ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.228 by root, Fri May 2 08:07:37 2008 UTC vs.
Revision 1.435 by root, Sat May 26 08:52:09 2012 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
52# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
55# endif 71# endif
56# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
58# endif 74# endif
59# else 75# else
60# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
62# endif 78# endif
63# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
65# endif 81# endif
66# endif 82# endif
67 83
84# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
71# else 88# else
89# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
74# endif 100# endif
75 101
102# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 105# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 106# else
107# undef EV_USE_POLL
88# define EV_USE_POLL 0 108# define EV_USE_POLL 0
89# endif
90# endif 109# endif
91 110
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
95# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
98# endif 118# endif
99 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
106# endif 127# endif
107 128
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
111# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
114# endif 136# endif
115 137
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
122# endif 145# endif
123 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 148# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 149# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
130# endif 154# endif
131 155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
132#endif 163# endif
164
165#endif
133 166
134#include <math.h>
135#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
136#include <fcntl.h> 169#include <fcntl.h>
137#include <stddef.h> 170#include <stddef.h>
138 171
139#include <stdio.h> 172#include <stdio.h>
140 173
141#include <assert.h> 174#include <assert.h>
142#include <errno.h> 175#include <errno.h>
143#include <sys/types.h> 176#include <sys/types.h>
144#include <time.h> 177#include <time.h>
178#include <limits.h>
145 179
146#include <signal.h> 180#include <signal.h>
147 181
148#ifdef EV_H 182#ifdef EV_H
149# include EV_H 183# include EV_H
150#else 184#else
151# include "ev.h" 185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
152#endif 197#endif
153 198
154#ifndef _WIN32 199#ifndef _WIN32
155# include <sys/time.h> 200# include <sys/time.h>
156# include <sys/wait.h> 201# include <sys/wait.h>
157# include <unistd.h> 202# include <unistd.h>
158#else 203#else
204# include <io.h>
159# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
160# include <windows.h> 207# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 208# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 209# define EV_SELECT_IS_WINSOCKET 1
163# endif 210# endif
211# undef EV_AVOID_STDIO
164#endif 212#endif
213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
165 221
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 222/* this block tries to deduce configuration from header-defined symbols and defaults */
167 223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# error "unable to find value for NSIG, please report"
247/* to make it compile regardless, just remove the above line, */
248/* but consider reporting it, too! :) */
249# define EV_NSIG 65
250#endif
251
252#ifndef EV_USE_FLOOR
253# define EV_USE_FLOOR 0
254#endif
255
256#ifndef EV_USE_CLOCK_SYSCALL
257# if __linux && __GLIBC__ >= 2
258# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
259# else
260# define EV_USE_CLOCK_SYSCALL 0
261# endif
262#endif
263
168#ifndef EV_USE_MONOTONIC 264#ifndef EV_USE_MONOTONIC
265# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
266# define EV_USE_MONOTONIC EV_FEATURE_OS
267# else
169# define EV_USE_MONOTONIC 0 268# define EV_USE_MONOTONIC 0
269# endif
170#endif 270#endif
171 271
172#ifndef EV_USE_REALTIME 272#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 273# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 274#endif
175 275
176#ifndef EV_USE_NANOSLEEP 276#ifndef EV_USE_NANOSLEEP
277# if _POSIX_C_SOURCE >= 199309L
278# define EV_USE_NANOSLEEP EV_FEATURE_OS
279# else
177# define EV_USE_NANOSLEEP 0 280# define EV_USE_NANOSLEEP 0
281# endif
178#endif 282#endif
179 283
180#ifndef EV_USE_SELECT 284#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 285# define EV_USE_SELECT EV_FEATURE_BACKENDS
182#endif 286#endif
183 287
184#ifndef EV_USE_POLL 288#ifndef EV_USE_POLL
185# ifdef _WIN32 289# ifdef _WIN32
186# define EV_USE_POLL 0 290# define EV_USE_POLL 0
187# else 291# else
188# define EV_USE_POLL 1 292# define EV_USE_POLL EV_FEATURE_BACKENDS
189# endif 293# endif
190#endif 294#endif
191 295
192#ifndef EV_USE_EPOLL 296#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 297# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1 298# define EV_USE_EPOLL EV_FEATURE_BACKENDS
195# else 299# else
196# define EV_USE_EPOLL 0 300# define EV_USE_EPOLL 0
197# endif 301# endif
198#endif 302#endif
199 303
205# define EV_USE_PORT 0 309# define EV_USE_PORT 0
206#endif 310#endif
207 311
208#ifndef EV_USE_INOTIFY 312#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 313# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1 314# define EV_USE_INOTIFY EV_FEATURE_OS
211# else 315# else
212# define EV_USE_INOTIFY 0 316# define EV_USE_INOTIFY 0
213# endif 317# endif
214#endif 318#endif
215 319
216#ifndef EV_PID_HASHSIZE 320#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL 321# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif 322#endif
223 323
224#ifndef EV_INOTIFY_HASHSIZE 324#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL 325# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif 326#endif
231 327
232#ifndef EV_USE_EVENTFD 328#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 329# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 330# define EV_USE_EVENTFD EV_FEATURE_OS
235# else 331# else
236# define EV_USE_EVENTFD 0 332# define EV_USE_EVENTFD 0
237# endif 333# endif
238#endif 334#endif
239 335
336#ifndef EV_USE_SIGNALFD
337# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
338# define EV_USE_SIGNALFD EV_FEATURE_OS
339# else
340# define EV_USE_SIGNALFD 0
341# endif
342#endif
343
344#if 0 /* debugging */
345# define EV_VERIFY 3
346# define EV_USE_4HEAP 1
347# define EV_HEAP_CACHE_AT 1
348#endif
349
350#ifndef EV_VERIFY
351# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
352#endif
353
354#ifndef EV_USE_4HEAP
355# define EV_USE_4HEAP EV_FEATURE_DATA
356#endif
357
358#ifndef EV_HEAP_CACHE_AT
359# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
360#endif
361
362/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
363/* which makes programs even slower. might work on other unices, too. */
364#if EV_USE_CLOCK_SYSCALL
365# include <sys/syscall.h>
366# ifdef SYS_clock_gettime
367# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
368# undef EV_USE_MONOTONIC
369# define EV_USE_MONOTONIC 1
370# else
371# undef EV_USE_CLOCK_SYSCALL
372# define EV_USE_CLOCK_SYSCALL 0
373# endif
374#endif
375
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 376/* this block fixes any misconfiguration where we know we run into trouble otherwise */
377
378#ifdef _AIX
379/* AIX has a completely broken poll.h header */
380# undef EV_USE_POLL
381# define EV_USE_POLL 0
382#endif
241 383
242#ifndef CLOCK_MONOTONIC 384#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 385# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 386# define EV_USE_MONOTONIC 0
245#endif 387#endif
253# undef EV_USE_INOTIFY 395# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0 396# define EV_USE_INOTIFY 0
255#endif 397#endif
256 398
257#if !EV_USE_NANOSLEEP 399#if !EV_USE_NANOSLEEP
258# ifndef _WIN32 400/* hp-ux has it in sys/time.h, which we unconditionally include above */
401# if !defined _WIN32 && !defined __hpux
259# include <sys/select.h> 402# include <sys/select.h>
260# endif 403# endif
261#endif 404#endif
262 405
263#if EV_USE_INOTIFY 406#if EV_USE_INOTIFY
407# include <sys/statfs.h>
264# include <sys/inotify.h> 408# include <sys/inotify.h>
409/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
410# ifndef IN_DONT_FOLLOW
411# undef EV_USE_INOTIFY
412# define EV_USE_INOTIFY 0
265#endif 413# endif
266
267#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h>
269#endif 414#endif
270 415
271#if EV_USE_EVENTFD 416#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h> 418# include <stdint.h>
274# ifdef __cplusplus 419# ifndef EFD_NONBLOCK
275extern "C" { 420# define EFD_NONBLOCK O_NONBLOCK
276# endif 421# endif
277int eventfd (unsigned int initval, int flags); 422# ifndef EFD_CLOEXEC
278# ifdef __cplusplus 423# ifdef O_CLOEXEC
279} 424# define EFD_CLOEXEC O_CLOEXEC
425# else
426# define EFD_CLOEXEC 02000000
427# endif
280# endif 428# endif
429EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
430#endif
431
432#if EV_USE_SIGNALFD
433/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
434# include <stdint.h>
435# ifndef SFD_NONBLOCK
436# define SFD_NONBLOCK O_NONBLOCK
437# endif
438# ifndef SFD_CLOEXEC
439# ifdef O_CLOEXEC
440# define SFD_CLOEXEC O_CLOEXEC
441# else
442# define SFD_CLOEXEC 02000000
443# endif
444# endif
445EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
446
447struct signalfd_siginfo
448{
449 uint32_t ssi_signo;
450 char pad[128 - sizeof (uint32_t)];
451};
281#endif 452#endif
282 453
283/**/ 454/**/
284 455
456#if EV_VERIFY >= 3
457# define EV_FREQUENT_CHECK ev_verify (EV_A)
458#else
459# define EV_FREQUENT_CHECK do { } while (0)
460#endif
461
285/* 462/*
286 * This is used to avoid floating point rounding problems. 463 * This is used to work around floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding
289 * errors are against us.
290 * This value is good at least till the year 4000. 464 * This value is good at least till the year 4000.
291 * Better solutions welcome.
292 */ 465 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 466#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
467/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
294 468
295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 469#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 470#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
298 471
472#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
473#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
474
475/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
476/* ECB.H BEGIN */
477/*
478 * libecb - http://software.schmorp.de/pkg/libecb
479 *
480 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
481 * Copyright (©) 2011 Emanuele Giaquinta
482 * All rights reserved.
483 *
484 * Redistribution and use in source and binary forms, with or without modifica-
485 * tion, are permitted provided that the following conditions are met:
486 *
487 * 1. Redistributions of source code must retain the above copyright notice,
488 * this list of conditions and the following disclaimer.
489 *
490 * 2. Redistributions in binary form must reproduce the above copyright
491 * notice, this list of conditions and the following disclaimer in the
492 * documentation and/or other materials provided with the distribution.
493 *
494 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
495 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
496 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
497 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
498 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
499 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
500 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
501 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
502 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
503 * OF THE POSSIBILITY OF SUCH DAMAGE.
504 */
505
506#ifndef ECB_H
507#define ECB_H
508
509#ifdef _WIN32
510 typedef signed char int8_t;
511 typedef unsigned char uint8_t;
512 typedef signed short int16_t;
513 typedef unsigned short uint16_t;
514 typedef signed int int32_t;
515 typedef unsigned int uint32_t;
299#if __GNUC__ >= 4 516 #if __GNUC__
300# define expect(expr,value) __builtin_expect ((expr),(value)) 517 typedef signed long long int64_t;
301# define noinline __attribute__ ((noinline)) 518 typedef unsigned long long uint64_t;
519 #else /* _MSC_VER || __BORLANDC__ */
520 typedef signed __int64 int64_t;
521 typedef unsigned __int64 uint64_t;
522 #endif
302#else 523#else
303# define expect(expr,value) (expr) 524 #include <inttypes.h>
304# define noinline
305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
306# define inline
307# endif 525#endif
526
527/* many compilers define _GNUC_ to some versions but then only implement
528 * what their idiot authors think are the "more important" extensions,
529 * causing enormous grief in return for some better fake benchmark numbers.
530 * or so.
531 * we try to detect these and simply assume they are not gcc - if they have
532 * an issue with that they should have done it right in the first place.
533 */
534#ifndef ECB_GCC_VERSION
535 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
536 #define ECB_GCC_VERSION(major,minor) 0
537 #else
538 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
308#endif 539 #endif
540#endif
309 541
542/*****************************************************************************/
543
544/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
545/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
546
547#if ECB_NO_THREADS
548# define ECB_NO_SMP 1
549#endif
550
551#if ECB_NO_THREADS || ECB_NO_SMP
552 #define ECB_MEMORY_FENCE do { } while (0)
553#endif
554
555#ifndef ECB_MEMORY_FENCE
556 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
557 #if __i386 || __i386__
558 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
559 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */
560 #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */
561 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
562 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
563 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
564 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */
565 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
566 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
567 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
568 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
569 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
570 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
571 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
572 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
573 #elif __sparc || __sparc__
574 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad | " : : : "memory")
575 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
576 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
577 #elif defined __s390__ || defined __s390x__
578 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
579 #elif defined __mips__
580 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
581 #elif defined __alpha__
582 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
583 #endif
584 #endif
585#endif
586
587#ifndef ECB_MEMORY_FENCE
588 #if ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
589 #define ECB_MEMORY_FENCE __sync_synchronize ()
590 /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */
591 /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); }) */
592 #elif _MSC_VER >= 1400 /* VC++ 2005 */
593 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
594 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
595 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
596 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
597 #elif defined _WIN32
598 #include <WinNT.h>
599 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
600 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
601 #include <mbarrier.h>
602 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
603 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
604 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
605 #elif __xlC__
606 #define ECB_MEMORY_FENCE __sync ()
607 #endif
608#endif
609
610#ifndef ECB_MEMORY_FENCE
611 #if !ECB_AVOID_PTHREADS
612 /*
613 * if you get undefined symbol references to pthread_mutex_lock,
614 * or failure to find pthread.h, then you should implement
615 * the ECB_MEMORY_FENCE operations for your cpu/compiler
616 * OR provide pthread.h and link against the posix thread library
617 * of your system.
618 */
619 #include <pthread.h>
620 #define ECB_NEEDS_PTHREADS 1
621 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
622
623 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
624 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
625 #endif
626#endif
627
628#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
629 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
630#endif
631
632#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
633 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
634#endif
635
636/*****************************************************************************/
637
638#define ECB_C99 (__STDC_VERSION__ >= 199901L)
639
640#if __cplusplus
641 #define ecb_inline static inline
642#elif ECB_GCC_VERSION(2,5)
643 #define ecb_inline static __inline__
644#elif ECB_C99
645 #define ecb_inline static inline
646#else
647 #define ecb_inline static
648#endif
649
650#if ECB_GCC_VERSION(3,3)
651 #define ecb_restrict __restrict__
652#elif ECB_C99
653 #define ecb_restrict restrict
654#else
655 #define ecb_restrict
656#endif
657
658typedef int ecb_bool;
659
660#define ECB_CONCAT_(a, b) a ## b
661#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
662#define ECB_STRINGIFY_(a) # a
663#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
664
665#define ecb_function_ ecb_inline
666
667#if ECB_GCC_VERSION(3,1)
668 #define ecb_attribute(attrlist) __attribute__(attrlist)
669 #define ecb_is_constant(expr) __builtin_constant_p (expr)
670 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
671 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
672#else
673 #define ecb_attribute(attrlist)
674 #define ecb_is_constant(expr) 0
675 #define ecb_expect(expr,value) (expr)
676 #define ecb_prefetch(addr,rw,locality)
677#endif
678
679/* no emulation for ecb_decltype */
680#if ECB_GCC_VERSION(4,5)
681 #define ecb_decltype(x) __decltype(x)
682#elif ECB_GCC_VERSION(3,0)
683 #define ecb_decltype(x) __typeof(x)
684#endif
685
686#define ecb_noinline ecb_attribute ((__noinline__))
687#define ecb_noreturn ecb_attribute ((__noreturn__))
688#define ecb_unused ecb_attribute ((__unused__))
689#define ecb_const ecb_attribute ((__const__))
690#define ecb_pure ecb_attribute ((__pure__))
691
692#if ECB_GCC_VERSION(4,3)
693 #define ecb_artificial ecb_attribute ((__artificial__))
694 #define ecb_hot ecb_attribute ((__hot__))
695 #define ecb_cold ecb_attribute ((__cold__))
696#else
697 #define ecb_artificial
698 #define ecb_hot
699 #define ecb_cold
700#endif
701
702/* put around conditional expressions if you are very sure that the */
703/* expression is mostly true or mostly false. note that these return */
704/* booleans, not the expression. */
310#define expect_false(expr) expect ((expr) != 0, 0) 705#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
311#define expect_true(expr) expect ((expr) != 0, 1) 706#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
707/* for compatibility to the rest of the world */
708#define ecb_likely(expr) ecb_expect_true (expr)
709#define ecb_unlikely(expr) ecb_expect_false (expr)
710
711/* count trailing zero bits and count # of one bits */
712#if ECB_GCC_VERSION(3,4)
713 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
714 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
715 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
716 #define ecb_ctz32(x) __builtin_ctz (x)
717 #define ecb_ctz64(x) __builtin_ctzll (x)
718 #define ecb_popcount32(x) __builtin_popcount (x)
719 /* no popcountll */
720#else
721 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
722 ecb_function_ int
723 ecb_ctz32 (uint32_t x)
724 {
725 int r = 0;
726
727 x &= ~x + 1; /* this isolates the lowest bit */
728
729#if ECB_branchless_on_i386
730 r += !!(x & 0xaaaaaaaa) << 0;
731 r += !!(x & 0xcccccccc) << 1;
732 r += !!(x & 0xf0f0f0f0) << 2;
733 r += !!(x & 0xff00ff00) << 3;
734 r += !!(x & 0xffff0000) << 4;
735#else
736 if (x & 0xaaaaaaaa) r += 1;
737 if (x & 0xcccccccc) r += 2;
738 if (x & 0xf0f0f0f0) r += 4;
739 if (x & 0xff00ff00) r += 8;
740 if (x & 0xffff0000) r += 16;
741#endif
742
743 return r;
744 }
745
746 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
747 ecb_function_ int
748 ecb_ctz64 (uint64_t x)
749 {
750 int shift = x & 0xffffffffU ? 0 : 32;
751 return ecb_ctz32 (x >> shift) + shift;
752 }
753
754 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
755 ecb_function_ int
756 ecb_popcount32 (uint32_t x)
757 {
758 x -= (x >> 1) & 0x55555555;
759 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
760 x = ((x >> 4) + x) & 0x0f0f0f0f;
761 x *= 0x01010101;
762
763 return x >> 24;
764 }
765
766 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
767 ecb_function_ int ecb_ld32 (uint32_t x)
768 {
769 int r = 0;
770
771 if (x >> 16) { x >>= 16; r += 16; }
772 if (x >> 8) { x >>= 8; r += 8; }
773 if (x >> 4) { x >>= 4; r += 4; }
774 if (x >> 2) { x >>= 2; r += 2; }
775 if (x >> 1) { r += 1; }
776
777 return r;
778 }
779
780 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
781 ecb_function_ int ecb_ld64 (uint64_t x)
782 {
783 int r = 0;
784
785 if (x >> 32) { x >>= 32; r += 32; }
786
787 return r + ecb_ld32 (x);
788 }
789#endif
790
791ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
792ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
793{
794 return ( (x * 0x0802U & 0x22110U)
795 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
796}
797
798ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
799ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
800{
801 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
802 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
803 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
804 x = ( x >> 8 ) | ( x << 8);
805
806 return x;
807}
808
809ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
810ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
811{
812 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
813 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
814 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
815 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
816 x = ( x >> 16 ) | ( x << 16);
817
818 return x;
819}
820
821/* popcount64 is only available on 64 bit cpus as gcc builtin */
822/* so for this version we are lazy */
823ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
824ecb_function_ int
825ecb_popcount64 (uint64_t x)
826{
827 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
828}
829
830ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
831ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
832ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
833ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
834ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
835ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
836ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
837ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
838
839ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
840ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
841ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
842ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
843ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
844ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
845ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
846ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
847
848#if ECB_GCC_VERSION(4,3)
849 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
850 #define ecb_bswap32(x) __builtin_bswap32 (x)
851 #define ecb_bswap64(x) __builtin_bswap64 (x)
852#else
853 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
854 ecb_function_ uint16_t
855 ecb_bswap16 (uint16_t x)
856 {
857 return ecb_rotl16 (x, 8);
858 }
859
860 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
861 ecb_function_ uint32_t
862 ecb_bswap32 (uint32_t x)
863 {
864 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
865 }
866
867 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
868 ecb_function_ uint64_t
869 ecb_bswap64 (uint64_t x)
870 {
871 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
872 }
873#endif
874
875#if ECB_GCC_VERSION(4,5)
876 #define ecb_unreachable() __builtin_unreachable ()
877#else
878 /* this seems to work fine, but gcc always emits a warning for it :/ */
879 ecb_inline void ecb_unreachable (void) ecb_noreturn;
880 ecb_inline void ecb_unreachable (void) { }
881#endif
882
883/* try to tell the compiler that some condition is definitely true */
884#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
885
886ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
887ecb_inline unsigned char
888ecb_byteorder_helper (void)
889{
890 const uint32_t u = 0x11223344;
891 return *(unsigned char *)&u;
892}
893
894ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
895ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
896ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
897ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
898
899#if ECB_GCC_VERSION(3,0) || ECB_C99
900 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
901#else
902 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
903#endif
904
905#if __cplusplus
906 template<typename T>
907 static inline T ecb_div_rd (T val, T div)
908 {
909 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
910 }
911 template<typename T>
912 static inline T ecb_div_ru (T val, T div)
913 {
914 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
915 }
916#else
917 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
918 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
919#endif
920
921#if ecb_cplusplus_does_not_suck
922 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
923 template<typename T, int N>
924 static inline int ecb_array_length (const T (&arr)[N])
925 {
926 return N;
927 }
928#else
929 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
930#endif
931
932#endif
933
934/* ECB.H END */
935
936#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
937/* if your architecture doesn't need memory fences, e.g. because it is
938 * single-cpu/core, or if you use libev in a project that doesn't use libev
939 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
940 * libev, in which cases the memory fences become nops.
941 * alternatively, you can remove this #error and link against libpthread,
942 * which will then provide the memory fences.
943 */
944# error "memory fences not defined for your architecture, please report"
945#endif
946
947#ifndef ECB_MEMORY_FENCE
948# define ECB_MEMORY_FENCE do { } while (0)
949# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
950# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
951#endif
952
953#define expect_false(cond) ecb_expect_false (cond)
954#define expect_true(cond) ecb_expect_true (cond)
955#define noinline ecb_noinline
956
312#define inline_size static inline 957#define inline_size ecb_inline
313 958
314#if EV_MINIMAL 959#if EV_FEATURE_CODE
960# define inline_speed ecb_inline
961#else
315# define inline_speed static noinline 962# define inline_speed static noinline
963#endif
964
965#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
966
967#if EV_MINPRI == EV_MAXPRI
968# define ABSPRI(w) (((W)w), 0)
316#else 969#else
317# define inline_speed static inline
318#endif
319
320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 970# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
971#endif
322 972
323#define EMPTY /* required for microsofts broken pseudo-c compiler */ 973#define EMPTY /* required for microsofts broken pseudo-c compiler */
324#define EMPTY2(a,b) /* used to suppress some warnings */ 974#define EMPTY2(a,b) /* used to suppress some warnings */
325 975
326typedef ev_watcher *W; 976typedef ev_watcher *W;
327typedef ev_watcher_list *WL; 977typedef ev_watcher_list *WL;
328typedef ev_watcher_time *WT; 978typedef ev_watcher_time *WT;
329 979
980#define ev_active(w) ((W)(w))->active
330#define ev_at(w) ((WT)(w))->at 981#define ev_at(w) ((WT)(w))->at
331 982
983#if EV_USE_REALTIME
984/* sig_atomic_t is used to avoid per-thread variables or locking but still */
985/* giving it a reasonably high chance of working on typical architectures */
986static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
987#endif
988
332#if EV_USE_MONOTONIC 989#if EV_USE_MONOTONIC
333/* sig_atomic_t is used to avoid per-thread variables or locking but still */
334/* giving it a reasonably high chance of working on typical architetcures */
335static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 990static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
991#endif
992
993#ifndef EV_FD_TO_WIN32_HANDLE
994# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
995#endif
996#ifndef EV_WIN32_HANDLE_TO_FD
997# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
998#endif
999#ifndef EV_WIN32_CLOSE_FD
1000# define EV_WIN32_CLOSE_FD(fd) close (fd)
336#endif 1001#endif
337 1002
338#ifdef _WIN32 1003#ifdef _WIN32
339# include "ev_win32.c" 1004# include "ev_win32.c"
340#endif 1005#endif
341 1006
342/*****************************************************************************/ 1007/*****************************************************************************/
343 1008
1009/* define a suitable floor function (only used by periodics atm) */
1010
1011#if EV_USE_FLOOR
1012# include <math.h>
1013# define ev_floor(v) floor (v)
1014#else
1015
1016#include <float.h>
1017
1018/* a floor() replacement function, should be independent of ev_tstamp type */
1019static ev_tstamp noinline
1020ev_floor (ev_tstamp v)
1021{
1022 /* the choice of shift factor is not terribly important */
1023#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1024 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1025#else
1026 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1027#endif
1028
1029 /* argument too large for an unsigned long? */
1030 if (expect_false (v >= shift))
1031 {
1032 ev_tstamp f;
1033
1034 if (v == v - 1.)
1035 return v; /* very large number */
1036
1037 f = shift * ev_floor (v * (1. / shift));
1038 return f + ev_floor (v - f);
1039 }
1040
1041 /* special treatment for negative args? */
1042 if (expect_false (v < 0.))
1043 {
1044 ev_tstamp f = -ev_floor (-v);
1045
1046 return f - (f == v ? 0 : 1);
1047 }
1048
1049 /* fits into an unsigned long */
1050 return (unsigned long)v;
1051}
1052
1053#endif
1054
1055/*****************************************************************************/
1056
1057#ifdef __linux
1058# include <sys/utsname.h>
1059#endif
1060
1061static unsigned int noinline ecb_cold
1062ev_linux_version (void)
1063{
1064#ifdef __linux
1065 unsigned int v = 0;
1066 struct utsname buf;
1067 int i;
1068 char *p = buf.release;
1069
1070 if (uname (&buf))
1071 return 0;
1072
1073 for (i = 3+1; --i; )
1074 {
1075 unsigned int c = 0;
1076
1077 for (;;)
1078 {
1079 if (*p >= '0' && *p <= '9')
1080 c = c * 10 + *p++ - '0';
1081 else
1082 {
1083 p += *p == '.';
1084 break;
1085 }
1086 }
1087
1088 v = (v << 8) | c;
1089 }
1090
1091 return v;
1092#else
1093 return 0;
1094#endif
1095}
1096
1097/*****************************************************************************/
1098
1099#if EV_AVOID_STDIO
1100static void noinline ecb_cold
1101ev_printerr (const char *msg)
1102{
1103 write (STDERR_FILENO, msg, strlen (msg));
1104}
1105#endif
1106
344static void (*syserr_cb)(const char *msg); 1107static void (*syserr_cb)(const char *msg) EV_THROW;
345 1108
346void 1109void ecb_cold
347ev_set_syserr_cb (void (*cb)(const char *msg)) 1110ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
348{ 1111{
349 syserr_cb = cb; 1112 syserr_cb = cb;
350} 1113}
351 1114
352static void noinline 1115static void noinline ecb_cold
353syserr (const char *msg) 1116ev_syserr (const char *msg)
354{ 1117{
355 if (!msg) 1118 if (!msg)
356 msg = "(libev) system error"; 1119 msg = "(libev) system error";
357 1120
358 if (syserr_cb) 1121 if (syserr_cb)
359 syserr_cb (msg); 1122 syserr_cb (msg);
360 else 1123 else
361 { 1124 {
1125#if EV_AVOID_STDIO
1126 ev_printerr (msg);
1127 ev_printerr (": ");
1128 ev_printerr (strerror (errno));
1129 ev_printerr ("\n");
1130#else
362 perror (msg); 1131 perror (msg);
1132#endif
363 abort (); 1133 abort ();
364 } 1134 }
365} 1135}
366 1136
367static void * 1137static void *
368ev_realloc_emul (void *ptr, long size) 1138ev_realloc_emul (void *ptr, long size) EV_THROW
369{ 1139{
1140#if __GLIBC__
1141 return realloc (ptr, size);
1142#else
370 /* some systems, notably openbsd and darwin, fail to properly 1143 /* some systems, notably openbsd and darwin, fail to properly
371 * implement realloc (x, 0) (as required by both ansi c-98 and 1144 * implement realloc (x, 0) (as required by both ansi c-89 and
372 * the single unix specification, so work around them here. 1145 * the single unix specification, so work around them here.
373 */ 1146 */
374 1147
375 if (size) 1148 if (size)
376 return realloc (ptr, size); 1149 return realloc (ptr, size);
377 1150
378 free (ptr); 1151 free (ptr);
379 return 0; 1152 return 0;
1153#endif
380} 1154}
381 1155
382static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 1156static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
383 1157
384void 1158void ecb_cold
385ev_set_allocator (void *(*cb)(void *ptr, long size)) 1159ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
386{ 1160{
387 alloc = cb; 1161 alloc = cb;
388} 1162}
389 1163
390inline_speed void * 1164inline_speed void *
392{ 1166{
393 ptr = alloc (ptr, size); 1167 ptr = alloc (ptr, size);
394 1168
395 if (!ptr && size) 1169 if (!ptr && size)
396 { 1170 {
1171#if EV_AVOID_STDIO
1172 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1173#else
397 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1174 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1175#endif
398 abort (); 1176 abort ();
399 } 1177 }
400 1178
401 return ptr; 1179 return ptr;
402} 1180}
404#define ev_malloc(size) ev_realloc (0, (size)) 1182#define ev_malloc(size) ev_realloc (0, (size))
405#define ev_free(ptr) ev_realloc ((ptr), 0) 1183#define ev_free(ptr) ev_realloc ((ptr), 0)
406 1184
407/*****************************************************************************/ 1185/*****************************************************************************/
408 1186
1187/* set in reify when reification needed */
1188#define EV_ANFD_REIFY 1
1189
1190/* file descriptor info structure */
409typedef struct 1191typedef struct
410{ 1192{
411 WL head; 1193 WL head;
412 unsigned char events; 1194 unsigned char events; /* the events watched for */
1195 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1196 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
413 unsigned char reify; 1197 unsigned char unused;
1198#if EV_USE_EPOLL
1199 unsigned int egen; /* generation counter to counter epoll bugs */
1200#endif
414#if EV_SELECT_IS_WINSOCKET 1201#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
415 SOCKET handle; 1202 SOCKET handle;
416#endif 1203#endif
1204#if EV_USE_IOCP
1205 OVERLAPPED or, ow;
1206#endif
417} ANFD; 1207} ANFD;
418 1208
1209/* stores the pending event set for a given watcher */
419typedef struct 1210typedef struct
420{ 1211{
421 W w; 1212 W w;
422 int events; 1213 int events; /* the pending event set for the given watcher */
423} ANPENDING; 1214} ANPENDING;
424 1215
425#if EV_USE_INOTIFY 1216#if EV_USE_INOTIFY
1217/* hash table entry per inotify-id */
426typedef struct 1218typedef struct
427{ 1219{
428 WL head; 1220 WL head;
429} ANFS; 1221} ANFS;
1222#endif
1223
1224/* Heap Entry */
1225#if EV_HEAP_CACHE_AT
1226 /* a heap element */
1227 typedef struct {
1228 ev_tstamp at;
1229 WT w;
1230 } ANHE;
1231
1232 #define ANHE_w(he) (he).w /* access watcher, read-write */
1233 #define ANHE_at(he) (he).at /* access cached at, read-only */
1234 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1235#else
1236 /* a heap element */
1237 typedef WT ANHE;
1238
1239 #define ANHE_w(he) (he)
1240 #define ANHE_at(he) (he)->at
1241 #define ANHE_at_cache(he)
430#endif 1242#endif
431 1243
432#if EV_MULTIPLICITY 1244#if EV_MULTIPLICITY
433 1245
434 struct ev_loop 1246 struct ev_loop
440 #undef VAR 1252 #undef VAR
441 }; 1253 };
442 #include "ev_wrap.h" 1254 #include "ev_wrap.h"
443 1255
444 static struct ev_loop default_loop_struct; 1256 static struct ev_loop default_loop_struct;
445 struct ev_loop *ev_default_loop_ptr; 1257 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
446 1258
447#else 1259#else
448 1260
449 ev_tstamp ev_rt_now; 1261 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
450 #define VAR(name,decl) static decl; 1262 #define VAR(name,decl) static decl;
451 #include "ev_vars.h" 1263 #include "ev_vars.h"
452 #undef VAR 1264 #undef VAR
453 1265
454 static int ev_default_loop_ptr; 1266 static int ev_default_loop_ptr;
455 1267
456#endif 1268#endif
457 1269
1270#if EV_FEATURE_API
1271# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1272# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1273# define EV_INVOKE_PENDING invoke_cb (EV_A)
1274#else
1275# define EV_RELEASE_CB (void)0
1276# define EV_ACQUIRE_CB (void)0
1277# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1278#endif
1279
1280#define EVBREAK_RECURSE 0x80
1281
458/*****************************************************************************/ 1282/*****************************************************************************/
459 1283
1284#ifndef EV_HAVE_EV_TIME
460ev_tstamp 1285ev_tstamp
461ev_time (void) 1286ev_time (void) EV_THROW
462{ 1287{
463#if EV_USE_REALTIME 1288#if EV_USE_REALTIME
1289 if (expect_true (have_realtime))
1290 {
464 struct timespec ts; 1291 struct timespec ts;
465 clock_gettime (CLOCK_REALTIME, &ts); 1292 clock_gettime (CLOCK_REALTIME, &ts);
466 return ts.tv_sec + ts.tv_nsec * 1e-9; 1293 return ts.tv_sec + ts.tv_nsec * 1e-9;
467#else 1294 }
1295#endif
1296
468 struct timeval tv; 1297 struct timeval tv;
469 gettimeofday (&tv, 0); 1298 gettimeofday (&tv, 0);
470 return tv.tv_sec + tv.tv_usec * 1e-6; 1299 return tv.tv_sec + tv.tv_usec * 1e-6;
471#endif
472} 1300}
1301#endif
473 1302
474ev_tstamp inline_size 1303inline_size ev_tstamp
475get_clock (void) 1304get_clock (void)
476{ 1305{
477#if EV_USE_MONOTONIC 1306#if EV_USE_MONOTONIC
478 if (expect_true (have_monotonic)) 1307 if (expect_true (have_monotonic))
479 { 1308 {
486 return ev_time (); 1315 return ev_time ();
487} 1316}
488 1317
489#if EV_MULTIPLICITY 1318#if EV_MULTIPLICITY
490ev_tstamp 1319ev_tstamp
491ev_now (EV_P) 1320ev_now (EV_P) EV_THROW
492{ 1321{
493 return ev_rt_now; 1322 return ev_rt_now;
494} 1323}
495#endif 1324#endif
496 1325
497void 1326void
498ev_sleep (ev_tstamp delay) 1327ev_sleep (ev_tstamp delay) EV_THROW
499{ 1328{
500 if (delay > 0.) 1329 if (delay > 0.)
501 { 1330 {
502#if EV_USE_NANOSLEEP 1331#if EV_USE_NANOSLEEP
503 struct timespec ts; 1332 struct timespec ts;
504 1333
505 ts.tv_sec = (time_t)delay; 1334 EV_TS_SET (ts, delay);
506 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
507
508 nanosleep (&ts, 0); 1335 nanosleep (&ts, 0);
509#elif defined(_WIN32) 1336#elif defined _WIN32
510 Sleep ((unsigned long)(delay * 1e3)); 1337 Sleep ((unsigned long)(delay * 1e3));
511#else 1338#else
512 struct timeval tv; 1339 struct timeval tv;
513 1340
514 tv.tv_sec = (time_t)delay; 1341 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
515 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 1342 /* something not guaranteed by newer posix versions, but guaranteed */
516 1343 /* by older ones */
1344 EV_TV_SET (tv, delay);
517 select (0, 0, 0, 0, &tv); 1345 select (0, 0, 0, 0, &tv);
518#endif 1346#endif
519 } 1347 }
520} 1348}
521 1349
522/*****************************************************************************/ 1350/*****************************************************************************/
523 1351
524int inline_size 1352#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1353
1354/* find a suitable new size for the given array, */
1355/* hopefully by rounding to a nice-to-malloc size */
1356inline_size int
525array_nextsize (int elem, int cur, int cnt) 1357array_nextsize (int elem, int cur, int cnt)
526{ 1358{
527 int ncur = cur + 1; 1359 int ncur = cur + 1;
528 1360
529 do 1361 do
530 ncur <<= 1; 1362 ncur <<= 1;
531 while (cnt > ncur); 1363 while (cnt > ncur);
532 1364
533 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 1365 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
534 if (elem * ncur > 4096) 1366 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
535 { 1367 {
536 ncur *= elem; 1368 ncur *= elem;
537 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 1369 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
538 ncur = ncur - sizeof (void *) * 4; 1370 ncur = ncur - sizeof (void *) * 4;
539 ncur /= elem; 1371 ncur /= elem;
540 } 1372 }
541 1373
542 return ncur; 1374 return ncur;
543} 1375}
544 1376
545static noinline void * 1377static void * noinline ecb_cold
546array_realloc (int elem, void *base, int *cur, int cnt) 1378array_realloc (int elem, void *base, int *cur, int cnt)
547{ 1379{
548 *cur = array_nextsize (elem, *cur, cnt); 1380 *cur = array_nextsize (elem, *cur, cnt);
549 return ev_realloc (base, elem * *cur); 1381 return ev_realloc (base, elem * *cur);
550} 1382}
1383
1384#define array_init_zero(base,count) \
1385 memset ((void *)(base), 0, sizeof (*(base)) * (count))
551 1386
552#define array_needsize(type,base,cur,cnt,init) \ 1387#define array_needsize(type,base,cur,cnt,init) \
553 if (expect_false ((cnt) > (cur))) \ 1388 if (expect_false ((cnt) > (cur))) \
554 { \ 1389 { \
555 int ocur_ = (cur); \ 1390 int ecb_unused ocur_ = (cur); \
556 (base) = (type *)array_realloc \ 1391 (base) = (type *)array_realloc \
557 (sizeof (type), (base), &(cur), (cnt)); \ 1392 (sizeof (type), (base), &(cur), (cnt)); \
558 init ((base) + (ocur_), (cur) - ocur_); \ 1393 init ((base) + (ocur_), (cur) - ocur_); \
559 } 1394 }
560 1395
567 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1402 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
568 } 1403 }
569#endif 1404#endif
570 1405
571#define array_free(stem, idx) \ 1406#define array_free(stem, idx) \
572 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1407 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
573 1408
574/*****************************************************************************/ 1409/*****************************************************************************/
575 1410
1411/* dummy callback for pending events */
1412static void noinline
1413pendingcb (EV_P_ ev_prepare *w, int revents)
1414{
1415}
1416
576void noinline 1417void noinline
577ev_feed_event (EV_P_ void *w, int revents) 1418ev_feed_event (EV_P_ void *w, int revents) EV_THROW
578{ 1419{
579 W w_ = (W)w; 1420 W w_ = (W)w;
580 int pri = ABSPRI (w_); 1421 int pri = ABSPRI (w_);
581 1422
582 if (expect_false (w_->pending)) 1423 if (expect_false (w_->pending))
586 w_->pending = ++pendingcnt [pri]; 1427 w_->pending = ++pendingcnt [pri];
587 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 1428 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
588 pendings [pri][w_->pending - 1].w = w_; 1429 pendings [pri][w_->pending - 1].w = w_;
589 pendings [pri][w_->pending - 1].events = revents; 1430 pendings [pri][w_->pending - 1].events = revents;
590 } 1431 }
591}
592 1432
593void inline_speed 1433 pendingpri = NUMPRI - 1;
1434}
1435
1436inline_speed void
1437feed_reverse (EV_P_ W w)
1438{
1439 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1440 rfeeds [rfeedcnt++] = w;
1441}
1442
1443inline_size void
1444feed_reverse_done (EV_P_ int revents)
1445{
1446 do
1447 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1448 while (rfeedcnt);
1449}
1450
1451inline_speed void
594queue_events (EV_P_ W *events, int eventcnt, int type) 1452queue_events (EV_P_ W *events, int eventcnt, int type)
595{ 1453{
596 int i; 1454 int i;
597 1455
598 for (i = 0; i < eventcnt; ++i) 1456 for (i = 0; i < eventcnt; ++i)
599 ev_feed_event (EV_A_ events [i], type); 1457 ev_feed_event (EV_A_ events [i], type);
600} 1458}
601 1459
602/*****************************************************************************/ 1460/*****************************************************************************/
603 1461
604void inline_size 1462inline_speed void
605anfds_init (ANFD *base, int count)
606{
607 while (count--)
608 {
609 base->head = 0;
610 base->events = EV_NONE;
611 base->reify = 0;
612
613 ++base;
614 }
615}
616
617void inline_speed
618fd_event (EV_P_ int fd, int revents) 1463fd_event_nocheck (EV_P_ int fd, int revents)
619{ 1464{
620 ANFD *anfd = anfds + fd; 1465 ANFD *anfd = anfds + fd;
621 ev_io *w; 1466 ev_io *w;
622 1467
623 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1468 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
627 if (ev) 1472 if (ev)
628 ev_feed_event (EV_A_ (W)w, ev); 1473 ev_feed_event (EV_A_ (W)w, ev);
629 } 1474 }
630} 1475}
631 1476
1477/* do not submit kernel events for fds that have reify set */
1478/* because that means they changed while we were polling for new events */
1479inline_speed void
1480fd_event (EV_P_ int fd, int revents)
1481{
1482 ANFD *anfd = anfds + fd;
1483
1484 if (expect_true (!anfd->reify))
1485 fd_event_nocheck (EV_A_ fd, revents);
1486}
1487
632void 1488void
633ev_feed_fd_event (EV_P_ int fd, int revents) 1489ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
634{ 1490{
635 if (fd >= 0 && fd < anfdmax) 1491 if (fd >= 0 && fd < anfdmax)
636 fd_event (EV_A_ fd, revents); 1492 fd_event_nocheck (EV_A_ fd, revents);
637} 1493}
638 1494
639void inline_size 1495/* make sure the external fd watch events are in-sync */
1496/* with the kernel/libev internal state */
1497inline_size void
640fd_reify (EV_P) 1498fd_reify (EV_P)
641{ 1499{
642 int i; 1500 int i;
1501
1502#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1503 for (i = 0; i < fdchangecnt; ++i)
1504 {
1505 int fd = fdchanges [i];
1506 ANFD *anfd = anfds + fd;
1507
1508 if (anfd->reify & EV__IOFDSET && anfd->head)
1509 {
1510 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1511
1512 if (handle != anfd->handle)
1513 {
1514 unsigned long arg;
1515
1516 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1517
1518 /* handle changed, but fd didn't - we need to do it in two steps */
1519 backend_modify (EV_A_ fd, anfd->events, 0);
1520 anfd->events = 0;
1521 anfd->handle = handle;
1522 }
1523 }
1524 }
1525#endif
643 1526
644 for (i = 0; i < fdchangecnt; ++i) 1527 for (i = 0; i < fdchangecnt; ++i)
645 { 1528 {
646 int fd = fdchanges [i]; 1529 int fd = fdchanges [i];
647 ANFD *anfd = anfds + fd; 1530 ANFD *anfd = anfds + fd;
648 ev_io *w; 1531 ev_io *w;
649 1532
650 unsigned char events = 0; 1533 unsigned char o_events = anfd->events;
1534 unsigned char o_reify = anfd->reify;
651 1535
652 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1536 anfd->reify = 0;
653 events |= (unsigned char)w->events;
654 1537
655#if EV_SELECT_IS_WINSOCKET 1538 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
656 if (events)
657 { 1539 {
658 unsigned long argp; 1540 anfd->events = 0;
659 #ifdef EV_FD_TO_WIN32_HANDLE 1541
660 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1542 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
661 #else 1543 anfd->events |= (unsigned char)w->events;
662 anfd->handle = _get_osfhandle (fd); 1544
663 #endif 1545 if (o_events != anfd->events)
664 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1546 o_reify = EV__IOFDSET; /* actually |= */
665 } 1547 }
666#endif
667 1548
668 { 1549 if (o_reify & EV__IOFDSET)
669 unsigned char o_events = anfd->events;
670 unsigned char o_reify = anfd->reify;
671
672 anfd->reify = 0;
673 anfd->events = events;
674
675 if (o_events != events || o_reify & EV_IOFDSET)
676 backend_modify (EV_A_ fd, o_events, events); 1550 backend_modify (EV_A_ fd, o_events, anfd->events);
677 }
678 } 1551 }
679 1552
680 fdchangecnt = 0; 1553 fdchangecnt = 0;
681} 1554}
682 1555
683void inline_size 1556/* something about the given fd changed */
1557inline_size void
684fd_change (EV_P_ int fd, int flags) 1558fd_change (EV_P_ int fd, int flags)
685{ 1559{
686 unsigned char reify = anfds [fd].reify; 1560 unsigned char reify = anfds [fd].reify;
687 anfds [fd].reify |= flags; 1561 anfds [fd].reify |= flags;
688 1562
692 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1566 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
693 fdchanges [fdchangecnt - 1] = fd; 1567 fdchanges [fdchangecnt - 1] = fd;
694 } 1568 }
695} 1569}
696 1570
697void inline_speed 1571/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1572inline_speed void ecb_cold
698fd_kill (EV_P_ int fd) 1573fd_kill (EV_P_ int fd)
699{ 1574{
700 ev_io *w; 1575 ev_io *w;
701 1576
702 while ((w = (ev_io *)anfds [fd].head)) 1577 while ((w = (ev_io *)anfds [fd].head))
704 ev_io_stop (EV_A_ w); 1579 ev_io_stop (EV_A_ w);
705 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1580 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
706 } 1581 }
707} 1582}
708 1583
709int inline_size 1584/* check whether the given fd is actually valid, for error recovery */
1585inline_size int ecb_cold
710fd_valid (int fd) 1586fd_valid (int fd)
711{ 1587{
712#ifdef _WIN32 1588#ifdef _WIN32
713 return _get_osfhandle (fd) != -1; 1589 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
714#else 1590#else
715 return fcntl (fd, F_GETFD) != -1; 1591 return fcntl (fd, F_GETFD) != -1;
716#endif 1592#endif
717} 1593}
718 1594
719/* called on EBADF to verify fds */ 1595/* called on EBADF to verify fds */
720static void noinline 1596static void noinline ecb_cold
721fd_ebadf (EV_P) 1597fd_ebadf (EV_P)
722{ 1598{
723 int fd; 1599 int fd;
724 1600
725 for (fd = 0; fd < anfdmax; ++fd) 1601 for (fd = 0; fd < anfdmax; ++fd)
726 if (anfds [fd].events) 1602 if (anfds [fd].events)
727 if (!fd_valid (fd) == -1 && errno == EBADF) 1603 if (!fd_valid (fd) && errno == EBADF)
728 fd_kill (EV_A_ fd); 1604 fd_kill (EV_A_ fd);
729} 1605}
730 1606
731/* called on ENOMEM in select/poll to kill some fds and retry */ 1607/* called on ENOMEM in select/poll to kill some fds and retry */
732static void noinline 1608static void noinline ecb_cold
733fd_enomem (EV_P) 1609fd_enomem (EV_P)
734{ 1610{
735 int fd; 1611 int fd;
736 1612
737 for (fd = anfdmax; fd--; ) 1613 for (fd = anfdmax; fd--; )
738 if (anfds [fd].events) 1614 if (anfds [fd].events)
739 { 1615 {
740 fd_kill (EV_A_ fd); 1616 fd_kill (EV_A_ fd);
741 return; 1617 break;
742 } 1618 }
743} 1619}
744 1620
745/* usually called after fork if backend needs to re-arm all fds from scratch */ 1621/* usually called after fork if backend needs to re-arm all fds from scratch */
746static void noinline 1622static void noinline
750 1626
751 for (fd = 0; fd < anfdmax; ++fd) 1627 for (fd = 0; fd < anfdmax; ++fd)
752 if (anfds [fd].events) 1628 if (anfds [fd].events)
753 { 1629 {
754 anfds [fd].events = 0; 1630 anfds [fd].events = 0;
1631 anfds [fd].emask = 0;
755 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1632 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
756 } 1633 }
757} 1634}
758 1635
759/*****************************************************************************/ 1636/* used to prepare libev internal fd's */
760 1637/* this is not fork-safe */
761/* towards the root */ 1638inline_speed void
762void inline_speed
763upheap (WT *heap, int k)
764{
765 WT w = heap [k];
766
767 for (;;)
768 {
769 int p = k >> 1;
770
771 /* maybe we could use a dummy element at heap [0]? */
772 if (!p || heap [p]->at <= w->at)
773 break;
774
775 heap [k] = heap [p];
776 ((W)heap [k])->active = k;
777 k = p;
778 }
779
780 heap [k] = w;
781 ((W)heap [k])->active = k;
782}
783
784/* away from the root */
785void inline_speed
786downheap (WT *heap, int N, int k)
787{
788 WT w = heap [k];
789
790 for (;;)
791 {
792 int c = k << 1;
793
794 if (c > N)
795 break;
796
797 c += c < N && heap [c]->at > heap [c + 1]->at
798 ? 1 : 0;
799
800 if (w->at <= heap [c]->at)
801 break;
802
803 heap [k] = heap [c];
804 ((W)heap [k])->active = k;
805
806 k = c;
807 }
808
809 heap [k] = w;
810 ((W)heap [k])->active = k;
811}
812
813void inline_size
814adjustheap (WT *heap, int N, int k)
815{
816 upheap (heap, k);
817 downheap (heap, N, k);
818}
819
820/*****************************************************************************/
821
822typedef struct
823{
824 WL head;
825 EV_ATOMIC_T gotsig;
826} ANSIG;
827
828static ANSIG *signals;
829static int signalmax;
830
831static EV_ATOMIC_T gotsig;
832
833void inline_size
834signals_init (ANSIG *base, int count)
835{
836 while (count--)
837 {
838 base->head = 0;
839 base->gotsig = 0;
840
841 ++base;
842 }
843}
844
845/*****************************************************************************/
846
847void inline_speed
848fd_intern (int fd) 1639fd_intern (int fd)
849{ 1640{
850#ifdef _WIN32 1641#ifdef _WIN32
851 int arg = 1; 1642 unsigned long arg = 1;
852 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1643 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
853#else 1644#else
854 fcntl (fd, F_SETFD, FD_CLOEXEC); 1645 fcntl (fd, F_SETFD, FD_CLOEXEC);
855 fcntl (fd, F_SETFL, O_NONBLOCK); 1646 fcntl (fd, F_SETFL, O_NONBLOCK);
856#endif 1647#endif
857} 1648}
858 1649
1650/*****************************************************************************/
1651
1652/*
1653 * the heap functions want a real array index. array index 0 is guaranteed to not
1654 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1655 * the branching factor of the d-tree.
1656 */
1657
1658/*
1659 * at the moment we allow libev the luxury of two heaps,
1660 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1661 * which is more cache-efficient.
1662 * the difference is about 5% with 50000+ watchers.
1663 */
1664#if EV_USE_4HEAP
1665
1666#define DHEAP 4
1667#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1668#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1669#define UPHEAP_DONE(p,k) ((p) == (k))
1670
1671/* away from the root */
1672inline_speed void
1673downheap (ANHE *heap, int N, int k)
1674{
1675 ANHE he = heap [k];
1676 ANHE *E = heap + N + HEAP0;
1677
1678 for (;;)
1679 {
1680 ev_tstamp minat;
1681 ANHE *minpos;
1682 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1683
1684 /* find minimum child */
1685 if (expect_true (pos + DHEAP - 1 < E))
1686 {
1687 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1688 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1689 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1690 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1691 }
1692 else if (pos < E)
1693 {
1694 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1695 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1696 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1697 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1698 }
1699 else
1700 break;
1701
1702 if (ANHE_at (he) <= minat)
1703 break;
1704
1705 heap [k] = *minpos;
1706 ev_active (ANHE_w (*minpos)) = k;
1707
1708 k = minpos - heap;
1709 }
1710
1711 heap [k] = he;
1712 ev_active (ANHE_w (he)) = k;
1713}
1714
1715#else /* 4HEAP */
1716
1717#define HEAP0 1
1718#define HPARENT(k) ((k) >> 1)
1719#define UPHEAP_DONE(p,k) (!(p))
1720
1721/* away from the root */
1722inline_speed void
1723downheap (ANHE *heap, int N, int k)
1724{
1725 ANHE he = heap [k];
1726
1727 for (;;)
1728 {
1729 int c = k << 1;
1730
1731 if (c >= N + HEAP0)
1732 break;
1733
1734 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1735 ? 1 : 0;
1736
1737 if (ANHE_at (he) <= ANHE_at (heap [c]))
1738 break;
1739
1740 heap [k] = heap [c];
1741 ev_active (ANHE_w (heap [k])) = k;
1742
1743 k = c;
1744 }
1745
1746 heap [k] = he;
1747 ev_active (ANHE_w (he)) = k;
1748}
1749#endif
1750
1751/* towards the root */
1752inline_speed void
1753upheap (ANHE *heap, int k)
1754{
1755 ANHE he = heap [k];
1756
1757 for (;;)
1758 {
1759 int p = HPARENT (k);
1760
1761 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1762 break;
1763
1764 heap [k] = heap [p];
1765 ev_active (ANHE_w (heap [k])) = k;
1766 k = p;
1767 }
1768
1769 heap [k] = he;
1770 ev_active (ANHE_w (he)) = k;
1771}
1772
1773/* move an element suitably so it is in a correct place */
1774inline_size void
1775adjustheap (ANHE *heap, int N, int k)
1776{
1777 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1778 upheap (heap, k);
1779 else
1780 downheap (heap, N, k);
1781}
1782
1783/* rebuild the heap: this function is used only once and executed rarely */
1784inline_size void
1785reheap (ANHE *heap, int N)
1786{
1787 int i;
1788
1789 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1790 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1791 for (i = 0; i < N; ++i)
1792 upheap (heap, i + HEAP0);
1793}
1794
1795/*****************************************************************************/
1796
1797/* associate signal watchers to a signal signal */
1798typedef struct
1799{
1800 EV_ATOMIC_T pending;
1801#if EV_MULTIPLICITY
1802 EV_P;
1803#endif
1804 WL head;
1805} ANSIG;
1806
1807static ANSIG signals [EV_NSIG - 1];
1808
1809/*****************************************************************************/
1810
1811#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1812
859static void noinline 1813static void noinline ecb_cold
860evpipe_init (EV_P) 1814evpipe_init (EV_P)
861{ 1815{
862 if (!ev_is_active (&pipeev)) 1816 if (!ev_is_active (&pipe_w))
863 { 1817 {
864#if EV_USE_EVENTFD 1818# if EV_USE_EVENTFD
1819 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1820 if (evfd < 0 && errno == EINVAL)
865 if ((evfd = eventfd (0, 0)) >= 0) 1821 evfd = eventfd (0, 0);
1822
1823 if (evfd >= 0)
866 { 1824 {
867 evpipe [0] = -1; 1825 evpipe [0] = -1;
868 fd_intern (evfd); 1826 fd_intern (evfd); /* doing it twice doesn't hurt */
869 ev_io_set (&pipeev, evfd, EV_READ); 1827 ev_io_set (&pipe_w, evfd, EV_READ);
870 } 1828 }
871 else 1829 else
872#endif 1830# endif
873 { 1831 {
874 while (pipe (evpipe)) 1832 while (pipe (evpipe))
875 syserr ("(libev) error creating signal/async pipe"); 1833 ev_syserr ("(libev) error creating signal/async pipe");
876 1834
877 fd_intern (evpipe [0]); 1835 fd_intern (evpipe [0]);
878 fd_intern (evpipe [1]); 1836 fd_intern (evpipe [1]);
879 ev_io_set (&pipeev, evpipe [0], EV_READ); 1837 ev_io_set (&pipe_w, evpipe [0], EV_READ);
880 } 1838 }
881 1839
882 ev_io_start (EV_A_ &pipeev); 1840 ev_io_start (EV_A_ &pipe_w);
883 ev_unref (EV_A); /* watcher should not keep loop alive */ 1841 ev_unref (EV_A); /* watcher should not keep loop alive */
884 } 1842 }
885} 1843}
886 1844
887void inline_size 1845inline_speed void
888evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1846evpipe_write (EV_P_ EV_ATOMIC_T *flag)
889{ 1847{
890 if (!*flag) 1848 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
1849
1850 if (expect_true (*flag))
1851 return;
1852
1853 *flag = 1;
1854
1855 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1856
1857 pipe_write_skipped = 1;
1858
1859 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1860
1861 if (pipe_write_wanted)
891 { 1862 {
1863 int old_errno;
1864
1865 pipe_write_skipped = 0; /* just an optimisation, no fence needed */
1866
892 int old_errno = errno; /* save errno because write might clobber it */ 1867 old_errno = errno; /* save errno because write will clobber it */
893
894 *flag = 1;
895 1868
896#if EV_USE_EVENTFD 1869#if EV_USE_EVENTFD
897 if (evfd >= 0) 1870 if (evfd >= 0)
898 { 1871 {
899 uint64_t counter = 1; 1872 uint64_t counter = 1;
900 write (evfd, &counter, sizeof (uint64_t)); 1873 write (evfd, &counter, sizeof (uint64_t));
901 } 1874 }
902 else 1875 else
903#endif 1876#endif
1877 {
1878#ifdef _WIN32
1879 WSABUF buf;
1880 DWORD sent;
1881 buf.buf = &buf;
1882 buf.len = 1;
1883 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
1884#else
904 write (evpipe [1], &old_errno, 1); 1885 write (evpipe [1], &(evpipe [1]), 1);
1886#endif
1887 }
905 1888
906 errno = old_errno; 1889 errno = old_errno;
907 } 1890 }
908} 1891}
909 1892
1893/* called whenever the libev signal pipe */
1894/* got some events (signal, async) */
910static void 1895static void
911pipecb (EV_P_ ev_io *iow, int revents) 1896pipecb (EV_P_ ev_io *iow, int revents)
912{ 1897{
1898 int i;
1899
1900 if (revents & EV_READ)
1901 {
913#if EV_USE_EVENTFD 1902#if EV_USE_EVENTFD
914 if (evfd >= 0) 1903 if (evfd >= 0)
915 { 1904 {
916 uint64_t counter = 1; 1905 uint64_t counter;
917 read (evfd, &counter, sizeof (uint64_t)); 1906 read (evfd, &counter, sizeof (uint64_t));
918 } 1907 }
919 else 1908 else
920#endif 1909#endif
921 { 1910 {
922 char dummy; 1911 char dummy[4];
1912#ifdef _WIN32
1913 WSABUF buf;
1914 DWORD recvd;
1915 DWORD flags = 0;
1916 buf.buf = dummy;
1917 buf.len = sizeof (dummy);
1918 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
1919#else
923 read (evpipe [0], &dummy, 1); 1920 read (evpipe [0], &dummy, sizeof (dummy));
1921#endif
1922 }
1923 }
1924
1925 pipe_write_skipped = 0;
1926
1927 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
1928
1929#if EV_SIGNAL_ENABLE
1930 if (sig_pending)
924 } 1931 {
1932 sig_pending = 0;
925 1933
926 if (gotsig && ev_is_default_loop (EV_A)) 1934 ECB_MEMORY_FENCE_RELEASE;
927 {
928 int signum;
929 gotsig = 0;
930 1935
931 for (signum = signalmax; signum--; ) 1936 for (i = EV_NSIG - 1; i--; )
932 if (signals [signum].gotsig) 1937 if (expect_false (signals [i].pending))
933 ev_feed_signal_event (EV_A_ signum + 1); 1938 ev_feed_signal_event (EV_A_ i + 1);
934 } 1939 }
1940#endif
935 1941
936#if EV_ASYNC_ENABLE 1942#if EV_ASYNC_ENABLE
937 if (gotasync) 1943 if (async_pending)
938 { 1944 {
939 int i; 1945 async_pending = 0;
940 gotasync = 0; 1946
1947 ECB_MEMORY_FENCE_RELEASE;
941 1948
942 for (i = asynccnt; i--; ) 1949 for (i = asynccnt; i--; )
943 if (asyncs [i]->sent) 1950 if (asyncs [i]->sent)
944 { 1951 {
945 asyncs [i]->sent = 0; 1952 asyncs [i]->sent = 0;
949#endif 1956#endif
950} 1957}
951 1958
952/*****************************************************************************/ 1959/*****************************************************************************/
953 1960
1961void
1962ev_feed_signal (int signum) EV_THROW
1963{
1964#if EV_MULTIPLICITY
1965 EV_P = signals [signum - 1].loop;
1966
1967 if (!EV_A)
1968 return;
1969#endif
1970
1971 if (!ev_active (&pipe_w))
1972 return;
1973
1974 signals [signum - 1].pending = 1;
1975 evpipe_write (EV_A_ &sig_pending);
1976}
1977
954static void 1978static void
955ev_sighandler (int signum) 1979ev_sighandler (int signum)
956{ 1980{
1981#ifdef _WIN32
1982 signal (signum, ev_sighandler);
1983#endif
1984
1985 ev_feed_signal (signum);
1986}
1987
1988void noinline
1989ev_feed_signal_event (EV_P_ int signum) EV_THROW
1990{
1991 WL w;
1992
1993 if (expect_false (signum <= 0 || signum > EV_NSIG))
1994 return;
1995
1996 --signum;
1997
957#if EV_MULTIPLICITY 1998#if EV_MULTIPLICITY
958 struct ev_loop *loop = &default_loop_struct; 1999 /* it is permissible to try to feed a signal to the wrong loop */
959#endif 2000 /* or, likely more useful, feeding a signal nobody is waiting for */
960 2001
961#if _WIN32 2002 if (expect_false (signals [signum].loop != EV_A))
962 signal (signum, ev_sighandler);
963#endif
964
965 signals [signum - 1].gotsig = 1;
966 evpipe_write (EV_A_ &gotsig);
967}
968
969void noinline
970ev_feed_signal_event (EV_P_ int signum)
971{
972 WL w;
973
974#if EV_MULTIPLICITY
975 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
976#endif
977
978 --signum;
979
980 if (signum < 0 || signum >= signalmax)
981 return; 2003 return;
2004#endif
982 2005
983 signals [signum].gotsig = 0; 2006 signals [signum].pending = 0;
984 2007
985 for (w = signals [signum].head; w; w = w->next) 2008 for (w = signals [signum].head; w; w = w->next)
986 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2009 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
987} 2010}
988 2011
2012#if EV_USE_SIGNALFD
2013static void
2014sigfdcb (EV_P_ ev_io *iow, int revents)
2015{
2016 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2017
2018 for (;;)
2019 {
2020 ssize_t res = read (sigfd, si, sizeof (si));
2021
2022 /* not ISO-C, as res might be -1, but works with SuS */
2023 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2024 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2025
2026 if (res < (ssize_t)sizeof (si))
2027 break;
2028 }
2029}
2030#endif
2031
2032#endif
2033
989/*****************************************************************************/ 2034/*****************************************************************************/
990 2035
2036#if EV_CHILD_ENABLE
991static WL childs [EV_PID_HASHSIZE]; 2037static WL childs [EV_PID_HASHSIZE];
992
993#ifndef _WIN32
994 2038
995static ev_signal childev; 2039static ev_signal childev;
996 2040
997#ifndef WIFCONTINUED 2041#ifndef WIFCONTINUED
998# define WIFCONTINUED(status) 0 2042# define WIFCONTINUED(status) 0
999#endif 2043#endif
1000 2044
1001void inline_speed 2045/* handle a single child status event */
2046inline_speed void
1002child_reap (EV_P_ int chain, int pid, int status) 2047child_reap (EV_P_ int chain, int pid, int status)
1003{ 2048{
1004 ev_child *w; 2049 ev_child *w;
1005 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2050 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1006 2051
1007 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2052 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1008 { 2053 {
1009 if ((w->pid == pid || !w->pid) 2054 if ((w->pid == pid || !w->pid)
1010 && (!traced || (w->flags & 1))) 2055 && (!traced || (w->flags & 1)))
1011 { 2056 {
1012 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 2057 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1019 2064
1020#ifndef WCONTINUED 2065#ifndef WCONTINUED
1021# define WCONTINUED 0 2066# define WCONTINUED 0
1022#endif 2067#endif
1023 2068
2069/* called on sigchld etc., calls waitpid */
1024static void 2070static void
1025childcb (EV_P_ ev_signal *sw, int revents) 2071childcb (EV_P_ ev_signal *sw, int revents)
1026{ 2072{
1027 int pid, status; 2073 int pid, status;
1028 2074
1036 /* make sure we are called again until all children have been reaped */ 2082 /* make sure we are called again until all children have been reaped */
1037 /* we need to do it this way so that the callback gets called before we continue */ 2083 /* we need to do it this way so that the callback gets called before we continue */
1038 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2084 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1039 2085
1040 child_reap (EV_A_ pid, pid, status); 2086 child_reap (EV_A_ pid, pid, status);
1041 if (EV_PID_HASHSIZE > 1) 2087 if ((EV_PID_HASHSIZE) > 1)
1042 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2088 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1043} 2089}
1044 2090
1045#endif 2091#endif
1046 2092
1047/*****************************************************************************/ 2093/*****************************************************************************/
1048 2094
2095#if EV_USE_IOCP
2096# include "ev_iocp.c"
2097#endif
1049#if EV_USE_PORT 2098#if EV_USE_PORT
1050# include "ev_port.c" 2099# include "ev_port.c"
1051#endif 2100#endif
1052#if EV_USE_KQUEUE 2101#if EV_USE_KQUEUE
1053# include "ev_kqueue.c" 2102# include "ev_kqueue.c"
1060#endif 2109#endif
1061#if EV_USE_SELECT 2110#if EV_USE_SELECT
1062# include "ev_select.c" 2111# include "ev_select.c"
1063#endif 2112#endif
1064 2113
1065int 2114int ecb_cold
1066ev_version_major (void) 2115ev_version_major (void) EV_THROW
1067{ 2116{
1068 return EV_VERSION_MAJOR; 2117 return EV_VERSION_MAJOR;
1069} 2118}
1070 2119
1071int 2120int ecb_cold
1072ev_version_minor (void) 2121ev_version_minor (void) EV_THROW
1073{ 2122{
1074 return EV_VERSION_MINOR; 2123 return EV_VERSION_MINOR;
1075} 2124}
1076 2125
1077/* return true if we are running with elevated privileges and should ignore env variables */ 2126/* return true if we are running with elevated privileges and should ignore env variables */
1078int inline_size 2127int inline_size ecb_cold
1079enable_secure (void) 2128enable_secure (void)
1080{ 2129{
1081#ifdef _WIN32 2130#ifdef _WIN32
1082 return 0; 2131 return 0;
1083#else 2132#else
1084 return getuid () != geteuid () 2133 return getuid () != geteuid ()
1085 || getgid () != getegid (); 2134 || getgid () != getegid ();
1086#endif 2135#endif
1087} 2136}
1088 2137
1089unsigned int 2138unsigned int ecb_cold
1090ev_supported_backends (void) 2139ev_supported_backends (void) EV_THROW
1091{ 2140{
1092 unsigned int flags = 0; 2141 unsigned int flags = 0;
1093 2142
1094 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2143 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1095 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2144 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1098 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2147 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1099 2148
1100 return flags; 2149 return flags;
1101} 2150}
1102 2151
1103unsigned int 2152unsigned int ecb_cold
1104ev_recommended_backends (void) 2153ev_recommended_backends (void) EV_THROW
1105{ 2154{
1106 unsigned int flags = ev_supported_backends (); 2155 unsigned int flags = ev_supported_backends ();
1107 2156
1108#ifndef __NetBSD__ 2157#ifndef __NetBSD__
1109 /* kqueue is borked on everything but netbsd apparently */ 2158 /* kqueue is borked on everything but netbsd apparently */
1110 /* it usually doesn't work correctly on anything but sockets and pipes */ 2159 /* it usually doesn't work correctly on anything but sockets and pipes */
1111 flags &= ~EVBACKEND_KQUEUE; 2160 flags &= ~EVBACKEND_KQUEUE;
1112#endif 2161#endif
1113#ifdef __APPLE__ 2162#ifdef __APPLE__
1114 // flags &= ~EVBACKEND_KQUEUE; for documentation 2163 /* only select works correctly on that "unix-certified" platform */
1115 flags &= ~EVBACKEND_POLL; 2164 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2165 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2166#endif
2167#ifdef __FreeBSD__
2168 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1116#endif 2169#endif
1117 2170
1118 return flags; 2171 return flags;
1119} 2172}
1120 2173
2174unsigned int ecb_cold
2175ev_embeddable_backends (void) EV_THROW
2176{
2177 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2178
2179 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2180 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2181 flags &= ~EVBACKEND_EPOLL;
2182
2183 return flags;
2184}
2185
1121unsigned int 2186unsigned int
1122ev_embeddable_backends (void) 2187ev_backend (EV_P) EV_THROW
1123{ 2188{
1124 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2189 return backend;
1125
1126 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1127 /* please fix it and tell me how to detect the fix */
1128 flags &= ~EVBACKEND_EPOLL;
1129
1130 return flags;
1131} 2190}
1132 2191
2192#if EV_FEATURE_API
1133unsigned int 2193unsigned int
1134ev_backend (EV_P) 2194ev_iteration (EV_P) EV_THROW
1135{ 2195{
1136 return backend; 2196 return loop_count;
1137} 2197}
1138 2198
1139unsigned int 2199unsigned int
1140ev_loop_count (EV_P) 2200ev_depth (EV_P) EV_THROW
1141{ 2201{
1142 return loop_count; 2202 return loop_depth;
1143} 2203}
1144 2204
1145void 2205void
1146ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2206ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1147{ 2207{
1148 io_blocktime = interval; 2208 io_blocktime = interval;
1149} 2209}
1150 2210
1151void 2211void
1152ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2212ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1153{ 2213{
1154 timeout_blocktime = interval; 2214 timeout_blocktime = interval;
1155} 2215}
1156 2216
2217void
2218ev_set_userdata (EV_P_ void *data) EV_THROW
2219{
2220 userdata = data;
2221}
2222
2223void *
2224ev_userdata (EV_P) EV_THROW
2225{
2226 return userdata;
2227}
2228
2229void
2230ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2231{
2232 invoke_cb = invoke_pending_cb;
2233}
2234
2235void
2236ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2237{
2238 release_cb = release;
2239 acquire_cb = acquire;
2240}
2241#endif
2242
2243/* initialise a loop structure, must be zero-initialised */
1157static void noinline 2244static void noinline ecb_cold
1158loop_init (EV_P_ unsigned int flags) 2245loop_init (EV_P_ unsigned int flags) EV_THROW
1159{ 2246{
1160 if (!backend) 2247 if (!backend)
1161 { 2248 {
2249 origflags = flags;
2250
2251#if EV_USE_REALTIME
2252 if (!have_realtime)
2253 {
2254 struct timespec ts;
2255
2256 if (!clock_gettime (CLOCK_REALTIME, &ts))
2257 have_realtime = 1;
2258 }
2259#endif
2260
1162#if EV_USE_MONOTONIC 2261#if EV_USE_MONOTONIC
2262 if (!have_monotonic)
1163 { 2263 {
1164 struct timespec ts; 2264 struct timespec ts;
2265
1165 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2266 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1166 have_monotonic = 1; 2267 have_monotonic = 1;
1167 } 2268 }
1168#endif
1169
1170 ev_rt_now = ev_time ();
1171 mn_now = get_clock ();
1172 now_floor = mn_now;
1173 rtmn_diff = ev_rt_now - mn_now;
1174
1175 io_blocktime = 0.;
1176 timeout_blocktime = 0.;
1177 backend = 0;
1178 backend_fd = -1;
1179 gotasync = 0;
1180#if EV_USE_INOTIFY
1181 fs_fd = -2;
1182#endif 2269#endif
1183 2270
1184 /* pid check not overridable via env */ 2271 /* pid check not overridable via env */
1185#ifndef _WIN32 2272#ifndef _WIN32
1186 if (flags & EVFLAG_FORKCHECK) 2273 if (flags & EVFLAG_FORKCHECK)
1190 if (!(flags & EVFLAG_NOENV) 2277 if (!(flags & EVFLAG_NOENV)
1191 && !enable_secure () 2278 && !enable_secure ()
1192 && getenv ("LIBEV_FLAGS")) 2279 && getenv ("LIBEV_FLAGS"))
1193 flags = atoi (getenv ("LIBEV_FLAGS")); 2280 flags = atoi (getenv ("LIBEV_FLAGS"));
1194 2281
1195 if (!(flags & 0x0000ffffU)) 2282 ev_rt_now = ev_time ();
2283 mn_now = get_clock ();
2284 now_floor = mn_now;
2285 rtmn_diff = ev_rt_now - mn_now;
2286#if EV_FEATURE_API
2287 invoke_cb = ev_invoke_pending;
2288#endif
2289
2290 io_blocktime = 0.;
2291 timeout_blocktime = 0.;
2292 backend = 0;
2293 backend_fd = -1;
2294 sig_pending = 0;
2295#if EV_ASYNC_ENABLE
2296 async_pending = 0;
2297#endif
2298 pipe_write_skipped = 0;
2299 pipe_write_wanted = 0;
2300#if EV_USE_INOTIFY
2301 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2302#endif
2303#if EV_USE_SIGNALFD
2304 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2305#endif
2306
2307 if (!(flags & EVBACKEND_MASK))
1196 flags |= ev_recommended_backends (); 2308 flags |= ev_recommended_backends ();
1197 2309
2310#if EV_USE_IOCP
2311 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2312#endif
1198#if EV_USE_PORT 2313#if EV_USE_PORT
1199 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2314 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1200#endif 2315#endif
1201#if EV_USE_KQUEUE 2316#if EV_USE_KQUEUE
1202 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2317 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1209#endif 2324#endif
1210#if EV_USE_SELECT 2325#if EV_USE_SELECT
1211 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2326 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1212#endif 2327#endif
1213 2328
2329 ev_prepare_init (&pending_w, pendingcb);
2330
2331#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1214 ev_init (&pipeev, pipecb); 2332 ev_init (&pipe_w, pipecb);
1215 ev_set_priority (&pipeev, EV_MAXPRI); 2333 ev_set_priority (&pipe_w, EV_MAXPRI);
2334#endif
1216 } 2335 }
1217} 2336}
1218 2337
1219static void noinline 2338/* free up a loop structure */
2339void ecb_cold
1220loop_destroy (EV_P) 2340ev_loop_destroy (EV_P)
1221{ 2341{
1222 int i; 2342 int i;
1223 2343
2344#if EV_MULTIPLICITY
2345 /* mimic free (0) */
2346 if (!EV_A)
2347 return;
2348#endif
2349
2350#if EV_CLEANUP_ENABLE
2351 /* queue cleanup watchers (and execute them) */
2352 if (expect_false (cleanupcnt))
2353 {
2354 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2355 EV_INVOKE_PENDING;
2356 }
2357#endif
2358
2359#if EV_CHILD_ENABLE
2360 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2361 {
2362 ev_ref (EV_A); /* child watcher */
2363 ev_signal_stop (EV_A_ &childev);
2364 }
2365#endif
2366
1224 if (ev_is_active (&pipeev)) 2367 if (ev_is_active (&pipe_w))
1225 { 2368 {
1226 ev_ref (EV_A); /* signal watcher */ 2369 /*ev_ref (EV_A);*/
1227 ev_io_stop (EV_A_ &pipeev); 2370 /*ev_io_stop (EV_A_ &pipe_w);*/
1228 2371
1229#if EV_USE_EVENTFD 2372#if EV_USE_EVENTFD
1230 if (evfd >= 0) 2373 if (evfd >= 0)
1231 close (evfd); 2374 close (evfd);
1232#endif 2375#endif
1233 2376
1234 if (evpipe [0] >= 0) 2377 if (evpipe [0] >= 0)
1235 { 2378 {
1236 close (evpipe [0]); 2379 EV_WIN32_CLOSE_FD (evpipe [0]);
1237 close (evpipe [1]); 2380 EV_WIN32_CLOSE_FD (evpipe [1]);
1238 } 2381 }
1239 } 2382 }
2383
2384#if EV_USE_SIGNALFD
2385 if (ev_is_active (&sigfd_w))
2386 close (sigfd);
2387#endif
1240 2388
1241#if EV_USE_INOTIFY 2389#if EV_USE_INOTIFY
1242 if (fs_fd >= 0) 2390 if (fs_fd >= 0)
1243 close (fs_fd); 2391 close (fs_fd);
1244#endif 2392#endif
1245 2393
1246 if (backend_fd >= 0) 2394 if (backend_fd >= 0)
1247 close (backend_fd); 2395 close (backend_fd);
1248 2396
2397#if EV_USE_IOCP
2398 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2399#endif
1249#if EV_USE_PORT 2400#if EV_USE_PORT
1250 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2401 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1251#endif 2402#endif
1252#if EV_USE_KQUEUE 2403#if EV_USE_KQUEUE
1253 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2404 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1268#if EV_IDLE_ENABLE 2419#if EV_IDLE_ENABLE
1269 array_free (idle, [i]); 2420 array_free (idle, [i]);
1270#endif 2421#endif
1271 } 2422 }
1272 2423
1273 ev_free (anfds); anfdmax = 0; 2424 ev_free (anfds); anfds = 0; anfdmax = 0;
1274 2425
1275 /* have to use the microsoft-never-gets-it-right macro */ 2426 /* have to use the microsoft-never-gets-it-right macro */
2427 array_free (rfeed, EMPTY);
1276 array_free (fdchange, EMPTY); 2428 array_free (fdchange, EMPTY);
1277 array_free (timer, EMPTY); 2429 array_free (timer, EMPTY);
1278#if EV_PERIODIC_ENABLE 2430#if EV_PERIODIC_ENABLE
1279 array_free (periodic, EMPTY); 2431 array_free (periodic, EMPTY);
1280#endif 2432#endif
1281#if EV_FORK_ENABLE 2433#if EV_FORK_ENABLE
1282 array_free (fork, EMPTY); 2434 array_free (fork, EMPTY);
1283#endif 2435#endif
2436#if EV_CLEANUP_ENABLE
2437 array_free (cleanup, EMPTY);
2438#endif
1284 array_free (prepare, EMPTY); 2439 array_free (prepare, EMPTY);
1285 array_free (check, EMPTY); 2440 array_free (check, EMPTY);
1286#if EV_ASYNC_ENABLE 2441#if EV_ASYNC_ENABLE
1287 array_free (async, EMPTY); 2442 array_free (async, EMPTY);
1288#endif 2443#endif
1289 2444
1290 backend = 0; 2445 backend = 0;
2446
2447#if EV_MULTIPLICITY
2448 if (ev_is_default_loop (EV_A))
2449#endif
2450 ev_default_loop_ptr = 0;
2451#if EV_MULTIPLICITY
2452 else
2453 ev_free (EV_A);
2454#endif
1291} 2455}
1292 2456
1293#if EV_USE_INOTIFY 2457#if EV_USE_INOTIFY
1294void inline_size infy_fork (EV_P); 2458inline_size void infy_fork (EV_P);
1295#endif 2459#endif
1296 2460
1297void inline_size 2461inline_size void
1298loop_fork (EV_P) 2462loop_fork (EV_P)
1299{ 2463{
1300#if EV_USE_PORT 2464#if EV_USE_PORT
1301 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2465 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1302#endif 2466#endif
1308#endif 2472#endif
1309#if EV_USE_INOTIFY 2473#if EV_USE_INOTIFY
1310 infy_fork (EV_A); 2474 infy_fork (EV_A);
1311#endif 2475#endif
1312 2476
1313 if (ev_is_active (&pipeev)) 2477 if (ev_is_active (&pipe_w))
1314 { 2478 {
1315 /* this "locks" the handlers against writing to the pipe */ 2479 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1316 /* while we modify the fd vars */
1317 gotsig = 1;
1318#if EV_ASYNC_ENABLE
1319 gotasync = 1;
1320#endif
1321 2480
1322 ev_ref (EV_A); 2481 ev_ref (EV_A);
1323 ev_io_stop (EV_A_ &pipeev); 2482 ev_io_stop (EV_A_ &pipe_w);
1324 2483
1325#if EV_USE_EVENTFD 2484#if EV_USE_EVENTFD
1326 if (evfd >= 0) 2485 if (evfd >= 0)
1327 close (evfd); 2486 close (evfd);
1328#endif 2487#endif
1329 2488
1330 if (evpipe [0] >= 0) 2489 if (evpipe [0] >= 0)
1331 { 2490 {
1332 close (evpipe [0]); 2491 EV_WIN32_CLOSE_FD (evpipe [0]);
1333 close (evpipe [1]); 2492 EV_WIN32_CLOSE_FD (evpipe [1]);
1334 } 2493 }
1335 2494
2495#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1336 evpipe_init (EV_A); 2496 evpipe_init (EV_A);
1337 /* now iterate over everything, in case we missed something */ 2497 /* now iterate over everything, in case we missed something */
1338 pipecb (EV_A_ &pipeev, EV_READ); 2498 pipecb (EV_A_ &pipe_w, EV_READ);
2499#endif
1339 } 2500 }
1340 2501
1341 postfork = 0; 2502 postfork = 0;
1342} 2503}
1343 2504
1344#if EV_MULTIPLICITY 2505#if EV_MULTIPLICITY
2506
1345struct ev_loop * 2507struct ev_loop * ecb_cold
1346ev_loop_new (unsigned int flags) 2508ev_loop_new (unsigned int flags) EV_THROW
1347{ 2509{
1348 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2510 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1349 2511
1350 memset (loop, 0, sizeof (struct ev_loop)); 2512 memset (EV_A, 0, sizeof (struct ev_loop));
1351
1352 loop_init (EV_A_ flags); 2513 loop_init (EV_A_ flags);
1353 2514
1354 if (ev_backend (EV_A)) 2515 if (ev_backend (EV_A))
1355 return loop; 2516 return EV_A;
1356 2517
2518 ev_free (EV_A);
1357 return 0; 2519 return 0;
1358} 2520}
1359 2521
1360void 2522#endif /* multiplicity */
1361ev_loop_destroy (EV_P)
1362{
1363 loop_destroy (EV_A);
1364 ev_free (loop);
1365}
1366 2523
1367void 2524#if EV_VERIFY
1368ev_loop_fork (EV_P) 2525static void noinline ecb_cold
2526verify_watcher (EV_P_ W w)
1369{ 2527{
1370 postfork = 1; /* must be in line with ev_default_fork */ 2528 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1371}
1372 2529
2530 if (w->pending)
2531 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2532}
2533
2534static void noinline ecb_cold
2535verify_heap (EV_P_ ANHE *heap, int N)
2536{
2537 int i;
2538
2539 for (i = HEAP0; i < N + HEAP0; ++i)
2540 {
2541 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2542 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2543 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2544
2545 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2546 }
2547}
2548
2549static void noinline ecb_cold
2550array_verify (EV_P_ W *ws, int cnt)
2551{
2552 while (cnt--)
2553 {
2554 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2555 verify_watcher (EV_A_ ws [cnt]);
2556 }
2557}
2558#endif
2559
2560#if EV_FEATURE_API
2561void ecb_cold
2562ev_verify (EV_P) EV_THROW
2563{
2564#if EV_VERIFY
2565 int i;
2566 WL w, w2;
2567
2568 assert (activecnt >= -1);
2569
2570 assert (fdchangemax >= fdchangecnt);
2571 for (i = 0; i < fdchangecnt; ++i)
2572 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2573
2574 assert (anfdmax >= 0);
2575 for (i = 0; i < anfdmax; ++i)
2576 {
2577 int j = 0;
2578
2579 for (w = w2 = anfds [i].head; w; w = w->next)
2580 {
2581 verify_watcher (EV_A_ (W)w);
2582
2583 if (j++ & 1)
2584 {
2585 assert (("libev: io watcher list contains a loop", w != w2));
2586 w2 = w2->next;
2587 }
2588
2589 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2590 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2591 }
2592 }
2593
2594 assert (timermax >= timercnt);
2595 verify_heap (EV_A_ timers, timercnt);
2596
2597#if EV_PERIODIC_ENABLE
2598 assert (periodicmax >= periodiccnt);
2599 verify_heap (EV_A_ periodics, periodiccnt);
2600#endif
2601
2602 for (i = NUMPRI; i--; )
2603 {
2604 assert (pendingmax [i] >= pendingcnt [i]);
2605#if EV_IDLE_ENABLE
2606 assert (idleall >= 0);
2607 assert (idlemax [i] >= idlecnt [i]);
2608 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2609#endif
2610 }
2611
2612#if EV_FORK_ENABLE
2613 assert (forkmax >= forkcnt);
2614 array_verify (EV_A_ (W *)forks, forkcnt);
2615#endif
2616
2617#if EV_CLEANUP_ENABLE
2618 assert (cleanupmax >= cleanupcnt);
2619 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2620#endif
2621
2622#if EV_ASYNC_ENABLE
2623 assert (asyncmax >= asynccnt);
2624 array_verify (EV_A_ (W *)asyncs, asynccnt);
2625#endif
2626
2627#if EV_PREPARE_ENABLE
2628 assert (preparemax >= preparecnt);
2629 array_verify (EV_A_ (W *)prepares, preparecnt);
2630#endif
2631
2632#if EV_CHECK_ENABLE
2633 assert (checkmax >= checkcnt);
2634 array_verify (EV_A_ (W *)checks, checkcnt);
2635#endif
2636
2637# if 0
2638#if EV_CHILD_ENABLE
2639 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2640 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2641#endif
2642# endif
2643#endif
2644}
1373#endif 2645#endif
1374 2646
1375#if EV_MULTIPLICITY 2647#if EV_MULTIPLICITY
1376struct ev_loop * 2648struct ev_loop * ecb_cold
1377ev_default_loop_init (unsigned int flags)
1378#else 2649#else
1379int 2650int
2651#endif
1380ev_default_loop (unsigned int flags) 2652ev_default_loop (unsigned int flags) EV_THROW
1381#endif
1382{ 2653{
1383 if (!ev_default_loop_ptr) 2654 if (!ev_default_loop_ptr)
1384 { 2655 {
1385#if EV_MULTIPLICITY 2656#if EV_MULTIPLICITY
1386 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2657 EV_P = ev_default_loop_ptr = &default_loop_struct;
1387#else 2658#else
1388 ev_default_loop_ptr = 1; 2659 ev_default_loop_ptr = 1;
1389#endif 2660#endif
1390 2661
1391 loop_init (EV_A_ flags); 2662 loop_init (EV_A_ flags);
1392 2663
1393 if (ev_backend (EV_A)) 2664 if (ev_backend (EV_A))
1394 { 2665 {
1395#ifndef _WIN32 2666#if EV_CHILD_ENABLE
1396 ev_signal_init (&childev, childcb, SIGCHLD); 2667 ev_signal_init (&childev, childcb, SIGCHLD);
1397 ev_set_priority (&childev, EV_MAXPRI); 2668 ev_set_priority (&childev, EV_MAXPRI);
1398 ev_signal_start (EV_A_ &childev); 2669 ev_signal_start (EV_A_ &childev);
1399 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2670 ev_unref (EV_A); /* child watcher should not keep loop alive */
1400#endif 2671#endif
1405 2676
1406 return ev_default_loop_ptr; 2677 return ev_default_loop_ptr;
1407} 2678}
1408 2679
1409void 2680void
1410ev_default_destroy (void) 2681ev_loop_fork (EV_P) EV_THROW
1411{ 2682{
1412#if EV_MULTIPLICITY
1413 struct ev_loop *loop = ev_default_loop_ptr;
1414#endif
1415
1416#ifndef _WIN32
1417 ev_ref (EV_A); /* child watcher */
1418 ev_signal_stop (EV_A_ &childev);
1419#endif
1420
1421 loop_destroy (EV_A);
1422}
1423
1424void
1425ev_default_fork (void)
1426{
1427#if EV_MULTIPLICITY
1428 struct ev_loop *loop = ev_default_loop_ptr;
1429#endif
1430
1431 if (backend)
1432 postfork = 1; /* must be in line with ev_loop_fork */ 2683 postfork = 1; /* must be in line with ev_default_fork */
1433} 2684}
1434 2685
1435/*****************************************************************************/ 2686/*****************************************************************************/
1436 2687
1437void 2688void
1438ev_invoke (EV_P_ void *w, int revents) 2689ev_invoke (EV_P_ void *w, int revents)
1439{ 2690{
1440 EV_CB_INVOKE ((W)w, revents); 2691 EV_CB_INVOKE ((W)w, revents);
1441} 2692}
1442 2693
1443void inline_speed 2694unsigned int
1444call_pending (EV_P) 2695ev_pending_count (EV_P) EV_THROW
1445{ 2696{
1446 int pri; 2697 int pri;
2698 unsigned int count = 0;
1447 2699
1448 for (pri = NUMPRI; pri--; ) 2700 for (pri = NUMPRI; pri--; )
2701 count += pendingcnt [pri];
2702
2703 return count;
2704}
2705
2706void noinline
2707ev_invoke_pending (EV_P)
2708{
2709 for (pendingpri = NUMPRI; pendingpri--; ) /* pendingpri is modified during the loop */
1449 while (pendingcnt [pri]) 2710 while (pendingcnt [pendingpri])
1450 { 2711 {
1451 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2712 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1452 2713
1453 if (expect_true (p->w))
1454 {
1455 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1456
1457 p->w->pending = 0; 2714 p->w->pending = 0;
1458 EV_CB_INVOKE (p->w, p->events); 2715 EV_CB_INVOKE (p->w, p->events);
1459 } 2716 EV_FREQUENT_CHECK;
1460 } 2717 }
1461} 2718}
1462 2719
1463void inline_size
1464timers_reify (EV_P)
1465{
1466 while (timercnt && ev_at (timers [1]) <= mn_now)
1467 {
1468 ev_timer *w = (ev_timer *)timers [1];
1469
1470 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1471
1472 /* first reschedule or stop timer */
1473 if (w->repeat)
1474 {
1475 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1476
1477 ev_at (w) += w->repeat;
1478 if (ev_at (w) < mn_now)
1479 ev_at (w) = mn_now;
1480
1481 downheap (timers, timercnt, 1);
1482 }
1483 else
1484 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1485
1486 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1487 }
1488}
1489
1490#if EV_PERIODIC_ENABLE
1491void inline_size
1492periodics_reify (EV_P)
1493{
1494 while (periodiccnt && ev_at (periodics [1]) <= ev_rt_now)
1495 {
1496 ev_periodic *w = (ev_periodic *)periodics [1];
1497
1498 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1499
1500 /* first reschedule or stop timer */
1501 if (w->reschedule_cb)
1502 {
1503 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1504 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1505 downheap (periodics, periodiccnt, 1);
1506 }
1507 else if (w->interval)
1508 {
1509 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1510 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1511 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1512 downheap (periodics, periodiccnt, 1);
1513 }
1514 else
1515 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1516
1517 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1518 }
1519}
1520
1521static void noinline
1522periodics_reschedule (EV_P)
1523{
1524 int i;
1525
1526 /* adjust periodics after time jump */
1527 for (i = 0; i < periodiccnt; ++i)
1528 {
1529 ev_periodic *w = (ev_periodic *)periodics [i];
1530
1531 if (w->reschedule_cb)
1532 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1533 else if (w->interval)
1534 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1535 }
1536
1537 /* now rebuild the heap */
1538 for (i = periodiccnt >> 1; i--; )
1539 downheap (periodics, periodiccnt, i);
1540}
1541#endif
1542
1543#if EV_IDLE_ENABLE 2720#if EV_IDLE_ENABLE
1544void inline_size 2721/* make idle watchers pending. this handles the "call-idle */
2722/* only when higher priorities are idle" logic */
2723inline_size void
1545idle_reify (EV_P) 2724idle_reify (EV_P)
1546{ 2725{
1547 if (expect_false (idleall)) 2726 if (expect_false (idleall))
1548 { 2727 {
1549 int pri; 2728 int pri;
1561 } 2740 }
1562 } 2741 }
1563} 2742}
1564#endif 2743#endif
1565 2744
1566void inline_speed 2745/* make timers pending */
2746inline_size void
2747timers_reify (EV_P)
2748{
2749 EV_FREQUENT_CHECK;
2750
2751 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2752 {
2753 do
2754 {
2755 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2756
2757 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2758
2759 /* first reschedule or stop timer */
2760 if (w->repeat)
2761 {
2762 ev_at (w) += w->repeat;
2763 if (ev_at (w) < mn_now)
2764 ev_at (w) = mn_now;
2765
2766 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2767
2768 ANHE_at_cache (timers [HEAP0]);
2769 downheap (timers, timercnt, HEAP0);
2770 }
2771 else
2772 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2773
2774 EV_FREQUENT_CHECK;
2775 feed_reverse (EV_A_ (W)w);
2776 }
2777 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2778
2779 feed_reverse_done (EV_A_ EV_TIMER);
2780 }
2781}
2782
2783#if EV_PERIODIC_ENABLE
2784
2785static void noinline
2786periodic_recalc (EV_P_ ev_periodic *w)
2787{
2788 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2789 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2790
2791 /* the above almost always errs on the low side */
2792 while (at <= ev_rt_now)
2793 {
2794 ev_tstamp nat = at + w->interval;
2795
2796 /* when resolution fails us, we use ev_rt_now */
2797 if (expect_false (nat == at))
2798 {
2799 at = ev_rt_now;
2800 break;
2801 }
2802
2803 at = nat;
2804 }
2805
2806 ev_at (w) = at;
2807}
2808
2809/* make periodics pending */
2810inline_size void
2811periodics_reify (EV_P)
2812{
2813 EV_FREQUENT_CHECK;
2814
2815 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2816 {
2817 do
2818 {
2819 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2820
2821 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2822
2823 /* first reschedule or stop timer */
2824 if (w->reschedule_cb)
2825 {
2826 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2827
2828 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2829
2830 ANHE_at_cache (periodics [HEAP0]);
2831 downheap (periodics, periodiccnt, HEAP0);
2832 }
2833 else if (w->interval)
2834 {
2835 periodic_recalc (EV_A_ w);
2836 ANHE_at_cache (periodics [HEAP0]);
2837 downheap (periodics, periodiccnt, HEAP0);
2838 }
2839 else
2840 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2841
2842 EV_FREQUENT_CHECK;
2843 feed_reverse (EV_A_ (W)w);
2844 }
2845 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2846
2847 feed_reverse_done (EV_A_ EV_PERIODIC);
2848 }
2849}
2850
2851/* simply recalculate all periodics */
2852/* TODO: maybe ensure that at least one event happens when jumping forward? */
2853static void noinline ecb_cold
2854periodics_reschedule (EV_P)
2855{
2856 int i;
2857
2858 /* adjust periodics after time jump */
2859 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2860 {
2861 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2862
2863 if (w->reschedule_cb)
2864 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2865 else if (w->interval)
2866 periodic_recalc (EV_A_ w);
2867
2868 ANHE_at_cache (periodics [i]);
2869 }
2870
2871 reheap (periodics, periodiccnt);
2872}
2873#endif
2874
2875/* adjust all timers by a given offset */
2876static void noinline ecb_cold
2877timers_reschedule (EV_P_ ev_tstamp adjust)
2878{
2879 int i;
2880
2881 for (i = 0; i < timercnt; ++i)
2882 {
2883 ANHE *he = timers + i + HEAP0;
2884 ANHE_w (*he)->at += adjust;
2885 ANHE_at_cache (*he);
2886 }
2887}
2888
2889/* fetch new monotonic and realtime times from the kernel */
2890/* also detect if there was a timejump, and act accordingly */
2891inline_speed void
1567time_update (EV_P_ ev_tstamp max_block) 2892time_update (EV_P_ ev_tstamp max_block)
1568{ 2893{
1569 int i;
1570
1571#if EV_USE_MONOTONIC 2894#if EV_USE_MONOTONIC
1572 if (expect_true (have_monotonic)) 2895 if (expect_true (have_monotonic))
1573 { 2896 {
2897 int i;
1574 ev_tstamp odiff = rtmn_diff; 2898 ev_tstamp odiff = rtmn_diff;
1575 2899
1576 mn_now = get_clock (); 2900 mn_now = get_clock ();
1577 2901
1578 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2902 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1594 * doesn't hurt either as we only do this on time-jumps or 2918 * doesn't hurt either as we only do this on time-jumps or
1595 * in the unlikely event of having been preempted here. 2919 * in the unlikely event of having been preempted here.
1596 */ 2920 */
1597 for (i = 4; --i; ) 2921 for (i = 4; --i; )
1598 { 2922 {
2923 ev_tstamp diff;
1599 rtmn_diff = ev_rt_now - mn_now; 2924 rtmn_diff = ev_rt_now - mn_now;
1600 2925
1601 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2926 diff = odiff - rtmn_diff;
2927
2928 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1602 return; /* all is well */ 2929 return; /* all is well */
1603 2930
1604 ev_rt_now = ev_time (); 2931 ev_rt_now = ev_time ();
1605 mn_now = get_clock (); 2932 mn_now = get_clock ();
1606 now_floor = mn_now; 2933 now_floor = mn_now;
1607 } 2934 }
1608 2935
2936 /* no timer adjustment, as the monotonic clock doesn't jump */
2937 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1609# if EV_PERIODIC_ENABLE 2938# if EV_PERIODIC_ENABLE
1610 periodics_reschedule (EV_A); 2939 periodics_reschedule (EV_A);
1611# endif 2940# endif
1612 /* no timer adjustment, as the monotonic clock doesn't jump */
1613 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1614 } 2941 }
1615 else 2942 else
1616#endif 2943#endif
1617 { 2944 {
1618 ev_rt_now = ev_time (); 2945 ev_rt_now = ev_time ();
1619 2946
1620 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2947 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1621 { 2948 {
2949 /* adjust timers. this is easy, as the offset is the same for all of them */
2950 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1622#if EV_PERIODIC_ENABLE 2951#if EV_PERIODIC_ENABLE
1623 periodics_reschedule (EV_A); 2952 periodics_reschedule (EV_A);
1624#endif 2953#endif
1625 /* adjust timers. this is easy, as the offset is the same for all of them */
1626 for (i = 1; i <= timercnt; ++i)
1627 ev_at (timers [i]) += ev_rt_now - mn_now;
1628 } 2954 }
1629 2955
1630 mn_now = ev_rt_now; 2956 mn_now = ev_rt_now;
1631 } 2957 }
1632} 2958}
1633 2959
1634void 2960int
1635ev_ref (EV_P)
1636{
1637 ++activecnt;
1638}
1639
1640void
1641ev_unref (EV_P)
1642{
1643 --activecnt;
1644}
1645
1646static int loop_done;
1647
1648void
1649ev_loop (EV_P_ int flags) 2961ev_run (EV_P_ int flags)
1650{ 2962{
2963#if EV_FEATURE_API
2964 ++loop_depth;
2965#endif
2966
2967 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2968
1651 loop_done = EVUNLOOP_CANCEL; 2969 loop_done = EVBREAK_CANCEL;
1652 2970
1653 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2971 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1654 2972
1655 do 2973 do
1656 { 2974 {
2975#if EV_VERIFY >= 2
2976 ev_verify (EV_A);
2977#endif
2978
1657#ifndef _WIN32 2979#ifndef _WIN32
1658 if (expect_false (curpid)) /* penalise the forking check even more */ 2980 if (expect_false (curpid)) /* penalise the forking check even more */
1659 if (expect_false (getpid () != curpid)) 2981 if (expect_false (getpid () != curpid))
1660 { 2982 {
1661 curpid = getpid (); 2983 curpid = getpid ();
1667 /* we might have forked, so queue fork handlers */ 2989 /* we might have forked, so queue fork handlers */
1668 if (expect_false (postfork)) 2990 if (expect_false (postfork))
1669 if (forkcnt) 2991 if (forkcnt)
1670 { 2992 {
1671 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2993 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1672 call_pending (EV_A); 2994 EV_INVOKE_PENDING;
1673 } 2995 }
1674#endif 2996#endif
1675 2997
2998#if EV_PREPARE_ENABLE
1676 /* queue prepare watchers (and execute them) */ 2999 /* queue prepare watchers (and execute them) */
1677 if (expect_false (preparecnt)) 3000 if (expect_false (preparecnt))
1678 { 3001 {
1679 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3002 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1680 call_pending (EV_A); 3003 EV_INVOKE_PENDING;
1681 } 3004 }
3005#endif
1682 3006
1683 if (expect_false (!activecnt)) 3007 if (expect_false (loop_done))
1684 break; 3008 break;
1685 3009
1686 /* we might have forked, so reify kernel state if necessary */ 3010 /* we might have forked, so reify kernel state if necessary */
1687 if (expect_false (postfork)) 3011 if (expect_false (postfork))
1688 loop_fork (EV_A); 3012 loop_fork (EV_A);
1693 /* calculate blocking time */ 3017 /* calculate blocking time */
1694 { 3018 {
1695 ev_tstamp waittime = 0.; 3019 ev_tstamp waittime = 0.;
1696 ev_tstamp sleeptime = 0.; 3020 ev_tstamp sleeptime = 0.;
1697 3021
3022 /* remember old timestamp for io_blocktime calculation */
3023 ev_tstamp prev_mn_now = mn_now;
3024
3025 /* update time to cancel out callback processing overhead */
3026 time_update (EV_A_ 1e100);
3027
3028 /* from now on, we want a pipe-wake-up */
3029 pipe_write_wanted = 1;
3030
3031 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3032
1698 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3033 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1699 { 3034 {
1700 /* update time to cancel out callback processing overhead */
1701 time_update (EV_A_ 1e100);
1702
1703 waittime = MAX_BLOCKTIME; 3035 waittime = MAX_BLOCKTIME;
1704 3036
1705 if (timercnt) 3037 if (timercnt)
1706 { 3038 {
1707 ev_tstamp to = ev_at (timers [1]) - mn_now + backend_fudge; 3039 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1708 if (waittime > to) waittime = to; 3040 if (waittime > to) waittime = to;
1709 } 3041 }
1710 3042
1711#if EV_PERIODIC_ENABLE 3043#if EV_PERIODIC_ENABLE
1712 if (periodiccnt) 3044 if (periodiccnt)
1713 { 3045 {
1714 ev_tstamp to = ev_at (periodics [1]) - ev_rt_now + backend_fudge; 3046 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1715 if (waittime > to) waittime = to; 3047 if (waittime > to) waittime = to;
1716 } 3048 }
1717#endif 3049#endif
1718 3050
3051 /* don't let timeouts decrease the waittime below timeout_blocktime */
1719 if (expect_false (waittime < timeout_blocktime)) 3052 if (expect_false (waittime < timeout_blocktime))
1720 waittime = timeout_blocktime; 3053 waittime = timeout_blocktime;
1721 3054
1722 sleeptime = waittime - backend_fudge; 3055 /* at this point, we NEED to wait, so we have to ensure */
3056 /* to pass a minimum nonzero value to the backend */
3057 if (expect_false (waittime < backend_mintime))
3058 waittime = backend_mintime;
1723 3059
3060 /* extra check because io_blocktime is commonly 0 */
1724 if (expect_true (sleeptime > io_blocktime)) 3061 if (expect_false (io_blocktime))
1725 sleeptime = io_blocktime;
1726
1727 if (sleeptime)
1728 { 3062 {
3063 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3064
3065 if (sleeptime > waittime - backend_mintime)
3066 sleeptime = waittime - backend_mintime;
3067
3068 if (expect_true (sleeptime > 0.))
3069 {
1729 ev_sleep (sleeptime); 3070 ev_sleep (sleeptime);
1730 waittime -= sleeptime; 3071 waittime -= sleeptime;
3072 }
1731 } 3073 }
1732 } 3074 }
1733 3075
3076#if EV_FEATURE_API
1734 ++loop_count; 3077 ++loop_count;
3078#endif
3079 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1735 backend_poll (EV_A_ waittime); 3080 backend_poll (EV_A_ waittime);
3081 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3082
3083 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3084
3085 if (pipe_write_skipped)
3086 {
3087 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3088 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3089 }
3090
1736 3091
1737 /* update ev_rt_now, do magic */ 3092 /* update ev_rt_now, do magic */
1738 time_update (EV_A_ waittime + sleeptime); 3093 time_update (EV_A_ waittime + sleeptime);
1739 } 3094 }
1740 3095
1747#if EV_IDLE_ENABLE 3102#if EV_IDLE_ENABLE
1748 /* queue idle watchers unless other events are pending */ 3103 /* queue idle watchers unless other events are pending */
1749 idle_reify (EV_A); 3104 idle_reify (EV_A);
1750#endif 3105#endif
1751 3106
3107#if EV_CHECK_ENABLE
1752 /* queue check watchers, to be executed first */ 3108 /* queue check watchers, to be executed first */
1753 if (expect_false (checkcnt)) 3109 if (expect_false (checkcnt))
1754 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3110 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3111#endif
1755 3112
1756 call_pending (EV_A); 3113 EV_INVOKE_PENDING;
1757 } 3114 }
1758 while (expect_true ( 3115 while (expect_true (
1759 activecnt 3116 activecnt
1760 && !loop_done 3117 && !loop_done
1761 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 3118 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
1762 )); 3119 ));
1763 3120
1764 if (loop_done == EVUNLOOP_ONE) 3121 if (loop_done == EVBREAK_ONE)
1765 loop_done = EVUNLOOP_CANCEL; 3122 loop_done = EVBREAK_CANCEL;
3123
3124#if EV_FEATURE_API
3125 --loop_depth;
3126#endif
3127
3128 return activecnt;
1766} 3129}
1767 3130
1768void 3131void
1769ev_unloop (EV_P_ int how) 3132ev_break (EV_P_ int how) EV_THROW
1770{ 3133{
1771 loop_done = how; 3134 loop_done = how;
1772} 3135}
1773 3136
3137void
3138ev_ref (EV_P) EV_THROW
3139{
3140 ++activecnt;
3141}
3142
3143void
3144ev_unref (EV_P) EV_THROW
3145{
3146 --activecnt;
3147}
3148
3149void
3150ev_now_update (EV_P) EV_THROW
3151{
3152 time_update (EV_A_ 1e100);
3153}
3154
3155void
3156ev_suspend (EV_P) EV_THROW
3157{
3158 ev_now_update (EV_A);
3159}
3160
3161void
3162ev_resume (EV_P) EV_THROW
3163{
3164 ev_tstamp mn_prev = mn_now;
3165
3166 ev_now_update (EV_A);
3167 timers_reschedule (EV_A_ mn_now - mn_prev);
3168#if EV_PERIODIC_ENABLE
3169 /* TODO: really do this? */
3170 periodics_reschedule (EV_A);
3171#endif
3172}
3173
1774/*****************************************************************************/ 3174/*****************************************************************************/
3175/* singly-linked list management, used when the expected list length is short */
1775 3176
1776void inline_size 3177inline_size void
1777wlist_add (WL *head, WL elem) 3178wlist_add (WL *head, WL elem)
1778{ 3179{
1779 elem->next = *head; 3180 elem->next = *head;
1780 *head = elem; 3181 *head = elem;
1781} 3182}
1782 3183
1783void inline_size 3184inline_size void
1784wlist_del (WL *head, WL elem) 3185wlist_del (WL *head, WL elem)
1785{ 3186{
1786 while (*head) 3187 while (*head)
1787 { 3188 {
1788 if (*head == elem) 3189 if (expect_true (*head == elem))
1789 { 3190 {
1790 *head = elem->next; 3191 *head = elem->next;
1791 return; 3192 break;
1792 } 3193 }
1793 3194
1794 head = &(*head)->next; 3195 head = &(*head)->next;
1795 } 3196 }
1796} 3197}
1797 3198
1798void inline_speed 3199/* internal, faster, version of ev_clear_pending */
3200inline_speed void
1799clear_pending (EV_P_ W w) 3201clear_pending (EV_P_ W w)
1800{ 3202{
1801 if (w->pending) 3203 if (w->pending)
1802 { 3204 {
1803 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3205 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1804 w->pending = 0; 3206 w->pending = 0;
1805 } 3207 }
1806} 3208}
1807 3209
1808int 3210int
1809ev_clear_pending (EV_P_ void *w) 3211ev_clear_pending (EV_P_ void *w) EV_THROW
1810{ 3212{
1811 W w_ = (W)w; 3213 W w_ = (W)w;
1812 int pending = w_->pending; 3214 int pending = w_->pending;
1813 3215
1814 if (expect_true (pending)) 3216 if (expect_true (pending))
1815 { 3217 {
1816 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3218 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3219 p->w = (W)&pending_w;
1817 w_->pending = 0; 3220 w_->pending = 0;
1818 p->w = 0;
1819 return p->events; 3221 return p->events;
1820 } 3222 }
1821 else 3223 else
1822 return 0; 3224 return 0;
1823} 3225}
1824 3226
1825void inline_size 3227inline_size void
1826pri_adjust (EV_P_ W w) 3228pri_adjust (EV_P_ W w)
1827{ 3229{
1828 int pri = w->priority; 3230 int pri = ev_priority (w);
1829 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3231 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1830 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3232 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1831 w->priority = pri; 3233 ev_set_priority (w, pri);
1832} 3234}
1833 3235
1834void inline_speed 3236inline_speed void
1835ev_start (EV_P_ W w, int active) 3237ev_start (EV_P_ W w, int active)
1836{ 3238{
1837 pri_adjust (EV_A_ w); 3239 pri_adjust (EV_A_ w);
1838 w->active = active; 3240 w->active = active;
1839 ev_ref (EV_A); 3241 ev_ref (EV_A);
1840} 3242}
1841 3243
1842void inline_size 3244inline_size void
1843ev_stop (EV_P_ W w) 3245ev_stop (EV_P_ W w)
1844{ 3246{
1845 ev_unref (EV_A); 3247 ev_unref (EV_A);
1846 w->active = 0; 3248 w->active = 0;
1847} 3249}
1848 3250
1849/*****************************************************************************/ 3251/*****************************************************************************/
1850 3252
1851void noinline 3253void noinline
1852ev_io_start (EV_P_ ev_io *w) 3254ev_io_start (EV_P_ ev_io *w) EV_THROW
1853{ 3255{
1854 int fd = w->fd; 3256 int fd = w->fd;
1855 3257
1856 if (expect_false (ev_is_active (w))) 3258 if (expect_false (ev_is_active (w)))
1857 return; 3259 return;
1858 3260
1859 assert (("ev_io_start called with negative fd", fd >= 0)); 3261 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3262 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3263
3264 EV_FREQUENT_CHECK;
1860 3265
1861 ev_start (EV_A_ (W)w, 1); 3266 ev_start (EV_A_ (W)w, 1);
1862 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3267 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1863 wlist_add (&anfds[fd].head, (WL)w); 3268 wlist_add (&anfds[fd].head, (WL)w);
1864 3269
3270 /* common bug, apparently */
3271 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3272
1865 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3273 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1866 w->events &= ~EV_IOFDSET; 3274 w->events &= ~EV__IOFDSET;
3275
3276 EV_FREQUENT_CHECK;
1867} 3277}
1868 3278
1869void noinline 3279void noinline
1870ev_io_stop (EV_P_ ev_io *w) 3280ev_io_stop (EV_P_ ev_io *w) EV_THROW
1871{ 3281{
1872 clear_pending (EV_A_ (W)w); 3282 clear_pending (EV_A_ (W)w);
1873 if (expect_false (!ev_is_active (w))) 3283 if (expect_false (!ev_is_active (w)))
1874 return; 3284 return;
1875 3285
1876 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3286 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3287
3288 EV_FREQUENT_CHECK;
1877 3289
1878 wlist_del (&anfds[w->fd].head, (WL)w); 3290 wlist_del (&anfds[w->fd].head, (WL)w);
1879 ev_stop (EV_A_ (W)w); 3291 ev_stop (EV_A_ (W)w);
1880 3292
1881 fd_change (EV_A_ w->fd, 1); 3293 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3294
3295 EV_FREQUENT_CHECK;
1882} 3296}
1883 3297
1884void noinline 3298void noinline
1885ev_timer_start (EV_P_ ev_timer *w) 3299ev_timer_start (EV_P_ ev_timer *w) EV_THROW
1886{ 3300{
1887 if (expect_false (ev_is_active (w))) 3301 if (expect_false (ev_is_active (w)))
1888 return; 3302 return;
1889 3303
1890 ev_at (w) += mn_now; 3304 ev_at (w) += mn_now;
1891 3305
1892 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3306 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1893 3307
3308 EV_FREQUENT_CHECK;
3309
3310 ++timercnt;
1894 ev_start (EV_A_ (W)w, ++timercnt); 3311 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1895 array_needsize (WT, timers, timermax, timercnt + 1, EMPTY2); 3312 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1896 timers [timercnt] = (WT)w; 3313 ANHE_w (timers [ev_active (w)]) = (WT)w;
3314 ANHE_at_cache (timers [ev_active (w)]);
1897 upheap (timers, timercnt); 3315 upheap (timers, ev_active (w));
1898 3316
3317 EV_FREQUENT_CHECK;
3318
1899 /*assert (("internal timer heap corruption", timers [((W)w)->active] == w));*/ 3319 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1900} 3320}
1901 3321
1902void noinline 3322void noinline
1903ev_timer_stop (EV_P_ ev_timer *w) 3323ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
1904{ 3324{
1905 clear_pending (EV_A_ (W)w); 3325 clear_pending (EV_A_ (W)w);
1906 if (expect_false (!ev_is_active (w))) 3326 if (expect_false (!ev_is_active (w)))
1907 return; 3327 return;
1908 3328
1909 assert (("internal timer heap corruption", timers [((W)w)->active] == (WT)w)); 3329 EV_FREQUENT_CHECK;
1910 3330
1911 { 3331 {
1912 int active = ((W)w)->active; 3332 int active = ev_active (w);
1913 3333
3334 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3335
3336 --timercnt;
3337
1914 if (expect_true (active < timercnt)) 3338 if (expect_true (active < timercnt + HEAP0))
1915 { 3339 {
1916 timers [active] = timers [timercnt]; 3340 timers [active] = timers [timercnt + HEAP0];
1917 adjustheap (timers, timercnt, active); 3341 adjustheap (timers, timercnt, active);
1918 } 3342 }
1919
1920 --timercnt;
1921 } 3343 }
1922 3344
1923 ev_at (w) -= mn_now; 3345 ev_at (w) -= mn_now;
1924 3346
1925 ev_stop (EV_A_ (W)w); 3347 ev_stop (EV_A_ (W)w);
3348
3349 EV_FREQUENT_CHECK;
1926} 3350}
1927 3351
1928void noinline 3352void noinline
1929ev_timer_again (EV_P_ ev_timer *w) 3353ev_timer_again (EV_P_ ev_timer *w) EV_THROW
1930{ 3354{
3355 EV_FREQUENT_CHECK;
3356
3357 clear_pending (EV_A_ (W)w);
3358
1931 if (ev_is_active (w)) 3359 if (ev_is_active (w))
1932 { 3360 {
1933 if (w->repeat) 3361 if (w->repeat)
1934 { 3362 {
1935 ev_at (w) = mn_now + w->repeat; 3363 ev_at (w) = mn_now + w->repeat;
3364 ANHE_at_cache (timers [ev_active (w)]);
1936 adjustheap (timers, timercnt, ((W)w)->active); 3365 adjustheap (timers, timercnt, ev_active (w));
1937 } 3366 }
1938 else 3367 else
1939 ev_timer_stop (EV_A_ w); 3368 ev_timer_stop (EV_A_ w);
1940 } 3369 }
1941 else if (w->repeat) 3370 else if (w->repeat)
1942 { 3371 {
1943 w->at = w->repeat; 3372 ev_at (w) = w->repeat;
1944 ev_timer_start (EV_A_ w); 3373 ev_timer_start (EV_A_ w);
1945 } 3374 }
3375
3376 EV_FREQUENT_CHECK;
3377}
3378
3379ev_tstamp
3380ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3381{
3382 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1946} 3383}
1947 3384
1948#if EV_PERIODIC_ENABLE 3385#if EV_PERIODIC_ENABLE
1949void noinline 3386void noinline
1950ev_periodic_start (EV_P_ ev_periodic *w) 3387ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
1951{ 3388{
1952 if (expect_false (ev_is_active (w))) 3389 if (expect_false (ev_is_active (w)))
1953 return; 3390 return;
1954 3391
1955 if (w->reschedule_cb) 3392 if (w->reschedule_cb)
1956 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3393 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1957 else if (w->interval) 3394 else if (w->interval)
1958 { 3395 {
1959 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3396 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1960 /* this formula differs from the one in periodic_reify because we do not always round up */ 3397 periodic_recalc (EV_A_ w);
1961 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1962 } 3398 }
1963 else 3399 else
1964 ev_at (w) = w->offset; 3400 ev_at (w) = w->offset;
1965 3401
3402 EV_FREQUENT_CHECK;
3403
3404 ++periodiccnt;
1966 ev_start (EV_A_ (W)w, ++periodiccnt); 3405 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1967 array_needsize (WT, periodics, periodicmax, periodiccnt + 1, EMPTY2); 3406 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1968 periodics [periodiccnt] = (WT)w; 3407 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1969 upheap (periodics, periodiccnt); 3408 ANHE_at_cache (periodics [ev_active (w)]);
3409 upheap (periodics, ev_active (w));
1970 3410
3411 EV_FREQUENT_CHECK;
3412
1971 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 3413 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1972} 3414}
1973 3415
1974void noinline 3416void noinline
1975ev_periodic_stop (EV_P_ ev_periodic *w) 3417ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
1976{ 3418{
1977 clear_pending (EV_A_ (W)w); 3419 clear_pending (EV_A_ (W)w);
1978 if (expect_false (!ev_is_active (w))) 3420 if (expect_false (!ev_is_active (w)))
1979 return; 3421 return;
1980 3422
1981 assert (("internal periodic heap corruption", periodics [((W)w)->active] == (WT)w)); 3423 EV_FREQUENT_CHECK;
1982 3424
1983 { 3425 {
1984 int active = ((W)w)->active; 3426 int active = ev_active (w);
1985 3427
3428 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3429
3430 --periodiccnt;
3431
1986 if (expect_true (active < periodiccnt)) 3432 if (expect_true (active < periodiccnt + HEAP0))
1987 { 3433 {
1988 periodics [active] = periodics [periodiccnt]; 3434 periodics [active] = periodics [periodiccnt + HEAP0];
1989 adjustheap (periodics, periodiccnt, active); 3435 adjustheap (periodics, periodiccnt, active);
1990 } 3436 }
1991
1992 --periodiccnt;
1993 } 3437 }
1994 3438
1995 ev_stop (EV_A_ (W)w); 3439 ev_stop (EV_A_ (W)w);
3440
3441 EV_FREQUENT_CHECK;
1996} 3442}
1997 3443
1998void noinline 3444void noinline
1999ev_periodic_again (EV_P_ ev_periodic *w) 3445ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
2000{ 3446{
2001 /* TODO: use adjustheap and recalculation */ 3447 /* TODO: use adjustheap and recalculation */
2002 ev_periodic_stop (EV_A_ w); 3448 ev_periodic_stop (EV_A_ w);
2003 ev_periodic_start (EV_A_ w); 3449 ev_periodic_start (EV_A_ w);
2004} 3450}
2006 3452
2007#ifndef SA_RESTART 3453#ifndef SA_RESTART
2008# define SA_RESTART 0 3454# define SA_RESTART 0
2009#endif 3455#endif
2010 3456
3457#if EV_SIGNAL_ENABLE
3458
2011void noinline 3459void noinline
2012ev_signal_start (EV_P_ ev_signal *w) 3460ev_signal_start (EV_P_ ev_signal *w) EV_THROW
2013{ 3461{
2014#if EV_MULTIPLICITY
2015 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2016#endif
2017 if (expect_false (ev_is_active (w))) 3462 if (expect_false (ev_is_active (w)))
2018 return; 3463 return;
2019 3464
2020 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3465 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2021 3466
2022 evpipe_init (EV_A); 3467#if EV_MULTIPLICITY
3468 assert (("libev: a signal must not be attached to two different loops",
3469 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2023 3470
3471 signals [w->signum - 1].loop = EV_A;
3472#endif
3473
3474 EV_FREQUENT_CHECK;
3475
3476#if EV_USE_SIGNALFD
3477 if (sigfd == -2)
2024 { 3478 {
2025#ifndef _WIN32 3479 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2026 sigset_t full, prev; 3480 if (sigfd < 0 && errno == EINVAL)
2027 sigfillset (&full); 3481 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2028 sigprocmask (SIG_SETMASK, &full, &prev);
2029#endif
2030 3482
2031 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3483 if (sigfd >= 0)
3484 {
3485 fd_intern (sigfd); /* doing it twice will not hurt */
2032 3486
2033#ifndef _WIN32 3487 sigemptyset (&sigfd_set);
2034 sigprocmask (SIG_SETMASK, &prev, 0); 3488
2035#endif 3489 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3490 ev_set_priority (&sigfd_w, EV_MAXPRI);
3491 ev_io_start (EV_A_ &sigfd_w);
3492 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3493 }
2036 } 3494 }
3495
3496 if (sigfd >= 0)
3497 {
3498 /* TODO: check .head */
3499 sigaddset (&sigfd_set, w->signum);
3500 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3501
3502 signalfd (sigfd, &sigfd_set, 0);
3503 }
3504#endif
2037 3505
2038 ev_start (EV_A_ (W)w, 1); 3506 ev_start (EV_A_ (W)w, 1);
2039 wlist_add (&signals [w->signum - 1].head, (WL)w); 3507 wlist_add (&signals [w->signum - 1].head, (WL)w);
2040 3508
2041 if (!((WL)w)->next) 3509 if (!((WL)w)->next)
3510# if EV_USE_SIGNALFD
3511 if (sigfd < 0) /*TODO*/
3512# endif
2042 { 3513 {
2043#if _WIN32 3514# ifdef _WIN32
3515 evpipe_init (EV_A);
3516
2044 signal (w->signum, ev_sighandler); 3517 signal (w->signum, ev_sighandler);
2045#else 3518# else
2046 struct sigaction sa; 3519 struct sigaction sa;
3520
3521 evpipe_init (EV_A);
3522
2047 sa.sa_handler = ev_sighandler; 3523 sa.sa_handler = ev_sighandler;
2048 sigfillset (&sa.sa_mask); 3524 sigfillset (&sa.sa_mask);
2049 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3525 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2050 sigaction (w->signum, &sa, 0); 3526 sigaction (w->signum, &sa, 0);
3527
3528 if (origflags & EVFLAG_NOSIGMASK)
3529 {
3530 sigemptyset (&sa.sa_mask);
3531 sigaddset (&sa.sa_mask, w->signum);
3532 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3533 }
2051#endif 3534#endif
2052 } 3535 }
3536
3537 EV_FREQUENT_CHECK;
2053} 3538}
2054 3539
2055void noinline 3540void noinline
2056ev_signal_stop (EV_P_ ev_signal *w) 3541ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
2057{ 3542{
2058 clear_pending (EV_A_ (W)w); 3543 clear_pending (EV_A_ (W)w);
2059 if (expect_false (!ev_is_active (w))) 3544 if (expect_false (!ev_is_active (w)))
2060 return; 3545 return;
2061 3546
3547 EV_FREQUENT_CHECK;
3548
2062 wlist_del (&signals [w->signum - 1].head, (WL)w); 3549 wlist_del (&signals [w->signum - 1].head, (WL)w);
2063 ev_stop (EV_A_ (W)w); 3550 ev_stop (EV_A_ (W)w);
2064 3551
2065 if (!signals [w->signum - 1].head) 3552 if (!signals [w->signum - 1].head)
3553 {
3554#if EV_MULTIPLICITY
3555 signals [w->signum - 1].loop = 0; /* unattach from signal */
3556#endif
3557#if EV_USE_SIGNALFD
3558 if (sigfd >= 0)
3559 {
3560 sigset_t ss;
3561
3562 sigemptyset (&ss);
3563 sigaddset (&ss, w->signum);
3564 sigdelset (&sigfd_set, w->signum);
3565
3566 signalfd (sigfd, &sigfd_set, 0);
3567 sigprocmask (SIG_UNBLOCK, &ss, 0);
3568 }
3569 else
3570#endif
2066 signal (w->signum, SIG_DFL); 3571 signal (w->signum, SIG_DFL);
3572 }
3573
3574 EV_FREQUENT_CHECK;
2067} 3575}
3576
3577#endif
3578
3579#if EV_CHILD_ENABLE
2068 3580
2069void 3581void
2070ev_child_start (EV_P_ ev_child *w) 3582ev_child_start (EV_P_ ev_child *w) EV_THROW
2071{ 3583{
2072#if EV_MULTIPLICITY 3584#if EV_MULTIPLICITY
2073 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3585 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2074#endif 3586#endif
2075 if (expect_false (ev_is_active (w))) 3587 if (expect_false (ev_is_active (w)))
2076 return; 3588 return;
2077 3589
3590 EV_FREQUENT_CHECK;
3591
2078 ev_start (EV_A_ (W)w, 1); 3592 ev_start (EV_A_ (W)w, 1);
2079 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3593 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3594
3595 EV_FREQUENT_CHECK;
2080} 3596}
2081 3597
2082void 3598void
2083ev_child_stop (EV_P_ ev_child *w) 3599ev_child_stop (EV_P_ ev_child *w) EV_THROW
2084{ 3600{
2085 clear_pending (EV_A_ (W)w); 3601 clear_pending (EV_A_ (W)w);
2086 if (expect_false (!ev_is_active (w))) 3602 if (expect_false (!ev_is_active (w)))
2087 return; 3603 return;
2088 3604
3605 EV_FREQUENT_CHECK;
3606
2089 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3607 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2090 ev_stop (EV_A_ (W)w); 3608 ev_stop (EV_A_ (W)w);
3609
3610 EV_FREQUENT_CHECK;
2091} 3611}
3612
3613#endif
2092 3614
2093#if EV_STAT_ENABLE 3615#if EV_STAT_ENABLE
2094 3616
2095# ifdef _WIN32 3617# ifdef _WIN32
2096# undef lstat 3618# undef lstat
2097# define lstat(a,b) _stati64 (a,b) 3619# define lstat(a,b) _stati64 (a,b)
2098# endif 3620# endif
2099 3621
2100#define DEF_STAT_INTERVAL 5.0074891 3622#define DEF_STAT_INTERVAL 5.0074891
3623#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2101#define MIN_STAT_INTERVAL 0.1074891 3624#define MIN_STAT_INTERVAL 0.1074891
2102 3625
2103static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3626static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2104 3627
2105#if EV_USE_INOTIFY 3628#if EV_USE_INOTIFY
2106# define EV_INOTIFY_BUFSIZE 8192 3629
3630/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3631# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2107 3632
2108static void noinline 3633static void noinline
2109infy_add (EV_P_ ev_stat *w) 3634infy_add (EV_P_ ev_stat *w)
2110{ 3635{
2111 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3636 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2112 3637
2113 if (w->wd < 0) 3638 if (w->wd >= 0)
3639 {
3640 struct statfs sfs;
3641
3642 /* now local changes will be tracked by inotify, but remote changes won't */
3643 /* unless the filesystem is known to be local, we therefore still poll */
3644 /* also do poll on <2.6.25, but with normal frequency */
3645
3646 if (!fs_2625)
3647 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3648 else if (!statfs (w->path, &sfs)
3649 && (sfs.f_type == 0x1373 /* devfs */
3650 || sfs.f_type == 0xEF53 /* ext2/3 */
3651 || sfs.f_type == 0x3153464a /* jfs */
3652 || sfs.f_type == 0x52654973 /* reiser3 */
3653 || sfs.f_type == 0x01021994 /* tempfs */
3654 || sfs.f_type == 0x58465342 /* xfs */))
3655 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3656 else
3657 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2114 { 3658 }
2115 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3659 else
3660 {
3661 /* can't use inotify, continue to stat */
3662 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2116 3663
2117 /* monitor some parent directory for speedup hints */ 3664 /* if path is not there, monitor some parent directory for speedup hints */
3665 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3666 /* but an efficiency issue only */
2118 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3667 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2119 { 3668 {
2120 char path [4096]; 3669 char path [4096];
2121 strcpy (path, w->path); 3670 strcpy (path, w->path);
2122 3671
2125 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3674 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2126 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3675 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2127 3676
2128 char *pend = strrchr (path, '/'); 3677 char *pend = strrchr (path, '/');
2129 3678
2130 if (!pend) 3679 if (!pend || pend == path)
2131 break; /* whoops, no '/', complain to your admin */ 3680 break;
2132 3681
2133 *pend = 0; 3682 *pend = 0;
2134 w->wd = inotify_add_watch (fs_fd, path, mask); 3683 w->wd = inotify_add_watch (fs_fd, path, mask);
2135 } 3684 }
2136 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3685 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2137 } 3686 }
2138 } 3687 }
2139 else
2140 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2141 3688
2142 if (w->wd >= 0) 3689 if (w->wd >= 0)
2143 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3690 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3691
3692 /* now re-arm timer, if required */
3693 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3694 ev_timer_again (EV_A_ &w->timer);
3695 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2144} 3696}
2145 3697
2146static void noinline 3698static void noinline
2147infy_del (EV_P_ ev_stat *w) 3699infy_del (EV_P_ ev_stat *w)
2148{ 3700{
2151 3703
2152 if (wd < 0) 3704 if (wd < 0)
2153 return; 3705 return;
2154 3706
2155 w->wd = -2; 3707 w->wd = -2;
2156 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3708 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2157 wlist_del (&fs_hash [slot].head, (WL)w); 3709 wlist_del (&fs_hash [slot].head, (WL)w);
2158 3710
2159 /* remove this watcher, if others are watching it, they will rearm */ 3711 /* remove this watcher, if others are watching it, they will rearm */
2160 inotify_rm_watch (fs_fd, wd); 3712 inotify_rm_watch (fs_fd, wd);
2161} 3713}
2162 3714
2163static void noinline 3715static void noinline
2164infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3716infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2165{ 3717{
2166 if (slot < 0) 3718 if (slot < 0)
2167 /* overflow, need to check for all hahs slots */ 3719 /* overflow, need to check for all hash slots */
2168 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3720 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2169 infy_wd (EV_A_ slot, wd, ev); 3721 infy_wd (EV_A_ slot, wd, ev);
2170 else 3722 else
2171 { 3723 {
2172 WL w_; 3724 WL w_;
2173 3725
2174 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3726 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2175 { 3727 {
2176 ev_stat *w = (ev_stat *)w_; 3728 ev_stat *w = (ev_stat *)w_;
2177 w_ = w_->next; /* lets us remove this watcher and all before it */ 3729 w_ = w_->next; /* lets us remove this watcher and all before it */
2178 3730
2179 if (w->wd == wd || wd == -1) 3731 if (w->wd == wd || wd == -1)
2180 { 3732 {
2181 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3733 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2182 { 3734 {
3735 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2183 w->wd = -1; 3736 w->wd = -1;
2184 infy_add (EV_A_ w); /* re-add, no matter what */ 3737 infy_add (EV_A_ w); /* re-add, no matter what */
2185 } 3738 }
2186 3739
2187 stat_timer_cb (EV_A_ &w->timer, 0); 3740 stat_timer_cb (EV_A_ &w->timer, 0);
2192 3745
2193static void 3746static void
2194infy_cb (EV_P_ ev_io *w, int revents) 3747infy_cb (EV_P_ ev_io *w, int revents)
2195{ 3748{
2196 char buf [EV_INOTIFY_BUFSIZE]; 3749 char buf [EV_INOTIFY_BUFSIZE];
2197 struct inotify_event *ev = (struct inotify_event *)buf;
2198 int ofs; 3750 int ofs;
2199 int len = read (fs_fd, buf, sizeof (buf)); 3751 int len = read (fs_fd, buf, sizeof (buf));
2200 3752
2201 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3753 for (ofs = 0; ofs < len; )
3754 {
3755 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2202 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3756 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3757 ofs += sizeof (struct inotify_event) + ev->len;
3758 }
2203} 3759}
2204 3760
2205void inline_size 3761inline_size void ecb_cold
3762ev_check_2625 (EV_P)
3763{
3764 /* kernels < 2.6.25 are borked
3765 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3766 */
3767 if (ev_linux_version () < 0x020619)
3768 return;
3769
3770 fs_2625 = 1;
3771}
3772
3773inline_size int
3774infy_newfd (void)
3775{
3776#if defined IN_CLOEXEC && defined IN_NONBLOCK
3777 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3778 if (fd >= 0)
3779 return fd;
3780#endif
3781 return inotify_init ();
3782}
3783
3784inline_size void
2206infy_init (EV_P) 3785infy_init (EV_P)
2207{ 3786{
2208 if (fs_fd != -2) 3787 if (fs_fd != -2)
2209 return; 3788 return;
2210 3789
3790 fs_fd = -1;
3791
3792 ev_check_2625 (EV_A);
3793
2211 fs_fd = inotify_init (); 3794 fs_fd = infy_newfd ();
2212 3795
2213 if (fs_fd >= 0) 3796 if (fs_fd >= 0)
2214 { 3797 {
3798 fd_intern (fs_fd);
2215 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3799 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2216 ev_set_priority (&fs_w, EV_MAXPRI); 3800 ev_set_priority (&fs_w, EV_MAXPRI);
2217 ev_io_start (EV_A_ &fs_w); 3801 ev_io_start (EV_A_ &fs_w);
3802 ev_unref (EV_A);
2218 } 3803 }
2219} 3804}
2220 3805
2221void inline_size 3806inline_size void
2222infy_fork (EV_P) 3807infy_fork (EV_P)
2223{ 3808{
2224 int slot; 3809 int slot;
2225 3810
2226 if (fs_fd < 0) 3811 if (fs_fd < 0)
2227 return; 3812 return;
2228 3813
3814 ev_ref (EV_A);
3815 ev_io_stop (EV_A_ &fs_w);
2229 close (fs_fd); 3816 close (fs_fd);
2230 fs_fd = inotify_init (); 3817 fs_fd = infy_newfd ();
2231 3818
3819 if (fs_fd >= 0)
3820 {
3821 fd_intern (fs_fd);
3822 ev_io_set (&fs_w, fs_fd, EV_READ);
3823 ev_io_start (EV_A_ &fs_w);
3824 ev_unref (EV_A);
3825 }
3826
2232 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3827 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2233 { 3828 {
2234 WL w_ = fs_hash [slot].head; 3829 WL w_ = fs_hash [slot].head;
2235 fs_hash [slot].head = 0; 3830 fs_hash [slot].head = 0;
2236 3831
2237 while (w_) 3832 while (w_)
2242 w->wd = -1; 3837 w->wd = -1;
2243 3838
2244 if (fs_fd >= 0) 3839 if (fs_fd >= 0)
2245 infy_add (EV_A_ w); /* re-add, no matter what */ 3840 infy_add (EV_A_ w); /* re-add, no matter what */
2246 else 3841 else
3842 {
3843 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3844 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2247 ev_timer_start (EV_A_ &w->timer); 3845 ev_timer_again (EV_A_ &w->timer);
3846 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3847 }
2248 } 3848 }
2249
2250 } 3849 }
2251} 3850}
2252 3851
3852#endif
3853
3854#ifdef _WIN32
3855# define EV_LSTAT(p,b) _stati64 (p, b)
3856#else
3857# define EV_LSTAT(p,b) lstat (p, b)
2253#endif 3858#endif
2254 3859
2255void 3860void
2256ev_stat_stat (EV_P_ ev_stat *w) 3861ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
2257{ 3862{
2258 if (lstat (w->path, &w->attr) < 0) 3863 if (lstat (w->path, &w->attr) < 0)
2259 w->attr.st_nlink = 0; 3864 w->attr.st_nlink = 0;
2260 else if (!w->attr.st_nlink) 3865 else if (!w->attr.st_nlink)
2261 w->attr.st_nlink = 1; 3866 w->attr.st_nlink = 1;
2264static void noinline 3869static void noinline
2265stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3870stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2266{ 3871{
2267 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3872 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2268 3873
2269 /* we copy this here each the time so that */ 3874 ev_statdata prev = w->attr;
2270 /* prev has the old value when the callback gets invoked */
2271 w->prev = w->attr;
2272 ev_stat_stat (EV_A_ w); 3875 ev_stat_stat (EV_A_ w);
2273 3876
2274 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3877 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2275 if ( 3878 if (
2276 w->prev.st_dev != w->attr.st_dev 3879 prev.st_dev != w->attr.st_dev
2277 || w->prev.st_ino != w->attr.st_ino 3880 || prev.st_ino != w->attr.st_ino
2278 || w->prev.st_mode != w->attr.st_mode 3881 || prev.st_mode != w->attr.st_mode
2279 || w->prev.st_nlink != w->attr.st_nlink 3882 || prev.st_nlink != w->attr.st_nlink
2280 || w->prev.st_uid != w->attr.st_uid 3883 || prev.st_uid != w->attr.st_uid
2281 || w->prev.st_gid != w->attr.st_gid 3884 || prev.st_gid != w->attr.st_gid
2282 || w->prev.st_rdev != w->attr.st_rdev 3885 || prev.st_rdev != w->attr.st_rdev
2283 || w->prev.st_size != w->attr.st_size 3886 || prev.st_size != w->attr.st_size
2284 || w->prev.st_atime != w->attr.st_atime 3887 || prev.st_atime != w->attr.st_atime
2285 || w->prev.st_mtime != w->attr.st_mtime 3888 || prev.st_mtime != w->attr.st_mtime
2286 || w->prev.st_ctime != w->attr.st_ctime 3889 || prev.st_ctime != w->attr.st_ctime
2287 ) { 3890 ) {
3891 /* we only update w->prev on actual differences */
3892 /* in case we test more often than invoke the callback, */
3893 /* to ensure that prev is always different to attr */
3894 w->prev = prev;
3895
2288 #if EV_USE_INOTIFY 3896 #if EV_USE_INOTIFY
3897 if (fs_fd >= 0)
3898 {
2289 infy_del (EV_A_ w); 3899 infy_del (EV_A_ w);
2290 infy_add (EV_A_ w); 3900 infy_add (EV_A_ w);
2291 ev_stat_stat (EV_A_ w); /* avoid race... */ 3901 ev_stat_stat (EV_A_ w); /* avoid race... */
3902 }
2292 #endif 3903 #endif
2293 3904
2294 ev_feed_event (EV_A_ w, EV_STAT); 3905 ev_feed_event (EV_A_ w, EV_STAT);
2295 } 3906 }
2296} 3907}
2297 3908
2298void 3909void
2299ev_stat_start (EV_P_ ev_stat *w) 3910ev_stat_start (EV_P_ ev_stat *w) EV_THROW
2300{ 3911{
2301 if (expect_false (ev_is_active (w))) 3912 if (expect_false (ev_is_active (w)))
2302 return; 3913 return;
2303 3914
2304 /* since we use memcmp, we need to clear any padding data etc. */
2305 memset (&w->prev, 0, sizeof (ev_statdata));
2306 memset (&w->attr, 0, sizeof (ev_statdata));
2307
2308 ev_stat_stat (EV_A_ w); 3915 ev_stat_stat (EV_A_ w);
2309 3916
3917 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2310 if (w->interval < MIN_STAT_INTERVAL) 3918 w->interval = MIN_STAT_INTERVAL;
2311 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2312 3919
2313 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3920 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2314 ev_set_priority (&w->timer, ev_priority (w)); 3921 ev_set_priority (&w->timer, ev_priority (w));
2315 3922
2316#if EV_USE_INOTIFY 3923#if EV_USE_INOTIFY
2317 infy_init (EV_A); 3924 infy_init (EV_A);
2318 3925
2319 if (fs_fd >= 0) 3926 if (fs_fd >= 0)
2320 infy_add (EV_A_ w); 3927 infy_add (EV_A_ w);
2321 else 3928 else
2322#endif 3929#endif
3930 {
2323 ev_timer_start (EV_A_ &w->timer); 3931 ev_timer_again (EV_A_ &w->timer);
3932 ev_unref (EV_A);
3933 }
2324 3934
2325 ev_start (EV_A_ (W)w, 1); 3935 ev_start (EV_A_ (W)w, 1);
3936
3937 EV_FREQUENT_CHECK;
2326} 3938}
2327 3939
2328void 3940void
2329ev_stat_stop (EV_P_ ev_stat *w) 3941ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
2330{ 3942{
2331 clear_pending (EV_A_ (W)w); 3943 clear_pending (EV_A_ (W)w);
2332 if (expect_false (!ev_is_active (w))) 3944 if (expect_false (!ev_is_active (w)))
2333 return; 3945 return;
2334 3946
3947 EV_FREQUENT_CHECK;
3948
2335#if EV_USE_INOTIFY 3949#if EV_USE_INOTIFY
2336 infy_del (EV_A_ w); 3950 infy_del (EV_A_ w);
2337#endif 3951#endif
3952
3953 if (ev_is_active (&w->timer))
3954 {
3955 ev_ref (EV_A);
2338 ev_timer_stop (EV_A_ &w->timer); 3956 ev_timer_stop (EV_A_ &w->timer);
3957 }
2339 3958
2340 ev_stop (EV_A_ (W)w); 3959 ev_stop (EV_A_ (W)w);
3960
3961 EV_FREQUENT_CHECK;
2341} 3962}
2342#endif 3963#endif
2343 3964
2344#if EV_IDLE_ENABLE 3965#if EV_IDLE_ENABLE
2345void 3966void
2346ev_idle_start (EV_P_ ev_idle *w) 3967ev_idle_start (EV_P_ ev_idle *w) EV_THROW
2347{ 3968{
2348 if (expect_false (ev_is_active (w))) 3969 if (expect_false (ev_is_active (w)))
2349 return; 3970 return;
2350 3971
2351 pri_adjust (EV_A_ (W)w); 3972 pri_adjust (EV_A_ (W)w);
3973
3974 EV_FREQUENT_CHECK;
2352 3975
2353 { 3976 {
2354 int active = ++idlecnt [ABSPRI (w)]; 3977 int active = ++idlecnt [ABSPRI (w)];
2355 3978
2356 ++idleall; 3979 ++idleall;
2357 ev_start (EV_A_ (W)w, active); 3980 ev_start (EV_A_ (W)w, active);
2358 3981
2359 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3982 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2360 idles [ABSPRI (w)][active - 1] = w; 3983 idles [ABSPRI (w)][active - 1] = w;
2361 } 3984 }
3985
3986 EV_FREQUENT_CHECK;
2362} 3987}
2363 3988
2364void 3989void
2365ev_idle_stop (EV_P_ ev_idle *w) 3990ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
2366{ 3991{
2367 clear_pending (EV_A_ (W)w); 3992 clear_pending (EV_A_ (W)w);
2368 if (expect_false (!ev_is_active (w))) 3993 if (expect_false (!ev_is_active (w)))
2369 return; 3994 return;
2370 3995
3996 EV_FREQUENT_CHECK;
3997
2371 { 3998 {
2372 int active = ((W)w)->active; 3999 int active = ev_active (w);
2373 4000
2374 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 4001 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2375 ((W)idles [ABSPRI (w)][active - 1])->active = active; 4002 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2376 4003
2377 ev_stop (EV_A_ (W)w); 4004 ev_stop (EV_A_ (W)w);
2378 --idleall; 4005 --idleall;
2379 } 4006 }
2380}
2381#endif
2382 4007
4008 EV_FREQUENT_CHECK;
4009}
4010#endif
4011
4012#if EV_PREPARE_ENABLE
2383void 4013void
2384ev_prepare_start (EV_P_ ev_prepare *w) 4014ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
2385{ 4015{
2386 if (expect_false (ev_is_active (w))) 4016 if (expect_false (ev_is_active (w)))
2387 return; 4017 return;
4018
4019 EV_FREQUENT_CHECK;
2388 4020
2389 ev_start (EV_A_ (W)w, ++preparecnt); 4021 ev_start (EV_A_ (W)w, ++preparecnt);
2390 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 4022 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2391 prepares [preparecnt - 1] = w; 4023 prepares [preparecnt - 1] = w;
4024
4025 EV_FREQUENT_CHECK;
2392} 4026}
2393 4027
2394void 4028void
2395ev_prepare_stop (EV_P_ ev_prepare *w) 4029ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
2396{ 4030{
2397 clear_pending (EV_A_ (W)w); 4031 clear_pending (EV_A_ (W)w);
2398 if (expect_false (!ev_is_active (w))) 4032 if (expect_false (!ev_is_active (w)))
2399 return; 4033 return;
2400 4034
4035 EV_FREQUENT_CHECK;
4036
2401 { 4037 {
2402 int active = ((W)w)->active; 4038 int active = ev_active (w);
4039
2403 prepares [active - 1] = prepares [--preparecnt]; 4040 prepares [active - 1] = prepares [--preparecnt];
2404 ((W)prepares [active - 1])->active = active; 4041 ev_active (prepares [active - 1]) = active;
2405 } 4042 }
2406 4043
2407 ev_stop (EV_A_ (W)w); 4044 ev_stop (EV_A_ (W)w);
2408}
2409 4045
4046 EV_FREQUENT_CHECK;
4047}
4048#endif
4049
4050#if EV_CHECK_ENABLE
2410void 4051void
2411ev_check_start (EV_P_ ev_check *w) 4052ev_check_start (EV_P_ ev_check *w) EV_THROW
2412{ 4053{
2413 if (expect_false (ev_is_active (w))) 4054 if (expect_false (ev_is_active (w)))
2414 return; 4055 return;
4056
4057 EV_FREQUENT_CHECK;
2415 4058
2416 ev_start (EV_A_ (W)w, ++checkcnt); 4059 ev_start (EV_A_ (W)w, ++checkcnt);
2417 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 4060 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2418 checks [checkcnt - 1] = w; 4061 checks [checkcnt - 1] = w;
4062
4063 EV_FREQUENT_CHECK;
2419} 4064}
2420 4065
2421void 4066void
2422ev_check_stop (EV_P_ ev_check *w) 4067ev_check_stop (EV_P_ ev_check *w) EV_THROW
2423{ 4068{
2424 clear_pending (EV_A_ (W)w); 4069 clear_pending (EV_A_ (W)w);
2425 if (expect_false (!ev_is_active (w))) 4070 if (expect_false (!ev_is_active (w)))
2426 return; 4071 return;
2427 4072
4073 EV_FREQUENT_CHECK;
4074
2428 { 4075 {
2429 int active = ((W)w)->active; 4076 int active = ev_active (w);
4077
2430 checks [active - 1] = checks [--checkcnt]; 4078 checks [active - 1] = checks [--checkcnt];
2431 ((W)checks [active - 1])->active = active; 4079 ev_active (checks [active - 1]) = active;
2432 } 4080 }
2433 4081
2434 ev_stop (EV_A_ (W)w); 4082 ev_stop (EV_A_ (W)w);
4083
4084 EV_FREQUENT_CHECK;
2435} 4085}
4086#endif
2436 4087
2437#if EV_EMBED_ENABLE 4088#if EV_EMBED_ENABLE
2438void noinline 4089void noinline
2439ev_embed_sweep (EV_P_ ev_embed *w) 4090ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
2440{ 4091{
2441 ev_loop (w->other, EVLOOP_NONBLOCK); 4092 ev_run (w->other, EVRUN_NOWAIT);
2442} 4093}
2443 4094
2444static void 4095static void
2445embed_io_cb (EV_P_ ev_io *io, int revents) 4096embed_io_cb (EV_P_ ev_io *io, int revents)
2446{ 4097{
2447 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4098 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2448 4099
2449 if (ev_cb (w)) 4100 if (ev_cb (w))
2450 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4101 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2451 else 4102 else
2452 ev_loop (w->other, EVLOOP_NONBLOCK); 4103 ev_run (w->other, EVRUN_NOWAIT);
2453} 4104}
2454 4105
2455static void 4106static void
2456embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4107embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2457{ 4108{
2458 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4109 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2459 4110
2460 { 4111 {
2461 struct ev_loop *loop = w->other; 4112 EV_P = w->other;
2462 4113
2463 while (fdchangecnt) 4114 while (fdchangecnt)
2464 { 4115 {
2465 fd_reify (EV_A); 4116 fd_reify (EV_A);
2466 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4117 ev_run (EV_A_ EVRUN_NOWAIT);
2467 } 4118 }
2468 } 4119 }
4120}
4121
4122static void
4123embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4124{
4125 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4126
4127 ev_embed_stop (EV_A_ w);
4128
4129 {
4130 EV_P = w->other;
4131
4132 ev_loop_fork (EV_A);
4133 ev_run (EV_A_ EVRUN_NOWAIT);
4134 }
4135
4136 ev_embed_start (EV_A_ w);
2469} 4137}
2470 4138
2471#if 0 4139#if 0
2472static void 4140static void
2473embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4141embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2475 ev_idle_stop (EV_A_ idle); 4143 ev_idle_stop (EV_A_ idle);
2476} 4144}
2477#endif 4145#endif
2478 4146
2479void 4147void
2480ev_embed_start (EV_P_ ev_embed *w) 4148ev_embed_start (EV_P_ ev_embed *w) EV_THROW
2481{ 4149{
2482 if (expect_false (ev_is_active (w))) 4150 if (expect_false (ev_is_active (w)))
2483 return; 4151 return;
2484 4152
2485 { 4153 {
2486 struct ev_loop *loop = w->other; 4154 EV_P = w->other;
2487 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4155 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2488 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4156 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2489 } 4157 }
4158
4159 EV_FREQUENT_CHECK;
2490 4160
2491 ev_set_priority (&w->io, ev_priority (w)); 4161 ev_set_priority (&w->io, ev_priority (w));
2492 ev_io_start (EV_A_ &w->io); 4162 ev_io_start (EV_A_ &w->io);
2493 4163
2494 ev_prepare_init (&w->prepare, embed_prepare_cb); 4164 ev_prepare_init (&w->prepare, embed_prepare_cb);
2495 ev_set_priority (&w->prepare, EV_MINPRI); 4165 ev_set_priority (&w->prepare, EV_MINPRI);
2496 ev_prepare_start (EV_A_ &w->prepare); 4166 ev_prepare_start (EV_A_ &w->prepare);
2497 4167
4168 ev_fork_init (&w->fork, embed_fork_cb);
4169 ev_fork_start (EV_A_ &w->fork);
4170
2498 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 4171 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2499 4172
2500 ev_start (EV_A_ (W)w, 1); 4173 ev_start (EV_A_ (W)w, 1);
4174
4175 EV_FREQUENT_CHECK;
2501} 4176}
2502 4177
2503void 4178void
2504ev_embed_stop (EV_P_ ev_embed *w) 4179ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
2505{ 4180{
2506 clear_pending (EV_A_ (W)w); 4181 clear_pending (EV_A_ (W)w);
2507 if (expect_false (!ev_is_active (w))) 4182 if (expect_false (!ev_is_active (w)))
2508 return; 4183 return;
2509 4184
4185 EV_FREQUENT_CHECK;
4186
2510 ev_io_stop (EV_A_ &w->io); 4187 ev_io_stop (EV_A_ &w->io);
2511 ev_prepare_stop (EV_A_ &w->prepare); 4188 ev_prepare_stop (EV_A_ &w->prepare);
4189 ev_fork_stop (EV_A_ &w->fork);
2512 4190
2513 ev_stop (EV_A_ (W)w); 4191 ev_stop (EV_A_ (W)w);
4192
4193 EV_FREQUENT_CHECK;
2514} 4194}
2515#endif 4195#endif
2516 4196
2517#if EV_FORK_ENABLE 4197#if EV_FORK_ENABLE
2518void 4198void
2519ev_fork_start (EV_P_ ev_fork *w) 4199ev_fork_start (EV_P_ ev_fork *w) EV_THROW
2520{ 4200{
2521 if (expect_false (ev_is_active (w))) 4201 if (expect_false (ev_is_active (w)))
2522 return; 4202 return;
4203
4204 EV_FREQUENT_CHECK;
2523 4205
2524 ev_start (EV_A_ (W)w, ++forkcnt); 4206 ev_start (EV_A_ (W)w, ++forkcnt);
2525 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 4207 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2526 forks [forkcnt - 1] = w; 4208 forks [forkcnt - 1] = w;
4209
4210 EV_FREQUENT_CHECK;
2527} 4211}
2528 4212
2529void 4213void
2530ev_fork_stop (EV_P_ ev_fork *w) 4214ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
2531{ 4215{
2532 clear_pending (EV_A_ (W)w); 4216 clear_pending (EV_A_ (W)w);
2533 if (expect_false (!ev_is_active (w))) 4217 if (expect_false (!ev_is_active (w)))
2534 return; 4218 return;
2535 4219
4220 EV_FREQUENT_CHECK;
4221
2536 { 4222 {
2537 int active = ((W)w)->active; 4223 int active = ev_active (w);
4224
2538 forks [active - 1] = forks [--forkcnt]; 4225 forks [active - 1] = forks [--forkcnt];
2539 ((W)forks [active - 1])->active = active; 4226 ev_active (forks [active - 1]) = active;
2540 } 4227 }
2541 4228
2542 ev_stop (EV_A_ (W)w); 4229 ev_stop (EV_A_ (W)w);
4230
4231 EV_FREQUENT_CHECK;
4232}
4233#endif
4234
4235#if EV_CLEANUP_ENABLE
4236void
4237ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4238{
4239 if (expect_false (ev_is_active (w)))
4240 return;
4241
4242 EV_FREQUENT_CHECK;
4243
4244 ev_start (EV_A_ (W)w, ++cleanupcnt);
4245 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4246 cleanups [cleanupcnt - 1] = w;
4247
4248 /* cleanup watchers should never keep a refcount on the loop */
4249 ev_unref (EV_A);
4250 EV_FREQUENT_CHECK;
4251}
4252
4253void
4254ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4255{
4256 clear_pending (EV_A_ (W)w);
4257 if (expect_false (!ev_is_active (w)))
4258 return;
4259
4260 EV_FREQUENT_CHECK;
4261 ev_ref (EV_A);
4262
4263 {
4264 int active = ev_active (w);
4265
4266 cleanups [active - 1] = cleanups [--cleanupcnt];
4267 ev_active (cleanups [active - 1]) = active;
4268 }
4269
4270 ev_stop (EV_A_ (W)w);
4271
4272 EV_FREQUENT_CHECK;
2543} 4273}
2544#endif 4274#endif
2545 4275
2546#if EV_ASYNC_ENABLE 4276#if EV_ASYNC_ENABLE
2547void 4277void
2548ev_async_start (EV_P_ ev_async *w) 4278ev_async_start (EV_P_ ev_async *w) EV_THROW
2549{ 4279{
2550 if (expect_false (ev_is_active (w))) 4280 if (expect_false (ev_is_active (w)))
2551 return; 4281 return;
2552 4282
4283 w->sent = 0;
4284
2553 evpipe_init (EV_A); 4285 evpipe_init (EV_A);
4286
4287 EV_FREQUENT_CHECK;
2554 4288
2555 ev_start (EV_A_ (W)w, ++asynccnt); 4289 ev_start (EV_A_ (W)w, ++asynccnt);
2556 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 4290 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2557 asyncs [asynccnt - 1] = w; 4291 asyncs [asynccnt - 1] = w;
4292
4293 EV_FREQUENT_CHECK;
2558} 4294}
2559 4295
2560void 4296void
2561ev_async_stop (EV_P_ ev_async *w) 4297ev_async_stop (EV_P_ ev_async *w) EV_THROW
2562{ 4298{
2563 clear_pending (EV_A_ (W)w); 4299 clear_pending (EV_A_ (W)w);
2564 if (expect_false (!ev_is_active (w))) 4300 if (expect_false (!ev_is_active (w)))
2565 return; 4301 return;
2566 4302
4303 EV_FREQUENT_CHECK;
4304
2567 { 4305 {
2568 int active = ((W)w)->active; 4306 int active = ev_active (w);
4307
2569 asyncs [active - 1] = asyncs [--asynccnt]; 4308 asyncs [active - 1] = asyncs [--asynccnt];
2570 ((W)asyncs [active - 1])->active = active; 4309 ev_active (asyncs [active - 1]) = active;
2571 } 4310 }
2572 4311
2573 ev_stop (EV_A_ (W)w); 4312 ev_stop (EV_A_ (W)w);
4313
4314 EV_FREQUENT_CHECK;
2574} 4315}
2575 4316
2576void 4317void
2577ev_async_send (EV_P_ ev_async *w) 4318ev_async_send (EV_P_ ev_async *w) EV_THROW
2578{ 4319{
2579 w->sent = 1; 4320 w->sent = 1;
2580 evpipe_write (EV_A_ &gotasync); 4321 evpipe_write (EV_A_ &async_pending);
2581} 4322}
2582#endif 4323#endif
2583 4324
2584/*****************************************************************************/ 4325/*****************************************************************************/
2585 4326
2595once_cb (EV_P_ struct ev_once *once, int revents) 4336once_cb (EV_P_ struct ev_once *once, int revents)
2596{ 4337{
2597 void (*cb)(int revents, void *arg) = once->cb; 4338 void (*cb)(int revents, void *arg) = once->cb;
2598 void *arg = once->arg; 4339 void *arg = once->arg;
2599 4340
2600 ev_io_stop (EV_A_ &once->io); 4341 ev_io_stop (EV_A_ &once->io);
2601 ev_timer_stop (EV_A_ &once->to); 4342 ev_timer_stop (EV_A_ &once->to);
2602 ev_free (once); 4343 ev_free (once);
2603 4344
2604 cb (revents, arg); 4345 cb (revents, arg);
2605} 4346}
2606 4347
2607static void 4348static void
2608once_cb_io (EV_P_ ev_io *w, int revents) 4349once_cb_io (EV_P_ ev_io *w, int revents)
2609{ 4350{
2610 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4351 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4352
4353 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2611} 4354}
2612 4355
2613static void 4356static void
2614once_cb_to (EV_P_ ev_timer *w, int revents) 4357once_cb_to (EV_P_ ev_timer *w, int revents)
2615{ 4358{
2616 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4359 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4360
4361 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2617} 4362}
2618 4363
2619void 4364void
2620ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4365ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
2621{ 4366{
2622 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4367 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2623 4368
2624 if (expect_false (!once)) 4369 if (expect_false (!once))
2625 { 4370 {
2626 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4371 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2627 return; 4372 return;
2628 } 4373 }
2629 4374
2630 once->cb = cb; 4375 once->cb = cb;
2631 once->arg = arg; 4376 once->arg = arg;
2643 ev_timer_set (&once->to, timeout, 0.); 4388 ev_timer_set (&once->to, timeout, 0.);
2644 ev_timer_start (EV_A_ &once->to); 4389 ev_timer_start (EV_A_ &once->to);
2645 } 4390 }
2646} 4391}
2647 4392
4393/*****************************************************************************/
4394
4395#if EV_WALK_ENABLE
4396void ecb_cold
4397ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4398{
4399 int i, j;
4400 ev_watcher_list *wl, *wn;
4401
4402 if (types & (EV_IO | EV_EMBED))
4403 for (i = 0; i < anfdmax; ++i)
4404 for (wl = anfds [i].head; wl; )
4405 {
4406 wn = wl->next;
4407
4408#if EV_EMBED_ENABLE
4409 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4410 {
4411 if (types & EV_EMBED)
4412 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4413 }
4414 else
4415#endif
4416#if EV_USE_INOTIFY
4417 if (ev_cb ((ev_io *)wl) == infy_cb)
4418 ;
4419 else
4420#endif
4421 if ((ev_io *)wl != &pipe_w)
4422 if (types & EV_IO)
4423 cb (EV_A_ EV_IO, wl);
4424
4425 wl = wn;
4426 }
4427
4428 if (types & (EV_TIMER | EV_STAT))
4429 for (i = timercnt + HEAP0; i-- > HEAP0; )
4430#if EV_STAT_ENABLE
4431 /*TODO: timer is not always active*/
4432 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4433 {
4434 if (types & EV_STAT)
4435 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4436 }
4437 else
4438#endif
4439 if (types & EV_TIMER)
4440 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4441
4442#if EV_PERIODIC_ENABLE
4443 if (types & EV_PERIODIC)
4444 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4445 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4446#endif
4447
4448#if EV_IDLE_ENABLE
4449 if (types & EV_IDLE)
4450 for (j = NUMPRI; j--; )
4451 for (i = idlecnt [j]; i--; )
4452 cb (EV_A_ EV_IDLE, idles [j][i]);
4453#endif
4454
4455#if EV_FORK_ENABLE
4456 if (types & EV_FORK)
4457 for (i = forkcnt; i--; )
4458 if (ev_cb (forks [i]) != embed_fork_cb)
4459 cb (EV_A_ EV_FORK, forks [i]);
4460#endif
4461
4462#if EV_ASYNC_ENABLE
4463 if (types & EV_ASYNC)
4464 for (i = asynccnt; i--; )
4465 cb (EV_A_ EV_ASYNC, asyncs [i]);
4466#endif
4467
4468#if EV_PREPARE_ENABLE
4469 if (types & EV_PREPARE)
4470 for (i = preparecnt; i--; )
4471# if EV_EMBED_ENABLE
4472 if (ev_cb (prepares [i]) != embed_prepare_cb)
4473# endif
4474 cb (EV_A_ EV_PREPARE, prepares [i]);
4475#endif
4476
4477#if EV_CHECK_ENABLE
4478 if (types & EV_CHECK)
4479 for (i = checkcnt; i--; )
4480 cb (EV_A_ EV_CHECK, checks [i]);
4481#endif
4482
4483#if EV_SIGNAL_ENABLE
4484 if (types & EV_SIGNAL)
4485 for (i = 0; i < EV_NSIG - 1; ++i)
4486 for (wl = signals [i].head; wl; )
4487 {
4488 wn = wl->next;
4489 cb (EV_A_ EV_SIGNAL, wl);
4490 wl = wn;
4491 }
4492#endif
4493
4494#if EV_CHILD_ENABLE
4495 if (types & EV_CHILD)
4496 for (i = (EV_PID_HASHSIZE); i--; )
4497 for (wl = childs [i]; wl; )
4498 {
4499 wn = wl->next;
4500 cb (EV_A_ EV_CHILD, wl);
4501 wl = wn;
4502 }
4503#endif
4504/* EV_STAT 0x00001000 /* stat data changed */
4505/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4506}
4507#endif
4508
2648#if EV_MULTIPLICITY 4509#if EV_MULTIPLICITY
2649 #include "ev_wrap.h" 4510 #include "ev_wrap.h"
2650#endif 4511#endif
2651 4512
2652#ifdef __cplusplus
2653}
2654#endif
2655

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines