he)) = k;
1748}
1749#endif
1750
1751/* towards the root */
1752inline_speed void
1753upheap (ANHE *heap, int k)
1754{
1755 ANHE he = heap [k];
1756
1757 for (;;)
1758 {
1759 int p = HPARENT (k);
1760
1761 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1762 break;
1763
1764 heap [k] = heap [p];
1765 ev_active (ANHE_w (heap [k])) = k;
1766 k = p;
1767 }
1768
1769 heap [k] = he;
1770 ev_active (ANHE_w (he)) = k;
1771}
1772
1773/* move an element suitably so it is in a correct place */
1774inline_size void
1775adjustheap (ANHE *heap, int N, int k)
1776{
1777 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1778 upheap (heap, k);
1779 else
1780 downheap (heap, N, k);
1781}
1782
1783/* rebuild the heap: this function is used only once and executed rarely */
1784inline_size void
1785reheap (ANHE *heap, int N)
1786{
1787 int i;
1788
1789 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1790 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1791 for (i = 0; i < N; ++i)
1792 upheap (heap, i + HEAP0);
1793}
1794
1795/*****************************************************************************/
1796
1797/* associate signal watchers to a signal signal */
1798typedef struct
1799{
1800 EV_ATOMIC_T pending;
1801#if EV_MULTIPLICITY
1802 EV_P;
1803#endif
1804 WL head;
1805} ANSIG;
1806
1807static ANSIG signals [EV_NSIG - 1];
1808
1809/*****************************************************************************/
1810
1811#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1812
1813static void noinline ecb_cold
1814evpipe_init (EV_P)
1815{
1816 if (!ev_is_active (&pipe_w))
1817 {
1818# if EV_USE_EVENTFD
1819 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1820 if (evfd < 0 && errno == EINVAL)
1821 evfd = eventfd (0, 0);
1822
1823 if (evfd >= 0)
1824 {
1825 evpipe [0] = -1;
1826 fd_intern (evfd); /* doing it twice doesn't hurt */
1827 ev_io_set (&pipe_w, evfd, EV_READ);
1828 }
1829 else
1830# endif
1831 {
1832 while (pipe (evpipe))
1833 ev_syserr ("(libev) error creating signal/async pipe");
1834
1835 fd_intern (evpipe [0]);
1836 fd_intern (evpipe [1]);
1837 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1838 }
1839
1840 ev_io_start (EV_A_ &pipe_w);
1841 ev_unref (EV_A); /* watcher should not keep loop alive */
1842 }
1843}
1844
1845inline_speed void
1846evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1847{
1848 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
1849
1850 if (expect_true (*flag))
1851 return;
1852
1853 *flag = 1;
1854
1855 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1856
1857 pipe_write_skipped = 1;
1858
1859 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1860
1861 if (pipe_write_wanted)
1862 {
1863 int old_errno;
1864
1865 pipe_write_skipped = 0; /* just an optimisation, no fence needed */
1866
1867 old_errno = errno; /* save errno because write will clobber it */
1868
1869#if EV_USE_EVENTFD
1870 if (evfd >= 0)
1871 {
1872 uint64_t counter = 1;
1873 write (evfd, &counter, sizeof (uint64_t));
1874 }
1875 else
1876#endif
1877 {
792#ifndef _WIN32 1878#ifdef _WIN32
1879 WSABUF buf;
1880 DWORD sent;
1881 buf.buf = &buf;
1882 buf.len = 1;
1883 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
1884#else
1885 write (evpipe [1], &(evpipe [1]), 1);
1886#endif
1887 }
1888
1889 errno = old_errno;
1890 }
1891}
1892
1893/* called whenever the libev signal pipe */
1894/* got some events (signal, async) */
1895static void
1896pipecb (EV_P_ ev_io *iow, int revents)
1897{
1898 int i;
1899
1900 if (revents & EV_READ)
1901 {
1902#if EV_USE_EVENTFD
1903 if (evfd >= 0)
1904 {
1905 uint64_t counter;
1906 read (evfd, &counter, sizeof (uint64_t));
1907 }
1908 else
1909#endif
1910 {
1911 char dummy[4];
1912#ifdef _WIN32
1913 WSABUF buf;
1914 DWORD recvd;
1915 buf.buf = dummy;
1916 buf.len = sizeof (dummy);
1917 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, 0, 0, 0);
1918#else
1919 read (evpipe [0], &dummy, sizeof (dummy));
1920#endif
1921 }
1922 }
1923
1924 pipe_write_skipped = 0;
1925
1926 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
1927
1928#if EV_SIGNAL_ENABLE
1929 if (sig_pending)
1930 {
1931 sig_pending = 0;
1932
1933 ECB_MEMORY_FENCE_RELEASE;
1934
1935 for (i = EV_NSIG - 1; i--; )
1936 if (expect_false (signals [i].pending))
1937 ev_feed_signal_event (EV_A_ i + 1);
1938 }
1939#endif
1940
1941#if EV_ASYNC_ENABLE
1942 if (async_pending)
1943 {
1944 async_pending = 0;
1945
1946 ECB_MEMORY_FENCE_RELEASE;
1947
1948 for (i = asynccnt; i--; )
1949 if (asyncs [i]->sent)
1950 {
1951 asyncs [i]->sent = 0;
1952 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1953 }
1954 }
1955#endif
1956}
1957
1958/*****************************************************************************/
1959
1960void
1961ev_feed_signal (int signum) EV_THROW
1962{
1963#if EV_MULTIPLICITY
1964 EV_P = signals [signum - 1].loop;
1965
1966 if (!EV_A)
1967 return;
1968#endif
1969
1970 if (!ev_active (&pipe_w))
1971 return;
1972
1973 signals [signum - 1].pending = 1;
1974 evpipe_write (EV_A_ &sig_pending);
1975}
1976
1977static void
1978ev_sighandler (int signum)
1979{
1980#ifdef _WIN32
1981 signal (signum, ev_sighandler);
1982#endif
1983
1984 ev_feed_signal (signum);
1985}
1986
1987void noinline
1988ev_feed_signal_event (EV_P_ int signum) EV_THROW
1989{
1990 WL w;
1991
1992 if (expect_false (signum <= 0 || signum > EV_NSIG))
1993 return;
1994
1995 --signum;
1996
1997#if EV_MULTIPLICITY
1998 /* it is permissible to try to feed a signal to the wrong loop */
1999 /* or, likely more useful, feeding a signal nobody is waiting for */
2000
2001 if (expect_false (signals [signum].loop != EV_A))
2002 return;
2003#endif
2004
2005 signals [signum].pending = 0;
2006
2007 for (w = signals [signum].head; w; w = w->next)
2008 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2009}
2010
2011#if EV_USE_SIGNALFD
2012static void
2013sigfdcb (EV_P_ ev_io *iow, int revents)
2014{
2015 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2016
2017 for (;;)
2018 {
2019 ssize_t res = read (sigfd, si, sizeof (si));
2020
2021 /* not ISO-C, as res might be -1, but works with SuS */
2022 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2023 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2024
2025 if (res < (ssize_t)sizeof (si))
2026 break;
2027 }
2028}
2029#endif
2030
2031#endif
2032
2033/*****************************************************************************/
2034
2035#if EV_CHILD_ENABLE
2036static WL childs [EV_PID_HASHSIZE];
793 2037
794static ev_signal childev; 2038static ev_signal childev;
795 2039
796void inline_speed 2040#ifndef WIFCONTINUED
2041# define WIFCONTINUED(status) 0
2042#endif
2043
2044/* handle a single child status event */
2045inline_speed void
797child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 2046child_reap (EV_P_ int chain, int pid, int status)
798{ 2047{
799 ev_child *w; 2048 ev_child *w;
2049 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
800 2050
801 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2051 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2052 {
802 if (w->pid == pid || !w->pid) 2053 if ((w->pid == pid || !w->pid)
2054 && (!traced || (w->flags & 1)))
803 { 2055 {
804 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 2056 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
805 w->rpid = pid; 2057 w->rpid = pid;
806 w->rstatus = status; 2058 w->rstatus = status;
807 ev_feed_event (EV_A_ (W)w, EV_CHILD); 2059 ev_feed_event (EV_A_ (W)w, EV_CHILD);
808 } 2060 }
2061 }
809} 2062}
810 2063
811#ifndef WCONTINUED 2064#ifndef WCONTINUED
812# define WCONTINUED 0 2065# define WCONTINUED 0
813#endif 2066#endif
814 2067
2068/* called on sigchld etc., calls waitpid */
815static void 2069static void
816childcb (EV_P_ ev_signal *sw, int revents) 2070childcb (EV_P_ ev_signal *sw, int revents)
817{ 2071{
818 int pid, status; 2072 int pid, status;
819 2073
822 if (!WCONTINUED 2076 if (!WCONTINUED
823 || errno != EINVAL 2077 || errno != EINVAL
824 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 2078 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
825 return; 2079 return;
826 2080
827 /* make sure we are called again until all childs have been reaped */ 2081 /* make sure we are called again until all children have been reaped */
828 /* we need to do it this way so that the callback gets called before we continue */ 2082 /* we need to do it this way so that the callback gets called before we continue */
829 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2083 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
830 2084
831 child_reap (EV_A_ sw, pid, pid, status); 2085 child_reap (EV_A_ pid, pid, status);
832 if (EV_PID_HASHSIZE > 1) 2086 if ((EV_PID_HASHSIZE) > 1)
833 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2087 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
834} 2088}
835 2089
836#endif 2090#endif
837 2091
838/*****************************************************************************/ 2092/*****************************************************************************/
839 2093
2094#if EV_USE_IOCP
2095# include "ev_iocp.c"
2096#endif
840#if EV_USE_PORT 2097#if EV_USE_PORT
841# include "ev_port.c" 2098# include "ev_port.c"
842#endif 2099#endif
843#if EV_USE_KQUEUE 2100#if EV_USE_KQUEUE
844# include "ev_kqueue.c" 2101# include "ev_kqueue.c"
851#endif 2108#endif
852#if EV_USE_SELECT 2109#if EV_USE_SELECT
853# include "ev_select.c" 2110# include "ev_select.c"
854#endif 2111#endif
855 2112
856int 2113int ecb_cold
857ev_version_major (void) 2114ev_version_major (void) EV_THROW
858{ 2115{
859 return EV_VERSION_MAJOR; 2116 return EV_VERSION_MAJOR;
860} 2117}
861 2118
862int 2119int ecb_cold
863ev_version_minor (void) 2120ev_version_minor (void) EV_THROW
864{ 2121{
865 return EV_VERSION_MINOR; 2122 return EV_VERSION_MINOR;
866} 2123}
867 2124
868/* return true if we are running with elevated privileges and should ignore env variables */ 2125/* return true if we are running with elevated privileges and should ignore env variables */
869int inline_size 2126int inline_size ecb_cold
870enable_secure (void) 2127enable_secure (void)
871{ 2128{
872#ifdef _WIN32 2129#ifdef _WIN32
873 return 0; 2130 return 0;
874#else 2131#else
875 return getuid () != geteuid () 2132 return getuid () != geteuid ()
876 || getgid () != getegid (); 2133 || getgid () != getegid ();
877#endif 2134#endif
878} 2135}
879 2136
880unsigned int 2137unsigned int ecb_cold
881ev_supported_backends (void) 2138ev_supported_backends (void) EV_THROW
882{ 2139{
883 unsigned int flags = 0; 2140 unsigned int flags = 0;
884 2141
885 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2142 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
886 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2143 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
889 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2146 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
890 2147
891 return flags; 2148 return flags;
892} 2149}
893 2150
894unsigned int 2151unsigned int ecb_cold
895ev_recommended_backends (void) 2152ev_recommended_backends (void) EV_THROW
896{ 2153{
897 unsigned int flags = ev_supported_backends (); 2154 unsigned int flags = ev_supported_backends ();
898 2155
899#ifndef __NetBSD__ 2156#ifndef __NetBSD__
900 /* kqueue is borked on everything but netbsd apparently */ 2157 /* kqueue is borked on everything but netbsd apparently */
901 /* it usually doesn't work correctly on anything but sockets and pipes */ 2158 /* it usually doesn't work correctly on anything but sockets and pipes */
902 flags &= ~EVBACKEND_KQUEUE; 2159 flags &= ~EVBACKEND_KQUEUE;
903#endif 2160#endif
904#ifdef __APPLE__ 2161#ifdef __APPLE__
905 // flags &= ~EVBACKEND_KQUEUE; for documentation 2162 /* only select works correctly on that "unix-certified" platform */
906 flags &= ~EVBACKEND_POLL; 2163 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2164 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2165#endif
2166#ifdef __FreeBSD__
2167 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
907#endif 2168#endif
908 2169
909 return flags; 2170 return flags;
910} 2171}
911 2172
2173unsigned int ecb_cold
2174ev_embeddable_backends (void) EV_THROW
2175{
2176 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2177
2178 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2179 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2180 flags &= ~EVBACKEND_EPOLL;
2181
2182 return flags;
2183}
2184
912unsigned int 2185unsigned int
913ev_embeddable_backends (void) 2186ev_backend (EV_P) EV_THROW
914{ 2187{
915 return EVBACKEND_EPOLL 2188 return backend;
916 | EVBACKEND_KQUEUE
917 | EVBACKEND_PORT;
918} 2189}
919 2190
2191#if EV_FEATURE_API
920unsigned int 2192unsigned int
921ev_backend (EV_P) 2193ev_iteration (EV_P) EV_THROW
922{ 2194{
923 return backend; 2195 return loop_count;
924} 2196}
925 2197
926unsigned int 2198unsigned int
927ev_loop_count (EV_P) 2199ev_depth (EV_P) EV_THROW
928{ 2200{
929 return loop_count; 2201 return loop_depth;
930} 2202}
931 2203
2204void
2205ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2206{
2207 io_blocktime = interval;
2208}
2209
2210void
2211ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2212{
2213 timeout_blocktime = interval;
2214}
2215
2216void
2217ev_set_userdata (EV_P_ void *data) EV_THROW
2218{
2219 userdata = data;
2220}
2221
2222void *
2223ev_userdata (EV_P) EV_THROW
2224{
2225 return userdata;
2226}
2227
2228void
2229ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2230{
2231 invoke_cb = invoke_pending_cb;
2232}
2233
2234void
2235ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2236{
2237 release_cb = release;
2238 acquire_cb = acquire;
2239}
2240#endif
2241
2242/* initialise a loop structure, must be zero-initialised */
932static void noinline 2243static void noinline ecb_cold
933loop_init (EV_P_ unsigned int flags) 2244loop_init (EV_P_ unsigned int flags) EV_THROW
934{ 2245{
935 if (!backend) 2246 if (!backend)
936 { 2247 {
2248 origflags = flags;
2249
2250#if EV_USE_REALTIME
2251 if (!have_realtime)
2252 {
2253 struct timespec ts;
2254
2255 if (!clock_gettime (CLOCK_REALTIME, &ts))
2256 have_realtime = 1;
2257 }
2258#endif
2259
937#if EV_USE_MONOTONIC 2260#if EV_USE_MONOTONIC
2261 if (!have_monotonic)
938 { 2262 {
939 struct timespec ts; 2263 struct timespec ts;
2264
940 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2265 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
941 have_monotonic = 1; 2266 have_monotonic = 1;
942 } 2267 }
943#endif 2268#endif
944
945 ev_rt_now = ev_time ();
946 mn_now = get_clock ();
947 now_floor = mn_now;
948 rtmn_diff = ev_rt_now - mn_now;
949 2269
950 /* pid check not overridable via env */ 2270 /* pid check not overridable via env */
951#ifndef _WIN32 2271#ifndef _WIN32
952 if (flags & EVFLAG_FORKCHECK) 2272 if (flags & EVFLAG_FORKCHECK)
953 curpid = getpid (); 2273 curpid = getpid ();
956 if (!(flags & EVFLAG_NOENV) 2276 if (!(flags & EVFLAG_NOENV)
957 && !enable_secure () 2277 && !enable_secure ()
958 && getenv ("LIBEV_FLAGS")) 2278 && getenv ("LIBEV_FLAGS"))
959 flags = atoi (getenv ("LIBEV_FLAGS")); 2279 flags = atoi (getenv ("LIBEV_FLAGS"));
960 2280
961 if (!(flags & 0x0000ffffUL)) 2281 ev_rt_now = ev_time ();
2282 mn_now = get_clock ();
2283 now_floor = mn_now;
2284 rtmn_diff = ev_rt_now - mn_now;
2285#if EV_FEATURE_API
2286 invoke_cb = ev_invoke_pending;
2287#endif
2288
2289 io_blocktime = 0.;
2290 timeout_blocktime = 0.;
2291 backend = 0;
2292 backend_fd = -1;
2293 sig_pending = 0;
2294#if EV_ASYNC_ENABLE
2295 async_pending = 0;
2296#endif
2297 pipe_write_skipped = 0;
2298 pipe_write_wanted = 0;
2299#if EV_USE_INOTIFY
2300 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2301#endif
2302#if EV_USE_SIGNALFD
2303 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2304#endif
2305
2306 if (!(flags & EVBACKEND_MASK))
962 flags |= ev_recommended_backends (); 2307 flags |= ev_recommended_backends ();
963 2308
964 backend = 0;
965 backend_fd = -1;
966#if EV_USE_INOTIFY 2309#if EV_USE_IOCP
967 fs_fd = -2; 2310 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
968#endif 2311#endif
969
970#if EV_USE_PORT 2312#if EV_USE_PORT
971 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2313 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
972#endif 2314#endif
973#if EV_USE_KQUEUE 2315#if EV_USE_KQUEUE
974 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2316 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
981#endif 2323#endif
982#if EV_USE_SELECT 2324#if EV_USE_SELECT
983 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2325 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
984#endif 2326#endif
985 2327
2328 ev_prepare_init (&pending_w, pendingcb);
2329
2330#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
986 ev_init (&sigev, sigcb); 2331 ev_init (&pipe_w, pipecb);
987 ev_set_priority (&sigev, EV_MAXPRI); 2332 ev_set_priority (&pipe_w, EV_MAXPRI);
2333#endif
988 } 2334 }
989} 2335}
990 2336
991static void noinline 2337/* free up a loop structure */
2338void ecb_cold
992loop_destroy (EV_P) 2339ev_loop_destroy (EV_P)
993{ 2340{
994 int i; 2341 int i;
2342
2343#if EV_MULTIPLICITY
2344 /* mimic free (0) */
2345 if (!EV_A)
2346 return;
2347#endif
2348
2349#if EV_CLEANUP_ENABLE
2350 /* queue cleanup watchers (and execute them) */
2351 if (expect_false (cleanupcnt))
2352 {
2353 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2354 EV_INVOKE_PENDING;
2355 }
2356#endif
2357
2358#if EV_CHILD_ENABLE
2359 if (ev_is_active (&childev))
2360 {
2361 ev_ref (EV_A); /* child watcher */
2362 ev_signal_stop (EV_A_ &childev);
2363 }
2364#endif
2365
2366 if (ev_is_active (&pipe_w))
2367 {
2368 /*ev_ref (EV_A);*/
2369 /*ev_io_stop (EV_A_ &pipe_w);*/
2370
2371#if EV_USE_EVENTFD
2372 if (evfd >= 0)
2373 close (evfd);
2374#endif
2375
2376 if (evpipe [0] >= 0)
2377 {
2378 EV_WIN32_CLOSE_FD (evpipe [0]);
2379 EV_WIN32_CLOSE_FD (evpipe [1]);
2380 }
2381 }
2382
2383#if EV_USE_SIGNALFD
2384 if (ev_is_active (&sigfd_w))
2385 close (sigfd);
2386#endif
995 2387
996#if EV_USE_INOTIFY 2388#if EV_USE_INOTIFY
997 if (fs_fd >= 0) 2389 if (fs_fd >= 0)
998 close (fs_fd); 2390 close (fs_fd);
999#endif 2391#endif
1000 2392
1001 if (backend_fd >= 0) 2393 if (backend_fd >= 0)
1002 close (backend_fd); 2394 close (backend_fd);
1003 2395
2396#if EV_USE_IOCP
2397 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2398#endif
1004#if EV_USE_PORT 2399#if EV_USE_PORT
1005 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2400 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1006#endif 2401#endif
1007#if EV_USE_KQUEUE 2402#if EV_USE_KQUEUE
1008 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2403 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1023#if EV_IDLE_ENABLE 2418#if EV_IDLE_ENABLE
1024 array_free (idle, [i]); 2419 array_free (idle, [i]);
1025#endif 2420#endif
1026 } 2421 }
1027 2422
2423 ev_free (anfds); anfds = 0; anfdmax = 0;
2424
1028 /* have to use the microsoft-never-gets-it-right macro */ 2425 /* have to use the microsoft-never-gets-it-right macro */
2426 array_free (rfeed, EMPTY);
1029 array_free (fdchange, EMPTY); 2427 array_free (fdchange, EMPTY);
1030 array_free (timer, EMPTY); 2428 array_free (timer, EMPTY);
1031#if EV_PERIODIC_ENABLE 2429#if EV_PERIODIC_ENABLE
1032 array_free (periodic, EMPTY); 2430 array_free (periodic, EMPTY);
1033#endif 2431#endif
2432#if EV_FORK_ENABLE
2433 array_free (fork, EMPTY);
2434#endif
2435#if EV_CLEANUP_ENABLE
2436 array_free (cleanup, EMPTY);
2437#endif
1034 array_free (prepare, EMPTY); 2438 array_free (prepare, EMPTY);
1035 array_free (check, EMPTY); 2439 array_free (check, EMPTY);
2440#if EV_ASYNC_ENABLE
2441 array_free (async, EMPTY);
2442#endif
1036 2443
1037 backend = 0; 2444 backend = 0;
1038}
1039 2445
2446#if EV_MULTIPLICITY
2447 if (ev_is_default_loop (EV_A))
2448#endif
2449 ev_default_loop_ptr = 0;
2450#if EV_MULTIPLICITY
2451 else
2452 ev_free (EV_A);
2453#endif
2454}
2455
2456#if EV_USE_INOTIFY
1040void inline_size infy_fork (EV_P); 2457inline_size void infy_fork (EV_P);
2458#endif
1041 2459
1042void inline_size 2460inline_size void
1043loop_fork (EV_P) 2461loop_fork (EV_P)
1044{ 2462{
1045#if EV_USE_PORT 2463#if EV_USE_PORT
1046 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2464 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1047#endif 2465#endif
1053#endif 2471#endif
1054#if EV_USE_INOTIFY 2472#if EV_USE_INOTIFY
1055 infy_fork (EV_A); 2473 infy_fork (EV_A);
1056#endif 2474#endif
1057 2475
1058 if (ev_is_active (&sigev)) 2476 if (ev_is_active (&pipe_w))
1059 { 2477 {
1060 /* default loop */ 2478 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1061 2479
1062 ev_ref (EV_A); 2480 ev_ref (EV_A);
1063 ev_io_stop (EV_A_ &sigev); 2481 ev_io_stop (EV_A_ &pipe_w);
1064 close (sigpipe [0]);
1065 close (sigpipe [1]);
1066 2482
1067 while (pipe (sigpipe)) 2483#if EV_USE_EVENTFD
1068 syserr ("(libev) error creating pipe"); 2484 if (evfd >= 0)
2485 close (evfd);
2486#endif
1069 2487
2488 if (evpipe [0] >= 0)
2489 {
2490 EV_WIN32_CLOSE_FD (evpipe [0]);
2491 EV_WIN32_CLOSE_FD (evpipe [1]);
2492 }
2493
2494#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1070 siginit (EV_A); 2495 evpipe_init (EV_A);
2496 /* now iterate over everything, in case we missed something */
2497 pipecb (EV_A_ &pipe_w, EV_READ);
2498#endif
1071 } 2499 }
1072 2500
1073 postfork = 0; 2501 postfork = 0;
1074} 2502}
1075 2503
1076#if EV_MULTIPLICITY 2504#if EV_MULTIPLICITY
2505
1077struct ev_loop * 2506struct ev_loop * ecb_cold
1078ev_loop_new (unsigned int flags) 2507ev_loop_new (unsigned int flags) EV_THROW
1079{ 2508{
1080 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2509 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1081 2510
1082 memset (loop, 0, sizeof (struct ev_loop)); 2511 memset (EV_A, 0, sizeof (struct ev_loop));
1083
1084 loop_init (EV_A_ flags); 2512 loop_init (EV_A_ flags);
1085 2513
1086 if (ev_backend (EV_A)) 2514 if (ev_backend (EV_A))
1087 return loop; 2515 return EV_A;
1088 2516
2517 ev_free (EV_A);
1089 return 0; 2518 return 0;
1090} 2519}
1091 2520
1092void 2521#endif /* multiplicity */
1093ev_loop_destroy (EV_P)
1094{
1095 loop_destroy (EV_A);
1096 ev_free (loop);
1097}
1098 2522
1099void 2523#if EV_VERIFY
1100ev_loop_fork (EV_P) 2524static void noinline ecb_cold
2525verify_watcher (EV_P_ W w)
1101{ 2526{
1102 postfork = 1; 2527 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1103}
1104 2528
2529 if (w->pending)
2530 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2531}
2532
2533static void noinline ecb_cold
2534verify_heap (EV_P_ ANHE *heap, int N)
2535{
2536 int i;
2537
2538 for (i = HEAP0; i < N + HEAP0; ++i)
2539 {
2540 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2541 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2542 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2543
2544 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2545 }
2546}
2547
2548static void noinline ecb_cold
2549array_verify (EV_P_ W *ws, int cnt)
2550{
2551 while (cnt--)
2552 {
2553 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2554 verify_watcher (EV_A_ ws [cnt]);
2555 }
2556}
2557#endif
2558
2559#if EV_FEATURE_API
2560void ecb_cold
2561ev_verify (EV_P) EV_THROW
2562{
2563#if EV_VERIFY
2564 int i;
2565 WL w, w2;
2566
2567 assert (activecnt >= -1);
2568
2569 assert (fdchangemax >= fdchangecnt);
2570 for (i = 0; i < fdchangecnt; ++i)
2571 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2572
2573 assert (anfdmax >= 0);
2574 for (i = 0; i < anfdmax; ++i)
2575 {
2576 int j = 0;
2577
2578 for (w = w2 = anfds [i].head; w; w = w->next)
2579 {
2580 verify_watcher (EV_A_ (W)w);
2581
2582 if (j++ & 1)
2583 {
2584 assert (("libev: io watcher list contains a loop", w != w2));
2585 w2 = w2->next;
2586 }
2587
2588 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2589 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2590 }
2591 }
2592
2593 assert (timermax >= timercnt);
2594 verify_heap (EV_A_ timers, timercnt);
2595
2596#if EV_PERIODIC_ENABLE
2597 assert (periodicmax >= periodiccnt);
2598 verify_heap (EV_A_ periodics, periodiccnt);
2599#endif
2600
2601 for (i = NUMPRI; i--; )
2602 {
2603 assert (pendingmax [i] >= pendingcnt [i]);
2604#if EV_IDLE_ENABLE
2605 assert (idleall >= 0);
2606 assert (idlemax [i] >= idlecnt [i]);
2607 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2608#endif
2609 }
2610
2611#if EV_FORK_ENABLE
2612 assert (forkmax >= forkcnt);
2613 array_verify (EV_A_ (W *)forks, forkcnt);
2614#endif
2615
2616#if EV_CLEANUP_ENABLE
2617 assert (cleanupmax >= cleanupcnt);
2618 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2619#endif
2620
2621#if EV_ASYNC_ENABLE
2622 assert (asyncmax >= asynccnt);
2623 array_verify (EV_A_ (W *)asyncs, asynccnt);
2624#endif
2625
2626#if EV_PREPARE_ENABLE
2627 assert (preparemax >= preparecnt);
2628 array_verify (EV_A_ (W *)prepares, preparecnt);
2629#endif
2630
2631#if EV_CHECK_ENABLE
2632 assert (checkmax >= checkcnt);
2633 array_verify (EV_A_ (W *)checks, checkcnt);
2634#endif
2635
2636# if 0
2637#if EV_CHILD_ENABLE
2638 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2639 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2640#endif
2641# endif
2642#endif
2643}
1105#endif 2644#endif
1106 2645
1107#if EV_MULTIPLICITY 2646#if EV_MULTIPLICITY
1108struct ev_loop * 2647struct ev_loop * ecb_cold
1109ev_default_loop_init (unsigned int flags)
1110#else 2648#else
1111int 2649int
2650#endif
1112ev_default_loop (unsigned int flags) 2651ev_default_loop (unsigned int flags) EV_THROW
1113#endif
1114{ 2652{
1115 if (sigpipe [0] == sigpipe [1])
1116 if (pipe (sigpipe))
1117 return 0;
1118
1119 if (!ev_default_loop_ptr) 2653 if (!ev_default_loop_ptr)
1120 { 2654 {
1121#if EV_MULTIPLICITY 2655#if EV_MULTIPLICITY
1122 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2656 EV_P = ev_default_loop_ptr = &default_loop_struct;
1123#else 2657#else
1124 ev_default_loop_ptr = 1; 2658 ev_default_loop_ptr = 1;
1125#endif 2659#endif
1126 2660
1127 loop_init (EV_A_ flags); 2661 loop_init (EV_A_ flags);
1128 2662
1129 if (ev_backend (EV_A)) 2663 if (ev_backend (EV_A))
1130 { 2664 {
1131 siginit (EV_A); 2665#if EV_CHILD_ENABLE
1132
1133#ifndef _WIN32
1134 ev_signal_init (&childev, childcb, SIGCHLD); 2666 ev_signal_init (&childev, childcb, SIGCHLD);
1135 ev_set_priority (&childev, EV_MAXPRI); 2667 ev_set_priority (&childev, EV_MAXPRI);
1136 ev_signal_start (EV_A_ &childev); 2668 ev_signal_start (EV_A_ &childev);
1137 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2669 ev_unref (EV_A); /* child watcher should not keep loop alive */
1138#endif 2670#endif
1143 2675
1144 return ev_default_loop_ptr; 2676 return ev_default_loop_ptr;
1145} 2677}
1146 2678
1147void 2679void
1148ev_default_destroy (void) 2680ev_loop_fork (EV_P) EV_THROW
1149{ 2681{
1150#if EV_MULTIPLICITY 2682 postfork = 1; /* must be in line with ev_default_fork */
1151 struct ev_loop *loop = ev_default_loop_ptr;
1152#endif
1153
1154#ifndef _WIN32
1155 ev_ref (EV_A); /* child watcher */
1156 ev_signal_stop (EV_A_ &childev);
1157#endif
1158
1159 ev_ref (EV_A); /* signal watcher */
1160 ev_io_stop (EV_A_ &sigev);
1161
1162 close (sigpipe [0]); sigpipe [0] = 0;
1163 close (sigpipe [1]); sigpipe [1] = 0;
1164
1165 loop_destroy (EV_A);
1166}
1167
1168void
1169ev_default_fork (void)
1170{
1171#if EV_MULTIPLICITY
1172 struct ev_loop *loop = ev_default_loop_ptr;
1173#endif
1174
1175 if (backend)
1176 postfork = 1;
1177} 2683}
1178 2684
1179/*****************************************************************************/ 2685/*****************************************************************************/
1180 2686
1181void 2687void
1182ev_invoke (EV_P_ void *w, int revents) 2688ev_invoke (EV_P_ void *w, int revents)
1183{ 2689{
1184 EV_CB_INVOKE ((W)w, revents); 2690 EV_CB_INVOKE ((W)w, revents);
1185} 2691}
1186 2692
1187void inline_speed 2693unsigned int
1188call_pending (EV_P) 2694ev_pending_count (EV_P) EV_THROW
1189{ 2695{
1190 int pri; 2696 int pri;
2697 unsigned int count = 0;
1191 2698
1192 for (pri = NUMPRI; pri--; ) 2699 for (pri = NUMPRI; pri--; )
2700 count += pendingcnt [pri];
2701
2702 return count;
2703}
2704
2705void noinline
2706ev_invoke_pending (EV_P)
2707{
2708 for (pendingpri = NUMPRI; pendingpri--; ) /* pendingpri is modified during the loop */
1193 while (pendingcnt [pri]) 2709 while (pendingcnt [pendingpri])
1194 { 2710 {
1195 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2711 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1196 2712
1197 if (expect_true (p->w))
1198 {
1199 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1200
1201 p->w->pending = 0; 2713 p->w->pending = 0;
1202 EV_CB_INVOKE (p->w, p->events); 2714 EV_CB_INVOKE (p->w, p->events);
1203 } 2715 EV_FREQUENT_CHECK;
1204 } 2716 }
1205} 2717}
1206 2718
1207void inline_size
1208timers_reify (EV_P)
1209{
1210 while (timercnt && ((WT)timers [0])->at <= mn_now)
1211 {
1212 ev_timer *w = timers [0];
1213
1214 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1215
1216 /* first reschedule or stop timer */
1217 if (w->repeat)
1218 {
1219 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1220
1221 ((WT)w)->at += w->repeat;
1222 if (((WT)w)->at < mn_now)
1223 ((WT)w)->at = mn_now;
1224
1225 downheap ((WT *)timers, timercnt, 0);
1226 }
1227 else
1228 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1229
1230 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1231 }
1232}
1233
1234#if EV_PERIODIC_ENABLE
1235void inline_size
1236periodics_reify (EV_P)
1237{
1238 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1239 {
1240 ev_periodic *w = periodics [0];
1241
1242 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1243
1244 /* first reschedule or stop timer */
1245 if (w->reschedule_cb)
1246 {
1247 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1248 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1249 downheap ((WT *)periodics, periodiccnt, 0);
1250 }
1251 else if (w->interval)
1252 {
1253 ((WT)w)->at = w->offset + floor ((ev_rt_now + TIME_EPSILON - w->offset) / w->interval + 1.) * w->interval;
1254 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1255 downheap ((WT *)periodics, periodiccnt, 0);
1256 }
1257 else
1258 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1259
1260 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1261 }
1262}
1263
1264static void noinline
1265periodics_reschedule (EV_P)
1266{
1267 int i;
1268
1269 /* adjust periodics after time jump */
1270 for (i = 0; i < periodiccnt; ++i)
1271 {
1272 ev_periodic *w = periodics [i];
1273
1274 if (w->reschedule_cb)
1275 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1276 else if (w->interval)
1277 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1278 }
1279
1280 /* now rebuild the heap */
1281 for (i = periodiccnt >> 1; i--; )
1282 downheap ((WT *)periodics, periodiccnt, i);
1283}
1284#endif
1285
1286#if EV_IDLE_ENABLE 2719#if EV_IDLE_ENABLE
1287void inline_size 2720/* make idle watchers pending. this handles the "call-idle */
2721/* only when higher priorities are idle" logic */
2722inline_size void
1288idle_reify (EV_P) 2723idle_reify (EV_P)
1289{ 2724{
1290 if (expect_false (idleall)) 2725 if (expect_false (idleall))
1291 { 2726 {
1292 int pri; 2727 int pri;
1304 } 2739 }
1305 } 2740 }
1306} 2741}
1307#endif 2742#endif
1308 2743
1309int inline_size 2744/* make timers pending */
1310time_update_monotonic (EV_P) 2745inline_size void
2746timers_reify (EV_P)
1311{ 2747{
2748 EV_FREQUENT_CHECK;
2749
2750 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2751 {
2752 do
2753 {
2754 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2755
2756 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2757
2758 /* first reschedule or stop timer */
2759 if (w->repeat)
2760 {
2761 ev_at (w) += w->repeat;
2762 if (ev_at (w) < mn_now)
2763 ev_at (w) = mn_now;
2764
2765 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2766
2767 ANHE_at_cache (timers [HEAP0]);
2768 downheap (timers, timercnt, HEAP0);
2769 }
2770 else
2771 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2772
2773 EV_FREQUENT_CHECK;
2774 feed_reverse (EV_A_ (W)w);
2775 }
2776 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2777
2778 feed_reverse_done (EV_A_ EV_TIMER);
2779 }
2780}
2781
2782#if EV_PERIODIC_ENABLE
2783
2784static void noinline
2785periodic_recalc (EV_P_ ev_periodic *w)
2786{
2787 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2788 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2789
2790 /* the above almost always errs on the low side */
2791 while (at <= ev_rt_now)
2792 {
2793 ev_tstamp nat = at + w->interval;
2794
2795 /* when resolution fails us, we use ev_rt_now */
2796 if (expect_false (nat == at))
2797 {
2798 at = ev_rt_now;
2799 break;
2800 }
2801
2802 at = nat;
2803 }
2804
2805 ev_at (w) = at;
2806}
2807
2808/* make periodics pending */
2809inline_size void
2810periodics_reify (EV_P)
2811{
2812 EV_FREQUENT_CHECK;
2813
2814 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2815 {
2816 int feed_count = 0;
2817
2818 do
2819 {
2820 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2821
2822 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2823
2824 /* first reschedule or stop timer */
2825 if (w->reschedule_cb)
2826 {
2827 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2828
2829 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2830
2831 ANHE_at_cache (periodics [HEAP0]);
2832 downheap (periodics, periodiccnt, HEAP0);
2833 }
2834 else if (w->interval)
2835 {
2836 periodic_recalc (EV_A_ w);
2837 ANHE_at_cache (periodics [HEAP0]);
2838 downheap (periodics, periodiccnt, HEAP0);
2839 }
2840 else
2841 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2842
2843 EV_FREQUENT_CHECK;
2844 feed_reverse (EV_A_ (W)w);
2845 }
2846 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2847
2848 feed_reverse_done (EV_A_ EV_PERIODIC);
2849 }
2850}
2851
2852/* simply recalculate all periodics */
2853/* TODO: maybe ensure that at least one event happens when jumping forward? */
2854static void noinline ecb_cold
2855periodics_reschedule (EV_P)
2856{
2857 int i;
2858
2859 /* adjust periodics after time jump */
2860 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2861 {
2862 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2863
2864 if (w->reschedule_cb)
2865 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2866 else if (w->interval)
2867 periodic_recalc (EV_A_ w);
2868
2869 ANHE_at_cache (periodics [i]);
2870 }
2871
2872 reheap (periodics, periodiccnt);
2873}
2874#endif
2875
2876/* adjust all timers by a given offset */
2877static void noinline ecb_cold
2878timers_reschedule (EV_P_ ev_tstamp adjust)
2879{
2880 int i;
2881
2882 for (i = 0; i < timercnt; ++i)
2883 {
2884 ANHE *he = timers + i + HEAP0;
2885 ANHE_w (*he)->at += adjust;
2886 ANHE_at_cache (*he);
2887 }
2888}
2889
2890/* fetch new monotonic and realtime times from the kernel */
2891/* also detect if there was a timejump, and act accordingly */
2892inline_speed void
2893time_update (EV_P_ ev_tstamp max_block)
2894{
2895#if EV_USE_MONOTONIC
2896 if (expect_true (have_monotonic))
2897 {
2898 int i;
2899 ev_tstamp odiff = rtmn_diff;
2900
1312 mn_now = get_clock (); 2901 mn_now = get_clock ();
1313 2902
2903 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2904 /* interpolate in the meantime */
1314 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 2905 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1315 { 2906 {
1316 ev_rt_now = rtmn_diff + mn_now; 2907 ev_rt_now = rtmn_diff + mn_now;
1317 return 0; 2908 return;
1318 } 2909 }
1319 else 2910
1320 {
1321 now_floor = mn_now; 2911 now_floor = mn_now;
1322 ev_rt_now = ev_time (); 2912 ev_rt_now = ev_time ();
1323 return 1;
1324 }
1325}
1326 2913
1327void inline_size 2914 /* loop a few times, before making important decisions.
1328time_update (EV_P) 2915 * on the choice of "4": one iteration isn't enough,
1329{ 2916 * in case we get preempted during the calls to
1330 int i; 2917 * ev_time and get_clock. a second call is almost guaranteed
1331 2918 * to succeed in that case, though. and looping a few more times
1332#if EV_USE_MONOTONIC 2919 * doesn't hurt either as we only do this on time-jumps or
1333 if (expect_true (have_monotonic)) 2920 * in the unlikely event of having been preempted here.
1334 { 2921 */
1335 if (time_update_monotonic (EV_A)) 2922 for (i = 4; --i; )
1336 { 2923 {
1337 ev_tstamp odiff = rtmn_diff; 2924 ev_tstamp diff;
1338
1339 /* loop a few times, before making important decisions.
1340 * on the choice of "4": one iteration isn't enough,
1341 * in case we get preempted during the calls to
1342 * ev_time and get_clock. a second call is almost guaranteed
1343 * to succeed in that case, though. and looping a few more times
1344 * doesn't hurt either as we only do this on time-jumps or
1345 * in the unlikely event of having been preempted here.
1346 */
1347 for (i = 4; --i; )
1348 {
1349 rtmn_diff = ev_rt_now - mn_now; 2925 rtmn_diff = ev_rt_now - mn_now;
1350 2926
1351 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2927 diff = odiff - rtmn_diff;
2928
2929 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1352 return; /* all is well */ 2930 return; /* all is well */
1353 2931
1354 ev_rt_now = ev_time (); 2932 ev_rt_now = ev_time ();
1355 mn_now = get_clock (); 2933 mn_now = get_clock ();
1356 now_floor = mn_now; 2934 now_floor = mn_now;
1357 } 2935 }
1358 2936
2937 /* no timer adjustment, as the monotonic clock doesn't jump */
2938 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1359# if EV_PERIODIC_ENABLE 2939# if EV_PERIODIC_ENABLE
1360 periodics_reschedule (EV_A); 2940 periodics_reschedule (EV_A);
1361# endif 2941# endif
1362 /* no timer adjustment, as the monotonic clock doesn't jump */
1363 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1364 }
1365 } 2942 }
1366 else 2943 else
1367#endif 2944#endif
1368 { 2945 {
1369 ev_rt_now = ev_time (); 2946 ev_rt_now = ev_time ();
1370 2947
1371 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 2948 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1372 { 2949 {
2950 /* adjust timers. this is easy, as the offset is the same for all of them */
2951 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1373#if EV_PERIODIC_ENABLE 2952#if EV_PERIODIC_ENABLE
1374 periodics_reschedule (EV_A); 2953 periodics_reschedule (EV_A);
1375#endif 2954#endif
1376
1377 /* adjust timers. this is easy, as the offset is the same for all of them */
1378 for (i = 0; i < timercnt; ++i)
1379 ((WT)timers [i])->at += ev_rt_now - mn_now;
1380 } 2955 }
1381 2956
1382 mn_now = ev_rt_now; 2957 mn_now = ev_rt_now;
1383 } 2958 }
1384} 2959}
1385 2960
1386void 2961int
1387ev_ref (EV_P)
1388{
1389 ++activecnt;
1390}
1391
1392void
1393ev_unref (EV_P)
1394{
1395 --activecnt;
1396}
1397
1398static int loop_done;
1399
1400void
1401ev_loop (EV_P_ int flags) 2962ev_run (EV_P_ int flags)
1402{ 2963{
1403 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2964#if EV_FEATURE_API
1404 ? EVUNLOOP_ONE 2965 ++loop_depth;
1405 : EVUNLOOP_CANCEL; 2966#endif
1406 2967
2968 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2969
2970 loop_done = EVBREAK_CANCEL;
2971
1407 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2972 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1408 2973
1409 do 2974 do
1410 { 2975 {
2976#if EV_VERIFY >= 2
2977 ev_verify (EV_A);
2978#endif
2979
1411#ifndef _WIN32 2980#ifndef _WIN32
1412 if (expect_false (curpid)) /* penalise the forking check even more */ 2981 if (expect_false (curpid)) /* penalise the forking check even more */
1413 if (expect_false (getpid () != curpid)) 2982 if (expect_false (getpid () != curpid))
1414 { 2983 {
1415 curpid = getpid (); 2984 curpid = getpid ();
1421 /* we might have forked, so queue fork handlers */ 2990 /* we might have forked, so queue fork handlers */
1422 if (expect_false (postfork)) 2991 if (expect_false (postfork))
1423 if (forkcnt) 2992 if (forkcnt)
1424 { 2993 {
1425 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2994 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1426 call_pending (EV_A); 2995 EV_INVOKE_PENDING;
1427 } 2996 }
1428#endif 2997#endif
1429 2998
2999#if EV_PREPARE_ENABLE
1430 /* queue prepare watchers (and execute them) */ 3000 /* queue prepare watchers (and execute them) */
1431 if (expect_false (preparecnt)) 3001 if (expect_false (preparecnt))
1432 { 3002 {
1433 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3003 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1434 call_pending (EV_A); 3004 EV_INVOKE_PENDING;
1435 } 3005 }
3006#endif
1436 3007
1437 if (expect_false (!activecnt)) 3008 if (expect_false (loop_done))
1438 break; 3009 break;
1439 3010
1440 /* we might have forked, so reify kernel state if necessary */ 3011 /* we might have forked, so reify kernel state if necessary */
1441 if (expect_false (postfork)) 3012 if (expect_false (postfork))
1442 loop_fork (EV_A); 3013 loop_fork (EV_A);
1444 /* update fd-related kernel structures */ 3015 /* update fd-related kernel structures */
1445 fd_reify (EV_A); 3016 fd_reify (EV_A);
1446 3017
1447 /* calculate blocking time */ 3018 /* calculate blocking time */
1448 { 3019 {
1449 ev_tstamp block; 3020 ev_tstamp waittime = 0.;
3021 ev_tstamp sleeptime = 0.;
1450 3022
1451 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 3023 /* remember old timestamp for io_blocktime calculation */
1452 block = 0.; /* do not block at all */ 3024 ev_tstamp prev_mn_now = mn_now;
1453 else 3025
3026 /* update time to cancel out callback processing overhead */
3027 time_update (EV_A_ 1e100);
3028
3029 /* from now on, we want a pipe-wake-up */
3030 pipe_write_wanted = 1;
3031
3032 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3033
3034 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1454 { 3035 {
1455 /* update time to cancel out callback processing overhead */
1456#if EV_USE_MONOTONIC
1457 if (expect_true (have_monotonic))
1458 time_update_monotonic (EV_A);
1459 else
1460#endif
1461 {
1462 ev_rt_now = ev_time ();
1463 mn_now = ev_rt_now;
1464 }
1465
1466 block = MAX_BLOCKTIME; 3036 waittime = MAX_BLOCKTIME;
1467 3037
1468 if (timercnt) 3038 if (timercnt)
1469 { 3039 {
1470 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 3040 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1471 if (block > to) block = to; 3041 if (waittime > to) waittime = to;
1472 } 3042 }
1473 3043
1474#if EV_PERIODIC_ENABLE 3044#if EV_PERIODIC_ENABLE
1475 if (periodiccnt) 3045 if (periodiccnt)
1476 { 3046 {
1477 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 3047 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1478 if (block > to) block = to; 3048 if (waittime > to) waittime = to;
1479 } 3049 }
1480#endif 3050#endif
1481 3051
3052 /* don't let timeouts decrease the waittime below timeout_blocktime */
3053 if (expect_false (waittime < timeout_blocktime))
3054 waittime = timeout_blocktime;
3055
3056 /* at this point, we NEED to wait, so we have to ensure */
3057 /* to pass a minimum nonzero value to the backend */
3058 if (expect_false (waittime < backend_mintime))
3059 waittime = backend_mintime;
3060
3061 /* extra check because io_blocktime is commonly 0 */
1482 if (expect_false (block < 0.)) block = 0.; 3062 if (expect_false (io_blocktime))
3063 {
3064 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3065
3066 if (sleeptime > waittime - backend_mintime)
3067 sleeptime = waittime - backend_mintime;
3068
3069 if (expect_true (sleeptime > 0.))
3070 {
3071 ev_sleep (sleeptime);
3072 waittime -= sleeptime;
3073 }
3074 }
1483 } 3075 }
1484 3076
3077#if EV_FEATURE_API
1485 ++loop_count; 3078 ++loop_count;
3079#endif
3080 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1486 backend_poll (EV_A_ block); 3081 backend_poll (EV_A_ waittime);
3082 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3083
3084 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3085
3086 if (pipe_write_skipped)
3087 {
3088 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3089 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3090 }
3091
3092
3093 /* update ev_rt_now, do magic */
3094 time_update (EV_A_ waittime + sleeptime);
1487 } 3095 }
1488
1489 /* update ev_rt_now, do magic */
1490 time_update (EV_A);
1491 3096
1492 /* queue pending timers and reschedule them */ 3097 /* queue pending timers and reschedule them */
1493 timers_reify (EV_A); /* relative timers called last */ 3098 timers_reify (EV_A); /* relative timers called last */
1494#if EV_PERIODIC_ENABLE 3099#if EV_PERIODIC_ENABLE
1495 periodics_reify (EV_A); /* absolute timers called first */ 3100 periodics_reify (EV_A); /* absolute timers called first */
1498#if EV_IDLE_ENABLE 3103#if EV_IDLE_ENABLE
1499 /* queue idle watchers unless other events are pending */ 3104 /* queue idle watchers unless other events are pending */
1500 idle_reify (EV_A); 3105 idle_reify (EV_A);
1501#endif 3106#endif
1502 3107
3108#if EV_CHECK_ENABLE
1503 /* queue check watchers, to be executed first */ 3109 /* queue check watchers, to be executed first */
1504 if (expect_false (checkcnt)) 3110 if (expect_false (checkcnt))
1505 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3111 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3112#endif
1506 3113
1507 call_pending (EV_A); 3114 EV_INVOKE_PENDING;
1508
1509 } 3115 }
1510 while (expect_true (activecnt && !loop_done)); 3116 while (expect_true (
3117 activecnt
3118 && !loop_done
3119 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3120 ));
1511 3121
1512 if (loop_done == EVUNLOOP_ONE) 3122 if (loop_done == EVBREAK_ONE)
1513 loop_done = EVUNLOOP_CANCEL; 3123 loop_done = EVBREAK_CANCEL;
3124
3125#if EV_FEATURE_API
3126 --loop_depth;
3127#endif
3128
3129 return activecnt;
1514} 3130}
1515 3131
1516void 3132void
1517ev_unloop (EV_P_ int how) 3133ev_break (EV_P_ int how) EV_THROW
1518{ 3134{
1519 loop_done = how; 3135 loop_done = how;
1520} 3136}
1521 3137
3138void
3139ev_ref (EV_P) EV_THROW
3140{
3141 ++activecnt;
3142}
3143
3144void
3145ev_unref (EV_P) EV_THROW
3146{
3147 --activecnt;
3148}
3149
3150void
3151ev_now_update (EV_P) EV_THROW
3152{
3153 time_update (EV_A_ 1e100);
3154}
3155
3156void
3157ev_suspend (EV_P) EV_THROW
3158{
3159 ev_now_update (EV_A);
3160}
3161
3162void
3163ev_resume (EV_P) EV_THROW
3164{
3165 ev_tstamp mn_prev = mn_now;
3166
3167 ev_now_update (EV_A);
3168 timers_reschedule (EV_A_ mn_now - mn_prev);
3169#if EV_PERIODIC_ENABLE
3170 /* TODO: really do this? */
3171 periodics_reschedule (EV_A);
3172#endif
3173}
3174
1522/*****************************************************************************/ 3175/*****************************************************************************/
3176/* singly-linked list management, used when the expected list length is short */
1523 3177
1524void inline_size 3178inline_size void
1525wlist_add (WL *head, WL elem) 3179wlist_add (WL *head, WL elem)
1526{ 3180{
1527 elem->next = *head; 3181 elem->next = *head;
1528 *head = elem; 3182 *head = elem;
1529} 3183}
1530 3184
1531void inline_size 3185inline_size void
1532wlist_del (WL *head, WL elem) 3186wlist_del (WL *head, WL elem)
1533{ 3187{
1534 while (*head) 3188 while (*head)
1535 { 3189 {
1536 if (*head == elem) 3190 if (expect_true (*head == elem))
1537 { 3191 {
1538 *head = elem->next; 3192 *head = elem->next;
1539 return; 3193 break;
1540 } 3194 }
1541 3195
1542 head = &(*head)->next; 3196 head = &(*head)->next;
1543 } 3197 }
1544} 3198}
1545 3199
1546void inline_speed 3200/* internal, faster, version of ev_clear_pending */
3201inline_speed void
1547clear_pending (EV_P_ W w) 3202clear_pending (EV_P_ W w)
1548{ 3203{
1549 if (w->pending) 3204 if (w->pending)
1550 { 3205 {
1551 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3206 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1552 w->pending = 0; 3207 w->pending = 0;
1553 } 3208 }
1554} 3209}
1555 3210
1556int 3211int
1557ev_clear_pending (EV_P_ void *w) 3212ev_clear_pending (EV_P_ void *w) EV_THROW
1558{ 3213{
1559 W w_ = (W)w; 3214 W w_ = (W)w;
1560 int pending = w_->pending; 3215 int pending = w_->pending;
1561 3216
1562 if (expect_true (pending)) 3217 if (expect_true (pending))
1563 { 3218 {
1564 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3219 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3220 p->w = (W)&pending_w;
1565 w_->pending = 0; 3221 w_->pending = 0;
1566 p->w = 0;
1567 return p->events; 3222 return p->events;
1568 } 3223 }
1569 else 3224 else
1570 return 0; 3225 return 0;
1571} 3226}
1572 3227
1573void inline_size 3228inline_size void
1574pri_adjust (EV_P_ W w) 3229pri_adjust (EV_P_ W w)
1575{ 3230{
1576 int pri = w->priority; 3231 int pri = ev_priority (w);
1577 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3232 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1578 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3233 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1579 w->priority = pri; 3234 ev_set_priority (w, pri);
1580} 3235}
1581 3236
1582void inline_speed 3237inline_speed void
1583ev_start (EV_P_ W w, int active) 3238ev_start (EV_P_ W w, int active)
1584{ 3239{
1585 pri_adjust (EV_A_ w); 3240 pri_adjust (EV_A_ w);
1586 w->active = active; 3241 w->active = active;
1587 ev_ref (EV_A); 3242 ev_ref (EV_A);
1588} 3243}
1589 3244
1590void inline_size 3245inline_size void
1591ev_stop (EV_P_ W w) 3246ev_stop (EV_P_ W w)
1592{ 3247{
1593 ev_unref (EV_A); 3248 ev_unref (EV_A);
1594 w->active = 0; 3249 w->active = 0;
1595} 3250}
1596 3251
1597/*****************************************************************************/ 3252/*****************************************************************************/
1598 3253
1599void noinline 3254void noinline
1600ev_io_start (EV_P_ ev_io *w) 3255ev_io_start (EV_P_ ev_io *w) EV_THROW
1601{ 3256{
1602 int fd = w->fd; 3257 int fd = w->fd;
1603 3258
1604 if (expect_false (ev_is_active (w))) 3259 if (expect_false (ev_is_active (w)))
1605 return; 3260 return;
1606 3261
1607 assert (("ev_io_start called with negative fd", fd >= 0)); 3262 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3263 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3264
3265 EV_FREQUENT_CHECK;
1608 3266
1609 ev_start (EV_A_ (W)w, 1); 3267 ev_start (EV_A_ (W)w, 1);
1610 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3268 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1611 wlist_add ((WL *)&anfds[fd].head, (WL)w); 3269 wlist_add (&anfds[fd].head, (WL)w);
1612 3270
1613 fd_change (EV_A_ fd); 3271 /* common bug, apparently */
3272 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3273
3274 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3275 w->events &= ~EV__IOFDSET;
3276
3277 EV_FREQUENT_CHECK;
1614} 3278}
1615 3279
1616void noinline 3280void noinline
1617ev_io_stop (EV_P_ ev_io *w) 3281ev_io_stop (EV_P_ ev_io *w) EV_THROW
1618{ 3282{
1619 clear_pending (EV_A_ (W)w); 3283 clear_pending (EV_A_ (W)w);
1620 if (expect_false (!ev_is_active (w))) 3284 if (expect_false (!ev_is_active (w)))
1621 return; 3285 return;
1622 3286
1623 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3287 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1624 3288
3289 EV_FREQUENT_CHECK;
3290
1625 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 3291 wlist_del (&anfds[w->fd].head, (WL)w);
1626 ev_stop (EV_A_ (W)w); 3292 ev_stop (EV_A_ (W)w);
1627 3293
1628 fd_change (EV_A_ w->fd); 3294 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3295
3296 EV_FREQUENT_CHECK;
1629} 3297}
1630 3298
1631void noinline 3299void noinline
1632ev_timer_start (EV_P_ ev_timer *w) 3300ev_timer_start (EV_P_ ev_timer *w) EV_THROW
1633{ 3301{
1634 if (expect_false (ev_is_active (w))) 3302 if (expect_false (ev_is_active (w)))
1635 return; 3303 return;
1636 3304
1637 ((WT)w)->at += mn_now; 3305 ev_at (w) += mn_now;
1638 3306
1639 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3307 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1640 3308
3309 EV_FREQUENT_CHECK;
3310
3311 ++timercnt;
1641 ev_start (EV_A_ (W)w, ++timercnt); 3312 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1642 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 3313 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1643 timers [timercnt - 1] = w; 3314 ANHE_w (timers [ev_active (w)]) = (WT)w;
1644 upheap ((WT *)timers, timercnt - 1); 3315 ANHE_at_cache (timers [ev_active (w)]);
3316 upheap (timers, ev_active (w));
1645 3317
3318 EV_FREQUENT_CHECK;
3319
1646 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 3320 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1647} 3321}
1648 3322
1649void noinline 3323void noinline
1650ev_timer_stop (EV_P_ ev_timer *w) 3324ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
1651{ 3325{
1652 clear_pending (EV_A_ (W)w); 3326 clear_pending (EV_A_ (W)w);
1653 if (expect_false (!ev_is_active (w))) 3327 if (expect_false (!ev_is_active (w)))
1654 return; 3328 return;
1655 3329
1656 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3330 EV_FREQUENT_CHECK;
1657 3331
1658 { 3332 {
1659 int active = ((W)w)->active; 3333 int active = ev_active (w);
1660 3334
3335 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3336
3337 --timercnt;
3338
1661 if (expect_true (--active < --timercnt)) 3339 if (expect_true (active < timercnt + HEAP0))
1662 { 3340 {
1663 timers [active] = timers [timercnt]; 3341 timers [active] = timers [timercnt + HEAP0];
1664 adjustheap ((WT *)timers, timercnt, active); 3342 adjustheap (timers, timercnt, active);
1665 } 3343 }
1666 } 3344 }
1667 3345
1668 ((WT)w)->at -= mn_now; 3346 ev_at (w) -= mn_now;
1669 3347
1670 ev_stop (EV_A_ (W)w); 3348 ev_stop (EV_A_ (W)w);
3349
3350 EV_FREQUENT_CHECK;
1671} 3351}
1672 3352
1673void noinline 3353void noinline
1674ev_timer_again (EV_P_ ev_timer *w) 3354ev_timer_again (EV_P_ ev_timer *w) EV_THROW
1675{ 3355{
3356 EV_FREQUENT_CHECK;
3357
3358 clear_pending (EV_A_ (W)w);
3359
1676 if (ev_is_active (w)) 3360 if (ev_is_active (w))
1677 { 3361 {
1678 if (w->repeat) 3362 if (w->repeat)
1679 { 3363 {
1680 ((WT)w)->at = mn_now + w->repeat; 3364 ev_at (w) = mn_now + w->repeat;
3365 ANHE_at_cache (timers [ev_active (w)]);
1681 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 3366 adjustheap (timers, timercnt, ev_active (w));
1682 } 3367 }
1683 else 3368 else
1684 ev_timer_stop (EV_A_ w); 3369 ev_timer_stop (EV_A_ w);
1685 } 3370 }
1686 else if (w->repeat) 3371 else if (w->repeat)
1687 { 3372 {
1688 w->at = w->repeat; 3373 ev_at (w) = w->repeat;
1689 ev_timer_start (EV_A_ w); 3374 ev_timer_start (EV_A_ w);
1690 } 3375 }
3376
3377 EV_FREQUENT_CHECK;
3378}
3379
3380ev_tstamp
3381ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3382{
3383 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1691} 3384}
1692 3385
1693#if EV_PERIODIC_ENABLE 3386#if EV_PERIODIC_ENABLE
1694void noinline 3387void noinline
1695ev_periodic_start (EV_P_ ev_periodic *w) 3388ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
1696{ 3389{
1697 if (expect_false (ev_is_active (w))) 3390 if (expect_false (ev_is_active (w)))
1698 return; 3391 return;
1699 3392
1700 if (w->reschedule_cb) 3393 if (w->reschedule_cb)
1701 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 3394 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1702 else if (w->interval) 3395 else if (w->interval)
1703 { 3396 {
1704 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3397 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1705 /* this formula differs from the one in periodic_reify because we do not always round up */ 3398 periodic_recalc (EV_A_ w);
1706 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1707 } 3399 }
1708 else 3400 else
1709 ((WT)w)->at = w->offset; 3401 ev_at (w) = w->offset;
1710 3402
3403 EV_FREQUENT_CHECK;
3404
3405 ++periodiccnt;
1711 ev_start (EV_A_ (W)w, ++periodiccnt); 3406 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1712 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 3407 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1713 periodics [periodiccnt - 1] = w; 3408 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1714 upheap ((WT *)periodics, periodiccnt - 1); 3409 ANHE_at_cache (periodics [ev_active (w)]);
3410 upheap (periodics, ev_active (w));
1715 3411
3412 EV_FREQUENT_CHECK;
3413
1716 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 3414 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1717} 3415}
1718 3416
1719void noinline 3417void noinline
1720ev_periodic_stop (EV_P_ ev_periodic *w) 3418ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
1721{ 3419{
1722 clear_pending (EV_A_ (W)w); 3420 clear_pending (EV_A_ (W)w);
1723 if (expect_false (!ev_is_active (w))) 3421 if (expect_false (!ev_is_active (w)))
1724 return; 3422 return;
1725 3423
1726 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3424 EV_FREQUENT_CHECK;
1727 3425
1728 { 3426 {
1729 int active = ((W)w)->active; 3427 int active = ev_active (w);
1730 3428
3429 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3430
3431 --periodiccnt;
3432
1731 if (expect_true (--active < --periodiccnt)) 3433 if (expect_true (active < periodiccnt + HEAP0))
1732 { 3434 {
1733 periodics [active] = periodics [periodiccnt]; 3435 periodics [active] = periodics [periodiccnt + HEAP0];
1734 adjustheap ((WT *)periodics, periodiccnt, active); 3436 adjustheap (periodics, periodiccnt, active);
1735 } 3437 }
1736 } 3438 }
1737 3439
1738 ev_stop (EV_A_ (W)w); 3440 ev_stop (EV_A_ (W)w);
3441
3442 EV_FREQUENT_CHECK;
1739} 3443}
1740 3444
1741void noinline 3445void noinline
1742ev_periodic_again (EV_P_ ev_periodic *w) 3446ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
1743{ 3447{
1744 /* TODO: use adjustheap and recalculation */ 3448 /* TODO: use adjustheap and recalculation */
1745 ev_periodic_stop (EV_A_ w); 3449 ev_periodic_stop (EV_A_ w);
1746 ev_periodic_start (EV_A_ w); 3450 ev_periodic_start (EV_A_ w);
1747} 3451}
1749 3453
1750#ifndef SA_RESTART 3454#ifndef SA_RESTART
1751# define SA_RESTART 0 3455# define SA_RESTART 0
1752#endif 3456#endif
1753 3457
3458#if EV_SIGNAL_ENABLE
3459
1754void noinline 3460void noinline
1755ev_signal_start (EV_P_ ev_signal *w) 3461ev_signal_start (EV_P_ ev_signal *w) EV_THROW
1756{ 3462{
1757#if EV_MULTIPLICITY
1758 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1759#endif
1760 if (expect_false (ev_is_active (w))) 3463 if (expect_false (ev_is_active (w)))
1761 return; 3464 return;
1762 3465
1763 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3466 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3467
3468#if EV_MULTIPLICITY
3469 assert (("libev: a signal must not be attached to two different loops",
3470 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3471
3472 signals [w->signum - 1].loop = EV_A;
3473#endif
3474
3475 EV_FREQUENT_CHECK;
3476
3477#if EV_USE_SIGNALFD
3478 if (sigfd == -2)
3479 {
3480 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3481 if (sigfd < 0 && errno == EINVAL)
3482 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3483
3484 if (sigfd >= 0)
3485 {
3486 fd_intern (sigfd); /* doing it twice will not hurt */
3487
3488 sigemptyset (&sigfd_set);
3489
3490 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3491 ev_set_priority (&sigfd_w, EV_MAXPRI);
3492 ev_io_start (EV_A_ &sigfd_w);
3493 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3494 }
3495 }
3496
3497 if (sigfd >= 0)
3498 {
3499 /* TODO: check .head */
3500 sigaddset (&sigfd_set, w->signum);
3501 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3502
3503 signalfd (sigfd, &sigfd_set, 0);
3504 }
3505#endif
1764 3506
1765 ev_start (EV_A_ (W)w, 1); 3507 ev_start (EV_A_ (W)w, 1);
1766 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1767 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 3508 wlist_add (&signals [w->signum - 1].head, (WL)w);
1768 3509
1769 if (!((WL)w)->next) 3510 if (!((WL)w)->next)
3511# if EV_USE_SIGNALFD
3512 if (sigfd < 0) /*TODO*/
3513# endif
1770 { 3514 {
1771#if _WIN32 3515# ifdef _WIN32
3516 evpipe_init (EV_A);
3517
1772 signal (w->signum, sighandler); 3518 signal (w->signum, ev_sighandler);
1773#else 3519# else
1774 struct sigaction sa; 3520 struct sigaction sa;
3521
3522 evpipe_init (EV_A);
3523
1775 sa.sa_handler = sighandler; 3524 sa.sa_handler = ev_sighandler;
1776 sigfillset (&sa.sa_mask); 3525 sigfillset (&sa.sa_mask);
1777 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3526 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1778 sigaction (w->signum, &sa, 0); 3527 sigaction (w->signum, &sa, 0);
3528
3529 if (origflags & EVFLAG_NOSIGMASK)
3530 {
3531 sigemptyset (&sa.sa_mask);
3532 sigaddset (&sa.sa_mask, w->signum);
3533 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3534 }
1779#endif 3535#endif
1780 } 3536 }
3537
3538 EV_FREQUENT_CHECK;
1781} 3539}
1782 3540
1783void noinline 3541void noinline
1784ev_signal_stop (EV_P_ ev_signal *w) 3542ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
1785{ 3543{
1786 clear_pending (EV_A_ (W)w); 3544 clear_pending (EV_A_ (W)w);
1787 if (expect_false (!ev_is_active (w))) 3545 if (expect_false (!ev_is_active (w)))
1788 return; 3546 return;
1789 3547
3548 EV_FREQUENT_CHECK;
3549
1790 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3550 wlist_del (&signals [w->signum - 1].head, (WL)w);
1791 ev_stop (EV_A_ (W)w); 3551 ev_stop (EV_A_ (W)w);
1792 3552
1793 if (!signals [w->signum - 1].head) 3553 if (!signals [w->signum - 1].head)
3554 {
3555#if EV_MULTIPLICITY
3556 signals [w->signum - 1].loop = 0; /* unattach from signal */
3557#endif
3558#if EV_USE_SIGNALFD
3559 if (sigfd >= 0)
3560 {
3561 sigset_t ss;
3562
3563 sigemptyset (&ss);
3564 sigaddset (&ss, w->signum);
3565 sigdelset (&sigfd_set, w->signum);
3566
3567 signalfd (sigfd, &sigfd_set, 0);
3568 sigprocmask (SIG_UNBLOCK, &ss, 0);
3569 }
3570 else
3571#endif
1794 signal (w->signum, SIG_DFL); 3572 signal (w->signum, SIG_DFL);
3573 }
3574
3575 EV_FREQUENT_CHECK;
1795} 3576}
3577
3578#endif
3579
3580#if EV_CHILD_ENABLE
1796 3581
1797void 3582void
1798ev_child_start (EV_P_ ev_child *w) 3583ev_child_start (EV_P_ ev_child *w) EV_THROW
1799{ 3584{
1800#if EV_MULTIPLICITY 3585#if EV_MULTIPLICITY
1801 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3586 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1802#endif 3587#endif
1803 if (expect_false (ev_is_active (w))) 3588 if (expect_false (ev_is_active (w)))
1804 return; 3589 return;
1805 3590
3591 EV_FREQUENT_CHECK;
3592
1806 ev_start (EV_A_ (W)w, 1); 3593 ev_start (EV_A_ (W)w, 1);
1807 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3594 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3595
3596 EV_FREQUENT_CHECK;
1808} 3597}
1809 3598
1810void 3599void
1811ev_child_stop (EV_P_ ev_child *w) 3600ev_child_stop (EV_P_ ev_child *w) EV_THROW
1812{ 3601{
1813 clear_pending (EV_A_ (W)w); 3602 clear_pending (EV_A_ (W)w);
1814 if (expect_false (!ev_is_active (w))) 3603 if (expect_false (!ev_is_active (w)))
1815 return; 3604 return;
1816 3605
3606 EV_FREQUENT_CHECK;
3607
1817 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3608 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1818 ev_stop (EV_A_ (W)w); 3609 ev_stop (EV_A_ (W)w);
3610
3611 EV_FREQUENT_CHECK;
1819} 3612}
3613
3614#endif
1820 3615
1821#if EV_STAT_ENABLE 3616#if EV_STAT_ENABLE
1822 3617
1823# ifdef _WIN32 3618# ifdef _WIN32
1824# undef lstat 3619# undef lstat
1825# define lstat(a,b) _stati64 (a,b) 3620# define lstat(a,b) _stati64 (a,b)
1826# endif 3621# endif
1827 3622
1828#define DEF_STAT_INTERVAL 5.0074891 3623#define DEF_STAT_INTERVAL 5.0074891
3624#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1829#define MIN_STAT_INTERVAL 0.1074891 3625#define MIN_STAT_INTERVAL 0.1074891
1830 3626
1831static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3627static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1832 3628
1833#if EV_USE_INOTIFY 3629#if EV_USE_INOTIFY
1834# define EV_INOTIFY_BUFSIZE 8192 3630
3631/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3632# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
1835 3633
1836static void noinline 3634static void noinline
1837infy_add (EV_P_ ev_stat *w) 3635infy_add (EV_P_ ev_stat *w)
1838{ 3636{
1839 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3637 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1840 3638
1841 if (w->wd < 0) 3639 if (w->wd >= 0)
3640 {
3641 struct statfs sfs;
3642
3643 /* now local changes will be tracked by inotify, but remote changes won't */
3644 /* unless the filesystem is known to be local, we therefore still poll */
3645 /* also do poll on <2.6.25, but with normal frequency */
3646
3647 if (!fs_2625)
3648 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3649 else if (!statfs (w->path, &sfs)
3650 && (sfs.f_type == 0x1373 /* devfs */
3651 || sfs.f_type == 0xEF53 /* ext2/3 */
3652 || sfs.f_type == 0x3153464a /* jfs */
3653 || sfs.f_type == 0x52654973 /* reiser3 */
3654 || sfs.f_type == 0x01021994 /* tempfs */
3655 || sfs.f_type == 0x58465342 /* xfs */))
3656 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3657 else
3658 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1842 { 3659 }
1843 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3660 else
3661 {
3662 /* can't use inotify, continue to stat */
3663 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1844 3664
1845 /* monitor some parent directory for speedup hints */ 3665 /* if path is not there, monitor some parent directory for speedup hints */
3666 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3667 /* but an efficiency issue only */
1846 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3668 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1847 { 3669 {
1848 char path [4096]; 3670 char path [4096];
1849 strcpy (path, w->path); 3671 strcpy (path, w->path);
1850 3672
1853 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3675 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1854 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3676 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1855 3677
1856 char *pend = strrchr (path, '/'); 3678 char *pend = strrchr (path, '/');
1857 3679
1858 if (!pend) 3680 if (!pend || pend == path)
1859 break; /* whoops, no '/', complain to your admin */ 3681 break;
1860 3682
1861 *pend = 0; 3683 *pend = 0;
1862 w->wd = inotify_add_watch (fs_fd, path, mask); 3684 w->wd = inotify_add_watch (fs_fd, path, mask);
1863 } 3685 }
1864 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3686 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1865 } 3687 }
1866 } 3688 }
1867 else
1868 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1869 3689
1870 if (w->wd >= 0) 3690 if (w->wd >= 0)
1871 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3691 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3692
3693 /* now re-arm timer, if required */
3694 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3695 ev_timer_again (EV_A_ &w->timer);
3696 if (ev_is_active (&w->timer)) ev_unref (EV_A);
1872} 3697}
1873 3698
1874static void noinline 3699static void noinline
1875infy_del (EV_P_ ev_stat *w) 3700infy_del (EV_P_ ev_stat *w)
1876{ 3701{
1879 3704
1880 if (wd < 0) 3705 if (wd < 0)
1881 return; 3706 return;
1882 3707
1883 w->wd = -2; 3708 w->wd = -2;
1884 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3709 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
1885 wlist_del (&fs_hash [slot].head, (WL)w); 3710 wlist_del (&fs_hash [slot].head, (WL)w);
1886 3711
1887 /* remove this watcher, if others are watching it, they will rearm */ 3712 /* remove this watcher, if others are watching it, they will rearm */
1888 inotify_rm_watch (fs_fd, wd); 3713 inotify_rm_watch (fs_fd, wd);
1889} 3714}
1890 3715
1891static void noinline 3716static void noinline
1892infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3717infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1893{ 3718{
1894 if (slot < 0) 3719 if (slot < 0)
1895 /* overflow, need to check for all hahs slots */ 3720 /* overflow, need to check for all hash slots */
1896 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3721 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1897 infy_wd (EV_A_ slot, wd, ev); 3722 infy_wd (EV_A_ slot, wd, ev);
1898 else 3723 else
1899 { 3724 {
1900 WL w_; 3725 WL w_;
1901 3726
1902 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3727 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
1903 { 3728 {
1904 ev_stat *w = (ev_stat *)w_; 3729 ev_stat *w = (ev_stat *)w_;
1905 w_ = w_->next; /* lets us remove this watcher and all before it */ 3730 w_ = w_->next; /* lets us remove this watcher and all before it */
1906 3731
1907 if (w->wd == wd || wd == -1) 3732 if (w->wd == wd || wd == -1)
1908 { 3733 {
1909 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3734 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1910 { 3735 {
3736 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
1911 w->wd = -1; 3737 w->wd = -1;
1912 infy_add (EV_A_ w); /* re-add, no matter what */ 3738 infy_add (EV_A_ w); /* re-add, no matter what */
1913 } 3739 }
1914 3740
1915 stat_timer_cb (EV_A_ &w->timer, 0); 3741 stat_timer_cb (EV_A_ &w->timer, 0);
1920 3746
1921static void 3747static void
1922infy_cb (EV_P_ ev_io *w, int revents) 3748infy_cb (EV_P_ ev_io *w, int revents)
1923{ 3749{
1924 char buf [EV_INOTIFY_BUFSIZE]; 3750 char buf [EV_INOTIFY_BUFSIZE];
1925 struct inotify_event *ev = (struct inotify_event *)buf;
1926 int ofs; 3751 int ofs;
1927 int len = read (fs_fd, buf, sizeof (buf)); 3752 int len = read (fs_fd, buf, sizeof (buf));
1928 3753
1929 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3754 for (ofs = 0; ofs < len; )
3755 {
3756 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
1930 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3757 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3758 ofs += sizeof (struct inotify_event) + ev->len;
3759 }
1931} 3760}
1932 3761
1933void inline_size 3762inline_size void ecb_cold
3763ev_check_2625 (EV_P)
3764{
3765 /* kernels < 2.6.25 are borked
3766 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3767 */
3768 if (ev_linux_version () < 0x020619)
3769 return;
3770
3771 fs_2625 = 1;
3772}
3773
3774inline_size int
3775infy_newfd (void)
3776{
3777#if defined IN_CLOEXEC && defined IN_NONBLOCK
3778 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3779 if (fd >= 0)
3780 return fd;
3781#endif
3782 return inotify_init ();
3783}
3784
3785inline_size void
1934infy_init (EV_P) 3786infy_init (EV_P)
1935{ 3787{
1936 if (fs_fd != -2) 3788 if (fs_fd != -2)
1937 return; 3789 return;
1938 3790
3791 fs_fd = -1;
3792
3793 ev_check_2625 (EV_A);
3794
1939 fs_fd = inotify_init (); 3795 fs_fd = infy_newfd ();
1940 3796
1941 if (fs_fd >= 0) 3797 if (fs_fd >= 0)
1942 { 3798 {
3799 fd_intern (fs_fd);
1943 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3800 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1944 ev_set_priority (&fs_w, EV_MAXPRI); 3801 ev_set_priority (&fs_w, EV_MAXPRI);
1945 ev_io_start (EV_A_ &fs_w); 3802 ev_io_start (EV_A_ &fs_w);
3803 ev_unref (EV_A);
1946 } 3804 }
1947} 3805}
1948 3806
1949void inline_size 3807inline_size void
1950infy_fork (EV_P) 3808infy_fork (EV_P)
1951{ 3809{
1952 int slot; 3810 int slot;
1953 3811
1954 if (fs_fd < 0) 3812 if (fs_fd < 0)
1955 return; 3813 return;
1956 3814
3815 ev_ref (EV_A);
3816 ev_io_stop (EV_A_ &fs_w);
1957 close (fs_fd); 3817 close (fs_fd);
1958 fs_fd = inotify_init (); 3818 fs_fd = infy_newfd ();
1959 3819
3820 if (fs_fd >= 0)
3821 {
3822 fd_intern (fs_fd);
3823 ev_io_set (&fs_w, fs_fd, EV_READ);
3824 ev_io_start (EV_A_ &fs_w);
3825 ev_unref (EV_A);
3826 }
3827
1960 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3828 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1961 { 3829 {
1962 WL w_ = fs_hash [slot].head; 3830 WL w_ = fs_hash [slot].head;
1963 fs_hash [slot].head = 0; 3831 fs_hash [slot].head = 0;
1964 3832
1965 while (w_) 3833 while (w_)
1970 w->wd = -1; 3838 w->wd = -1;
1971 3839
1972 if (fs_fd >= 0) 3840 if (fs_fd >= 0)
1973 infy_add (EV_A_ w); /* re-add, no matter what */ 3841 infy_add (EV_A_ w); /* re-add, no matter what */
1974 else 3842 else
3843 {
3844 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3845 if (ev_is_active (&w->timer)) ev_ref (EV_A);
1975 ev_timer_start (EV_A_ &w->timer); 3846 ev_timer_again (EV_A_ &w->timer);
3847 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3848 }
1976 } 3849 }
1977
1978 } 3850 }
1979} 3851}
1980 3852
3853#endif
3854
3855#ifdef _WIN32
3856# define EV_LSTAT(p,b) _stati64 (p, b)
3857#else
3858# define EV_LSTAT(p,b) lstat (p, b)
1981#endif 3859#endif
1982 3860
1983void 3861void
1984ev_stat_stat (EV_P_ ev_stat *w) 3862ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
1985{ 3863{
1986 if (lstat (w->path, &w->attr) < 0) 3864 if (lstat (w->path, &w->attr) < 0)
1987 w->attr.st_nlink = 0; 3865 w->attr.st_nlink = 0;
1988 else if (!w->attr.st_nlink) 3866 else if (!w->attr.st_nlink)
1989 w->attr.st_nlink = 1; 3867 w->attr.st_nlink = 1;
1992static void noinline 3870static void noinline
1993stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3871stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1994{ 3872{
1995 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3873 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1996 3874
1997 /* we copy this here each the time so that */ 3875 ev_statdata prev = w->attr;
1998 /* prev has the old value when the callback gets invoked */
1999 w->prev = w->attr;
2000 ev_stat_stat (EV_A_ w); 3876 ev_stat_stat (EV_A_ w);
2001 3877
2002 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3878 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2003 if ( 3879 if (
2004 w->prev.st_dev != w->attr.st_dev 3880 prev.st_dev != w->attr.st_dev
2005 || w->prev.st_ino != w->attr.st_ino 3881 || prev.st_ino != w->attr.st_ino
2006 || w->prev.st_mode != w->attr.st_mode 3882 || prev.st_mode != w->attr.st_mode
2007 || w->prev.st_nlink != w->attr.st_nlink 3883 || prev.st_nlink != w->attr.st_nlink
2008 || w->prev.st_uid != w->attr.st_uid 3884 || prev.st_uid != w->attr.st_uid
2009 || w->prev.st_gid != w->attr.st_gid 3885 || prev.st_gid != w->attr.st_gid
2010 || w->prev.st_rdev != w->attr.st_rdev 3886 || prev.st_rdev != w->attr.st_rdev
2011 || w->prev.st_size != w->attr.st_size 3887 || prev.st_size != w->attr.st_size
2012 || w->prev.st_atime != w->attr.st_atime 3888 || prev.st_atime != w->attr.st_atime
2013 || w->prev.st_mtime != w->attr.st_mtime 3889 || prev.st_mtime != w->attr.st_mtime
2014 || w->prev.st_ctime != w->attr.st_ctime 3890 || prev.st_ctime != w->attr.st_ctime
2015 ) { 3891 ) {
3892 /* we only update w->prev on actual differences */
3893 /* in case we test more often than invoke the callback, */
3894 /* to ensure that prev is always different to attr */
3895 w->prev = prev;
3896
2016 #if EV_USE_INOTIFY 3897 #if EV_USE_INOTIFY
3898 if (fs_fd >= 0)
3899 {
2017 infy_del (EV_A_ w); 3900 infy_del (EV_A_ w);
2018 infy_add (EV_A_ w); 3901 infy_add (EV_A_ w);
2019 ev_stat_stat (EV_A_ w); /* avoid race... */ 3902 ev_stat_stat (EV_A_ w); /* avoid race... */
3903 }
2020 #endif 3904 #endif
2021 3905
2022 ev_feed_event (EV_A_ w, EV_STAT); 3906 ev_feed_event (EV_A_ w, EV_STAT);
2023 } 3907 }
2024} 3908}
2025 3909
2026void 3910void
2027ev_stat_start (EV_P_ ev_stat *w) 3911ev_stat_start (EV_P_ ev_stat *w) EV_THROW
2028{ 3912{
2029 if (expect_false (ev_is_active (w))) 3913 if (expect_false (ev_is_active (w)))
2030 return; 3914 return;
2031 3915
2032 /* since we use memcmp, we need to clear any padding data etc. */
2033 memset (&w->prev, 0, sizeof (ev_statdata));
2034 memset (&w->attr, 0, sizeof (ev_statdata));
2035
2036 ev_stat_stat (EV_A_ w); 3916 ev_stat_stat (EV_A_ w);
2037 3917
3918 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2038 if (w->interval < MIN_STAT_INTERVAL) 3919 w->interval = MIN_STAT_INTERVAL;
2039 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2040 3920
2041 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3921 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2042 ev_set_priority (&w->timer, ev_priority (w)); 3922 ev_set_priority (&w->timer, ev_priority (w));
2043 3923
2044#if EV_USE_INOTIFY 3924#if EV_USE_INOTIFY
2045 infy_init (EV_A); 3925 infy_init (EV_A);
2046 3926
2047 if (fs_fd >= 0) 3927 if (fs_fd >= 0)
2048 infy_add (EV_A_ w); 3928 infy_add (EV_A_ w);
2049 else 3929 else
2050#endif 3930#endif
3931 {
2051 ev_timer_start (EV_A_ &w->timer); 3932 ev_timer_again (EV_A_ &w->timer);
3933 ev_unref (EV_A);
3934 }
2052 3935
2053 ev_start (EV_A_ (W)w, 1); 3936 ev_start (EV_A_ (W)w, 1);
3937
3938 EV_FREQUENT_CHECK;
2054} 3939}
2055 3940
2056void 3941void
2057ev_stat_stop (EV_P_ ev_stat *w) 3942ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
2058{ 3943{
2059 clear_pending (EV_A_ (W)w); 3944 clear_pending (EV_A_ (W)w);
2060 if (expect_false (!ev_is_active (w))) 3945 if (expect_false (!ev_is_active (w)))
2061 return; 3946 return;
2062 3947
3948 EV_FREQUENT_CHECK;
3949
2063#if EV_USE_INOTIFY 3950#if EV_USE_INOTIFY
2064 infy_del (EV_A_ w); 3951 infy_del (EV_A_ w);
2065#endif 3952#endif
3953
3954 if (ev_is_active (&w->timer))
3955 {
3956 ev_ref (EV_A);
2066 ev_timer_stop (EV_A_ &w->timer); 3957 ev_timer_stop (EV_A_ &w->timer);
3958 }
2067 3959
2068 ev_stop (EV_A_ (W)w); 3960 ev_stop (EV_A_ (W)w);
3961
3962 EV_FREQUENT_CHECK;
2069} 3963}
2070#endif 3964#endif
2071 3965
2072#if EV_IDLE_ENABLE 3966#if EV_IDLE_ENABLE
2073void 3967void
2074ev_idle_start (EV_P_ ev_idle *w) 3968ev_idle_start (EV_P_ ev_idle *w) EV_THROW
2075{ 3969{
2076 if (expect_false (ev_is_active (w))) 3970 if (expect_false (ev_is_active (w)))
2077 return; 3971 return;
2078 3972
2079 pri_adjust (EV_A_ (W)w); 3973 pri_adjust (EV_A_ (W)w);
3974
3975 EV_FREQUENT_CHECK;
2080 3976
2081 { 3977 {
2082 int active = ++idlecnt [ABSPRI (w)]; 3978 int active = ++idlecnt [ABSPRI (w)];
2083 3979
2084 ++idleall; 3980 ++idleall;
2085 ev_start (EV_A_ (W)w, active); 3981 ev_start (EV_A_ (W)w, active);
2086 3982
2087 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3983 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2088 idles [ABSPRI (w)][active - 1] = w; 3984 idles [ABSPRI (w)][active - 1] = w;
2089 } 3985 }
3986
3987 EV_FREQUENT_CHECK;
2090} 3988}
2091 3989
2092void 3990void
2093ev_idle_stop (EV_P_ ev_idle *w) 3991ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
2094{ 3992{
2095 clear_pending (EV_A_ (W)w); 3993 clear_pending (EV_A_ (W)w);
2096 if (expect_false (!ev_is_active (w))) 3994 if (expect_false (!ev_is_active (w)))
2097 return; 3995 return;
2098 3996
3997 EV_FREQUENT_CHECK;
3998
2099 { 3999 {
2100 int active = ((W)w)->active; 4000 int active = ev_active (w);
2101 4001
2102 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 4002 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2103 ((W)idles [ABSPRI (w)][active - 1])->active = active; 4003 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2104 4004
2105 ev_stop (EV_A_ (W)w); 4005 ev_stop (EV_A_ (W)w);
2106 --idleall; 4006 --idleall;
2107 } 4007 }
2108}
2109#endif
2110 4008
4009 EV_FREQUENT_CHECK;
4010}
4011#endif
4012
4013#if EV_PREPARE_ENABLE
2111void 4014void
2112ev_prepare_start (EV_P_ ev_prepare *w) 4015ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
2113{ 4016{
2114 if (expect_false (ev_is_active (w))) 4017 if (expect_false (ev_is_active (w)))
2115 return; 4018 return;
4019
4020 EV_FREQUENT_CHECK;
2116 4021
2117 ev_start (EV_A_ (W)w, ++preparecnt); 4022 ev_start (EV_A_ (W)w, ++preparecnt);
2118 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 4023 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2119 prepares [preparecnt - 1] = w; 4024 prepares [preparecnt - 1] = w;
4025
4026 EV_FREQUENT_CHECK;
2120} 4027}
2121 4028
2122void 4029void
2123ev_prepare_stop (EV_P_ ev_prepare *w) 4030ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
2124{ 4031{
2125 clear_pending (EV_A_ (W)w); 4032 clear_pending (EV_A_ (W)w);
2126 if (expect_false (!ev_is_active (w))) 4033 if (expect_false (!ev_is_active (w)))
2127 return; 4034 return;
2128 4035
4036 EV_FREQUENT_CHECK;
4037
2129 { 4038 {
2130 int active = ((W)w)->active; 4039 int active = ev_active (w);
4040
2131 prepares [active - 1] = prepares [--preparecnt]; 4041 prepares [active - 1] = prepares [--preparecnt];
2132 ((W)prepares [active - 1])->active = active; 4042 ev_active (prepares [active - 1]) = active;
2133 } 4043 }
2134 4044
2135 ev_stop (EV_A_ (W)w); 4045 ev_stop (EV_A_ (W)w);
2136}
2137 4046
4047 EV_FREQUENT_CHECK;
4048}
4049#endif
4050
4051#if EV_CHECK_ENABLE
2138void 4052void
2139ev_check_start (EV_P_ ev_check *w) 4053ev_check_start (EV_P_ ev_check *w) EV_THROW
2140{ 4054{
2141 if (expect_false (ev_is_active (w))) 4055 if (expect_false (ev_is_active (w)))
2142 return; 4056 return;
4057
4058 EV_FREQUENT_CHECK;
2143 4059
2144 ev_start (EV_A_ (W)w, ++checkcnt); 4060 ev_start (EV_A_ (W)w, ++checkcnt);
2145 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 4061 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2146 checks [checkcnt - 1] = w; 4062 checks [checkcnt - 1] = w;
4063
4064 EV_FREQUENT_CHECK;
2147} 4065}
2148 4066
2149void 4067void
2150ev_check_stop (EV_P_ ev_check *w) 4068ev_check_stop (EV_P_ ev_check *w) EV_THROW
2151{ 4069{
2152 clear_pending (EV_A_ (W)w); 4070 clear_pending (EV_A_ (W)w);
2153 if (expect_false (!ev_is_active (w))) 4071 if (expect_false (!ev_is_active (w)))
2154 return; 4072 return;
2155 4073
4074 EV_FREQUENT_CHECK;
4075
2156 { 4076 {
2157 int active = ((W)w)->active; 4077 int active = ev_active (w);
4078
2158 checks [active - 1] = checks [--checkcnt]; 4079 checks [active - 1] = checks [--checkcnt];
2159 ((W)checks [active - 1])->active = active; 4080 ev_active (checks [active - 1]) = active;
2160 } 4081 }
2161 4082
2162 ev_stop (EV_A_ (W)w); 4083 ev_stop (EV_A_ (W)w);
4084
4085 EV_FREQUENT_CHECK;
2163} 4086}
4087#endif
2164 4088
2165#if EV_EMBED_ENABLE 4089#if EV_EMBED_ENABLE
2166void noinline 4090void noinline
2167ev_embed_sweep (EV_P_ ev_embed *w) 4091ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
2168{ 4092{
2169 ev_loop (w->loop, EVLOOP_NONBLOCK); 4093 ev_run (w->other, EVRUN_NOWAIT);
2170} 4094}
2171 4095
2172static void 4096static void
2173embed_cb (EV_P_ ev_io *io, int revents) 4097embed_io_cb (EV_P_ ev_io *io, int revents)
2174{ 4098{
2175 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4099 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2176 4100
2177 if (ev_cb (w)) 4101 if (ev_cb (w))
2178 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4102 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2179 else 4103 else
2180 ev_embed_sweep (loop, w); 4104 ev_run (w->other, EVRUN_NOWAIT);
2181} 4105}
4106
4107static void
4108embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4109{
4110 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4111
4112 {
4113 EV_P = w->other;
4114
4115 while (fdchangecnt)
4116 {
4117 fd_reify (EV_A);
4118 ev_run (EV_A_ EVRUN_NOWAIT);
4119 }
4120 }
4121}
4122
4123static void
4124embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4125{
4126 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4127
4128 ev_embed_stop (EV_A_ w);
4129
4130 {
4131 EV_P = w->other;
4132
4133 ev_loop_fork (EV_A);
4134 ev_run (EV_A_ EVRUN_NOWAIT);
4135 }
4136
4137 ev_embed_start (EV_A_ w);
4138}
4139
4140#if 0
4141static void
4142embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4143{
4144 ev_idle_stop (EV_A_ idle);
4145}
4146#endif
2182 4147
2183void 4148void
2184ev_embed_start (EV_P_ ev_embed *w) 4149ev_embed_start (EV_P_ ev_embed *w) EV_THROW
2185{ 4150{
2186 if (expect_false (ev_is_active (w))) 4151 if (expect_false (ev_is_active (w)))
2187 return; 4152 return;
2188 4153
2189 { 4154 {
2190 struct ev_loop *loop = w->loop; 4155 EV_P = w->other;
2191 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4156 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2192 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 4157 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2193 } 4158 }
4159
4160 EV_FREQUENT_CHECK;
2194 4161
2195 ev_set_priority (&w->io, ev_priority (w)); 4162 ev_set_priority (&w->io, ev_priority (w));
2196 ev_io_start (EV_A_ &w->io); 4163 ev_io_start (EV_A_ &w->io);
2197 4164
4165 ev_prepare_init (&w->prepare, embed_prepare_cb);
4166 ev_set_priority (&w->prepare, EV_MINPRI);
4167 ev_prepare_start (EV_A_ &w->prepare);
4168
4169 ev_fork_init (&w->fork, embed_fork_cb);
4170 ev_fork_start (EV_A_ &w->fork);
4171
4172 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4173
2198 ev_start (EV_A_ (W)w, 1); 4174 ev_start (EV_A_ (W)w, 1);
4175
4176 EV_FREQUENT_CHECK;
2199} 4177}
2200 4178
2201void 4179void
2202ev_embed_stop (EV_P_ ev_embed *w) 4180ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
2203{ 4181{
2204 clear_pending (EV_A_ (W)w); 4182 clear_pending (EV_A_ (W)w);
2205 if (expect_false (!ev_is_active (w))) 4183 if (expect_false (!ev_is_active (w)))
2206 return; 4184 return;
2207 4185
4186 EV_FREQUENT_CHECK;
4187
2208 ev_io_stop (EV_A_ &w->io); 4188 ev_io_stop (EV_A_ &w->io);
4189 ev_prepare_stop (EV_A_ &w->prepare);
4190 ev_fork_stop (EV_A_ &w->fork);
2209 4191
2210 ev_stop (EV_A_ (W)w); 4192 ev_stop (EV_A_ (W)w);
4193
4194 EV_FREQUENT_CHECK;
2211} 4195}
2212#endif 4196#endif
2213 4197
2214#if EV_FORK_ENABLE 4198#if EV_FORK_ENABLE
2215void 4199void
2216ev_fork_start (EV_P_ ev_fork *w) 4200ev_fork_start (EV_P_ ev_fork *w) EV_THROW
2217{ 4201{
2218 if (expect_false (ev_is_active (w))) 4202 if (expect_false (ev_is_active (w)))
2219 return; 4203 return;
4204
4205 EV_FREQUENT_CHECK;
2220 4206
2221 ev_start (EV_A_ (W)w, ++forkcnt); 4207 ev_start (EV_A_ (W)w, ++forkcnt);
2222 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 4208 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2223 forks [forkcnt - 1] = w; 4209 forks [forkcnt - 1] = w;
4210
4211 EV_FREQUENT_CHECK;
2224} 4212}
2225 4213
2226void 4214void
2227ev_fork_stop (EV_P_ ev_fork *w) 4215ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
2228{ 4216{
2229 clear_pending (EV_A_ (W)w); 4217 clear_pending (EV_A_ (W)w);
2230 if (expect_false (!ev_is_active (w))) 4218 if (expect_false (!ev_is_active (w)))
2231 return; 4219 return;
2232 4220
4221 EV_FREQUENT_CHECK;
4222
2233 { 4223 {
2234 int active = ((W)w)->active; 4224 int active = ev_active (w);
4225
2235 forks [active - 1] = forks [--forkcnt]; 4226 forks [active - 1] = forks [--forkcnt];
2236 ((W)forks [active - 1])->active = active; 4227 ev_active (forks [active - 1]) = active;
2237 } 4228 }
2238 4229
2239 ev_stop (EV_A_ (W)w); 4230 ev_stop (EV_A_ (W)w);
4231
4232 EV_FREQUENT_CHECK;
4233}
4234#endif
4235
4236#if EV_CLEANUP_ENABLE
4237void
4238ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4239{
4240 if (expect_false (ev_is_active (w)))
4241 return;
4242
4243 EV_FREQUENT_CHECK;
4244
4245 ev_start (EV_A_ (W)w, ++cleanupcnt);
4246 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4247 cleanups [cleanupcnt - 1] = w;
4248
4249 /* cleanup watchers should never keep a refcount on the loop */
4250 ev_unref (EV_A);
4251 EV_FREQUENT_CHECK;
4252}
4253
4254void
4255ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4256{
4257 clear_pending (EV_A_ (W)w);
4258 if (expect_false (!ev_is_active (w)))
4259 return;
4260
4261 EV_FREQUENT_CHECK;
4262 ev_ref (EV_A);
4263
4264 {
4265 int active = ev_active (w);
4266
4267 cleanups [active - 1] = cleanups [--cleanupcnt];
4268 ev_active (cleanups [active - 1]) = active;
4269 }
4270
4271 ev_stop (EV_A_ (W)w);
4272
4273 EV_FREQUENT_CHECK;
4274}
4275#endif
4276
4277#if EV_ASYNC_ENABLE
4278void
4279ev_async_start (EV_P_ ev_async *w) EV_THROW
4280{
4281 if (expect_false (ev_is_active (w)))
4282 return;
4283
4284 w->sent = 0;
4285
4286 evpipe_init (EV_A);
4287
4288 EV_FREQUENT_CHECK;
4289
4290 ev_start (EV_A_ (W)w, ++asynccnt);
4291 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4292 asyncs [asynccnt - 1] = w;
4293
4294 EV_FREQUENT_CHECK;
4295}
4296
4297void
4298ev_async_stop (EV_P_ ev_async *w) EV_THROW
4299{
4300 clear_pending (EV_A_ (W)w);
4301 if (expect_false (!ev_is_active (w)))
4302 return;
4303
4304 EV_FREQUENT_CHECK;
4305
4306 {
4307 int active = ev_active (w);
4308
4309 asyncs [active - 1] = asyncs [--asynccnt];
4310 ev_active (asyncs [active - 1]) = active;
4311 }
4312
4313 ev_stop (EV_A_ (W)w);
4314
4315 EV_FREQUENT_CHECK;
4316}
4317
4318void
4319ev_async_send (EV_P_ ev_async *w) EV_THROW
4320{
4321 w->sent = 1;
4322 evpipe_write (EV_A_ &async_pending);
2240} 4323}
2241#endif 4324#endif
2242 4325
2243/*****************************************************************************/ 4326/*****************************************************************************/
2244 4327
2254once_cb (EV_P_ struct ev_once *once, int revents) 4337once_cb (EV_P_ struct ev_once *once, int revents)
2255{ 4338{
2256 void (*cb)(int revents, void *arg) = once->cb; 4339 void (*cb)(int revents, void *arg) = once->cb;
2257 void *arg = once->arg; 4340 void *arg = once->arg;
2258 4341
2259 ev_io_stop (EV_A_ &once->io); 4342 ev_io_stop (EV_A_ &once->io);
2260 ev_timer_stop (EV_A_ &once->to); 4343 ev_timer_stop (EV_A_ &once->to);
2261 ev_free (once); 4344 ev_free (once);
2262 4345
2263 cb (revents, arg); 4346 cb (revents, arg);
2264} 4347}
2265 4348
2266static void 4349static void
2267once_cb_io (EV_P_ ev_io *w, int revents) 4350once_cb_io (EV_P_ ev_io *w, int revents)
2268{ 4351{
2269 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4352 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4353
4354 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2270} 4355}
2271 4356
2272static void 4357static void
2273once_cb_to (EV_P_ ev_timer *w, int revents) 4358once_cb_to (EV_P_ ev_timer *w, int revents)
2274{ 4359{
2275 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4360 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4361
4362 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2276} 4363}
2277 4364
2278void 4365void
2279ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4366ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
2280{ 4367{
2281 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4368 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2282 4369
2283 if (expect_false (!once)) 4370 if (expect_false (!once))
2284 { 4371 {
2285 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4372 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2286 return; 4373 return;
2287 } 4374 }
2288 4375
2289 once->cb = cb; 4376 once->cb = cb;
2290 once->arg = arg; 4377 once->arg = arg;
2302 ev_timer_set (&once->to, timeout, 0.); 4389 ev_timer_set (&once->to, timeout, 0.);
2303 ev_timer_start (EV_A_ &once->to); 4390 ev_timer_start (EV_A_ &once->to);
2304 } 4391 }
2305} 4392}
2306 4393
2307#ifdef __cplusplus 4394/*****************************************************************************/
2308} 4395
4396#if EV_WALK_ENABLE
4397void ecb_cold
4398ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4399{
4400 int i, j;
4401 ev_watcher_list *wl, *wn;
4402
4403 if (types & (EV_IO | EV_EMBED))
4404 for (i = 0; i < anfdmax; ++i)
4405 for (wl = anfds [i].head; wl; )
4406 {
4407 wn = wl->next;
4408
4409#if EV_EMBED_ENABLE
4410 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4411 {
4412 if (types & EV_EMBED)
4413 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4414 }
4415 else
4416#endif
4417#if EV_USE_INOTIFY
4418 if (ev_cb ((ev_io *)wl) == infy_cb)
4419 ;
4420 else
4421#endif
4422 if ((ev_io *)wl != &pipe_w)
4423 if (types & EV_IO)
4424 cb (EV_A_ EV_IO, wl);
4425
4426 wl = wn;
4427 }
4428
4429 if (types & (EV_TIMER | EV_STAT))
4430 for (i = timercnt + HEAP0; i-- > HEAP0; )
4431#if EV_STAT_ENABLE
4432 /*TODO: timer is not always active*/
4433 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4434 {
4435 if (types & EV_STAT)
4436 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4437 }
4438 else
4439#endif
4440 if (types & EV_TIMER)
4441 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4442
4443#if EV_PERIODIC_ENABLE
4444 if (types & EV_PERIODIC)
4445 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4446 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4447#endif
4448
4449#if EV_IDLE_ENABLE
4450 if (types & EV_IDLE)
4451 for (j = NUMPRI; j--; )
4452 for (i = idlecnt [j]; i--; )
4453 cb (EV_A_ EV_IDLE, idles [j][i]);
4454#endif
4455
4456#if EV_FORK_ENABLE
4457 if (types & EV_FORK)
4458 for (i = forkcnt; i--; )
4459 if (ev_cb (forks [i]) != embed_fork_cb)
4460 cb (EV_A_ EV_FORK, forks [i]);
4461#endif
4462
4463#if EV_ASYNC_ENABLE
4464 if (types & EV_ASYNC)
4465 for (i = asynccnt; i--; )
4466 cb (EV_A_ EV_ASYNC, asyncs [i]);
4467#endif
4468
4469#if EV_PREPARE_ENABLE
4470 if (types & EV_PREPARE)
4471 for (i = preparecnt; i--; )
4472# if EV_EMBED_ENABLE
4473 if (ev_cb (prepares [i]) != embed_prepare_cb)
2309#endif 4474# endif
4475 cb (EV_A_ EV_PREPARE, prepares [i]);
4476#endif
2310 4477
4478#if EV_CHECK_ENABLE
4479 if (types & EV_CHECK)
4480 for (i = checkcnt; i--; )
4481 cb (EV_A_ EV_CHECK, checks [i]);
4482#endif
4483
4484#if EV_SIGNAL_ENABLE
4485 if (types & EV_SIGNAL)
4486 for (i = 0; i < EV_NSIG - 1; ++i)
4487 for (wl = signals [i].head; wl; )
4488 {
4489 wn = wl->next;
4490 cb (EV_A_ EV_SIGNAL, wl);
4491 wl = wn;
4492 }
4493#endif
4494
4495#if EV_CHILD_ENABLE
4496 if (types & EV_CHILD)
4497 for (i = (EV_PID_HASHSIZE); i--; )
4498 for (wl = childs [i]; wl; )
4499 {
4500 wn = wl->next;
4501 cb (EV_A_ EV_CHILD, wl);
4502 wl = wn;
4503 }
4504#endif
4505/* EV_STAT 0x00001000 /* stat data changed */
4506/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4507}
4508#endif
4509
4510#if EV_MULTIPLICITY
4511 #include "ev_wrap.h"
4512#endif
4513

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines