ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.56 by root, Sun Nov 4 15:58:49 2007 UTC vs.
Revision 1.432 by root, Mon May 14 19:09:58 2012 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
39
40/* this big block deduces configuration from config.h */
31#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
32# include "config.h" 45# include "config.h"
33#endif 46# endif
34 47
35#include <math.h> 48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
68# if HAVE_CLOCK_GETTIME
69# ifndef EV_USE_MONOTONIC
70# define EV_USE_MONOTONIC 1
71# endif
72# ifndef EV_USE_REALTIME
73# define EV_USE_REALTIME 0
74# endif
75# else
76# ifndef EV_USE_MONOTONIC
77# define EV_USE_MONOTONIC 0
78# endif
79# ifndef EV_USE_REALTIME
80# define EV_USE_REALTIME 0
81# endif
82# endif
83
84# if HAVE_NANOSLEEP
85# ifndef EV_USE_NANOSLEEP
86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
100# endif
101
102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
108# define EV_USE_POLL 0
109# endif
110
111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112# ifndef EV_USE_EPOLL
113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
118# endif
119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121# ifndef EV_USE_KQUEUE
122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
127# endif
128
129# if HAVE_PORT_H && HAVE_PORT_CREATE
130# ifndef EV_USE_PORT
131# define EV_USE_PORT EV_FEATURE_BACKENDS
132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
136# endif
137
138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139# ifndef EV_USE_INOTIFY
140# define EV_USE_INOTIFY EV_FEATURE_OS
141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
145# endif
146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
36#include <stdlib.h> 167#include <stdlib.h>
37#include <unistd.h> 168#include <string.h>
38#include <fcntl.h> 169#include <fcntl.h>
39#include <signal.h>
40#include <stddef.h> 170#include <stddef.h>
41 171
42#include <stdio.h> 172#include <stdio.h>
43 173
44#include <assert.h> 174#include <assert.h>
45#include <errno.h> 175#include <errno.h>
46#include <sys/types.h> 176#include <sys/types.h>
177#include <time.h>
178#include <limits.h>
179
180#include <signal.h>
181
182#ifdef EV_H
183# include EV_H
184#else
185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
197#endif
198
47#ifndef WIN32 199#ifndef _WIN32
200# include <sys/time.h>
48# include <sys/wait.h> 201# include <sys/wait.h>
202# include <unistd.h>
203#else
204# include <io.h>
205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
207# include <windows.h>
208# ifndef EV_SELECT_IS_WINSOCKET
209# define EV_SELECT_IS_WINSOCKET 1
49#endif 210# endif
50#include <sys/time.h> 211# undef EV_AVOID_STDIO
51#include <time.h> 212#endif
52 213
53/**/ 214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
221
222/* this block tries to deduce configuration from header-defined symbols and defaults */
223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# error "unable to find value for NSIG, please report"
247/* to make it compile regardless, just remove the above line, */
248/* but consider reporting it, too! :) */
249# define EV_NSIG 65
250#endif
251
252#ifndef EV_USE_FLOOR
253# define EV_USE_FLOOR 0
254#endif
255
256#ifndef EV_USE_CLOCK_SYSCALL
257# if __linux && __GLIBC__ >= 2
258# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
259# else
260# define EV_USE_CLOCK_SYSCALL 0
261# endif
262#endif
54 263
55#ifndef EV_USE_MONOTONIC 264#ifndef EV_USE_MONOTONIC
265# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
266# define EV_USE_MONOTONIC EV_FEATURE_OS
267# else
56# define EV_USE_MONOTONIC 1 268# define EV_USE_MONOTONIC 0
269# endif
270#endif
271
272#ifndef EV_USE_REALTIME
273# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
274#endif
275
276#ifndef EV_USE_NANOSLEEP
277# if _POSIX_C_SOURCE >= 199309L
278# define EV_USE_NANOSLEEP EV_FEATURE_OS
279# else
280# define EV_USE_NANOSLEEP 0
281# endif
57#endif 282#endif
58 283
59#ifndef EV_USE_SELECT 284#ifndef EV_USE_SELECT
60# define EV_USE_SELECT 1 285# define EV_USE_SELECT EV_FEATURE_BACKENDS
61#endif 286#endif
62 287
63#ifndef EV_USEV_POLL 288#ifndef EV_USE_POLL
64# define EV_USEV_POLL 0 /* poll is usually slower than select, and not as well tested */ 289# ifdef _WIN32
290# define EV_USE_POLL 0
291# else
292# define EV_USE_POLL EV_FEATURE_BACKENDS
293# endif
65#endif 294#endif
66 295
67#ifndef EV_USE_EPOLL 296#ifndef EV_USE_EPOLL
297# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
298# define EV_USE_EPOLL EV_FEATURE_BACKENDS
299# else
68# define EV_USE_EPOLL 0 300# define EV_USE_EPOLL 0
301# endif
69#endif 302#endif
70 303
71#ifndef EV_USE_KQUEUE 304#ifndef EV_USE_KQUEUE
72# define EV_USE_KQUEUE 0 305# define EV_USE_KQUEUE 0
73#endif 306#endif
74 307
75#ifndef EV_USE_REALTIME 308#ifndef EV_USE_PORT
76# define EV_USE_REALTIME 1 309# define EV_USE_PORT 0
310#endif
311
312#ifndef EV_USE_INOTIFY
313# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
314# define EV_USE_INOTIFY EV_FEATURE_OS
315# else
316# define EV_USE_INOTIFY 0
77#endif 317# endif
318#endif
78 319
79/**/ 320#ifndef EV_PID_HASHSIZE
321# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
322#endif
323
324#ifndef EV_INOTIFY_HASHSIZE
325# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
326#endif
327
328#ifndef EV_USE_EVENTFD
329# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
330# define EV_USE_EVENTFD EV_FEATURE_OS
331# else
332# define EV_USE_EVENTFD 0
333# endif
334#endif
335
336#ifndef EV_USE_SIGNALFD
337# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
338# define EV_USE_SIGNALFD EV_FEATURE_OS
339# else
340# define EV_USE_SIGNALFD 0
341# endif
342#endif
343
344#if 0 /* debugging */
345# define EV_VERIFY 3
346# define EV_USE_4HEAP 1
347# define EV_HEAP_CACHE_AT 1
348#endif
349
350#ifndef EV_VERIFY
351# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
352#endif
353
354#ifndef EV_USE_4HEAP
355# define EV_USE_4HEAP EV_FEATURE_DATA
356#endif
357
358#ifndef EV_HEAP_CACHE_AT
359# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
360#endif
361
362/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
363/* which makes programs even slower. might work on other unices, too. */
364#if EV_USE_CLOCK_SYSCALL
365# include <sys/syscall.h>
366# ifdef SYS_clock_gettime
367# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
368# undef EV_USE_MONOTONIC
369# define EV_USE_MONOTONIC 1
370# else
371# undef EV_USE_CLOCK_SYSCALL
372# define EV_USE_CLOCK_SYSCALL 0
373# endif
374#endif
375
376/* this block fixes any misconfiguration where we know we run into trouble otherwise */
377
378#ifdef _AIX
379/* AIX has a completely broken poll.h header */
380# undef EV_USE_POLL
381# define EV_USE_POLL 0
382#endif
80 383
81#ifndef CLOCK_MONOTONIC 384#ifndef CLOCK_MONOTONIC
82# undef EV_USE_MONOTONIC 385# undef EV_USE_MONOTONIC
83# define EV_USE_MONOTONIC 0 386# define EV_USE_MONOTONIC 0
84#endif 387#endif
86#ifndef CLOCK_REALTIME 389#ifndef CLOCK_REALTIME
87# undef EV_USE_REALTIME 390# undef EV_USE_REALTIME
88# define EV_USE_REALTIME 0 391# define EV_USE_REALTIME 0
89#endif 392#endif
90 393
394#if !EV_STAT_ENABLE
395# undef EV_USE_INOTIFY
396# define EV_USE_INOTIFY 0
397#endif
398
399#if !EV_USE_NANOSLEEP
400/* hp-ux has it in sys/time.h, which we unconditionally include above */
401# if !defined _WIN32 && !defined __hpux
402# include <sys/select.h>
403# endif
404#endif
405
406#if EV_USE_INOTIFY
407# include <sys/statfs.h>
408# include <sys/inotify.h>
409/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
410# ifndef IN_DONT_FOLLOW
411# undef EV_USE_INOTIFY
412# define EV_USE_INOTIFY 0
413# endif
414#endif
415
416#if EV_USE_EVENTFD
417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
418# include <stdint.h>
419# ifndef EFD_NONBLOCK
420# define EFD_NONBLOCK O_NONBLOCK
421# endif
422# ifndef EFD_CLOEXEC
423# ifdef O_CLOEXEC
424# define EFD_CLOEXEC O_CLOEXEC
425# else
426# define EFD_CLOEXEC 02000000
427# endif
428# endif
429EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
430#endif
431
432#if EV_USE_SIGNALFD
433/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
434# include <stdint.h>
435# ifndef SFD_NONBLOCK
436# define SFD_NONBLOCK O_NONBLOCK
437# endif
438# ifndef SFD_CLOEXEC
439# ifdef O_CLOEXEC
440# define SFD_CLOEXEC O_CLOEXEC
441# else
442# define SFD_CLOEXEC 02000000
443# endif
444# endif
445EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
446
447struct signalfd_siginfo
448{
449 uint32_t ssi_signo;
450 char pad[128 - sizeof (uint32_t)];
451};
452#endif
453
91/**/ 454/**/
92 455
456#if EV_VERIFY >= 3
457# define EV_FREQUENT_CHECK ev_verify (EV_A)
458#else
459# define EV_FREQUENT_CHECK do { } while (0)
460#endif
461
462/*
463 * This is used to work around floating point rounding problems.
464 * This value is good at least till the year 4000.
465 */
466#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
467/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
468
93#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 469#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
94#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 470#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
95#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
96/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
97 471
98#include "ev.h" 472#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
473#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
99 474
475/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
476/* ECB.H BEGIN */
477/*
478 * libecb - http://software.schmorp.de/pkg/libecb
479 *
480 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
481 * Copyright (©) 2011 Emanuele Giaquinta
482 * All rights reserved.
483 *
484 * Redistribution and use in source and binary forms, with or without modifica-
485 * tion, are permitted provided that the following conditions are met:
486 *
487 * 1. Redistributions of source code must retain the above copyright notice,
488 * this list of conditions and the following disclaimer.
489 *
490 * 2. Redistributions in binary form must reproduce the above copyright
491 * notice, this list of conditions and the following disclaimer in the
492 * documentation and/or other materials provided with the distribution.
493 *
494 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
495 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
496 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
497 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
498 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
499 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
500 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
501 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
502 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
503 * OF THE POSSIBILITY OF SUCH DAMAGE.
504 */
505
506#ifndef ECB_H
507#define ECB_H
508
509#ifdef _WIN32
510 typedef signed char int8_t;
511 typedef unsigned char uint8_t;
512 typedef signed short int16_t;
513 typedef unsigned short uint16_t;
514 typedef signed int int32_t;
515 typedef unsigned int uint32_t;
100#if __GNUC__ >= 3 516 #if __GNUC__
101# define expect(expr,value) __builtin_expect ((expr),(value)) 517 typedef signed long long int64_t;
102# define inline inline 518 typedef unsigned long long uint64_t;
519 #else /* _MSC_VER || __BORLANDC__ */
520 typedef signed __int64 int64_t;
521 typedef unsigned __int64 uint64_t;
522 #endif
103#else 523#else
104# define expect(expr,value) (expr) 524 #include <inttypes.h>
105# define inline static 525#endif
526
527/* many compilers define _GNUC_ to some versions but then only implement
528 * what their idiot authors think are the "more important" extensions,
529 * causing enormous grief in return for some better fake benchmark numbers.
530 * or so.
531 * we try to detect these and simply assume they are not gcc - if they have
532 * an issue with that they should have done it right in the first place.
533 */
534#ifndef ECB_GCC_VERSION
535 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
536 #define ECB_GCC_VERSION(major,minor) 0
537 #else
538 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
106#endif 539 #endif
107 540#endif
108#define expect_false(expr) expect ((expr) != 0, 0)
109#define expect_true(expr) expect ((expr) != 0, 1)
110
111#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
112#define ABSPRI(w) ((w)->priority - EV_MINPRI)
113
114typedef struct ev_watcher *W;
115typedef struct ev_watcher_list *WL;
116typedef struct ev_watcher_time *WT;
117
118static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
119 541
120/*****************************************************************************/ 542/*****************************************************************************/
121 543
544/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
545/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
546
547#if ECB_NO_THREADS
548# define ECB_NO_SMP 1
549#endif
550
551#if ECB_NO_THREADS || ECB_NO_SMP
552 #define ECB_MEMORY_FENCE do { } while (0)
553#endif
554
555#ifndef ECB_MEMORY_FENCE
556 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
557 #if __i386 || __i386__
558 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
559 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */
560 #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */
561 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
562 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
563 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
564 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */
565 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
566 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
567 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
568 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
569 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
570 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
571 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
572 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
573 #elif __sparc || __sparc__
574 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad | " : : : "memory")
575 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
576 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
577 #elif defined __s390__ || defined __s390x__
578 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
579 #elif defined __mips__
580 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
581 #elif defined __alpha__
582 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
583 #endif
584 #endif
585#endif
586
587#ifndef ECB_MEMORY_FENCE
588 #if ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
589 #define ECB_MEMORY_FENCE __sync_synchronize ()
590 /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */
591 /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); }) */
592 #elif _MSC_VER >= 1400 /* VC++ 2005 */
593 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
594 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
595 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
596 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
597 #elif defined _WIN32
598 #include <WinNT.h>
599 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
600 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
601 #include <mbarrier.h>
602 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
603 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
604 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
605 #elif __xlC__
606 #define ECB_MEMORY_FENCE __sync ()
607 #endif
608#endif
609
610#ifndef ECB_MEMORY_FENCE
611 #if !ECB_AVOID_PTHREADS
612 /*
613 * if you get undefined symbol references to pthread_mutex_lock,
614 * or failure to find pthread.h, then you should implement
615 * the ECB_MEMORY_FENCE operations for your cpu/compiler
616 * OR provide pthread.h and link against the posix thread library
617 * of your system.
618 */
619 #include <pthread.h>
620 #define ECB_NEEDS_PTHREADS 1
621 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
622
623 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
624 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
625 #endif
626#endif
627
628#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
629 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
630#endif
631
632#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
633 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
634#endif
635
636/*****************************************************************************/
637
638#define ECB_C99 (__STDC_VERSION__ >= 199901L)
639
640#if __cplusplus
641 #define ecb_inline static inline
642#elif ECB_GCC_VERSION(2,5)
643 #define ecb_inline static __inline__
644#elif ECB_C99
645 #define ecb_inline static inline
646#else
647 #define ecb_inline static
648#endif
649
650#if ECB_GCC_VERSION(3,3)
651 #define ecb_restrict __restrict__
652#elif ECB_C99
653 #define ecb_restrict restrict
654#else
655 #define ecb_restrict
656#endif
657
658typedef int ecb_bool;
659
660#define ECB_CONCAT_(a, b) a ## b
661#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
662#define ECB_STRINGIFY_(a) # a
663#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
664
665#define ecb_function_ ecb_inline
666
667#if ECB_GCC_VERSION(3,1)
668 #define ecb_attribute(attrlist) __attribute__(attrlist)
669 #define ecb_is_constant(expr) __builtin_constant_p (expr)
670 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
671 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
672#else
673 #define ecb_attribute(attrlist)
674 #define ecb_is_constant(expr) 0
675 #define ecb_expect(expr,value) (expr)
676 #define ecb_prefetch(addr,rw,locality)
677#endif
678
679/* no emulation for ecb_decltype */
680#if ECB_GCC_VERSION(4,5)
681 #define ecb_decltype(x) __decltype(x)
682#elif ECB_GCC_VERSION(3,0)
683 #define ecb_decltype(x) __typeof(x)
684#endif
685
686#define ecb_noinline ecb_attribute ((__noinline__))
687#define ecb_noreturn ecb_attribute ((__noreturn__))
688#define ecb_unused ecb_attribute ((__unused__))
689#define ecb_const ecb_attribute ((__const__))
690#define ecb_pure ecb_attribute ((__pure__))
691
692#if ECB_GCC_VERSION(4,3)
693 #define ecb_artificial ecb_attribute ((__artificial__))
694 #define ecb_hot ecb_attribute ((__hot__))
695 #define ecb_cold ecb_attribute ((__cold__))
696#else
697 #define ecb_artificial
698 #define ecb_hot
699 #define ecb_cold
700#endif
701
702/* put around conditional expressions if you are very sure that the */
703/* expression is mostly true or mostly false. note that these return */
704/* booleans, not the expression. */
705#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
706#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
707/* for compatibility to the rest of the world */
708#define ecb_likely(expr) ecb_expect_true (expr)
709#define ecb_unlikely(expr) ecb_expect_false (expr)
710
711/* count trailing zero bits and count # of one bits */
712#if ECB_GCC_VERSION(3,4)
713 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
714 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
715 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
716 #define ecb_ctz32(x) __builtin_ctz (x)
717 #define ecb_ctz64(x) __builtin_ctzll (x)
718 #define ecb_popcount32(x) __builtin_popcount (x)
719 /* no popcountll */
720#else
721 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
722 ecb_function_ int
723 ecb_ctz32 (uint32_t x)
724 {
725 int r = 0;
726
727 x &= ~x + 1; /* this isolates the lowest bit */
728
729#if ECB_branchless_on_i386
730 r += !!(x & 0xaaaaaaaa) << 0;
731 r += !!(x & 0xcccccccc) << 1;
732 r += !!(x & 0xf0f0f0f0) << 2;
733 r += !!(x & 0xff00ff00) << 3;
734 r += !!(x & 0xffff0000) << 4;
735#else
736 if (x & 0xaaaaaaaa) r += 1;
737 if (x & 0xcccccccc) r += 2;
738 if (x & 0xf0f0f0f0) r += 4;
739 if (x & 0xff00ff00) r += 8;
740 if (x & 0xffff0000) r += 16;
741#endif
742
743 return r;
744 }
745
746 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
747 ecb_function_ int
748 ecb_ctz64 (uint64_t x)
749 {
750 int shift = x & 0xffffffffU ? 0 : 32;
751 return ecb_ctz32 (x >> shift) + shift;
752 }
753
754 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
755 ecb_function_ int
756 ecb_popcount32 (uint32_t x)
757 {
758 x -= (x >> 1) & 0x55555555;
759 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
760 x = ((x >> 4) + x) & 0x0f0f0f0f;
761 x *= 0x01010101;
762
763 return x >> 24;
764 }
765
766 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
767 ecb_function_ int ecb_ld32 (uint32_t x)
768 {
769 int r = 0;
770
771 if (x >> 16) { x >>= 16; r += 16; }
772 if (x >> 8) { x >>= 8; r += 8; }
773 if (x >> 4) { x >>= 4; r += 4; }
774 if (x >> 2) { x >>= 2; r += 2; }
775 if (x >> 1) { r += 1; }
776
777 return r;
778 }
779
780 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
781 ecb_function_ int ecb_ld64 (uint64_t x)
782 {
783 int r = 0;
784
785 if (x >> 32) { x >>= 32; r += 32; }
786
787 return r + ecb_ld32 (x);
788 }
789#endif
790
791ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
792ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
793{
794 return ( (x * 0x0802U & 0x22110U)
795 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
796}
797
798ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
799ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
800{
801 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
802 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
803 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
804 x = ( x >> 8 ) | ( x << 8);
805
806 return x;
807}
808
809ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
810ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
811{
812 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
813 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
814 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
815 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
816 x = ( x >> 16 ) | ( x << 16);
817
818 return x;
819}
820
821/* popcount64 is only available on 64 bit cpus as gcc builtin */
822/* so for this version we are lazy */
823ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
824ecb_function_ int
825ecb_popcount64 (uint64_t x)
826{
827 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
828}
829
830ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
831ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
832ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
833ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
834ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
835ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
836ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
837ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
838
839ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
840ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
841ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
842ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
843ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
844ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
845ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
846ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
847
848#if ECB_GCC_VERSION(4,3)
849 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
850 #define ecb_bswap32(x) __builtin_bswap32 (x)
851 #define ecb_bswap64(x) __builtin_bswap64 (x)
852#else
853 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
854 ecb_function_ uint16_t
855 ecb_bswap16 (uint16_t x)
856 {
857 return ecb_rotl16 (x, 8);
858 }
859
860 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
861 ecb_function_ uint32_t
862 ecb_bswap32 (uint32_t x)
863 {
864 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
865 }
866
867 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
868 ecb_function_ uint64_t
869 ecb_bswap64 (uint64_t x)
870 {
871 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
872 }
873#endif
874
875#if ECB_GCC_VERSION(4,5)
876 #define ecb_unreachable() __builtin_unreachable ()
877#else
878 /* this seems to work fine, but gcc always emits a warning for it :/ */
879 ecb_inline void ecb_unreachable (void) ecb_noreturn;
880 ecb_inline void ecb_unreachable (void) { }
881#endif
882
883/* try to tell the compiler that some condition is definitely true */
884#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
885
886ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
887ecb_inline unsigned char
888ecb_byteorder_helper (void)
889{
890 const uint32_t u = 0x11223344;
891 return *(unsigned char *)&u;
892}
893
894ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
895ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
896ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
897ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
898
899#if ECB_GCC_VERSION(3,0) || ECB_C99
900 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
901#else
902 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
903#endif
904
905#if __cplusplus
906 template<typename T>
907 static inline T ecb_div_rd (T val, T div)
908 {
909 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
910 }
911 template<typename T>
912 static inline T ecb_div_ru (T val, T div)
913 {
914 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
915 }
916#else
917 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
918 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
919#endif
920
921#if ecb_cplusplus_does_not_suck
922 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
923 template<typename T, int N>
924 static inline int ecb_array_length (const T (&arr)[N])
925 {
926 return N;
927 }
928#else
929 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
930#endif
931
932#endif
933
934/* ECB.H END */
935
936#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
937/* if your architecture doesn't need memory fences, e.g. because it is
938 * single-cpu/core, or if you use libev in a project that doesn't use libev
939 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
940 * libev, in which cases the memory fences become nops.
941 * alternatively, you can remove this #error and link against libpthread,
942 * which will then provide the memory fences.
943 */
944# error "memory fences not defined for your architecture, please report"
945#endif
946
947#ifndef ECB_MEMORY_FENCE
948# define ECB_MEMORY_FENCE do { } while (0)
949# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
950# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
951#endif
952
953#define expect_false(cond) ecb_expect_false (cond)
954#define expect_true(cond) ecb_expect_true (cond)
955#define noinline ecb_noinline
956
957#define inline_size ecb_inline
958
959#if EV_FEATURE_CODE
960# define inline_speed ecb_inline
961#else
962# define inline_speed static noinline
963#endif
964
965#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
966
967#if EV_MINPRI == EV_MAXPRI
968# define ABSPRI(w) (((W)w), 0)
969#else
970# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
971#endif
972
973#define EMPTY /* required for microsofts broken pseudo-c compiler */
974#define EMPTY2(a,b) /* used to suppress some warnings */
975
976typedef ev_watcher *W;
977typedef ev_watcher_list *WL;
978typedef ev_watcher_time *WT;
979
980#define ev_active(w) ((W)(w))->active
981#define ev_at(w) ((WT)(w))->at
982
983#if EV_USE_REALTIME
984/* sig_atomic_t is used to avoid per-thread variables or locking but still */
985/* giving it a reasonably high chance of working on typical architectures */
986static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
987#endif
988
989#if EV_USE_MONOTONIC
990static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
991#endif
992
993#ifndef EV_FD_TO_WIN32_HANDLE
994# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
995#endif
996#ifndef EV_WIN32_HANDLE_TO_FD
997# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
998#endif
999#ifndef EV_WIN32_CLOSE_FD
1000# define EV_WIN32_CLOSE_FD(fd) close (fd)
1001#endif
1002
1003#ifdef _WIN32
1004# include "ev_win32.c"
1005#endif
1006
1007/*****************************************************************************/
1008
1009/* define a suitable floor function (only used by periodics atm) */
1010
1011#if EV_USE_FLOOR
1012# include <math.h>
1013# define ev_floor(v) floor (v)
1014#else
1015
1016#include <float.h>
1017
1018/* a floor() replacement function, should be independent of ev_tstamp type */
1019static ev_tstamp noinline
1020ev_floor (ev_tstamp v)
1021{
1022 /* the choice of shift factor is not terribly important */
1023#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1024 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1025#else
1026 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1027#endif
1028
1029 /* argument too large for an unsigned long? */
1030 if (expect_false (v >= shift))
1031 {
1032 ev_tstamp f;
1033
1034 if (v == v - 1.)
1035 return v; /* very large number */
1036
1037 f = shift * ev_floor (v * (1. / shift));
1038 return f + ev_floor (v - f);
1039 }
1040
1041 /* special treatment for negative args? */
1042 if (expect_false (v < 0.))
1043 {
1044 ev_tstamp f = -ev_floor (-v);
1045
1046 return f - (f == v ? 0 : 1);
1047 }
1048
1049 /* fits into an unsigned long */
1050 return (unsigned long)v;
1051}
1052
1053#endif
1054
1055/*****************************************************************************/
1056
1057#ifdef __linux
1058# include <sys/utsname.h>
1059#endif
1060
1061static unsigned int noinline ecb_cold
1062ev_linux_version (void)
1063{
1064#ifdef __linux
1065 unsigned int v = 0;
1066 struct utsname buf;
1067 int i;
1068 char *p = buf.release;
1069
1070 if (uname (&buf))
1071 return 0;
1072
1073 for (i = 3+1; --i; )
1074 {
1075 unsigned int c = 0;
1076
1077 for (;;)
1078 {
1079 if (*p >= '0' && *p <= '9')
1080 c = c * 10 + *p++ - '0';
1081 else
1082 {
1083 p += *p == '.';
1084 break;
1085 }
1086 }
1087
1088 v = (v << 8) | c;
1089 }
1090
1091 return v;
1092#else
1093 return 0;
1094#endif
1095}
1096
1097/*****************************************************************************/
1098
1099#if EV_AVOID_STDIO
1100static void noinline ecb_cold
1101ev_printerr (const char *msg)
1102{
1103 write (STDERR_FILENO, msg, strlen (msg));
1104}
1105#endif
1106
1107static void (*syserr_cb)(const char *msg) EV_THROW;
1108
1109void ecb_cold
1110ev_set_syserr_cb (void (*cb)(const char *msg)) EV_THROW
1111{
1112 syserr_cb = cb;
1113}
1114
1115static void noinline ecb_cold
1116ev_syserr (const char *msg)
1117{
1118 if (!msg)
1119 msg = "(libev) system error";
1120
1121 if (syserr_cb)
1122 syserr_cb (msg);
1123 else
1124 {
1125#if EV_AVOID_STDIO
1126 ev_printerr (msg);
1127 ev_printerr (": ");
1128 ev_printerr (strerror (errno));
1129 ev_printerr ("\n");
1130#else
1131 perror (msg);
1132#endif
1133 abort ();
1134 }
1135}
1136
1137static void *
1138ev_realloc_emul (void *ptr, long size)
1139{
1140#if __GLIBC__
1141 return realloc (ptr, size);
1142#else
1143 /* some systems, notably openbsd and darwin, fail to properly
1144 * implement realloc (x, 0) (as required by both ansi c-89 and
1145 * the single unix specification, so work around them here.
1146 */
1147
1148 if (size)
1149 return realloc (ptr, size);
1150
1151 free (ptr);
1152 return 0;
1153#endif
1154}
1155
1156static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
1157
1158void ecb_cold
1159ev_set_allocator (void *(*cb)(void *ptr, long size)) EV_THROW
1160{
1161 alloc = cb;
1162}
1163
1164inline_speed void *
1165ev_realloc (void *ptr, long size)
1166{
1167 ptr = alloc (ptr, size);
1168
1169 if (!ptr && size)
1170 {
1171#if EV_AVOID_STDIO
1172 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1173#else
1174 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1175#endif
1176 abort ();
1177 }
1178
1179 return ptr;
1180}
1181
1182#define ev_malloc(size) ev_realloc (0, (size))
1183#define ev_free(ptr) ev_realloc ((ptr), 0)
1184
1185/*****************************************************************************/
1186
1187/* set in reify when reification needed */
1188#define EV_ANFD_REIFY 1
1189
1190/* file descriptor info structure */
122typedef struct 1191typedef struct
123{ 1192{
124 struct ev_watcher_list *head; 1193 WL head;
125 unsigned char events; 1194 unsigned char events; /* the events watched for */
1195 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1196 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
126 unsigned char reify; 1197 unsigned char unused;
1198#if EV_USE_EPOLL
1199 unsigned int egen; /* generation counter to counter epoll bugs */
1200#endif
1201#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1202 SOCKET handle;
1203#endif
1204#if EV_USE_IOCP
1205 OVERLAPPED or, ow;
1206#endif
127} ANFD; 1207} ANFD;
128 1208
1209/* stores the pending event set for a given watcher */
129typedef struct 1210typedef struct
130{ 1211{
131 W w; 1212 W w;
132 int events; 1213 int events; /* the pending event set for the given watcher */
133} ANPENDING; 1214} ANPENDING;
134 1215
1216#if EV_USE_INOTIFY
1217/* hash table entry per inotify-id */
1218typedef struct
1219{
1220 WL head;
1221} ANFS;
1222#endif
1223
1224/* Heap Entry */
1225#if EV_HEAP_CACHE_AT
1226 /* a heap element */
1227 typedef struct {
1228 ev_tstamp at;
1229 WT w;
1230 } ANHE;
1231
1232 #define ANHE_w(he) (he).w /* access watcher, read-write */
1233 #define ANHE_at(he) (he).at /* access cached at, read-only */
1234 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1235#else
1236 /* a heap element */
1237 typedef WT ANHE;
1238
1239 #define ANHE_w(he) (he)
1240 #define ANHE_at(he) (he)->at
1241 #define ANHE_at_cache(he)
1242#endif
1243
135#if EV_MULTIPLICITY 1244#if EV_MULTIPLICITY
136 1245
137struct ev_loop 1246 struct ev_loop
138{ 1247 {
1248 ev_tstamp ev_rt_now;
1249 #define ev_rt_now ((loop)->ev_rt_now)
139# define VAR(name,decl) decl; 1250 #define VAR(name,decl) decl;
140# include "ev_vars.h" 1251 #include "ev_vars.h"
141};
142# undef VAR 1252 #undef VAR
1253 };
143# include "ev_wrap.h" 1254 #include "ev_wrap.h"
1255
1256 static struct ev_loop default_loop_struct;
1257 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
144 1258
145#else 1259#else
146 1260
1261 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
147# define VAR(name,decl) static decl; 1262 #define VAR(name,decl) static decl;
148# include "ev_vars.h" 1263 #include "ev_vars.h"
149# undef VAR 1264 #undef VAR
150 1265
1266 static int ev_default_loop_ptr;
1267
151#endif 1268#endif
1269
1270#if EV_FEATURE_API
1271# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1272# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1273# define EV_INVOKE_PENDING invoke_cb (EV_A)
1274#else
1275# define EV_RELEASE_CB (void)0
1276# define EV_ACQUIRE_CB (void)0
1277# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1278#endif
1279
1280#define EVBREAK_RECURSE 0x80
152 1281
153/*****************************************************************************/ 1282/*****************************************************************************/
154 1283
155inline ev_tstamp 1284#ifndef EV_HAVE_EV_TIME
1285ev_tstamp
156ev_time (void) 1286ev_time (void) EV_THROW
157{ 1287{
158#if EV_USE_REALTIME 1288#if EV_USE_REALTIME
1289 if (expect_true (have_realtime))
1290 {
159 struct timespec ts; 1291 struct timespec ts;
160 clock_gettime (CLOCK_REALTIME, &ts); 1292 clock_gettime (CLOCK_REALTIME, &ts);
161 return ts.tv_sec + ts.tv_nsec * 1e-9; 1293 return ts.tv_sec + ts.tv_nsec * 1e-9;
162#else 1294 }
1295#endif
1296
163 struct timeval tv; 1297 struct timeval tv;
164 gettimeofday (&tv, 0); 1298 gettimeofday (&tv, 0);
165 return tv.tv_sec + tv.tv_usec * 1e-6; 1299 return tv.tv_sec + tv.tv_usec * 1e-6;
166#endif
167} 1300}
1301#endif
168 1302
169inline ev_tstamp 1303inline_size ev_tstamp
170get_clock (void) 1304get_clock (void)
171{ 1305{
172#if EV_USE_MONOTONIC 1306#if EV_USE_MONOTONIC
173 if (expect_true (have_monotonic)) 1307 if (expect_true (have_monotonic))
174 { 1308 {
179#endif 1313#endif
180 1314
181 return ev_time (); 1315 return ev_time ();
182} 1316}
183 1317
1318#if EV_MULTIPLICITY
184ev_tstamp 1319ev_tstamp
185ev_now (EV_P) 1320ev_now (EV_P) EV_THROW
186{ 1321{
187 return rt_now; 1322 return ev_rt_now;
188} 1323}
1324#endif
189 1325
190#define array_roundsize(base,n) ((n) | 4 & ~3) 1326void
191 1327ev_sleep (ev_tstamp delay) EV_THROW
192#define array_needsize(base,cur,cnt,init) \ 1328{
193 if (expect_false ((cnt) > cur)) \ 1329 if (delay > 0.)
194 { \
195 int newcnt = cur; \
196 do \
197 { \
198 newcnt = array_roundsize (base, newcnt << 1); \
199 } \
200 while ((cnt) > newcnt); \
201 \
202 base = realloc (base, sizeof (*base) * (newcnt)); \
203 init (base + cur, newcnt - cur); \
204 cur = newcnt; \
205 } 1330 {
1331#if EV_USE_NANOSLEEP
1332 struct timespec ts;
1333
1334 EV_TS_SET (ts, delay);
1335 nanosleep (&ts, 0);
1336#elif defined _WIN32
1337 Sleep ((unsigned long)(delay * 1e3));
1338#else
1339 struct timeval tv;
1340
1341 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1342 /* something not guaranteed by newer posix versions, but guaranteed */
1343 /* by older ones */
1344 EV_TV_SET (tv, delay);
1345 select (0, 0, 0, 0, &tv);
1346#endif
1347 }
1348}
206 1349
207/*****************************************************************************/ 1350/*****************************************************************************/
208 1351
209static void 1352#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
210anfds_init (ANFD *base, int count)
211{
212 while (count--)
213 {
214 base->head = 0;
215 base->events = EV_NONE;
216 base->reify = 0;
217 1353
218 ++base; 1354/* find a suitable new size for the given array, */
1355/* hopefully by rounding to a nice-to-malloc size */
1356inline_size int
1357array_nextsize (int elem, int cur, int cnt)
1358{
1359 int ncur = cur + 1;
1360
1361 do
1362 ncur <<= 1;
1363 while (cnt > ncur);
1364
1365 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1366 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
219 } 1367 {
220} 1368 ncur *= elem;
221 1369 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
222static void 1370 ncur = ncur - sizeof (void *) * 4;
223event (EV_P_ W w, int events) 1371 ncur /= elem;
224{
225 if (w->pending)
226 { 1372 }
1373
1374 return ncur;
1375}
1376
1377static void * noinline ecb_cold
1378array_realloc (int elem, void *base, int *cur, int cnt)
1379{
1380 *cur = array_nextsize (elem, *cur, cnt);
1381 return ev_realloc (base, elem * *cur);
1382}
1383
1384#define array_init_zero(base,count) \
1385 memset ((void *)(base), 0, sizeof (*(base)) * (count))
1386
1387#define array_needsize(type,base,cur,cnt,init) \
1388 if (expect_false ((cnt) > (cur))) \
1389 { \
1390 int ecb_unused ocur_ = (cur); \
1391 (base) = (type *)array_realloc \
1392 (sizeof (type), (base), &(cur), (cnt)); \
1393 init ((base) + (ocur_), (cur) - ocur_); \
1394 }
1395
1396#if 0
1397#define array_slim(type,stem) \
1398 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
1399 { \
1400 stem ## max = array_roundsize (stem ## cnt >> 1); \
1401 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
1402 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
1403 }
1404#endif
1405
1406#define array_free(stem, idx) \
1407 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
1408
1409/*****************************************************************************/
1410
1411/* dummy callback for pending events */
1412static void noinline
1413pendingcb (EV_P_ ev_prepare *w, int revents)
1414{
1415}
1416
1417void noinline
1418ev_feed_event (EV_P_ void *w, int revents) EV_THROW
1419{
1420 W w_ = (W)w;
1421 int pri = ABSPRI (w_);
1422
1423 if (expect_false (w_->pending))
1424 pendings [pri][w_->pending - 1].events |= revents;
1425 else
1426 {
1427 w_->pending = ++pendingcnt [pri];
1428 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1429 pendings [pri][w_->pending - 1].w = w_;
227 pendings [ABSPRI (w)][w->pending - 1].events |= events; 1430 pendings [pri][w_->pending - 1].events = revents;
228 return;
229 } 1431 }
230 1432
231 w->pending = ++pendingcnt [ABSPRI (w)]; 1433 pendingpri = NUMPRI - 1;
232 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
233 pendings [ABSPRI (w)][w->pending - 1].w = w;
234 pendings [ABSPRI (w)][w->pending - 1].events = events;
235} 1434}
236 1435
237static void 1436inline_speed void
1437feed_reverse (EV_P_ W w)
1438{
1439 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1440 rfeeds [rfeedcnt++] = w;
1441}
1442
1443inline_size void
1444feed_reverse_done (EV_P_ int revents)
1445{
1446 do
1447 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1448 while (rfeedcnt);
1449}
1450
1451inline_speed void
238queue_events (EV_P_ W *events, int eventcnt, int type) 1452queue_events (EV_P_ W *events, int eventcnt, int type)
239{ 1453{
240 int i; 1454 int i;
241 1455
242 for (i = 0; i < eventcnt; ++i) 1456 for (i = 0; i < eventcnt; ++i)
243 event (EV_A_ events [i], type); 1457 ev_feed_event (EV_A_ events [i], type);
244} 1458}
245 1459
246static void 1460/*****************************************************************************/
1461
1462inline_speed void
247fd_event (EV_P_ int fd, int events) 1463fd_event_nocheck (EV_P_ int fd, int revents)
248{ 1464{
249 ANFD *anfd = anfds + fd; 1465 ANFD *anfd = anfds + fd;
250 struct ev_io *w; 1466 ev_io *w;
251 1467
252 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 1468 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
253 { 1469 {
254 int ev = w->events & events; 1470 int ev = w->events & revents;
255 1471
256 if (ev) 1472 if (ev)
257 event (EV_A_ (W)w, ev); 1473 ev_feed_event (EV_A_ (W)w, ev);
258 } 1474 }
259} 1475}
260 1476
261/*****************************************************************************/ 1477/* do not submit kernel events for fds that have reify set */
1478/* because that means they changed while we were polling for new events */
1479inline_speed void
1480fd_event (EV_P_ int fd, int revents)
1481{
1482 ANFD *anfd = anfds + fd;
262 1483
263static void 1484 if (expect_true (!anfd->reify))
1485 fd_event_nocheck (EV_A_ fd, revents);
1486}
1487
1488void
1489ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
1490{
1491 if (fd >= 0 && fd < anfdmax)
1492 fd_event_nocheck (EV_A_ fd, revents);
1493}
1494
1495/* make sure the external fd watch events are in-sync */
1496/* with the kernel/libev internal state */
1497inline_size void
264fd_reify (EV_P) 1498fd_reify (EV_P)
265{ 1499{
266 int i; 1500 int i;
267 1501
1502#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
268 for (i = 0; i < fdchangecnt; ++i) 1503 for (i = 0; i < fdchangecnt; ++i)
269 { 1504 {
270 int fd = fdchanges [i]; 1505 int fd = fdchanges [i];
271 ANFD *anfd = anfds + fd; 1506 ANFD *anfd = anfds + fd;
272 struct ev_io *w;
273 1507
274 int events = 0; 1508 if (anfd->reify & EV__IOFDSET && anfd->head)
275
276 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
277 events |= w->events;
278
279 anfd->reify = 0;
280
281 if (anfd->events != events)
282 { 1509 {
1510 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1511
1512 if (handle != anfd->handle)
1513 {
1514 unsigned long arg;
1515
1516 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1517
1518 /* handle changed, but fd didn't - we need to do it in two steps */
283 method_modify (EV_A_ fd, anfd->events, events); 1519 backend_modify (EV_A_ fd, anfd->events, 0);
284 anfd->events = events; 1520 anfd->events = 0;
1521 anfd->handle = handle;
1522 }
285 } 1523 }
286 } 1524 }
1525#endif
1526
1527 for (i = 0; i < fdchangecnt; ++i)
1528 {
1529 int fd = fdchanges [i];
1530 ANFD *anfd = anfds + fd;
1531 ev_io *w;
1532
1533 unsigned char o_events = anfd->events;
1534 unsigned char o_reify = anfd->reify;
1535
1536 anfd->reify = 0;
1537
1538 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1539 {
1540 anfd->events = 0;
1541
1542 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1543 anfd->events |= (unsigned char)w->events;
1544
1545 if (o_events != anfd->events)
1546 o_reify = EV__IOFDSET; /* actually |= */
1547 }
1548
1549 if (o_reify & EV__IOFDSET)
1550 backend_modify (EV_A_ fd, o_events, anfd->events);
1551 }
287 1552
288 fdchangecnt = 0; 1553 fdchangecnt = 0;
289} 1554}
290 1555
291static void 1556/* something about the given fd changed */
1557inline_size void
292fd_change (EV_P_ int fd) 1558fd_change (EV_P_ int fd, int flags)
293{ 1559{
294 if (anfds [fd].reify || fdchangecnt < 0) 1560 unsigned char reify = anfds [fd].reify;
295 return;
296
297 anfds [fd].reify = 1; 1561 anfds [fd].reify |= flags;
298 1562
1563 if (expect_true (!reify))
1564 {
299 ++fdchangecnt; 1565 ++fdchangecnt;
300 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 1566 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
301 fdchanges [fdchangecnt - 1] = fd; 1567 fdchanges [fdchangecnt - 1] = fd;
1568 }
302} 1569}
303 1570
304static void 1571/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1572inline_speed void ecb_cold
305fd_kill (EV_P_ int fd) 1573fd_kill (EV_P_ int fd)
306{ 1574{
307 struct ev_io *w; 1575 ev_io *w;
308 1576
309 while ((w = (struct ev_io *)anfds [fd].head)) 1577 while ((w = (ev_io *)anfds [fd].head))
310 { 1578 {
311 ev_io_stop (EV_A_ w); 1579 ev_io_stop (EV_A_ w);
312 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1580 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
313 } 1581 }
1582}
1583
1584/* check whether the given fd is actually valid, for error recovery */
1585inline_size int ecb_cold
1586fd_valid (int fd)
1587{
1588#ifdef _WIN32
1589 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
1590#else
1591 return fcntl (fd, F_GETFD) != -1;
1592#endif
314} 1593}
315 1594
316/* called on EBADF to verify fds */ 1595/* called on EBADF to verify fds */
317static void 1596static void noinline ecb_cold
318fd_ebadf (EV_P) 1597fd_ebadf (EV_P)
319{ 1598{
320 int fd; 1599 int fd;
321 1600
322 for (fd = 0; fd < anfdmax; ++fd) 1601 for (fd = 0; fd < anfdmax; ++fd)
323 if (anfds [fd].events) 1602 if (anfds [fd].events)
324 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 1603 if (!fd_valid (fd) && errno == EBADF)
325 fd_kill (EV_A_ fd); 1604 fd_kill (EV_A_ fd);
326} 1605}
327 1606
328/* called on ENOMEM in select/poll to kill some fds and retry */ 1607/* called on ENOMEM in select/poll to kill some fds and retry */
329static void 1608static void noinline ecb_cold
330fd_enomem (EV_P) 1609fd_enomem (EV_P)
331{ 1610{
332 int fd = anfdmax; 1611 int fd;
333 1612
334 while (fd--) 1613 for (fd = anfdmax; fd--; )
335 if (anfds [fd].events) 1614 if (anfds [fd].events)
336 { 1615 {
337 close (fd);
338 fd_kill (EV_A_ fd); 1616 fd_kill (EV_A_ fd);
339 return; 1617 break;
340 } 1618 }
341} 1619}
342 1620
343/* susually called after fork if method needs to re-arm all fds from scratch */ 1621/* usually called after fork if backend needs to re-arm all fds from scratch */
344static void 1622static void noinline
345fd_rearm_all (EV_P) 1623fd_rearm_all (EV_P)
346{ 1624{
347 int fd; 1625 int fd;
348 1626
349 /* this should be highly optimised to not do anything but set a flag */
350 for (fd = 0; fd < anfdmax; ++fd) 1627 for (fd = 0; fd < anfdmax; ++fd)
351 if (anfds [fd].events) 1628 if (anfds [fd].events)
352 { 1629 {
353 anfds [fd].events = 0; 1630 anfds [fd].events = 0;
354 fd_change (fd); 1631 anfds [fd].emask = 0;
1632 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
355 } 1633 }
356} 1634}
357 1635
1636/* used to prepare libev internal fd's */
1637/* this is not fork-safe */
1638inline_speed void
1639fd_intern (int fd)
1640{
1641#ifdef _WIN32
1642 unsigned long arg = 1;
1643 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1644#else
1645 fcntl (fd, F_SETFD, FD_CLOEXEC);
1646 fcntl (fd, F_SETFL, O_NONBLOCK);
1647#endif
1648}
1649
358/*****************************************************************************/ 1650/*****************************************************************************/
359 1651
1652/*
1653 * the heap functions want a real array index. array index 0 is guaranteed to not
1654 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1655 * the branching factor of the d-tree.
1656 */
1657
1658/*
1659 * at the moment we allow libev the luxury of two heaps,
1660 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1661 * which is more cache-efficient.
1662 * the difference is about 5% with 50000+ watchers.
1663 */
1664#if EV_USE_4HEAP
1665
1666#define DHEAP 4
1667#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1668#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1669#define UPHEAP_DONE(p,k) ((p) == (k))
1670
1671/* away from the root */
1672inline_speed void
1673downheap (ANHE *heap, int N, int k)
1674{
1675 ANHE he = heap [k];
1676 ANHE *E = heap + N + HEAP0;
1677
1678 for (;;)
1679 {
1680 ev_tstamp minat;
1681 ANHE *minpos;
1682 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1683
1684 /* find minimum child */
1685 if (expect_true (pos + DHEAP - 1 < E))
1686 {
1687 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1688 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1689 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1690 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1691 }
1692 else if (pos < E)
1693 {
1694 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1695 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1696 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1697 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1698 }
1699 else
1700 break;
1701
1702 if (ANHE_at (he) <= minat)
1703 break;
1704
1705 heap [k] = *minpos;
1706 ev_active (ANHE_w (*minpos)) = k;
1707
1708 k = minpos - heap;
1709 }
1710
1711 heap [k] = he;
1712 ev_active (ANHE_w (he)) = k;
1713}
1714
1715#else /* 4HEAP */
1716
1717#define HEAP0 1
1718#define HPARENT(k) ((k) >> 1)
1719#define UPHEAP_DONE(p,k) (!(p))
1720
1721/* away from the root */
1722inline_speed void
1723downheap (ANHE *heap, int N, int k)
1724{
1725 ANHE he = heap [k];
1726
1727 for (;;)
1728 {
1729 int c = k << 1;
1730
1731 if (c >= N + HEAP0)
1732 break;
1733
1734 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1735 ? 1 : 0;
1736
1737 if (ANHE_at (he) <= ANHE_at (heap [c]))
1738 break;
1739
1740 heap [k] = heap [c];
1741 ev_active (ANHE_w (heap [k])) = k;
1742
1743 k = c;
1744 }
1745
1746 heap [k] = he;
1747 ev_active (ANHE_w (he)) = k;
1748}
1749#endif
1750
1751/* towards the root */
1752inline_speed void
1753upheap (ANHE *heap, int k)
1754{
1755 ANHE he = heap [k];
1756
1757 for (;;)
1758 {
1759 int p = HPARENT (k);
1760
1761 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1762 break;
1763
1764 heap [k] = heap [p];
1765 ev_active (ANHE_w (heap [k])) = k;
1766 k = p;
1767 }
1768
1769 heap [k] = he;
1770 ev_active (ANHE_w (he)) = k;
1771}
1772
1773/* move an element suitably so it is in a correct place */
1774inline_size void
1775adjustheap (ANHE *heap, int N, int k)
1776{
1777 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1778 upheap (heap, k);
1779 else
1780 downheap (heap, N, k);
1781}
1782
1783/* rebuild the heap: this function is used only once and executed rarely */
1784inline_size void
1785reheap (ANHE *heap, int N)
1786{
1787 int i;
1788
1789 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1790 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1791 for (i = 0; i < N; ++i)
1792 upheap (heap, i + HEAP0);
1793}
1794
1795/*****************************************************************************/
1796
1797/* associate signal watchers to a signal signal */
1798typedef struct
1799{
1800 EV_ATOMIC_T pending;
1801#if EV_MULTIPLICITY
1802 EV_P;
1803#endif
1804 WL head;
1805} ANSIG;
1806
1807static ANSIG signals [EV_NSIG - 1];
1808
1809/*****************************************************************************/
1810
1811#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1812
1813static void noinline ecb_cold
1814evpipe_init (EV_P)
1815{
1816 if (!ev_is_active (&pipe_w))
1817 {
1818# if EV_USE_EVENTFD
1819 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1820 if (evfd < 0 && errno == EINVAL)
1821 evfd = eventfd (0, 0);
1822
1823 if (evfd >= 0)
1824 {
1825 evpipe [0] = -1;
1826 fd_intern (evfd); /* doing it twice doesn't hurt */
1827 ev_io_set (&pipe_w, evfd, EV_READ);
1828 }
1829 else
1830# endif
1831 {
1832 while (pipe (evpipe))
1833 ev_syserr ("(libev) error creating signal/async pipe");
1834
1835 fd_intern (evpipe [0]);
1836 fd_intern (evpipe [1]);
1837 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1838 }
1839
1840 ev_io_start (EV_A_ &pipe_w);
1841 ev_unref (EV_A); /* watcher should not keep loop alive */
1842 }
1843}
1844
1845inline_speed void
1846evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1847{
1848 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
1849
1850 if (expect_true (*flag))
1851 return;
1852
1853 *flag = 1;
1854
1855 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1856
1857 pipe_write_skipped = 1;
1858
1859 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1860
1861 if (pipe_write_wanted)
1862 {
1863 int old_errno;
1864
1865 pipe_write_skipped = 0; /* just an optimisation, no fence needed */
1866
1867 old_errno = errno; /* save errno because write will clobber it */
1868
1869#if EV_USE_EVENTFD
1870 if (evfd >= 0)
1871 {
1872 uint64_t counter = 1;
1873 write (evfd, &counter, sizeof (uint64_t));
1874 }
1875 else
1876#endif
1877 {
1878#ifdef _WIN32
1879 WSABUF buf;
1880 DWORD sent;
1881 buf.buf = &buf;
1882 buf.len = 1;
1883 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
1884#else
1885 write (evpipe [1], &(evpipe [1]), 1);
1886#endif
1887 }
1888
1889 errno = old_errno;
1890 }
1891}
1892
1893/* called whenever the libev signal pipe */
1894/* got some events (signal, async) */
360static void 1895static void
361upheap (WT *heap, int k) 1896pipecb (EV_P_ ev_io *iow, int revents)
362{ 1897{
363 WT w = heap [k]; 1898 int i;
364 1899
365 while (k && heap [k >> 1]->at > w->at) 1900 if (revents & EV_READ)
366 {
367 heap [k] = heap [k >> 1];
368 heap [k]->active = k + 1;
369 k >>= 1;
370 } 1901 {
1902#if EV_USE_EVENTFD
1903 if (evfd >= 0)
1904 {
1905 uint64_t counter;
1906 read (evfd, &counter, sizeof (uint64_t));
1907 }
1908 else
1909#endif
1910 {
1911 char dummy[4];
1912#ifdef _WIN32
1913 WSABUF buf;
1914 DWORD recvd;
1915 DWORD flags = 0;
1916 buf.buf = dummy;
1917 buf.len = sizeof (dummy);
1918 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
1919#else
1920 read (evpipe [0], &dummy, sizeof (dummy));
1921#endif
1922 }
1923 }
371 1924
372 heap [k] = w; 1925 pipe_write_skipped = 0;
373 heap [k]->active = k + 1;
374 1926
1927 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
1928
1929#if EV_SIGNAL_ENABLE
1930 if (sig_pending)
1931 {
1932 sig_pending = 0;
1933
1934 ECB_MEMORY_FENCE_RELEASE;
1935
1936 for (i = EV_NSIG - 1; i--; )
1937 if (expect_false (signals [i].pending))
1938 ev_feed_signal_event (EV_A_ i + 1);
1939 }
1940#endif
1941
1942#if EV_ASYNC_ENABLE
1943 if (async_pending)
1944 {
1945 async_pending = 0;
1946
1947 ECB_MEMORY_FENCE_RELEASE;
1948
1949 for (i = asynccnt; i--; )
1950 if (asyncs [i]->sent)
1951 {
1952 asyncs [i]->sent = 0;
1953 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1954 }
1955 }
1956#endif
1957}
1958
1959/*****************************************************************************/
1960
1961void
1962ev_feed_signal (int signum) EV_THROW
1963{
1964#if EV_MULTIPLICITY
1965 EV_P = signals [signum - 1].loop;
1966
1967 if (!EV_A)
1968 return;
1969#endif
1970
1971 if (!ev_active (&pipe_w))
1972 return;
1973
1974 signals [signum - 1].pending = 1;
1975 evpipe_write (EV_A_ &sig_pending);
375} 1976}
376 1977
377static void 1978static void
378downheap (WT *heap, int N, int k) 1979ev_sighandler (int signum)
379{ 1980{
380 WT w = heap [k]; 1981#ifdef _WIN32
1982 signal (signum, ev_sighandler);
1983#endif
381 1984
382 while (k < (N >> 1)) 1985 ev_feed_signal (signum);
383 { 1986}
384 int j = k << 1;
385 1987
386 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 1988void noinline
387 ++j; 1989ev_feed_signal_event (EV_P_ int signum) EV_THROW
1990{
1991 WL w;
388 1992
389 if (w->at <= heap [j]->at) 1993 if (expect_false (signum <= 0 || signum > EV_NSIG))
1994 return;
1995
1996 --signum;
1997
1998#if EV_MULTIPLICITY
1999 /* it is permissible to try to feed a signal to the wrong loop */
2000 /* or, likely more useful, feeding a signal nobody is waiting for */
2001
2002 if (expect_false (signals [signum].loop != EV_A))
2003 return;
2004#endif
2005
2006 signals [signum].pending = 0;
2007
2008 for (w = signals [signum].head; w; w = w->next)
2009 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2010}
2011
2012#if EV_USE_SIGNALFD
2013static void
2014sigfdcb (EV_P_ ev_io *iow, int revents)
2015{
2016 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2017
2018 for (;;)
2019 {
2020 ssize_t res = read (sigfd, si, sizeof (si));
2021
2022 /* not ISO-C, as res might be -1, but works with SuS */
2023 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2024 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2025
2026 if (res < (ssize_t)sizeof (si))
390 break; 2027 break;
391
392 heap [k] = heap [j];
393 heap [k]->active = k + 1;
394 k = j;
395 } 2028 }
396
397 heap [k] = w;
398 heap [k]->active = k + 1;
399} 2029}
2030#endif
2031
2032#endif
400 2033
401/*****************************************************************************/ 2034/*****************************************************************************/
402 2035
403typedef struct 2036#if EV_CHILD_ENABLE
404{ 2037static WL childs [EV_PID_HASHSIZE];
405 struct ev_watcher_list *head;
406 sig_atomic_t volatile gotsig;
407} ANSIG;
408 2038
409static ANSIG *signals; 2039static ev_signal childev;
410static int signalmax;
411 2040
412static int sigpipe [2]; 2041#ifndef WIFCONTINUED
413static sig_atomic_t volatile gotsig; 2042# define WIFCONTINUED(status) 0
2043#endif
414 2044
415static void 2045/* handle a single child status event */
416signals_init (ANSIG *base, int count) 2046inline_speed void
2047child_reap (EV_P_ int chain, int pid, int status)
417{ 2048{
418 while (count--) 2049 ev_child *w;
419 { 2050 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
420 base->head = 0;
421 base->gotsig = 0;
422 2051
423 ++base; 2052 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
424 } 2053 {
425} 2054 if ((w->pid == pid || !w->pid)
426 2055 && (!traced || (w->flags & 1)))
427static void
428sighandler (int signum)
429{
430 signals [signum - 1].gotsig = 1;
431
432 if (!gotsig)
433 {
434 int old_errno = errno;
435 gotsig = 1;
436 write (sigpipe [1], &signum, 1);
437 errno = old_errno;
438 }
439}
440
441static void
442sigcb (EV_P_ struct ev_io *iow, int revents)
443{
444 struct ev_watcher_list *w;
445 int signum;
446
447 read (sigpipe [0], &revents, 1);
448 gotsig = 0;
449
450 for (signum = signalmax; signum--; )
451 if (signals [signum].gotsig)
452 { 2056 {
453 signals [signum].gotsig = 0; 2057 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
454 2058 w->rpid = pid;
455 for (w = signals [signum].head; w; w = w->next) 2059 w->rstatus = status;
456 event (EV_A_ (W)w, EV_SIGNAL); 2060 ev_feed_event (EV_A_ (W)w, EV_CHILD);
457 } 2061 }
2062 }
458} 2063}
459
460static void
461siginit (EV_P)
462{
463#ifndef WIN32
464 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
465 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
466
467 /* rather than sort out wether we really need nb, set it */
468 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
469 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
470#endif
471
472 ev_io_set (&sigev, sigpipe [0], EV_READ);
473 ev_io_start (EV_A_ &sigev);
474 ev_unref (EV_A); /* child watcher should not keep loop alive */
475}
476
477/*****************************************************************************/
478
479#ifndef WIN32
480 2064
481#ifndef WCONTINUED 2065#ifndef WCONTINUED
482# define WCONTINUED 0 2066# define WCONTINUED 0
483#endif 2067#endif
484 2068
2069/* called on sigchld etc., calls waitpid */
485static void 2070static void
486child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
487{
488 struct ev_child *w;
489
490 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
491 if (w->pid == pid || !w->pid)
492 {
493 w->priority = sw->priority; /* need to do it *now* */
494 w->rpid = pid;
495 w->rstatus = status;
496 event (EV_A_ (W)w, EV_CHILD);
497 }
498}
499
500static void
501childcb (EV_P_ struct ev_signal *sw, int revents) 2071childcb (EV_P_ ev_signal *sw, int revents)
502{ 2072{
503 int pid, status; 2073 int pid, status;
504 2074
2075 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
505 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 2076 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
506 { 2077 if (!WCONTINUED
2078 || errno != EINVAL
2079 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2080 return;
2081
507 /* make sure we are called again until all childs have been reaped */ 2082 /* make sure we are called again until all children have been reaped */
2083 /* we need to do it this way so that the callback gets called before we continue */
508 event (EV_A_ (W)sw, EV_SIGNAL); 2084 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
509 2085
510 child_reap (EV_A_ sw, pid, pid, status); 2086 child_reap (EV_A_ pid, pid, status);
2087 if ((EV_PID_HASHSIZE) > 1)
511 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 2088 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
512 }
513} 2089}
514 2090
515#endif 2091#endif
516 2092
517/*****************************************************************************/ 2093/*****************************************************************************/
518 2094
2095#if EV_USE_IOCP
2096# include "ev_iocp.c"
2097#endif
2098#if EV_USE_PORT
2099# include "ev_port.c"
2100#endif
519#if EV_USE_KQUEUE 2101#if EV_USE_KQUEUE
520# include "ev_kqueue.c" 2102# include "ev_kqueue.c"
521#endif 2103#endif
522#if EV_USE_EPOLL 2104#if EV_USE_EPOLL
523# include "ev_epoll.c" 2105# include "ev_epoll.c"
524#endif 2106#endif
525#if EV_USEV_POLL 2107#if EV_USE_POLL
526# include "ev_poll.c" 2108# include "ev_poll.c"
527#endif 2109#endif
528#if EV_USE_SELECT 2110#if EV_USE_SELECT
529# include "ev_select.c" 2111# include "ev_select.c"
530#endif 2112#endif
531 2113
532int 2114int ecb_cold
533ev_version_major (void) 2115ev_version_major (void) EV_THROW
534{ 2116{
535 return EV_VERSION_MAJOR; 2117 return EV_VERSION_MAJOR;
536} 2118}
537 2119
538int 2120int ecb_cold
539ev_version_minor (void) 2121ev_version_minor (void) EV_THROW
540{ 2122{
541 return EV_VERSION_MINOR; 2123 return EV_VERSION_MINOR;
542} 2124}
543 2125
544/* return true if we are running with elevated privileges and should ignore env variables */ 2126/* return true if we are running with elevated privileges and should ignore env variables */
545static int 2127int inline_size ecb_cold
546enable_secure (void) 2128enable_secure (void)
547{ 2129{
548#ifdef WIN32 2130#ifdef _WIN32
549 return 0; 2131 return 0;
550#else 2132#else
551 return getuid () != geteuid () 2133 return getuid () != geteuid ()
552 || getgid () != getegid (); 2134 || getgid () != getegid ();
553#endif 2135#endif
554} 2136}
555 2137
2138unsigned int ecb_cold
2139ev_supported_backends (void) EV_THROW
2140{
2141 unsigned int flags = 0;
2142
2143 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2144 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2145 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2146 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2147 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2148
2149 return flags;
2150}
2151
2152unsigned int ecb_cold
2153ev_recommended_backends (void) EV_THROW
2154{
2155 unsigned int flags = ev_supported_backends ();
2156
2157#ifndef __NetBSD__
2158 /* kqueue is borked on everything but netbsd apparently */
2159 /* it usually doesn't work correctly on anything but sockets and pipes */
2160 flags &= ~EVBACKEND_KQUEUE;
2161#endif
2162#ifdef __APPLE__
2163 /* only select works correctly on that "unix-certified" platform */
2164 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2165 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2166#endif
2167#ifdef __FreeBSD__
2168 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2169#endif
2170
2171 return flags;
2172}
2173
2174unsigned int ecb_cold
2175ev_embeddable_backends (void) EV_THROW
2176{
2177 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2178
2179 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2180 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2181 flags &= ~EVBACKEND_EPOLL;
2182
2183 return flags;
2184}
2185
2186unsigned int
2187ev_backend (EV_P) EV_THROW
2188{
2189 return backend;
2190}
2191
2192#if EV_FEATURE_API
2193unsigned int
2194ev_iteration (EV_P) EV_THROW
2195{
2196 return loop_count;
2197}
2198
2199unsigned int
2200ev_depth (EV_P) EV_THROW
2201{
2202 return loop_depth;
2203}
2204
2205void
2206ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2207{
2208 io_blocktime = interval;
2209}
2210
2211void
2212ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2213{
2214 timeout_blocktime = interval;
2215}
2216
2217void
2218ev_set_userdata (EV_P_ void *data) EV_THROW
2219{
2220 userdata = data;
2221}
2222
2223void *
2224ev_userdata (EV_P) EV_THROW
2225{
2226 return userdata;
2227}
2228
2229void
2230ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2231{
2232 invoke_cb = invoke_pending_cb;
2233}
2234
2235void
2236ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2237{
2238 release_cb = release;
2239 acquire_cb = acquire;
2240}
2241#endif
2242
2243/* initialise a loop structure, must be zero-initialised */
2244static void noinline ecb_cold
2245loop_init (EV_P_ unsigned int flags) EV_THROW
2246{
2247 if (!backend)
2248 {
2249 origflags = flags;
2250
2251#if EV_USE_REALTIME
2252 if (!have_realtime)
2253 {
2254 struct timespec ts;
2255
2256 if (!clock_gettime (CLOCK_REALTIME, &ts))
2257 have_realtime = 1;
2258 }
2259#endif
2260
2261#if EV_USE_MONOTONIC
2262 if (!have_monotonic)
2263 {
2264 struct timespec ts;
2265
2266 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2267 have_monotonic = 1;
2268 }
2269#endif
2270
2271 /* pid check not overridable via env */
2272#ifndef _WIN32
2273 if (flags & EVFLAG_FORKCHECK)
2274 curpid = getpid ();
2275#endif
2276
2277 if (!(flags & EVFLAG_NOENV)
2278 && !enable_secure ()
2279 && getenv ("LIBEV_FLAGS"))
2280 flags = atoi (getenv ("LIBEV_FLAGS"));
2281
2282 ev_rt_now = ev_time ();
2283 mn_now = get_clock ();
2284 now_floor = mn_now;
2285 rtmn_diff = ev_rt_now - mn_now;
2286#if EV_FEATURE_API
2287 invoke_cb = ev_invoke_pending;
2288#endif
2289
2290 io_blocktime = 0.;
2291 timeout_blocktime = 0.;
2292 backend = 0;
2293 backend_fd = -1;
2294 sig_pending = 0;
2295#if EV_ASYNC_ENABLE
2296 async_pending = 0;
2297#endif
2298 pipe_write_skipped = 0;
2299 pipe_write_wanted = 0;
2300#if EV_USE_INOTIFY
2301 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2302#endif
2303#if EV_USE_SIGNALFD
2304 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2305#endif
2306
2307 if (!(flags & EVBACKEND_MASK))
2308 flags |= ev_recommended_backends ();
2309
2310#if EV_USE_IOCP
2311 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2312#endif
2313#if EV_USE_PORT
2314 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2315#endif
2316#if EV_USE_KQUEUE
2317 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2318#endif
2319#if EV_USE_EPOLL
2320 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2321#endif
2322#if EV_USE_POLL
2323 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2324#endif
2325#if EV_USE_SELECT
2326 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2327#endif
2328
2329 ev_prepare_init (&pending_w, pendingcb);
2330
2331#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2332 ev_init (&pipe_w, pipecb);
2333 ev_set_priority (&pipe_w, EV_MAXPRI);
2334#endif
2335 }
2336}
2337
2338/* free up a loop structure */
2339void ecb_cold
2340ev_loop_destroy (EV_P)
2341{
2342 int i;
2343
2344#if EV_MULTIPLICITY
2345 /* mimic free (0) */
2346 if (!EV_A)
2347 return;
2348#endif
2349
2350#if EV_CLEANUP_ENABLE
2351 /* queue cleanup watchers (and execute them) */
2352 if (expect_false (cleanupcnt))
2353 {
2354 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2355 EV_INVOKE_PENDING;
2356 }
2357#endif
2358
2359#if EV_CHILD_ENABLE
2360 if (ev_is_active (&childev))
2361 {
2362 ev_ref (EV_A); /* child watcher */
2363 ev_signal_stop (EV_A_ &childev);
2364 }
2365#endif
2366
2367 if (ev_is_active (&pipe_w))
2368 {
2369 /*ev_ref (EV_A);*/
2370 /*ev_io_stop (EV_A_ &pipe_w);*/
2371
2372#if EV_USE_EVENTFD
2373 if (evfd >= 0)
2374 close (evfd);
2375#endif
2376
2377 if (evpipe [0] >= 0)
2378 {
2379 EV_WIN32_CLOSE_FD (evpipe [0]);
2380 EV_WIN32_CLOSE_FD (evpipe [1]);
2381 }
2382 }
2383
2384#if EV_USE_SIGNALFD
2385 if (ev_is_active (&sigfd_w))
2386 close (sigfd);
2387#endif
2388
2389#if EV_USE_INOTIFY
2390 if (fs_fd >= 0)
2391 close (fs_fd);
2392#endif
2393
2394 if (backend_fd >= 0)
2395 close (backend_fd);
2396
2397#if EV_USE_IOCP
2398 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2399#endif
2400#if EV_USE_PORT
2401 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
2402#endif
2403#if EV_USE_KQUEUE
2404 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
2405#endif
2406#if EV_USE_EPOLL
2407 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
2408#endif
2409#if EV_USE_POLL
2410 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
2411#endif
2412#if EV_USE_SELECT
2413 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
2414#endif
2415
2416 for (i = NUMPRI; i--; )
2417 {
2418 array_free (pending, [i]);
2419#if EV_IDLE_ENABLE
2420 array_free (idle, [i]);
2421#endif
2422 }
2423
2424 ev_free (anfds); anfds = 0; anfdmax = 0;
2425
2426 /* have to use the microsoft-never-gets-it-right macro */
2427 array_free (rfeed, EMPTY);
2428 array_free (fdchange, EMPTY);
2429 array_free (timer, EMPTY);
2430#if EV_PERIODIC_ENABLE
2431 array_free (periodic, EMPTY);
2432#endif
2433#if EV_FORK_ENABLE
2434 array_free (fork, EMPTY);
2435#endif
2436#if EV_CLEANUP_ENABLE
2437 array_free (cleanup, EMPTY);
2438#endif
2439 array_free (prepare, EMPTY);
2440 array_free (check, EMPTY);
2441#if EV_ASYNC_ENABLE
2442 array_free (async, EMPTY);
2443#endif
2444
2445 backend = 0;
2446
2447#if EV_MULTIPLICITY
2448 if (ev_is_default_loop (EV_A))
2449#endif
2450 ev_default_loop_ptr = 0;
2451#if EV_MULTIPLICITY
2452 else
2453 ev_free (EV_A);
2454#endif
2455}
2456
2457#if EV_USE_INOTIFY
2458inline_size void infy_fork (EV_P);
2459#endif
2460
2461inline_size void
2462loop_fork (EV_P)
2463{
2464#if EV_USE_PORT
2465 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
2466#endif
2467#if EV_USE_KQUEUE
2468 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2469#endif
2470#if EV_USE_EPOLL
2471 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
2472#endif
2473#if EV_USE_INOTIFY
2474 infy_fork (EV_A);
2475#endif
2476
2477 if (ev_is_active (&pipe_w))
2478 {
2479 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2480
2481 ev_ref (EV_A);
2482 ev_io_stop (EV_A_ &pipe_w);
2483
2484#if EV_USE_EVENTFD
2485 if (evfd >= 0)
2486 close (evfd);
2487#endif
2488
2489 if (evpipe [0] >= 0)
2490 {
2491 EV_WIN32_CLOSE_FD (evpipe [0]);
2492 EV_WIN32_CLOSE_FD (evpipe [1]);
2493 }
2494
2495#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2496 evpipe_init (EV_A);
2497 /* now iterate over everything, in case we missed something */
2498 pipecb (EV_A_ &pipe_w, EV_READ);
2499#endif
2500 }
2501
2502 postfork = 0;
2503}
2504
2505#if EV_MULTIPLICITY
2506
2507struct ev_loop * ecb_cold
2508ev_loop_new (unsigned int flags) EV_THROW
2509{
2510 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2511
2512 memset (EV_A, 0, sizeof (struct ev_loop));
2513 loop_init (EV_A_ flags);
2514
2515 if (ev_backend (EV_A))
2516 return EV_A;
2517
2518 ev_free (EV_A);
2519 return 0;
2520}
2521
2522#endif /* multiplicity */
2523
2524#if EV_VERIFY
2525static void noinline ecb_cold
2526verify_watcher (EV_P_ W w)
2527{
2528 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2529
2530 if (w->pending)
2531 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2532}
2533
2534static void noinline ecb_cold
2535verify_heap (EV_P_ ANHE *heap, int N)
2536{
2537 int i;
2538
2539 for (i = HEAP0; i < N + HEAP0; ++i)
2540 {
2541 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2542 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2543 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2544
2545 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2546 }
2547}
2548
2549static void noinline ecb_cold
2550array_verify (EV_P_ W *ws, int cnt)
2551{
2552 while (cnt--)
2553 {
2554 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2555 verify_watcher (EV_A_ ws [cnt]);
2556 }
2557}
2558#endif
2559
2560#if EV_FEATURE_API
2561void ecb_cold
2562ev_verify (EV_P) EV_THROW
2563{
2564#if EV_VERIFY
2565 int i;
2566 WL w, w2;
2567
2568 assert (activecnt >= -1);
2569
2570 assert (fdchangemax >= fdchangecnt);
2571 for (i = 0; i < fdchangecnt; ++i)
2572 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2573
2574 assert (anfdmax >= 0);
2575 for (i = 0; i < anfdmax; ++i)
2576 {
2577 int j = 0;
2578
2579 for (w = w2 = anfds [i].head; w; w = w->next)
2580 {
2581 verify_watcher (EV_A_ (W)w);
2582
2583 if (j++ & 1)
2584 {
2585 assert (("libev: io watcher list contains a loop", w != w2));
2586 w2 = w2->next;
2587 }
2588
2589 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2590 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2591 }
2592 }
2593
2594 assert (timermax >= timercnt);
2595 verify_heap (EV_A_ timers, timercnt);
2596
2597#if EV_PERIODIC_ENABLE
2598 assert (periodicmax >= periodiccnt);
2599 verify_heap (EV_A_ periodics, periodiccnt);
2600#endif
2601
2602 for (i = NUMPRI; i--; )
2603 {
2604 assert (pendingmax [i] >= pendingcnt [i]);
2605#if EV_IDLE_ENABLE
2606 assert (idleall >= 0);
2607 assert (idlemax [i] >= idlecnt [i]);
2608 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2609#endif
2610 }
2611
2612#if EV_FORK_ENABLE
2613 assert (forkmax >= forkcnt);
2614 array_verify (EV_A_ (W *)forks, forkcnt);
2615#endif
2616
2617#if EV_CLEANUP_ENABLE
2618 assert (cleanupmax >= cleanupcnt);
2619 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2620#endif
2621
2622#if EV_ASYNC_ENABLE
2623 assert (asyncmax >= asynccnt);
2624 array_verify (EV_A_ (W *)asyncs, asynccnt);
2625#endif
2626
2627#if EV_PREPARE_ENABLE
2628 assert (preparemax >= preparecnt);
2629 array_verify (EV_A_ (W *)prepares, preparecnt);
2630#endif
2631
2632#if EV_CHECK_ENABLE
2633 assert (checkmax >= checkcnt);
2634 array_verify (EV_A_ (W *)checks, checkcnt);
2635#endif
2636
2637# if 0
2638#if EV_CHILD_ENABLE
2639 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2640 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2641#endif
2642# endif
2643#endif
2644}
2645#endif
2646
2647#if EV_MULTIPLICITY
2648struct ev_loop * ecb_cold
2649#else
556int 2650int
557ev_method (EV_P) 2651#endif
2652ev_default_loop (unsigned int flags) EV_THROW
558{ 2653{
559 return method; 2654 if (!ev_default_loop_ptr)
560}
561
562static void
563loop_init (EV_P_ int methods)
564{
565 if (!method)
566 {
567#if EV_USE_MONOTONIC
568 { 2655 {
569 struct timespec ts;
570 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
571 have_monotonic = 1;
572 }
573#endif
574
575 rt_now = ev_time ();
576 mn_now = get_clock ();
577 now_floor = mn_now;
578 rtmn_diff = rt_now - mn_now;
579
580 if (methods == EVMETHOD_AUTO)
581 if (!enable_secure () && getenv ("LIBEV_METHODS"))
582 methods = atoi (getenv ("LIBEV_METHODS"));
583 else
584 methods = EVMETHOD_ANY;
585
586 method = 0;
587#if EV_USE_KQUEUE
588 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
589#endif
590#if EV_USE_EPOLL
591 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
592#endif
593#if EV_USEV_POLL
594 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
595#endif
596#if EV_USE_SELECT
597 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
598#endif
599 }
600}
601
602void
603loop_destroy (EV_P)
604{
605#if EV_USE_KQUEUE
606 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
607#endif
608#if EV_USE_EPOLL
609 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
610#endif
611#if EV_USEV_POLL
612 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
613#endif
614#if EV_USE_SELECT
615 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
616#endif
617
618 method = 0;
619 /*TODO*/
620}
621
622void
623loop_fork (EV_P)
624{
625 /*TODO*/
626#if EV_USE_EPOLL
627 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
628#endif
629#if EV_USE_KQUEUE
630 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
631#endif
632}
633
634#if EV_MULTIPLICITY 2656#if EV_MULTIPLICITY
635struct ev_loop * 2657 EV_P = ev_default_loop_ptr = &default_loop_struct;
636ev_loop_new (int methods)
637{
638 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
639
640 loop_init (EV_A_ methods);
641
642 if (ev_methods (EV_A))
643 return loop;
644
645 return 0;
646}
647
648void
649ev_loop_destroy (EV_P)
650{
651 loop_destroy (EV_A);
652 free (loop);
653}
654
655void
656ev_loop_fork (EV_P)
657{
658 loop_fork (EV_A);
659}
660
661#endif
662
663#if EV_MULTIPLICITY
664struct ev_loop default_loop_struct;
665static struct ev_loop *default_loop;
666
667struct ev_loop *
668#else 2658#else
669static int default_loop;
670
671int
672#endif
673ev_default_loop (int methods)
674{
675 if (sigpipe [0] == sigpipe [1])
676 if (pipe (sigpipe))
677 return 0;
678
679 if (!default_loop)
680 {
681#if EV_MULTIPLICITY
682 struct ev_loop *loop = default_loop = &default_loop_struct;
683#else
684 default_loop = 1; 2659 ev_default_loop_ptr = 1;
685#endif 2660#endif
686 2661
687 loop_init (EV_A_ methods); 2662 loop_init (EV_A_ flags);
688 2663
689 if (ev_method (EV_A)) 2664 if (ev_backend (EV_A))
690 { 2665 {
691 ev_watcher_init (&sigev, sigcb); 2666#if EV_CHILD_ENABLE
692 ev_set_priority (&sigev, EV_MAXPRI);
693 siginit (EV_A);
694
695#ifndef WIN32
696 ev_signal_init (&childev, childcb, SIGCHLD); 2667 ev_signal_init (&childev, childcb, SIGCHLD);
697 ev_set_priority (&childev, EV_MAXPRI); 2668 ev_set_priority (&childev, EV_MAXPRI);
698 ev_signal_start (EV_A_ &childev); 2669 ev_signal_start (EV_A_ &childev);
699 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2670 ev_unref (EV_A); /* child watcher should not keep loop alive */
700#endif 2671#endif
701 } 2672 }
702 else 2673 else
703 default_loop = 0; 2674 ev_default_loop_ptr = 0;
704 } 2675 }
705 2676
706 return default_loop; 2677 return ev_default_loop_ptr;
707} 2678}
708 2679
709void 2680void
710ev_default_destroy (void) 2681ev_loop_fork (EV_P) EV_THROW
711{ 2682{
712 struct ev_loop *loop = default_loop; 2683 postfork = 1; /* must be in line with ev_default_fork */
713
714 ev_ref (EV_A); /* child watcher */
715 ev_signal_stop (EV_A_ &childev);
716
717 ev_ref (EV_A); /* signal watcher */
718 ev_io_stop (EV_A_ &sigev);
719
720 close (sigpipe [0]); sigpipe [0] = 0;
721 close (sigpipe [1]); sigpipe [1] = 0;
722
723 loop_destroy (EV_A);
724} 2684}
2685
2686/*****************************************************************************/
725 2687
726void 2688void
727ev_default_fork (EV_P) 2689ev_invoke (EV_P_ void *w, int revents)
728{ 2690{
729 loop_fork (EV_A); 2691 EV_CB_INVOKE ((W)w, revents);
730
731 ev_io_stop (EV_A_ &sigev);
732 close (sigpipe [0]);
733 close (sigpipe [1]);
734 pipe (sigpipe);
735
736 ev_ref (EV_A); /* signal watcher */
737 siginit (EV_A);
738} 2692}
739 2693
740/*****************************************************************************/ 2694unsigned int
741 2695ev_pending_count (EV_P) EV_THROW
742static void
743call_pending (EV_P)
744{ 2696{
745 int pri; 2697 int pri;
2698 unsigned int count = 0;
746 2699
747 for (pri = NUMPRI; pri--; ) 2700 for (pri = NUMPRI; pri--; )
2701 count += pendingcnt [pri];
2702
2703 return count;
2704}
2705
2706void noinline
2707ev_invoke_pending (EV_P)
2708{
2709 for (pendingpri = NUMPRI; pendingpri--; ) /* pendingpri is modified during the loop */
748 while (pendingcnt [pri]) 2710 while (pendingcnt [pendingpri])
749 { 2711 {
750 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2712 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
751 2713
752 if (p->w)
753 {
754 p->w->pending = 0; 2714 p->w->pending = 0;
755 p->w->cb (EV_A_ p->w, p->events); 2715 EV_CB_INVOKE (p->w, p->events);
756 } 2716 EV_FREQUENT_CHECK;
757 } 2717 }
758} 2718}
759 2719
760static void 2720#if EV_IDLE_ENABLE
2721/* make idle watchers pending. this handles the "call-idle */
2722/* only when higher priorities are idle" logic */
2723inline_size void
761timers_reify (EV_P) 2724idle_reify (EV_P)
762{ 2725{
763 while (timercnt && timers [0]->at <= mn_now) 2726 if (expect_false (idleall))
764 { 2727 {
765 struct ev_timer *w = timers [0]; 2728 int pri;
766 2729
767 /* first reschedule or stop timer */ 2730 for (pri = NUMPRI; pri--; )
768 if (w->repeat)
769 { 2731 {
770 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2732 if (pendingcnt [pri])
771 w->at = mn_now + w->repeat; 2733 break;
772 downheap ((WT *)timers, timercnt, 0);
773 }
774 else
775 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
776 2734
777 event (EV_A_ (W)w, EV_TIMEOUT); 2735 if (idlecnt [pri])
778 }
779}
780
781static void
782periodics_reify (EV_P)
783{
784 while (periodiccnt && periodics [0]->at <= rt_now)
785 {
786 struct ev_periodic *w = periodics [0];
787
788 /* first reschedule or stop timer */
789 if (w->interval)
790 {
791 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval;
792 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now));
793 downheap ((WT *)periodics, periodiccnt, 0);
794 }
795 else
796 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
797
798 event (EV_A_ (W)w, EV_PERIODIC);
799 }
800}
801
802static void
803periodics_reschedule (EV_P)
804{
805 int i;
806
807 /* adjust periodics after time jump */
808 for (i = 0; i < periodiccnt; ++i)
809 {
810 struct ev_periodic *w = periodics [i];
811
812 if (w->interval)
813 {
814 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval;
815
816 if (fabs (diff) >= 1e-4)
817 { 2736 {
818 ev_periodic_stop (EV_A_ w); 2737 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
819 ev_periodic_start (EV_A_ w); 2738 break;
820
821 i = 0; /* restart loop, inefficient, but time jumps should be rare */
822 } 2739 }
823 } 2740 }
824 } 2741 }
825} 2742}
2743#endif
826 2744
827inline int 2745/* make timers pending */
828time_update_monotonic (EV_P) 2746inline_size void
2747timers_reify (EV_P)
829{ 2748{
830 mn_now = get_clock (); 2749 EV_FREQUENT_CHECK;
831 2750
832 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 2751 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
833 {
834 rt_now = rtmn_diff + mn_now;
835 return 0;
836 } 2752 {
837 else 2753 do
2754 {
2755 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2756
2757 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2758
2759 /* first reschedule or stop timer */
2760 if (w->repeat)
2761 {
2762 ev_at (w) += w->repeat;
2763 if (ev_at (w) < mn_now)
2764 ev_at (w) = mn_now;
2765
2766 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2767
2768 ANHE_at_cache (timers [HEAP0]);
2769 downheap (timers, timercnt, HEAP0);
2770 }
2771 else
2772 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2773
2774 EV_FREQUENT_CHECK;
2775 feed_reverse (EV_A_ (W)w);
2776 }
2777 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2778
2779 feed_reverse_done (EV_A_ EV_TIMER);
838 { 2780 }
839 now_floor = mn_now; 2781}
840 rt_now = ev_time (); 2782
841 return 1; 2783#if EV_PERIODIC_ENABLE
2784
2785static void noinline
2786periodic_recalc (EV_P_ ev_periodic *w)
2787{
2788 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2789 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2790
2791 /* the above almost always errs on the low side */
2792 while (at <= ev_rt_now)
842 } 2793 {
843} 2794 ev_tstamp nat = at + w->interval;
844 2795
845static void 2796 /* when resolution fails us, we use ev_rt_now */
846time_update (EV_P) 2797 if (expect_false (nat == at))
2798 {
2799 at = ev_rt_now;
2800 break;
2801 }
2802
2803 at = nat;
2804 }
2805
2806 ev_at (w) = at;
2807}
2808
2809/* make periodics pending */
2810inline_size void
2811periodics_reify (EV_P)
2812{
2813 EV_FREQUENT_CHECK;
2814
2815 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2816 {
2817 int feed_count = 0;
2818
2819 do
2820 {
2821 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2822
2823 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2824
2825 /* first reschedule or stop timer */
2826 if (w->reschedule_cb)
2827 {
2828 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2829
2830 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2831
2832 ANHE_at_cache (periodics [HEAP0]);
2833 downheap (periodics, periodiccnt, HEAP0);
2834 }
2835 else if (w->interval)
2836 {
2837 periodic_recalc (EV_A_ w);
2838 ANHE_at_cache (periodics [HEAP0]);
2839 downheap (periodics, periodiccnt, HEAP0);
2840 }
2841 else
2842 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2843
2844 EV_FREQUENT_CHECK;
2845 feed_reverse (EV_A_ (W)w);
2846 }
2847 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2848
2849 feed_reverse_done (EV_A_ EV_PERIODIC);
2850 }
2851}
2852
2853/* simply recalculate all periodics */
2854/* TODO: maybe ensure that at least one event happens when jumping forward? */
2855static void noinline ecb_cold
2856periodics_reschedule (EV_P)
847{ 2857{
848 int i; 2858 int i;
849 2859
2860 /* adjust periodics after time jump */
2861 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2862 {
2863 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2864
2865 if (w->reschedule_cb)
2866 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2867 else if (w->interval)
2868 periodic_recalc (EV_A_ w);
2869
2870 ANHE_at_cache (periodics [i]);
2871 }
2872
2873 reheap (periodics, periodiccnt);
2874}
2875#endif
2876
2877/* adjust all timers by a given offset */
2878static void noinline ecb_cold
2879timers_reschedule (EV_P_ ev_tstamp adjust)
2880{
2881 int i;
2882
2883 for (i = 0; i < timercnt; ++i)
2884 {
2885 ANHE *he = timers + i + HEAP0;
2886 ANHE_w (*he)->at += adjust;
2887 ANHE_at_cache (*he);
2888 }
2889}
2890
2891/* fetch new monotonic and realtime times from the kernel */
2892/* also detect if there was a timejump, and act accordingly */
2893inline_speed void
2894time_update (EV_P_ ev_tstamp max_block)
2895{
850#if EV_USE_MONOTONIC 2896#if EV_USE_MONOTONIC
851 if (expect_true (have_monotonic)) 2897 if (expect_true (have_monotonic))
852 { 2898 {
853 if (time_update_monotonic (EV_A)) 2899 int i;
2900 ev_tstamp odiff = rtmn_diff;
2901
2902 mn_now = get_clock ();
2903
2904 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2905 /* interpolate in the meantime */
2906 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
854 { 2907 {
855 ev_tstamp odiff = rtmn_diff; 2908 ev_rt_now = rtmn_diff + mn_now;
2909 return;
2910 }
856 2911
2912 now_floor = mn_now;
2913 ev_rt_now = ev_time ();
2914
857 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 2915 /* loop a few times, before making important decisions.
2916 * on the choice of "4": one iteration isn't enough,
2917 * in case we get preempted during the calls to
2918 * ev_time and get_clock. a second call is almost guaranteed
2919 * to succeed in that case, though. and looping a few more times
2920 * doesn't hurt either as we only do this on time-jumps or
2921 * in the unlikely event of having been preempted here.
2922 */
2923 for (i = 4; --i; )
858 { 2924 {
2925 ev_tstamp diff;
859 rtmn_diff = rt_now - mn_now; 2926 rtmn_diff = ev_rt_now - mn_now;
860 2927
861 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2928 diff = odiff - rtmn_diff;
2929
2930 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
862 return; /* all is well */ 2931 return; /* all is well */
863 2932
864 rt_now = ev_time (); 2933 ev_rt_now = ev_time ();
865 mn_now = get_clock (); 2934 mn_now = get_clock ();
866 now_floor = mn_now; 2935 now_floor = mn_now;
867 } 2936 }
868 2937
2938 /* no timer adjustment, as the monotonic clock doesn't jump */
2939 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2940# if EV_PERIODIC_ENABLE
2941 periodics_reschedule (EV_A);
2942# endif
2943 }
2944 else
2945#endif
2946 {
2947 ev_rt_now = ev_time ();
2948
2949 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2950 {
2951 /* adjust timers. this is easy, as the offset is the same for all of them */
2952 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2953#if EV_PERIODIC_ENABLE
869 periodics_reschedule (EV_A); 2954 periodics_reschedule (EV_A);
870 /* no timer adjustment, as the monotonic clock doesn't jump */ 2955#endif
871 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
872 } 2956 }
873 }
874 else
875#endif
876 {
877 rt_now = ev_time ();
878 2957
879 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
880 {
881 periodics_reschedule (EV_A);
882
883 /* adjust timers. this is easy, as the offset is the same for all */
884 for (i = 0; i < timercnt; ++i)
885 timers [i]->at += rt_now - mn_now;
886 }
887
888 mn_now = rt_now; 2958 mn_now = ev_rt_now;
889 } 2959 }
890} 2960}
891 2961
892void 2962int
893ev_ref (EV_P)
894{
895 ++activecnt;
896}
897
898void
899ev_unref (EV_P)
900{
901 --activecnt;
902}
903
904static int loop_done;
905
906void
907ev_loop (EV_P_ int flags) 2963ev_run (EV_P_ int flags)
908{ 2964{
909 double block; 2965#if EV_FEATURE_API
910 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2966 ++loop_depth;
2967#endif
2968
2969 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2970
2971 loop_done = EVBREAK_CANCEL;
2972
2973 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
911 2974
912 do 2975 do
913 { 2976 {
2977#if EV_VERIFY >= 2
2978 ev_verify (EV_A);
2979#endif
2980
2981#ifndef _WIN32
2982 if (expect_false (curpid)) /* penalise the forking check even more */
2983 if (expect_false (getpid () != curpid))
2984 {
2985 curpid = getpid ();
2986 postfork = 1;
2987 }
2988#endif
2989
2990#if EV_FORK_ENABLE
2991 /* we might have forked, so queue fork handlers */
2992 if (expect_false (postfork))
2993 if (forkcnt)
2994 {
2995 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2996 EV_INVOKE_PENDING;
2997 }
2998#endif
2999
3000#if EV_PREPARE_ENABLE
914 /* queue check watchers (and execute them) */ 3001 /* queue prepare watchers (and execute them) */
915 if (expect_false (preparecnt)) 3002 if (expect_false (preparecnt))
916 { 3003 {
917 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3004 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
918 call_pending (EV_A); 3005 EV_INVOKE_PENDING;
919 } 3006 }
3007#endif
3008
3009 if (expect_false (loop_done))
3010 break;
3011
3012 /* we might have forked, so reify kernel state if necessary */
3013 if (expect_false (postfork))
3014 loop_fork (EV_A);
920 3015
921 /* update fd-related kernel structures */ 3016 /* update fd-related kernel structures */
922 fd_reify (EV_A); 3017 fd_reify (EV_A);
923 3018
924 /* calculate blocking time */ 3019 /* calculate blocking time */
3020 {
3021 ev_tstamp waittime = 0.;
3022 ev_tstamp sleeptime = 0.;
925 3023
926 /* we only need this for !monotonic clockor timers, but as we basically 3024 /* remember old timestamp for io_blocktime calculation */
927 always have timers, we just calculate it always */ 3025 ev_tstamp prev_mn_now = mn_now;
928#if EV_USE_MONOTONIC 3026
929 if (expect_true (have_monotonic)) 3027 /* update time to cancel out callback processing overhead */
930 time_update_monotonic (EV_A); 3028 time_update (EV_A_ 1e100);
931 else 3029
932#endif 3030 /* from now on, we want a pipe-wake-up */
3031 pipe_write_wanted = 1;
3032
3033 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3034
3035 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
933 { 3036 {
934 rt_now = ev_time ();
935 mn_now = rt_now;
936 }
937
938 if (flags & EVLOOP_NONBLOCK || idlecnt)
939 block = 0.;
940 else
941 {
942 block = MAX_BLOCKTIME; 3037 waittime = MAX_BLOCKTIME;
943 3038
944 if (timercnt) 3039 if (timercnt)
945 { 3040 {
946 ev_tstamp to = timers [0]->at - mn_now + method_fudge; 3041 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
947 if (block > to) block = to; 3042 if (waittime > to) waittime = to;
948 } 3043 }
949 3044
3045#if EV_PERIODIC_ENABLE
950 if (periodiccnt) 3046 if (periodiccnt)
951 { 3047 {
952 ev_tstamp to = periodics [0]->at - rt_now + method_fudge; 3048 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
953 if (block > to) block = to; 3049 if (waittime > to) waittime = to;
954 } 3050 }
3051#endif
955 3052
956 if (block < 0.) block = 0.; 3053 /* don't let timeouts decrease the waittime below timeout_blocktime */
3054 if (expect_false (waittime < timeout_blocktime))
3055 waittime = timeout_blocktime;
3056
3057 /* at this point, we NEED to wait, so we have to ensure */
3058 /* to pass a minimum nonzero value to the backend */
3059 if (expect_false (waittime < backend_mintime))
3060 waittime = backend_mintime;
3061
3062 /* extra check because io_blocktime is commonly 0 */
3063 if (expect_false (io_blocktime))
3064 {
3065 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3066
3067 if (sleeptime > waittime - backend_mintime)
3068 sleeptime = waittime - backend_mintime;
3069
3070 if (expect_true (sleeptime > 0.))
3071 {
3072 ev_sleep (sleeptime);
3073 waittime -= sleeptime;
3074 }
3075 }
957 } 3076 }
958 3077
959 method_poll (EV_A_ block); 3078#if EV_FEATURE_API
3079 ++loop_count;
3080#endif
3081 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3082 backend_poll (EV_A_ waittime);
3083 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
960 3084
3085 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3086
3087 if (pipe_write_skipped)
3088 {
3089 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3090 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3091 }
3092
3093
961 /* update rt_now, do magic */ 3094 /* update ev_rt_now, do magic */
962 time_update (EV_A); 3095 time_update (EV_A_ waittime + sleeptime);
3096 }
963 3097
964 /* queue pending timers and reschedule them */ 3098 /* queue pending timers and reschedule them */
965 timers_reify (EV_A); /* relative timers called last */ 3099 timers_reify (EV_A); /* relative timers called last */
3100#if EV_PERIODIC_ENABLE
966 periodics_reify (EV_A); /* absolute timers called first */ 3101 periodics_reify (EV_A); /* absolute timers called first */
3102#endif
967 3103
3104#if EV_IDLE_ENABLE
968 /* queue idle watchers unless io or timers are pending */ 3105 /* queue idle watchers unless other events are pending */
969 if (!pendingcnt) 3106 idle_reify (EV_A);
970 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 3107#endif
971 3108
3109#if EV_CHECK_ENABLE
972 /* queue check watchers, to be executed first */ 3110 /* queue check watchers, to be executed first */
973 if (checkcnt) 3111 if (expect_false (checkcnt))
974 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3112 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3113#endif
975 3114
976 call_pending (EV_A); 3115 EV_INVOKE_PENDING;
977 } 3116 }
978 while (activecnt && !loop_done); 3117 while (expect_true (
3118 activecnt
3119 && !loop_done
3120 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3121 ));
979 3122
980 if (loop_done != 2) 3123 if (loop_done == EVBREAK_ONE)
981 loop_done = 0; 3124 loop_done = EVBREAK_CANCEL;
3125
3126#if EV_FEATURE_API
3127 --loop_depth;
3128#endif
3129
3130 return activecnt;
982} 3131}
983 3132
984void 3133void
985ev_unloop (EV_P_ int how) 3134ev_break (EV_P_ int how) EV_THROW
986{ 3135{
987 loop_done = how; 3136 loop_done = how;
988} 3137}
989 3138
3139void
3140ev_ref (EV_P) EV_THROW
3141{
3142 ++activecnt;
3143}
3144
3145void
3146ev_unref (EV_P) EV_THROW
3147{
3148 --activecnt;
3149}
3150
3151void
3152ev_now_update (EV_P) EV_THROW
3153{
3154 time_update (EV_A_ 1e100);
3155}
3156
3157void
3158ev_suspend (EV_P) EV_THROW
3159{
3160 ev_now_update (EV_A);
3161}
3162
3163void
3164ev_resume (EV_P) EV_THROW
3165{
3166 ev_tstamp mn_prev = mn_now;
3167
3168 ev_now_update (EV_A);
3169 timers_reschedule (EV_A_ mn_now - mn_prev);
3170#if EV_PERIODIC_ENABLE
3171 /* TODO: really do this? */
3172 periodics_reschedule (EV_A);
3173#endif
3174}
3175
990/*****************************************************************************/ 3176/*****************************************************************************/
3177/* singly-linked list management, used when the expected list length is short */
991 3178
992inline void 3179inline_size void
993wlist_add (WL *head, WL elem) 3180wlist_add (WL *head, WL elem)
994{ 3181{
995 elem->next = *head; 3182 elem->next = *head;
996 *head = elem; 3183 *head = elem;
997} 3184}
998 3185
999inline void 3186inline_size void
1000wlist_del (WL *head, WL elem) 3187wlist_del (WL *head, WL elem)
1001{ 3188{
1002 while (*head) 3189 while (*head)
1003 { 3190 {
1004 if (*head == elem) 3191 if (expect_true (*head == elem))
1005 { 3192 {
1006 *head = elem->next; 3193 *head = elem->next;
1007 return; 3194 break;
1008 } 3195 }
1009 3196
1010 head = &(*head)->next; 3197 head = &(*head)->next;
1011 } 3198 }
1012} 3199}
1013 3200
3201/* internal, faster, version of ev_clear_pending */
1014inline void 3202inline_speed void
1015ev_clear_pending (EV_P_ W w) 3203clear_pending (EV_P_ W w)
1016{ 3204{
1017 if (w->pending) 3205 if (w->pending)
1018 { 3206 {
1019 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3207 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1020 w->pending = 0; 3208 w->pending = 0;
1021 } 3209 }
1022} 3210}
1023 3211
3212int
3213ev_clear_pending (EV_P_ void *w) EV_THROW
3214{
3215 W w_ = (W)w;
3216 int pending = w_->pending;
3217
3218 if (expect_true (pending))
3219 {
3220 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3221 p->w = (W)&pending_w;
3222 w_->pending = 0;
3223 return p->events;
3224 }
3225 else
3226 return 0;
3227}
3228
1024inline void 3229inline_size void
3230pri_adjust (EV_P_ W w)
3231{
3232 int pri = ev_priority (w);
3233 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3234 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3235 ev_set_priority (w, pri);
3236}
3237
3238inline_speed void
1025ev_start (EV_P_ W w, int active) 3239ev_start (EV_P_ W w, int active)
1026{ 3240{
1027 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 3241 pri_adjust (EV_A_ w);
1028 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1029
1030 w->active = active; 3242 w->active = active;
1031 ev_ref (EV_A); 3243 ev_ref (EV_A);
1032} 3244}
1033 3245
1034inline void 3246inline_size void
1035ev_stop (EV_P_ W w) 3247ev_stop (EV_P_ W w)
1036{ 3248{
1037 ev_unref (EV_A); 3249 ev_unref (EV_A);
1038 w->active = 0; 3250 w->active = 0;
1039} 3251}
1040 3252
1041/*****************************************************************************/ 3253/*****************************************************************************/
1042 3254
1043void 3255void noinline
1044ev_io_start (EV_P_ struct ev_io *w) 3256ev_io_start (EV_P_ ev_io *w) EV_THROW
1045{ 3257{
1046 int fd = w->fd; 3258 int fd = w->fd;
1047 3259
1048 if (ev_is_active (w)) 3260 if (expect_false (ev_is_active (w)))
1049 return; 3261 return;
1050 3262
1051 assert (("ev_io_start called with negative fd", fd >= 0)); 3263 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3264 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3265
3266 EV_FREQUENT_CHECK;
1052 3267
1053 ev_start (EV_A_ (W)w, 1); 3268 ev_start (EV_A_ (W)w, 1);
1054 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 3269 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1055 wlist_add ((WL *)&anfds[fd].head, (WL)w); 3270 wlist_add (&anfds[fd].head, (WL)w);
1056 3271
1057 fd_change (EV_A_ fd); 3272 /* common bug, apparently */
1058} 3273 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
1059 3274
1060void 3275 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3276 w->events &= ~EV__IOFDSET;
3277
3278 EV_FREQUENT_CHECK;
3279}
3280
3281void noinline
1061ev_io_stop (EV_P_ struct ev_io *w) 3282ev_io_stop (EV_P_ ev_io *w) EV_THROW
1062{ 3283{
1063 ev_clear_pending (EV_A_ (W)w); 3284 clear_pending (EV_A_ (W)w);
1064 if (!ev_is_active (w)) 3285 if (expect_false (!ev_is_active (w)))
1065 return; 3286 return;
1066 3287
3288 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3289
3290 EV_FREQUENT_CHECK;
3291
1067 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 3292 wlist_del (&anfds[w->fd].head, (WL)w);
1068 ev_stop (EV_A_ (W)w); 3293 ev_stop (EV_A_ (W)w);
1069 3294
1070 fd_change (EV_A_ w->fd); 3295 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1071}
1072 3296
1073void 3297 EV_FREQUENT_CHECK;
3298}
3299
3300void noinline
1074ev_timer_start (EV_P_ struct ev_timer *w) 3301ev_timer_start (EV_P_ ev_timer *w) EV_THROW
1075{ 3302{
1076 if (ev_is_active (w)) 3303 if (expect_false (ev_is_active (w)))
1077 return; 3304 return;
1078 3305
1079 w->at += mn_now; 3306 ev_at (w) += mn_now;
1080 3307
1081 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3308 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1082 3309
3310 EV_FREQUENT_CHECK;
3311
3312 ++timercnt;
1083 ev_start (EV_A_ (W)w, ++timercnt); 3313 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1084 array_needsize (timers, timermax, timercnt, ); 3314 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1085 timers [timercnt - 1] = w; 3315 ANHE_w (timers [ev_active (w)]) = (WT)w;
1086 upheap ((WT *)timers, timercnt - 1); 3316 ANHE_at_cache (timers [ev_active (w)]);
1087} 3317 upheap (timers, ev_active (w));
1088 3318
1089void 3319 EV_FREQUENT_CHECK;
3320
3321 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3322}
3323
3324void noinline
1090ev_timer_stop (EV_P_ struct ev_timer *w) 3325ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
1091{ 3326{
1092 ev_clear_pending (EV_A_ (W)w); 3327 clear_pending (EV_A_ (W)w);
1093 if (!ev_is_active (w)) 3328 if (expect_false (!ev_is_active (w)))
1094 return; 3329 return;
1095 3330
1096 if (w->active < timercnt--) 3331 EV_FREQUENT_CHECK;
3332
3333 {
3334 int active = ev_active (w);
3335
3336 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3337
3338 --timercnt;
3339
3340 if (expect_true (active < timercnt + HEAP0))
1097 { 3341 {
1098 timers [w->active - 1] = timers [timercnt]; 3342 timers [active] = timers [timercnt + HEAP0];
1099 downheap ((WT *)timers, timercnt, w->active - 1); 3343 adjustheap (timers, timercnt, active);
1100 } 3344 }
3345 }
1101 3346
1102 w->at = w->repeat; 3347 ev_at (w) -= mn_now;
1103 3348
1104 ev_stop (EV_A_ (W)w); 3349 ev_stop (EV_A_ (W)w);
1105}
1106 3350
1107void 3351 EV_FREQUENT_CHECK;
3352}
3353
3354void noinline
1108ev_timer_again (EV_P_ struct ev_timer *w) 3355ev_timer_again (EV_P_ ev_timer *w) EV_THROW
1109{ 3356{
3357 EV_FREQUENT_CHECK;
3358
3359 clear_pending (EV_A_ (W)w);
3360
1110 if (ev_is_active (w)) 3361 if (ev_is_active (w))
1111 { 3362 {
1112 if (w->repeat) 3363 if (w->repeat)
1113 { 3364 {
1114 w->at = mn_now + w->repeat; 3365 ev_at (w) = mn_now + w->repeat;
3366 ANHE_at_cache (timers [ev_active (w)]);
1115 downheap ((WT *)timers, timercnt, w->active - 1); 3367 adjustheap (timers, timercnt, ev_active (w));
1116 } 3368 }
1117 else 3369 else
1118 ev_timer_stop (EV_A_ w); 3370 ev_timer_stop (EV_A_ w);
1119 } 3371 }
1120 else if (w->repeat) 3372 else if (w->repeat)
3373 {
3374 ev_at (w) = w->repeat;
1121 ev_timer_start (EV_A_ w); 3375 ev_timer_start (EV_A_ w);
1122} 3376 }
1123 3377
1124void 3378 EV_FREQUENT_CHECK;
3379}
3380
3381ev_tstamp
3382ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3383{
3384 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3385}
3386
3387#if EV_PERIODIC_ENABLE
3388void noinline
1125ev_periodic_start (EV_P_ struct ev_periodic *w) 3389ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
1126{ 3390{
1127 if (ev_is_active (w)) 3391 if (expect_false (ev_is_active (w)))
1128 return; 3392 return;
1129 3393
3394 if (w->reschedule_cb)
3395 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3396 else if (w->interval)
3397 {
1130 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3398 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
3399 periodic_recalc (EV_A_ w);
3400 }
3401 else
3402 ev_at (w) = w->offset;
1131 3403
1132 /* this formula differs from the one in periodic_reify because we do not always round up */ 3404 EV_FREQUENT_CHECK;
1133 if (w->interval)
1134 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval;
1135 3405
3406 ++periodiccnt;
1136 ev_start (EV_A_ (W)w, ++periodiccnt); 3407 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1137 array_needsize (periodics, periodicmax, periodiccnt, ); 3408 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1138 periodics [periodiccnt - 1] = w; 3409 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1139 upheap ((WT *)periodics, periodiccnt - 1); 3410 ANHE_at_cache (periodics [ev_active (w)]);
1140} 3411 upheap (periodics, ev_active (w));
1141 3412
1142void 3413 EV_FREQUENT_CHECK;
3414
3415 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
3416}
3417
3418void noinline
1143ev_periodic_stop (EV_P_ struct ev_periodic *w) 3419ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
1144{ 3420{
1145 ev_clear_pending (EV_A_ (W)w); 3421 clear_pending (EV_A_ (W)w);
1146 if (!ev_is_active (w)) 3422 if (expect_false (!ev_is_active (w)))
1147 return; 3423 return;
1148 3424
1149 if (w->active < periodiccnt--) 3425 EV_FREQUENT_CHECK;
3426
3427 {
3428 int active = ev_active (w);
3429
3430 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3431
3432 --periodiccnt;
3433
3434 if (expect_true (active < periodiccnt + HEAP0))
1150 { 3435 {
1151 periodics [w->active - 1] = periodics [periodiccnt]; 3436 periodics [active] = periodics [periodiccnt + HEAP0];
1152 downheap ((WT *)periodics, periodiccnt, w->active - 1); 3437 adjustheap (periodics, periodiccnt, active);
1153 } 3438 }
3439 }
1154 3440
1155 ev_stop (EV_A_ (W)w); 3441 ev_stop (EV_A_ (W)w);
1156}
1157 3442
1158void 3443 EV_FREQUENT_CHECK;
1159ev_idle_start (EV_P_ struct ev_idle *w)
1160{
1161 if (ev_is_active (w))
1162 return;
1163
1164 ev_start (EV_A_ (W)w, ++idlecnt);
1165 array_needsize (idles, idlemax, idlecnt, );
1166 idles [idlecnt - 1] = w;
1167} 3444}
1168 3445
1169void 3446void noinline
1170ev_idle_stop (EV_P_ struct ev_idle *w) 3447ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
1171{ 3448{
1172 ev_clear_pending (EV_A_ (W)w); 3449 /* TODO: use adjustheap and recalculation */
1173 if (ev_is_active (w))
1174 return;
1175
1176 idles [w->active - 1] = idles [--idlecnt];
1177 ev_stop (EV_A_ (W)w); 3450 ev_periodic_stop (EV_A_ w);
3451 ev_periodic_start (EV_A_ w);
1178} 3452}
1179 3453#endif
1180void
1181ev_prepare_start (EV_P_ struct ev_prepare *w)
1182{
1183 if (ev_is_active (w))
1184 return;
1185
1186 ev_start (EV_A_ (W)w, ++preparecnt);
1187 array_needsize (prepares, preparemax, preparecnt, );
1188 prepares [preparecnt - 1] = w;
1189}
1190
1191void
1192ev_prepare_stop (EV_P_ struct ev_prepare *w)
1193{
1194 ev_clear_pending (EV_A_ (W)w);
1195 if (ev_is_active (w))
1196 return;
1197
1198 prepares [w->active - 1] = prepares [--preparecnt];
1199 ev_stop (EV_A_ (W)w);
1200}
1201
1202void
1203ev_check_start (EV_P_ struct ev_check *w)
1204{
1205 if (ev_is_active (w))
1206 return;
1207
1208 ev_start (EV_A_ (W)w, ++checkcnt);
1209 array_needsize (checks, checkmax, checkcnt, );
1210 checks [checkcnt - 1] = w;
1211}
1212
1213void
1214ev_check_stop (EV_P_ struct ev_check *w)
1215{
1216 ev_clear_pending (EV_A_ (W)w);
1217 if (ev_is_active (w))
1218 return;
1219
1220 checks [w->active - 1] = checks [--checkcnt];
1221 ev_stop (EV_A_ (W)w);
1222}
1223 3454
1224#ifndef SA_RESTART 3455#ifndef SA_RESTART
1225# define SA_RESTART 0 3456# define SA_RESTART 0
1226#endif 3457#endif
1227 3458
3459#if EV_SIGNAL_ENABLE
3460
3461void noinline
3462ev_signal_start (EV_P_ ev_signal *w) EV_THROW
3463{
3464 if (expect_false (ev_is_active (w)))
3465 return;
3466
3467 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3468
3469#if EV_MULTIPLICITY
3470 assert (("libev: a signal must not be attached to two different loops",
3471 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3472
3473 signals [w->signum - 1].loop = EV_A;
3474#endif
3475
3476 EV_FREQUENT_CHECK;
3477
3478#if EV_USE_SIGNALFD
3479 if (sigfd == -2)
3480 {
3481 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3482 if (sigfd < 0 && errno == EINVAL)
3483 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3484
3485 if (sigfd >= 0)
3486 {
3487 fd_intern (sigfd); /* doing it twice will not hurt */
3488
3489 sigemptyset (&sigfd_set);
3490
3491 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3492 ev_set_priority (&sigfd_w, EV_MAXPRI);
3493 ev_io_start (EV_A_ &sigfd_w);
3494 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3495 }
3496 }
3497
3498 if (sigfd >= 0)
3499 {
3500 /* TODO: check .head */
3501 sigaddset (&sigfd_set, w->signum);
3502 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3503
3504 signalfd (sigfd, &sigfd_set, 0);
3505 }
3506#endif
3507
3508 ev_start (EV_A_ (W)w, 1);
3509 wlist_add (&signals [w->signum - 1].head, (WL)w);
3510
3511 if (!((WL)w)->next)
3512# if EV_USE_SIGNALFD
3513 if (sigfd < 0) /*TODO*/
3514# endif
3515 {
3516# ifdef _WIN32
3517 evpipe_init (EV_A);
3518
3519 signal (w->signum, ev_sighandler);
3520# else
3521 struct sigaction sa;
3522
3523 evpipe_init (EV_A);
3524
3525 sa.sa_handler = ev_sighandler;
3526 sigfillset (&sa.sa_mask);
3527 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3528 sigaction (w->signum, &sa, 0);
3529
3530 if (origflags & EVFLAG_NOSIGMASK)
3531 {
3532 sigemptyset (&sa.sa_mask);
3533 sigaddset (&sa.sa_mask, w->signum);
3534 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3535 }
3536#endif
3537 }
3538
3539 EV_FREQUENT_CHECK;
3540}
3541
3542void noinline
3543ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
3544{
3545 clear_pending (EV_A_ (W)w);
3546 if (expect_false (!ev_is_active (w)))
3547 return;
3548
3549 EV_FREQUENT_CHECK;
3550
3551 wlist_del (&signals [w->signum - 1].head, (WL)w);
3552 ev_stop (EV_A_ (W)w);
3553
3554 if (!signals [w->signum - 1].head)
3555 {
3556#if EV_MULTIPLICITY
3557 signals [w->signum - 1].loop = 0; /* unattach from signal */
3558#endif
3559#if EV_USE_SIGNALFD
3560 if (sigfd >= 0)
3561 {
3562 sigset_t ss;
3563
3564 sigemptyset (&ss);
3565 sigaddset (&ss, w->signum);
3566 sigdelset (&sigfd_set, w->signum);
3567
3568 signalfd (sigfd, &sigfd_set, 0);
3569 sigprocmask (SIG_UNBLOCK, &ss, 0);
3570 }
3571 else
3572#endif
3573 signal (w->signum, SIG_DFL);
3574 }
3575
3576 EV_FREQUENT_CHECK;
3577}
3578
3579#endif
3580
3581#if EV_CHILD_ENABLE
3582
1228void 3583void
1229ev_signal_start (EV_P_ struct ev_signal *w) 3584ev_child_start (EV_P_ ev_child *w) EV_THROW
1230{ 3585{
1231#if EV_MULTIPLICITY 3586#if EV_MULTIPLICITY
1232 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 3587 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1233#endif 3588#endif
1234 if (ev_is_active (w)) 3589 if (expect_false (ev_is_active (w)))
1235 return; 3590 return;
1236 3591
1237 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3592 EV_FREQUENT_CHECK;
1238 3593
1239 ev_start (EV_A_ (W)w, 1); 3594 ev_start (EV_A_ (W)w, 1);
1240 array_needsize (signals, signalmax, w->signum, signals_init); 3595 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1241 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1242 3596
1243 if (!w->next) 3597 EV_FREQUENT_CHECK;
1244 {
1245 struct sigaction sa;
1246 sa.sa_handler = sighandler;
1247 sigfillset (&sa.sa_mask);
1248 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1249 sigaction (w->signum, &sa, 0);
1250 }
1251} 3598}
1252 3599
1253void 3600void
1254ev_signal_stop (EV_P_ struct ev_signal *w) 3601ev_child_stop (EV_P_ ev_child *w) EV_THROW
1255{ 3602{
1256 ev_clear_pending (EV_A_ (W)w); 3603 clear_pending (EV_A_ (W)w);
1257 if (!ev_is_active (w)) 3604 if (expect_false (!ev_is_active (w)))
1258 return; 3605 return;
1259 3606
1260 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3607 EV_FREQUENT_CHECK;
3608
3609 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1261 ev_stop (EV_A_ (W)w); 3610 ev_stop (EV_A_ (W)w);
1262 3611
1263 if (!signals [w->signum - 1].head) 3612 EV_FREQUENT_CHECK;
1264 signal (w->signum, SIG_DFL);
1265} 3613}
3614
3615#endif
3616
3617#if EV_STAT_ENABLE
3618
3619# ifdef _WIN32
3620# undef lstat
3621# define lstat(a,b) _stati64 (a,b)
3622# endif
3623
3624#define DEF_STAT_INTERVAL 5.0074891
3625#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3626#define MIN_STAT_INTERVAL 0.1074891
3627
3628static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3629
3630#if EV_USE_INOTIFY
3631
3632/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3633# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3634
3635static void noinline
3636infy_add (EV_P_ ev_stat *w)
3637{
3638 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3639
3640 if (w->wd >= 0)
3641 {
3642 struct statfs sfs;
3643
3644 /* now local changes will be tracked by inotify, but remote changes won't */
3645 /* unless the filesystem is known to be local, we therefore still poll */
3646 /* also do poll on <2.6.25, but with normal frequency */
3647
3648 if (!fs_2625)
3649 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3650 else if (!statfs (w->path, &sfs)
3651 && (sfs.f_type == 0x1373 /* devfs */
3652 || sfs.f_type == 0xEF53 /* ext2/3 */
3653 || sfs.f_type == 0x3153464a /* jfs */
3654 || sfs.f_type == 0x52654973 /* reiser3 */
3655 || sfs.f_type == 0x01021994 /* tempfs */
3656 || sfs.f_type == 0x58465342 /* xfs */))
3657 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3658 else
3659 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3660 }
3661 else
3662 {
3663 /* can't use inotify, continue to stat */
3664 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3665
3666 /* if path is not there, monitor some parent directory for speedup hints */
3667 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3668 /* but an efficiency issue only */
3669 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3670 {
3671 char path [4096];
3672 strcpy (path, w->path);
3673
3674 do
3675 {
3676 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3677 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3678
3679 char *pend = strrchr (path, '/');
3680
3681 if (!pend || pend == path)
3682 break;
3683
3684 *pend = 0;
3685 w->wd = inotify_add_watch (fs_fd, path, mask);
3686 }
3687 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3688 }
3689 }
3690
3691 if (w->wd >= 0)
3692 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3693
3694 /* now re-arm timer, if required */
3695 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3696 ev_timer_again (EV_A_ &w->timer);
3697 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3698}
3699
3700static void noinline
3701infy_del (EV_P_ ev_stat *w)
3702{
3703 int slot;
3704 int wd = w->wd;
3705
3706 if (wd < 0)
3707 return;
3708
3709 w->wd = -2;
3710 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3711 wlist_del (&fs_hash [slot].head, (WL)w);
3712
3713 /* remove this watcher, if others are watching it, they will rearm */
3714 inotify_rm_watch (fs_fd, wd);
3715}
3716
3717static void noinline
3718infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3719{
3720 if (slot < 0)
3721 /* overflow, need to check for all hash slots */
3722 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3723 infy_wd (EV_A_ slot, wd, ev);
3724 else
3725 {
3726 WL w_;
3727
3728 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3729 {
3730 ev_stat *w = (ev_stat *)w_;
3731 w_ = w_->next; /* lets us remove this watcher and all before it */
3732
3733 if (w->wd == wd || wd == -1)
3734 {
3735 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3736 {
3737 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3738 w->wd = -1;
3739 infy_add (EV_A_ w); /* re-add, no matter what */
3740 }
3741
3742 stat_timer_cb (EV_A_ &w->timer, 0);
3743 }
3744 }
3745 }
3746}
3747
3748static void
3749infy_cb (EV_P_ ev_io *w, int revents)
3750{
3751 char buf [EV_INOTIFY_BUFSIZE];
3752 int ofs;
3753 int len = read (fs_fd, buf, sizeof (buf));
3754
3755 for (ofs = 0; ofs < len; )
3756 {
3757 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3758 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3759 ofs += sizeof (struct inotify_event) + ev->len;
3760 }
3761}
3762
3763inline_size void ecb_cold
3764ev_check_2625 (EV_P)
3765{
3766 /* kernels < 2.6.25 are borked
3767 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3768 */
3769 if (ev_linux_version () < 0x020619)
3770 return;
3771
3772 fs_2625 = 1;
3773}
3774
3775inline_size int
3776infy_newfd (void)
3777{
3778#if defined IN_CLOEXEC && defined IN_NONBLOCK
3779 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3780 if (fd >= 0)
3781 return fd;
3782#endif
3783 return inotify_init ();
3784}
3785
3786inline_size void
3787infy_init (EV_P)
3788{
3789 if (fs_fd != -2)
3790 return;
3791
3792 fs_fd = -1;
3793
3794 ev_check_2625 (EV_A);
3795
3796 fs_fd = infy_newfd ();
3797
3798 if (fs_fd >= 0)
3799 {
3800 fd_intern (fs_fd);
3801 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3802 ev_set_priority (&fs_w, EV_MAXPRI);
3803 ev_io_start (EV_A_ &fs_w);
3804 ev_unref (EV_A);
3805 }
3806}
3807
3808inline_size void
3809infy_fork (EV_P)
3810{
3811 int slot;
3812
3813 if (fs_fd < 0)
3814 return;
3815
3816 ev_ref (EV_A);
3817 ev_io_stop (EV_A_ &fs_w);
3818 close (fs_fd);
3819 fs_fd = infy_newfd ();
3820
3821 if (fs_fd >= 0)
3822 {
3823 fd_intern (fs_fd);
3824 ev_io_set (&fs_w, fs_fd, EV_READ);
3825 ev_io_start (EV_A_ &fs_w);
3826 ev_unref (EV_A);
3827 }
3828
3829 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3830 {
3831 WL w_ = fs_hash [slot].head;
3832 fs_hash [slot].head = 0;
3833
3834 while (w_)
3835 {
3836 ev_stat *w = (ev_stat *)w_;
3837 w_ = w_->next; /* lets us add this watcher */
3838
3839 w->wd = -1;
3840
3841 if (fs_fd >= 0)
3842 infy_add (EV_A_ w); /* re-add, no matter what */
3843 else
3844 {
3845 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3846 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3847 ev_timer_again (EV_A_ &w->timer);
3848 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3849 }
3850 }
3851 }
3852}
3853
3854#endif
3855
3856#ifdef _WIN32
3857# define EV_LSTAT(p,b) _stati64 (p, b)
3858#else
3859# define EV_LSTAT(p,b) lstat (p, b)
3860#endif
1266 3861
1267void 3862void
1268ev_child_start (EV_P_ struct ev_child *w) 3863ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
1269{ 3864{
1270#if EV_MULTIPLICITY 3865 if (lstat (w->path, &w->attr) < 0)
1271 assert (("child watchers are only supported in the default loop", loop == default_loop)); 3866 w->attr.st_nlink = 0;
1272#endif 3867 else if (!w->attr.st_nlink)
3868 w->attr.st_nlink = 1;
3869}
3870
3871static void noinline
3872stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3873{
3874 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3875
3876 ev_statdata prev = w->attr;
3877 ev_stat_stat (EV_A_ w);
3878
3879 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3880 if (
3881 prev.st_dev != w->attr.st_dev
3882 || prev.st_ino != w->attr.st_ino
3883 || prev.st_mode != w->attr.st_mode
3884 || prev.st_nlink != w->attr.st_nlink
3885 || prev.st_uid != w->attr.st_uid
3886 || prev.st_gid != w->attr.st_gid
3887 || prev.st_rdev != w->attr.st_rdev
3888 || prev.st_size != w->attr.st_size
3889 || prev.st_atime != w->attr.st_atime
3890 || prev.st_mtime != w->attr.st_mtime
3891 || prev.st_ctime != w->attr.st_ctime
3892 ) {
3893 /* we only update w->prev on actual differences */
3894 /* in case we test more often than invoke the callback, */
3895 /* to ensure that prev is always different to attr */
3896 w->prev = prev;
3897
3898 #if EV_USE_INOTIFY
3899 if (fs_fd >= 0)
3900 {
3901 infy_del (EV_A_ w);
3902 infy_add (EV_A_ w);
3903 ev_stat_stat (EV_A_ w); /* avoid race... */
3904 }
3905 #endif
3906
3907 ev_feed_event (EV_A_ w, EV_STAT);
3908 }
3909}
3910
3911void
3912ev_stat_start (EV_P_ ev_stat *w) EV_THROW
3913{
1273 if (ev_is_active (w)) 3914 if (expect_false (ev_is_active (w)))
1274 return; 3915 return;
1275 3916
3917 ev_stat_stat (EV_A_ w);
3918
3919 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3920 w->interval = MIN_STAT_INTERVAL;
3921
3922 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3923 ev_set_priority (&w->timer, ev_priority (w));
3924
3925#if EV_USE_INOTIFY
3926 infy_init (EV_A);
3927
3928 if (fs_fd >= 0)
3929 infy_add (EV_A_ w);
3930 else
3931#endif
3932 {
3933 ev_timer_again (EV_A_ &w->timer);
3934 ev_unref (EV_A);
3935 }
3936
1276 ev_start (EV_A_ (W)w, 1); 3937 ev_start (EV_A_ (W)w, 1);
1277 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3938
3939 EV_FREQUENT_CHECK;
1278} 3940}
1279 3941
1280void 3942void
1281ev_child_stop (EV_P_ struct ev_child *w) 3943ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
1282{ 3944{
1283 ev_clear_pending (EV_A_ (W)w); 3945 clear_pending (EV_A_ (W)w);
1284 if (ev_is_active (w)) 3946 if (expect_false (!ev_is_active (w)))
1285 return; 3947 return;
1286 3948
1287 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3949 EV_FREQUENT_CHECK;
3950
3951#if EV_USE_INOTIFY
3952 infy_del (EV_A_ w);
3953#endif
3954
3955 if (ev_is_active (&w->timer))
3956 {
3957 ev_ref (EV_A);
3958 ev_timer_stop (EV_A_ &w->timer);
3959 }
3960
1288 ev_stop (EV_A_ (W)w); 3961 ev_stop (EV_A_ (W)w);
3962
3963 EV_FREQUENT_CHECK;
1289} 3964}
3965#endif
3966
3967#if EV_IDLE_ENABLE
3968void
3969ev_idle_start (EV_P_ ev_idle *w) EV_THROW
3970{
3971 if (expect_false (ev_is_active (w)))
3972 return;
3973
3974 pri_adjust (EV_A_ (W)w);
3975
3976 EV_FREQUENT_CHECK;
3977
3978 {
3979 int active = ++idlecnt [ABSPRI (w)];
3980
3981 ++idleall;
3982 ev_start (EV_A_ (W)w, active);
3983
3984 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3985 idles [ABSPRI (w)][active - 1] = w;
3986 }
3987
3988 EV_FREQUENT_CHECK;
3989}
3990
3991void
3992ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
3993{
3994 clear_pending (EV_A_ (W)w);
3995 if (expect_false (!ev_is_active (w)))
3996 return;
3997
3998 EV_FREQUENT_CHECK;
3999
4000 {
4001 int active = ev_active (w);
4002
4003 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4004 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4005
4006 ev_stop (EV_A_ (W)w);
4007 --idleall;
4008 }
4009
4010 EV_FREQUENT_CHECK;
4011}
4012#endif
4013
4014#if EV_PREPARE_ENABLE
4015void
4016ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
4017{
4018 if (expect_false (ev_is_active (w)))
4019 return;
4020
4021 EV_FREQUENT_CHECK;
4022
4023 ev_start (EV_A_ (W)w, ++preparecnt);
4024 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
4025 prepares [preparecnt - 1] = w;
4026
4027 EV_FREQUENT_CHECK;
4028}
4029
4030void
4031ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
4032{
4033 clear_pending (EV_A_ (W)w);
4034 if (expect_false (!ev_is_active (w)))
4035 return;
4036
4037 EV_FREQUENT_CHECK;
4038
4039 {
4040 int active = ev_active (w);
4041
4042 prepares [active - 1] = prepares [--preparecnt];
4043 ev_active (prepares [active - 1]) = active;
4044 }
4045
4046 ev_stop (EV_A_ (W)w);
4047
4048 EV_FREQUENT_CHECK;
4049}
4050#endif
4051
4052#if EV_CHECK_ENABLE
4053void
4054ev_check_start (EV_P_ ev_check *w) EV_THROW
4055{
4056 if (expect_false (ev_is_active (w)))
4057 return;
4058
4059 EV_FREQUENT_CHECK;
4060
4061 ev_start (EV_A_ (W)w, ++checkcnt);
4062 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4063 checks [checkcnt - 1] = w;
4064
4065 EV_FREQUENT_CHECK;
4066}
4067
4068void
4069ev_check_stop (EV_P_ ev_check *w) EV_THROW
4070{
4071 clear_pending (EV_A_ (W)w);
4072 if (expect_false (!ev_is_active (w)))
4073 return;
4074
4075 EV_FREQUENT_CHECK;
4076
4077 {
4078 int active = ev_active (w);
4079
4080 checks [active - 1] = checks [--checkcnt];
4081 ev_active (checks [active - 1]) = active;
4082 }
4083
4084 ev_stop (EV_A_ (W)w);
4085
4086 EV_FREQUENT_CHECK;
4087}
4088#endif
4089
4090#if EV_EMBED_ENABLE
4091void noinline
4092ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
4093{
4094 ev_run (w->other, EVRUN_NOWAIT);
4095}
4096
4097static void
4098embed_io_cb (EV_P_ ev_io *io, int revents)
4099{
4100 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4101
4102 if (ev_cb (w))
4103 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4104 else
4105 ev_run (w->other, EVRUN_NOWAIT);
4106}
4107
4108static void
4109embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4110{
4111 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4112
4113 {
4114 EV_P = w->other;
4115
4116 while (fdchangecnt)
4117 {
4118 fd_reify (EV_A);
4119 ev_run (EV_A_ EVRUN_NOWAIT);
4120 }
4121 }
4122}
4123
4124static void
4125embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4126{
4127 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4128
4129 ev_embed_stop (EV_A_ w);
4130
4131 {
4132 EV_P = w->other;
4133
4134 ev_loop_fork (EV_A);
4135 ev_run (EV_A_ EVRUN_NOWAIT);
4136 }
4137
4138 ev_embed_start (EV_A_ w);
4139}
4140
4141#if 0
4142static void
4143embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4144{
4145 ev_idle_stop (EV_A_ idle);
4146}
4147#endif
4148
4149void
4150ev_embed_start (EV_P_ ev_embed *w) EV_THROW
4151{
4152 if (expect_false (ev_is_active (w)))
4153 return;
4154
4155 {
4156 EV_P = w->other;
4157 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4158 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4159 }
4160
4161 EV_FREQUENT_CHECK;
4162
4163 ev_set_priority (&w->io, ev_priority (w));
4164 ev_io_start (EV_A_ &w->io);
4165
4166 ev_prepare_init (&w->prepare, embed_prepare_cb);
4167 ev_set_priority (&w->prepare, EV_MINPRI);
4168 ev_prepare_start (EV_A_ &w->prepare);
4169
4170 ev_fork_init (&w->fork, embed_fork_cb);
4171 ev_fork_start (EV_A_ &w->fork);
4172
4173 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4174
4175 ev_start (EV_A_ (W)w, 1);
4176
4177 EV_FREQUENT_CHECK;
4178}
4179
4180void
4181ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
4182{
4183 clear_pending (EV_A_ (W)w);
4184 if (expect_false (!ev_is_active (w)))
4185 return;
4186
4187 EV_FREQUENT_CHECK;
4188
4189 ev_io_stop (EV_A_ &w->io);
4190 ev_prepare_stop (EV_A_ &w->prepare);
4191 ev_fork_stop (EV_A_ &w->fork);
4192
4193 ev_stop (EV_A_ (W)w);
4194
4195 EV_FREQUENT_CHECK;
4196}
4197#endif
4198
4199#if EV_FORK_ENABLE
4200void
4201ev_fork_start (EV_P_ ev_fork *w) EV_THROW
4202{
4203 if (expect_false (ev_is_active (w)))
4204 return;
4205
4206 EV_FREQUENT_CHECK;
4207
4208 ev_start (EV_A_ (W)w, ++forkcnt);
4209 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4210 forks [forkcnt - 1] = w;
4211
4212 EV_FREQUENT_CHECK;
4213}
4214
4215void
4216ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
4217{
4218 clear_pending (EV_A_ (W)w);
4219 if (expect_false (!ev_is_active (w)))
4220 return;
4221
4222 EV_FREQUENT_CHECK;
4223
4224 {
4225 int active = ev_active (w);
4226
4227 forks [active - 1] = forks [--forkcnt];
4228 ev_active (forks [active - 1]) = active;
4229 }
4230
4231 ev_stop (EV_A_ (W)w);
4232
4233 EV_FREQUENT_CHECK;
4234}
4235#endif
4236
4237#if EV_CLEANUP_ENABLE
4238void
4239ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4240{
4241 if (expect_false (ev_is_active (w)))
4242 return;
4243
4244 EV_FREQUENT_CHECK;
4245
4246 ev_start (EV_A_ (W)w, ++cleanupcnt);
4247 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4248 cleanups [cleanupcnt - 1] = w;
4249
4250 /* cleanup watchers should never keep a refcount on the loop */
4251 ev_unref (EV_A);
4252 EV_FREQUENT_CHECK;
4253}
4254
4255void
4256ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4257{
4258 clear_pending (EV_A_ (W)w);
4259 if (expect_false (!ev_is_active (w)))
4260 return;
4261
4262 EV_FREQUENT_CHECK;
4263 ev_ref (EV_A);
4264
4265 {
4266 int active = ev_active (w);
4267
4268 cleanups [active - 1] = cleanups [--cleanupcnt];
4269 ev_active (cleanups [active - 1]) = active;
4270 }
4271
4272 ev_stop (EV_A_ (W)w);
4273
4274 EV_FREQUENT_CHECK;
4275}
4276#endif
4277
4278#if EV_ASYNC_ENABLE
4279void
4280ev_async_start (EV_P_ ev_async *w) EV_THROW
4281{
4282 if (expect_false (ev_is_active (w)))
4283 return;
4284
4285 w->sent = 0;
4286
4287 evpipe_init (EV_A);
4288
4289 EV_FREQUENT_CHECK;
4290
4291 ev_start (EV_A_ (W)w, ++asynccnt);
4292 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4293 asyncs [asynccnt - 1] = w;
4294
4295 EV_FREQUENT_CHECK;
4296}
4297
4298void
4299ev_async_stop (EV_P_ ev_async *w) EV_THROW
4300{
4301 clear_pending (EV_A_ (W)w);
4302 if (expect_false (!ev_is_active (w)))
4303 return;
4304
4305 EV_FREQUENT_CHECK;
4306
4307 {
4308 int active = ev_active (w);
4309
4310 asyncs [active - 1] = asyncs [--asynccnt];
4311 ev_active (asyncs [active - 1]) = active;
4312 }
4313
4314 ev_stop (EV_A_ (W)w);
4315
4316 EV_FREQUENT_CHECK;
4317}
4318
4319void
4320ev_async_send (EV_P_ ev_async *w) EV_THROW
4321{
4322 w->sent = 1;
4323 evpipe_write (EV_A_ &async_pending);
4324}
4325#endif
1290 4326
1291/*****************************************************************************/ 4327/*****************************************************************************/
1292 4328
1293struct ev_once 4329struct ev_once
1294{ 4330{
1295 struct ev_io io; 4331 ev_io io;
1296 struct ev_timer to; 4332 ev_timer to;
1297 void (*cb)(int revents, void *arg); 4333 void (*cb)(int revents, void *arg);
1298 void *arg; 4334 void *arg;
1299}; 4335};
1300 4336
1301static void 4337static void
1302once_cb (EV_P_ struct ev_once *once, int revents) 4338once_cb (EV_P_ struct ev_once *once, int revents)
1303{ 4339{
1304 void (*cb)(int revents, void *arg) = once->cb; 4340 void (*cb)(int revents, void *arg) = once->cb;
1305 void *arg = once->arg; 4341 void *arg = once->arg;
1306 4342
1307 ev_io_stop (EV_A_ &once->io); 4343 ev_io_stop (EV_A_ &once->io);
1308 ev_timer_stop (EV_A_ &once->to); 4344 ev_timer_stop (EV_A_ &once->to);
1309 free (once); 4345 ev_free (once);
1310 4346
1311 cb (revents, arg); 4347 cb (revents, arg);
1312} 4348}
1313 4349
1314static void 4350static void
1315once_cb_io (EV_P_ struct ev_io *w, int revents) 4351once_cb_io (EV_P_ ev_io *w, int revents)
1316{ 4352{
1317 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4353 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4354
4355 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1318} 4356}
1319 4357
1320static void 4358static void
1321once_cb_to (EV_P_ struct ev_timer *w, int revents) 4359once_cb_to (EV_P_ ev_timer *w, int revents)
1322{ 4360{
1323 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4361 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4362
4363 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1324} 4364}
1325 4365
1326void 4366void
1327ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4367ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
1328{ 4368{
1329 struct ev_once *once = malloc (sizeof (struct ev_once)); 4369 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1330 4370
1331 if (!once) 4371 if (expect_false (!once))
4372 {
1332 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4373 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1333 else 4374 return;
1334 { 4375 }
4376
1335 once->cb = cb; 4377 once->cb = cb;
1336 once->arg = arg; 4378 once->arg = arg;
1337 4379
1338 ev_watcher_init (&once->io, once_cb_io); 4380 ev_init (&once->io, once_cb_io);
1339 if (fd >= 0) 4381 if (fd >= 0)
4382 {
4383 ev_io_set (&once->io, fd, events);
4384 ev_io_start (EV_A_ &once->io);
4385 }
4386
4387 ev_init (&once->to, once_cb_to);
4388 if (timeout >= 0.)
4389 {
4390 ev_timer_set (&once->to, timeout, 0.);
4391 ev_timer_start (EV_A_ &once->to);
4392 }
4393}
4394
4395/*****************************************************************************/
4396
4397#if EV_WALK_ENABLE
4398void ecb_cold
4399ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4400{
4401 int i, j;
4402 ev_watcher_list *wl, *wn;
4403
4404 if (types & (EV_IO | EV_EMBED))
4405 for (i = 0; i < anfdmax; ++i)
4406 for (wl = anfds [i].head; wl; )
1340 { 4407 {
1341 ev_io_set (&once->io, fd, events); 4408 wn = wl->next;
1342 ev_io_start (EV_A_ &once->io); 4409
4410#if EV_EMBED_ENABLE
4411 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4412 {
4413 if (types & EV_EMBED)
4414 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4415 }
4416 else
4417#endif
4418#if EV_USE_INOTIFY
4419 if (ev_cb ((ev_io *)wl) == infy_cb)
4420 ;
4421 else
4422#endif
4423 if ((ev_io *)wl != &pipe_w)
4424 if (types & EV_IO)
4425 cb (EV_A_ EV_IO, wl);
4426
4427 wl = wn;
1343 } 4428 }
1344 4429
1345 ev_watcher_init (&once->to, once_cb_to); 4430 if (types & (EV_TIMER | EV_STAT))
1346 if (timeout >= 0.) 4431 for (i = timercnt + HEAP0; i-- > HEAP0; )
4432#if EV_STAT_ENABLE
4433 /*TODO: timer is not always active*/
4434 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1347 { 4435 {
1348 ev_timer_set (&once->to, timeout, 0.); 4436 if (types & EV_STAT)
1349 ev_timer_start (EV_A_ &once->to); 4437 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1350 } 4438 }
1351 } 4439 else
1352} 4440#endif
4441 if (types & EV_TIMER)
4442 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1353 4443
4444#if EV_PERIODIC_ENABLE
4445 if (types & EV_PERIODIC)
4446 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4447 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4448#endif
4449
4450#if EV_IDLE_ENABLE
4451 if (types & EV_IDLE)
4452 for (j = NUMPRI; j--; )
4453 for (i = idlecnt [j]; i--; )
4454 cb (EV_A_ EV_IDLE, idles [j][i]);
4455#endif
4456
4457#if EV_FORK_ENABLE
4458 if (types & EV_FORK)
4459 for (i = forkcnt; i--; )
4460 if (ev_cb (forks [i]) != embed_fork_cb)
4461 cb (EV_A_ EV_FORK, forks [i]);
4462#endif
4463
4464#if EV_ASYNC_ENABLE
4465 if (types & EV_ASYNC)
4466 for (i = asynccnt; i--; )
4467 cb (EV_A_ EV_ASYNC, asyncs [i]);
4468#endif
4469
4470#if EV_PREPARE_ENABLE
4471 if (types & EV_PREPARE)
4472 for (i = preparecnt; i--; )
4473# if EV_EMBED_ENABLE
4474 if (ev_cb (prepares [i]) != embed_prepare_cb)
4475# endif
4476 cb (EV_A_ EV_PREPARE, prepares [i]);
4477#endif
4478
4479#if EV_CHECK_ENABLE
4480 if (types & EV_CHECK)
4481 for (i = checkcnt; i--; )
4482 cb (EV_A_ EV_CHECK, checks [i]);
4483#endif
4484
4485#if EV_SIGNAL_ENABLE
4486 if (types & EV_SIGNAL)
4487 for (i = 0; i < EV_NSIG - 1; ++i)
4488 for (wl = signals [i].head; wl; )
4489 {
4490 wn = wl->next;
4491 cb (EV_A_ EV_SIGNAL, wl);
4492 wl = wn;
4493 }
4494#endif
4495
4496#if EV_CHILD_ENABLE
4497 if (types & EV_CHILD)
4498 for (i = (EV_PID_HASHSIZE); i--; )
4499 for (wl = childs [i]; wl; )
4500 {
4501 wn = wl->next;
4502 cb (EV_A_ EV_CHILD, wl);
4503 wl = wn;
4504 }
4505#endif
4506/* EV_STAT 0x00001000 /* stat data changed */
4507/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4508}
4509#endif
4510
4511#if EV_MULTIPLICITY
4512 #include "ev_wrap.h"
4513#endif
4514

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines