ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.255 by root, Mon Jun 9 14:11:30 2008 UTC vs.
Revision 1.434 by root, Fri May 18 00:04:52 2012 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
52# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
55# endif 71# endif
56# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
58# endif 74# endif
59# else 75# else
60# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
62# endif 78# endif
63# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
65# endif 81# endif
66# endif 82# endif
67 83
84# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
71# else 88# else
89# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
74# endif 100# endif
75 101
102# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 105# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 106# else
107# undef EV_USE_POLL
88# define EV_USE_POLL 0 108# define EV_USE_POLL 0
89# endif
90# endif 109# endif
91 110
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
95# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
98# endif 118# endif
99 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
106# endif 127# endif
107 128
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
111# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
114# endif 136# endif
115 137
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
122# endif 145# endif
123 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 148# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 149# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
130# endif 163# endif
131 164
132#endif 165#endif
133 166
134#include <math.h>
135#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
136#include <fcntl.h> 169#include <fcntl.h>
137#include <stddef.h> 170#include <stddef.h>
138 171
139#include <stdio.h> 172#include <stdio.h>
140 173
141#include <assert.h> 174#include <assert.h>
142#include <errno.h> 175#include <errno.h>
143#include <sys/types.h> 176#include <sys/types.h>
144#include <time.h> 177#include <time.h>
178#include <limits.h>
145 179
146#include <signal.h> 180#include <signal.h>
147 181
148#ifdef EV_H 182#ifdef EV_H
149# include EV_H 183# include EV_H
150#else 184#else
151# include "ev.h" 185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
152#endif 197#endif
153 198
154#ifndef _WIN32 199#ifndef _WIN32
155# include <sys/time.h> 200# include <sys/time.h>
156# include <sys/wait.h> 201# include <sys/wait.h>
157# include <unistd.h> 202# include <unistd.h>
158#else 203#else
204# include <io.h>
159# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
160# include <windows.h> 207# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 208# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 209# define EV_SELECT_IS_WINSOCKET 1
163# endif 210# endif
211# undef EV_AVOID_STDIO
164#endif 212#endif
213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
165 221
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 222/* this block tries to deduce configuration from header-defined symbols and defaults */
167 223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# error "unable to find value for NSIG, please report"
247/* to make it compile regardless, just remove the above line, */
248/* but consider reporting it, too! :) */
249# define EV_NSIG 65
250#endif
251
252#ifndef EV_USE_FLOOR
253# define EV_USE_FLOOR 0
254#endif
255
256#ifndef EV_USE_CLOCK_SYSCALL
257# if __linux && __GLIBC__ >= 2
258# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
259# else
260# define EV_USE_CLOCK_SYSCALL 0
261# endif
262#endif
263
168#ifndef EV_USE_MONOTONIC 264#ifndef EV_USE_MONOTONIC
169# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0 265# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
170# define EV_USE_MONOTONIC 1 266# define EV_USE_MONOTONIC EV_FEATURE_OS
171# else 267# else
172# define EV_USE_MONOTONIC 0 268# define EV_USE_MONOTONIC 0
173# endif 269# endif
174#endif 270#endif
175 271
176#ifndef EV_USE_REALTIME 272#ifndef EV_USE_REALTIME
177# define EV_USE_REALTIME 0 273# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
178#endif 274#endif
179 275
180#ifndef EV_USE_NANOSLEEP 276#ifndef EV_USE_NANOSLEEP
181# if _POSIX_C_SOURCE >= 199309L 277# if _POSIX_C_SOURCE >= 199309L
182# define EV_USE_NANOSLEEP 1 278# define EV_USE_NANOSLEEP EV_FEATURE_OS
183# else 279# else
184# define EV_USE_NANOSLEEP 0 280# define EV_USE_NANOSLEEP 0
185# endif 281# endif
186#endif 282#endif
187 283
188#ifndef EV_USE_SELECT 284#ifndef EV_USE_SELECT
189# define EV_USE_SELECT 1 285# define EV_USE_SELECT EV_FEATURE_BACKENDS
190#endif 286#endif
191 287
192#ifndef EV_USE_POLL 288#ifndef EV_USE_POLL
193# ifdef _WIN32 289# ifdef _WIN32
194# define EV_USE_POLL 0 290# define EV_USE_POLL 0
195# else 291# else
196# define EV_USE_POLL 1 292# define EV_USE_POLL EV_FEATURE_BACKENDS
197# endif 293# endif
198#endif 294#endif
199 295
200#ifndef EV_USE_EPOLL 296#ifndef EV_USE_EPOLL
201# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 297# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
202# define EV_USE_EPOLL 1 298# define EV_USE_EPOLL EV_FEATURE_BACKENDS
203# else 299# else
204# define EV_USE_EPOLL 0 300# define EV_USE_EPOLL 0
205# endif 301# endif
206#endif 302#endif
207 303
213# define EV_USE_PORT 0 309# define EV_USE_PORT 0
214#endif 310#endif
215 311
216#ifndef EV_USE_INOTIFY 312#ifndef EV_USE_INOTIFY
217# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 313# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
218# define EV_USE_INOTIFY 1 314# define EV_USE_INOTIFY EV_FEATURE_OS
219# else 315# else
220# define EV_USE_INOTIFY 0 316# define EV_USE_INOTIFY 0
221# endif 317# endif
222#endif 318#endif
223 319
224#ifndef EV_PID_HASHSIZE 320#ifndef EV_PID_HASHSIZE
225# if EV_MINIMAL 321# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
226# define EV_PID_HASHSIZE 1
227# else
228# define EV_PID_HASHSIZE 16
229# endif
230#endif 322#endif
231 323
232#ifndef EV_INOTIFY_HASHSIZE 324#ifndef EV_INOTIFY_HASHSIZE
233# if EV_MINIMAL 325# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
234# define EV_INOTIFY_HASHSIZE 1
235# else
236# define EV_INOTIFY_HASHSIZE 16
237# endif
238#endif 326#endif
239 327
240#ifndef EV_USE_EVENTFD 328#ifndef EV_USE_EVENTFD
241# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 329# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
242# define EV_USE_EVENTFD 1 330# define EV_USE_EVENTFD EV_FEATURE_OS
243# else 331# else
244# define EV_USE_EVENTFD 0 332# define EV_USE_EVENTFD 0
333# endif
334#endif
335
336#ifndef EV_USE_SIGNALFD
337# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
338# define EV_USE_SIGNALFD EV_FEATURE_OS
339# else
340# define EV_USE_SIGNALFD 0
245# endif 341# endif
246#endif 342#endif
247 343
248#if 0 /* debugging */ 344#if 0 /* debugging */
249# define EV_VERIFY 3 345# define EV_VERIFY 3
250# define EV_USE_4HEAP 1 346# define EV_USE_4HEAP 1
251# define EV_HEAP_CACHE_AT 1 347# define EV_HEAP_CACHE_AT 1
252#endif 348#endif
253 349
254#ifndef EV_VERIFY 350#ifndef EV_VERIFY
255# define EV_VERIFY !EV_MINIMAL 351# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
256#endif 352#endif
257 353
258#ifndef EV_USE_4HEAP 354#ifndef EV_USE_4HEAP
259# define EV_USE_4HEAP !EV_MINIMAL 355# define EV_USE_4HEAP EV_FEATURE_DATA
260#endif 356#endif
261 357
262#ifndef EV_HEAP_CACHE_AT 358#ifndef EV_HEAP_CACHE_AT
263# define EV_HEAP_CACHE_AT !EV_MINIMAL 359# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
360#endif
361
362/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
363/* which makes programs even slower. might work on other unices, too. */
364#if EV_USE_CLOCK_SYSCALL
365# include <sys/syscall.h>
366# ifdef SYS_clock_gettime
367# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
368# undef EV_USE_MONOTONIC
369# define EV_USE_MONOTONIC 1
370# else
371# undef EV_USE_CLOCK_SYSCALL
372# define EV_USE_CLOCK_SYSCALL 0
373# endif
264#endif 374#endif
265 375
266/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 376/* this block fixes any misconfiguration where we know we run into trouble otherwise */
377
378#ifdef _AIX
379/* AIX has a completely broken poll.h header */
380# undef EV_USE_POLL
381# define EV_USE_POLL 0
382#endif
267 383
268#ifndef CLOCK_MONOTONIC 384#ifndef CLOCK_MONOTONIC
269# undef EV_USE_MONOTONIC 385# undef EV_USE_MONOTONIC
270# define EV_USE_MONOTONIC 0 386# define EV_USE_MONOTONIC 0
271#endif 387#endif
279# undef EV_USE_INOTIFY 395# undef EV_USE_INOTIFY
280# define EV_USE_INOTIFY 0 396# define EV_USE_INOTIFY 0
281#endif 397#endif
282 398
283#if !EV_USE_NANOSLEEP 399#if !EV_USE_NANOSLEEP
284# ifndef _WIN32 400/* hp-ux has it in sys/time.h, which we unconditionally include above */
401# if !defined _WIN32 && !defined __hpux
285# include <sys/select.h> 402# include <sys/select.h>
286# endif 403# endif
287#endif 404#endif
288 405
289#if EV_USE_INOTIFY 406#if EV_USE_INOTIFY
407# include <sys/statfs.h>
290# include <sys/inotify.h> 408# include <sys/inotify.h>
409/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
410# ifndef IN_DONT_FOLLOW
411# undef EV_USE_INOTIFY
412# define EV_USE_INOTIFY 0
291#endif 413# endif
292
293#if EV_SELECT_IS_WINSOCKET
294# include <winsock.h>
295#endif 414#endif
296 415
297#if EV_USE_EVENTFD 416#if EV_USE_EVENTFD
298/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
299# include <stdint.h> 418# include <stdint.h>
300# ifdef __cplusplus 419# ifndef EFD_NONBLOCK
301extern "C" { 420# define EFD_NONBLOCK O_NONBLOCK
302# endif 421# endif
303int eventfd (unsigned int initval, int flags); 422# ifndef EFD_CLOEXEC
304# ifdef __cplusplus 423# ifdef O_CLOEXEC
305} 424# define EFD_CLOEXEC O_CLOEXEC
425# else
426# define EFD_CLOEXEC 02000000
427# endif
306# endif 428# endif
429EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
430#endif
431
432#if EV_USE_SIGNALFD
433/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
434# include <stdint.h>
435# ifndef SFD_NONBLOCK
436# define SFD_NONBLOCK O_NONBLOCK
437# endif
438# ifndef SFD_CLOEXEC
439# ifdef O_CLOEXEC
440# define SFD_CLOEXEC O_CLOEXEC
441# else
442# define SFD_CLOEXEC 02000000
443# endif
444# endif
445EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
446
447struct signalfd_siginfo
448{
449 uint32_t ssi_signo;
450 char pad[128 - sizeof (uint32_t)];
451};
307#endif 452#endif
308 453
309/**/ 454/**/
310 455
311#if EV_VERIFY >= 3 456#if EV_VERIFY >= 3
312# define EV_FREQUENT_CHECK ev_loop_verify (EV_A) 457# define EV_FREQUENT_CHECK ev_verify (EV_A)
313#else 458#else
314# define EV_FREQUENT_CHECK do { } while (0) 459# define EV_FREQUENT_CHECK do { } while (0)
315#endif 460#endif
316 461
317/* 462/*
318 * This is used to avoid floating point rounding problems. 463 * This is used to work around floating point rounding problems.
319 * It is added to ev_rt_now when scheduling periodics
320 * to ensure progress, time-wise, even when rounding
321 * errors are against us.
322 * This value is good at least till the year 4000. 464 * This value is good at least till the year 4000.
323 * Better solutions welcome.
324 */ 465 */
325#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 466#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
467/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
326 468
327#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 469#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
328#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 470#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
329/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
330 471
472#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
473#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
474
475/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
476/* ECB.H BEGIN */
477/*
478 * libecb - http://software.schmorp.de/pkg/libecb
479 *
480 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
481 * Copyright (©) 2011 Emanuele Giaquinta
482 * All rights reserved.
483 *
484 * Redistribution and use in source and binary forms, with or without modifica-
485 * tion, are permitted provided that the following conditions are met:
486 *
487 * 1. Redistributions of source code must retain the above copyright notice,
488 * this list of conditions and the following disclaimer.
489 *
490 * 2. Redistributions in binary form must reproduce the above copyright
491 * notice, this list of conditions and the following disclaimer in the
492 * documentation and/or other materials provided with the distribution.
493 *
494 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
495 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
496 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
497 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
498 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
499 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
500 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
501 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
502 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
503 * OF THE POSSIBILITY OF SUCH DAMAGE.
504 */
505
506#ifndef ECB_H
507#define ECB_H
508
509#ifdef _WIN32
510 typedef signed char int8_t;
511 typedef unsigned char uint8_t;
512 typedef signed short int16_t;
513 typedef unsigned short uint16_t;
514 typedef signed int int32_t;
515 typedef unsigned int uint32_t;
331#if __GNUC__ >= 4 516 #if __GNUC__
332# define expect(expr,value) __builtin_expect ((expr),(value)) 517 typedef signed long long int64_t;
333# define noinline __attribute__ ((noinline)) 518 typedef unsigned long long uint64_t;
519 #else /* _MSC_VER || __BORLANDC__ */
520 typedef signed __int64 int64_t;
521 typedef unsigned __int64 uint64_t;
522 #endif
334#else 523#else
335# define expect(expr,value) (expr) 524 #include <inttypes.h>
336# define noinline
337# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
338# define inline
339# endif 525#endif
526
527/* many compilers define _GNUC_ to some versions but then only implement
528 * what their idiot authors think are the "more important" extensions,
529 * causing enormous grief in return for some better fake benchmark numbers.
530 * or so.
531 * we try to detect these and simply assume they are not gcc - if they have
532 * an issue with that they should have done it right in the first place.
533 */
534#ifndef ECB_GCC_VERSION
535 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
536 #define ECB_GCC_VERSION(major,minor) 0
537 #else
538 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
340#endif 539 #endif
540#endif
341 541
542/*****************************************************************************/
543
544/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
545/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
546
547#if ECB_NO_THREADS
548# define ECB_NO_SMP 1
549#endif
550
551#if ECB_NO_THREADS || ECB_NO_SMP
552 #define ECB_MEMORY_FENCE do { } while (0)
553#endif
554
555#ifndef ECB_MEMORY_FENCE
556 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
557 #if __i386 || __i386__
558 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
559 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */
560 #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */
561 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
562 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
563 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
564 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */
565 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
566 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
567 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
568 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
569 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
570 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
571 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
572 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
573 #elif __sparc || __sparc__
574 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad | " : : : "memory")
575 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
576 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
577 #elif defined __s390__ || defined __s390x__
578 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
579 #elif defined __mips__
580 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
581 #elif defined __alpha__
582 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
583 #endif
584 #endif
585#endif
586
587#ifndef ECB_MEMORY_FENCE
588 #if ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
589 #define ECB_MEMORY_FENCE __sync_synchronize ()
590 /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */
591 /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); }) */
592 #elif _MSC_VER >= 1400 /* VC++ 2005 */
593 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
594 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
595 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
596 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
597 #elif defined _WIN32
598 #include <WinNT.h>
599 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
600 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
601 #include <mbarrier.h>
602 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
603 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
604 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
605 #elif __xlC__
606 #define ECB_MEMORY_FENCE __sync ()
607 #endif
608#endif
609
610#ifndef ECB_MEMORY_FENCE
611 #if !ECB_AVOID_PTHREADS
612 /*
613 * if you get undefined symbol references to pthread_mutex_lock,
614 * or failure to find pthread.h, then you should implement
615 * the ECB_MEMORY_FENCE operations for your cpu/compiler
616 * OR provide pthread.h and link against the posix thread library
617 * of your system.
618 */
619 #include <pthread.h>
620 #define ECB_NEEDS_PTHREADS 1
621 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
622
623 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
624 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
625 #endif
626#endif
627
628#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
629 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
630#endif
631
632#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
633 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
634#endif
635
636/*****************************************************************************/
637
638#define ECB_C99 (__STDC_VERSION__ >= 199901L)
639
640#if __cplusplus
641 #define ecb_inline static inline
642#elif ECB_GCC_VERSION(2,5)
643 #define ecb_inline static __inline__
644#elif ECB_C99
645 #define ecb_inline static inline
646#else
647 #define ecb_inline static
648#endif
649
650#if ECB_GCC_VERSION(3,3)
651 #define ecb_restrict __restrict__
652#elif ECB_C99
653 #define ecb_restrict restrict
654#else
655 #define ecb_restrict
656#endif
657
658typedef int ecb_bool;
659
660#define ECB_CONCAT_(a, b) a ## b
661#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
662#define ECB_STRINGIFY_(a) # a
663#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
664
665#define ecb_function_ ecb_inline
666
667#if ECB_GCC_VERSION(3,1)
668 #define ecb_attribute(attrlist) __attribute__(attrlist)
669 #define ecb_is_constant(expr) __builtin_constant_p (expr)
670 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
671 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
672#else
673 #define ecb_attribute(attrlist)
674 #define ecb_is_constant(expr) 0
675 #define ecb_expect(expr,value) (expr)
676 #define ecb_prefetch(addr,rw,locality)
677#endif
678
679/* no emulation for ecb_decltype */
680#if ECB_GCC_VERSION(4,5)
681 #define ecb_decltype(x) __decltype(x)
682#elif ECB_GCC_VERSION(3,0)
683 #define ecb_decltype(x) __typeof(x)
684#endif
685
686#define ecb_noinline ecb_attribute ((__noinline__))
687#define ecb_noreturn ecb_attribute ((__noreturn__))
688#define ecb_unused ecb_attribute ((__unused__))
689#define ecb_const ecb_attribute ((__const__))
690#define ecb_pure ecb_attribute ((__pure__))
691
692#if ECB_GCC_VERSION(4,3)
693 #define ecb_artificial ecb_attribute ((__artificial__))
694 #define ecb_hot ecb_attribute ((__hot__))
695 #define ecb_cold ecb_attribute ((__cold__))
696#else
697 #define ecb_artificial
698 #define ecb_hot
699 #define ecb_cold
700#endif
701
702/* put around conditional expressions if you are very sure that the */
703/* expression is mostly true or mostly false. note that these return */
704/* booleans, not the expression. */
342#define expect_false(expr) expect ((expr) != 0, 0) 705#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
343#define expect_true(expr) expect ((expr) != 0, 1) 706#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
707/* for compatibility to the rest of the world */
708#define ecb_likely(expr) ecb_expect_true (expr)
709#define ecb_unlikely(expr) ecb_expect_false (expr)
710
711/* count trailing zero bits and count # of one bits */
712#if ECB_GCC_VERSION(3,4)
713 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
714 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
715 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
716 #define ecb_ctz32(x) __builtin_ctz (x)
717 #define ecb_ctz64(x) __builtin_ctzll (x)
718 #define ecb_popcount32(x) __builtin_popcount (x)
719 /* no popcountll */
720#else
721 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
722 ecb_function_ int
723 ecb_ctz32 (uint32_t x)
724 {
725 int r = 0;
726
727 x &= ~x + 1; /* this isolates the lowest bit */
728
729#if ECB_branchless_on_i386
730 r += !!(x & 0xaaaaaaaa) << 0;
731 r += !!(x & 0xcccccccc) << 1;
732 r += !!(x & 0xf0f0f0f0) << 2;
733 r += !!(x & 0xff00ff00) << 3;
734 r += !!(x & 0xffff0000) << 4;
735#else
736 if (x & 0xaaaaaaaa) r += 1;
737 if (x & 0xcccccccc) r += 2;
738 if (x & 0xf0f0f0f0) r += 4;
739 if (x & 0xff00ff00) r += 8;
740 if (x & 0xffff0000) r += 16;
741#endif
742
743 return r;
744 }
745
746 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
747 ecb_function_ int
748 ecb_ctz64 (uint64_t x)
749 {
750 int shift = x & 0xffffffffU ? 0 : 32;
751 return ecb_ctz32 (x >> shift) + shift;
752 }
753
754 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
755 ecb_function_ int
756 ecb_popcount32 (uint32_t x)
757 {
758 x -= (x >> 1) & 0x55555555;
759 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
760 x = ((x >> 4) + x) & 0x0f0f0f0f;
761 x *= 0x01010101;
762
763 return x >> 24;
764 }
765
766 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
767 ecb_function_ int ecb_ld32 (uint32_t x)
768 {
769 int r = 0;
770
771 if (x >> 16) { x >>= 16; r += 16; }
772 if (x >> 8) { x >>= 8; r += 8; }
773 if (x >> 4) { x >>= 4; r += 4; }
774 if (x >> 2) { x >>= 2; r += 2; }
775 if (x >> 1) { r += 1; }
776
777 return r;
778 }
779
780 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
781 ecb_function_ int ecb_ld64 (uint64_t x)
782 {
783 int r = 0;
784
785 if (x >> 32) { x >>= 32; r += 32; }
786
787 return r + ecb_ld32 (x);
788 }
789#endif
790
791ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
792ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
793{
794 return ( (x * 0x0802U & 0x22110U)
795 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
796}
797
798ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
799ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
800{
801 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
802 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
803 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
804 x = ( x >> 8 ) | ( x << 8);
805
806 return x;
807}
808
809ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
810ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
811{
812 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
813 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
814 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
815 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
816 x = ( x >> 16 ) | ( x << 16);
817
818 return x;
819}
820
821/* popcount64 is only available on 64 bit cpus as gcc builtin */
822/* so for this version we are lazy */
823ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
824ecb_function_ int
825ecb_popcount64 (uint64_t x)
826{
827 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
828}
829
830ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
831ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
832ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
833ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
834ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
835ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
836ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
837ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
838
839ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
840ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
841ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
842ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
843ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
844ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
845ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
846ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
847
848#if ECB_GCC_VERSION(4,3)
849 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
850 #define ecb_bswap32(x) __builtin_bswap32 (x)
851 #define ecb_bswap64(x) __builtin_bswap64 (x)
852#else
853 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
854 ecb_function_ uint16_t
855 ecb_bswap16 (uint16_t x)
856 {
857 return ecb_rotl16 (x, 8);
858 }
859
860 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
861 ecb_function_ uint32_t
862 ecb_bswap32 (uint32_t x)
863 {
864 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
865 }
866
867 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
868 ecb_function_ uint64_t
869 ecb_bswap64 (uint64_t x)
870 {
871 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
872 }
873#endif
874
875#if ECB_GCC_VERSION(4,5)
876 #define ecb_unreachable() __builtin_unreachable ()
877#else
878 /* this seems to work fine, but gcc always emits a warning for it :/ */
879 ecb_inline void ecb_unreachable (void) ecb_noreturn;
880 ecb_inline void ecb_unreachable (void) { }
881#endif
882
883/* try to tell the compiler that some condition is definitely true */
884#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
885
886ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
887ecb_inline unsigned char
888ecb_byteorder_helper (void)
889{
890 const uint32_t u = 0x11223344;
891 return *(unsigned char *)&u;
892}
893
894ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
895ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
896ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
897ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
898
899#if ECB_GCC_VERSION(3,0) || ECB_C99
900 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
901#else
902 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
903#endif
904
905#if __cplusplus
906 template<typename T>
907 static inline T ecb_div_rd (T val, T div)
908 {
909 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
910 }
911 template<typename T>
912 static inline T ecb_div_ru (T val, T div)
913 {
914 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
915 }
916#else
917 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
918 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
919#endif
920
921#if ecb_cplusplus_does_not_suck
922 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
923 template<typename T, int N>
924 static inline int ecb_array_length (const T (&arr)[N])
925 {
926 return N;
927 }
928#else
929 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
930#endif
931
932#endif
933
934/* ECB.H END */
935
936#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
937/* if your architecture doesn't need memory fences, e.g. because it is
938 * single-cpu/core, or if you use libev in a project that doesn't use libev
939 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
940 * libev, in which cases the memory fences become nops.
941 * alternatively, you can remove this #error and link against libpthread,
942 * which will then provide the memory fences.
943 */
944# error "memory fences not defined for your architecture, please report"
945#endif
946
947#ifndef ECB_MEMORY_FENCE
948# define ECB_MEMORY_FENCE do { } while (0)
949# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
950# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
951#endif
952
953#define expect_false(cond) ecb_expect_false (cond)
954#define expect_true(cond) ecb_expect_true (cond)
955#define noinline ecb_noinline
956
344#define inline_size static inline 957#define inline_size ecb_inline
345 958
346#if EV_MINIMAL 959#if EV_FEATURE_CODE
960# define inline_speed ecb_inline
961#else
347# define inline_speed static noinline 962# define inline_speed static noinline
963#endif
964
965#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
966
967#if EV_MINPRI == EV_MAXPRI
968# define ABSPRI(w) (((W)w), 0)
348#else 969#else
349# define inline_speed static inline
350#endif
351
352#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
353#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 970# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
971#endif
354 972
355#define EMPTY /* required for microsofts broken pseudo-c compiler */ 973#define EMPTY /* required for microsofts broken pseudo-c compiler */
356#define EMPTY2(a,b) /* used to suppress some warnings */ 974#define EMPTY2(a,b) /* used to suppress some warnings */
357 975
358typedef ev_watcher *W; 976typedef ev_watcher *W;
360typedef ev_watcher_time *WT; 978typedef ev_watcher_time *WT;
361 979
362#define ev_active(w) ((W)(w))->active 980#define ev_active(w) ((W)(w))->active
363#define ev_at(w) ((WT)(w))->at 981#define ev_at(w) ((WT)(w))->at
364 982
983#if EV_USE_REALTIME
984/* sig_atomic_t is used to avoid per-thread variables or locking but still */
985/* giving it a reasonably high chance of working on typical architectures */
986static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
987#endif
988
365#if EV_USE_MONOTONIC 989#if EV_USE_MONOTONIC
366/* sig_atomic_t is used to avoid per-thread variables or locking but still */
367/* giving it a reasonably high chance of working on typical architetcures */
368static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 990static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
991#endif
992
993#ifndef EV_FD_TO_WIN32_HANDLE
994# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
995#endif
996#ifndef EV_WIN32_HANDLE_TO_FD
997# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
998#endif
999#ifndef EV_WIN32_CLOSE_FD
1000# define EV_WIN32_CLOSE_FD(fd) close (fd)
369#endif 1001#endif
370 1002
371#ifdef _WIN32 1003#ifdef _WIN32
372# include "ev_win32.c" 1004# include "ev_win32.c"
373#endif 1005#endif
374 1006
375/*****************************************************************************/ 1007/*****************************************************************************/
376 1008
1009/* define a suitable floor function (only used by periodics atm) */
1010
1011#if EV_USE_FLOOR
1012# include <math.h>
1013# define ev_floor(v) floor (v)
1014#else
1015
1016#include <float.h>
1017
1018/* a floor() replacement function, should be independent of ev_tstamp type */
1019static ev_tstamp noinline
1020ev_floor (ev_tstamp v)
1021{
1022 /* the choice of shift factor is not terribly important */
1023#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1024 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1025#else
1026 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1027#endif
1028
1029 /* argument too large for an unsigned long? */
1030 if (expect_false (v >= shift))
1031 {
1032 ev_tstamp f;
1033
1034 if (v == v - 1.)
1035 return v; /* very large number */
1036
1037 f = shift * ev_floor (v * (1. / shift));
1038 return f + ev_floor (v - f);
1039 }
1040
1041 /* special treatment for negative args? */
1042 if (expect_false (v < 0.))
1043 {
1044 ev_tstamp f = -ev_floor (-v);
1045
1046 return f - (f == v ? 0 : 1);
1047 }
1048
1049 /* fits into an unsigned long */
1050 return (unsigned long)v;
1051}
1052
1053#endif
1054
1055/*****************************************************************************/
1056
1057#ifdef __linux
1058# include <sys/utsname.h>
1059#endif
1060
1061static unsigned int noinline ecb_cold
1062ev_linux_version (void)
1063{
1064#ifdef __linux
1065 unsigned int v = 0;
1066 struct utsname buf;
1067 int i;
1068 char *p = buf.release;
1069
1070 if (uname (&buf))
1071 return 0;
1072
1073 for (i = 3+1; --i; )
1074 {
1075 unsigned int c = 0;
1076
1077 for (;;)
1078 {
1079 if (*p >= '0' && *p <= '9')
1080 c = c * 10 + *p++ - '0';
1081 else
1082 {
1083 p += *p == '.';
1084 break;
1085 }
1086 }
1087
1088 v = (v << 8) | c;
1089 }
1090
1091 return v;
1092#else
1093 return 0;
1094#endif
1095}
1096
1097/*****************************************************************************/
1098
1099#if EV_AVOID_STDIO
1100static void noinline ecb_cold
1101ev_printerr (const char *msg)
1102{
1103 write (STDERR_FILENO, msg, strlen (msg));
1104}
1105#endif
1106
377static void (*syserr_cb)(const char *msg); 1107static void (*syserr_cb)(const char *msg) EV_THROW;
378 1108
379void 1109void ecb_cold
380ev_set_syserr_cb (void (*cb)(const char *msg)) 1110ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
381{ 1111{
382 syserr_cb = cb; 1112 syserr_cb = cb;
383} 1113}
384 1114
385static void noinline 1115static void noinline ecb_cold
386syserr (const char *msg) 1116ev_syserr (const char *msg)
387{ 1117{
388 if (!msg) 1118 if (!msg)
389 msg = "(libev) system error"; 1119 msg = "(libev) system error";
390 1120
391 if (syserr_cb) 1121 if (syserr_cb)
392 syserr_cb (msg); 1122 syserr_cb (msg);
393 else 1123 else
394 { 1124 {
1125#if EV_AVOID_STDIO
1126 ev_printerr (msg);
1127 ev_printerr (": ");
1128 ev_printerr (strerror (errno));
1129 ev_printerr ("\n");
1130#else
395 perror (msg); 1131 perror (msg);
1132#endif
396 abort (); 1133 abort ();
397 } 1134 }
398} 1135}
399 1136
400static void * 1137static void *
401ev_realloc_emul (void *ptr, long size) 1138ev_realloc_emul (void *ptr, long size) EV_THROW
402{ 1139{
1140#if __GLIBC__
1141 return realloc (ptr, size);
1142#else
403 /* some systems, notably openbsd and darwin, fail to properly 1143 /* some systems, notably openbsd and darwin, fail to properly
404 * implement realloc (x, 0) (as required by both ansi c-98 and 1144 * implement realloc (x, 0) (as required by both ansi c-89 and
405 * the single unix specification, so work around them here. 1145 * the single unix specification, so work around them here.
406 */ 1146 */
407 1147
408 if (size) 1148 if (size)
409 return realloc (ptr, size); 1149 return realloc (ptr, size);
410 1150
411 free (ptr); 1151 free (ptr);
412 return 0; 1152 return 0;
1153#endif
413} 1154}
414 1155
415static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 1156static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
416 1157
417void 1158void ecb_cold
418ev_set_allocator (void *(*cb)(void *ptr, long size)) 1159ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
419{ 1160{
420 alloc = cb; 1161 alloc = cb;
421} 1162}
422 1163
423inline_speed void * 1164inline_speed void *
425{ 1166{
426 ptr = alloc (ptr, size); 1167 ptr = alloc (ptr, size);
427 1168
428 if (!ptr && size) 1169 if (!ptr && size)
429 { 1170 {
1171#if EV_AVOID_STDIO
1172 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1173#else
430 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1174 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1175#endif
431 abort (); 1176 abort ();
432 } 1177 }
433 1178
434 return ptr; 1179 return ptr;
435} 1180}
437#define ev_malloc(size) ev_realloc (0, (size)) 1182#define ev_malloc(size) ev_realloc (0, (size))
438#define ev_free(ptr) ev_realloc ((ptr), 0) 1183#define ev_free(ptr) ev_realloc ((ptr), 0)
439 1184
440/*****************************************************************************/ 1185/*****************************************************************************/
441 1186
1187/* set in reify when reification needed */
1188#define EV_ANFD_REIFY 1
1189
1190/* file descriptor info structure */
442typedef struct 1191typedef struct
443{ 1192{
444 WL head; 1193 WL head;
445 unsigned char events; 1194 unsigned char events; /* the events watched for */
1195 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1196 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
446 unsigned char reify; 1197 unsigned char unused;
1198#if EV_USE_EPOLL
1199 unsigned int egen; /* generation counter to counter epoll bugs */
1200#endif
447#if EV_SELECT_IS_WINSOCKET 1201#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
448 SOCKET handle; 1202 SOCKET handle;
449#endif 1203#endif
1204#if EV_USE_IOCP
1205 OVERLAPPED or, ow;
1206#endif
450} ANFD; 1207} ANFD;
451 1208
1209/* stores the pending event set for a given watcher */
452typedef struct 1210typedef struct
453{ 1211{
454 W w; 1212 W w;
455 int events; 1213 int events; /* the pending event set for the given watcher */
456} ANPENDING; 1214} ANPENDING;
457 1215
458#if EV_USE_INOTIFY 1216#if EV_USE_INOTIFY
459/* hash table entry per inotify-id */ 1217/* hash table entry per inotify-id */
460typedef struct 1218typedef struct
463} ANFS; 1221} ANFS;
464#endif 1222#endif
465 1223
466/* Heap Entry */ 1224/* Heap Entry */
467#if EV_HEAP_CACHE_AT 1225#if EV_HEAP_CACHE_AT
1226 /* a heap element */
468 typedef struct { 1227 typedef struct {
469 ev_tstamp at; 1228 ev_tstamp at;
470 WT w; 1229 WT w;
471 } ANHE; 1230 } ANHE;
472 1231
473 #define ANHE_w(he) (he).w /* access watcher, read-write */ 1232 #define ANHE_w(he) (he).w /* access watcher, read-write */
474 #define ANHE_at(he) (he).at /* access cached at, read-only */ 1233 #define ANHE_at(he) (he).at /* access cached at, read-only */
475 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 1234 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
476#else 1235#else
1236 /* a heap element */
477 typedef WT ANHE; 1237 typedef WT ANHE;
478 1238
479 #define ANHE_w(he) (he) 1239 #define ANHE_w(he) (he)
480 #define ANHE_at(he) (he)->at 1240 #define ANHE_at(he) (he)->at
481 #define ANHE_at_cache(he) 1241 #define ANHE_at_cache(he)
492 #undef VAR 1252 #undef VAR
493 }; 1253 };
494 #include "ev_wrap.h" 1254 #include "ev_wrap.h"
495 1255
496 static struct ev_loop default_loop_struct; 1256 static struct ev_loop default_loop_struct;
497 struct ev_loop *ev_default_loop_ptr; 1257 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
498 1258
499#else 1259#else
500 1260
501 ev_tstamp ev_rt_now; 1261 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
502 #define VAR(name,decl) static decl; 1262 #define VAR(name,decl) static decl;
503 #include "ev_vars.h" 1263 #include "ev_vars.h"
504 #undef VAR 1264 #undef VAR
505 1265
506 static int ev_default_loop_ptr; 1266 static int ev_default_loop_ptr;
507 1267
508#endif 1268#endif
509 1269
1270#if EV_FEATURE_API
1271# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1272# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1273# define EV_INVOKE_PENDING invoke_cb (EV_A)
1274#else
1275# define EV_RELEASE_CB (void)0
1276# define EV_ACQUIRE_CB (void)0
1277# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1278#endif
1279
1280#define EVBREAK_RECURSE 0x80
1281
510/*****************************************************************************/ 1282/*****************************************************************************/
511 1283
1284#ifndef EV_HAVE_EV_TIME
512ev_tstamp 1285ev_tstamp
513ev_time (void) 1286ev_time (void) EV_THROW
514{ 1287{
515#if EV_USE_REALTIME 1288#if EV_USE_REALTIME
1289 if (expect_true (have_realtime))
1290 {
516 struct timespec ts; 1291 struct timespec ts;
517 clock_gettime (CLOCK_REALTIME, &ts); 1292 clock_gettime (CLOCK_REALTIME, &ts);
518 return ts.tv_sec + ts.tv_nsec * 1e-9; 1293 return ts.tv_sec + ts.tv_nsec * 1e-9;
519#else 1294 }
1295#endif
1296
520 struct timeval tv; 1297 struct timeval tv;
521 gettimeofday (&tv, 0); 1298 gettimeofday (&tv, 0);
522 return tv.tv_sec + tv.tv_usec * 1e-6; 1299 return tv.tv_sec + tv.tv_usec * 1e-6;
523#endif
524} 1300}
1301#endif
525 1302
526ev_tstamp inline_size 1303inline_size ev_tstamp
527get_clock (void) 1304get_clock (void)
528{ 1305{
529#if EV_USE_MONOTONIC 1306#if EV_USE_MONOTONIC
530 if (expect_true (have_monotonic)) 1307 if (expect_true (have_monotonic))
531 { 1308 {
538 return ev_time (); 1315 return ev_time ();
539} 1316}
540 1317
541#if EV_MULTIPLICITY 1318#if EV_MULTIPLICITY
542ev_tstamp 1319ev_tstamp
543ev_now (EV_P) 1320ev_now (EV_P) EV_THROW
544{ 1321{
545 return ev_rt_now; 1322 return ev_rt_now;
546} 1323}
547#endif 1324#endif
548 1325
549void 1326void
550ev_sleep (ev_tstamp delay) 1327ev_sleep (ev_tstamp delay) EV_THROW
551{ 1328{
552 if (delay > 0.) 1329 if (delay > 0.)
553 { 1330 {
554#if EV_USE_NANOSLEEP 1331#if EV_USE_NANOSLEEP
555 struct timespec ts; 1332 struct timespec ts;
556 1333
557 ts.tv_sec = (time_t)delay; 1334 EV_TS_SET (ts, delay);
558 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
559
560 nanosleep (&ts, 0); 1335 nanosleep (&ts, 0);
561#elif defined(_WIN32) 1336#elif defined _WIN32
562 Sleep ((unsigned long)(delay * 1e3)); 1337 Sleep ((unsigned long)(delay * 1e3));
563#else 1338#else
564 struct timeval tv; 1339 struct timeval tv;
565 1340
566 tv.tv_sec = (time_t)delay; 1341 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
567 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 1342 /* something not guaranteed by newer posix versions, but guaranteed */
568 1343 /* by older ones */
1344 EV_TV_SET (tv, delay);
569 select (0, 0, 0, 0, &tv); 1345 select (0, 0, 0, 0, &tv);
570#endif 1346#endif
571 } 1347 }
572} 1348}
573 1349
574/*****************************************************************************/ 1350/*****************************************************************************/
575 1351
576#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 1352#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
577 1353
578int inline_size 1354/* find a suitable new size for the given array, */
1355/* hopefully by rounding to a nice-to-malloc size */
1356inline_size int
579array_nextsize (int elem, int cur, int cnt) 1357array_nextsize (int elem, int cur, int cnt)
580{ 1358{
581 int ncur = cur + 1; 1359 int ncur = cur + 1;
582 1360
583 do 1361 do
584 ncur <<= 1; 1362 ncur <<= 1;
585 while (cnt > ncur); 1363 while (cnt > ncur);
586 1364
587 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */ 1365 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
588 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4) 1366 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
589 { 1367 {
590 ncur *= elem; 1368 ncur *= elem;
591 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1); 1369 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
592 ncur = ncur - sizeof (void *) * 4; 1370 ncur = ncur - sizeof (void *) * 4;
594 } 1372 }
595 1373
596 return ncur; 1374 return ncur;
597} 1375}
598 1376
599static noinline void * 1377static void * noinline ecb_cold
600array_realloc (int elem, void *base, int *cur, int cnt) 1378array_realloc (int elem, void *base, int *cur, int cnt)
601{ 1379{
602 *cur = array_nextsize (elem, *cur, cnt); 1380 *cur = array_nextsize (elem, *cur, cnt);
603 return ev_realloc (base, elem * *cur); 1381 return ev_realloc (base, elem * *cur);
604} 1382}
1383
1384#define array_init_zero(base,count) \
1385 memset ((void *)(base), 0, sizeof (*(base)) * (count))
605 1386
606#define array_needsize(type,base,cur,cnt,init) \ 1387#define array_needsize(type,base,cur,cnt,init) \
607 if (expect_false ((cnt) > (cur))) \ 1388 if (expect_false ((cnt) > (cur))) \
608 { \ 1389 { \
609 int ocur_ = (cur); \ 1390 int ecb_unused ocur_ = (cur); \
610 (base) = (type *)array_realloc \ 1391 (base) = (type *)array_realloc \
611 (sizeof (type), (base), &(cur), (cnt)); \ 1392 (sizeof (type), (base), &(cur), (cnt)); \
612 init ((base) + (ocur_), (cur) - ocur_); \ 1393 init ((base) + (ocur_), (cur) - ocur_); \
613 } 1394 }
614 1395
621 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1402 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
622 } 1403 }
623#endif 1404#endif
624 1405
625#define array_free(stem, idx) \ 1406#define array_free(stem, idx) \
626 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1407 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
627 1408
628/*****************************************************************************/ 1409/*****************************************************************************/
629 1410
1411/* dummy callback for pending events */
1412static void noinline
1413pendingcb (EV_P_ ev_prepare *w, int revents)
1414{
1415}
1416
630void noinline 1417void noinline
631ev_feed_event (EV_P_ void *w, int revents) 1418ev_feed_event (EV_P_ void *w, int revents) EV_THROW
632{ 1419{
633 W w_ = (W)w; 1420 W w_ = (W)w;
634 int pri = ABSPRI (w_); 1421 int pri = ABSPRI (w_);
635 1422
636 if (expect_false (w_->pending)) 1423 if (expect_false (w_->pending))
640 w_->pending = ++pendingcnt [pri]; 1427 w_->pending = ++pendingcnt [pri];
641 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 1428 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
642 pendings [pri][w_->pending - 1].w = w_; 1429 pendings [pri][w_->pending - 1].w = w_;
643 pendings [pri][w_->pending - 1].events = revents; 1430 pendings [pri][w_->pending - 1].events = revents;
644 } 1431 }
645}
646 1432
647void inline_speed 1433 pendingpri = NUMPRI - 1;
1434}
1435
1436inline_speed void
1437feed_reverse (EV_P_ W w)
1438{
1439 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1440 rfeeds [rfeedcnt++] = w;
1441}
1442
1443inline_size void
1444feed_reverse_done (EV_P_ int revents)
1445{
1446 do
1447 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1448 while (rfeedcnt);
1449}
1450
1451inline_speed void
648queue_events (EV_P_ W *events, int eventcnt, int type) 1452queue_events (EV_P_ W *events, int eventcnt, int type)
649{ 1453{
650 int i; 1454 int i;
651 1455
652 for (i = 0; i < eventcnt; ++i) 1456 for (i = 0; i < eventcnt; ++i)
653 ev_feed_event (EV_A_ events [i], type); 1457 ev_feed_event (EV_A_ events [i], type);
654} 1458}
655 1459
656/*****************************************************************************/ 1460/*****************************************************************************/
657 1461
658void inline_size 1462inline_speed void
659anfds_init (ANFD *base, int count)
660{
661 while (count--)
662 {
663 base->head = 0;
664 base->events = EV_NONE;
665 base->reify = 0;
666
667 ++base;
668 }
669}
670
671void inline_speed
672fd_event (EV_P_ int fd, int revents) 1463fd_event_nocheck (EV_P_ int fd, int revents)
673{ 1464{
674 ANFD *anfd = anfds + fd; 1465 ANFD *anfd = anfds + fd;
675 ev_io *w; 1466 ev_io *w;
676 1467
677 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1468 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
681 if (ev) 1472 if (ev)
682 ev_feed_event (EV_A_ (W)w, ev); 1473 ev_feed_event (EV_A_ (W)w, ev);
683 } 1474 }
684} 1475}
685 1476
1477/* do not submit kernel events for fds that have reify set */
1478/* because that means they changed while we were polling for new events */
1479inline_speed void
1480fd_event (EV_P_ int fd, int revents)
1481{
1482 ANFD *anfd = anfds + fd;
1483
1484 if (expect_true (!anfd->reify))
1485 fd_event_nocheck (EV_A_ fd, revents);
1486}
1487
686void 1488void
687ev_feed_fd_event (EV_P_ int fd, int revents) 1489ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
688{ 1490{
689 if (fd >= 0 && fd < anfdmax) 1491 if (fd >= 0 && fd < anfdmax)
690 fd_event (EV_A_ fd, revents); 1492 fd_event_nocheck (EV_A_ fd, revents);
691} 1493}
692 1494
693void inline_size 1495/* make sure the external fd watch events are in-sync */
1496/* with the kernel/libev internal state */
1497inline_size void
694fd_reify (EV_P) 1498fd_reify (EV_P)
695{ 1499{
696 int i; 1500 int i;
1501
1502#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1503 for (i = 0; i < fdchangecnt; ++i)
1504 {
1505 int fd = fdchanges [i];
1506 ANFD *anfd = anfds + fd;
1507
1508 if (anfd->reify & EV__IOFDSET && anfd->head)
1509 {
1510 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1511
1512 if (handle != anfd->handle)
1513 {
1514 unsigned long arg;
1515
1516 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1517
1518 /* handle changed, but fd didn't - we need to do it in two steps */
1519 backend_modify (EV_A_ fd, anfd->events, 0);
1520 anfd->events = 0;
1521 anfd->handle = handle;
1522 }
1523 }
1524 }
1525#endif
697 1526
698 for (i = 0; i < fdchangecnt; ++i) 1527 for (i = 0; i < fdchangecnt; ++i)
699 { 1528 {
700 int fd = fdchanges [i]; 1529 int fd = fdchanges [i];
701 ANFD *anfd = anfds + fd; 1530 ANFD *anfd = anfds + fd;
702 ev_io *w; 1531 ev_io *w;
703 1532
704 unsigned char events = 0; 1533 unsigned char o_events = anfd->events;
1534 unsigned char o_reify = anfd->reify;
705 1535
706 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1536 anfd->reify = 0;
707 events |= (unsigned char)w->events;
708 1537
709#if EV_SELECT_IS_WINSOCKET 1538 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
710 if (events)
711 { 1539 {
712 unsigned long arg; 1540 anfd->events = 0;
713 #ifdef EV_FD_TO_WIN32_HANDLE 1541
714 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1542 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
715 #else 1543 anfd->events |= (unsigned char)w->events;
716 anfd->handle = _get_osfhandle (fd); 1544
717 #endif 1545 if (o_events != anfd->events)
718 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0)); 1546 o_reify = EV__IOFDSET; /* actually |= */
719 } 1547 }
720#endif
721 1548
722 { 1549 if (o_reify & EV__IOFDSET)
723 unsigned char o_events = anfd->events;
724 unsigned char o_reify = anfd->reify;
725
726 anfd->reify = 0;
727 anfd->events = events;
728
729 if (o_events != events || o_reify & EV_IOFDSET)
730 backend_modify (EV_A_ fd, o_events, events); 1550 backend_modify (EV_A_ fd, o_events, anfd->events);
731 }
732 } 1551 }
733 1552
734 fdchangecnt = 0; 1553 fdchangecnt = 0;
735} 1554}
736 1555
737void inline_size 1556/* something about the given fd changed */
1557inline_size void
738fd_change (EV_P_ int fd, int flags) 1558fd_change (EV_P_ int fd, int flags)
739{ 1559{
740 unsigned char reify = anfds [fd].reify; 1560 unsigned char reify = anfds [fd].reify;
741 anfds [fd].reify |= flags; 1561 anfds [fd].reify |= flags;
742 1562
746 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1566 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
747 fdchanges [fdchangecnt - 1] = fd; 1567 fdchanges [fdchangecnt - 1] = fd;
748 } 1568 }
749} 1569}
750 1570
751void inline_speed 1571/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1572inline_speed void ecb_cold
752fd_kill (EV_P_ int fd) 1573fd_kill (EV_P_ int fd)
753{ 1574{
754 ev_io *w; 1575 ev_io *w;
755 1576
756 while ((w = (ev_io *)anfds [fd].head)) 1577 while ((w = (ev_io *)anfds [fd].head))
758 ev_io_stop (EV_A_ w); 1579 ev_io_stop (EV_A_ w);
759 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1580 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
760 } 1581 }
761} 1582}
762 1583
763int inline_size 1584/* check whether the given fd is actually valid, for error recovery */
1585inline_size int ecb_cold
764fd_valid (int fd) 1586fd_valid (int fd)
765{ 1587{
766#ifdef _WIN32 1588#ifdef _WIN32
767 return _get_osfhandle (fd) != -1; 1589 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
768#else 1590#else
769 return fcntl (fd, F_GETFD) != -1; 1591 return fcntl (fd, F_GETFD) != -1;
770#endif 1592#endif
771} 1593}
772 1594
773/* called on EBADF to verify fds */ 1595/* called on EBADF to verify fds */
774static void noinline 1596static void noinline ecb_cold
775fd_ebadf (EV_P) 1597fd_ebadf (EV_P)
776{ 1598{
777 int fd; 1599 int fd;
778 1600
779 for (fd = 0; fd < anfdmax; ++fd) 1601 for (fd = 0; fd < anfdmax; ++fd)
781 if (!fd_valid (fd) && errno == EBADF) 1603 if (!fd_valid (fd) && errno == EBADF)
782 fd_kill (EV_A_ fd); 1604 fd_kill (EV_A_ fd);
783} 1605}
784 1606
785/* called on ENOMEM in select/poll to kill some fds and retry */ 1607/* called on ENOMEM in select/poll to kill some fds and retry */
786static void noinline 1608static void noinline ecb_cold
787fd_enomem (EV_P) 1609fd_enomem (EV_P)
788{ 1610{
789 int fd; 1611 int fd;
790 1612
791 for (fd = anfdmax; fd--; ) 1613 for (fd = anfdmax; fd--; )
792 if (anfds [fd].events) 1614 if (anfds [fd].events)
793 { 1615 {
794 fd_kill (EV_A_ fd); 1616 fd_kill (EV_A_ fd);
795 return; 1617 break;
796 } 1618 }
797} 1619}
798 1620
799/* usually called after fork if backend needs to re-arm all fds from scratch */ 1621/* usually called after fork if backend needs to re-arm all fds from scratch */
800static void noinline 1622static void noinline
804 1626
805 for (fd = 0; fd < anfdmax; ++fd) 1627 for (fd = 0; fd < anfdmax; ++fd)
806 if (anfds [fd].events) 1628 if (anfds [fd].events)
807 { 1629 {
808 anfds [fd].events = 0; 1630 anfds [fd].events = 0;
1631 anfds [fd].emask = 0;
809 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1632 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
810 } 1633 }
811} 1634}
812 1635
1636/* used to prepare libev internal fd's */
1637/* this is not fork-safe */
1638inline_speed void
1639fd_intern (int fd)
1640{
1641#ifdef _WIN32
1642 unsigned long arg = 1;
1643 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1644#else
1645 fcntl (fd, F_SETFD, FD_CLOEXEC);
1646 fcntl (fd, F_SETFL, O_NONBLOCK);
1647#endif
1648}
1649
813/*****************************************************************************/ 1650/*****************************************************************************/
814 1651
815/* 1652/*
816 * the heap functions want a real array index. array index 0 uis guaranteed to not 1653 * the heap functions want a real array index. array index 0 is guaranteed to not
817 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 1654 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
818 * the branching factor of the d-tree. 1655 * the branching factor of the d-tree.
819 */ 1656 */
820 1657
821/* 1658/*
830#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1667#define HEAP0 (DHEAP - 1) /* index of first element in heap */
831#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 1668#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
832#define UPHEAP_DONE(p,k) ((p) == (k)) 1669#define UPHEAP_DONE(p,k) ((p) == (k))
833 1670
834/* away from the root */ 1671/* away from the root */
835void inline_speed 1672inline_speed void
836downheap (ANHE *heap, int N, int k) 1673downheap (ANHE *heap, int N, int k)
837{ 1674{
838 ANHE he = heap [k]; 1675 ANHE he = heap [k];
839 ANHE *E = heap + N + HEAP0; 1676 ANHE *E = heap + N + HEAP0;
840 1677
880#define HEAP0 1 1717#define HEAP0 1
881#define HPARENT(k) ((k) >> 1) 1718#define HPARENT(k) ((k) >> 1)
882#define UPHEAP_DONE(p,k) (!(p)) 1719#define UPHEAP_DONE(p,k) (!(p))
883 1720
884/* away from the root */ 1721/* away from the root */
885void inline_speed 1722inline_speed void
886downheap (ANHE *heap, int N, int k) 1723downheap (ANHE *heap, int N, int k)
887{ 1724{
888 ANHE he = heap [k]; 1725 ANHE he = heap [k];
889 1726
890 for (;;) 1727 for (;;)
891 { 1728 {
892 int c = k << 1; 1729 int c = k << 1;
893 1730
894 if (c > N + HEAP0 - 1) 1731 if (c >= N + HEAP0)
895 break; 1732 break;
896 1733
897 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 1734 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
898 ? 1 : 0; 1735 ? 1 : 0;
899 1736
910 ev_active (ANHE_w (he)) = k; 1747 ev_active (ANHE_w (he)) = k;
911} 1748}
912#endif 1749#endif
913 1750
914/* towards the root */ 1751/* towards the root */
915void inline_speed 1752inline_speed void
916upheap (ANHE *heap, int k) 1753upheap (ANHE *heap, int k)
917{ 1754{
918 ANHE he = heap [k]; 1755 ANHE he = heap [k];
919 1756
920 for (;;) 1757 for (;;)
931 1768
932 heap [k] = he; 1769 heap [k] = he;
933 ev_active (ANHE_w (he)) = k; 1770 ev_active (ANHE_w (he)) = k;
934} 1771}
935 1772
936void inline_size 1773/* move an element suitably so it is in a correct place */
1774inline_size void
937adjustheap (ANHE *heap, int N, int k) 1775adjustheap (ANHE *heap, int N, int k)
938{ 1776{
939 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 1777 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
940 upheap (heap, k); 1778 upheap (heap, k);
941 else 1779 else
942 downheap (heap, N, k); 1780 downheap (heap, N, k);
943} 1781}
944 1782
945/* rebuild the heap: this function is used only once and executed rarely */ 1783/* rebuild the heap: this function is used only once and executed rarely */
946void inline_size 1784inline_size void
947reheap (ANHE *heap, int N) 1785reheap (ANHE *heap, int N)
948{ 1786{
949 int i; 1787 int i;
950 1788
951 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 1789 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
954 upheap (heap, i + HEAP0); 1792 upheap (heap, i + HEAP0);
955} 1793}
956 1794
957/*****************************************************************************/ 1795/*****************************************************************************/
958 1796
1797/* associate signal watchers to a signal signal */
959typedef struct 1798typedef struct
960{ 1799{
1800 EV_ATOMIC_T pending;
1801#if EV_MULTIPLICITY
1802 EV_P;
1803#endif
961 WL head; 1804 WL head;
962 EV_ATOMIC_T gotsig;
963} ANSIG; 1805} ANSIG;
964 1806
965static ANSIG *signals; 1807static ANSIG signals [EV_NSIG - 1];
966static int signalmax;
967
968static EV_ATOMIC_T gotsig;
969
970void inline_size
971signals_init (ANSIG *base, int count)
972{
973 while (count--)
974 {
975 base->head = 0;
976 base->gotsig = 0;
977
978 ++base;
979 }
980}
981 1808
982/*****************************************************************************/ 1809/*****************************************************************************/
983 1810
984void inline_speed 1811#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
985fd_intern (int fd)
986{
987#ifdef _WIN32
988 unsigned long arg = 1;
989 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
990#else
991 fcntl (fd, F_SETFD, FD_CLOEXEC);
992 fcntl (fd, F_SETFL, O_NONBLOCK);
993#endif
994}
995 1812
996static void noinline 1813static void noinline ecb_cold
997evpipe_init (EV_P) 1814evpipe_init (EV_P)
998{ 1815{
999 if (!ev_is_active (&pipeev)) 1816 if (!ev_is_active (&pipe_w))
1000 { 1817 {
1001#if EV_USE_EVENTFD 1818# if EV_USE_EVENTFD
1819 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1820 if (evfd < 0 && errno == EINVAL)
1002 if ((evfd = eventfd (0, 0)) >= 0) 1821 evfd = eventfd (0, 0);
1822
1823 if (evfd >= 0)
1003 { 1824 {
1004 evpipe [0] = -1; 1825 evpipe [0] = -1;
1005 fd_intern (evfd); 1826 fd_intern (evfd); /* doing it twice doesn't hurt */
1006 ev_io_set (&pipeev, evfd, EV_READ); 1827 ev_io_set (&pipe_w, evfd, EV_READ);
1007 } 1828 }
1008 else 1829 else
1009#endif 1830# endif
1010 { 1831 {
1011 while (pipe (evpipe)) 1832 while (pipe (evpipe))
1012 syserr ("(libev) error creating signal/async pipe"); 1833 ev_syserr ("(libev) error creating signal/async pipe");
1013 1834
1014 fd_intern (evpipe [0]); 1835 fd_intern (evpipe [0]);
1015 fd_intern (evpipe [1]); 1836 fd_intern (evpipe [1]);
1016 ev_io_set (&pipeev, evpipe [0], EV_READ); 1837 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1017 } 1838 }
1018 1839
1019 ev_io_start (EV_A_ &pipeev); 1840 ev_io_start (EV_A_ &pipe_w);
1020 ev_unref (EV_A); /* watcher should not keep loop alive */ 1841 ev_unref (EV_A); /* watcher should not keep loop alive */
1021 } 1842 }
1022} 1843}
1023 1844
1024void inline_size 1845inline_speed void
1025evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1846evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1026{ 1847{
1027 if (!*flag) 1848 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
1849
1850 if (expect_true (*flag))
1851 return;
1852
1853 *flag = 1;
1854
1855 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1856
1857 pipe_write_skipped = 1;
1858
1859 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1860
1861 if (pipe_write_wanted)
1028 { 1862 {
1863 int old_errno;
1864
1865 pipe_write_skipped = 0; /* just an optimisation, no fence needed */
1866
1029 int old_errno = errno; /* save errno because write might clobber it */ 1867 old_errno = errno; /* save errno because write will clobber it */
1030
1031 *flag = 1;
1032 1868
1033#if EV_USE_EVENTFD 1869#if EV_USE_EVENTFD
1034 if (evfd >= 0) 1870 if (evfd >= 0)
1035 { 1871 {
1036 uint64_t counter = 1; 1872 uint64_t counter = 1;
1037 write (evfd, &counter, sizeof (uint64_t)); 1873 write (evfd, &counter, sizeof (uint64_t));
1038 } 1874 }
1039 else 1875 else
1040#endif 1876#endif
1877 {
1878#ifdef _WIN32
1879 WSABUF buf;
1880 DWORD sent;
1881 buf.buf = &buf;
1882 buf.len = 1;
1883 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
1884#else
1041 write (evpipe [1], &old_errno, 1); 1885 write (evpipe [1], &(evpipe [1]), 1);
1886#endif
1887 }
1042 1888
1043 errno = old_errno; 1889 errno = old_errno;
1044 } 1890 }
1045} 1891}
1046 1892
1893/* called whenever the libev signal pipe */
1894/* got some events (signal, async) */
1047static void 1895static void
1048pipecb (EV_P_ ev_io *iow, int revents) 1896pipecb (EV_P_ ev_io *iow, int revents)
1049{ 1897{
1898 int i;
1899
1900 if (revents & EV_READ)
1901 {
1050#if EV_USE_EVENTFD 1902#if EV_USE_EVENTFD
1051 if (evfd >= 0) 1903 if (evfd >= 0)
1052 { 1904 {
1053 uint64_t counter; 1905 uint64_t counter;
1054 read (evfd, &counter, sizeof (uint64_t)); 1906 read (evfd, &counter, sizeof (uint64_t));
1055 } 1907 }
1056 else 1908 else
1057#endif 1909#endif
1058 { 1910 {
1059 char dummy; 1911 char dummy[4];
1912#ifdef _WIN32
1913 WSABUF buf;
1914 DWORD recvd;
1915 DWORD flags = 0;
1916 buf.buf = dummy;
1917 buf.len = sizeof (dummy);
1918 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
1919#else
1060 read (evpipe [0], &dummy, 1); 1920 read (evpipe [0], &dummy, sizeof (dummy));
1921#endif
1922 }
1923 }
1924
1925 pipe_write_skipped = 0;
1926
1927 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
1928
1929#if EV_SIGNAL_ENABLE
1930 if (sig_pending)
1061 } 1931 {
1932 sig_pending = 0;
1062 1933
1063 if (gotsig && ev_is_default_loop (EV_A)) 1934 ECB_MEMORY_FENCE_RELEASE;
1064 {
1065 int signum;
1066 gotsig = 0;
1067 1935
1068 for (signum = signalmax; signum--; ) 1936 for (i = EV_NSIG - 1; i--; )
1069 if (signals [signum].gotsig) 1937 if (expect_false (signals [i].pending))
1070 ev_feed_signal_event (EV_A_ signum + 1); 1938 ev_feed_signal_event (EV_A_ i + 1);
1071 } 1939 }
1940#endif
1072 1941
1073#if EV_ASYNC_ENABLE 1942#if EV_ASYNC_ENABLE
1074 if (gotasync) 1943 if (async_pending)
1075 { 1944 {
1076 int i; 1945 async_pending = 0;
1077 gotasync = 0; 1946
1947 ECB_MEMORY_FENCE_RELEASE;
1078 1948
1079 for (i = asynccnt; i--; ) 1949 for (i = asynccnt; i--; )
1080 if (asyncs [i]->sent) 1950 if (asyncs [i]->sent)
1081 { 1951 {
1082 asyncs [i]->sent = 0; 1952 asyncs [i]->sent = 0;
1086#endif 1956#endif
1087} 1957}
1088 1958
1089/*****************************************************************************/ 1959/*****************************************************************************/
1090 1960
1961void
1962ev_feed_signal (int signum) EV_THROW
1963{
1964#if EV_MULTIPLICITY
1965 EV_P = signals [signum - 1].loop;
1966
1967 if (!EV_A)
1968 return;
1969#endif
1970
1971 if (!ev_active (&pipe_w))
1972 return;
1973
1974 signals [signum - 1].pending = 1;
1975 evpipe_write (EV_A_ &sig_pending);
1976}
1977
1091static void 1978static void
1092ev_sighandler (int signum) 1979ev_sighandler (int signum)
1093{ 1980{
1981#ifdef _WIN32
1982 signal (signum, ev_sighandler);
1983#endif
1984
1985 ev_feed_signal (signum);
1986}
1987
1988void noinline
1989ev_feed_signal_event (EV_P_ int signum) EV_THROW
1990{
1991 WL w;
1992
1993 if (expect_false (signum <= 0 || signum > EV_NSIG))
1994 return;
1995
1996 --signum;
1997
1094#if EV_MULTIPLICITY 1998#if EV_MULTIPLICITY
1095 struct ev_loop *loop = &default_loop_struct; 1999 /* it is permissible to try to feed a signal to the wrong loop */
1096#endif 2000 /* or, likely more useful, feeding a signal nobody is waiting for */
1097 2001
1098#if _WIN32 2002 if (expect_false (signals [signum].loop != EV_A))
1099 signal (signum, ev_sighandler);
1100#endif
1101
1102 signals [signum - 1].gotsig = 1;
1103 evpipe_write (EV_A_ &gotsig);
1104}
1105
1106void noinline
1107ev_feed_signal_event (EV_P_ int signum)
1108{
1109 WL w;
1110
1111#if EV_MULTIPLICITY
1112 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1113#endif
1114
1115 --signum;
1116
1117 if (signum < 0 || signum >= signalmax)
1118 return; 2003 return;
2004#endif
1119 2005
1120 signals [signum].gotsig = 0; 2006 signals [signum].pending = 0;
1121 2007
1122 for (w = signals [signum].head; w; w = w->next) 2008 for (w = signals [signum].head; w; w = w->next)
1123 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2009 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1124} 2010}
1125 2011
2012#if EV_USE_SIGNALFD
2013static void
2014sigfdcb (EV_P_ ev_io *iow, int revents)
2015{
2016 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2017
2018 for (;;)
2019 {
2020 ssize_t res = read (sigfd, si, sizeof (si));
2021
2022 /* not ISO-C, as res might be -1, but works with SuS */
2023 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2024 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2025
2026 if (res < (ssize_t)sizeof (si))
2027 break;
2028 }
2029}
2030#endif
2031
2032#endif
2033
1126/*****************************************************************************/ 2034/*****************************************************************************/
1127 2035
2036#if EV_CHILD_ENABLE
1128static WL childs [EV_PID_HASHSIZE]; 2037static WL childs [EV_PID_HASHSIZE];
1129
1130#ifndef _WIN32
1131 2038
1132static ev_signal childev; 2039static ev_signal childev;
1133 2040
1134#ifndef WIFCONTINUED 2041#ifndef WIFCONTINUED
1135# define WIFCONTINUED(status) 0 2042# define WIFCONTINUED(status) 0
1136#endif 2043#endif
1137 2044
1138void inline_speed 2045/* handle a single child status event */
2046inline_speed void
1139child_reap (EV_P_ int chain, int pid, int status) 2047child_reap (EV_P_ int chain, int pid, int status)
1140{ 2048{
1141 ev_child *w; 2049 ev_child *w;
1142 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2050 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1143 2051
1144 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2052 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1145 { 2053 {
1146 if ((w->pid == pid || !w->pid) 2054 if ((w->pid == pid || !w->pid)
1147 && (!traced || (w->flags & 1))) 2055 && (!traced || (w->flags & 1)))
1148 { 2056 {
1149 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 2057 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1156 2064
1157#ifndef WCONTINUED 2065#ifndef WCONTINUED
1158# define WCONTINUED 0 2066# define WCONTINUED 0
1159#endif 2067#endif
1160 2068
2069/* called on sigchld etc., calls waitpid */
1161static void 2070static void
1162childcb (EV_P_ ev_signal *sw, int revents) 2071childcb (EV_P_ ev_signal *sw, int revents)
1163{ 2072{
1164 int pid, status; 2073 int pid, status;
1165 2074
1173 /* make sure we are called again until all children have been reaped */ 2082 /* make sure we are called again until all children have been reaped */
1174 /* we need to do it this way so that the callback gets called before we continue */ 2083 /* we need to do it this way so that the callback gets called before we continue */
1175 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2084 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1176 2085
1177 child_reap (EV_A_ pid, pid, status); 2086 child_reap (EV_A_ pid, pid, status);
1178 if (EV_PID_HASHSIZE > 1) 2087 if ((EV_PID_HASHSIZE) > 1)
1179 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2088 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1180} 2089}
1181 2090
1182#endif 2091#endif
1183 2092
1184/*****************************************************************************/ 2093/*****************************************************************************/
1185 2094
2095#if EV_USE_IOCP
2096# include "ev_iocp.c"
2097#endif
1186#if EV_USE_PORT 2098#if EV_USE_PORT
1187# include "ev_port.c" 2099# include "ev_port.c"
1188#endif 2100#endif
1189#if EV_USE_KQUEUE 2101#if EV_USE_KQUEUE
1190# include "ev_kqueue.c" 2102# include "ev_kqueue.c"
1197#endif 2109#endif
1198#if EV_USE_SELECT 2110#if EV_USE_SELECT
1199# include "ev_select.c" 2111# include "ev_select.c"
1200#endif 2112#endif
1201 2113
1202int 2114int ecb_cold
1203ev_version_major (void) 2115ev_version_major (void) EV_THROW
1204{ 2116{
1205 return EV_VERSION_MAJOR; 2117 return EV_VERSION_MAJOR;
1206} 2118}
1207 2119
1208int 2120int ecb_cold
1209ev_version_minor (void) 2121ev_version_minor (void) EV_THROW
1210{ 2122{
1211 return EV_VERSION_MINOR; 2123 return EV_VERSION_MINOR;
1212} 2124}
1213 2125
1214/* return true if we are running with elevated privileges and should ignore env variables */ 2126/* return true if we are running with elevated privileges and should ignore env variables */
1215int inline_size 2127int inline_size ecb_cold
1216enable_secure (void) 2128enable_secure (void)
1217{ 2129{
1218#ifdef _WIN32 2130#ifdef _WIN32
1219 return 0; 2131 return 0;
1220#else 2132#else
1221 return getuid () != geteuid () 2133 return getuid () != geteuid ()
1222 || getgid () != getegid (); 2134 || getgid () != getegid ();
1223#endif 2135#endif
1224} 2136}
1225 2137
1226unsigned int 2138unsigned int ecb_cold
1227ev_supported_backends (void) 2139ev_supported_backends (void) EV_THROW
1228{ 2140{
1229 unsigned int flags = 0; 2141 unsigned int flags = 0;
1230 2142
1231 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2143 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1232 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2144 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1235 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2147 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1236 2148
1237 return flags; 2149 return flags;
1238} 2150}
1239 2151
1240unsigned int 2152unsigned int ecb_cold
1241ev_recommended_backends (void) 2153ev_recommended_backends (void) EV_THROW
1242{ 2154{
1243 unsigned int flags = ev_supported_backends (); 2155 unsigned int flags = ev_supported_backends ();
1244 2156
1245#ifndef __NetBSD__ 2157#ifndef __NetBSD__
1246 /* kqueue is borked on everything but netbsd apparently */ 2158 /* kqueue is borked on everything but netbsd apparently */
1247 /* it usually doesn't work correctly on anything but sockets and pipes */ 2159 /* it usually doesn't work correctly on anything but sockets and pipes */
1248 flags &= ~EVBACKEND_KQUEUE; 2160 flags &= ~EVBACKEND_KQUEUE;
1249#endif 2161#endif
1250#ifdef __APPLE__ 2162#ifdef __APPLE__
1251 // flags &= ~EVBACKEND_KQUEUE; for documentation 2163 /* only select works correctly on that "unix-certified" platform */
1252 flags &= ~EVBACKEND_POLL; 2164 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2165 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2166#endif
2167#ifdef __FreeBSD__
2168 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1253#endif 2169#endif
1254 2170
1255 return flags; 2171 return flags;
1256} 2172}
1257 2173
2174unsigned int ecb_cold
2175ev_embeddable_backends (void) EV_THROW
2176{
2177 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2178
2179 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2180 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2181 flags &= ~EVBACKEND_EPOLL;
2182
2183 return flags;
2184}
2185
1258unsigned int 2186unsigned int
1259ev_embeddable_backends (void) 2187ev_backend (EV_P) EV_THROW
1260{ 2188{
1261 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2189 return backend;
1262
1263 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1264 /* please fix it and tell me how to detect the fix */
1265 flags &= ~EVBACKEND_EPOLL;
1266
1267 return flags;
1268} 2190}
1269 2191
2192#if EV_FEATURE_API
1270unsigned int 2193unsigned int
1271ev_backend (EV_P) 2194ev_iteration (EV_P) EV_THROW
1272{ 2195{
1273 return backend; 2196 return loop_count;
1274} 2197}
1275 2198
1276unsigned int 2199unsigned int
1277ev_loop_count (EV_P) 2200ev_depth (EV_P) EV_THROW
1278{ 2201{
1279 return loop_count; 2202 return loop_depth;
1280} 2203}
1281 2204
1282void 2205void
1283ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2206ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1284{ 2207{
1285 io_blocktime = interval; 2208 io_blocktime = interval;
1286} 2209}
1287 2210
1288void 2211void
1289ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2212ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1290{ 2213{
1291 timeout_blocktime = interval; 2214 timeout_blocktime = interval;
1292} 2215}
1293 2216
2217void
2218ev_set_userdata (EV_P_ void *data) EV_THROW
2219{
2220 userdata = data;
2221}
2222
2223void *
2224ev_userdata (EV_P) EV_THROW
2225{
2226 return userdata;
2227}
2228
2229void
2230ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2231{
2232 invoke_cb = invoke_pending_cb;
2233}
2234
2235void
2236ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2237{
2238 release_cb = release;
2239 acquire_cb = acquire;
2240}
2241#endif
2242
2243/* initialise a loop structure, must be zero-initialised */
1294static void noinline 2244static void noinline ecb_cold
1295loop_init (EV_P_ unsigned int flags) 2245loop_init (EV_P_ unsigned int flags) EV_THROW
1296{ 2246{
1297 if (!backend) 2247 if (!backend)
1298 { 2248 {
2249 origflags = flags;
2250
2251#if EV_USE_REALTIME
2252 if (!have_realtime)
2253 {
2254 struct timespec ts;
2255
2256 if (!clock_gettime (CLOCK_REALTIME, &ts))
2257 have_realtime = 1;
2258 }
2259#endif
2260
1299#if EV_USE_MONOTONIC 2261#if EV_USE_MONOTONIC
2262 if (!have_monotonic)
1300 { 2263 {
1301 struct timespec ts; 2264 struct timespec ts;
2265
1302 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2266 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1303 have_monotonic = 1; 2267 have_monotonic = 1;
1304 } 2268 }
1305#endif
1306
1307 ev_rt_now = ev_time ();
1308 mn_now = get_clock ();
1309 now_floor = mn_now;
1310 rtmn_diff = ev_rt_now - mn_now;
1311
1312 io_blocktime = 0.;
1313 timeout_blocktime = 0.;
1314 backend = 0;
1315 backend_fd = -1;
1316 gotasync = 0;
1317#if EV_USE_INOTIFY
1318 fs_fd = -2;
1319#endif 2269#endif
1320 2270
1321 /* pid check not overridable via env */ 2271 /* pid check not overridable via env */
1322#ifndef _WIN32 2272#ifndef _WIN32
1323 if (flags & EVFLAG_FORKCHECK) 2273 if (flags & EVFLAG_FORKCHECK)
1327 if (!(flags & EVFLAG_NOENV) 2277 if (!(flags & EVFLAG_NOENV)
1328 && !enable_secure () 2278 && !enable_secure ()
1329 && getenv ("LIBEV_FLAGS")) 2279 && getenv ("LIBEV_FLAGS"))
1330 flags = atoi (getenv ("LIBEV_FLAGS")); 2280 flags = atoi (getenv ("LIBEV_FLAGS"));
1331 2281
1332 if (!(flags & 0x0000ffffU)) 2282 ev_rt_now = ev_time ();
2283 mn_now = get_clock ();
2284 now_floor = mn_now;
2285 rtmn_diff = ev_rt_now - mn_now;
2286#if EV_FEATURE_API
2287 invoke_cb = ev_invoke_pending;
2288#endif
2289
2290 io_blocktime = 0.;
2291 timeout_blocktime = 0.;
2292 backend = 0;
2293 backend_fd = -1;
2294 sig_pending = 0;
2295#if EV_ASYNC_ENABLE
2296 async_pending = 0;
2297#endif
2298 pipe_write_skipped = 0;
2299 pipe_write_wanted = 0;
2300#if EV_USE_INOTIFY
2301 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2302#endif
2303#if EV_USE_SIGNALFD
2304 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2305#endif
2306
2307 if (!(flags & EVBACKEND_MASK))
1333 flags |= ev_recommended_backends (); 2308 flags |= ev_recommended_backends ();
1334 2309
2310#if EV_USE_IOCP
2311 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2312#endif
1335#if EV_USE_PORT 2313#if EV_USE_PORT
1336 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2314 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1337#endif 2315#endif
1338#if EV_USE_KQUEUE 2316#if EV_USE_KQUEUE
1339 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2317 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1346#endif 2324#endif
1347#if EV_USE_SELECT 2325#if EV_USE_SELECT
1348 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2326 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1349#endif 2327#endif
1350 2328
2329 ev_prepare_init (&pending_w, pendingcb);
2330
2331#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1351 ev_init (&pipeev, pipecb); 2332 ev_init (&pipe_w, pipecb);
1352 ev_set_priority (&pipeev, EV_MAXPRI); 2333 ev_set_priority (&pipe_w, EV_MAXPRI);
2334#endif
1353 } 2335 }
1354} 2336}
1355 2337
1356static void noinline 2338/* free up a loop structure */
2339void ecb_cold
1357loop_destroy (EV_P) 2340ev_loop_destroy (EV_P)
1358{ 2341{
1359 int i; 2342 int i;
1360 2343
2344#if EV_MULTIPLICITY
2345 /* mimic free (0) */
2346 if (!EV_A)
2347 return;
2348#endif
2349
2350#if EV_CLEANUP_ENABLE
2351 /* queue cleanup watchers (and execute them) */
2352 if (expect_false (cleanupcnt))
2353 {
2354 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2355 EV_INVOKE_PENDING;
2356 }
2357#endif
2358
2359#if EV_CHILD_ENABLE
2360 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2361 {
2362 ev_ref (EV_A); /* child watcher */
2363 ev_signal_stop (EV_A_ &childev);
2364 }
2365#endif
2366
1361 if (ev_is_active (&pipeev)) 2367 if (ev_is_active (&pipe_w))
1362 { 2368 {
1363 ev_ref (EV_A); /* signal watcher */ 2369 /*ev_ref (EV_A);*/
1364 ev_io_stop (EV_A_ &pipeev); 2370 /*ev_io_stop (EV_A_ &pipe_w);*/
1365 2371
1366#if EV_USE_EVENTFD 2372#if EV_USE_EVENTFD
1367 if (evfd >= 0) 2373 if (evfd >= 0)
1368 close (evfd); 2374 close (evfd);
1369#endif 2375#endif
1370 2376
1371 if (evpipe [0] >= 0) 2377 if (evpipe [0] >= 0)
1372 { 2378 {
1373 close (evpipe [0]); 2379 EV_WIN32_CLOSE_FD (evpipe [0]);
1374 close (evpipe [1]); 2380 EV_WIN32_CLOSE_FD (evpipe [1]);
1375 } 2381 }
1376 } 2382 }
2383
2384#if EV_USE_SIGNALFD
2385 if (ev_is_active (&sigfd_w))
2386 close (sigfd);
2387#endif
1377 2388
1378#if EV_USE_INOTIFY 2389#if EV_USE_INOTIFY
1379 if (fs_fd >= 0) 2390 if (fs_fd >= 0)
1380 close (fs_fd); 2391 close (fs_fd);
1381#endif 2392#endif
1382 2393
1383 if (backend_fd >= 0) 2394 if (backend_fd >= 0)
1384 close (backend_fd); 2395 close (backend_fd);
1385 2396
2397#if EV_USE_IOCP
2398 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2399#endif
1386#if EV_USE_PORT 2400#if EV_USE_PORT
1387 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2401 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1388#endif 2402#endif
1389#if EV_USE_KQUEUE 2403#if EV_USE_KQUEUE
1390 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2404 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1405#if EV_IDLE_ENABLE 2419#if EV_IDLE_ENABLE
1406 array_free (idle, [i]); 2420 array_free (idle, [i]);
1407#endif 2421#endif
1408 } 2422 }
1409 2423
1410 ev_free (anfds); anfdmax = 0; 2424 ev_free (anfds); anfds = 0; anfdmax = 0;
1411 2425
1412 /* have to use the microsoft-never-gets-it-right macro */ 2426 /* have to use the microsoft-never-gets-it-right macro */
2427 array_free (rfeed, EMPTY);
1413 array_free (fdchange, EMPTY); 2428 array_free (fdchange, EMPTY);
1414 array_free (timer, EMPTY); 2429 array_free (timer, EMPTY);
1415#if EV_PERIODIC_ENABLE 2430#if EV_PERIODIC_ENABLE
1416 array_free (periodic, EMPTY); 2431 array_free (periodic, EMPTY);
1417#endif 2432#endif
1418#if EV_FORK_ENABLE 2433#if EV_FORK_ENABLE
1419 array_free (fork, EMPTY); 2434 array_free (fork, EMPTY);
1420#endif 2435#endif
2436#if EV_CLEANUP_ENABLE
2437 array_free (cleanup, EMPTY);
2438#endif
1421 array_free (prepare, EMPTY); 2439 array_free (prepare, EMPTY);
1422 array_free (check, EMPTY); 2440 array_free (check, EMPTY);
1423#if EV_ASYNC_ENABLE 2441#if EV_ASYNC_ENABLE
1424 array_free (async, EMPTY); 2442 array_free (async, EMPTY);
1425#endif 2443#endif
1426 2444
1427 backend = 0; 2445 backend = 0;
2446
2447#if EV_MULTIPLICITY
2448 if (ev_is_default_loop (EV_A))
2449#endif
2450 ev_default_loop_ptr = 0;
2451#if EV_MULTIPLICITY
2452 else
2453 ev_free (EV_A);
2454#endif
1428} 2455}
1429 2456
1430#if EV_USE_INOTIFY 2457#if EV_USE_INOTIFY
1431void inline_size infy_fork (EV_P); 2458inline_size void infy_fork (EV_P);
1432#endif 2459#endif
1433 2460
1434void inline_size 2461inline_size void
1435loop_fork (EV_P) 2462loop_fork (EV_P)
1436{ 2463{
1437#if EV_USE_PORT 2464#if EV_USE_PORT
1438 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2465 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1439#endif 2466#endif
1445#endif 2472#endif
1446#if EV_USE_INOTIFY 2473#if EV_USE_INOTIFY
1447 infy_fork (EV_A); 2474 infy_fork (EV_A);
1448#endif 2475#endif
1449 2476
1450 if (ev_is_active (&pipeev)) 2477 if (ev_is_active (&pipe_w))
1451 { 2478 {
1452 /* this "locks" the handlers against writing to the pipe */ 2479 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1453 /* while we modify the fd vars */
1454 gotsig = 1;
1455#if EV_ASYNC_ENABLE
1456 gotasync = 1;
1457#endif
1458 2480
1459 ev_ref (EV_A); 2481 ev_ref (EV_A);
1460 ev_io_stop (EV_A_ &pipeev); 2482 ev_io_stop (EV_A_ &pipe_w);
1461 2483
1462#if EV_USE_EVENTFD 2484#if EV_USE_EVENTFD
1463 if (evfd >= 0) 2485 if (evfd >= 0)
1464 close (evfd); 2486 close (evfd);
1465#endif 2487#endif
1466 2488
1467 if (evpipe [0] >= 0) 2489 if (evpipe [0] >= 0)
1468 { 2490 {
1469 close (evpipe [0]); 2491 EV_WIN32_CLOSE_FD (evpipe [0]);
1470 close (evpipe [1]); 2492 EV_WIN32_CLOSE_FD (evpipe [1]);
1471 } 2493 }
1472 2494
2495#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1473 evpipe_init (EV_A); 2496 evpipe_init (EV_A);
1474 /* now iterate over everything, in case we missed something */ 2497 /* now iterate over everything, in case we missed something */
1475 pipecb (EV_A_ &pipeev, EV_READ); 2498 pipecb (EV_A_ &pipe_w, EV_READ);
2499#endif
1476 } 2500 }
1477 2501
1478 postfork = 0; 2502 postfork = 0;
1479} 2503}
1480 2504
1481#if EV_MULTIPLICITY 2505#if EV_MULTIPLICITY
1482 2506
1483struct ev_loop * 2507struct ev_loop * ecb_cold
1484ev_loop_new (unsigned int flags) 2508ev_loop_new (unsigned int flags) EV_THROW
1485{ 2509{
1486 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2510 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1487 2511
1488 memset (loop, 0, sizeof (struct ev_loop)); 2512 memset (EV_A, 0, sizeof (struct ev_loop));
1489
1490 loop_init (EV_A_ flags); 2513 loop_init (EV_A_ flags);
1491 2514
1492 if (ev_backend (EV_A)) 2515 if (ev_backend (EV_A))
1493 return loop; 2516 return EV_A;
1494 2517
2518 ev_free (EV_A);
1495 return 0; 2519 return 0;
1496} 2520}
1497 2521
1498void 2522#endif /* multiplicity */
1499ev_loop_destroy (EV_P)
1500{
1501 loop_destroy (EV_A);
1502 ev_free (loop);
1503}
1504
1505void
1506ev_loop_fork (EV_P)
1507{
1508 postfork = 1; /* must be in line with ev_default_fork */
1509}
1510 2523
1511#if EV_VERIFY 2524#if EV_VERIFY
1512void noinline 2525static void noinline ecb_cold
1513verify_watcher (EV_P_ W w) 2526verify_watcher (EV_P_ W w)
1514{ 2527{
1515 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI)); 2528 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1516 2529
1517 if (w->pending) 2530 if (w->pending)
1518 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w)); 2531 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1519} 2532}
1520 2533
1521static void noinline 2534static void noinline ecb_cold
1522verify_heap (EV_P_ ANHE *heap, int N) 2535verify_heap (EV_P_ ANHE *heap, int N)
1523{ 2536{
1524 int i; 2537 int i;
1525 2538
1526 for (i = HEAP0; i < N + HEAP0; ++i) 2539 for (i = HEAP0; i < N + HEAP0; ++i)
1527 { 2540 {
1528 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i)); 2541 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1529 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i]))); 2542 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1530 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i])))); 2543 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1531 2544
1532 verify_watcher (EV_A_ (W)ANHE_w (heap [i])); 2545 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1533 } 2546 }
1534} 2547}
1535 2548
1536static void noinline 2549static void noinline ecb_cold
1537array_verify (EV_P_ W *ws, int cnt) 2550array_verify (EV_P_ W *ws, int cnt)
1538{ 2551{
1539 while (cnt--) 2552 while (cnt--)
1540 { 2553 {
1541 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1)); 2554 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1542 verify_watcher (EV_A_ ws [cnt]); 2555 verify_watcher (EV_A_ ws [cnt]);
1543 } 2556 }
1544} 2557}
1545#endif 2558#endif
1546 2559
1547void 2560#if EV_FEATURE_API
1548ev_loop_verify (EV_P) 2561void ecb_cold
2562ev_verify (EV_P) EV_THROW
1549{ 2563{
1550#if EV_VERIFY 2564#if EV_VERIFY
1551 int i; 2565 int i;
1552 WL w; 2566 WL w, w2;
1553 2567
1554 assert (activecnt >= -1); 2568 assert (activecnt >= -1);
1555 2569
1556 assert (fdchangemax >= fdchangecnt); 2570 assert (fdchangemax >= fdchangecnt);
1557 for (i = 0; i < fdchangecnt; ++i) 2571 for (i = 0; i < fdchangecnt; ++i)
1558 assert (("negative fd in fdchanges", fdchanges [i] >= 0)); 2572 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1559 2573
1560 assert (anfdmax >= 0); 2574 assert (anfdmax >= 0);
1561 for (i = 0; i < anfdmax; ++i) 2575 for (i = 0; i < anfdmax; ++i)
2576 {
2577 int j = 0;
2578
1562 for (w = anfds [i].head; w; w = w->next) 2579 for (w = w2 = anfds [i].head; w; w = w->next)
1563 { 2580 {
1564 verify_watcher (EV_A_ (W)w); 2581 verify_watcher (EV_A_ (W)w);
2582
2583 if (j++ & 1)
2584 {
2585 assert (("libev: io watcher list contains a loop", w != w2));
2586 w2 = w2->next;
2587 }
2588
1565 assert (("inactive fd watcher on anfd list", ev_active (w) == 1)); 2589 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1566 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i)); 2590 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1567 } 2591 }
2592 }
1568 2593
1569 assert (timermax >= timercnt); 2594 assert (timermax >= timercnt);
1570 verify_heap (EV_A_ timers, timercnt); 2595 verify_heap (EV_A_ timers, timercnt);
1571 2596
1572#if EV_PERIODIC_ENABLE 2597#if EV_PERIODIC_ENABLE
1587#if EV_FORK_ENABLE 2612#if EV_FORK_ENABLE
1588 assert (forkmax >= forkcnt); 2613 assert (forkmax >= forkcnt);
1589 array_verify (EV_A_ (W *)forks, forkcnt); 2614 array_verify (EV_A_ (W *)forks, forkcnt);
1590#endif 2615#endif
1591 2616
2617#if EV_CLEANUP_ENABLE
2618 assert (cleanupmax >= cleanupcnt);
2619 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2620#endif
2621
1592#if EV_ASYNC_ENABLE 2622#if EV_ASYNC_ENABLE
1593 assert (asyncmax >= asynccnt); 2623 assert (asyncmax >= asynccnt);
1594 array_verify (EV_A_ (W *)asyncs, asynccnt); 2624 array_verify (EV_A_ (W *)asyncs, asynccnt);
1595#endif 2625#endif
1596 2626
2627#if EV_PREPARE_ENABLE
1597 assert (preparemax >= preparecnt); 2628 assert (preparemax >= preparecnt);
1598 array_verify (EV_A_ (W *)prepares, preparecnt); 2629 array_verify (EV_A_ (W *)prepares, preparecnt);
2630#endif
1599 2631
2632#if EV_CHECK_ENABLE
1600 assert (checkmax >= checkcnt); 2633 assert (checkmax >= checkcnt);
1601 array_verify (EV_A_ (W *)checks, checkcnt); 2634 array_verify (EV_A_ (W *)checks, checkcnt);
2635#endif
1602 2636
1603# if 0 2637# if 0
2638#if EV_CHILD_ENABLE
1604 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2639 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1605 for (signum = signalmax; signum--; ) if (signals [signum].gotsig) 2640 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2641#endif
1606# endif 2642# endif
1607#endif 2643#endif
1608} 2644}
1609 2645#endif
1610#endif /* multiplicity */
1611 2646
1612#if EV_MULTIPLICITY 2647#if EV_MULTIPLICITY
1613struct ev_loop * 2648struct ev_loop * ecb_cold
1614ev_default_loop_init (unsigned int flags)
1615#else 2649#else
1616int 2650int
2651#endif
1617ev_default_loop (unsigned int flags) 2652ev_default_loop (unsigned int flags) EV_THROW
1618#endif
1619{ 2653{
1620 if (!ev_default_loop_ptr) 2654 if (!ev_default_loop_ptr)
1621 { 2655 {
1622#if EV_MULTIPLICITY 2656#if EV_MULTIPLICITY
1623 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2657 EV_P = ev_default_loop_ptr = &default_loop_struct;
1624#else 2658#else
1625 ev_default_loop_ptr = 1; 2659 ev_default_loop_ptr = 1;
1626#endif 2660#endif
1627 2661
1628 loop_init (EV_A_ flags); 2662 loop_init (EV_A_ flags);
1629 2663
1630 if (ev_backend (EV_A)) 2664 if (ev_backend (EV_A))
1631 { 2665 {
1632#ifndef _WIN32 2666#if EV_CHILD_ENABLE
1633 ev_signal_init (&childev, childcb, SIGCHLD); 2667 ev_signal_init (&childev, childcb, SIGCHLD);
1634 ev_set_priority (&childev, EV_MAXPRI); 2668 ev_set_priority (&childev, EV_MAXPRI);
1635 ev_signal_start (EV_A_ &childev); 2669 ev_signal_start (EV_A_ &childev);
1636 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2670 ev_unref (EV_A); /* child watcher should not keep loop alive */
1637#endif 2671#endif
1642 2676
1643 return ev_default_loop_ptr; 2677 return ev_default_loop_ptr;
1644} 2678}
1645 2679
1646void 2680void
1647ev_default_destroy (void) 2681ev_loop_fork (EV_P) EV_THROW
1648{ 2682{
1649#if EV_MULTIPLICITY
1650 struct ev_loop *loop = ev_default_loop_ptr;
1651#endif
1652
1653#ifndef _WIN32
1654 ev_ref (EV_A); /* child watcher */
1655 ev_signal_stop (EV_A_ &childev);
1656#endif
1657
1658 loop_destroy (EV_A);
1659}
1660
1661void
1662ev_default_fork (void)
1663{
1664#if EV_MULTIPLICITY
1665 struct ev_loop *loop = ev_default_loop_ptr;
1666#endif
1667
1668 if (backend)
1669 postfork = 1; /* must be in line with ev_loop_fork */ 2683 postfork = 1; /* must be in line with ev_default_fork */
1670} 2684}
1671 2685
1672/*****************************************************************************/ 2686/*****************************************************************************/
1673 2687
1674void 2688void
1675ev_invoke (EV_P_ void *w, int revents) 2689ev_invoke (EV_P_ void *w, int revents)
1676{ 2690{
1677 EV_CB_INVOKE ((W)w, revents); 2691 EV_CB_INVOKE ((W)w, revents);
1678} 2692}
1679 2693
1680void inline_speed 2694unsigned int
1681call_pending (EV_P) 2695ev_pending_count (EV_P) EV_THROW
1682{ 2696{
1683 int pri; 2697 int pri;
2698 unsigned int count = 0;
1684 2699
1685 for (pri = NUMPRI; pri--; ) 2700 for (pri = NUMPRI; pri--; )
2701 count += pendingcnt [pri];
2702
2703 return count;
2704}
2705
2706void noinline
2707ev_invoke_pending (EV_P)
2708{
2709 for (pendingpri = NUMPRI; pendingpri--; ) /* pendingpri is modified during the loop */
1686 while (pendingcnt [pri]) 2710 while (pendingcnt [pendingpri])
1687 { 2711 {
1688 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2712 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1689 2713
1690 if (expect_true (p->w))
1691 {
1692 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1693
1694 p->w->pending = 0; 2714 p->w->pending = 0;
1695 EV_CB_INVOKE (p->w, p->events); 2715 EV_CB_INVOKE (p->w, p->events);
1696 EV_FREQUENT_CHECK; 2716 EV_FREQUENT_CHECK;
1697 }
1698 } 2717 }
1699} 2718}
1700 2719
1701#if EV_IDLE_ENABLE 2720#if EV_IDLE_ENABLE
1702void inline_size 2721/* make idle watchers pending. this handles the "call-idle */
2722/* only when higher priorities are idle" logic */
2723inline_size void
1703idle_reify (EV_P) 2724idle_reify (EV_P)
1704{ 2725{
1705 if (expect_false (idleall)) 2726 if (expect_false (idleall))
1706 { 2727 {
1707 int pri; 2728 int pri;
1719 } 2740 }
1720 } 2741 }
1721} 2742}
1722#endif 2743#endif
1723 2744
1724void inline_size 2745/* make timers pending */
2746inline_size void
1725timers_reify (EV_P) 2747timers_reify (EV_P)
1726{ 2748{
1727 EV_FREQUENT_CHECK; 2749 EV_FREQUENT_CHECK;
1728 2750
1729 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 2751 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1730 { 2752 {
1731 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 2753 do
1732
1733 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1734
1735 /* first reschedule or stop timer */
1736 if (w->repeat)
1737 { 2754 {
2755 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2756
2757 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2758
2759 /* first reschedule or stop timer */
2760 if (w->repeat)
2761 {
1738 ev_at (w) += w->repeat; 2762 ev_at (w) += w->repeat;
1739 if (ev_at (w) < mn_now) 2763 if (ev_at (w) < mn_now)
1740 ev_at (w) = mn_now; 2764 ev_at (w) = mn_now;
1741 2765
1742 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2766 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1743 2767
1744 ANHE_at_cache (timers [HEAP0]); 2768 ANHE_at_cache (timers [HEAP0]);
1745 downheap (timers, timercnt, HEAP0); 2769 downheap (timers, timercnt, HEAP0);
2770 }
2771 else
2772 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2773
2774 EV_FREQUENT_CHECK;
2775 feed_reverse (EV_A_ (W)w);
1746 } 2776 }
1747 else 2777 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1748 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1749 2778
1750 EV_FREQUENT_CHECK; 2779 feed_reverse_done (EV_A_ EV_TIMER);
1751 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1752 } 2780 }
1753} 2781}
1754 2782
1755#if EV_PERIODIC_ENABLE 2783#if EV_PERIODIC_ENABLE
1756void inline_size 2784
2785static void noinline
2786periodic_recalc (EV_P_ ev_periodic *w)
2787{
2788 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2789 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2790
2791 /* the above almost always errs on the low side */
2792 while (at <= ev_rt_now)
2793 {
2794 ev_tstamp nat = at + w->interval;
2795
2796 /* when resolution fails us, we use ev_rt_now */
2797 if (expect_false (nat == at))
2798 {
2799 at = ev_rt_now;
2800 break;
2801 }
2802
2803 at = nat;
2804 }
2805
2806 ev_at (w) = at;
2807}
2808
2809/* make periodics pending */
2810inline_size void
1757periodics_reify (EV_P) 2811periodics_reify (EV_P)
1758{ 2812{
1759 EV_FREQUENT_CHECK; 2813 EV_FREQUENT_CHECK;
1760 2814
1761 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 2815 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1762 { 2816 {
1763 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 2817 int feed_count = 0;
1764 2818
1765 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2819 do
1766
1767 /* first reschedule or stop timer */
1768 if (w->reschedule_cb)
1769 { 2820 {
2821 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2822
2823 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2824
2825 /* first reschedule or stop timer */
2826 if (w->reschedule_cb)
2827 {
1770 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2828 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1771 2829
1772 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 2830 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1773 2831
1774 ANHE_at_cache (periodics [HEAP0]); 2832 ANHE_at_cache (periodics [HEAP0]);
1775 downheap (periodics, periodiccnt, HEAP0); 2833 downheap (periodics, periodiccnt, HEAP0);
2834 }
2835 else if (w->interval)
2836 {
2837 periodic_recalc (EV_A_ w);
2838 ANHE_at_cache (periodics [HEAP0]);
2839 downheap (periodics, periodiccnt, HEAP0);
2840 }
2841 else
2842 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2843
2844 EV_FREQUENT_CHECK;
2845 feed_reverse (EV_A_ (W)w);
1776 } 2846 }
1777 else if (w->interval) 2847 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1778 {
1779 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1780 /* if next trigger time is not sufficiently in the future, put it there */
1781 /* this might happen because of floating point inexactness */
1782 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1783 {
1784 ev_at (w) += w->interval;
1785 2848
1786 /* if interval is unreasonably low we might still have a time in the past */
1787 /* so correct this. this will make the periodic very inexact, but the user */
1788 /* has effectively asked to get triggered more often than possible */
1789 if (ev_at (w) < ev_rt_now)
1790 ev_at (w) = ev_rt_now;
1791 }
1792
1793 ANHE_at_cache (periodics [HEAP0]);
1794 downheap (periodics, periodiccnt, HEAP0);
1795 }
1796 else
1797 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1798
1799 EV_FREQUENT_CHECK;
1800 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2849 feed_reverse_done (EV_A_ EV_PERIODIC);
1801 } 2850 }
1802} 2851}
1803 2852
2853/* simply recalculate all periodics */
2854/* TODO: maybe ensure that at least one event happens when jumping forward? */
1804static void noinline 2855static void noinline ecb_cold
1805periodics_reschedule (EV_P) 2856periodics_reschedule (EV_P)
1806{ 2857{
1807 int i; 2858 int i;
1808 2859
1809 /* adjust periodics after time jump */ 2860 /* adjust periodics after time jump */
1812 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]); 2863 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1813 2864
1814 if (w->reschedule_cb) 2865 if (w->reschedule_cb)
1815 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2866 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1816 else if (w->interval) 2867 else if (w->interval)
1817 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2868 periodic_recalc (EV_A_ w);
1818 2869
1819 ANHE_at_cache (periodics [i]); 2870 ANHE_at_cache (periodics [i]);
1820 } 2871 }
1821 2872
1822 reheap (periodics, periodiccnt); 2873 reheap (periodics, periodiccnt);
1823} 2874}
1824#endif 2875#endif
1825 2876
1826void inline_speed 2877/* adjust all timers by a given offset */
2878static void noinline ecb_cold
2879timers_reschedule (EV_P_ ev_tstamp adjust)
2880{
2881 int i;
2882
2883 for (i = 0; i < timercnt; ++i)
2884 {
2885 ANHE *he = timers + i + HEAP0;
2886 ANHE_w (*he)->at += adjust;
2887 ANHE_at_cache (*he);
2888 }
2889}
2890
2891/* fetch new monotonic and realtime times from the kernel */
2892/* also detect if there was a timejump, and act accordingly */
2893inline_speed void
1827time_update (EV_P_ ev_tstamp max_block) 2894time_update (EV_P_ ev_tstamp max_block)
1828{ 2895{
1829 int i;
1830
1831#if EV_USE_MONOTONIC 2896#if EV_USE_MONOTONIC
1832 if (expect_true (have_monotonic)) 2897 if (expect_true (have_monotonic))
1833 { 2898 {
2899 int i;
1834 ev_tstamp odiff = rtmn_diff; 2900 ev_tstamp odiff = rtmn_diff;
1835 2901
1836 mn_now = get_clock (); 2902 mn_now = get_clock ();
1837 2903
1838 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2904 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1854 * doesn't hurt either as we only do this on time-jumps or 2920 * doesn't hurt either as we only do this on time-jumps or
1855 * in the unlikely event of having been preempted here. 2921 * in the unlikely event of having been preempted here.
1856 */ 2922 */
1857 for (i = 4; --i; ) 2923 for (i = 4; --i; )
1858 { 2924 {
2925 ev_tstamp diff;
1859 rtmn_diff = ev_rt_now - mn_now; 2926 rtmn_diff = ev_rt_now - mn_now;
1860 2927
2928 diff = odiff - rtmn_diff;
2929
1861 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)) 2930 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1862 return; /* all is well */ 2931 return; /* all is well */
1863 2932
1864 ev_rt_now = ev_time (); 2933 ev_rt_now = ev_time ();
1865 mn_now = get_clock (); 2934 mn_now = get_clock ();
1866 now_floor = mn_now; 2935 now_floor = mn_now;
1867 } 2936 }
1868 2937
2938 /* no timer adjustment, as the monotonic clock doesn't jump */
2939 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1869# if EV_PERIODIC_ENABLE 2940# if EV_PERIODIC_ENABLE
1870 periodics_reschedule (EV_A); 2941 periodics_reschedule (EV_A);
1871# endif 2942# endif
1872 /* no timer adjustment, as the monotonic clock doesn't jump */
1873 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1874 } 2943 }
1875 else 2944 else
1876#endif 2945#endif
1877 { 2946 {
1878 ev_rt_now = ev_time (); 2947 ev_rt_now = ev_time ();
1879 2948
1880 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2949 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1881 { 2950 {
2951 /* adjust timers. this is easy, as the offset is the same for all of them */
2952 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1882#if EV_PERIODIC_ENABLE 2953#if EV_PERIODIC_ENABLE
1883 periodics_reschedule (EV_A); 2954 periodics_reschedule (EV_A);
1884#endif 2955#endif
1885 /* adjust timers. this is easy, as the offset is the same for all of them */
1886 for (i = 0; i < timercnt; ++i)
1887 {
1888 ANHE *he = timers + i + HEAP0;
1889 ANHE_w (*he)->at += ev_rt_now - mn_now;
1890 ANHE_at_cache (*he);
1891 }
1892 } 2956 }
1893 2957
1894 mn_now = ev_rt_now; 2958 mn_now = ev_rt_now;
1895 } 2959 }
1896} 2960}
1897 2961
1898void 2962int
1899ev_ref (EV_P)
1900{
1901 ++activecnt;
1902}
1903
1904void
1905ev_unref (EV_P)
1906{
1907 --activecnt;
1908}
1909
1910static int loop_done;
1911
1912void
1913ev_loop (EV_P_ int flags) 2963ev_run (EV_P_ int flags)
1914{ 2964{
2965#if EV_FEATURE_API
2966 ++loop_depth;
2967#endif
2968
2969 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2970
1915 loop_done = EVUNLOOP_CANCEL; 2971 loop_done = EVBREAK_CANCEL;
1916 2972
1917 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2973 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1918 2974
1919 do 2975 do
1920 { 2976 {
1921#if EV_VERIFY >= 2 2977#if EV_VERIFY >= 2
1922 ev_loop_verify (EV_A); 2978 ev_verify (EV_A);
1923#endif 2979#endif
1924 2980
1925#ifndef _WIN32 2981#ifndef _WIN32
1926 if (expect_false (curpid)) /* penalise the forking check even more */ 2982 if (expect_false (curpid)) /* penalise the forking check even more */
1927 if (expect_false (getpid () != curpid)) 2983 if (expect_false (getpid () != curpid))
1935 /* we might have forked, so queue fork handlers */ 2991 /* we might have forked, so queue fork handlers */
1936 if (expect_false (postfork)) 2992 if (expect_false (postfork))
1937 if (forkcnt) 2993 if (forkcnt)
1938 { 2994 {
1939 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2995 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1940 call_pending (EV_A); 2996 EV_INVOKE_PENDING;
1941 } 2997 }
1942#endif 2998#endif
1943 2999
3000#if EV_PREPARE_ENABLE
1944 /* queue prepare watchers (and execute them) */ 3001 /* queue prepare watchers (and execute them) */
1945 if (expect_false (preparecnt)) 3002 if (expect_false (preparecnt))
1946 { 3003 {
1947 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3004 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1948 call_pending (EV_A); 3005 EV_INVOKE_PENDING;
1949 } 3006 }
3007#endif
1950 3008
1951 if (expect_false (!activecnt)) 3009 if (expect_false (loop_done))
1952 break; 3010 break;
1953 3011
1954 /* we might have forked, so reify kernel state if necessary */ 3012 /* we might have forked, so reify kernel state if necessary */
1955 if (expect_false (postfork)) 3013 if (expect_false (postfork))
1956 loop_fork (EV_A); 3014 loop_fork (EV_A);
1961 /* calculate blocking time */ 3019 /* calculate blocking time */
1962 { 3020 {
1963 ev_tstamp waittime = 0.; 3021 ev_tstamp waittime = 0.;
1964 ev_tstamp sleeptime = 0.; 3022 ev_tstamp sleeptime = 0.;
1965 3023
3024 /* remember old timestamp for io_blocktime calculation */
3025 ev_tstamp prev_mn_now = mn_now;
3026
3027 /* update time to cancel out callback processing overhead */
3028 time_update (EV_A_ 1e100);
3029
3030 /* from now on, we want a pipe-wake-up */
3031 pipe_write_wanted = 1;
3032
3033 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3034
1966 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3035 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1967 { 3036 {
1968 /* update time to cancel out callback processing overhead */
1969 time_update (EV_A_ 1e100);
1970
1971 waittime = MAX_BLOCKTIME; 3037 waittime = MAX_BLOCKTIME;
1972 3038
1973 if (timercnt) 3039 if (timercnt)
1974 { 3040 {
1975 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 3041 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1976 if (waittime > to) waittime = to; 3042 if (waittime > to) waittime = to;
1977 } 3043 }
1978 3044
1979#if EV_PERIODIC_ENABLE 3045#if EV_PERIODIC_ENABLE
1980 if (periodiccnt) 3046 if (periodiccnt)
1981 { 3047 {
1982 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 3048 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1983 if (waittime > to) waittime = to; 3049 if (waittime > to) waittime = to;
1984 } 3050 }
1985#endif 3051#endif
1986 3052
3053 /* don't let timeouts decrease the waittime below timeout_blocktime */
1987 if (expect_false (waittime < timeout_blocktime)) 3054 if (expect_false (waittime < timeout_blocktime))
1988 waittime = timeout_blocktime; 3055 waittime = timeout_blocktime;
1989 3056
1990 sleeptime = waittime - backend_fudge; 3057 /* at this point, we NEED to wait, so we have to ensure */
3058 /* to pass a minimum nonzero value to the backend */
3059 if (expect_false (waittime < backend_mintime))
3060 waittime = backend_mintime;
1991 3061
3062 /* extra check because io_blocktime is commonly 0 */
1992 if (expect_true (sleeptime > io_blocktime)) 3063 if (expect_false (io_blocktime))
1993 sleeptime = io_blocktime;
1994
1995 if (sleeptime)
1996 { 3064 {
3065 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3066
3067 if (sleeptime > waittime - backend_mintime)
3068 sleeptime = waittime - backend_mintime;
3069
3070 if (expect_true (sleeptime > 0.))
3071 {
1997 ev_sleep (sleeptime); 3072 ev_sleep (sleeptime);
1998 waittime -= sleeptime; 3073 waittime -= sleeptime;
3074 }
1999 } 3075 }
2000 } 3076 }
2001 3077
3078#if EV_FEATURE_API
2002 ++loop_count; 3079 ++loop_count;
3080#endif
3081 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2003 backend_poll (EV_A_ waittime); 3082 backend_poll (EV_A_ waittime);
3083 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3084
3085 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3086
3087 if (pipe_write_skipped)
3088 {
3089 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3090 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3091 }
3092
2004 3093
2005 /* update ev_rt_now, do magic */ 3094 /* update ev_rt_now, do magic */
2006 time_update (EV_A_ waittime + sleeptime); 3095 time_update (EV_A_ waittime + sleeptime);
2007 } 3096 }
2008 3097
2015#if EV_IDLE_ENABLE 3104#if EV_IDLE_ENABLE
2016 /* queue idle watchers unless other events are pending */ 3105 /* queue idle watchers unless other events are pending */
2017 idle_reify (EV_A); 3106 idle_reify (EV_A);
2018#endif 3107#endif
2019 3108
3109#if EV_CHECK_ENABLE
2020 /* queue check watchers, to be executed first */ 3110 /* queue check watchers, to be executed first */
2021 if (expect_false (checkcnt)) 3111 if (expect_false (checkcnt))
2022 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3112 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3113#endif
2023 3114
2024 call_pending (EV_A); 3115 EV_INVOKE_PENDING;
2025 } 3116 }
2026 while (expect_true ( 3117 while (expect_true (
2027 activecnt 3118 activecnt
2028 && !loop_done 3119 && !loop_done
2029 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 3120 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2030 )); 3121 ));
2031 3122
2032 if (loop_done == EVUNLOOP_ONE) 3123 if (loop_done == EVBREAK_ONE)
2033 loop_done = EVUNLOOP_CANCEL; 3124 loop_done = EVBREAK_CANCEL;
3125
3126#if EV_FEATURE_API
3127 --loop_depth;
3128#endif
3129
3130 return activecnt;
2034} 3131}
2035 3132
2036void 3133void
2037ev_unloop (EV_P_ int how) 3134ev_break (EV_P_ int how) EV_THROW
2038{ 3135{
2039 loop_done = how; 3136 loop_done = how;
2040} 3137}
2041 3138
3139void
3140ev_ref (EV_P) EV_THROW
3141{
3142 ++activecnt;
3143}
3144
3145void
3146ev_unref (EV_P) EV_THROW
3147{
3148 --activecnt;
3149}
3150
3151void
3152ev_now_update (EV_P) EV_THROW
3153{
3154 time_update (EV_A_ 1e100);
3155}
3156
3157void
3158ev_suspend (EV_P) EV_THROW
3159{
3160 ev_now_update (EV_A);
3161}
3162
3163void
3164ev_resume (EV_P) EV_THROW
3165{
3166 ev_tstamp mn_prev = mn_now;
3167
3168 ev_now_update (EV_A);
3169 timers_reschedule (EV_A_ mn_now - mn_prev);
3170#if EV_PERIODIC_ENABLE
3171 /* TODO: really do this? */
3172 periodics_reschedule (EV_A);
3173#endif
3174}
3175
2042/*****************************************************************************/ 3176/*****************************************************************************/
3177/* singly-linked list management, used when the expected list length is short */
2043 3178
2044void inline_size 3179inline_size void
2045wlist_add (WL *head, WL elem) 3180wlist_add (WL *head, WL elem)
2046{ 3181{
2047 elem->next = *head; 3182 elem->next = *head;
2048 *head = elem; 3183 *head = elem;
2049} 3184}
2050 3185
2051void inline_size 3186inline_size void
2052wlist_del (WL *head, WL elem) 3187wlist_del (WL *head, WL elem)
2053{ 3188{
2054 while (*head) 3189 while (*head)
2055 { 3190 {
2056 if (*head == elem) 3191 if (expect_true (*head == elem))
2057 { 3192 {
2058 *head = elem->next; 3193 *head = elem->next;
2059 return; 3194 break;
2060 } 3195 }
2061 3196
2062 head = &(*head)->next; 3197 head = &(*head)->next;
2063 } 3198 }
2064} 3199}
2065 3200
2066void inline_speed 3201/* internal, faster, version of ev_clear_pending */
3202inline_speed void
2067clear_pending (EV_P_ W w) 3203clear_pending (EV_P_ W w)
2068{ 3204{
2069 if (w->pending) 3205 if (w->pending)
2070 { 3206 {
2071 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3207 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2072 w->pending = 0; 3208 w->pending = 0;
2073 } 3209 }
2074} 3210}
2075 3211
2076int 3212int
2077ev_clear_pending (EV_P_ void *w) 3213ev_clear_pending (EV_P_ void *w) EV_THROW
2078{ 3214{
2079 W w_ = (W)w; 3215 W w_ = (W)w;
2080 int pending = w_->pending; 3216 int pending = w_->pending;
2081 3217
2082 if (expect_true (pending)) 3218 if (expect_true (pending))
2083 { 3219 {
2084 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3220 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3221 p->w = (W)&pending_w;
2085 w_->pending = 0; 3222 w_->pending = 0;
2086 p->w = 0;
2087 return p->events; 3223 return p->events;
2088 } 3224 }
2089 else 3225 else
2090 return 0; 3226 return 0;
2091} 3227}
2092 3228
2093void inline_size 3229inline_size void
2094pri_adjust (EV_P_ W w) 3230pri_adjust (EV_P_ W w)
2095{ 3231{
2096 int pri = w->priority; 3232 int pri = ev_priority (w);
2097 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3233 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2098 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3234 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2099 w->priority = pri; 3235 ev_set_priority (w, pri);
2100} 3236}
2101 3237
2102void inline_speed 3238inline_speed void
2103ev_start (EV_P_ W w, int active) 3239ev_start (EV_P_ W w, int active)
2104{ 3240{
2105 pri_adjust (EV_A_ w); 3241 pri_adjust (EV_A_ w);
2106 w->active = active; 3242 w->active = active;
2107 ev_ref (EV_A); 3243 ev_ref (EV_A);
2108} 3244}
2109 3245
2110void inline_size 3246inline_size void
2111ev_stop (EV_P_ W w) 3247ev_stop (EV_P_ W w)
2112{ 3248{
2113 ev_unref (EV_A); 3249 ev_unref (EV_A);
2114 w->active = 0; 3250 w->active = 0;
2115} 3251}
2116 3252
2117/*****************************************************************************/ 3253/*****************************************************************************/
2118 3254
2119void noinline 3255void noinline
2120ev_io_start (EV_P_ ev_io *w) 3256ev_io_start (EV_P_ ev_io *w) EV_THROW
2121{ 3257{
2122 int fd = w->fd; 3258 int fd = w->fd;
2123 3259
2124 if (expect_false (ev_is_active (w))) 3260 if (expect_false (ev_is_active (w)))
2125 return; 3261 return;
2126 3262
2127 assert (("ev_io_start called with negative fd", fd >= 0)); 3263 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3264 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2128 3265
2129 EV_FREQUENT_CHECK; 3266 EV_FREQUENT_CHECK;
2130 3267
2131 ev_start (EV_A_ (W)w, 1); 3268 ev_start (EV_A_ (W)w, 1);
2132 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3269 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2133 wlist_add (&anfds[fd].head, (WL)w); 3270 wlist_add (&anfds[fd].head, (WL)w);
2134 3271
3272 /* common bug, apparently */
3273 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3274
2135 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3275 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2136 w->events &= ~EV_IOFDSET; 3276 w->events &= ~EV__IOFDSET;
2137 3277
2138 EV_FREQUENT_CHECK; 3278 EV_FREQUENT_CHECK;
2139} 3279}
2140 3280
2141void noinline 3281void noinline
2142ev_io_stop (EV_P_ ev_io *w) 3282ev_io_stop (EV_P_ ev_io *w) EV_THROW
2143{ 3283{
2144 clear_pending (EV_A_ (W)w); 3284 clear_pending (EV_A_ (W)w);
2145 if (expect_false (!ev_is_active (w))) 3285 if (expect_false (!ev_is_active (w)))
2146 return; 3286 return;
2147 3287
2148 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3288 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2149 3289
2150 EV_FREQUENT_CHECK; 3290 EV_FREQUENT_CHECK;
2151 3291
2152 wlist_del (&anfds[w->fd].head, (WL)w); 3292 wlist_del (&anfds[w->fd].head, (WL)w);
2153 ev_stop (EV_A_ (W)w); 3293 ev_stop (EV_A_ (W)w);
2154 3294
2155 fd_change (EV_A_ w->fd, 1); 3295 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2156 3296
2157 EV_FREQUENT_CHECK; 3297 EV_FREQUENT_CHECK;
2158} 3298}
2159 3299
2160void noinline 3300void noinline
2161ev_timer_start (EV_P_ ev_timer *w) 3301ev_timer_start (EV_P_ ev_timer *w) EV_THROW
2162{ 3302{
2163 if (expect_false (ev_is_active (w))) 3303 if (expect_false (ev_is_active (w)))
2164 return; 3304 return;
2165 3305
2166 ev_at (w) += mn_now; 3306 ev_at (w) += mn_now;
2167 3307
2168 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3308 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2169 3309
2170 EV_FREQUENT_CHECK; 3310 EV_FREQUENT_CHECK;
2171 3311
2172 ++timercnt; 3312 ++timercnt;
2173 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1); 3313 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2176 ANHE_at_cache (timers [ev_active (w)]); 3316 ANHE_at_cache (timers [ev_active (w)]);
2177 upheap (timers, ev_active (w)); 3317 upheap (timers, ev_active (w));
2178 3318
2179 EV_FREQUENT_CHECK; 3319 EV_FREQUENT_CHECK;
2180 3320
2181 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 3321 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2182} 3322}
2183 3323
2184void noinline 3324void noinline
2185ev_timer_stop (EV_P_ ev_timer *w) 3325ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
2186{ 3326{
2187 clear_pending (EV_A_ (W)w); 3327 clear_pending (EV_A_ (W)w);
2188 if (expect_false (!ev_is_active (w))) 3328 if (expect_false (!ev_is_active (w)))
2189 return; 3329 return;
2190 3330
2191 EV_FREQUENT_CHECK; 3331 EV_FREQUENT_CHECK;
2192 3332
2193 { 3333 {
2194 int active = ev_active (w); 3334 int active = ev_active (w);
2195 3335
2196 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 3336 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2197 3337
2198 --timercnt; 3338 --timercnt;
2199 3339
2200 if (expect_true (active < timercnt + HEAP0)) 3340 if (expect_true (active < timercnt + HEAP0))
2201 { 3341 {
2202 timers [active] = timers [timercnt + HEAP0]; 3342 timers [active] = timers [timercnt + HEAP0];
2203 adjustheap (timers, timercnt, active); 3343 adjustheap (timers, timercnt, active);
2204 } 3344 }
2205 } 3345 }
2206 3346
2207 EV_FREQUENT_CHECK;
2208
2209 ev_at (w) -= mn_now; 3347 ev_at (w) -= mn_now;
2210 3348
2211 ev_stop (EV_A_ (W)w); 3349 ev_stop (EV_A_ (W)w);
3350
3351 EV_FREQUENT_CHECK;
2212} 3352}
2213 3353
2214void noinline 3354void noinline
2215ev_timer_again (EV_P_ ev_timer *w) 3355ev_timer_again (EV_P_ ev_timer *w) EV_THROW
2216{ 3356{
2217 EV_FREQUENT_CHECK; 3357 EV_FREQUENT_CHECK;
3358
3359 clear_pending (EV_A_ (W)w);
2218 3360
2219 if (ev_is_active (w)) 3361 if (ev_is_active (w))
2220 { 3362 {
2221 if (w->repeat) 3363 if (w->repeat)
2222 { 3364 {
2234 } 3376 }
2235 3377
2236 EV_FREQUENT_CHECK; 3378 EV_FREQUENT_CHECK;
2237} 3379}
2238 3380
3381ev_tstamp
3382ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3383{
3384 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3385}
3386
2239#if EV_PERIODIC_ENABLE 3387#if EV_PERIODIC_ENABLE
2240void noinline 3388void noinline
2241ev_periodic_start (EV_P_ ev_periodic *w) 3389ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
2242{ 3390{
2243 if (expect_false (ev_is_active (w))) 3391 if (expect_false (ev_is_active (w)))
2244 return; 3392 return;
2245 3393
2246 if (w->reschedule_cb) 3394 if (w->reschedule_cb)
2247 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3395 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2248 else if (w->interval) 3396 else if (w->interval)
2249 { 3397 {
2250 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3398 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2251 /* this formula differs from the one in periodic_reify because we do not always round up */ 3399 periodic_recalc (EV_A_ w);
2252 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2253 } 3400 }
2254 else 3401 else
2255 ev_at (w) = w->offset; 3402 ev_at (w) = w->offset;
2256 3403
2257 EV_FREQUENT_CHECK; 3404 EV_FREQUENT_CHECK;
2263 ANHE_at_cache (periodics [ev_active (w)]); 3410 ANHE_at_cache (periodics [ev_active (w)]);
2264 upheap (periodics, ev_active (w)); 3411 upheap (periodics, ev_active (w));
2265 3412
2266 EV_FREQUENT_CHECK; 3413 EV_FREQUENT_CHECK;
2267 3414
2268 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 3415 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2269} 3416}
2270 3417
2271void noinline 3418void noinline
2272ev_periodic_stop (EV_P_ ev_periodic *w) 3419ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
2273{ 3420{
2274 clear_pending (EV_A_ (W)w); 3421 clear_pending (EV_A_ (W)w);
2275 if (expect_false (!ev_is_active (w))) 3422 if (expect_false (!ev_is_active (w)))
2276 return; 3423 return;
2277 3424
2278 EV_FREQUENT_CHECK; 3425 EV_FREQUENT_CHECK;
2279 3426
2280 { 3427 {
2281 int active = ev_active (w); 3428 int active = ev_active (w);
2282 3429
2283 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 3430 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2284 3431
2285 --periodiccnt; 3432 --periodiccnt;
2286 3433
2287 if (expect_true (active < periodiccnt + HEAP0)) 3434 if (expect_true (active < periodiccnt + HEAP0))
2288 { 3435 {
2289 periodics [active] = periodics [periodiccnt + HEAP0]; 3436 periodics [active] = periodics [periodiccnt + HEAP0];
2290 adjustheap (periodics, periodiccnt, active); 3437 adjustheap (periodics, periodiccnt, active);
2291 } 3438 }
2292 } 3439 }
2293 3440
2294 EV_FREQUENT_CHECK;
2295
2296 ev_stop (EV_A_ (W)w); 3441 ev_stop (EV_A_ (W)w);
3442
3443 EV_FREQUENT_CHECK;
2297} 3444}
2298 3445
2299void noinline 3446void noinline
2300ev_periodic_again (EV_P_ ev_periodic *w) 3447ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
2301{ 3448{
2302 /* TODO: use adjustheap and recalculation */ 3449 /* TODO: use adjustheap and recalculation */
2303 ev_periodic_stop (EV_A_ w); 3450 ev_periodic_stop (EV_A_ w);
2304 ev_periodic_start (EV_A_ w); 3451 ev_periodic_start (EV_A_ w);
2305} 3452}
2307 3454
2308#ifndef SA_RESTART 3455#ifndef SA_RESTART
2309# define SA_RESTART 0 3456# define SA_RESTART 0
2310#endif 3457#endif
2311 3458
3459#if EV_SIGNAL_ENABLE
3460
2312void noinline 3461void noinline
2313ev_signal_start (EV_P_ ev_signal *w) 3462ev_signal_start (EV_P_ ev_signal *w) EV_THROW
2314{ 3463{
2315#if EV_MULTIPLICITY
2316 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2317#endif
2318 if (expect_false (ev_is_active (w))) 3464 if (expect_false (ev_is_active (w)))
2319 return; 3465 return;
2320 3466
2321 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3467 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2322 3468
2323 evpipe_init (EV_A); 3469#if EV_MULTIPLICITY
3470 assert (("libev: a signal must not be attached to two different loops",
3471 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2324 3472
2325 EV_FREQUENT_CHECK; 3473 signals [w->signum - 1].loop = EV_A;
3474#endif
2326 3475
3476 EV_FREQUENT_CHECK;
3477
3478#if EV_USE_SIGNALFD
3479 if (sigfd == -2)
2327 { 3480 {
2328#ifndef _WIN32 3481 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2329 sigset_t full, prev; 3482 if (sigfd < 0 && errno == EINVAL)
2330 sigfillset (&full); 3483 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2331 sigprocmask (SIG_SETMASK, &full, &prev);
2332#endif
2333 3484
2334 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3485 if (sigfd >= 0)
3486 {
3487 fd_intern (sigfd); /* doing it twice will not hurt */
2335 3488
2336#ifndef _WIN32 3489 sigemptyset (&sigfd_set);
2337 sigprocmask (SIG_SETMASK, &prev, 0); 3490
2338#endif 3491 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3492 ev_set_priority (&sigfd_w, EV_MAXPRI);
3493 ev_io_start (EV_A_ &sigfd_w);
3494 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3495 }
2339 } 3496 }
3497
3498 if (sigfd >= 0)
3499 {
3500 /* TODO: check .head */
3501 sigaddset (&sigfd_set, w->signum);
3502 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3503
3504 signalfd (sigfd, &sigfd_set, 0);
3505 }
3506#endif
2340 3507
2341 ev_start (EV_A_ (W)w, 1); 3508 ev_start (EV_A_ (W)w, 1);
2342 wlist_add (&signals [w->signum - 1].head, (WL)w); 3509 wlist_add (&signals [w->signum - 1].head, (WL)w);
2343 3510
2344 if (!((WL)w)->next) 3511 if (!((WL)w)->next)
3512# if EV_USE_SIGNALFD
3513 if (sigfd < 0) /*TODO*/
3514# endif
2345 { 3515 {
2346#if _WIN32 3516# ifdef _WIN32
3517 evpipe_init (EV_A);
3518
2347 signal (w->signum, ev_sighandler); 3519 signal (w->signum, ev_sighandler);
2348#else 3520# else
2349 struct sigaction sa; 3521 struct sigaction sa;
3522
3523 evpipe_init (EV_A);
3524
2350 sa.sa_handler = ev_sighandler; 3525 sa.sa_handler = ev_sighandler;
2351 sigfillset (&sa.sa_mask); 3526 sigfillset (&sa.sa_mask);
2352 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3527 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2353 sigaction (w->signum, &sa, 0); 3528 sigaction (w->signum, &sa, 0);
3529
3530 if (origflags & EVFLAG_NOSIGMASK)
3531 {
3532 sigemptyset (&sa.sa_mask);
3533 sigaddset (&sa.sa_mask, w->signum);
3534 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3535 }
2354#endif 3536#endif
2355 } 3537 }
2356 3538
2357 EV_FREQUENT_CHECK; 3539 EV_FREQUENT_CHECK;
2358} 3540}
2359 3541
2360void noinline 3542void noinline
2361ev_signal_stop (EV_P_ ev_signal *w) 3543ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
2362{ 3544{
2363 clear_pending (EV_A_ (W)w); 3545 clear_pending (EV_A_ (W)w);
2364 if (expect_false (!ev_is_active (w))) 3546 if (expect_false (!ev_is_active (w)))
2365 return; 3547 return;
2366 3548
2368 3550
2369 wlist_del (&signals [w->signum - 1].head, (WL)w); 3551 wlist_del (&signals [w->signum - 1].head, (WL)w);
2370 ev_stop (EV_A_ (W)w); 3552 ev_stop (EV_A_ (W)w);
2371 3553
2372 if (!signals [w->signum - 1].head) 3554 if (!signals [w->signum - 1].head)
3555 {
3556#if EV_MULTIPLICITY
3557 signals [w->signum - 1].loop = 0; /* unattach from signal */
3558#endif
3559#if EV_USE_SIGNALFD
3560 if (sigfd >= 0)
3561 {
3562 sigset_t ss;
3563
3564 sigemptyset (&ss);
3565 sigaddset (&ss, w->signum);
3566 sigdelset (&sigfd_set, w->signum);
3567
3568 signalfd (sigfd, &sigfd_set, 0);
3569 sigprocmask (SIG_UNBLOCK, &ss, 0);
3570 }
3571 else
3572#endif
2373 signal (w->signum, SIG_DFL); 3573 signal (w->signum, SIG_DFL);
3574 }
2374 3575
2375 EV_FREQUENT_CHECK; 3576 EV_FREQUENT_CHECK;
2376} 3577}
3578
3579#endif
3580
3581#if EV_CHILD_ENABLE
2377 3582
2378void 3583void
2379ev_child_start (EV_P_ ev_child *w) 3584ev_child_start (EV_P_ ev_child *w) EV_THROW
2380{ 3585{
2381#if EV_MULTIPLICITY 3586#if EV_MULTIPLICITY
2382 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3587 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2383#endif 3588#endif
2384 if (expect_false (ev_is_active (w))) 3589 if (expect_false (ev_is_active (w)))
2385 return; 3590 return;
2386 3591
2387 EV_FREQUENT_CHECK; 3592 EV_FREQUENT_CHECK;
2388 3593
2389 ev_start (EV_A_ (W)w, 1); 3594 ev_start (EV_A_ (W)w, 1);
2390 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3595 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2391 3596
2392 EV_FREQUENT_CHECK; 3597 EV_FREQUENT_CHECK;
2393} 3598}
2394 3599
2395void 3600void
2396ev_child_stop (EV_P_ ev_child *w) 3601ev_child_stop (EV_P_ ev_child *w) EV_THROW
2397{ 3602{
2398 clear_pending (EV_A_ (W)w); 3603 clear_pending (EV_A_ (W)w);
2399 if (expect_false (!ev_is_active (w))) 3604 if (expect_false (!ev_is_active (w)))
2400 return; 3605 return;
2401 3606
2402 EV_FREQUENT_CHECK; 3607 EV_FREQUENT_CHECK;
2403 3608
2404 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3609 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2405 ev_stop (EV_A_ (W)w); 3610 ev_stop (EV_A_ (W)w);
2406 3611
2407 EV_FREQUENT_CHECK; 3612 EV_FREQUENT_CHECK;
2408} 3613}
3614
3615#endif
2409 3616
2410#if EV_STAT_ENABLE 3617#if EV_STAT_ENABLE
2411 3618
2412# ifdef _WIN32 3619# ifdef _WIN32
2413# undef lstat 3620# undef lstat
2414# define lstat(a,b) _stati64 (a,b) 3621# define lstat(a,b) _stati64 (a,b)
2415# endif 3622# endif
2416 3623
2417#define DEF_STAT_INTERVAL 5.0074891 3624#define DEF_STAT_INTERVAL 5.0074891
3625#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2418#define MIN_STAT_INTERVAL 0.1074891 3626#define MIN_STAT_INTERVAL 0.1074891
2419 3627
2420static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3628static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2421 3629
2422#if EV_USE_INOTIFY 3630#if EV_USE_INOTIFY
2423# define EV_INOTIFY_BUFSIZE 8192 3631
3632/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3633# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2424 3634
2425static void noinline 3635static void noinline
2426infy_add (EV_P_ ev_stat *w) 3636infy_add (EV_P_ ev_stat *w)
2427{ 3637{
2428 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3638 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2429 3639
2430 if (w->wd < 0) 3640 if (w->wd >= 0)
3641 {
3642 struct statfs sfs;
3643
3644 /* now local changes will be tracked by inotify, but remote changes won't */
3645 /* unless the filesystem is known to be local, we therefore still poll */
3646 /* also do poll on <2.6.25, but with normal frequency */
3647
3648 if (!fs_2625)
3649 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3650 else if (!statfs (w->path, &sfs)
3651 && (sfs.f_type == 0x1373 /* devfs */
3652 || sfs.f_type == 0xEF53 /* ext2/3 */
3653 || sfs.f_type == 0x3153464a /* jfs */
3654 || sfs.f_type == 0x52654973 /* reiser3 */
3655 || sfs.f_type == 0x01021994 /* tempfs */
3656 || sfs.f_type == 0x58465342 /* xfs */))
3657 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3658 else
3659 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2431 { 3660 }
2432 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3661 else
3662 {
3663 /* can't use inotify, continue to stat */
3664 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2433 3665
2434 /* monitor some parent directory for speedup hints */ 3666 /* if path is not there, monitor some parent directory for speedup hints */
2435 /* note that exceeding the hardcoded limit is not a correctness issue, */ 3667 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2436 /* but an efficiency issue only */ 3668 /* but an efficiency issue only */
2437 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3669 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2438 { 3670 {
2439 char path [4096]; 3671 char path [4096];
2440 strcpy (path, w->path); 3672 strcpy (path, w->path);
2444 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3676 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2445 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3677 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2446 3678
2447 char *pend = strrchr (path, '/'); 3679 char *pend = strrchr (path, '/');
2448 3680
2449 if (!pend) 3681 if (!pend || pend == path)
2450 break; /* whoops, no '/', complain to your admin */ 3682 break;
2451 3683
2452 *pend = 0; 3684 *pend = 0;
2453 w->wd = inotify_add_watch (fs_fd, path, mask); 3685 w->wd = inotify_add_watch (fs_fd, path, mask);
2454 } 3686 }
2455 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3687 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2456 } 3688 }
2457 } 3689 }
2458 else
2459 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2460 3690
2461 if (w->wd >= 0) 3691 if (w->wd >= 0)
2462 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3692 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3693
3694 /* now re-arm timer, if required */
3695 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3696 ev_timer_again (EV_A_ &w->timer);
3697 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2463} 3698}
2464 3699
2465static void noinline 3700static void noinline
2466infy_del (EV_P_ ev_stat *w) 3701infy_del (EV_P_ ev_stat *w)
2467{ 3702{
2470 3705
2471 if (wd < 0) 3706 if (wd < 0)
2472 return; 3707 return;
2473 3708
2474 w->wd = -2; 3709 w->wd = -2;
2475 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3710 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2476 wlist_del (&fs_hash [slot].head, (WL)w); 3711 wlist_del (&fs_hash [slot].head, (WL)w);
2477 3712
2478 /* remove this watcher, if others are watching it, they will rearm */ 3713 /* remove this watcher, if others are watching it, they will rearm */
2479 inotify_rm_watch (fs_fd, wd); 3714 inotify_rm_watch (fs_fd, wd);
2480} 3715}
2481 3716
2482static void noinline 3717static void noinline
2483infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3718infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2484{ 3719{
2485 if (slot < 0) 3720 if (slot < 0)
2486 /* overflow, need to check for all hahs slots */ 3721 /* overflow, need to check for all hash slots */
2487 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3722 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2488 infy_wd (EV_A_ slot, wd, ev); 3723 infy_wd (EV_A_ slot, wd, ev);
2489 else 3724 else
2490 { 3725 {
2491 WL w_; 3726 WL w_;
2492 3727
2493 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3728 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2494 { 3729 {
2495 ev_stat *w = (ev_stat *)w_; 3730 ev_stat *w = (ev_stat *)w_;
2496 w_ = w_->next; /* lets us remove this watcher and all before it */ 3731 w_ = w_->next; /* lets us remove this watcher and all before it */
2497 3732
2498 if (w->wd == wd || wd == -1) 3733 if (w->wd == wd || wd == -1)
2499 { 3734 {
2500 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3735 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2501 { 3736 {
3737 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2502 w->wd = -1; 3738 w->wd = -1;
2503 infy_add (EV_A_ w); /* re-add, no matter what */ 3739 infy_add (EV_A_ w); /* re-add, no matter what */
2504 } 3740 }
2505 3741
2506 stat_timer_cb (EV_A_ &w->timer, 0); 3742 stat_timer_cb (EV_A_ &w->timer, 0);
2511 3747
2512static void 3748static void
2513infy_cb (EV_P_ ev_io *w, int revents) 3749infy_cb (EV_P_ ev_io *w, int revents)
2514{ 3750{
2515 char buf [EV_INOTIFY_BUFSIZE]; 3751 char buf [EV_INOTIFY_BUFSIZE];
2516 struct inotify_event *ev = (struct inotify_event *)buf;
2517 int ofs; 3752 int ofs;
2518 int len = read (fs_fd, buf, sizeof (buf)); 3753 int len = read (fs_fd, buf, sizeof (buf));
2519 3754
2520 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3755 for (ofs = 0; ofs < len; )
3756 {
3757 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2521 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3758 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3759 ofs += sizeof (struct inotify_event) + ev->len;
3760 }
2522} 3761}
2523 3762
2524void inline_size 3763inline_size void ecb_cold
3764ev_check_2625 (EV_P)
3765{
3766 /* kernels < 2.6.25 are borked
3767 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3768 */
3769 if (ev_linux_version () < 0x020619)
3770 return;
3771
3772 fs_2625 = 1;
3773}
3774
3775inline_size int
3776infy_newfd (void)
3777{
3778#if defined IN_CLOEXEC && defined IN_NONBLOCK
3779 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3780 if (fd >= 0)
3781 return fd;
3782#endif
3783 return inotify_init ();
3784}
3785
3786inline_size void
2525infy_init (EV_P) 3787infy_init (EV_P)
2526{ 3788{
2527 if (fs_fd != -2) 3789 if (fs_fd != -2)
2528 return; 3790 return;
2529 3791
3792 fs_fd = -1;
3793
3794 ev_check_2625 (EV_A);
3795
2530 fs_fd = inotify_init (); 3796 fs_fd = infy_newfd ();
2531 3797
2532 if (fs_fd >= 0) 3798 if (fs_fd >= 0)
2533 { 3799 {
3800 fd_intern (fs_fd);
2534 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3801 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2535 ev_set_priority (&fs_w, EV_MAXPRI); 3802 ev_set_priority (&fs_w, EV_MAXPRI);
2536 ev_io_start (EV_A_ &fs_w); 3803 ev_io_start (EV_A_ &fs_w);
3804 ev_unref (EV_A);
2537 } 3805 }
2538} 3806}
2539 3807
2540void inline_size 3808inline_size void
2541infy_fork (EV_P) 3809infy_fork (EV_P)
2542{ 3810{
2543 int slot; 3811 int slot;
2544 3812
2545 if (fs_fd < 0) 3813 if (fs_fd < 0)
2546 return; 3814 return;
2547 3815
3816 ev_ref (EV_A);
3817 ev_io_stop (EV_A_ &fs_w);
2548 close (fs_fd); 3818 close (fs_fd);
2549 fs_fd = inotify_init (); 3819 fs_fd = infy_newfd ();
2550 3820
3821 if (fs_fd >= 0)
3822 {
3823 fd_intern (fs_fd);
3824 ev_io_set (&fs_w, fs_fd, EV_READ);
3825 ev_io_start (EV_A_ &fs_w);
3826 ev_unref (EV_A);
3827 }
3828
2551 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3829 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2552 { 3830 {
2553 WL w_ = fs_hash [slot].head; 3831 WL w_ = fs_hash [slot].head;
2554 fs_hash [slot].head = 0; 3832 fs_hash [slot].head = 0;
2555 3833
2556 while (w_) 3834 while (w_)
2561 w->wd = -1; 3839 w->wd = -1;
2562 3840
2563 if (fs_fd >= 0) 3841 if (fs_fd >= 0)
2564 infy_add (EV_A_ w); /* re-add, no matter what */ 3842 infy_add (EV_A_ w); /* re-add, no matter what */
2565 else 3843 else
3844 {
3845 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3846 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2566 ev_timer_start (EV_A_ &w->timer); 3847 ev_timer_again (EV_A_ &w->timer);
3848 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3849 }
2567 } 3850 }
2568
2569 } 3851 }
2570} 3852}
2571 3853
2572#endif 3854#endif
2573 3855
2576#else 3858#else
2577# define EV_LSTAT(p,b) lstat (p, b) 3859# define EV_LSTAT(p,b) lstat (p, b)
2578#endif 3860#endif
2579 3861
2580void 3862void
2581ev_stat_stat (EV_P_ ev_stat *w) 3863ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
2582{ 3864{
2583 if (lstat (w->path, &w->attr) < 0) 3865 if (lstat (w->path, &w->attr) < 0)
2584 w->attr.st_nlink = 0; 3866 w->attr.st_nlink = 0;
2585 else if (!w->attr.st_nlink) 3867 else if (!w->attr.st_nlink)
2586 w->attr.st_nlink = 1; 3868 w->attr.st_nlink = 1;
2589static void noinline 3871static void noinline
2590stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3872stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2591{ 3873{
2592 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3874 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2593 3875
2594 /* we copy this here each the time so that */ 3876 ev_statdata prev = w->attr;
2595 /* prev has the old value when the callback gets invoked */
2596 w->prev = w->attr;
2597 ev_stat_stat (EV_A_ w); 3877 ev_stat_stat (EV_A_ w);
2598 3878
2599 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3879 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2600 if ( 3880 if (
2601 w->prev.st_dev != w->attr.st_dev 3881 prev.st_dev != w->attr.st_dev
2602 || w->prev.st_ino != w->attr.st_ino 3882 || prev.st_ino != w->attr.st_ino
2603 || w->prev.st_mode != w->attr.st_mode 3883 || prev.st_mode != w->attr.st_mode
2604 || w->prev.st_nlink != w->attr.st_nlink 3884 || prev.st_nlink != w->attr.st_nlink
2605 || w->prev.st_uid != w->attr.st_uid 3885 || prev.st_uid != w->attr.st_uid
2606 || w->prev.st_gid != w->attr.st_gid 3886 || prev.st_gid != w->attr.st_gid
2607 || w->prev.st_rdev != w->attr.st_rdev 3887 || prev.st_rdev != w->attr.st_rdev
2608 || w->prev.st_size != w->attr.st_size 3888 || prev.st_size != w->attr.st_size
2609 || w->prev.st_atime != w->attr.st_atime 3889 || prev.st_atime != w->attr.st_atime
2610 || w->prev.st_mtime != w->attr.st_mtime 3890 || prev.st_mtime != w->attr.st_mtime
2611 || w->prev.st_ctime != w->attr.st_ctime 3891 || prev.st_ctime != w->attr.st_ctime
2612 ) { 3892 ) {
3893 /* we only update w->prev on actual differences */
3894 /* in case we test more often than invoke the callback, */
3895 /* to ensure that prev is always different to attr */
3896 w->prev = prev;
3897
2613 #if EV_USE_INOTIFY 3898 #if EV_USE_INOTIFY
3899 if (fs_fd >= 0)
3900 {
2614 infy_del (EV_A_ w); 3901 infy_del (EV_A_ w);
2615 infy_add (EV_A_ w); 3902 infy_add (EV_A_ w);
2616 ev_stat_stat (EV_A_ w); /* avoid race... */ 3903 ev_stat_stat (EV_A_ w); /* avoid race... */
3904 }
2617 #endif 3905 #endif
2618 3906
2619 ev_feed_event (EV_A_ w, EV_STAT); 3907 ev_feed_event (EV_A_ w, EV_STAT);
2620 } 3908 }
2621} 3909}
2622 3910
2623void 3911void
2624ev_stat_start (EV_P_ ev_stat *w) 3912ev_stat_start (EV_P_ ev_stat *w) EV_THROW
2625{ 3913{
2626 if (expect_false (ev_is_active (w))) 3914 if (expect_false (ev_is_active (w)))
2627 return; 3915 return;
2628 3916
2629 /* since we use memcmp, we need to clear any padding data etc. */
2630 memset (&w->prev, 0, sizeof (ev_statdata));
2631 memset (&w->attr, 0, sizeof (ev_statdata));
2632
2633 ev_stat_stat (EV_A_ w); 3917 ev_stat_stat (EV_A_ w);
2634 3918
3919 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2635 if (w->interval < MIN_STAT_INTERVAL) 3920 w->interval = MIN_STAT_INTERVAL;
2636 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2637 3921
2638 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3922 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2639 ev_set_priority (&w->timer, ev_priority (w)); 3923 ev_set_priority (&w->timer, ev_priority (w));
2640 3924
2641#if EV_USE_INOTIFY 3925#if EV_USE_INOTIFY
2642 infy_init (EV_A); 3926 infy_init (EV_A);
2643 3927
2644 if (fs_fd >= 0) 3928 if (fs_fd >= 0)
2645 infy_add (EV_A_ w); 3929 infy_add (EV_A_ w);
2646 else 3930 else
2647#endif 3931#endif
3932 {
2648 ev_timer_start (EV_A_ &w->timer); 3933 ev_timer_again (EV_A_ &w->timer);
3934 ev_unref (EV_A);
3935 }
2649 3936
2650 ev_start (EV_A_ (W)w, 1); 3937 ev_start (EV_A_ (W)w, 1);
2651 3938
2652 EV_FREQUENT_CHECK; 3939 EV_FREQUENT_CHECK;
2653} 3940}
2654 3941
2655void 3942void
2656ev_stat_stop (EV_P_ ev_stat *w) 3943ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
2657{ 3944{
2658 clear_pending (EV_A_ (W)w); 3945 clear_pending (EV_A_ (W)w);
2659 if (expect_false (!ev_is_active (w))) 3946 if (expect_false (!ev_is_active (w)))
2660 return; 3947 return;
2661 3948
2662 EV_FREQUENT_CHECK; 3949 EV_FREQUENT_CHECK;
2663 3950
2664#if EV_USE_INOTIFY 3951#if EV_USE_INOTIFY
2665 infy_del (EV_A_ w); 3952 infy_del (EV_A_ w);
2666#endif 3953#endif
3954
3955 if (ev_is_active (&w->timer))
3956 {
3957 ev_ref (EV_A);
2667 ev_timer_stop (EV_A_ &w->timer); 3958 ev_timer_stop (EV_A_ &w->timer);
3959 }
2668 3960
2669 ev_stop (EV_A_ (W)w); 3961 ev_stop (EV_A_ (W)w);
2670 3962
2671 EV_FREQUENT_CHECK; 3963 EV_FREQUENT_CHECK;
2672} 3964}
2673#endif 3965#endif
2674 3966
2675#if EV_IDLE_ENABLE 3967#if EV_IDLE_ENABLE
2676void 3968void
2677ev_idle_start (EV_P_ ev_idle *w) 3969ev_idle_start (EV_P_ ev_idle *w) EV_THROW
2678{ 3970{
2679 if (expect_false (ev_is_active (w))) 3971 if (expect_false (ev_is_active (w)))
2680 return; 3972 return;
2681 3973
2682 pri_adjust (EV_A_ (W)w); 3974 pri_adjust (EV_A_ (W)w);
2695 3987
2696 EV_FREQUENT_CHECK; 3988 EV_FREQUENT_CHECK;
2697} 3989}
2698 3990
2699void 3991void
2700ev_idle_stop (EV_P_ ev_idle *w) 3992ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
2701{ 3993{
2702 clear_pending (EV_A_ (W)w); 3994 clear_pending (EV_A_ (W)w);
2703 if (expect_false (!ev_is_active (w))) 3995 if (expect_false (!ev_is_active (w)))
2704 return; 3996 return;
2705 3997
2717 4009
2718 EV_FREQUENT_CHECK; 4010 EV_FREQUENT_CHECK;
2719} 4011}
2720#endif 4012#endif
2721 4013
4014#if EV_PREPARE_ENABLE
2722void 4015void
2723ev_prepare_start (EV_P_ ev_prepare *w) 4016ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
2724{ 4017{
2725 if (expect_false (ev_is_active (w))) 4018 if (expect_false (ev_is_active (w)))
2726 return; 4019 return;
2727 4020
2728 EV_FREQUENT_CHECK; 4021 EV_FREQUENT_CHECK;
2733 4026
2734 EV_FREQUENT_CHECK; 4027 EV_FREQUENT_CHECK;
2735} 4028}
2736 4029
2737void 4030void
2738ev_prepare_stop (EV_P_ ev_prepare *w) 4031ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
2739{ 4032{
2740 clear_pending (EV_A_ (W)w); 4033 clear_pending (EV_A_ (W)w);
2741 if (expect_false (!ev_is_active (w))) 4034 if (expect_false (!ev_is_active (w)))
2742 return; 4035 return;
2743 4036
2752 4045
2753 ev_stop (EV_A_ (W)w); 4046 ev_stop (EV_A_ (W)w);
2754 4047
2755 EV_FREQUENT_CHECK; 4048 EV_FREQUENT_CHECK;
2756} 4049}
4050#endif
2757 4051
4052#if EV_CHECK_ENABLE
2758void 4053void
2759ev_check_start (EV_P_ ev_check *w) 4054ev_check_start (EV_P_ ev_check *w) EV_THROW
2760{ 4055{
2761 if (expect_false (ev_is_active (w))) 4056 if (expect_false (ev_is_active (w)))
2762 return; 4057 return;
2763 4058
2764 EV_FREQUENT_CHECK; 4059 EV_FREQUENT_CHECK;
2769 4064
2770 EV_FREQUENT_CHECK; 4065 EV_FREQUENT_CHECK;
2771} 4066}
2772 4067
2773void 4068void
2774ev_check_stop (EV_P_ ev_check *w) 4069ev_check_stop (EV_P_ ev_check *w) EV_THROW
2775{ 4070{
2776 clear_pending (EV_A_ (W)w); 4071 clear_pending (EV_A_ (W)w);
2777 if (expect_false (!ev_is_active (w))) 4072 if (expect_false (!ev_is_active (w)))
2778 return; 4073 return;
2779 4074
2788 4083
2789 ev_stop (EV_A_ (W)w); 4084 ev_stop (EV_A_ (W)w);
2790 4085
2791 EV_FREQUENT_CHECK; 4086 EV_FREQUENT_CHECK;
2792} 4087}
4088#endif
2793 4089
2794#if EV_EMBED_ENABLE 4090#if EV_EMBED_ENABLE
2795void noinline 4091void noinline
2796ev_embed_sweep (EV_P_ ev_embed *w) 4092ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
2797{ 4093{
2798 ev_loop (w->other, EVLOOP_NONBLOCK); 4094 ev_run (w->other, EVRUN_NOWAIT);
2799} 4095}
2800 4096
2801static void 4097static void
2802embed_io_cb (EV_P_ ev_io *io, int revents) 4098embed_io_cb (EV_P_ ev_io *io, int revents)
2803{ 4099{
2804 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4100 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2805 4101
2806 if (ev_cb (w)) 4102 if (ev_cb (w))
2807 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4103 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2808 else 4104 else
2809 ev_loop (w->other, EVLOOP_NONBLOCK); 4105 ev_run (w->other, EVRUN_NOWAIT);
2810} 4106}
2811 4107
2812static void 4108static void
2813embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4109embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2814{ 4110{
2815 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4111 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2816 4112
2817 { 4113 {
2818 struct ev_loop *loop = w->other; 4114 EV_P = w->other;
2819 4115
2820 while (fdchangecnt) 4116 while (fdchangecnt)
2821 { 4117 {
2822 fd_reify (EV_A); 4118 fd_reify (EV_A);
2823 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4119 ev_run (EV_A_ EVRUN_NOWAIT);
2824 } 4120 }
2825 } 4121 }
4122}
4123
4124static void
4125embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4126{
4127 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4128
4129 ev_embed_stop (EV_A_ w);
4130
4131 {
4132 EV_P = w->other;
4133
4134 ev_loop_fork (EV_A);
4135 ev_run (EV_A_ EVRUN_NOWAIT);
4136 }
4137
4138 ev_embed_start (EV_A_ w);
2826} 4139}
2827 4140
2828#if 0 4141#if 0
2829static void 4142static void
2830embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4143embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2832 ev_idle_stop (EV_A_ idle); 4145 ev_idle_stop (EV_A_ idle);
2833} 4146}
2834#endif 4147#endif
2835 4148
2836void 4149void
2837ev_embed_start (EV_P_ ev_embed *w) 4150ev_embed_start (EV_P_ ev_embed *w) EV_THROW
2838{ 4151{
2839 if (expect_false (ev_is_active (w))) 4152 if (expect_false (ev_is_active (w)))
2840 return; 4153 return;
2841 4154
2842 { 4155 {
2843 struct ev_loop *loop = w->other; 4156 EV_P = w->other;
2844 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4157 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2845 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4158 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2846 } 4159 }
2847 4160
2848 EV_FREQUENT_CHECK; 4161 EV_FREQUENT_CHECK;
2849 4162
2852 4165
2853 ev_prepare_init (&w->prepare, embed_prepare_cb); 4166 ev_prepare_init (&w->prepare, embed_prepare_cb);
2854 ev_set_priority (&w->prepare, EV_MINPRI); 4167 ev_set_priority (&w->prepare, EV_MINPRI);
2855 ev_prepare_start (EV_A_ &w->prepare); 4168 ev_prepare_start (EV_A_ &w->prepare);
2856 4169
4170 ev_fork_init (&w->fork, embed_fork_cb);
4171 ev_fork_start (EV_A_ &w->fork);
4172
2857 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 4173 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2858 4174
2859 ev_start (EV_A_ (W)w, 1); 4175 ev_start (EV_A_ (W)w, 1);
2860 4176
2861 EV_FREQUENT_CHECK; 4177 EV_FREQUENT_CHECK;
2862} 4178}
2863 4179
2864void 4180void
2865ev_embed_stop (EV_P_ ev_embed *w) 4181ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
2866{ 4182{
2867 clear_pending (EV_A_ (W)w); 4183 clear_pending (EV_A_ (W)w);
2868 if (expect_false (!ev_is_active (w))) 4184 if (expect_false (!ev_is_active (w)))
2869 return; 4185 return;
2870 4186
2871 EV_FREQUENT_CHECK; 4187 EV_FREQUENT_CHECK;
2872 4188
2873 ev_io_stop (EV_A_ &w->io); 4189 ev_io_stop (EV_A_ &w->io);
2874 ev_prepare_stop (EV_A_ &w->prepare); 4190 ev_prepare_stop (EV_A_ &w->prepare);
4191 ev_fork_stop (EV_A_ &w->fork);
2875 4192
2876 ev_stop (EV_A_ (W)w); 4193 ev_stop (EV_A_ (W)w);
2877 4194
2878 EV_FREQUENT_CHECK; 4195 EV_FREQUENT_CHECK;
2879} 4196}
2880#endif 4197#endif
2881 4198
2882#if EV_FORK_ENABLE 4199#if EV_FORK_ENABLE
2883void 4200void
2884ev_fork_start (EV_P_ ev_fork *w) 4201ev_fork_start (EV_P_ ev_fork *w) EV_THROW
2885{ 4202{
2886 if (expect_false (ev_is_active (w))) 4203 if (expect_false (ev_is_active (w)))
2887 return; 4204 return;
2888 4205
2889 EV_FREQUENT_CHECK; 4206 EV_FREQUENT_CHECK;
2894 4211
2895 EV_FREQUENT_CHECK; 4212 EV_FREQUENT_CHECK;
2896} 4213}
2897 4214
2898void 4215void
2899ev_fork_stop (EV_P_ ev_fork *w) 4216ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
2900{ 4217{
2901 clear_pending (EV_A_ (W)w); 4218 clear_pending (EV_A_ (W)w);
2902 if (expect_false (!ev_is_active (w))) 4219 if (expect_false (!ev_is_active (w)))
2903 return; 4220 return;
2904 4221
2915 4232
2916 EV_FREQUENT_CHECK; 4233 EV_FREQUENT_CHECK;
2917} 4234}
2918#endif 4235#endif
2919 4236
4237#if EV_CLEANUP_ENABLE
4238void
4239ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4240{
4241 if (expect_false (ev_is_active (w)))
4242 return;
4243
4244 EV_FREQUENT_CHECK;
4245
4246 ev_start (EV_A_ (W)w, ++cleanupcnt);
4247 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4248 cleanups [cleanupcnt - 1] = w;
4249
4250 /* cleanup watchers should never keep a refcount on the loop */
4251 ev_unref (EV_A);
4252 EV_FREQUENT_CHECK;
4253}
4254
4255void
4256ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4257{
4258 clear_pending (EV_A_ (W)w);
4259 if (expect_false (!ev_is_active (w)))
4260 return;
4261
4262 EV_FREQUENT_CHECK;
4263 ev_ref (EV_A);
4264
4265 {
4266 int active = ev_active (w);
4267
4268 cleanups [active - 1] = cleanups [--cleanupcnt];
4269 ev_active (cleanups [active - 1]) = active;
4270 }
4271
4272 ev_stop (EV_A_ (W)w);
4273
4274 EV_FREQUENT_CHECK;
4275}
4276#endif
4277
2920#if EV_ASYNC_ENABLE 4278#if EV_ASYNC_ENABLE
2921void 4279void
2922ev_async_start (EV_P_ ev_async *w) 4280ev_async_start (EV_P_ ev_async *w) EV_THROW
2923{ 4281{
2924 if (expect_false (ev_is_active (w))) 4282 if (expect_false (ev_is_active (w)))
2925 return; 4283 return;
4284
4285 w->sent = 0;
2926 4286
2927 evpipe_init (EV_A); 4287 evpipe_init (EV_A);
2928 4288
2929 EV_FREQUENT_CHECK; 4289 EV_FREQUENT_CHECK;
2930 4290
2934 4294
2935 EV_FREQUENT_CHECK; 4295 EV_FREQUENT_CHECK;
2936} 4296}
2937 4297
2938void 4298void
2939ev_async_stop (EV_P_ ev_async *w) 4299ev_async_stop (EV_P_ ev_async *w) EV_THROW
2940{ 4300{
2941 clear_pending (EV_A_ (W)w); 4301 clear_pending (EV_A_ (W)w);
2942 if (expect_false (!ev_is_active (w))) 4302 if (expect_false (!ev_is_active (w)))
2943 return; 4303 return;
2944 4304
2955 4315
2956 EV_FREQUENT_CHECK; 4316 EV_FREQUENT_CHECK;
2957} 4317}
2958 4318
2959void 4319void
2960ev_async_send (EV_P_ ev_async *w) 4320ev_async_send (EV_P_ ev_async *w) EV_THROW
2961{ 4321{
2962 w->sent = 1; 4322 w->sent = 1;
2963 evpipe_write (EV_A_ &gotasync); 4323 evpipe_write (EV_A_ &async_pending);
2964} 4324}
2965#endif 4325#endif
2966 4326
2967/*****************************************************************************/ 4327/*****************************************************************************/
2968 4328
2978once_cb (EV_P_ struct ev_once *once, int revents) 4338once_cb (EV_P_ struct ev_once *once, int revents)
2979{ 4339{
2980 void (*cb)(int revents, void *arg) = once->cb; 4340 void (*cb)(int revents, void *arg) = once->cb;
2981 void *arg = once->arg; 4341 void *arg = once->arg;
2982 4342
2983 ev_io_stop (EV_A_ &once->io); 4343 ev_io_stop (EV_A_ &once->io);
2984 ev_timer_stop (EV_A_ &once->to); 4344 ev_timer_stop (EV_A_ &once->to);
2985 ev_free (once); 4345 ev_free (once);
2986 4346
2987 cb (revents, arg); 4347 cb (revents, arg);
2988} 4348}
2989 4349
2990static void 4350static void
2991once_cb_io (EV_P_ ev_io *w, int revents) 4351once_cb_io (EV_P_ ev_io *w, int revents)
2992{ 4352{
2993 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4353 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4354
4355 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2994} 4356}
2995 4357
2996static void 4358static void
2997once_cb_to (EV_P_ ev_timer *w, int revents) 4359once_cb_to (EV_P_ ev_timer *w, int revents)
2998{ 4360{
2999 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4361 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4362
4363 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3000} 4364}
3001 4365
3002void 4366void
3003ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4367ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
3004{ 4368{
3005 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4369 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3006 4370
3007 if (expect_false (!once)) 4371 if (expect_false (!once))
3008 { 4372 {
3009 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4373 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
3010 return; 4374 return;
3011 } 4375 }
3012 4376
3013 once->cb = cb; 4377 once->cb = cb;
3014 once->arg = arg; 4378 once->arg = arg;
3026 ev_timer_set (&once->to, timeout, 0.); 4390 ev_timer_set (&once->to, timeout, 0.);
3027 ev_timer_start (EV_A_ &once->to); 4391 ev_timer_start (EV_A_ &once->to);
3028 } 4392 }
3029} 4393}
3030 4394
4395/*****************************************************************************/
4396
4397#if EV_WALK_ENABLE
4398void ecb_cold
4399ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4400{
4401 int i, j;
4402 ev_watcher_list *wl, *wn;
4403
4404 if (types & (EV_IO | EV_EMBED))
4405 for (i = 0; i < anfdmax; ++i)
4406 for (wl = anfds [i].head; wl; )
4407 {
4408 wn = wl->next;
4409
4410#if EV_EMBED_ENABLE
4411 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4412 {
4413 if (types & EV_EMBED)
4414 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4415 }
4416 else
4417#endif
4418#if EV_USE_INOTIFY
4419 if (ev_cb ((ev_io *)wl) == infy_cb)
4420 ;
4421 else
4422#endif
4423 if ((ev_io *)wl != &pipe_w)
4424 if (types & EV_IO)
4425 cb (EV_A_ EV_IO, wl);
4426
4427 wl = wn;
4428 }
4429
4430 if (types & (EV_TIMER | EV_STAT))
4431 for (i = timercnt + HEAP0; i-- > HEAP0; )
4432#if EV_STAT_ENABLE
4433 /*TODO: timer is not always active*/
4434 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4435 {
4436 if (types & EV_STAT)
4437 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4438 }
4439 else
4440#endif
4441 if (types & EV_TIMER)
4442 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4443
4444#if EV_PERIODIC_ENABLE
4445 if (types & EV_PERIODIC)
4446 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4447 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4448#endif
4449
4450#if EV_IDLE_ENABLE
4451 if (types & EV_IDLE)
4452 for (j = NUMPRI; j--; )
4453 for (i = idlecnt [j]; i--; )
4454 cb (EV_A_ EV_IDLE, idles [j][i]);
4455#endif
4456
4457#if EV_FORK_ENABLE
4458 if (types & EV_FORK)
4459 for (i = forkcnt; i--; )
4460 if (ev_cb (forks [i]) != embed_fork_cb)
4461 cb (EV_A_ EV_FORK, forks [i]);
4462#endif
4463
4464#if EV_ASYNC_ENABLE
4465 if (types & EV_ASYNC)
4466 for (i = asynccnt; i--; )
4467 cb (EV_A_ EV_ASYNC, asyncs [i]);
4468#endif
4469
4470#if EV_PREPARE_ENABLE
4471 if (types & EV_PREPARE)
4472 for (i = preparecnt; i--; )
4473# if EV_EMBED_ENABLE
4474 if (ev_cb (prepares [i]) != embed_prepare_cb)
4475# endif
4476 cb (EV_A_ EV_PREPARE, prepares [i]);
4477#endif
4478
4479#if EV_CHECK_ENABLE
4480 if (types & EV_CHECK)
4481 for (i = checkcnt; i--; )
4482 cb (EV_A_ EV_CHECK, checks [i]);
4483#endif
4484
4485#if EV_SIGNAL_ENABLE
4486 if (types & EV_SIGNAL)
4487 for (i = 0; i < EV_NSIG - 1; ++i)
4488 for (wl = signals [i].head; wl; )
4489 {
4490 wn = wl->next;
4491 cb (EV_A_ EV_SIGNAL, wl);
4492 wl = wn;
4493 }
4494#endif
4495
4496#if EV_CHILD_ENABLE
4497 if (types & EV_CHILD)
4498 for (i = (EV_PID_HASHSIZE); i--; )
4499 for (wl = childs [i]; wl; )
4500 {
4501 wn = wl->next;
4502 cb (EV_A_ EV_CHILD, wl);
4503 wl = wn;
4504 }
4505#endif
4506/* EV_STAT 0x00001000 /* stat data changed */
4507/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4508}
4509#endif
4510
3031#if EV_MULTIPLICITY 4511#if EV_MULTIPLICITY
3032 #include "ev_wrap.h" 4512 #include "ev_wrap.h"
3033#endif 4513#endif
3034 4514
3035#ifdef __cplusplus
3036}
3037#endif
3038

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines