ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.59 by root, Sun Nov 4 18:15:16 2007 UTC vs.
Revision 1.435 by root, Sat May 26 08:52:09 2012 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
39
40/* this big block deduces configuration from config.h */
31#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
32# include "config.h" 45# include "config.h"
33#endif 46# endif
34 47
35#include <math.h> 48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
68# if HAVE_CLOCK_GETTIME
69# ifndef EV_USE_MONOTONIC
70# define EV_USE_MONOTONIC 1
71# endif
72# ifndef EV_USE_REALTIME
73# define EV_USE_REALTIME 0
74# endif
75# else
76# ifndef EV_USE_MONOTONIC
77# define EV_USE_MONOTONIC 0
78# endif
79# ifndef EV_USE_REALTIME
80# define EV_USE_REALTIME 0
81# endif
82# endif
83
84# if HAVE_NANOSLEEP
85# ifndef EV_USE_NANOSLEEP
86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
100# endif
101
102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
108# define EV_USE_POLL 0
109# endif
110
111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112# ifndef EV_USE_EPOLL
113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
118# endif
119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121# ifndef EV_USE_KQUEUE
122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
127# endif
128
129# if HAVE_PORT_H && HAVE_PORT_CREATE
130# ifndef EV_USE_PORT
131# define EV_USE_PORT EV_FEATURE_BACKENDS
132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
136# endif
137
138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139# ifndef EV_USE_INOTIFY
140# define EV_USE_INOTIFY EV_FEATURE_OS
141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
145# endif
146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
36#include <stdlib.h> 167#include <stdlib.h>
37#include <unistd.h> 168#include <string.h>
38#include <fcntl.h> 169#include <fcntl.h>
39#include <signal.h>
40#include <stddef.h> 170#include <stddef.h>
41 171
42#include <stdio.h> 172#include <stdio.h>
43 173
44#include <assert.h> 174#include <assert.h>
45#include <errno.h> 175#include <errno.h>
46#include <sys/types.h> 176#include <sys/types.h>
177#include <time.h>
178#include <limits.h>
179
180#include <signal.h>
181
182#ifdef EV_H
183# include EV_H
184#else
185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
197#endif
198
47#ifndef WIN32 199#ifndef _WIN32
200# include <sys/time.h>
48# include <sys/wait.h> 201# include <sys/wait.h>
202# include <unistd.h>
203#else
204# include <io.h>
205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
207# include <windows.h>
208# ifndef EV_SELECT_IS_WINSOCKET
209# define EV_SELECT_IS_WINSOCKET 1
49#endif 210# endif
50#include <sys/time.h> 211# undef EV_AVOID_STDIO
51#include <time.h> 212#endif
52 213
53/**/ 214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
221
222/* this block tries to deduce configuration from header-defined symbols and defaults */
223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# error "unable to find value for NSIG, please report"
247/* to make it compile regardless, just remove the above line, */
248/* but consider reporting it, too! :) */
249# define EV_NSIG 65
250#endif
251
252#ifndef EV_USE_FLOOR
253# define EV_USE_FLOOR 0
254#endif
255
256#ifndef EV_USE_CLOCK_SYSCALL
257# if __linux && __GLIBC__ >= 2
258# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
259# else
260# define EV_USE_CLOCK_SYSCALL 0
261# endif
262#endif
54 263
55#ifndef EV_USE_MONOTONIC 264#ifndef EV_USE_MONOTONIC
265# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
266# define EV_USE_MONOTONIC EV_FEATURE_OS
267# else
56# define EV_USE_MONOTONIC 1 268# define EV_USE_MONOTONIC 0
269# endif
270#endif
271
272#ifndef EV_USE_REALTIME
273# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
274#endif
275
276#ifndef EV_USE_NANOSLEEP
277# if _POSIX_C_SOURCE >= 199309L
278# define EV_USE_NANOSLEEP EV_FEATURE_OS
279# else
280# define EV_USE_NANOSLEEP 0
281# endif
57#endif 282#endif
58 283
59#ifndef EV_USE_SELECT 284#ifndef EV_USE_SELECT
60# define EV_USE_SELECT 1 285# define EV_USE_SELECT EV_FEATURE_BACKENDS
61#endif 286#endif
62 287
63#ifndef EV_USE_POLL 288#ifndef EV_USE_POLL
64# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 289# ifdef _WIN32
290# define EV_USE_POLL 0
291# else
292# define EV_USE_POLL EV_FEATURE_BACKENDS
293# endif
65#endif 294#endif
66 295
67#ifndef EV_USE_EPOLL 296#ifndef EV_USE_EPOLL
297# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
298# define EV_USE_EPOLL EV_FEATURE_BACKENDS
299# else
68# define EV_USE_EPOLL 0 300# define EV_USE_EPOLL 0
301# endif
69#endif 302#endif
70 303
71#ifndef EV_USE_KQUEUE 304#ifndef EV_USE_KQUEUE
72# define EV_USE_KQUEUE 0 305# define EV_USE_KQUEUE 0
73#endif 306#endif
74 307
75#ifndef EV_USE_REALTIME 308#ifndef EV_USE_PORT
76# define EV_USE_REALTIME 1 309# define EV_USE_PORT 0
310#endif
311
312#ifndef EV_USE_INOTIFY
313# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
314# define EV_USE_INOTIFY EV_FEATURE_OS
315# else
316# define EV_USE_INOTIFY 0
77#endif 317# endif
318#endif
78 319
79/**/ 320#ifndef EV_PID_HASHSIZE
321# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
322#endif
323
324#ifndef EV_INOTIFY_HASHSIZE
325# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
326#endif
327
328#ifndef EV_USE_EVENTFD
329# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
330# define EV_USE_EVENTFD EV_FEATURE_OS
331# else
332# define EV_USE_EVENTFD 0
333# endif
334#endif
335
336#ifndef EV_USE_SIGNALFD
337# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
338# define EV_USE_SIGNALFD EV_FEATURE_OS
339# else
340# define EV_USE_SIGNALFD 0
341# endif
342#endif
343
344#if 0 /* debugging */
345# define EV_VERIFY 3
346# define EV_USE_4HEAP 1
347# define EV_HEAP_CACHE_AT 1
348#endif
349
350#ifndef EV_VERIFY
351# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
352#endif
353
354#ifndef EV_USE_4HEAP
355# define EV_USE_4HEAP EV_FEATURE_DATA
356#endif
357
358#ifndef EV_HEAP_CACHE_AT
359# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
360#endif
361
362/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
363/* which makes programs even slower. might work on other unices, too. */
364#if EV_USE_CLOCK_SYSCALL
365# include <sys/syscall.h>
366# ifdef SYS_clock_gettime
367# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
368# undef EV_USE_MONOTONIC
369# define EV_USE_MONOTONIC 1
370# else
371# undef EV_USE_CLOCK_SYSCALL
372# define EV_USE_CLOCK_SYSCALL 0
373# endif
374#endif
375
376/* this block fixes any misconfiguration where we know we run into trouble otherwise */
377
378#ifdef _AIX
379/* AIX has a completely broken poll.h header */
380# undef EV_USE_POLL
381# define EV_USE_POLL 0
382#endif
80 383
81#ifndef CLOCK_MONOTONIC 384#ifndef CLOCK_MONOTONIC
82# undef EV_USE_MONOTONIC 385# undef EV_USE_MONOTONIC
83# define EV_USE_MONOTONIC 0 386# define EV_USE_MONOTONIC 0
84#endif 387#endif
86#ifndef CLOCK_REALTIME 389#ifndef CLOCK_REALTIME
87# undef EV_USE_REALTIME 390# undef EV_USE_REALTIME
88# define EV_USE_REALTIME 0 391# define EV_USE_REALTIME 0
89#endif 392#endif
90 393
394#if !EV_STAT_ENABLE
395# undef EV_USE_INOTIFY
396# define EV_USE_INOTIFY 0
397#endif
398
399#if !EV_USE_NANOSLEEP
400/* hp-ux has it in sys/time.h, which we unconditionally include above */
401# if !defined _WIN32 && !defined __hpux
402# include <sys/select.h>
403# endif
404#endif
405
406#if EV_USE_INOTIFY
407# include <sys/statfs.h>
408# include <sys/inotify.h>
409/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
410# ifndef IN_DONT_FOLLOW
411# undef EV_USE_INOTIFY
412# define EV_USE_INOTIFY 0
413# endif
414#endif
415
416#if EV_USE_EVENTFD
417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
418# include <stdint.h>
419# ifndef EFD_NONBLOCK
420# define EFD_NONBLOCK O_NONBLOCK
421# endif
422# ifndef EFD_CLOEXEC
423# ifdef O_CLOEXEC
424# define EFD_CLOEXEC O_CLOEXEC
425# else
426# define EFD_CLOEXEC 02000000
427# endif
428# endif
429EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
430#endif
431
432#if EV_USE_SIGNALFD
433/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
434# include <stdint.h>
435# ifndef SFD_NONBLOCK
436# define SFD_NONBLOCK O_NONBLOCK
437# endif
438# ifndef SFD_CLOEXEC
439# ifdef O_CLOEXEC
440# define SFD_CLOEXEC O_CLOEXEC
441# else
442# define SFD_CLOEXEC 02000000
443# endif
444# endif
445EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
446
447struct signalfd_siginfo
448{
449 uint32_t ssi_signo;
450 char pad[128 - sizeof (uint32_t)];
451};
452#endif
453
91/**/ 454/**/
92 455
456#if EV_VERIFY >= 3
457# define EV_FREQUENT_CHECK ev_verify (EV_A)
458#else
459# define EV_FREQUENT_CHECK do { } while (0)
460#endif
461
462/*
463 * This is used to work around floating point rounding problems.
464 * This value is good at least till the year 4000.
465 */
466#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
467/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
468
93#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 469#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
94#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 470#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
95#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
96/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
97 471
98#include "ev.h" 472#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
473#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
99 474
475/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
476/* ECB.H BEGIN */
477/*
478 * libecb - http://software.schmorp.de/pkg/libecb
479 *
480 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
481 * Copyright (©) 2011 Emanuele Giaquinta
482 * All rights reserved.
483 *
484 * Redistribution and use in source and binary forms, with or without modifica-
485 * tion, are permitted provided that the following conditions are met:
486 *
487 * 1. Redistributions of source code must retain the above copyright notice,
488 * this list of conditions and the following disclaimer.
489 *
490 * 2. Redistributions in binary form must reproduce the above copyright
491 * notice, this list of conditions and the following disclaimer in the
492 * documentation and/or other materials provided with the distribution.
493 *
494 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
495 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
496 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
497 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
498 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
499 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
500 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
501 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
502 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
503 * OF THE POSSIBILITY OF SUCH DAMAGE.
504 */
505
506#ifndef ECB_H
507#define ECB_H
508
509#ifdef _WIN32
510 typedef signed char int8_t;
511 typedef unsigned char uint8_t;
512 typedef signed short int16_t;
513 typedef unsigned short uint16_t;
514 typedef signed int int32_t;
515 typedef unsigned int uint32_t;
100#if __GNUC__ >= 3 516 #if __GNUC__
101# define expect(expr,value) __builtin_expect ((expr),(value)) 517 typedef signed long long int64_t;
102# define inline inline 518 typedef unsigned long long uint64_t;
519 #else /* _MSC_VER || __BORLANDC__ */
520 typedef signed __int64 int64_t;
521 typedef unsigned __int64 uint64_t;
522 #endif
103#else 523#else
104# define expect(expr,value) (expr) 524 #include <inttypes.h>
105# define inline static 525#endif
526
527/* many compilers define _GNUC_ to some versions but then only implement
528 * what their idiot authors think are the "more important" extensions,
529 * causing enormous grief in return for some better fake benchmark numbers.
530 * or so.
531 * we try to detect these and simply assume they are not gcc - if they have
532 * an issue with that they should have done it right in the first place.
533 */
534#ifndef ECB_GCC_VERSION
535 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
536 #define ECB_GCC_VERSION(major,minor) 0
537 #else
538 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
106#endif 539 #endif
107 540#endif
108#define expect_false(expr) expect ((expr) != 0, 0)
109#define expect_true(expr) expect ((expr) != 0, 1)
110
111#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
112#define ABSPRI(w) ((w)->priority - EV_MINPRI)
113
114typedef struct ev_watcher *W;
115typedef struct ev_watcher_list *WL;
116typedef struct ev_watcher_time *WT;
117
118static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
119 541
120/*****************************************************************************/ 542/*****************************************************************************/
121 543
544/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
545/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
546
547#if ECB_NO_THREADS
548# define ECB_NO_SMP 1
549#endif
550
551#if ECB_NO_THREADS || ECB_NO_SMP
552 #define ECB_MEMORY_FENCE do { } while (0)
553#endif
554
555#ifndef ECB_MEMORY_FENCE
556 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
557 #if __i386 || __i386__
558 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
559 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */
560 #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */
561 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
562 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
563 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
564 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */
565 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
566 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
567 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
568 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
569 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
570 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
571 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
572 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
573 #elif __sparc || __sparc__
574 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad | " : : : "memory")
575 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
576 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
577 #elif defined __s390__ || defined __s390x__
578 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
579 #elif defined __mips__
580 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
581 #elif defined __alpha__
582 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
583 #endif
584 #endif
585#endif
586
587#ifndef ECB_MEMORY_FENCE
588 #if ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
589 #define ECB_MEMORY_FENCE __sync_synchronize ()
590 /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */
591 /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); }) */
592 #elif _MSC_VER >= 1400 /* VC++ 2005 */
593 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
594 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
595 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
596 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
597 #elif defined _WIN32
598 #include <WinNT.h>
599 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
600 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
601 #include <mbarrier.h>
602 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
603 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
604 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
605 #elif __xlC__
606 #define ECB_MEMORY_FENCE __sync ()
607 #endif
608#endif
609
610#ifndef ECB_MEMORY_FENCE
611 #if !ECB_AVOID_PTHREADS
612 /*
613 * if you get undefined symbol references to pthread_mutex_lock,
614 * or failure to find pthread.h, then you should implement
615 * the ECB_MEMORY_FENCE operations for your cpu/compiler
616 * OR provide pthread.h and link against the posix thread library
617 * of your system.
618 */
619 #include <pthread.h>
620 #define ECB_NEEDS_PTHREADS 1
621 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
622
623 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
624 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
625 #endif
626#endif
627
628#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
629 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
630#endif
631
632#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
633 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
634#endif
635
636/*****************************************************************************/
637
638#define ECB_C99 (__STDC_VERSION__ >= 199901L)
639
640#if __cplusplus
641 #define ecb_inline static inline
642#elif ECB_GCC_VERSION(2,5)
643 #define ecb_inline static __inline__
644#elif ECB_C99
645 #define ecb_inline static inline
646#else
647 #define ecb_inline static
648#endif
649
650#if ECB_GCC_VERSION(3,3)
651 #define ecb_restrict __restrict__
652#elif ECB_C99
653 #define ecb_restrict restrict
654#else
655 #define ecb_restrict
656#endif
657
658typedef int ecb_bool;
659
660#define ECB_CONCAT_(a, b) a ## b
661#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
662#define ECB_STRINGIFY_(a) # a
663#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
664
665#define ecb_function_ ecb_inline
666
667#if ECB_GCC_VERSION(3,1)
668 #define ecb_attribute(attrlist) __attribute__(attrlist)
669 #define ecb_is_constant(expr) __builtin_constant_p (expr)
670 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
671 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
672#else
673 #define ecb_attribute(attrlist)
674 #define ecb_is_constant(expr) 0
675 #define ecb_expect(expr,value) (expr)
676 #define ecb_prefetch(addr,rw,locality)
677#endif
678
679/* no emulation for ecb_decltype */
680#if ECB_GCC_VERSION(4,5)
681 #define ecb_decltype(x) __decltype(x)
682#elif ECB_GCC_VERSION(3,0)
683 #define ecb_decltype(x) __typeof(x)
684#endif
685
686#define ecb_noinline ecb_attribute ((__noinline__))
687#define ecb_noreturn ecb_attribute ((__noreturn__))
688#define ecb_unused ecb_attribute ((__unused__))
689#define ecb_const ecb_attribute ((__const__))
690#define ecb_pure ecb_attribute ((__pure__))
691
692#if ECB_GCC_VERSION(4,3)
693 #define ecb_artificial ecb_attribute ((__artificial__))
694 #define ecb_hot ecb_attribute ((__hot__))
695 #define ecb_cold ecb_attribute ((__cold__))
696#else
697 #define ecb_artificial
698 #define ecb_hot
699 #define ecb_cold
700#endif
701
702/* put around conditional expressions if you are very sure that the */
703/* expression is mostly true or mostly false. note that these return */
704/* booleans, not the expression. */
705#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
706#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
707/* for compatibility to the rest of the world */
708#define ecb_likely(expr) ecb_expect_true (expr)
709#define ecb_unlikely(expr) ecb_expect_false (expr)
710
711/* count trailing zero bits and count # of one bits */
712#if ECB_GCC_VERSION(3,4)
713 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
714 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
715 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
716 #define ecb_ctz32(x) __builtin_ctz (x)
717 #define ecb_ctz64(x) __builtin_ctzll (x)
718 #define ecb_popcount32(x) __builtin_popcount (x)
719 /* no popcountll */
720#else
721 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
722 ecb_function_ int
723 ecb_ctz32 (uint32_t x)
724 {
725 int r = 0;
726
727 x &= ~x + 1; /* this isolates the lowest bit */
728
729#if ECB_branchless_on_i386
730 r += !!(x & 0xaaaaaaaa) << 0;
731 r += !!(x & 0xcccccccc) << 1;
732 r += !!(x & 0xf0f0f0f0) << 2;
733 r += !!(x & 0xff00ff00) << 3;
734 r += !!(x & 0xffff0000) << 4;
735#else
736 if (x & 0xaaaaaaaa) r += 1;
737 if (x & 0xcccccccc) r += 2;
738 if (x & 0xf0f0f0f0) r += 4;
739 if (x & 0xff00ff00) r += 8;
740 if (x & 0xffff0000) r += 16;
741#endif
742
743 return r;
744 }
745
746 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
747 ecb_function_ int
748 ecb_ctz64 (uint64_t x)
749 {
750 int shift = x & 0xffffffffU ? 0 : 32;
751 return ecb_ctz32 (x >> shift) + shift;
752 }
753
754 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
755 ecb_function_ int
756 ecb_popcount32 (uint32_t x)
757 {
758 x -= (x >> 1) & 0x55555555;
759 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
760 x = ((x >> 4) + x) & 0x0f0f0f0f;
761 x *= 0x01010101;
762
763 return x >> 24;
764 }
765
766 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
767 ecb_function_ int ecb_ld32 (uint32_t x)
768 {
769 int r = 0;
770
771 if (x >> 16) { x >>= 16; r += 16; }
772 if (x >> 8) { x >>= 8; r += 8; }
773 if (x >> 4) { x >>= 4; r += 4; }
774 if (x >> 2) { x >>= 2; r += 2; }
775 if (x >> 1) { r += 1; }
776
777 return r;
778 }
779
780 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
781 ecb_function_ int ecb_ld64 (uint64_t x)
782 {
783 int r = 0;
784
785 if (x >> 32) { x >>= 32; r += 32; }
786
787 return r + ecb_ld32 (x);
788 }
789#endif
790
791ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
792ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
793{
794 return ( (x * 0x0802U & 0x22110U)
795 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
796}
797
798ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
799ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
800{
801 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
802 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
803 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
804 x = ( x >> 8 ) | ( x << 8);
805
806 return x;
807}
808
809ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
810ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
811{
812 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
813 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
814 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
815 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
816 x = ( x >> 16 ) | ( x << 16);
817
818 return x;
819}
820
821/* popcount64 is only available on 64 bit cpus as gcc builtin */
822/* so for this version we are lazy */
823ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
824ecb_function_ int
825ecb_popcount64 (uint64_t x)
826{
827 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
828}
829
830ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
831ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
832ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
833ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
834ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
835ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
836ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
837ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
838
839ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
840ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
841ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
842ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
843ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
844ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
845ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
846ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
847
848#if ECB_GCC_VERSION(4,3)
849 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
850 #define ecb_bswap32(x) __builtin_bswap32 (x)
851 #define ecb_bswap64(x) __builtin_bswap64 (x)
852#else
853 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
854 ecb_function_ uint16_t
855 ecb_bswap16 (uint16_t x)
856 {
857 return ecb_rotl16 (x, 8);
858 }
859
860 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
861 ecb_function_ uint32_t
862 ecb_bswap32 (uint32_t x)
863 {
864 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
865 }
866
867 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
868 ecb_function_ uint64_t
869 ecb_bswap64 (uint64_t x)
870 {
871 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
872 }
873#endif
874
875#if ECB_GCC_VERSION(4,5)
876 #define ecb_unreachable() __builtin_unreachable ()
877#else
878 /* this seems to work fine, but gcc always emits a warning for it :/ */
879 ecb_inline void ecb_unreachable (void) ecb_noreturn;
880 ecb_inline void ecb_unreachable (void) { }
881#endif
882
883/* try to tell the compiler that some condition is definitely true */
884#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
885
886ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
887ecb_inline unsigned char
888ecb_byteorder_helper (void)
889{
890 const uint32_t u = 0x11223344;
891 return *(unsigned char *)&u;
892}
893
894ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
895ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
896ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
897ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
898
899#if ECB_GCC_VERSION(3,0) || ECB_C99
900 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
901#else
902 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
903#endif
904
905#if __cplusplus
906 template<typename T>
907 static inline T ecb_div_rd (T val, T div)
908 {
909 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
910 }
911 template<typename T>
912 static inline T ecb_div_ru (T val, T div)
913 {
914 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
915 }
916#else
917 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
918 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
919#endif
920
921#if ecb_cplusplus_does_not_suck
922 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
923 template<typename T, int N>
924 static inline int ecb_array_length (const T (&arr)[N])
925 {
926 return N;
927 }
928#else
929 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
930#endif
931
932#endif
933
934/* ECB.H END */
935
936#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
937/* if your architecture doesn't need memory fences, e.g. because it is
938 * single-cpu/core, or if you use libev in a project that doesn't use libev
939 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
940 * libev, in which cases the memory fences become nops.
941 * alternatively, you can remove this #error and link against libpthread,
942 * which will then provide the memory fences.
943 */
944# error "memory fences not defined for your architecture, please report"
945#endif
946
947#ifndef ECB_MEMORY_FENCE
948# define ECB_MEMORY_FENCE do { } while (0)
949# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
950# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
951#endif
952
953#define expect_false(cond) ecb_expect_false (cond)
954#define expect_true(cond) ecb_expect_true (cond)
955#define noinline ecb_noinline
956
957#define inline_size ecb_inline
958
959#if EV_FEATURE_CODE
960# define inline_speed ecb_inline
961#else
962# define inline_speed static noinline
963#endif
964
965#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
966
967#if EV_MINPRI == EV_MAXPRI
968# define ABSPRI(w) (((W)w), 0)
969#else
970# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
971#endif
972
973#define EMPTY /* required for microsofts broken pseudo-c compiler */
974#define EMPTY2(a,b) /* used to suppress some warnings */
975
976typedef ev_watcher *W;
977typedef ev_watcher_list *WL;
978typedef ev_watcher_time *WT;
979
980#define ev_active(w) ((W)(w))->active
981#define ev_at(w) ((WT)(w))->at
982
983#if EV_USE_REALTIME
984/* sig_atomic_t is used to avoid per-thread variables or locking but still */
985/* giving it a reasonably high chance of working on typical architectures */
986static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
987#endif
988
989#if EV_USE_MONOTONIC
990static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
991#endif
992
993#ifndef EV_FD_TO_WIN32_HANDLE
994# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
995#endif
996#ifndef EV_WIN32_HANDLE_TO_FD
997# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
998#endif
999#ifndef EV_WIN32_CLOSE_FD
1000# define EV_WIN32_CLOSE_FD(fd) close (fd)
1001#endif
1002
1003#ifdef _WIN32
1004# include "ev_win32.c"
1005#endif
1006
1007/*****************************************************************************/
1008
1009/* define a suitable floor function (only used by periodics atm) */
1010
1011#if EV_USE_FLOOR
1012# include <math.h>
1013# define ev_floor(v) floor (v)
1014#else
1015
1016#include <float.h>
1017
1018/* a floor() replacement function, should be independent of ev_tstamp type */
1019static ev_tstamp noinline
1020ev_floor (ev_tstamp v)
1021{
1022 /* the choice of shift factor is not terribly important */
1023#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1024 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1025#else
1026 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1027#endif
1028
1029 /* argument too large for an unsigned long? */
1030 if (expect_false (v >= shift))
1031 {
1032 ev_tstamp f;
1033
1034 if (v == v - 1.)
1035 return v; /* very large number */
1036
1037 f = shift * ev_floor (v * (1. / shift));
1038 return f + ev_floor (v - f);
1039 }
1040
1041 /* special treatment for negative args? */
1042 if (expect_false (v < 0.))
1043 {
1044 ev_tstamp f = -ev_floor (-v);
1045
1046 return f - (f == v ? 0 : 1);
1047 }
1048
1049 /* fits into an unsigned long */
1050 return (unsigned long)v;
1051}
1052
1053#endif
1054
1055/*****************************************************************************/
1056
1057#ifdef __linux
1058# include <sys/utsname.h>
1059#endif
1060
1061static unsigned int noinline ecb_cold
1062ev_linux_version (void)
1063{
1064#ifdef __linux
1065 unsigned int v = 0;
1066 struct utsname buf;
1067 int i;
1068 char *p = buf.release;
1069
1070 if (uname (&buf))
1071 return 0;
1072
1073 for (i = 3+1; --i; )
1074 {
1075 unsigned int c = 0;
1076
1077 for (;;)
1078 {
1079 if (*p >= '0' && *p <= '9')
1080 c = c * 10 + *p++ - '0';
1081 else
1082 {
1083 p += *p == '.';
1084 break;
1085 }
1086 }
1087
1088 v = (v << 8) | c;
1089 }
1090
1091 return v;
1092#else
1093 return 0;
1094#endif
1095}
1096
1097/*****************************************************************************/
1098
1099#if EV_AVOID_STDIO
1100static void noinline ecb_cold
1101ev_printerr (const char *msg)
1102{
1103 write (STDERR_FILENO, msg, strlen (msg));
1104}
1105#endif
1106
1107static void (*syserr_cb)(const char *msg) EV_THROW;
1108
1109void ecb_cold
1110ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
1111{
1112 syserr_cb = cb;
1113}
1114
1115static void noinline ecb_cold
1116ev_syserr (const char *msg)
1117{
1118 if (!msg)
1119 msg = "(libev) system error";
1120
1121 if (syserr_cb)
1122 syserr_cb (msg);
1123 else
1124 {
1125#if EV_AVOID_STDIO
1126 ev_printerr (msg);
1127 ev_printerr (": ");
1128 ev_printerr (strerror (errno));
1129 ev_printerr ("\n");
1130#else
1131 perror (msg);
1132#endif
1133 abort ();
1134 }
1135}
1136
1137static void *
1138ev_realloc_emul (void *ptr, long size) EV_THROW
1139{
1140#if __GLIBC__
1141 return realloc (ptr, size);
1142#else
1143 /* some systems, notably openbsd and darwin, fail to properly
1144 * implement realloc (x, 0) (as required by both ansi c-89 and
1145 * the single unix specification, so work around them here.
1146 */
1147
1148 if (size)
1149 return realloc (ptr, size);
1150
1151 free (ptr);
1152 return 0;
1153#endif
1154}
1155
1156static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
1157
1158void ecb_cold
1159ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
1160{
1161 alloc = cb;
1162}
1163
1164inline_speed void *
1165ev_realloc (void *ptr, long size)
1166{
1167 ptr = alloc (ptr, size);
1168
1169 if (!ptr && size)
1170 {
1171#if EV_AVOID_STDIO
1172 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1173#else
1174 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1175#endif
1176 abort ();
1177 }
1178
1179 return ptr;
1180}
1181
1182#define ev_malloc(size) ev_realloc (0, (size))
1183#define ev_free(ptr) ev_realloc ((ptr), 0)
1184
1185/*****************************************************************************/
1186
1187/* set in reify when reification needed */
1188#define EV_ANFD_REIFY 1
1189
1190/* file descriptor info structure */
122typedef struct 1191typedef struct
123{ 1192{
124 struct ev_watcher_list *head; 1193 WL head;
125 unsigned char events; 1194 unsigned char events; /* the events watched for */
1195 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1196 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
126 unsigned char reify; 1197 unsigned char unused;
1198#if EV_USE_EPOLL
1199 unsigned int egen; /* generation counter to counter epoll bugs */
1200#endif
1201#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1202 SOCKET handle;
1203#endif
1204#if EV_USE_IOCP
1205 OVERLAPPED or, ow;
1206#endif
127} ANFD; 1207} ANFD;
128 1208
1209/* stores the pending event set for a given watcher */
129typedef struct 1210typedef struct
130{ 1211{
131 W w; 1212 W w;
132 int events; 1213 int events; /* the pending event set for the given watcher */
133} ANPENDING; 1214} ANPENDING;
134 1215
1216#if EV_USE_INOTIFY
1217/* hash table entry per inotify-id */
1218typedef struct
1219{
1220 WL head;
1221} ANFS;
1222#endif
1223
1224/* Heap Entry */
1225#if EV_HEAP_CACHE_AT
1226 /* a heap element */
1227 typedef struct {
1228 ev_tstamp at;
1229 WT w;
1230 } ANHE;
1231
1232 #define ANHE_w(he) (he).w /* access watcher, read-write */
1233 #define ANHE_at(he) (he).at /* access cached at, read-only */
1234 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1235#else
1236 /* a heap element */
1237 typedef WT ANHE;
1238
1239 #define ANHE_w(he) (he)
1240 #define ANHE_at(he) (he)->at
1241 #define ANHE_at_cache(he)
1242#endif
1243
135#if EV_MULTIPLICITY 1244#if EV_MULTIPLICITY
136 1245
137struct ev_loop 1246 struct ev_loop
138{ 1247 {
1248 ev_tstamp ev_rt_now;
1249 #define ev_rt_now ((loop)->ev_rt_now)
139# define VAR(name,decl) decl; 1250 #define VAR(name,decl) decl;
140# include "ev_vars.h" 1251 #include "ev_vars.h"
141};
142# undef VAR 1252 #undef VAR
1253 };
143# include "ev_wrap.h" 1254 #include "ev_wrap.h"
1255
1256 static struct ev_loop default_loop_struct;
1257 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
144 1258
145#else 1259#else
146 1260
1261 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
147# define VAR(name,decl) static decl; 1262 #define VAR(name,decl) static decl;
148# include "ev_vars.h" 1263 #include "ev_vars.h"
149# undef VAR 1264 #undef VAR
150 1265
1266 static int ev_default_loop_ptr;
1267
151#endif 1268#endif
1269
1270#if EV_FEATURE_API
1271# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1272# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1273# define EV_INVOKE_PENDING invoke_cb (EV_A)
1274#else
1275# define EV_RELEASE_CB (void)0
1276# define EV_ACQUIRE_CB (void)0
1277# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1278#endif
1279
1280#define EVBREAK_RECURSE 0x80
152 1281
153/*****************************************************************************/ 1282/*****************************************************************************/
154 1283
155inline ev_tstamp 1284#ifndef EV_HAVE_EV_TIME
1285ev_tstamp
156ev_time (void) 1286ev_time (void) EV_THROW
157{ 1287{
158#if EV_USE_REALTIME 1288#if EV_USE_REALTIME
1289 if (expect_true (have_realtime))
1290 {
159 struct timespec ts; 1291 struct timespec ts;
160 clock_gettime (CLOCK_REALTIME, &ts); 1292 clock_gettime (CLOCK_REALTIME, &ts);
161 return ts.tv_sec + ts.tv_nsec * 1e-9; 1293 return ts.tv_sec + ts.tv_nsec * 1e-9;
162#else 1294 }
1295#endif
1296
163 struct timeval tv; 1297 struct timeval tv;
164 gettimeofday (&tv, 0); 1298 gettimeofday (&tv, 0);
165 return tv.tv_sec + tv.tv_usec * 1e-6; 1299 return tv.tv_sec + tv.tv_usec * 1e-6;
166#endif
167} 1300}
1301#endif
168 1302
169inline ev_tstamp 1303inline_size ev_tstamp
170get_clock (void) 1304get_clock (void)
171{ 1305{
172#if EV_USE_MONOTONIC 1306#if EV_USE_MONOTONIC
173 if (expect_true (have_monotonic)) 1307 if (expect_true (have_monotonic))
174 { 1308 {
179#endif 1313#endif
180 1314
181 return ev_time (); 1315 return ev_time ();
182} 1316}
183 1317
1318#if EV_MULTIPLICITY
184ev_tstamp 1319ev_tstamp
185ev_now (EV_P) 1320ev_now (EV_P) EV_THROW
186{ 1321{
187 return rt_now; 1322 return ev_rt_now;
188} 1323}
1324#endif
189 1325
190#define array_roundsize(base,n) ((n) | 4 & ~3) 1326void
191 1327ev_sleep (ev_tstamp delay) EV_THROW
192#define array_needsize(base,cur,cnt,init) \ 1328{
193 if (expect_false ((cnt) > cur)) \ 1329 if (delay > 0.)
194 { \
195 int newcnt = cur; \
196 do \
197 { \
198 newcnt = array_roundsize (base, newcnt << 1); \
199 } \
200 while ((cnt) > newcnt); \
201 \
202 base = realloc (base, sizeof (*base) * (newcnt)); \
203 init (base + cur, newcnt - cur); \
204 cur = newcnt; \
205 } 1330 {
1331#if EV_USE_NANOSLEEP
1332 struct timespec ts;
1333
1334 EV_TS_SET (ts, delay);
1335 nanosleep (&ts, 0);
1336#elif defined _WIN32
1337 Sleep ((unsigned long)(delay * 1e3));
1338#else
1339 struct timeval tv;
1340
1341 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1342 /* something not guaranteed by newer posix versions, but guaranteed */
1343 /* by older ones */
1344 EV_TV_SET (tv, delay);
1345 select (0, 0, 0, 0, &tv);
1346#endif
1347 }
1348}
206 1349
207/*****************************************************************************/ 1350/*****************************************************************************/
208 1351
209static void 1352#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
210anfds_init (ANFD *base, int count)
211{
212 while (count--)
213 {
214 base->head = 0;
215 base->events = EV_NONE;
216 base->reify = 0;
217 1353
218 ++base; 1354/* find a suitable new size for the given array, */
1355/* hopefully by rounding to a nice-to-malloc size */
1356inline_size int
1357array_nextsize (int elem, int cur, int cnt)
1358{
1359 int ncur = cur + 1;
1360
1361 do
1362 ncur <<= 1;
1363 while (cnt > ncur);
1364
1365 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1366 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
219 } 1367 {
220} 1368 ncur *= elem;
221 1369 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
222static void 1370 ncur = ncur - sizeof (void *) * 4;
223event (EV_P_ W w, int events) 1371 ncur /= elem;
224{
225 if (w->pending)
226 { 1372 }
1373
1374 return ncur;
1375}
1376
1377static void * noinline ecb_cold
1378array_realloc (int elem, void *base, int *cur, int cnt)
1379{
1380 *cur = array_nextsize (elem, *cur, cnt);
1381 return ev_realloc (base, elem * *cur);
1382}
1383
1384#define array_init_zero(base,count) \
1385 memset ((void *)(base), 0, sizeof (*(base)) * (count))
1386
1387#define array_needsize(type,base,cur,cnt,init) \
1388 if (expect_false ((cnt) > (cur))) \
1389 { \
1390 int ecb_unused ocur_ = (cur); \
1391 (base) = (type *)array_realloc \
1392 (sizeof (type), (base), &(cur), (cnt)); \
1393 init ((base) + (ocur_), (cur) - ocur_); \
1394 }
1395
1396#if 0
1397#define array_slim(type,stem) \
1398 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
1399 { \
1400 stem ## max = array_roundsize (stem ## cnt >> 1); \
1401 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
1402 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
1403 }
1404#endif
1405
1406#define array_free(stem, idx) \
1407 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
1408
1409/*****************************************************************************/
1410
1411/* dummy callback for pending events */
1412static void noinline
1413pendingcb (EV_P_ ev_prepare *w, int revents)
1414{
1415}
1416
1417void noinline
1418ev_feed_event (EV_P_ void *w, int revents) EV_THROW
1419{
1420 W w_ = (W)w;
1421 int pri = ABSPRI (w_);
1422
1423 if (expect_false (w_->pending))
1424 pendings [pri][w_->pending - 1].events |= revents;
1425 else
1426 {
1427 w_->pending = ++pendingcnt [pri];
1428 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1429 pendings [pri][w_->pending - 1].w = w_;
227 pendings [ABSPRI (w)][w->pending - 1].events |= events; 1430 pendings [pri][w_->pending - 1].events = revents;
228 return;
229 } 1431 }
230 1432
231 w->pending = ++pendingcnt [ABSPRI (w)]; 1433 pendingpri = NUMPRI - 1;
232 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
233 pendings [ABSPRI (w)][w->pending - 1].w = w;
234 pendings [ABSPRI (w)][w->pending - 1].events = events;
235} 1434}
236 1435
237static void 1436inline_speed void
1437feed_reverse (EV_P_ W w)
1438{
1439 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1440 rfeeds [rfeedcnt++] = w;
1441}
1442
1443inline_size void
1444feed_reverse_done (EV_P_ int revents)
1445{
1446 do
1447 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1448 while (rfeedcnt);
1449}
1450
1451inline_speed void
238queue_events (EV_P_ W *events, int eventcnt, int type) 1452queue_events (EV_P_ W *events, int eventcnt, int type)
239{ 1453{
240 int i; 1454 int i;
241 1455
242 for (i = 0; i < eventcnt; ++i) 1456 for (i = 0; i < eventcnt; ++i)
243 event (EV_A_ events [i], type); 1457 ev_feed_event (EV_A_ events [i], type);
244} 1458}
245 1459
246static void 1460/*****************************************************************************/
1461
1462inline_speed void
247fd_event (EV_P_ int fd, int events) 1463fd_event_nocheck (EV_P_ int fd, int revents)
248{ 1464{
249 ANFD *anfd = anfds + fd; 1465 ANFD *anfd = anfds + fd;
250 struct ev_io *w; 1466 ev_io *w;
251 1467
252 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 1468 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
253 { 1469 {
254 int ev = w->events & events; 1470 int ev = w->events & revents;
255 1471
256 if (ev) 1472 if (ev)
257 event (EV_A_ (W)w, ev); 1473 ev_feed_event (EV_A_ (W)w, ev);
258 } 1474 }
259} 1475}
260 1476
261/*****************************************************************************/ 1477/* do not submit kernel events for fds that have reify set */
1478/* because that means they changed while we were polling for new events */
1479inline_speed void
1480fd_event (EV_P_ int fd, int revents)
1481{
1482 ANFD *anfd = anfds + fd;
262 1483
263static void 1484 if (expect_true (!anfd->reify))
1485 fd_event_nocheck (EV_A_ fd, revents);
1486}
1487
1488void
1489ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
1490{
1491 if (fd >= 0 && fd < anfdmax)
1492 fd_event_nocheck (EV_A_ fd, revents);
1493}
1494
1495/* make sure the external fd watch events are in-sync */
1496/* with the kernel/libev internal state */
1497inline_size void
264fd_reify (EV_P) 1498fd_reify (EV_P)
265{ 1499{
266 int i; 1500 int i;
267 1501
1502#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
268 for (i = 0; i < fdchangecnt; ++i) 1503 for (i = 0; i < fdchangecnt; ++i)
269 { 1504 {
270 int fd = fdchanges [i]; 1505 int fd = fdchanges [i];
271 ANFD *anfd = anfds + fd; 1506 ANFD *anfd = anfds + fd;
272 struct ev_io *w;
273 1507
274 int events = 0; 1508 if (anfd->reify & EV__IOFDSET && anfd->head)
275
276 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
277 events |= w->events;
278
279 anfd->reify = 0;
280
281 if (anfd->events != events)
282 { 1509 {
1510 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1511
1512 if (handle != anfd->handle)
1513 {
1514 unsigned long arg;
1515
1516 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1517
1518 /* handle changed, but fd didn't - we need to do it in two steps */
283 method_modify (EV_A_ fd, anfd->events, events); 1519 backend_modify (EV_A_ fd, anfd->events, 0);
284 anfd->events = events; 1520 anfd->events = 0;
1521 anfd->handle = handle;
1522 }
285 } 1523 }
286 } 1524 }
1525#endif
1526
1527 for (i = 0; i < fdchangecnt; ++i)
1528 {
1529 int fd = fdchanges [i];
1530 ANFD *anfd = anfds + fd;
1531 ev_io *w;
1532
1533 unsigned char o_events = anfd->events;
1534 unsigned char o_reify = anfd->reify;
1535
1536 anfd->reify = 0;
1537
1538 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1539 {
1540 anfd->events = 0;
1541
1542 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1543 anfd->events |= (unsigned char)w->events;
1544
1545 if (o_events != anfd->events)
1546 o_reify = EV__IOFDSET; /* actually |= */
1547 }
1548
1549 if (o_reify & EV__IOFDSET)
1550 backend_modify (EV_A_ fd, o_events, anfd->events);
1551 }
287 1552
288 fdchangecnt = 0; 1553 fdchangecnt = 0;
289} 1554}
290 1555
291static void 1556/* something about the given fd changed */
1557inline_size void
292fd_change (EV_P_ int fd) 1558fd_change (EV_P_ int fd, int flags)
293{ 1559{
294 if (anfds [fd].reify || fdchangecnt < 0) 1560 unsigned char reify = anfds [fd].reify;
295 return;
296
297 anfds [fd].reify = 1; 1561 anfds [fd].reify |= flags;
298 1562
1563 if (expect_true (!reify))
1564 {
299 ++fdchangecnt; 1565 ++fdchangecnt;
300 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 1566 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
301 fdchanges [fdchangecnt - 1] = fd; 1567 fdchanges [fdchangecnt - 1] = fd;
1568 }
302} 1569}
303 1570
304static void 1571/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1572inline_speed void ecb_cold
305fd_kill (EV_P_ int fd) 1573fd_kill (EV_P_ int fd)
306{ 1574{
307 struct ev_io *w; 1575 ev_io *w;
308 1576
309 while ((w = (struct ev_io *)anfds [fd].head)) 1577 while ((w = (ev_io *)anfds [fd].head))
310 { 1578 {
311 ev_io_stop (EV_A_ w); 1579 ev_io_stop (EV_A_ w);
312 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1580 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
313 } 1581 }
1582}
1583
1584/* check whether the given fd is actually valid, for error recovery */
1585inline_size int ecb_cold
1586fd_valid (int fd)
1587{
1588#ifdef _WIN32
1589 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
1590#else
1591 return fcntl (fd, F_GETFD) != -1;
1592#endif
314} 1593}
315 1594
316/* called on EBADF to verify fds */ 1595/* called on EBADF to verify fds */
317static void 1596static void noinline ecb_cold
318fd_ebadf (EV_P) 1597fd_ebadf (EV_P)
319{ 1598{
320 int fd; 1599 int fd;
321 1600
322 for (fd = 0; fd < anfdmax; ++fd) 1601 for (fd = 0; fd < anfdmax; ++fd)
323 if (anfds [fd].events) 1602 if (anfds [fd].events)
324 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 1603 if (!fd_valid (fd) && errno == EBADF)
325 fd_kill (EV_A_ fd); 1604 fd_kill (EV_A_ fd);
326} 1605}
327 1606
328/* called on ENOMEM in select/poll to kill some fds and retry */ 1607/* called on ENOMEM in select/poll to kill some fds and retry */
329static void 1608static void noinline ecb_cold
330fd_enomem (EV_P) 1609fd_enomem (EV_P)
331{ 1610{
332 int fd = anfdmax; 1611 int fd;
333 1612
334 while (fd--) 1613 for (fd = anfdmax; fd--; )
335 if (anfds [fd].events) 1614 if (anfds [fd].events)
336 { 1615 {
337 close (fd);
338 fd_kill (EV_A_ fd); 1616 fd_kill (EV_A_ fd);
339 return; 1617 break;
340 } 1618 }
341} 1619}
342 1620
343/* susually called after fork if method needs to re-arm all fds from scratch */ 1621/* usually called after fork if backend needs to re-arm all fds from scratch */
344static void 1622static void noinline
345fd_rearm_all (EV_P) 1623fd_rearm_all (EV_P)
346{ 1624{
347 int fd; 1625 int fd;
348 1626
349 /* this should be highly optimised to not do anything but set a flag */
350 for (fd = 0; fd < anfdmax; ++fd) 1627 for (fd = 0; fd < anfdmax; ++fd)
351 if (anfds [fd].events) 1628 if (anfds [fd].events)
352 { 1629 {
353 anfds [fd].events = 0; 1630 anfds [fd].events = 0;
354 fd_change (fd); 1631 anfds [fd].emask = 0;
1632 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
355 } 1633 }
356} 1634}
357 1635
1636/* used to prepare libev internal fd's */
1637/* this is not fork-safe */
1638inline_speed void
1639fd_intern (int fd)
1640{
1641#ifdef _WIN32
1642 unsigned long arg = 1;
1643 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1644#else
1645 fcntl (fd, F_SETFD, FD_CLOEXEC);
1646 fcntl (fd, F_SETFL, O_NONBLOCK);
1647#endif
1648}
1649
358/*****************************************************************************/ 1650/*****************************************************************************/
359 1651
1652/*
1653 * the heap functions want a real array index. array index 0 is guaranteed to not
1654 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1655 * the branching factor of the d-tree.
1656 */
1657
1658/*
1659 * at the moment we allow libev the luxury of two heaps,
1660 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1661 * which is more cache-efficient.
1662 * the difference is about 5% with 50000+ watchers.
1663 */
1664#if EV_USE_4HEAP
1665
1666#define DHEAP 4
1667#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1668#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1669#define UPHEAP_DONE(p,k) ((p) == (k))
1670
1671/* away from the root */
1672inline_speed void
1673downheap (ANHE *heap, int N, int k)
1674{
1675 ANHE he = heap [k];
1676 ANHE *E = heap + N + HEAP0;
1677
1678 for (;;)
1679 {
1680 ev_tstamp minat;
1681 ANHE *minpos;
1682 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1683
1684 /* find minimum child */
1685 if (expect_true (pos + DHEAP - 1 < E))
1686 {
1687 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1688 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1689 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1690 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1691 }
1692 else if (pos < E)
1693 {
1694 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1695 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1696 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1697 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1698 }
1699 else
1700 break;
1701
1702 if (ANHE_at (he) <= minat)
1703 break;
1704
1705 heap [k] = *minpos;
1706 ev_active (ANHE_w (*minpos)) = k;
1707
1708 k = minpos - heap;
1709 }
1710
1711 heap [k] = he;
1712 ev_active (ANHE_w (he)) = k;
1713}
1714
1715#else /* 4HEAP */
1716
1717#define HEAP0 1
1718#define HPARENT(k) ((k) >> 1)
1719#define UPHEAP_DONE(p,k) (!(p))
1720
1721/* away from the root */
1722inline_speed void
1723downheap (ANHE *heap, int N, int k)
1724{
1725 ANHE he = heap [k];
1726
1727 for (;;)
1728 {
1729 int c = k << 1;
1730
1731 if (c >= N + HEAP0)
1732 break;
1733
1734 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1735 ? 1 : 0;
1736
1737 if (ANHE_at (he) <= ANHE_at (heap [c]))
1738 break;
1739
1740 heap [k] = heap [c];
1741 ev_active (ANHE_w (heap [k])) = k;
1742
1743 k = c;
1744 }
1745
1746 heap [k] = he;
1747 ev_active (ANHE_w (he)) = k;
1748}
1749#endif
1750
1751/* towards the root */
1752inline_speed void
1753upheap (ANHE *heap, int k)
1754{
1755 ANHE he = heap [k];
1756
1757 for (;;)
1758 {
1759 int p = HPARENT (k);
1760
1761 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1762 break;
1763
1764 heap [k] = heap [p];
1765 ev_active (ANHE_w (heap [k])) = k;
1766 k = p;
1767 }
1768
1769 heap [k] = he;
1770 ev_active (ANHE_w (he)) = k;
1771}
1772
1773/* move an element suitably so it is in a correct place */
1774inline_size void
1775adjustheap (ANHE *heap, int N, int k)
1776{
1777 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1778 upheap (heap, k);
1779 else
1780 downheap (heap, N, k);
1781}
1782
1783/* rebuild the heap: this function is used only once and executed rarely */
1784inline_size void
1785reheap (ANHE *heap, int N)
1786{
1787 int i;
1788
1789 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1790 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1791 for (i = 0; i < N; ++i)
1792 upheap (heap, i + HEAP0);
1793}
1794
1795/*****************************************************************************/
1796
1797/* associate signal watchers to a signal signal */
1798typedef struct
1799{
1800 EV_ATOMIC_T pending;
1801#if EV_MULTIPLICITY
1802 EV_P;
1803#endif
1804 WL head;
1805} ANSIG;
1806
1807static ANSIG signals [EV_NSIG - 1];
1808
1809/*****************************************************************************/
1810
1811#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1812
1813static void noinline ecb_cold
1814evpipe_init (EV_P)
1815{
1816 if (!ev_is_active (&pipe_w))
1817 {
1818# if EV_USE_EVENTFD
1819 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1820 if (evfd < 0 && errno == EINVAL)
1821 evfd = eventfd (0, 0);
1822
1823 if (evfd >= 0)
1824 {
1825 evpipe [0] = -1;
1826 fd_intern (evfd); /* doing it twice doesn't hurt */
1827 ev_io_set (&pipe_w, evfd, EV_READ);
1828 }
1829 else
1830# endif
1831 {
1832 while (pipe (evpipe))
1833 ev_syserr ("(libev) error creating signal/async pipe");
1834
1835 fd_intern (evpipe [0]);
1836 fd_intern (evpipe [1]);
1837 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1838 }
1839
1840 ev_io_start (EV_A_ &pipe_w);
1841 ev_unref (EV_A); /* watcher should not keep loop alive */
1842 }
1843}
1844
1845inline_speed void
1846evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1847{
1848 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
1849
1850 if (expect_true (*flag))
1851 return;
1852
1853 *flag = 1;
1854
1855 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1856
1857 pipe_write_skipped = 1;
1858
1859 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1860
1861 if (pipe_write_wanted)
1862 {
1863 int old_errno;
1864
1865 pipe_write_skipped = 0; /* just an optimisation, no fence needed */
1866
1867 old_errno = errno; /* save errno because write will clobber it */
1868
1869#if EV_USE_EVENTFD
1870 if (evfd >= 0)
1871 {
1872 uint64_t counter = 1;
1873 write (evfd, &counter, sizeof (uint64_t));
1874 }
1875 else
1876#endif
1877 {
1878#ifdef _WIN32
1879 WSABUF buf;
1880 DWORD sent;
1881 buf.buf = &buf;
1882 buf.len = 1;
1883 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
1884#else
1885 write (evpipe [1], &(evpipe [1]), 1);
1886#endif
1887 }
1888
1889 errno = old_errno;
1890 }
1891}
1892
1893/* called whenever the libev signal pipe */
1894/* got some events (signal, async) */
360static void 1895static void
361upheap (WT *heap, int k) 1896pipecb (EV_P_ ev_io *iow, int revents)
362{ 1897{
363 WT w = heap [k]; 1898 int i;
364 1899
365 while (k && heap [k >> 1]->at > w->at) 1900 if (revents & EV_READ)
366 {
367 heap [k] = heap [k >> 1];
368 heap [k]->active = k + 1;
369 k >>= 1;
370 } 1901 {
1902#if EV_USE_EVENTFD
1903 if (evfd >= 0)
1904 {
1905 uint64_t counter;
1906 read (evfd, &counter, sizeof (uint64_t));
1907 }
1908 else
1909#endif
1910 {
1911 char dummy[4];
1912#ifdef _WIN32
1913 WSABUF buf;
1914 DWORD recvd;
1915 DWORD flags = 0;
1916 buf.buf = dummy;
1917 buf.len = sizeof (dummy);
1918 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
1919#else
1920 read (evpipe [0], &dummy, sizeof (dummy));
1921#endif
1922 }
1923 }
371 1924
372 heap [k] = w; 1925 pipe_write_skipped = 0;
373 heap [k]->active = k + 1;
374 1926
1927 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
1928
1929#if EV_SIGNAL_ENABLE
1930 if (sig_pending)
1931 {
1932 sig_pending = 0;
1933
1934 ECB_MEMORY_FENCE_RELEASE;
1935
1936 for (i = EV_NSIG - 1; i--; )
1937 if (expect_false (signals [i].pending))
1938 ev_feed_signal_event (EV_A_ i + 1);
1939 }
1940#endif
1941
1942#if EV_ASYNC_ENABLE
1943 if (async_pending)
1944 {
1945 async_pending = 0;
1946
1947 ECB_MEMORY_FENCE_RELEASE;
1948
1949 for (i = asynccnt; i--; )
1950 if (asyncs [i]->sent)
1951 {
1952 asyncs [i]->sent = 0;
1953 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1954 }
1955 }
1956#endif
1957}
1958
1959/*****************************************************************************/
1960
1961void
1962ev_feed_signal (int signum) EV_THROW
1963{
1964#if EV_MULTIPLICITY
1965 EV_P = signals [signum - 1].loop;
1966
1967 if (!EV_A)
1968 return;
1969#endif
1970
1971 if (!ev_active (&pipe_w))
1972 return;
1973
1974 signals [signum - 1].pending = 1;
1975 evpipe_write (EV_A_ &sig_pending);
375} 1976}
376 1977
377static void 1978static void
378downheap (WT *heap, int N, int k) 1979ev_sighandler (int signum)
379{ 1980{
380 WT w = heap [k]; 1981#ifdef _WIN32
1982 signal (signum, ev_sighandler);
1983#endif
381 1984
382 while (k < (N >> 1)) 1985 ev_feed_signal (signum);
383 { 1986}
384 int j = k << 1;
385 1987
386 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 1988void noinline
387 ++j; 1989ev_feed_signal_event (EV_P_ int signum) EV_THROW
1990{
1991 WL w;
388 1992
389 if (w->at <= heap [j]->at) 1993 if (expect_false (signum <= 0 || signum > EV_NSIG))
1994 return;
1995
1996 --signum;
1997
1998#if EV_MULTIPLICITY
1999 /* it is permissible to try to feed a signal to the wrong loop */
2000 /* or, likely more useful, feeding a signal nobody is waiting for */
2001
2002 if (expect_false (signals [signum].loop != EV_A))
2003 return;
2004#endif
2005
2006 signals [signum].pending = 0;
2007
2008 for (w = signals [signum].head; w; w = w->next)
2009 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2010}
2011
2012#if EV_USE_SIGNALFD
2013static void
2014sigfdcb (EV_P_ ev_io *iow, int revents)
2015{
2016 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2017
2018 for (;;)
2019 {
2020 ssize_t res = read (sigfd, si, sizeof (si));
2021
2022 /* not ISO-C, as res might be -1, but works with SuS */
2023 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2024 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2025
2026 if (res < (ssize_t)sizeof (si))
390 break; 2027 break;
391
392 heap [k] = heap [j];
393 heap [k]->active = k + 1;
394 k = j;
395 } 2028 }
396
397 heap [k] = w;
398 heap [k]->active = k + 1;
399} 2029}
2030#endif
2031
2032#endif
400 2033
401/*****************************************************************************/ 2034/*****************************************************************************/
402 2035
403typedef struct 2036#if EV_CHILD_ENABLE
404{ 2037static WL childs [EV_PID_HASHSIZE];
405 struct ev_watcher_list *head;
406 sig_atomic_t volatile gotsig;
407} ANSIG;
408 2038
409static ANSIG *signals;
410static int signalmax;
411
412static int sigpipe [2];
413static sig_atomic_t volatile gotsig;
414static struct ev_io sigev;
415
416static void
417signals_init (ANSIG *base, int count)
418{
419 while (count--)
420 {
421 base->head = 0;
422 base->gotsig = 0;
423
424 ++base;
425 }
426}
427
428static void
429sighandler (int signum)
430{
431 signals [signum - 1].gotsig = 1;
432
433 if (!gotsig)
434 {
435 int old_errno = errno;
436 gotsig = 1;
437 write (sigpipe [1], &signum, 1);
438 errno = old_errno;
439 }
440}
441
442static void
443sigcb (EV_P_ struct ev_io *iow, int revents)
444{
445 struct ev_watcher_list *w;
446 int signum;
447
448 read (sigpipe [0], &revents, 1);
449 gotsig = 0;
450
451 for (signum = signalmax; signum--; )
452 if (signals [signum].gotsig)
453 {
454 signals [signum].gotsig = 0;
455
456 for (w = signals [signum].head; w; w = w->next)
457 event (EV_A_ (W)w, EV_SIGNAL);
458 }
459}
460
461static void
462siginit (EV_P)
463{
464#ifndef WIN32
465 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
466 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
467
468 /* rather than sort out wether we really need nb, set it */
469 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
470 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
471#endif
472
473 ev_io_set (&sigev, sigpipe [0], EV_READ);
474 ev_io_start (EV_A_ &sigev);
475 ev_unref (EV_A); /* child watcher should not keep loop alive */
476}
477
478/*****************************************************************************/
479
480#ifndef WIN32
481
482static struct ev_child *childs [PID_HASHSIZE];
483static struct ev_signal childev; 2039static ev_signal childev;
2040
2041#ifndef WIFCONTINUED
2042# define WIFCONTINUED(status) 0
2043#endif
2044
2045/* handle a single child status event */
2046inline_speed void
2047child_reap (EV_P_ int chain, int pid, int status)
2048{
2049 ev_child *w;
2050 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2051
2052 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2053 {
2054 if ((w->pid == pid || !w->pid)
2055 && (!traced || (w->flags & 1)))
2056 {
2057 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2058 w->rpid = pid;
2059 w->rstatus = status;
2060 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2061 }
2062 }
2063}
484 2064
485#ifndef WCONTINUED 2065#ifndef WCONTINUED
486# define WCONTINUED 0 2066# define WCONTINUED 0
487#endif 2067#endif
488 2068
2069/* called on sigchld etc., calls waitpid */
489static void 2070static void
490child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
491{
492 struct ev_child *w;
493
494 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
495 if (w->pid == pid || !w->pid)
496 {
497 w->priority = sw->priority; /* need to do it *now* */
498 w->rpid = pid;
499 w->rstatus = status;
500 event (EV_A_ (W)w, EV_CHILD);
501 }
502}
503
504static void
505childcb (EV_P_ struct ev_signal *sw, int revents) 2071childcb (EV_P_ ev_signal *sw, int revents)
506{ 2072{
507 int pid, status; 2073 int pid, status;
508 2074
2075 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
509 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 2076 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
510 { 2077 if (!WCONTINUED
2078 || errno != EINVAL
2079 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2080 return;
2081
511 /* make sure we are called again until all childs have been reaped */ 2082 /* make sure we are called again until all children have been reaped */
2083 /* we need to do it this way so that the callback gets called before we continue */
512 event (EV_A_ (W)sw, EV_SIGNAL); 2084 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
513 2085
514 child_reap (EV_A_ sw, pid, pid, status); 2086 child_reap (EV_A_ pid, pid, status);
2087 if ((EV_PID_HASHSIZE) > 1)
515 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 2088 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
516 }
517} 2089}
518 2090
519#endif 2091#endif
520 2092
521/*****************************************************************************/ 2093/*****************************************************************************/
522 2094
2095#if EV_USE_IOCP
2096# include "ev_iocp.c"
2097#endif
2098#if EV_USE_PORT
2099# include "ev_port.c"
2100#endif
523#if EV_USE_KQUEUE 2101#if EV_USE_KQUEUE
524# include "ev_kqueue.c" 2102# include "ev_kqueue.c"
525#endif 2103#endif
526#if EV_USE_EPOLL 2104#if EV_USE_EPOLL
527# include "ev_epoll.c" 2105# include "ev_epoll.c"
531#endif 2109#endif
532#if EV_USE_SELECT 2110#if EV_USE_SELECT
533# include "ev_select.c" 2111# include "ev_select.c"
534#endif 2112#endif
535 2113
536int 2114int ecb_cold
537ev_version_major (void) 2115ev_version_major (void) EV_THROW
538{ 2116{
539 return EV_VERSION_MAJOR; 2117 return EV_VERSION_MAJOR;
540} 2118}
541 2119
542int 2120int ecb_cold
543ev_version_minor (void) 2121ev_version_minor (void) EV_THROW
544{ 2122{
545 return EV_VERSION_MINOR; 2123 return EV_VERSION_MINOR;
546} 2124}
547 2125
548/* return true if we are running with elevated privileges and should ignore env variables */ 2126/* return true if we are running with elevated privileges and should ignore env variables */
549static int 2127int inline_size ecb_cold
550enable_secure (void) 2128enable_secure (void)
551{ 2129{
552#ifdef WIN32 2130#ifdef _WIN32
553 return 0; 2131 return 0;
554#else 2132#else
555 return getuid () != geteuid () 2133 return getuid () != geteuid ()
556 || getgid () != getegid (); 2134 || getgid () != getegid ();
557#endif 2135#endif
558} 2136}
559 2137
2138unsigned int ecb_cold
2139ev_supported_backends (void) EV_THROW
2140{
2141 unsigned int flags = 0;
2142
2143 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2144 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2145 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2146 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2147 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2148
2149 return flags;
2150}
2151
2152unsigned int ecb_cold
2153ev_recommended_backends (void) EV_THROW
2154{
2155 unsigned int flags = ev_supported_backends ();
2156
2157#ifndef __NetBSD__
2158 /* kqueue is borked on everything but netbsd apparently */
2159 /* it usually doesn't work correctly on anything but sockets and pipes */
2160 flags &= ~EVBACKEND_KQUEUE;
2161#endif
2162#ifdef __APPLE__
2163 /* only select works correctly on that "unix-certified" platform */
2164 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2165 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2166#endif
2167#ifdef __FreeBSD__
2168 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2169#endif
2170
2171 return flags;
2172}
2173
2174unsigned int ecb_cold
2175ev_embeddable_backends (void) EV_THROW
2176{
2177 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2178
2179 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2180 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2181 flags &= ~EVBACKEND_EPOLL;
2182
2183 return flags;
2184}
2185
2186unsigned int
2187ev_backend (EV_P) EV_THROW
2188{
2189 return backend;
2190}
2191
2192#if EV_FEATURE_API
2193unsigned int
2194ev_iteration (EV_P) EV_THROW
2195{
2196 return loop_count;
2197}
2198
2199unsigned int
2200ev_depth (EV_P) EV_THROW
2201{
2202 return loop_depth;
2203}
2204
2205void
2206ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2207{
2208 io_blocktime = interval;
2209}
2210
2211void
2212ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2213{
2214 timeout_blocktime = interval;
2215}
2216
2217void
2218ev_set_userdata (EV_P_ void *data) EV_THROW
2219{
2220 userdata = data;
2221}
2222
2223void *
2224ev_userdata (EV_P) EV_THROW
2225{
2226 return userdata;
2227}
2228
2229void
2230ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2231{
2232 invoke_cb = invoke_pending_cb;
2233}
2234
2235void
2236ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2237{
2238 release_cb = release;
2239 acquire_cb = acquire;
2240}
2241#endif
2242
2243/* initialise a loop structure, must be zero-initialised */
2244static void noinline ecb_cold
2245loop_init (EV_P_ unsigned int flags) EV_THROW
2246{
2247 if (!backend)
2248 {
2249 origflags = flags;
2250
2251#if EV_USE_REALTIME
2252 if (!have_realtime)
2253 {
2254 struct timespec ts;
2255
2256 if (!clock_gettime (CLOCK_REALTIME, &ts))
2257 have_realtime = 1;
2258 }
2259#endif
2260
2261#if EV_USE_MONOTONIC
2262 if (!have_monotonic)
2263 {
2264 struct timespec ts;
2265
2266 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2267 have_monotonic = 1;
2268 }
2269#endif
2270
2271 /* pid check not overridable via env */
2272#ifndef _WIN32
2273 if (flags & EVFLAG_FORKCHECK)
2274 curpid = getpid ();
2275#endif
2276
2277 if (!(flags & EVFLAG_NOENV)
2278 && !enable_secure ()
2279 && getenv ("LIBEV_FLAGS"))
2280 flags = atoi (getenv ("LIBEV_FLAGS"));
2281
2282 ev_rt_now = ev_time ();
2283 mn_now = get_clock ();
2284 now_floor = mn_now;
2285 rtmn_diff = ev_rt_now - mn_now;
2286#if EV_FEATURE_API
2287 invoke_cb = ev_invoke_pending;
2288#endif
2289
2290 io_blocktime = 0.;
2291 timeout_blocktime = 0.;
2292 backend = 0;
2293 backend_fd = -1;
2294 sig_pending = 0;
2295#if EV_ASYNC_ENABLE
2296 async_pending = 0;
2297#endif
2298 pipe_write_skipped = 0;
2299 pipe_write_wanted = 0;
2300#if EV_USE_INOTIFY
2301 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2302#endif
2303#if EV_USE_SIGNALFD
2304 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2305#endif
2306
2307 if (!(flags & EVBACKEND_MASK))
2308 flags |= ev_recommended_backends ();
2309
2310#if EV_USE_IOCP
2311 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2312#endif
2313#if EV_USE_PORT
2314 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2315#endif
2316#if EV_USE_KQUEUE
2317 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2318#endif
2319#if EV_USE_EPOLL
2320 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2321#endif
2322#if EV_USE_POLL
2323 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2324#endif
2325#if EV_USE_SELECT
2326 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2327#endif
2328
2329 ev_prepare_init (&pending_w, pendingcb);
2330
2331#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2332 ev_init (&pipe_w, pipecb);
2333 ev_set_priority (&pipe_w, EV_MAXPRI);
2334#endif
2335 }
2336}
2337
2338/* free up a loop structure */
2339void ecb_cold
2340ev_loop_destroy (EV_P)
2341{
2342 int i;
2343
2344#if EV_MULTIPLICITY
2345 /* mimic free (0) */
2346 if (!EV_A)
2347 return;
2348#endif
2349
2350#if EV_CLEANUP_ENABLE
2351 /* queue cleanup watchers (and execute them) */
2352 if (expect_false (cleanupcnt))
2353 {
2354 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2355 EV_INVOKE_PENDING;
2356 }
2357#endif
2358
2359#if EV_CHILD_ENABLE
2360 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2361 {
2362 ev_ref (EV_A); /* child watcher */
2363 ev_signal_stop (EV_A_ &childev);
2364 }
2365#endif
2366
2367 if (ev_is_active (&pipe_w))
2368 {
2369 /*ev_ref (EV_A);*/
2370 /*ev_io_stop (EV_A_ &pipe_w);*/
2371
2372#if EV_USE_EVENTFD
2373 if (evfd >= 0)
2374 close (evfd);
2375#endif
2376
2377 if (evpipe [0] >= 0)
2378 {
2379 EV_WIN32_CLOSE_FD (evpipe [0]);
2380 EV_WIN32_CLOSE_FD (evpipe [1]);
2381 }
2382 }
2383
2384#if EV_USE_SIGNALFD
2385 if (ev_is_active (&sigfd_w))
2386 close (sigfd);
2387#endif
2388
2389#if EV_USE_INOTIFY
2390 if (fs_fd >= 0)
2391 close (fs_fd);
2392#endif
2393
2394 if (backend_fd >= 0)
2395 close (backend_fd);
2396
2397#if EV_USE_IOCP
2398 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2399#endif
2400#if EV_USE_PORT
2401 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
2402#endif
2403#if EV_USE_KQUEUE
2404 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
2405#endif
2406#if EV_USE_EPOLL
2407 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
2408#endif
2409#if EV_USE_POLL
2410 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
2411#endif
2412#if EV_USE_SELECT
2413 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
2414#endif
2415
2416 for (i = NUMPRI; i--; )
2417 {
2418 array_free (pending, [i]);
2419#if EV_IDLE_ENABLE
2420 array_free (idle, [i]);
2421#endif
2422 }
2423
2424 ev_free (anfds); anfds = 0; anfdmax = 0;
2425
2426 /* have to use the microsoft-never-gets-it-right macro */
2427 array_free (rfeed, EMPTY);
2428 array_free (fdchange, EMPTY);
2429 array_free (timer, EMPTY);
2430#if EV_PERIODIC_ENABLE
2431 array_free (periodic, EMPTY);
2432#endif
2433#if EV_FORK_ENABLE
2434 array_free (fork, EMPTY);
2435#endif
2436#if EV_CLEANUP_ENABLE
2437 array_free (cleanup, EMPTY);
2438#endif
2439 array_free (prepare, EMPTY);
2440 array_free (check, EMPTY);
2441#if EV_ASYNC_ENABLE
2442 array_free (async, EMPTY);
2443#endif
2444
2445 backend = 0;
2446
2447#if EV_MULTIPLICITY
2448 if (ev_is_default_loop (EV_A))
2449#endif
2450 ev_default_loop_ptr = 0;
2451#if EV_MULTIPLICITY
2452 else
2453 ev_free (EV_A);
2454#endif
2455}
2456
2457#if EV_USE_INOTIFY
2458inline_size void infy_fork (EV_P);
2459#endif
2460
2461inline_size void
2462loop_fork (EV_P)
2463{
2464#if EV_USE_PORT
2465 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
2466#endif
2467#if EV_USE_KQUEUE
2468 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2469#endif
2470#if EV_USE_EPOLL
2471 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
2472#endif
2473#if EV_USE_INOTIFY
2474 infy_fork (EV_A);
2475#endif
2476
2477 if (ev_is_active (&pipe_w))
2478 {
2479 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2480
2481 ev_ref (EV_A);
2482 ev_io_stop (EV_A_ &pipe_w);
2483
2484#if EV_USE_EVENTFD
2485 if (evfd >= 0)
2486 close (evfd);
2487#endif
2488
2489 if (evpipe [0] >= 0)
2490 {
2491 EV_WIN32_CLOSE_FD (evpipe [0]);
2492 EV_WIN32_CLOSE_FD (evpipe [1]);
2493 }
2494
2495#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2496 evpipe_init (EV_A);
2497 /* now iterate over everything, in case we missed something */
2498 pipecb (EV_A_ &pipe_w, EV_READ);
2499#endif
2500 }
2501
2502 postfork = 0;
2503}
2504
2505#if EV_MULTIPLICITY
2506
2507struct ev_loop * ecb_cold
2508ev_loop_new (unsigned int flags) EV_THROW
2509{
2510 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2511
2512 memset (EV_A, 0, sizeof (struct ev_loop));
2513 loop_init (EV_A_ flags);
2514
2515 if (ev_backend (EV_A))
2516 return EV_A;
2517
2518 ev_free (EV_A);
2519 return 0;
2520}
2521
2522#endif /* multiplicity */
2523
2524#if EV_VERIFY
2525static void noinline ecb_cold
2526verify_watcher (EV_P_ W w)
2527{
2528 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2529
2530 if (w->pending)
2531 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2532}
2533
2534static void noinline ecb_cold
2535verify_heap (EV_P_ ANHE *heap, int N)
2536{
2537 int i;
2538
2539 for (i = HEAP0; i < N + HEAP0; ++i)
2540 {
2541 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2542 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2543 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2544
2545 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2546 }
2547}
2548
2549static void noinline ecb_cold
2550array_verify (EV_P_ W *ws, int cnt)
2551{
2552 while (cnt--)
2553 {
2554 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2555 verify_watcher (EV_A_ ws [cnt]);
2556 }
2557}
2558#endif
2559
2560#if EV_FEATURE_API
2561void ecb_cold
2562ev_verify (EV_P) EV_THROW
2563{
2564#if EV_VERIFY
2565 int i;
2566 WL w, w2;
2567
2568 assert (activecnt >= -1);
2569
2570 assert (fdchangemax >= fdchangecnt);
2571 for (i = 0; i < fdchangecnt; ++i)
2572 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2573
2574 assert (anfdmax >= 0);
2575 for (i = 0; i < anfdmax; ++i)
2576 {
2577 int j = 0;
2578
2579 for (w = w2 = anfds [i].head; w; w = w->next)
2580 {
2581 verify_watcher (EV_A_ (W)w);
2582
2583 if (j++ & 1)
2584 {
2585 assert (("libev: io watcher list contains a loop", w != w2));
2586 w2 = w2->next;
2587 }
2588
2589 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2590 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2591 }
2592 }
2593
2594 assert (timermax >= timercnt);
2595 verify_heap (EV_A_ timers, timercnt);
2596
2597#if EV_PERIODIC_ENABLE
2598 assert (periodicmax >= periodiccnt);
2599 verify_heap (EV_A_ periodics, periodiccnt);
2600#endif
2601
2602 for (i = NUMPRI; i--; )
2603 {
2604 assert (pendingmax [i] >= pendingcnt [i]);
2605#if EV_IDLE_ENABLE
2606 assert (idleall >= 0);
2607 assert (idlemax [i] >= idlecnt [i]);
2608 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2609#endif
2610 }
2611
2612#if EV_FORK_ENABLE
2613 assert (forkmax >= forkcnt);
2614 array_verify (EV_A_ (W *)forks, forkcnt);
2615#endif
2616
2617#if EV_CLEANUP_ENABLE
2618 assert (cleanupmax >= cleanupcnt);
2619 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2620#endif
2621
2622#if EV_ASYNC_ENABLE
2623 assert (asyncmax >= asynccnt);
2624 array_verify (EV_A_ (W *)asyncs, asynccnt);
2625#endif
2626
2627#if EV_PREPARE_ENABLE
2628 assert (preparemax >= preparecnt);
2629 array_verify (EV_A_ (W *)prepares, preparecnt);
2630#endif
2631
2632#if EV_CHECK_ENABLE
2633 assert (checkmax >= checkcnt);
2634 array_verify (EV_A_ (W *)checks, checkcnt);
2635#endif
2636
2637# if 0
2638#if EV_CHILD_ENABLE
2639 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2640 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2641#endif
2642# endif
2643#endif
2644}
2645#endif
2646
2647#if EV_MULTIPLICITY
2648struct ev_loop * ecb_cold
2649#else
560int 2650int
561ev_method (EV_P) 2651#endif
2652ev_default_loop (unsigned int flags) EV_THROW
562{ 2653{
563 return method; 2654 if (!ev_default_loop_ptr)
564}
565
566static void
567loop_init (EV_P_ int methods)
568{
569 if (!method)
570 {
571#if EV_USE_MONOTONIC
572 { 2655 {
573 struct timespec ts;
574 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
575 have_monotonic = 1;
576 }
577#endif
578
579 rt_now = ev_time ();
580 mn_now = get_clock ();
581 now_floor = mn_now;
582 rtmn_diff = rt_now - mn_now;
583
584 if (methods == EVMETHOD_AUTO)
585 if (!enable_secure () && getenv ("LIBEV_METHODS"))
586 methods = atoi (getenv ("LIBEV_METHODS"));
587 else
588 methods = EVMETHOD_ANY;
589
590 method = 0;
591#if EV_USE_KQUEUE
592 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
593#endif
594#if EV_USE_EPOLL
595 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
596#endif
597#if EV_USE_POLL
598 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
599#endif
600#if EV_USE_SELECT
601 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
602#endif
603 }
604}
605
606void
607loop_destroy (EV_P)
608{
609#if EV_USE_KQUEUE
610 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
611#endif
612#if EV_USE_EPOLL
613 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
614#endif
615#if EV_USE_POLL
616 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
617#endif
618#if EV_USE_SELECT
619 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
620#endif
621
622 method = 0;
623 /*TODO*/
624}
625
626void
627loop_fork (EV_P)
628{
629 /*TODO*/
630#if EV_USE_EPOLL
631 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
632#endif
633#if EV_USE_KQUEUE
634 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
635#endif
636}
637
638#if EV_MULTIPLICITY 2656#if EV_MULTIPLICITY
639struct ev_loop * 2657 EV_P = ev_default_loop_ptr = &default_loop_struct;
640ev_loop_new (int methods)
641{
642 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
643
644 loop_init (EV_A_ methods);
645
646 if (ev_methods (EV_A))
647 return loop;
648
649 return 0;
650}
651
652void
653ev_loop_destroy (EV_P)
654{
655 loop_destroy (EV_A);
656 free (loop);
657}
658
659void
660ev_loop_fork (EV_P)
661{
662 loop_fork (EV_A);
663}
664
665#endif
666
667#if EV_MULTIPLICITY
668struct ev_loop default_loop_struct;
669static struct ev_loop *default_loop;
670
671struct ev_loop *
672#else 2658#else
673static int default_loop;
674
675int
676#endif
677ev_default_loop (int methods)
678{
679 if (sigpipe [0] == sigpipe [1])
680 if (pipe (sigpipe))
681 return 0;
682
683 if (!default_loop)
684 {
685#if EV_MULTIPLICITY
686 struct ev_loop *loop = default_loop = &default_loop_struct;
687#else
688 default_loop = 1; 2659 ev_default_loop_ptr = 1;
689#endif 2660#endif
690 2661
691 loop_init (EV_A_ methods); 2662 loop_init (EV_A_ flags);
692 2663
693 if (ev_method (EV_A)) 2664 if (ev_backend (EV_A))
694 { 2665 {
695 ev_watcher_init (&sigev, sigcb); 2666#if EV_CHILD_ENABLE
696 ev_set_priority (&sigev, EV_MAXPRI);
697 siginit (EV_A);
698
699#ifndef WIN32
700 ev_signal_init (&childev, childcb, SIGCHLD); 2667 ev_signal_init (&childev, childcb, SIGCHLD);
701 ev_set_priority (&childev, EV_MAXPRI); 2668 ev_set_priority (&childev, EV_MAXPRI);
702 ev_signal_start (EV_A_ &childev); 2669 ev_signal_start (EV_A_ &childev);
703 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2670 ev_unref (EV_A); /* child watcher should not keep loop alive */
704#endif 2671#endif
705 } 2672 }
706 else 2673 else
707 default_loop = 0; 2674 ev_default_loop_ptr = 0;
708 } 2675 }
709 2676
710 return default_loop; 2677 return ev_default_loop_ptr;
711} 2678}
712 2679
713void 2680void
714ev_default_destroy (void) 2681ev_loop_fork (EV_P) EV_THROW
715{ 2682{
716#if EV_MULTIPLICITY 2683 postfork = 1; /* must be in line with ev_default_fork */
717 struct ev_loop *loop = default_loop;
718#endif
719
720 ev_ref (EV_A); /* child watcher */
721 ev_signal_stop (EV_A_ &childev);
722
723 ev_ref (EV_A); /* signal watcher */
724 ev_io_stop (EV_A_ &sigev);
725
726 close (sigpipe [0]); sigpipe [0] = 0;
727 close (sigpipe [1]); sigpipe [1] = 0;
728
729 loop_destroy (EV_A);
730} 2684}
2685
2686/*****************************************************************************/
731 2687
732void 2688void
733ev_default_fork (EV_P) 2689ev_invoke (EV_P_ void *w, int revents)
734{ 2690{
735 loop_fork (EV_A); 2691 EV_CB_INVOKE ((W)w, revents);
736
737 ev_io_stop (EV_A_ &sigev);
738 close (sigpipe [0]);
739 close (sigpipe [1]);
740 pipe (sigpipe);
741
742 ev_ref (EV_A); /* signal watcher */
743 siginit (EV_A);
744} 2692}
745 2693
746/*****************************************************************************/ 2694unsigned int
747 2695ev_pending_count (EV_P) EV_THROW
748static void
749call_pending (EV_P)
750{ 2696{
751 int pri; 2697 int pri;
2698 unsigned int count = 0;
752 2699
753 for (pri = NUMPRI; pri--; ) 2700 for (pri = NUMPRI; pri--; )
2701 count += pendingcnt [pri];
2702
2703 return count;
2704}
2705
2706void noinline
2707ev_invoke_pending (EV_P)
2708{
2709 for (pendingpri = NUMPRI; pendingpri--; ) /* pendingpri is modified during the loop */
754 while (pendingcnt [pri]) 2710 while (pendingcnt [pendingpri])
755 { 2711 {
756 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2712 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
757 2713
758 if (p->w)
759 {
760 p->w->pending = 0; 2714 p->w->pending = 0;
761 p->w->cb (EV_A_ p->w, p->events); 2715 EV_CB_INVOKE (p->w, p->events);
762 } 2716 EV_FREQUENT_CHECK;
763 } 2717 }
764} 2718}
765 2719
766static void 2720#if EV_IDLE_ENABLE
2721/* make idle watchers pending. this handles the "call-idle */
2722/* only when higher priorities are idle" logic */
2723inline_size void
767timers_reify (EV_P) 2724idle_reify (EV_P)
768{ 2725{
769 while (timercnt && timers [0]->at <= mn_now) 2726 if (expect_false (idleall))
770 { 2727 {
771 struct ev_timer *w = timers [0]; 2728 int pri;
772 2729
773 /* first reschedule or stop timer */ 2730 for (pri = NUMPRI; pri--; )
774 if (w->repeat)
775 { 2731 {
776 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2732 if (pendingcnt [pri])
777 w->at = mn_now + w->repeat; 2733 break;
778 downheap ((WT *)timers, timercnt, 0);
779 }
780 else
781 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
782 2734
783 event (EV_A_ (W)w, EV_TIMEOUT); 2735 if (idlecnt [pri])
784 }
785}
786
787static void
788periodics_reify (EV_P)
789{
790 while (periodiccnt && periodics [0]->at <= rt_now)
791 {
792 struct ev_periodic *w = periodics [0];
793
794 /* first reschedule or stop timer */
795 if (w->interval)
796 {
797 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval;
798 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now));
799 downheap ((WT *)periodics, periodiccnt, 0);
800 }
801 else
802 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
803
804 event (EV_A_ (W)w, EV_PERIODIC);
805 }
806}
807
808static void
809periodics_reschedule (EV_P)
810{
811 int i;
812
813 /* adjust periodics after time jump */
814 for (i = 0; i < periodiccnt; ++i)
815 {
816 struct ev_periodic *w = periodics [i];
817
818 if (w->interval)
819 {
820 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval;
821
822 if (fabs (diff) >= 1e-4)
823 { 2736 {
824 ev_periodic_stop (EV_A_ w); 2737 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
825 ev_periodic_start (EV_A_ w); 2738 break;
826
827 i = 0; /* restart loop, inefficient, but time jumps should be rare */
828 } 2739 }
829 } 2740 }
830 } 2741 }
831} 2742}
2743#endif
832 2744
833inline int 2745/* make timers pending */
834time_update_monotonic (EV_P) 2746inline_size void
2747timers_reify (EV_P)
835{ 2748{
836 mn_now = get_clock (); 2749 EV_FREQUENT_CHECK;
837 2750
838 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 2751 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
839 {
840 rt_now = rtmn_diff + mn_now;
841 return 0;
842 } 2752 {
843 else 2753 do
2754 {
2755 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2756
2757 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2758
2759 /* first reschedule or stop timer */
2760 if (w->repeat)
2761 {
2762 ev_at (w) += w->repeat;
2763 if (ev_at (w) < mn_now)
2764 ev_at (w) = mn_now;
2765
2766 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2767
2768 ANHE_at_cache (timers [HEAP0]);
2769 downheap (timers, timercnt, HEAP0);
2770 }
2771 else
2772 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2773
2774 EV_FREQUENT_CHECK;
2775 feed_reverse (EV_A_ (W)w);
2776 }
2777 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2778
2779 feed_reverse_done (EV_A_ EV_TIMER);
844 { 2780 }
845 now_floor = mn_now; 2781}
846 rt_now = ev_time (); 2782
847 return 1; 2783#if EV_PERIODIC_ENABLE
2784
2785static void noinline
2786periodic_recalc (EV_P_ ev_periodic *w)
2787{
2788 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2789 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2790
2791 /* the above almost always errs on the low side */
2792 while (at <= ev_rt_now)
848 } 2793 {
849} 2794 ev_tstamp nat = at + w->interval;
850 2795
851static void 2796 /* when resolution fails us, we use ev_rt_now */
852time_update (EV_P) 2797 if (expect_false (nat == at))
2798 {
2799 at = ev_rt_now;
2800 break;
2801 }
2802
2803 at = nat;
2804 }
2805
2806 ev_at (w) = at;
2807}
2808
2809/* make periodics pending */
2810inline_size void
2811periodics_reify (EV_P)
2812{
2813 EV_FREQUENT_CHECK;
2814
2815 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2816 {
2817 do
2818 {
2819 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2820
2821 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2822
2823 /* first reschedule or stop timer */
2824 if (w->reschedule_cb)
2825 {
2826 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2827
2828 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2829
2830 ANHE_at_cache (periodics [HEAP0]);
2831 downheap (periodics, periodiccnt, HEAP0);
2832 }
2833 else if (w->interval)
2834 {
2835 periodic_recalc (EV_A_ w);
2836 ANHE_at_cache (periodics [HEAP0]);
2837 downheap (periodics, periodiccnt, HEAP0);
2838 }
2839 else
2840 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2841
2842 EV_FREQUENT_CHECK;
2843 feed_reverse (EV_A_ (W)w);
2844 }
2845 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2846
2847 feed_reverse_done (EV_A_ EV_PERIODIC);
2848 }
2849}
2850
2851/* simply recalculate all periodics */
2852/* TODO: maybe ensure that at least one event happens when jumping forward? */
2853static void noinline ecb_cold
2854periodics_reschedule (EV_P)
853{ 2855{
854 int i; 2856 int i;
855 2857
2858 /* adjust periodics after time jump */
2859 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2860 {
2861 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2862
2863 if (w->reschedule_cb)
2864 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2865 else if (w->interval)
2866 periodic_recalc (EV_A_ w);
2867
2868 ANHE_at_cache (periodics [i]);
2869 }
2870
2871 reheap (periodics, periodiccnt);
2872}
2873#endif
2874
2875/* adjust all timers by a given offset */
2876static void noinline ecb_cold
2877timers_reschedule (EV_P_ ev_tstamp adjust)
2878{
2879 int i;
2880
2881 for (i = 0; i < timercnt; ++i)
2882 {
2883 ANHE *he = timers + i + HEAP0;
2884 ANHE_w (*he)->at += adjust;
2885 ANHE_at_cache (*he);
2886 }
2887}
2888
2889/* fetch new monotonic and realtime times from the kernel */
2890/* also detect if there was a timejump, and act accordingly */
2891inline_speed void
2892time_update (EV_P_ ev_tstamp max_block)
2893{
856#if EV_USE_MONOTONIC 2894#if EV_USE_MONOTONIC
857 if (expect_true (have_monotonic)) 2895 if (expect_true (have_monotonic))
858 { 2896 {
859 if (time_update_monotonic (EV_A)) 2897 int i;
2898 ev_tstamp odiff = rtmn_diff;
2899
2900 mn_now = get_clock ();
2901
2902 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2903 /* interpolate in the meantime */
2904 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
860 { 2905 {
861 ev_tstamp odiff = rtmn_diff; 2906 ev_rt_now = rtmn_diff + mn_now;
2907 return;
2908 }
862 2909
2910 now_floor = mn_now;
2911 ev_rt_now = ev_time ();
2912
863 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 2913 /* loop a few times, before making important decisions.
2914 * on the choice of "4": one iteration isn't enough,
2915 * in case we get preempted during the calls to
2916 * ev_time and get_clock. a second call is almost guaranteed
2917 * to succeed in that case, though. and looping a few more times
2918 * doesn't hurt either as we only do this on time-jumps or
2919 * in the unlikely event of having been preempted here.
2920 */
2921 for (i = 4; --i; )
864 { 2922 {
2923 ev_tstamp diff;
865 rtmn_diff = rt_now - mn_now; 2924 rtmn_diff = ev_rt_now - mn_now;
866 2925
867 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2926 diff = odiff - rtmn_diff;
2927
2928 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
868 return; /* all is well */ 2929 return; /* all is well */
869 2930
870 rt_now = ev_time (); 2931 ev_rt_now = ev_time ();
871 mn_now = get_clock (); 2932 mn_now = get_clock ();
872 now_floor = mn_now; 2933 now_floor = mn_now;
873 } 2934 }
874 2935
2936 /* no timer adjustment, as the monotonic clock doesn't jump */
2937 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2938# if EV_PERIODIC_ENABLE
2939 periodics_reschedule (EV_A);
2940# endif
2941 }
2942 else
2943#endif
2944 {
2945 ev_rt_now = ev_time ();
2946
2947 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2948 {
2949 /* adjust timers. this is easy, as the offset is the same for all of them */
2950 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2951#if EV_PERIODIC_ENABLE
875 periodics_reschedule (EV_A); 2952 periodics_reschedule (EV_A);
876 /* no timer adjustment, as the monotonic clock doesn't jump */ 2953#endif
877 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
878 } 2954 }
879 }
880 else
881#endif
882 {
883 rt_now = ev_time ();
884 2955
885 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
886 {
887 periodics_reschedule (EV_A);
888
889 /* adjust timers. this is easy, as the offset is the same for all */
890 for (i = 0; i < timercnt; ++i)
891 timers [i]->at += rt_now - mn_now;
892 }
893
894 mn_now = rt_now; 2956 mn_now = ev_rt_now;
895 } 2957 }
896} 2958}
897 2959
898void 2960int
899ev_ref (EV_P)
900{
901 ++activecnt;
902}
903
904void
905ev_unref (EV_P)
906{
907 --activecnt;
908}
909
910static int loop_done;
911
912void
913ev_loop (EV_P_ int flags) 2961ev_run (EV_P_ int flags)
914{ 2962{
915 double block; 2963#if EV_FEATURE_API
916 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2964 ++loop_depth;
2965#endif
2966
2967 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2968
2969 loop_done = EVBREAK_CANCEL;
2970
2971 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
917 2972
918 do 2973 do
919 { 2974 {
2975#if EV_VERIFY >= 2
2976 ev_verify (EV_A);
2977#endif
2978
2979#ifndef _WIN32
2980 if (expect_false (curpid)) /* penalise the forking check even more */
2981 if (expect_false (getpid () != curpid))
2982 {
2983 curpid = getpid ();
2984 postfork = 1;
2985 }
2986#endif
2987
2988#if EV_FORK_ENABLE
2989 /* we might have forked, so queue fork handlers */
2990 if (expect_false (postfork))
2991 if (forkcnt)
2992 {
2993 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2994 EV_INVOKE_PENDING;
2995 }
2996#endif
2997
2998#if EV_PREPARE_ENABLE
920 /* queue check watchers (and execute them) */ 2999 /* queue prepare watchers (and execute them) */
921 if (expect_false (preparecnt)) 3000 if (expect_false (preparecnt))
922 { 3001 {
923 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3002 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
924 call_pending (EV_A); 3003 EV_INVOKE_PENDING;
925 } 3004 }
3005#endif
3006
3007 if (expect_false (loop_done))
3008 break;
3009
3010 /* we might have forked, so reify kernel state if necessary */
3011 if (expect_false (postfork))
3012 loop_fork (EV_A);
926 3013
927 /* update fd-related kernel structures */ 3014 /* update fd-related kernel structures */
928 fd_reify (EV_A); 3015 fd_reify (EV_A);
929 3016
930 /* calculate blocking time */ 3017 /* calculate blocking time */
3018 {
3019 ev_tstamp waittime = 0.;
3020 ev_tstamp sleeptime = 0.;
931 3021
932 /* we only need this for !monotonic clockor timers, but as we basically 3022 /* remember old timestamp for io_blocktime calculation */
933 always have timers, we just calculate it always */ 3023 ev_tstamp prev_mn_now = mn_now;
934#if EV_USE_MONOTONIC 3024
935 if (expect_true (have_monotonic)) 3025 /* update time to cancel out callback processing overhead */
936 time_update_monotonic (EV_A); 3026 time_update (EV_A_ 1e100);
937 else 3027
938#endif 3028 /* from now on, we want a pipe-wake-up */
3029 pipe_write_wanted = 1;
3030
3031 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3032
3033 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
939 { 3034 {
940 rt_now = ev_time ();
941 mn_now = rt_now;
942 }
943
944 if (flags & EVLOOP_NONBLOCK || idlecnt)
945 block = 0.;
946 else
947 {
948 block = MAX_BLOCKTIME; 3035 waittime = MAX_BLOCKTIME;
949 3036
950 if (timercnt) 3037 if (timercnt)
951 { 3038 {
952 ev_tstamp to = timers [0]->at - mn_now + method_fudge; 3039 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
953 if (block > to) block = to; 3040 if (waittime > to) waittime = to;
954 } 3041 }
955 3042
3043#if EV_PERIODIC_ENABLE
956 if (periodiccnt) 3044 if (periodiccnt)
957 { 3045 {
958 ev_tstamp to = periodics [0]->at - rt_now + method_fudge; 3046 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
959 if (block > to) block = to; 3047 if (waittime > to) waittime = to;
960 } 3048 }
3049#endif
961 3050
962 if (block < 0.) block = 0.; 3051 /* don't let timeouts decrease the waittime below timeout_blocktime */
3052 if (expect_false (waittime < timeout_blocktime))
3053 waittime = timeout_blocktime;
3054
3055 /* at this point, we NEED to wait, so we have to ensure */
3056 /* to pass a minimum nonzero value to the backend */
3057 if (expect_false (waittime < backend_mintime))
3058 waittime = backend_mintime;
3059
3060 /* extra check because io_blocktime is commonly 0 */
3061 if (expect_false (io_blocktime))
3062 {
3063 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3064
3065 if (sleeptime > waittime - backend_mintime)
3066 sleeptime = waittime - backend_mintime;
3067
3068 if (expect_true (sleeptime > 0.))
3069 {
3070 ev_sleep (sleeptime);
3071 waittime -= sleeptime;
3072 }
3073 }
963 } 3074 }
964 3075
965 method_poll (EV_A_ block); 3076#if EV_FEATURE_API
3077 ++loop_count;
3078#endif
3079 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3080 backend_poll (EV_A_ waittime);
3081 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
966 3082
3083 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3084
3085 if (pipe_write_skipped)
3086 {
3087 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3088 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3089 }
3090
3091
967 /* update rt_now, do magic */ 3092 /* update ev_rt_now, do magic */
968 time_update (EV_A); 3093 time_update (EV_A_ waittime + sleeptime);
3094 }
969 3095
970 /* queue pending timers and reschedule them */ 3096 /* queue pending timers and reschedule them */
971 timers_reify (EV_A); /* relative timers called last */ 3097 timers_reify (EV_A); /* relative timers called last */
3098#if EV_PERIODIC_ENABLE
972 periodics_reify (EV_A); /* absolute timers called first */ 3099 periodics_reify (EV_A); /* absolute timers called first */
3100#endif
973 3101
3102#if EV_IDLE_ENABLE
974 /* queue idle watchers unless io or timers are pending */ 3103 /* queue idle watchers unless other events are pending */
975 if (!pendingcnt) 3104 idle_reify (EV_A);
976 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 3105#endif
977 3106
3107#if EV_CHECK_ENABLE
978 /* queue check watchers, to be executed first */ 3108 /* queue check watchers, to be executed first */
979 if (checkcnt) 3109 if (expect_false (checkcnt))
980 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3110 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3111#endif
981 3112
982 call_pending (EV_A); 3113 EV_INVOKE_PENDING;
983 } 3114 }
984 while (activecnt && !loop_done); 3115 while (expect_true (
3116 activecnt
3117 && !loop_done
3118 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3119 ));
985 3120
986 if (loop_done != 2) 3121 if (loop_done == EVBREAK_ONE)
987 loop_done = 0; 3122 loop_done = EVBREAK_CANCEL;
3123
3124#if EV_FEATURE_API
3125 --loop_depth;
3126#endif
3127
3128 return activecnt;
988} 3129}
989 3130
990void 3131void
991ev_unloop (EV_P_ int how) 3132ev_break (EV_P_ int how) EV_THROW
992{ 3133{
993 loop_done = how; 3134 loop_done = how;
994} 3135}
995 3136
3137void
3138ev_ref (EV_P) EV_THROW
3139{
3140 ++activecnt;
3141}
3142
3143void
3144ev_unref (EV_P) EV_THROW
3145{
3146 --activecnt;
3147}
3148
3149void
3150ev_now_update (EV_P) EV_THROW
3151{
3152 time_update (EV_A_ 1e100);
3153}
3154
3155void
3156ev_suspend (EV_P) EV_THROW
3157{
3158 ev_now_update (EV_A);
3159}
3160
3161void
3162ev_resume (EV_P) EV_THROW
3163{
3164 ev_tstamp mn_prev = mn_now;
3165
3166 ev_now_update (EV_A);
3167 timers_reschedule (EV_A_ mn_now - mn_prev);
3168#if EV_PERIODIC_ENABLE
3169 /* TODO: really do this? */
3170 periodics_reschedule (EV_A);
3171#endif
3172}
3173
996/*****************************************************************************/ 3174/*****************************************************************************/
3175/* singly-linked list management, used when the expected list length is short */
997 3176
998inline void 3177inline_size void
999wlist_add (WL *head, WL elem) 3178wlist_add (WL *head, WL elem)
1000{ 3179{
1001 elem->next = *head; 3180 elem->next = *head;
1002 *head = elem; 3181 *head = elem;
1003} 3182}
1004 3183
1005inline void 3184inline_size void
1006wlist_del (WL *head, WL elem) 3185wlist_del (WL *head, WL elem)
1007{ 3186{
1008 while (*head) 3187 while (*head)
1009 { 3188 {
1010 if (*head == elem) 3189 if (expect_true (*head == elem))
1011 { 3190 {
1012 *head = elem->next; 3191 *head = elem->next;
1013 return; 3192 break;
1014 } 3193 }
1015 3194
1016 head = &(*head)->next; 3195 head = &(*head)->next;
1017 } 3196 }
1018} 3197}
1019 3198
3199/* internal, faster, version of ev_clear_pending */
1020inline void 3200inline_speed void
1021ev_clear_pending (EV_P_ W w) 3201clear_pending (EV_P_ W w)
1022{ 3202{
1023 if (w->pending) 3203 if (w->pending)
1024 { 3204 {
1025 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3205 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1026 w->pending = 0; 3206 w->pending = 0;
1027 } 3207 }
1028} 3208}
1029 3209
3210int
3211ev_clear_pending (EV_P_ void *w) EV_THROW
3212{
3213 W w_ = (W)w;
3214 int pending = w_->pending;
3215
3216 if (expect_true (pending))
3217 {
3218 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3219 p->w = (W)&pending_w;
3220 w_->pending = 0;
3221 return p->events;
3222 }
3223 else
3224 return 0;
3225}
3226
1030inline void 3227inline_size void
3228pri_adjust (EV_P_ W w)
3229{
3230 int pri = ev_priority (w);
3231 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3232 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3233 ev_set_priority (w, pri);
3234}
3235
3236inline_speed void
1031ev_start (EV_P_ W w, int active) 3237ev_start (EV_P_ W w, int active)
1032{ 3238{
1033 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 3239 pri_adjust (EV_A_ w);
1034 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1035
1036 w->active = active; 3240 w->active = active;
1037 ev_ref (EV_A); 3241 ev_ref (EV_A);
1038} 3242}
1039 3243
1040inline void 3244inline_size void
1041ev_stop (EV_P_ W w) 3245ev_stop (EV_P_ W w)
1042{ 3246{
1043 ev_unref (EV_A); 3247 ev_unref (EV_A);
1044 w->active = 0; 3248 w->active = 0;
1045} 3249}
1046 3250
1047/*****************************************************************************/ 3251/*****************************************************************************/
1048 3252
1049void 3253void noinline
1050ev_io_start (EV_P_ struct ev_io *w) 3254ev_io_start (EV_P_ ev_io *w) EV_THROW
1051{ 3255{
1052 int fd = w->fd; 3256 int fd = w->fd;
1053 3257
1054 if (ev_is_active (w)) 3258 if (expect_false (ev_is_active (w)))
1055 return; 3259 return;
1056 3260
1057 assert (("ev_io_start called with negative fd", fd >= 0)); 3261 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3262 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3263
3264 EV_FREQUENT_CHECK;
1058 3265
1059 ev_start (EV_A_ (W)w, 1); 3266 ev_start (EV_A_ (W)w, 1);
1060 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 3267 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1061 wlist_add ((WL *)&anfds[fd].head, (WL)w); 3268 wlist_add (&anfds[fd].head, (WL)w);
1062 3269
1063 fd_change (EV_A_ fd); 3270 /* common bug, apparently */
1064} 3271 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
1065 3272
1066void 3273 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3274 w->events &= ~EV__IOFDSET;
3275
3276 EV_FREQUENT_CHECK;
3277}
3278
3279void noinline
1067ev_io_stop (EV_P_ struct ev_io *w) 3280ev_io_stop (EV_P_ ev_io *w) EV_THROW
1068{ 3281{
1069 ev_clear_pending (EV_A_ (W)w); 3282 clear_pending (EV_A_ (W)w);
1070 if (!ev_is_active (w)) 3283 if (expect_false (!ev_is_active (w)))
1071 return; 3284 return;
1072 3285
3286 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3287
3288 EV_FREQUENT_CHECK;
3289
1073 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 3290 wlist_del (&anfds[w->fd].head, (WL)w);
1074 ev_stop (EV_A_ (W)w); 3291 ev_stop (EV_A_ (W)w);
1075 3292
1076 fd_change (EV_A_ w->fd); 3293 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1077}
1078 3294
1079void 3295 EV_FREQUENT_CHECK;
3296}
3297
3298void noinline
1080ev_timer_start (EV_P_ struct ev_timer *w) 3299ev_timer_start (EV_P_ ev_timer *w) EV_THROW
1081{ 3300{
1082 if (ev_is_active (w)) 3301 if (expect_false (ev_is_active (w)))
1083 return; 3302 return;
1084 3303
1085 w->at += mn_now; 3304 ev_at (w) += mn_now;
1086 3305
1087 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3306 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1088 3307
3308 EV_FREQUENT_CHECK;
3309
3310 ++timercnt;
1089 ev_start (EV_A_ (W)w, ++timercnt); 3311 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1090 array_needsize (timers, timermax, timercnt, ); 3312 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1091 timers [timercnt - 1] = w; 3313 ANHE_w (timers [ev_active (w)]) = (WT)w;
1092 upheap ((WT *)timers, timercnt - 1); 3314 ANHE_at_cache (timers [ev_active (w)]);
1093} 3315 upheap (timers, ev_active (w));
1094 3316
1095void 3317 EV_FREQUENT_CHECK;
3318
3319 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3320}
3321
3322void noinline
1096ev_timer_stop (EV_P_ struct ev_timer *w) 3323ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
1097{ 3324{
1098 ev_clear_pending (EV_A_ (W)w); 3325 clear_pending (EV_A_ (W)w);
1099 if (!ev_is_active (w)) 3326 if (expect_false (!ev_is_active (w)))
1100 return; 3327 return;
1101 3328
1102 if (w->active < timercnt--) 3329 EV_FREQUENT_CHECK;
3330
3331 {
3332 int active = ev_active (w);
3333
3334 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3335
3336 --timercnt;
3337
3338 if (expect_true (active < timercnt + HEAP0))
1103 { 3339 {
1104 timers [w->active - 1] = timers [timercnt]; 3340 timers [active] = timers [timercnt + HEAP0];
1105 downheap ((WT *)timers, timercnt, w->active - 1); 3341 adjustheap (timers, timercnt, active);
1106 } 3342 }
3343 }
1107 3344
1108 w->at = w->repeat; 3345 ev_at (w) -= mn_now;
1109 3346
1110 ev_stop (EV_A_ (W)w); 3347 ev_stop (EV_A_ (W)w);
1111}
1112 3348
1113void 3349 EV_FREQUENT_CHECK;
3350}
3351
3352void noinline
1114ev_timer_again (EV_P_ struct ev_timer *w) 3353ev_timer_again (EV_P_ ev_timer *w) EV_THROW
1115{ 3354{
3355 EV_FREQUENT_CHECK;
3356
3357 clear_pending (EV_A_ (W)w);
3358
1116 if (ev_is_active (w)) 3359 if (ev_is_active (w))
1117 { 3360 {
1118 if (w->repeat) 3361 if (w->repeat)
1119 { 3362 {
1120 w->at = mn_now + w->repeat; 3363 ev_at (w) = mn_now + w->repeat;
3364 ANHE_at_cache (timers [ev_active (w)]);
1121 downheap ((WT *)timers, timercnt, w->active - 1); 3365 adjustheap (timers, timercnt, ev_active (w));
1122 } 3366 }
1123 else 3367 else
1124 ev_timer_stop (EV_A_ w); 3368 ev_timer_stop (EV_A_ w);
1125 } 3369 }
1126 else if (w->repeat) 3370 else if (w->repeat)
3371 {
3372 ev_at (w) = w->repeat;
1127 ev_timer_start (EV_A_ w); 3373 ev_timer_start (EV_A_ w);
1128} 3374 }
1129 3375
1130void 3376 EV_FREQUENT_CHECK;
3377}
3378
3379ev_tstamp
3380ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3381{
3382 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3383}
3384
3385#if EV_PERIODIC_ENABLE
3386void noinline
1131ev_periodic_start (EV_P_ struct ev_periodic *w) 3387ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
1132{ 3388{
1133 if (ev_is_active (w)) 3389 if (expect_false (ev_is_active (w)))
1134 return; 3390 return;
1135 3391
3392 if (w->reschedule_cb)
3393 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3394 else if (w->interval)
3395 {
1136 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3396 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
3397 periodic_recalc (EV_A_ w);
3398 }
3399 else
3400 ev_at (w) = w->offset;
1137 3401
1138 /* this formula differs from the one in periodic_reify because we do not always round up */ 3402 EV_FREQUENT_CHECK;
1139 if (w->interval)
1140 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval;
1141 3403
3404 ++periodiccnt;
1142 ev_start (EV_A_ (W)w, ++periodiccnt); 3405 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1143 array_needsize (periodics, periodicmax, periodiccnt, ); 3406 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1144 periodics [periodiccnt - 1] = w; 3407 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1145 upheap ((WT *)periodics, periodiccnt - 1); 3408 ANHE_at_cache (periodics [ev_active (w)]);
1146} 3409 upheap (periodics, ev_active (w));
1147 3410
1148void 3411 EV_FREQUENT_CHECK;
3412
3413 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
3414}
3415
3416void noinline
1149ev_periodic_stop (EV_P_ struct ev_periodic *w) 3417ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
1150{ 3418{
1151 ev_clear_pending (EV_A_ (W)w); 3419 clear_pending (EV_A_ (W)w);
1152 if (!ev_is_active (w)) 3420 if (expect_false (!ev_is_active (w)))
1153 return; 3421 return;
1154 3422
1155 if (w->active < periodiccnt--) 3423 EV_FREQUENT_CHECK;
3424
3425 {
3426 int active = ev_active (w);
3427
3428 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3429
3430 --periodiccnt;
3431
3432 if (expect_true (active < periodiccnt + HEAP0))
1156 { 3433 {
1157 periodics [w->active - 1] = periodics [periodiccnt]; 3434 periodics [active] = periodics [periodiccnt + HEAP0];
1158 downheap ((WT *)periodics, periodiccnt, w->active - 1); 3435 adjustheap (periodics, periodiccnt, active);
1159 } 3436 }
3437 }
1160 3438
1161 ev_stop (EV_A_ (W)w); 3439 ev_stop (EV_A_ (W)w);
1162}
1163 3440
1164void 3441 EV_FREQUENT_CHECK;
1165ev_idle_start (EV_P_ struct ev_idle *w)
1166{
1167 if (ev_is_active (w))
1168 return;
1169
1170 ev_start (EV_A_ (W)w, ++idlecnt);
1171 array_needsize (idles, idlemax, idlecnt, );
1172 idles [idlecnt - 1] = w;
1173} 3442}
1174 3443
1175void 3444void noinline
1176ev_idle_stop (EV_P_ struct ev_idle *w) 3445ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
1177{ 3446{
1178 ev_clear_pending (EV_A_ (W)w); 3447 /* TODO: use adjustheap and recalculation */
1179 if (ev_is_active (w))
1180 return;
1181
1182 idles [w->active - 1] = idles [--idlecnt];
1183 ev_stop (EV_A_ (W)w); 3448 ev_periodic_stop (EV_A_ w);
3449 ev_periodic_start (EV_A_ w);
1184} 3450}
1185 3451#endif
1186void
1187ev_prepare_start (EV_P_ struct ev_prepare *w)
1188{
1189 if (ev_is_active (w))
1190 return;
1191
1192 ev_start (EV_A_ (W)w, ++preparecnt);
1193 array_needsize (prepares, preparemax, preparecnt, );
1194 prepares [preparecnt - 1] = w;
1195}
1196
1197void
1198ev_prepare_stop (EV_P_ struct ev_prepare *w)
1199{
1200 ev_clear_pending (EV_A_ (W)w);
1201 if (ev_is_active (w))
1202 return;
1203
1204 prepares [w->active - 1] = prepares [--preparecnt];
1205 ev_stop (EV_A_ (W)w);
1206}
1207
1208void
1209ev_check_start (EV_P_ struct ev_check *w)
1210{
1211 if (ev_is_active (w))
1212 return;
1213
1214 ev_start (EV_A_ (W)w, ++checkcnt);
1215 array_needsize (checks, checkmax, checkcnt, );
1216 checks [checkcnt - 1] = w;
1217}
1218
1219void
1220ev_check_stop (EV_P_ struct ev_check *w)
1221{
1222 ev_clear_pending (EV_A_ (W)w);
1223 if (ev_is_active (w))
1224 return;
1225
1226 checks [w->active - 1] = checks [--checkcnt];
1227 ev_stop (EV_A_ (W)w);
1228}
1229 3452
1230#ifndef SA_RESTART 3453#ifndef SA_RESTART
1231# define SA_RESTART 0 3454# define SA_RESTART 0
1232#endif 3455#endif
1233 3456
3457#if EV_SIGNAL_ENABLE
3458
3459void noinline
3460ev_signal_start (EV_P_ ev_signal *w) EV_THROW
3461{
3462 if (expect_false (ev_is_active (w)))
3463 return;
3464
3465 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3466
3467#if EV_MULTIPLICITY
3468 assert (("libev: a signal must not be attached to two different loops",
3469 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3470
3471 signals [w->signum - 1].loop = EV_A;
3472#endif
3473
3474 EV_FREQUENT_CHECK;
3475
3476#if EV_USE_SIGNALFD
3477 if (sigfd == -2)
3478 {
3479 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3480 if (sigfd < 0 && errno == EINVAL)
3481 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3482
3483 if (sigfd >= 0)
3484 {
3485 fd_intern (sigfd); /* doing it twice will not hurt */
3486
3487 sigemptyset (&sigfd_set);
3488
3489 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3490 ev_set_priority (&sigfd_w, EV_MAXPRI);
3491 ev_io_start (EV_A_ &sigfd_w);
3492 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3493 }
3494 }
3495
3496 if (sigfd >= 0)
3497 {
3498 /* TODO: check .head */
3499 sigaddset (&sigfd_set, w->signum);
3500 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3501
3502 signalfd (sigfd, &sigfd_set, 0);
3503 }
3504#endif
3505
3506 ev_start (EV_A_ (W)w, 1);
3507 wlist_add (&signals [w->signum - 1].head, (WL)w);
3508
3509 if (!((WL)w)->next)
3510# if EV_USE_SIGNALFD
3511 if (sigfd < 0) /*TODO*/
3512# endif
3513 {
3514# ifdef _WIN32
3515 evpipe_init (EV_A);
3516
3517 signal (w->signum, ev_sighandler);
3518# else
3519 struct sigaction sa;
3520
3521 evpipe_init (EV_A);
3522
3523 sa.sa_handler = ev_sighandler;
3524 sigfillset (&sa.sa_mask);
3525 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3526 sigaction (w->signum, &sa, 0);
3527
3528 if (origflags & EVFLAG_NOSIGMASK)
3529 {
3530 sigemptyset (&sa.sa_mask);
3531 sigaddset (&sa.sa_mask, w->signum);
3532 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3533 }
3534#endif
3535 }
3536
3537 EV_FREQUENT_CHECK;
3538}
3539
3540void noinline
3541ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
3542{
3543 clear_pending (EV_A_ (W)w);
3544 if (expect_false (!ev_is_active (w)))
3545 return;
3546
3547 EV_FREQUENT_CHECK;
3548
3549 wlist_del (&signals [w->signum - 1].head, (WL)w);
3550 ev_stop (EV_A_ (W)w);
3551
3552 if (!signals [w->signum - 1].head)
3553 {
3554#if EV_MULTIPLICITY
3555 signals [w->signum - 1].loop = 0; /* unattach from signal */
3556#endif
3557#if EV_USE_SIGNALFD
3558 if (sigfd >= 0)
3559 {
3560 sigset_t ss;
3561
3562 sigemptyset (&ss);
3563 sigaddset (&ss, w->signum);
3564 sigdelset (&sigfd_set, w->signum);
3565
3566 signalfd (sigfd, &sigfd_set, 0);
3567 sigprocmask (SIG_UNBLOCK, &ss, 0);
3568 }
3569 else
3570#endif
3571 signal (w->signum, SIG_DFL);
3572 }
3573
3574 EV_FREQUENT_CHECK;
3575}
3576
3577#endif
3578
3579#if EV_CHILD_ENABLE
3580
1234void 3581void
1235ev_signal_start (EV_P_ struct ev_signal *w) 3582ev_child_start (EV_P_ ev_child *w) EV_THROW
1236{ 3583{
1237#if EV_MULTIPLICITY 3584#if EV_MULTIPLICITY
1238 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 3585 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1239#endif 3586#endif
1240 if (ev_is_active (w)) 3587 if (expect_false (ev_is_active (w)))
1241 return; 3588 return;
1242 3589
1243 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3590 EV_FREQUENT_CHECK;
1244 3591
1245 ev_start (EV_A_ (W)w, 1); 3592 ev_start (EV_A_ (W)w, 1);
1246 array_needsize (signals, signalmax, w->signum, signals_init); 3593 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1247 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1248 3594
1249 if (!w->next) 3595 EV_FREQUENT_CHECK;
1250 {
1251 struct sigaction sa;
1252 sa.sa_handler = sighandler;
1253 sigfillset (&sa.sa_mask);
1254 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1255 sigaction (w->signum, &sa, 0);
1256 }
1257} 3596}
1258 3597
1259void 3598void
1260ev_signal_stop (EV_P_ struct ev_signal *w) 3599ev_child_stop (EV_P_ ev_child *w) EV_THROW
1261{ 3600{
1262 ev_clear_pending (EV_A_ (W)w); 3601 clear_pending (EV_A_ (W)w);
1263 if (!ev_is_active (w)) 3602 if (expect_false (!ev_is_active (w)))
1264 return; 3603 return;
1265 3604
1266 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3605 EV_FREQUENT_CHECK;
3606
3607 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1267 ev_stop (EV_A_ (W)w); 3608 ev_stop (EV_A_ (W)w);
1268 3609
1269 if (!signals [w->signum - 1].head) 3610 EV_FREQUENT_CHECK;
1270 signal (w->signum, SIG_DFL);
1271} 3611}
3612
3613#endif
3614
3615#if EV_STAT_ENABLE
3616
3617# ifdef _WIN32
3618# undef lstat
3619# define lstat(a,b) _stati64 (a,b)
3620# endif
3621
3622#define DEF_STAT_INTERVAL 5.0074891
3623#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3624#define MIN_STAT_INTERVAL 0.1074891
3625
3626static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3627
3628#if EV_USE_INOTIFY
3629
3630/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3631# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3632
3633static void noinline
3634infy_add (EV_P_ ev_stat *w)
3635{
3636 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3637
3638 if (w->wd >= 0)
3639 {
3640 struct statfs sfs;
3641
3642 /* now local changes will be tracked by inotify, but remote changes won't */
3643 /* unless the filesystem is known to be local, we therefore still poll */
3644 /* also do poll on <2.6.25, but with normal frequency */
3645
3646 if (!fs_2625)
3647 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3648 else if (!statfs (w->path, &sfs)
3649 && (sfs.f_type == 0x1373 /* devfs */
3650 || sfs.f_type == 0xEF53 /* ext2/3 */
3651 || sfs.f_type == 0x3153464a /* jfs */
3652 || sfs.f_type == 0x52654973 /* reiser3 */
3653 || sfs.f_type == 0x01021994 /* tempfs */
3654 || sfs.f_type == 0x58465342 /* xfs */))
3655 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3656 else
3657 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3658 }
3659 else
3660 {
3661 /* can't use inotify, continue to stat */
3662 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3663
3664 /* if path is not there, monitor some parent directory for speedup hints */
3665 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3666 /* but an efficiency issue only */
3667 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3668 {
3669 char path [4096];
3670 strcpy (path, w->path);
3671
3672 do
3673 {
3674 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3675 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3676
3677 char *pend = strrchr (path, '/');
3678
3679 if (!pend || pend == path)
3680 break;
3681
3682 *pend = 0;
3683 w->wd = inotify_add_watch (fs_fd, path, mask);
3684 }
3685 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3686 }
3687 }
3688
3689 if (w->wd >= 0)
3690 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3691
3692 /* now re-arm timer, if required */
3693 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3694 ev_timer_again (EV_A_ &w->timer);
3695 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3696}
3697
3698static void noinline
3699infy_del (EV_P_ ev_stat *w)
3700{
3701 int slot;
3702 int wd = w->wd;
3703
3704 if (wd < 0)
3705 return;
3706
3707 w->wd = -2;
3708 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3709 wlist_del (&fs_hash [slot].head, (WL)w);
3710
3711 /* remove this watcher, if others are watching it, they will rearm */
3712 inotify_rm_watch (fs_fd, wd);
3713}
3714
3715static void noinline
3716infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3717{
3718 if (slot < 0)
3719 /* overflow, need to check for all hash slots */
3720 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3721 infy_wd (EV_A_ slot, wd, ev);
3722 else
3723 {
3724 WL w_;
3725
3726 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3727 {
3728 ev_stat *w = (ev_stat *)w_;
3729 w_ = w_->next; /* lets us remove this watcher and all before it */
3730
3731 if (w->wd == wd || wd == -1)
3732 {
3733 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3734 {
3735 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3736 w->wd = -1;
3737 infy_add (EV_A_ w); /* re-add, no matter what */
3738 }
3739
3740 stat_timer_cb (EV_A_ &w->timer, 0);
3741 }
3742 }
3743 }
3744}
3745
3746static void
3747infy_cb (EV_P_ ev_io *w, int revents)
3748{
3749 char buf [EV_INOTIFY_BUFSIZE];
3750 int ofs;
3751 int len = read (fs_fd, buf, sizeof (buf));
3752
3753 for (ofs = 0; ofs < len; )
3754 {
3755 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3756 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3757 ofs += sizeof (struct inotify_event) + ev->len;
3758 }
3759}
3760
3761inline_size void ecb_cold
3762ev_check_2625 (EV_P)
3763{
3764 /* kernels < 2.6.25 are borked
3765 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3766 */
3767 if (ev_linux_version () < 0x020619)
3768 return;
3769
3770 fs_2625 = 1;
3771}
3772
3773inline_size int
3774infy_newfd (void)
3775{
3776#if defined IN_CLOEXEC && defined IN_NONBLOCK
3777 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3778 if (fd >= 0)
3779 return fd;
3780#endif
3781 return inotify_init ();
3782}
3783
3784inline_size void
3785infy_init (EV_P)
3786{
3787 if (fs_fd != -2)
3788 return;
3789
3790 fs_fd = -1;
3791
3792 ev_check_2625 (EV_A);
3793
3794 fs_fd = infy_newfd ();
3795
3796 if (fs_fd >= 0)
3797 {
3798 fd_intern (fs_fd);
3799 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3800 ev_set_priority (&fs_w, EV_MAXPRI);
3801 ev_io_start (EV_A_ &fs_w);
3802 ev_unref (EV_A);
3803 }
3804}
3805
3806inline_size void
3807infy_fork (EV_P)
3808{
3809 int slot;
3810
3811 if (fs_fd < 0)
3812 return;
3813
3814 ev_ref (EV_A);
3815 ev_io_stop (EV_A_ &fs_w);
3816 close (fs_fd);
3817 fs_fd = infy_newfd ();
3818
3819 if (fs_fd >= 0)
3820 {
3821 fd_intern (fs_fd);
3822 ev_io_set (&fs_w, fs_fd, EV_READ);
3823 ev_io_start (EV_A_ &fs_w);
3824 ev_unref (EV_A);
3825 }
3826
3827 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3828 {
3829 WL w_ = fs_hash [slot].head;
3830 fs_hash [slot].head = 0;
3831
3832 while (w_)
3833 {
3834 ev_stat *w = (ev_stat *)w_;
3835 w_ = w_->next; /* lets us add this watcher */
3836
3837 w->wd = -1;
3838
3839 if (fs_fd >= 0)
3840 infy_add (EV_A_ w); /* re-add, no matter what */
3841 else
3842 {
3843 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3844 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3845 ev_timer_again (EV_A_ &w->timer);
3846 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3847 }
3848 }
3849 }
3850}
3851
3852#endif
3853
3854#ifdef _WIN32
3855# define EV_LSTAT(p,b) _stati64 (p, b)
3856#else
3857# define EV_LSTAT(p,b) lstat (p, b)
3858#endif
1272 3859
1273void 3860void
1274ev_child_start (EV_P_ struct ev_child *w) 3861ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
1275{ 3862{
1276#if EV_MULTIPLICITY 3863 if (lstat (w->path, &w->attr) < 0)
1277 assert (("child watchers are only supported in the default loop", loop == default_loop)); 3864 w->attr.st_nlink = 0;
1278#endif 3865 else if (!w->attr.st_nlink)
3866 w->attr.st_nlink = 1;
3867}
3868
3869static void noinline
3870stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3871{
3872 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3873
3874 ev_statdata prev = w->attr;
3875 ev_stat_stat (EV_A_ w);
3876
3877 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3878 if (
3879 prev.st_dev != w->attr.st_dev
3880 || prev.st_ino != w->attr.st_ino
3881 || prev.st_mode != w->attr.st_mode
3882 || prev.st_nlink != w->attr.st_nlink
3883 || prev.st_uid != w->attr.st_uid
3884 || prev.st_gid != w->attr.st_gid
3885 || prev.st_rdev != w->attr.st_rdev
3886 || prev.st_size != w->attr.st_size
3887 || prev.st_atime != w->attr.st_atime
3888 || prev.st_mtime != w->attr.st_mtime
3889 || prev.st_ctime != w->attr.st_ctime
3890 ) {
3891 /* we only update w->prev on actual differences */
3892 /* in case we test more often than invoke the callback, */
3893 /* to ensure that prev is always different to attr */
3894 w->prev = prev;
3895
3896 #if EV_USE_INOTIFY
3897 if (fs_fd >= 0)
3898 {
3899 infy_del (EV_A_ w);
3900 infy_add (EV_A_ w);
3901 ev_stat_stat (EV_A_ w); /* avoid race... */
3902 }
3903 #endif
3904
3905 ev_feed_event (EV_A_ w, EV_STAT);
3906 }
3907}
3908
3909void
3910ev_stat_start (EV_P_ ev_stat *w) EV_THROW
3911{
1279 if (ev_is_active (w)) 3912 if (expect_false (ev_is_active (w)))
1280 return; 3913 return;
1281 3914
3915 ev_stat_stat (EV_A_ w);
3916
3917 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3918 w->interval = MIN_STAT_INTERVAL;
3919
3920 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3921 ev_set_priority (&w->timer, ev_priority (w));
3922
3923#if EV_USE_INOTIFY
3924 infy_init (EV_A);
3925
3926 if (fs_fd >= 0)
3927 infy_add (EV_A_ w);
3928 else
3929#endif
3930 {
3931 ev_timer_again (EV_A_ &w->timer);
3932 ev_unref (EV_A);
3933 }
3934
1282 ev_start (EV_A_ (W)w, 1); 3935 ev_start (EV_A_ (W)w, 1);
1283 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3936
3937 EV_FREQUENT_CHECK;
1284} 3938}
1285 3939
1286void 3940void
1287ev_child_stop (EV_P_ struct ev_child *w) 3941ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
1288{ 3942{
1289 ev_clear_pending (EV_A_ (W)w); 3943 clear_pending (EV_A_ (W)w);
1290 if (ev_is_active (w)) 3944 if (expect_false (!ev_is_active (w)))
1291 return; 3945 return;
1292 3946
1293 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3947 EV_FREQUENT_CHECK;
3948
3949#if EV_USE_INOTIFY
3950 infy_del (EV_A_ w);
3951#endif
3952
3953 if (ev_is_active (&w->timer))
3954 {
3955 ev_ref (EV_A);
3956 ev_timer_stop (EV_A_ &w->timer);
3957 }
3958
1294 ev_stop (EV_A_ (W)w); 3959 ev_stop (EV_A_ (W)w);
3960
3961 EV_FREQUENT_CHECK;
1295} 3962}
3963#endif
3964
3965#if EV_IDLE_ENABLE
3966void
3967ev_idle_start (EV_P_ ev_idle *w) EV_THROW
3968{
3969 if (expect_false (ev_is_active (w)))
3970 return;
3971
3972 pri_adjust (EV_A_ (W)w);
3973
3974 EV_FREQUENT_CHECK;
3975
3976 {
3977 int active = ++idlecnt [ABSPRI (w)];
3978
3979 ++idleall;
3980 ev_start (EV_A_ (W)w, active);
3981
3982 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3983 idles [ABSPRI (w)][active - 1] = w;
3984 }
3985
3986 EV_FREQUENT_CHECK;
3987}
3988
3989void
3990ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
3991{
3992 clear_pending (EV_A_ (W)w);
3993 if (expect_false (!ev_is_active (w)))
3994 return;
3995
3996 EV_FREQUENT_CHECK;
3997
3998 {
3999 int active = ev_active (w);
4000
4001 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4002 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4003
4004 ev_stop (EV_A_ (W)w);
4005 --idleall;
4006 }
4007
4008 EV_FREQUENT_CHECK;
4009}
4010#endif
4011
4012#if EV_PREPARE_ENABLE
4013void
4014ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
4015{
4016 if (expect_false (ev_is_active (w)))
4017 return;
4018
4019 EV_FREQUENT_CHECK;
4020
4021 ev_start (EV_A_ (W)w, ++preparecnt);
4022 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
4023 prepares [preparecnt - 1] = w;
4024
4025 EV_FREQUENT_CHECK;
4026}
4027
4028void
4029ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
4030{
4031 clear_pending (EV_A_ (W)w);
4032 if (expect_false (!ev_is_active (w)))
4033 return;
4034
4035 EV_FREQUENT_CHECK;
4036
4037 {
4038 int active = ev_active (w);
4039
4040 prepares [active - 1] = prepares [--preparecnt];
4041 ev_active (prepares [active - 1]) = active;
4042 }
4043
4044 ev_stop (EV_A_ (W)w);
4045
4046 EV_FREQUENT_CHECK;
4047}
4048#endif
4049
4050#if EV_CHECK_ENABLE
4051void
4052ev_check_start (EV_P_ ev_check *w) EV_THROW
4053{
4054 if (expect_false (ev_is_active (w)))
4055 return;
4056
4057 EV_FREQUENT_CHECK;
4058
4059 ev_start (EV_A_ (W)w, ++checkcnt);
4060 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4061 checks [checkcnt - 1] = w;
4062
4063 EV_FREQUENT_CHECK;
4064}
4065
4066void
4067ev_check_stop (EV_P_ ev_check *w) EV_THROW
4068{
4069 clear_pending (EV_A_ (W)w);
4070 if (expect_false (!ev_is_active (w)))
4071 return;
4072
4073 EV_FREQUENT_CHECK;
4074
4075 {
4076 int active = ev_active (w);
4077
4078 checks [active - 1] = checks [--checkcnt];
4079 ev_active (checks [active - 1]) = active;
4080 }
4081
4082 ev_stop (EV_A_ (W)w);
4083
4084 EV_FREQUENT_CHECK;
4085}
4086#endif
4087
4088#if EV_EMBED_ENABLE
4089void noinline
4090ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
4091{
4092 ev_run (w->other, EVRUN_NOWAIT);
4093}
4094
4095static void
4096embed_io_cb (EV_P_ ev_io *io, int revents)
4097{
4098 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4099
4100 if (ev_cb (w))
4101 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4102 else
4103 ev_run (w->other, EVRUN_NOWAIT);
4104}
4105
4106static void
4107embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4108{
4109 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4110
4111 {
4112 EV_P = w->other;
4113
4114 while (fdchangecnt)
4115 {
4116 fd_reify (EV_A);
4117 ev_run (EV_A_ EVRUN_NOWAIT);
4118 }
4119 }
4120}
4121
4122static void
4123embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4124{
4125 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4126
4127 ev_embed_stop (EV_A_ w);
4128
4129 {
4130 EV_P = w->other;
4131
4132 ev_loop_fork (EV_A);
4133 ev_run (EV_A_ EVRUN_NOWAIT);
4134 }
4135
4136 ev_embed_start (EV_A_ w);
4137}
4138
4139#if 0
4140static void
4141embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4142{
4143 ev_idle_stop (EV_A_ idle);
4144}
4145#endif
4146
4147void
4148ev_embed_start (EV_P_ ev_embed *w) EV_THROW
4149{
4150 if (expect_false (ev_is_active (w)))
4151 return;
4152
4153 {
4154 EV_P = w->other;
4155 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4156 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4157 }
4158
4159 EV_FREQUENT_CHECK;
4160
4161 ev_set_priority (&w->io, ev_priority (w));
4162 ev_io_start (EV_A_ &w->io);
4163
4164 ev_prepare_init (&w->prepare, embed_prepare_cb);
4165 ev_set_priority (&w->prepare, EV_MINPRI);
4166 ev_prepare_start (EV_A_ &w->prepare);
4167
4168 ev_fork_init (&w->fork, embed_fork_cb);
4169 ev_fork_start (EV_A_ &w->fork);
4170
4171 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4172
4173 ev_start (EV_A_ (W)w, 1);
4174
4175 EV_FREQUENT_CHECK;
4176}
4177
4178void
4179ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
4180{
4181 clear_pending (EV_A_ (W)w);
4182 if (expect_false (!ev_is_active (w)))
4183 return;
4184
4185 EV_FREQUENT_CHECK;
4186
4187 ev_io_stop (EV_A_ &w->io);
4188 ev_prepare_stop (EV_A_ &w->prepare);
4189 ev_fork_stop (EV_A_ &w->fork);
4190
4191 ev_stop (EV_A_ (W)w);
4192
4193 EV_FREQUENT_CHECK;
4194}
4195#endif
4196
4197#if EV_FORK_ENABLE
4198void
4199ev_fork_start (EV_P_ ev_fork *w) EV_THROW
4200{
4201 if (expect_false (ev_is_active (w)))
4202 return;
4203
4204 EV_FREQUENT_CHECK;
4205
4206 ev_start (EV_A_ (W)w, ++forkcnt);
4207 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4208 forks [forkcnt - 1] = w;
4209
4210 EV_FREQUENT_CHECK;
4211}
4212
4213void
4214ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
4215{
4216 clear_pending (EV_A_ (W)w);
4217 if (expect_false (!ev_is_active (w)))
4218 return;
4219
4220 EV_FREQUENT_CHECK;
4221
4222 {
4223 int active = ev_active (w);
4224
4225 forks [active - 1] = forks [--forkcnt];
4226 ev_active (forks [active - 1]) = active;
4227 }
4228
4229 ev_stop (EV_A_ (W)w);
4230
4231 EV_FREQUENT_CHECK;
4232}
4233#endif
4234
4235#if EV_CLEANUP_ENABLE
4236void
4237ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4238{
4239 if (expect_false (ev_is_active (w)))
4240 return;
4241
4242 EV_FREQUENT_CHECK;
4243
4244 ev_start (EV_A_ (W)w, ++cleanupcnt);
4245 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4246 cleanups [cleanupcnt - 1] = w;
4247
4248 /* cleanup watchers should never keep a refcount on the loop */
4249 ev_unref (EV_A);
4250 EV_FREQUENT_CHECK;
4251}
4252
4253void
4254ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4255{
4256 clear_pending (EV_A_ (W)w);
4257 if (expect_false (!ev_is_active (w)))
4258 return;
4259
4260 EV_FREQUENT_CHECK;
4261 ev_ref (EV_A);
4262
4263 {
4264 int active = ev_active (w);
4265
4266 cleanups [active - 1] = cleanups [--cleanupcnt];
4267 ev_active (cleanups [active - 1]) = active;
4268 }
4269
4270 ev_stop (EV_A_ (W)w);
4271
4272 EV_FREQUENT_CHECK;
4273}
4274#endif
4275
4276#if EV_ASYNC_ENABLE
4277void
4278ev_async_start (EV_P_ ev_async *w) EV_THROW
4279{
4280 if (expect_false (ev_is_active (w)))
4281 return;
4282
4283 w->sent = 0;
4284
4285 evpipe_init (EV_A);
4286
4287 EV_FREQUENT_CHECK;
4288
4289 ev_start (EV_A_ (W)w, ++asynccnt);
4290 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4291 asyncs [asynccnt - 1] = w;
4292
4293 EV_FREQUENT_CHECK;
4294}
4295
4296void
4297ev_async_stop (EV_P_ ev_async *w) EV_THROW
4298{
4299 clear_pending (EV_A_ (W)w);
4300 if (expect_false (!ev_is_active (w)))
4301 return;
4302
4303 EV_FREQUENT_CHECK;
4304
4305 {
4306 int active = ev_active (w);
4307
4308 asyncs [active - 1] = asyncs [--asynccnt];
4309 ev_active (asyncs [active - 1]) = active;
4310 }
4311
4312 ev_stop (EV_A_ (W)w);
4313
4314 EV_FREQUENT_CHECK;
4315}
4316
4317void
4318ev_async_send (EV_P_ ev_async *w) EV_THROW
4319{
4320 w->sent = 1;
4321 evpipe_write (EV_A_ &async_pending);
4322}
4323#endif
1296 4324
1297/*****************************************************************************/ 4325/*****************************************************************************/
1298 4326
1299struct ev_once 4327struct ev_once
1300{ 4328{
1301 struct ev_io io; 4329 ev_io io;
1302 struct ev_timer to; 4330 ev_timer to;
1303 void (*cb)(int revents, void *arg); 4331 void (*cb)(int revents, void *arg);
1304 void *arg; 4332 void *arg;
1305}; 4333};
1306 4334
1307static void 4335static void
1308once_cb (EV_P_ struct ev_once *once, int revents) 4336once_cb (EV_P_ struct ev_once *once, int revents)
1309{ 4337{
1310 void (*cb)(int revents, void *arg) = once->cb; 4338 void (*cb)(int revents, void *arg) = once->cb;
1311 void *arg = once->arg; 4339 void *arg = once->arg;
1312 4340
1313 ev_io_stop (EV_A_ &once->io); 4341 ev_io_stop (EV_A_ &once->io);
1314 ev_timer_stop (EV_A_ &once->to); 4342 ev_timer_stop (EV_A_ &once->to);
1315 free (once); 4343 ev_free (once);
1316 4344
1317 cb (revents, arg); 4345 cb (revents, arg);
1318} 4346}
1319 4347
1320static void 4348static void
1321once_cb_io (EV_P_ struct ev_io *w, int revents) 4349once_cb_io (EV_P_ ev_io *w, int revents)
1322{ 4350{
1323 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4351 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4352
4353 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1324} 4354}
1325 4355
1326static void 4356static void
1327once_cb_to (EV_P_ struct ev_timer *w, int revents) 4357once_cb_to (EV_P_ ev_timer *w, int revents)
1328{ 4358{
1329 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4359 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4360
4361 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1330} 4362}
1331 4363
1332void 4364void
1333ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4365ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
1334{ 4366{
1335 struct ev_once *once = malloc (sizeof (struct ev_once)); 4367 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1336 4368
1337 if (!once) 4369 if (expect_false (!once))
4370 {
1338 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4371 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1339 else 4372 return;
1340 { 4373 }
4374
1341 once->cb = cb; 4375 once->cb = cb;
1342 once->arg = arg; 4376 once->arg = arg;
1343 4377
1344 ev_watcher_init (&once->io, once_cb_io); 4378 ev_init (&once->io, once_cb_io);
1345 if (fd >= 0) 4379 if (fd >= 0)
4380 {
4381 ev_io_set (&once->io, fd, events);
4382 ev_io_start (EV_A_ &once->io);
4383 }
4384
4385 ev_init (&once->to, once_cb_to);
4386 if (timeout >= 0.)
4387 {
4388 ev_timer_set (&once->to, timeout, 0.);
4389 ev_timer_start (EV_A_ &once->to);
4390 }
4391}
4392
4393/*****************************************************************************/
4394
4395#if EV_WALK_ENABLE
4396void ecb_cold
4397ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4398{
4399 int i, j;
4400 ev_watcher_list *wl, *wn;
4401
4402 if (types & (EV_IO | EV_EMBED))
4403 for (i = 0; i < anfdmax; ++i)
4404 for (wl = anfds [i].head; wl; )
1346 { 4405 {
1347 ev_io_set (&once->io, fd, events); 4406 wn = wl->next;
1348 ev_io_start (EV_A_ &once->io); 4407
4408#if EV_EMBED_ENABLE
4409 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4410 {
4411 if (types & EV_EMBED)
4412 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4413 }
4414 else
4415#endif
4416#if EV_USE_INOTIFY
4417 if (ev_cb ((ev_io *)wl) == infy_cb)
4418 ;
4419 else
4420#endif
4421 if ((ev_io *)wl != &pipe_w)
4422 if (types & EV_IO)
4423 cb (EV_A_ EV_IO, wl);
4424
4425 wl = wn;
1349 } 4426 }
1350 4427
1351 ev_watcher_init (&once->to, once_cb_to); 4428 if (types & (EV_TIMER | EV_STAT))
1352 if (timeout >= 0.) 4429 for (i = timercnt + HEAP0; i-- > HEAP0; )
4430#if EV_STAT_ENABLE
4431 /*TODO: timer is not always active*/
4432 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1353 { 4433 {
1354 ev_timer_set (&once->to, timeout, 0.); 4434 if (types & EV_STAT)
1355 ev_timer_start (EV_A_ &once->to); 4435 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1356 } 4436 }
1357 } 4437 else
1358} 4438#endif
4439 if (types & EV_TIMER)
4440 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1359 4441
4442#if EV_PERIODIC_ENABLE
4443 if (types & EV_PERIODIC)
4444 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4445 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4446#endif
4447
4448#if EV_IDLE_ENABLE
4449 if (types & EV_IDLE)
4450 for (j = NUMPRI; j--; )
4451 for (i = idlecnt [j]; i--; )
4452 cb (EV_A_ EV_IDLE, idles [j][i]);
4453#endif
4454
4455#if EV_FORK_ENABLE
4456 if (types & EV_FORK)
4457 for (i = forkcnt; i--; )
4458 if (ev_cb (forks [i]) != embed_fork_cb)
4459 cb (EV_A_ EV_FORK, forks [i]);
4460#endif
4461
4462#if EV_ASYNC_ENABLE
4463 if (types & EV_ASYNC)
4464 for (i = asynccnt; i--; )
4465 cb (EV_A_ EV_ASYNC, asyncs [i]);
4466#endif
4467
4468#if EV_PREPARE_ENABLE
4469 if (types & EV_PREPARE)
4470 for (i = preparecnt; i--; )
4471# if EV_EMBED_ENABLE
4472 if (ev_cb (prepares [i]) != embed_prepare_cb)
4473# endif
4474 cb (EV_A_ EV_PREPARE, prepares [i]);
4475#endif
4476
4477#if EV_CHECK_ENABLE
4478 if (types & EV_CHECK)
4479 for (i = checkcnt; i--; )
4480 cb (EV_A_ EV_CHECK, checks [i]);
4481#endif
4482
4483#if EV_SIGNAL_ENABLE
4484 if (types & EV_SIGNAL)
4485 for (i = 0; i < EV_NSIG - 1; ++i)
4486 for (wl = signals [i].head; wl; )
4487 {
4488 wn = wl->next;
4489 cb (EV_A_ EV_SIGNAL, wl);
4490 wl = wn;
4491 }
4492#endif
4493
4494#if EV_CHILD_ENABLE
4495 if (types & EV_CHILD)
4496 for (i = (EV_PID_HASHSIZE); i--; )
4497 for (wl = childs [i]; wl; )
4498 {
4499 wn = wl->next;
4500 cb (EV_A_ EV_CHILD, wl);
4501 wl = wn;
4502 }
4503#endif
4504/* EV_STAT 0x00001000 /* stat data changed */
4505/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4506}
4507#endif
4508
4509#if EV_MULTIPLICITY
4510 #include "ev_wrap.h"
4511#endif
4512

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines