ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.131 by root, Fri Nov 23 05:43:45 2007 UTC vs.
Revision 1.437 by root, Tue May 29 21:03:22 2012 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
37# include "config.h" 45# include "config.h"
46# endif
47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
38 67
39# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
42# endif 71# endif
43# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
45# endif 74# endif
46# else 75# else
47# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
48# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
49# endif 78# endif
50# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
51# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
52# endif 81# endif
53# endif 82# endif
54 83
84# if HAVE_NANOSLEEP
55# ifndef EV_USE_SELECT 85# ifndef EV_USE_NANOSLEEP
56# if HAVE_SELECT && HAVE_SYS_SELECT_H 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
57# define EV_USE_SELECT 1
58# else
59# define EV_USE_SELECT 0
60# endif 87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
61# endif 91# endif
62 92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
63# ifndef EV_USE_POLL 94# ifndef EV_USE_SELECT
64# if HAVE_POLL && HAVE_POLL_H 95# define EV_USE_SELECT EV_FEATURE_BACKENDS
65# define EV_USE_POLL 1
66# else
67# define EV_USE_POLL 0
68# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
100# endif
101
102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
108# define EV_USE_POLL 0
69# endif 109# endif
70 110
71# ifndef EV_USE_EPOLL
72# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
73# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
74# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
75# define EV_USE_EPOLL 0
76# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
77# endif 118# endif
78 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
79# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
80# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
81# define EV_USE_KQUEUE 1
82# else
83# define EV_USE_KQUEUE 0
84# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
85# endif 127# endif
86 128
87# ifndef EV_USE_PORT
88# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
89# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
90# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
91# define EV_USE_PORT 0
92# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
93# endif 136# endif
94 137
138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139# ifndef EV_USE_INOTIFY
140# define EV_USE_INOTIFY EV_FEATURE_OS
141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
95#endif 145# endif
96 146
97#include <math.h> 147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
98#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
99#include <fcntl.h> 169#include <fcntl.h>
100#include <stddef.h> 170#include <stddef.h>
101 171
102#include <stdio.h> 172#include <stdio.h>
103 173
104#include <assert.h> 174#include <assert.h>
105#include <errno.h> 175#include <errno.h>
106#include <sys/types.h> 176#include <sys/types.h>
107#include <time.h> 177#include <time.h>
178#include <limits.h>
108 179
109#include <signal.h> 180#include <signal.h>
110 181
182#ifdef EV_H
183# include EV_H
184#else
185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
197#endif
198
111#ifndef _WIN32 199#ifndef _WIN32
112# include <unistd.h>
113# include <sys/time.h> 200# include <sys/time.h>
114# include <sys/wait.h> 201# include <sys/wait.h>
202# include <unistd.h>
115#else 203#else
204# include <io.h>
116# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
117# include <windows.h> 207# include <windows.h>
118# ifndef EV_SELECT_IS_WINSOCKET 208# ifndef EV_SELECT_IS_WINSOCKET
119# define EV_SELECT_IS_WINSOCKET 1 209# define EV_SELECT_IS_WINSOCKET 1
120# endif 210# endif
211# undef EV_AVOID_STDIO
212#endif
213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
221
222/* this block tries to deduce configuration from header-defined symbols and defaults */
223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# error "unable to find value for NSIG, please report"
247/* to make it compile regardless, just remove the above line, */
248/* but consider reporting it, too! :) */
249# define EV_NSIG 65
250#endif
251
252#ifndef EV_USE_FLOOR
253# define EV_USE_FLOOR 0
254#endif
255
256#ifndef EV_USE_CLOCK_SYSCALL
257# if __linux && __GLIBC__ >= 2
258# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
259# else
260# define EV_USE_CLOCK_SYSCALL 0
121#endif 261# endif
122 262#endif
123/**/
124 263
125#ifndef EV_USE_MONOTONIC 264#ifndef EV_USE_MONOTONIC
265# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
266# define EV_USE_MONOTONIC EV_FEATURE_OS
267# else
126# define EV_USE_MONOTONIC 0 268# define EV_USE_MONOTONIC 0
269# endif
127#endif 270#endif
128 271
129#ifndef EV_USE_REALTIME 272#ifndef EV_USE_REALTIME
130# define EV_USE_REALTIME 0 273# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
274#endif
275
276#ifndef EV_USE_NANOSLEEP
277# if _POSIX_C_SOURCE >= 199309L
278# define EV_USE_NANOSLEEP EV_FEATURE_OS
279# else
280# define EV_USE_NANOSLEEP 0
281# endif
131#endif 282#endif
132 283
133#ifndef EV_USE_SELECT 284#ifndef EV_USE_SELECT
134# define EV_USE_SELECT 1 285# define EV_USE_SELECT EV_FEATURE_BACKENDS
135#endif 286#endif
136 287
137#ifndef EV_USE_POLL 288#ifndef EV_USE_POLL
138# ifdef _WIN32 289# ifdef _WIN32
139# define EV_USE_POLL 0 290# define EV_USE_POLL 0
140# else 291# else
141# define EV_USE_POLL 1 292# define EV_USE_POLL EV_FEATURE_BACKENDS
142# endif 293# endif
143#endif 294#endif
144 295
145#ifndef EV_USE_EPOLL 296#ifndef EV_USE_EPOLL
297# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
298# define EV_USE_EPOLL EV_FEATURE_BACKENDS
299# else
146# define EV_USE_EPOLL 0 300# define EV_USE_EPOLL 0
301# endif
147#endif 302#endif
148 303
149#ifndef EV_USE_KQUEUE 304#ifndef EV_USE_KQUEUE
150# define EV_USE_KQUEUE 0 305# define EV_USE_KQUEUE 0
151#endif 306#endif
152 307
153#ifndef EV_USE_PORT 308#ifndef EV_USE_PORT
154# define EV_USE_PORT 0 309# define EV_USE_PORT 0
155#endif 310#endif
156 311
157/**/ 312#ifndef EV_USE_INOTIFY
313# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
314# define EV_USE_INOTIFY EV_FEATURE_OS
315# else
316# define EV_USE_INOTIFY 0
317# endif
318#endif
319
320#ifndef EV_PID_HASHSIZE
321# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
322#endif
323
324#ifndef EV_INOTIFY_HASHSIZE
325# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
326#endif
327
328#ifndef EV_USE_EVENTFD
329# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
330# define EV_USE_EVENTFD EV_FEATURE_OS
331# else
332# define EV_USE_EVENTFD 0
333# endif
334#endif
335
336#ifndef EV_USE_SIGNALFD
337# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
338# define EV_USE_SIGNALFD EV_FEATURE_OS
339# else
340# define EV_USE_SIGNALFD 0
341# endif
342#endif
343
344#if 0 /* debugging */
345# define EV_VERIFY 3
346# define EV_USE_4HEAP 1
347# define EV_HEAP_CACHE_AT 1
348#endif
349
350#ifndef EV_VERIFY
351# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
352#endif
353
354#ifndef EV_USE_4HEAP
355# define EV_USE_4HEAP EV_FEATURE_DATA
356#endif
357
358#ifndef EV_HEAP_CACHE_AT
359# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
360#endif
361
362/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
363/* which makes programs even slower. might work on other unices, too. */
364#if EV_USE_CLOCK_SYSCALL
365# include <sys/syscall.h>
366# ifdef SYS_clock_gettime
367# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
368# undef EV_USE_MONOTONIC
369# define EV_USE_MONOTONIC 1
370# else
371# undef EV_USE_CLOCK_SYSCALL
372# define EV_USE_CLOCK_SYSCALL 0
373# endif
374#endif
375
376/* this block fixes any misconfiguration where we know we run into trouble otherwise */
377
378#ifdef _AIX
379/* AIX has a completely broken poll.h header */
380# undef EV_USE_POLL
381# define EV_USE_POLL 0
382#endif
158 383
159#ifndef CLOCK_MONOTONIC 384#ifndef CLOCK_MONOTONIC
160# undef EV_USE_MONOTONIC 385# undef EV_USE_MONOTONIC
161# define EV_USE_MONOTONIC 0 386# define EV_USE_MONOTONIC 0
162#endif 387#endif
164#ifndef CLOCK_REALTIME 389#ifndef CLOCK_REALTIME
165# undef EV_USE_REALTIME 390# undef EV_USE_REALTIME
166# define EV_USE_REALTIME 0 391# define EV_USE_REALTIME 0
167#endif 392#endif
168 393
169#if EV_SELECT_IS_WINSOCKET 394#if !EV_STAT_ENABLE
395# undef EV_USE_INOTIFY
396# define EV_USE_INOTIFY 0
397#endif
398
399#if !EV_USE_NANOSLEEP
400/* hp-ux has it in sys/time.h, which we unconditionally include above */
401# if !defined _WIN32 && !defined __hpux
402# include <sys/select.h>
403# endif
404#endif
405
406#if EV_USE_INOTIFY
407# include <sys/statfs.h>
408# include <sys/inotify.h>
409/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
410# ifndef IN_DONT_FOLLOW
411# undef EV_USE_INOTIFY
412# define EV_USE_INOTIFY 0
413# endif
414#endif
415
416#if EV_USE_EVENTFD
417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
170# include <winsock.h> 418# include <stdint.h>
419# ifndef EFD_NONBLOCK
420# define EFD_NONBLOCK O_NONBLOCK
421# endif
422# ifndef EFD_CLOEXEC
423# ifdef O_CLOEXEC
424# define EFD_CLOEXEC O_CLOEXEC
425# else
426# define EFD_CLOEXEC 02000000
427# endif
428# endif
429EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
430#endif
431
432#if EV_USE_SIGNALFD
433/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
434# include <stdint.h>
435# ifndef SFD_NONBLOCK
436# define SFD_NONBLOCK O_NONBLOCK
437# endif
438# ifndef SFD_CLOEXEC
439# ifdef O_CLOEXEC
440# define SFD_CLOEXEC O_CLOEXEC
441# else
442# define SFD_CLOEXEC 02000000
443# endif
444# endif
445EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
446
447struct signalfd_siginfo
448{
449 uint32_t ssi_signo;
450 char pad[128 - sizeof (uint32_t)];
451};
171#endif 452#endif
172 453
173/**/ 454/**/
455
456#if EV_VERIFY >= 3
457# define EV_FREQUENT_CHECK ev_verify (EV_A)
458#else
459# define EV_FREQUENT_CHECK do { } while (0)
460#endif
461
462/*
463 * This is used to work around floating point rounding problems.
464 * This value is good at least till the year 4000.
465 */
466#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
467/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
174 468
175#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 469#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
176#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 470#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
177#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
178/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
179 471
472#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
473#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
474
475/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
476/* ECB.H BEGIN */
477/*
478 * libecb - http://software.schmorp.de/pkg/libecb
479 *
480 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
481 * Copyright (©) 2011 Emanuele Giaquinta
482 * All rights reserved.
483 *
484 * Redistribution and use in source and binary forms, with or without modifica-
485 * tion, are permitted provided that the following conditions are met:
486 *
487 * 1. Redistributions of source code must retain the above copyright notice,
488 * this list of conditions and the following disclaimer.
489 *
490 * 2. Redistributions in binary form must reproduce the above copyright
491 * notice, this list of conditions and the following disclaimer in the
492 * documentation and/or other materials provided with the distribution.
493 *
494 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
495 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
496 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
497 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
498 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
499 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
500 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
501 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
502 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
503 * OF THE POSSIBILITY OF SUCH DAMAGE.
504 */
505
180#ifdef EV_H 506#ifndef ECB_H
181# include EV_H 507#define ECB_H
508
509/* 16 bits major, 16 bits minor */
510#define ECB_VERSION 0x00010001
511
512#ifdef _WIN32
513 typedef signed char int8_t;
514 typedef unsigned char uint8_t;
515 typedef signed short int16_t;
516 typedef unsigned short uint16_t;
517 typedef signed int int32_t;
518 typedef unsigned int uint32_t;
519 #if __GNUC__
520 typedef signed long long int64_t;
521 typedef unsigned long long uint64_t;
522 #else /* _MSC_VER || __BORLANDC__ */
523 typedef signed __int64 int64_t;
524 typedef unsigned __int64 uint64_t;
525 #endif
526 #ifdef _WIN64
527 #define ECB_PTRSIZE 8
528 typedef uint64_t uintptr_t;
529 typedef int64_t intptr_t;
530 #else
531 #define ECB_PTRSIZE 4
532 typedef uint32_t uintptr_t;
533 typedef int32_t intptr_t;
534 #endif
535 typedef intptr_t ptrdiff_t;
182#else 536#else
183# include "ev.h" 537 #include <inttypes.h>
538 #if UINTMAX_MAX > 0xffffffffU
539 #define ECB_PTRSIZE 8
540 #else
541 #define ECB_PTRSIZE 4
184#endif 542 #endif
543#endif
185 544
186#if __GNUC__ >= 3 545/* many compilers define _GNUC_ to some versions but then only implement
187# define expect(expr,value) __builtin_expect ((expr),(value)) 546 * what their idiot authors think are the "more important" extensions,
188# define inline static inline 547 * causing enormous grief in return for some better fake benchmark numbers.
548 * or so.
549 * we try to detect these and simply assume they are not gcc - if they have
550 * an issue with that they should have done it right in the first place.
551 */
552#ifndef ECB_GCC_VERSION
553 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
554 #define ECB_GCC_VERSION(major,minor) 0
555 #else
556 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
557 #endif
558#endif
559
560#define ECB_C (__STDC__+0) /* this assumes that __STDC__ is either empty or a number */
561#define ECB_C99 (__STDC_VERSION__ >= 199901L)
562#define ECB_C11 (__STDC_VERSION__ >= 201112L)
563#define ECB_CPP (__cplusplus+0)
564#define ECB_CPP98 (__cplusplus >= 199711L)
565#define ECB_CPP11 (__cplusplus >= 201103L)
566
567/*****************************************************************************/
568
569/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
570/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
571
572#if ECB_NO_THREADS
573# define ECB_NO_SMP 1
574#endif
575
576#if ECB_NO_SMP
577 #define ECB_MEMORY_FENCE do { } while (0)
578#endif
579
580#ifndef ECB_MEMORY_FENCE
581 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
582 #if __i386 || __i386__
583 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
584 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
585 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
586 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
587 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
588 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
589 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
590 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
591 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
592 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
593 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
594 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
595 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
596 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
597 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
598 #elif __sparc || __sparc__
599 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
600 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
601 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
602 #elif defined __s390__ || defined __s390x__
603 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
604 #elif defined __mips__
605 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
606 #elif defined __alpha__
607 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
608 #elif defined __hppa__
609 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
610 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
611 #elif defined __ia64__
612 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
613 #endif
614 #endif
615#endif
616
617#ifndef ECB_MEMORY_FENCE
618 #if ECB_GCC_VERSION(4,7)
619 /* see comment below about the C11 memory model. in short - avoid */
620 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
621 #elif defined __clang && __has_feature (cxx_atomic)
622 /* see above */
623 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
624 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
625 #define ECB_MEMORY_FENCE __sync_synchronize ()
626 /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */
627 /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); }) */
628 #elif _MSC_VER >= 1400 /* VC++ 2005 */
629 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
630 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
631 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
632 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
633 #elif defined _WIN32
634 #include <WinNT.h>
635 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
636 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
637 #include <mbarrier.h>
638 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
639 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
640 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
641 #elif __xlC__
642 #define ECB_MEMORY_FENCE __sync ()
643 #endif
644#endif
645
646#ifndef ECB_MEMORY_FENCE
647 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
648 /* we assume that these memory fences work on all variables/all memory accesses, */
649 /* not just C11 atomics and atomic accesses */
650 #include <stdatomic.h>
651 /* unfortunately, the C11 memory model seems to be very limited, and unable to express */
652 /* simple barrier semantics. That means we need to take out thor's hammer. */
653 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
654 #endif
655 #endif
656#endif
657
658#ifndef ECB_MEMORY_FENCE
659 #if !ECB_AVOID_PTHREADS
660 /*
661 * if you get undefined symbol references to pthread_mutex_lock,
662 * or failure to find pthread.h, then you should implement
663 * the ECB_MEMORY_FENCE operations for your cpu/compiler
664 * OR provide pthread.h and link against the posix thread library
665 * of your system.
666 */
667 #include <pthread.h>
668 #define ECB_NEEDS_PTHREADS 1
669 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
670
671 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
672 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
673 #endif
674#endif
675
676#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
677 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
678#endif
679
680#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
681 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
682#endif
683
684/*****************************************************************************/
685
686#if __cplusplus
687 #define ecb_inline static inline
688#elif ECB_GCC_VERSION(2,5)
689 #define ecb_inline static __inline__
690#elif ECB_C99
691 #define ecb_inline static inline
189#else 692#else
693 #define ecb_inline static
694#endif
695
696#if ECB_GCC_VERSION(3,3)
697 #define ecb_restrict __restrict__
698#elif ECB_C99
699 #define ecb_restrict restrict
700#else
701 #define ecb_restrict
702#endif
703
704typedef int ecb_bool;
705
706#define ECB_CONCAT_(a, b) a ## b
707#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
708#define ECB_STRINGIFY_(a) # a
709#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
710
711#define ecb_function_ ecb_inline
712
713#if ECB_GCC_VERSION(3,1)
714 #define ecb_attribute(attrlist) __attribute__(attrlist)
715 #define ecb_is_constant(expr) __builtin_constant_p (expr)
716 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
717 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
718#else
719 #define ecb_attribute(attrlist)
720 #define ecb_is_constant(expr) 0
190# define expect(expr,value) (expr) 721 #define ecb_expect(expr,value) (expr)
191# define inline static 722 #define ecb_prefetch(addr,rw,locality)
192#endif 723#endif
193 724
725/* no emulation for ecb_decltype */
726#if ECB_GCC_VERSION(4,5)
727 #define ecb_decltype(x) __decltype(x)
728#elif ECB_GCC_VERSION(3,0)
729 #define ecb_decltype(x) __typeof(x)
730#endif
731
732#define ecb_noinline ecb_attribute ((__noinline__))
733#define ecb_unused ecb_attribute ((__unused__))
734#define ecb_const ecb_attribute ((__const__))
735#define ecb_pure ecb_attribute ((__pure__))
736
737#if ECB_C11
738 #define ecb_noreturn _Noreturn
739#else
740 #define ecb_noreturn ecb_attribute ((__noreturn__))
741#endif
742
743#if ECB_GCC_VERSION(4,3)
744 #define ecb_artificial ecb_attribute ((__artificial__))
745 #define ecb_hot ecb_attribute ((__hot__))
746 #define ecb_cold ecb_attribute ((__cold__))
747#else
748 #define ecb_artificial
749 #define ecb_hot
750 #define ecb_cold
751#endif
752
753/* put around conditional expressions if you are very sure that the */
754/* expression is mostly true or mostly false. note that these return */
755/* booleans, not the expression. */
194#define expect_false(expr) expect ((expr) != 0, 0) 756#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
195#define expect_true(expr) expect ((expr) != 0, 1) 757#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
758/* for compatibility to the rest of the world */
759#define ecb_likely(expr) ecb_expect_true (expr)
760#define ecb_unlikely(expr) ecb_expect_false (expr)
196 761
762/* count trailing zero bits and count # of one bits */
763#if ECB_GCC_VERSION(3,4)
764 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
765 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
766 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
767 #define ecb_ctz32(x) __builtin_ctz (x)
768 #define ecb_ctz64(x) __builtin_ctzll (x)
769 #define ecb_popcount32(x) __builtin_popcount (x)
770 /* no popcountll */
771#else
772 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
773 ecb_function_ int
774 ecb_ctz32 (uint32_t x)
775 {
776 int r = 0;
777
778 x &= ~x + 1; /* this isolates the lowest bit */
779
780#if ECB_branchless_on_i386
781 r += !!(x & 0xaaaaaaaa) << 0;
782 r += !!(x & 0xcccccccc) << 1;
783 r += !!(x & 0xf0f0f0f0) << 2;
784 r += !!(x & 0xff00ff00) << 3;
785 r += !!(x & 0xffff0000) << 4;
786#else
787 if (x & 0xaaaaaaaa) r += 1;
788 if (x & 0xcccccccc) r += 2;
789 if (x & 0xf0f0f0f0) r += 4;
790 if (x & 0xff00ff00) r += 8;
791 if (x & 0xffff0000) r += 16;
792#endif
793
794 return r;
795 }
796
797 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
798 ecb_function_ int
799 ecb_ctz64 (uint64_t x)
800 {
801 int shift = x & 0xffffffffU ? 0 : 32;
802 return ecb_ctz32 (x >> shift) + shift;
803 }
804
805 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
806 ecb_function_ int
807 ecb_popcount32 (uint32_t x)
808 {
809 x -= (x >> 1) & 0x55555555;
810 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
811 x = ((x >> 4) + x) & 0x0f0f0f0f;
812 x *= 0x01010101;
813
814 return x >> 24;
815 }
816
817 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
818 ecb_function_ int ecb_ld32 (uint32_t x)
819 {
820 int r = 0;
821
822 if (x >> 16) { x >>= 16; r += 16; }
823 if (x >> 8) { x >>= 8; r += 8; }
824 if (x >> 4) { x >>= 4; r += 4; }
825 if (x >> 2) { x >>= 2; r += 2; }
826 if (x >> 1) { r += 1; }
827
828 return r;
829 }
830
831 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
832 ecb_function_ int ecb_ld64 (uint64_t x)
833 {
834 int r = 0;
835
836 if (x >> 32) { x >>= 32; r += 32; }
837
838 return r + ecb_ld32 (x);
839 }
840#endif
841
842ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
843ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
844ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
845ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
846
847ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
848ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
849{
850 return ( (x * 0x0802U & 0x22110U)
851 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
852}
853
854ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
855ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
856{
857 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
858 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
859 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
860 x = ( x >> 8 ) | ( x << 8);
861
862 return x;
863}
864
865ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
866ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
867{
868 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
869 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
870 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
871 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
872 x = ( x >> 16 ) | ( x << 16);
873
874 return x;
875}
876
877/* popcount64 is only available on 64 bit cpus as gcc builtin */
878/* so for this version we are lazy */
879ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
880ecb_function_ int
881ecb_popcount64 (uint64_t x)
882{
883 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
884}
885
886ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
887ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
888ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
889ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
890ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
891ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
892ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
893ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
894
895ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
896ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
897ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
898ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
899ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
900ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
901ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
902ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
903
904#if ECB_GCC_VERSION(4,3)
905 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
906 #define ecb_bswap32(x) __builtin_bswap32 (x)
907 #define ecb_bswap64(x) __builtin_bswap64 (x)
908#else
909 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
910 ecb_function_ uint16_t
911 ecb_bswap16 (uint16_t x)
912 {
913 return ecb_rotl16 (x, 8);
914 }
915
916 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
917 ecb_function_ uint32_t
918 ecb_bswap32 (uint32_t x)
919 {
920 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
921 }
922
923 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
924 ecb_function_ uint64_t
925 ecb_bswap64 (uint64_t x)
926 {
927 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
928 }
929#endif
930
931#if ECB_GCC_VERSION(4,5)
932 #define ecb_unreachable() __builtin_unreachable ()
933#else
934 /* this seems to work fine, but gcc always emits a warning for it :/ */
935 ecb_inline void ecb_unreachable (void) ecb_noreturn;
936 ecb_inline void ecb_unreachable (void) { }
937#endif
938
939/* try to tell the compiler that some condition is definitely true */
940#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
941
942ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
943ecb_inline unsigned char
944ecb_byteorder_helper (void)
945{
946 const uint32_t u = 0x11223344;
947 return *(unsigned char *)&u;
948}
949
950ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
951ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
952ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
953ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
954
955#if ECB_GCC_VERSION(3,0) || ECB_C99
956 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
957#else
958 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
959#endif
960
961#if __cplusplus
962 template<typename T>
963 static inline T ecb_div_rd (T val, T div)
964 {
965 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
966 }
967 template<typename T>
968 static inline T ecb_div_ru (T val, T div)
969 {
970 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
971 }
972#else
973 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
974 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
975#endif
976
977#if ecb_cplusplus_does_not_suck
978 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
979 template<typename T, int N>
980 static inline int ecb_array_length (const T (&arr)[N])
981 {
982 return N;
983 }
984#else
985 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
986#endif
987
988#endif
989
990/* ECB.H END */
991
992#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
993/* if your architecture doesn't need memory fences, e.g. because it is
994 * single-cpu/core, or if you use libev in a project that doesn't use libev
995 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
996 * libev, in which cases the memory fences become nops.
997 * alternatively, you can remove this #error and link against libpthread,
998 * which will then provide the memory fences.
999 */
1000# error "memory fences not defined for your architecture, please report"
1001#endif
1002
1003#ifndef ECB_MEMORY_FENCE
1004# define ECB_MEMORY_FENCE do { } while (0)
1005# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1006# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1007#endif
1008
1009#define expect_false(cond) ecb_expect_false (cond)
1010#define expect_true(cond) ecb_expect_true (cond)
1011#define noinline ecb_noinline
1012
1013#define inline_size ecb_inline
1014
1015#if EV_FEATURE_CODE
1016# define inline_speed ecb_inline
1017#else
1018# define inline_speed static noinline
1019#endif
1020
197#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 1021#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1022
1023#if EV_MINPRI == EV_MAXPRI
1024# define ABSPRI(w) (((W)w), 0)
1025#else
198#define ABSPRI(w) ((w)->priority - EV_MINPRI) 1026# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1027#endif
199 1028
200#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 1029#define EMPTY /* required for microsofts broken pseudo-c compiler */
201#define EMPTY2(a,b) /* used to suppress some warnings */ 1030#define EMPTY2(a,b) /* used to suppress some warnings */
202 1031
203typedef struct ev_watcher *W; 1032typedef ev_watcher *W;
204typedef struct ev_watcher_list *WL; 1033typedef ev_watcher_list *WL;
205typedef struct ev_watcher_time *WT; 1034typedef ev_watcher_time *WT;
206 1035
1036#define ev_active(w) ((W)(w))->active
1037#define ev_at(w) ((WT)(w))->at
1038
1039#if EV_USE_REALTIME
1040/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1041/* giving it a reasonably high chance of working on typical architectures */
1042static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1043#endif
1044
1045#if EV_USE_MONOTONIC
207static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1046static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1047#endif
1048
1049#ifndef EV_FD_TO_WIN32_HANDLE
1050# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1051#endif
1052#ifndef EV_WIN32_HANDLE_TO_FD
1053# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1054#endif
1055#ifndef EV_WIN32_CLOSE_FD
1056# define EV_WIN32_CLOSE_FD(fd) close (fd)
1057#endif
208 1058
209#ifdef _WIN32 1059#ifdef _WIN32
210# include "ev_win32.c" 1060# include "ev_win32.c"
211#endif 1061#endif
212 1062
213/*****************************************************************************/ 1063/*****************************************************************************/
214 1064
1065/* define a suitable floor function (only used by periodics atm) */
1066
1067#if EV_USE_FLOOR
1068# include <math.h>
1069# define ev_floor(v) floor (v)
1070#else
1071
1072#include <float.h>
1073
1074/* a floor() replacement function, should be independent of ev_tstamp type */
1075static ev_tstamp noinline
1076ev_floor (ev_tstamp v)
1077{
1078 /* the choice of shift factor is not terribly important */
1079#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1080 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1081#else
1082 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1083#endif
1084
1085 /* argument too large for an unsigned long? */
1086 if (expect_false (v >= shift))
1087 {
1088 ev_tstamp f;
1089
1090 if (v == v - 1.)
1091 return v; /* very large number */
1092
1093 f = shift * ev_floor (v * (1. / shift));
1094 return f + ev_floor (v - f);
1095 }
1096
1097 /* special treatment for negative args? */
1098 if (expect_false (v < 0.))
1099 {
1100 ev_tstamp f = -ev_floor (-v);
1101
1102 return f - (f == v ? 0 : 1);
1103 }
1104
1105 /* fits into an unsigned long */
1106 return (unsigned long)v;
1107}
1108
1109#endif
1110
1111/*****************************************************************************/
1112
1113#ifdef __linux
1114# include <sys/utsname.h>
1115#endif
1116
1117static unsigned int noinline ecb_cold
1118ev_linux_version (void)
1119{
1120#ifdef __linux
1121 unsigned int v = 0;
1122 struct utsname buf;
1123 int i;
1124 char *p = buf.release;
1125
1126 if (uname (&buf))
1127 return 0;
1128
1129 for (i = 3+1; --i; )
1130 {
1131 unsigned int c = 0;
1132
1133 for (;;)
1134 {
1135 if (*p >= '0' && *p <= '9')
1136 c = c * 10 + *p++ - '0';
1137 else
1138 {
1139 p += *p == '.';
1140 break;
1141 }
1142 }
1143
1144 v = (v << 8) | c;
1145 }
1146
1147 return v;
1148#else
1149 return 0;
1150#endif
1151}
1152
1153/*****************************************************************************/
1154
1155#if EV_AVOID_STDIO
1156static void noinline ecb_cold
1157ev_printerr (const char *msg)
1158{
1159 write (STDERR_FILENO, msg, strlen (msg));
1160}
1161#endif
1162
215static void (*syserr_cb)(const char *msg); 1163static void (*syserr_cb)(const char *msg) EV_THROW;
216 1164
1165void ecb_cold
217void ev_set_syserr_cb (void (*cb)(const char *msg)) 1166ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
218{ 1167{
219 syserr_cb = cb; 1168 syserr_cb = cb;
220} 1169}
221 1170
222static void 1171static void noinline ecb_cold
223syserr (const char *msg) 1172ev_syserr (const char *msg)
224{ 1173{
225 if (!msg) 1174 if (!msg)
226 msg = "(libev) system error"; 1175 msg = "(libev) system error";
227 1176
228 if (syserr_cb) 1177 if (syserr_cb)
229 syserr_cb (msg); 1178 syserr_cb (msg);
230 else 1179 else
231 { 1180 {
1181#if EV_AVOID_STDIO
1182 ev_printerr (msg);
1183 ev_printerr (": ");
1184 ev_printerr (strerror (errno));
1185 ev_printerr ("\n");
1186#else
232 perror (msg); 1187 perror (msg);
1188#endif
233 abort (); 1189 abort ();
234 } 1190 }
235} 1191}
236 1192
1193static void *
1194ev_realloc_emul (void *ptr, long size) EV_THROW
1195{
1196#if __GLIBC__
1197 return realloc (ptr, size);
1198#else
1199 /* some systems, notably openbsd and darwin, fail to properly
1200 * implement realloc (x, 0) (as required by both ansi c-89 and
1201 * the single unix specification, so work around them here.
1202 */
1203
1204 if (size)
1205 return realloc (ptr, size);
1206
1207 free (ptr);
1208 return 0;
1209#endif
1210}
1211
237static void *(*alloc)(void *ptr, long size); 1212static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
238 1213
1214void ecb_cold
239void ev_set_allocator (void *(*cb)(void *ptr, long size)) 1215ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
240{ 1216{
241 alloc = cb; 1217 alloc = cb;
242} 1218}
243 1219
244static void * 1220inline_speed void *
245ev_realloc (void *ptr, long size) 1221ev_realloc (void *ptr, long size)
246{ 1222{
247 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1223 ptr = alloc (ptr, size);
248 1224
249 if (!ptr && size) 1225 if (!ptr && size)
250 { 1226 {
1227#if EV_AVOID_STDIO
1228 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1229#else
251 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1230 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1231#endif
252 abort (); 1232 abort ();
253 } 1233 }
254 1234
255 return ptr; 1235 return ptr;
256} 1236}
258#define ev_malloc(size) ev_realloc (0, (size)) 1238#define ev_malloc(size) ev_realloc (0, (size))
259#define ev_free(ptr) ev_realloc ((ptr), 0) 1239#define ev_free(ptr) ev_realloc ((ptr), 0)
260 1240
261/*****************************************************************************/ 1241/*****************************************************************************/
262 1242
1243/* set in reify when reification needed */
1244#define EV_ANFD_REIFY 1
1245
1246/* file descriptor info structure */
263typedef struct 1247typedef struct
264{ 1248{
265 WL head; 1249 WL head;
266 unsigned char events; 1250 unsigned char events; /* the events watched for */
1251 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1252 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
267 unsigned char reify; 1253 unsigned char unused;
1254#if EV_USE_EPOLL
1255 unsigned int egen; /* generation counter to counter epoll bugs */
1256#endif
268#if EV_SELECT_IS_WINSOCKET 1257#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
269 SOCKET handle; 1258 SOCKET handle;
270#endif 1259#endif
1260#if EV_USE_IOCP
1261 OVERLAPPED or, ow;
1262#endif
271} ANFD; 1263} ANFD;
272 1264
1265/* stores the pending event set for a given watcher */
273typedef struct 1266typedef struct
274{ 1267{
275 W w; 1268 W w;
276 int events; 1269 int events; /* the pending event set for the given watcher */
277} ANPENDING; 1270} ANPENDING;
1271
1272#if EV_USE_INOTIFY
1273/* hash table entry per inotify-id */
1274typedef struct
1275{
1276 WL head;
1277} ANFS;
1278#endif
1279
1280/* Heap Entry */
1281#if EV_HEAP_CACHE_AT
1282 /* a heap element */
1283 typedef struct {
1284 ev_tstamp at;
1285 WT w;
1286 } ANHE;
1287
1288 #define ANHE_w(he) (he).w /* access watcher, read-write */
1289 #define ANHE_at(he) (he).at /* access cached at, read-only */
1290 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1291#else
1292 /* a heap element */
1293 typedef WT ANHE;
1294
1295 #define ANHE_w(he) (he)
1296 #define ANHE_at(he) (he)->at
1297 #define ANHE_at_cache(he)
1298#endif
278 1299
279#if EV_MULTIPLICITY 1300#if EV_MULTIPLICITY
280 1301
281 struct ev_loop 1302 struct ev_loop
282 { 1303 {
287 #undef VAR 1308 #undef VAR
288 }; 1309 };
289 #include "ev_wrap.h" 1310 #include "ev_wrap.h"
290 1311
291 static struct ev_loop default_loop_struct; 1312 static struct ev_loop default_loop_struct;
292 struct ev_loop *ev_default_loop_ptr; 1313 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
293 1314
294#else 1315#else
295 1316
296 ev_tstamp ev_rt_now; 1317 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
297 #define VAR(name,decl) static decl; 1318 #define VAR(name,decl) static decl;
298 #include "ev_vars.h" 1319 #include "ev_vars.h"
299 #undef VAR 1320 #undef VAR
300 1321
301 static int ev_default_loop_ptr; 1322 static int ev_default_loop_ptr;
302 1323
303#endif 1324#endif
304 1325
1326#if EV_FEATURE_API
1327# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1328# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1329# define EV_INVOKE_PENDING invoke_cb (EV_A)
1330#else
1331# define EV_RELEASE_CB (void)0
1332# define EV_ACQUIRE_CB (void)0
1333# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1334#endif
1335
1336#define EVBREAK_RECURSE 0x80
1337
305/*****************************************************************************/ 1338/*****************************************************************************/
306 1339
1340#ifndef EV_HAVE_EV_TIME
307ev_tstamp 1341ev_tstamp
308ev_time (void) 1342ev_time (void) EV_THROW
309{ 1343{
310#if EV_USE_REALTIME 1344#if EV_USE_REALTIME
1345 if (expect_true (have_realtime))
1346 {
311 struct timespec ts; 1347 struct timespec ts;
312 clock_gettime (CLOCK_REALTIME, &ts); 1348 clock_gettime (CLOCK_REALTIME, &ts);
313 return ts.tv_sec + ts.tv_nsec * 1e-9; 1349 return ts.tv_sec + ts.tv_nsec * 1e-9;
314#else 1350 }
1351#endif
1352
315 struct timeval tv; 1353 struct timeval tv;
316 gettimeofday (&tv, 0); 1354 gettimeofday (&tv, 0);
317 return tv.tv_sec + tv.tv_usec * 1e-6; 1355 return tv.tv_sec + tv.tv_usec * 1e-6;
318#endif
319} 1356}
1357#endif
320 1358
321inline ev_tstamp 1359inline_size ev_tstamp
322get_clock (void) 1360get_clock (void)
323{ 1361{
324#if EV_USE_MONOTONIC 1362#if EV_USE_MONOTONIC
325 if (expect_true (have_monotonic)) 1363 if (expect_true (have_monotonic))
326 { 1364 {
333 return ev_time (); 1371 return ev_time ();
334} 1372}
335 1373
336#if EV_MULTIPLICITY 1374#if EV_MULTIPLICITY
337ev_tstamp 1375ev_tstamp
338ev_now (EV_P) 1376ev_now (EV_P) EV_THROW
339{ 1377{
340 return ev_rt_now; 1378 return ev_rt_now;
341} 1379}
342#endif 1380#endif
343 1381
344#define array_roundsize(type,n) (((n) | 4) & ~3) 1382void
1383ev_sleep (ev_tstamp delay) EV_THROW
1384{
1385 if (delay > 0.)
1386 {
1387#if EV_USE_NANOSLEEP
1388 struct timespec ts;
1389
1390 EV_TS_SET (ts, delay);
1391 nanosleep (&ts, 0);
1392#elif defined _WIN32
1393 Sleep ((unsigned long)(delay * 1e3));
1394#else
1395 struct timeval tv;
1396
1397 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1398 /* something not guaranteed by newer posix versions, but guaranteed */
1399 /* by older ones */
1400 EV_TV_SET (tv, delay);
1401 select (0, 0, 0, 0, &tv);
1402#endif
1403 }
1404}
1405
1406/*****************************************************************************/
1407
1408#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1409
1410/* find a suitable new size for the given array, */
1411/* hopefully by rounding to a nice-to-malloc size */
1412inline_size int
1413array_nextsize (int elem, int cur, int cnt)
1414{
1415 int ncur = cur + 1;
1416
1417 do
1418 ncur <<= 1;
1419 while (cnt > ncur);
1420
1421 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1422 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1423 {
1424 ncur *= elem;
1425 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1426 ncur = ncur - sizeof (void *) * 4;
1427 ncur /= elem;
1428 }
1429
1430 return ncur;
1431}
1432
1433static void * noinline ecb_cold
1434array_realloc (int elem, void *base, int *cur, int cnt)
1435{
1436 *cur = array_nextsize (elem, *cur, cnt);
1437 return ev_realloc (base, elem * *cur);
1438}
1439
1440#define array_init_zero(base,count) \
1441 memset ((void *)(base), 0, sizeof (*(base)) * (count))
345 1442
346#define array_needsize(type,base,cur,cnt,init) \ 1443#define array_needsize(type,base,cur,cnt,init) \
347 if (expect_false ((cnt) > cur)) \ 1444 if (expect_false ((cnt) > (cur))) \
348 { \ 1445 { \
349 int newcnt = cur; \ 1446 int ecb_unused ocur_ = (cur); \
350 do \ 1447 (base) = (type *)array_realloc \
351 { \ 1448 (sizeof (type), (base), &(cur), (cnt)); \
352 newcnt = array_roundsize (type, newcnt << 1); \ 1449 init ((base) + (ocur_), (cur) - ocur_); \
353 } \
354 while ((cnt) > newcnt); \
355 \
356 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
357 init (base + cur, newcnt - cur); \
358 cur = newcnt; \
359 } 1450 }
360 1451
1452#if 0
361#define array_slim(type,stem) \ 1453#define array_slim(type,stem) \
362 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 1454 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
363 { \ 1455 { \
364 stem ## max = array_roundsize (stem ## cnt >> 1); \ 1456 stem ## max = array_roundsize (stem ## cnt >> 1); \
365 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 1457 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
366 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1458 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
367 } 1459 }
1460#endif
368 1461
369#define array_free(stem, idx) \ 1462#define array_free(stem, idx) \
370 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1463 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
371 1464
372/*****************************************************************************/ 1465/*****************************************************************************/
373 1466
374static void 1467/* dummy callback for pending events */
375anfds_init (ANFD *base, int count) 1468static void noinline
1469pendingcb (EV_P_ ev_prepare *w, int revents)
376{ 1470{
377 while (count--)
378 {
379 base->head = 0;
380 base->events = EV_NONE;
381 base->reify = 0;
382
383 ++base;
384 }
385} 1471}
386 1472
387void 1473void noinline
388ev_feed_event (EV_P_ void *w, int revents) 1474ev_feed_event (EV_P_ void *w, int revents) EV_THROW
389{ 1475{
390 W w_ = (W)w; 1476 W w_ = (W)w;
1477 int pri = ABSPRI (w_);
391 1478
392 if (expect_false (w_->pending)) 1479 if (expect_false (w_->pending))
1480 pendings [pri][w_->pending - 1].events |= revents;
1481 else
393 { 1482 {
1483 w_->pending = ++pendingcnt [pri];
1484 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1485 pendings [pri][w_->pending - 1].w = w_;
394 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 1486 pendings [pri][w_->pending - 1].events = revents;
395 return;
396 } 1487 }
397 1488
398 w_->pending = ++pendingcnt [ABSPRI (w_)]; 1489 pendingpri = NUMPRI - 1;
399 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
400 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
401 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
402} 1490}
403 1491
404static void 1492inline_speed void
1493feed_reverse (EV_P_ W w)
1494{
1495 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1496 rfeeds [rfeedcnt++] = w;
1497}
1498
1499inline_size void
1500feed_reverse_done (EV_P_ int revents)
1501{
1502 do
1503 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1504 while (rfeedcnt);
1505}
1506
1507inline_speed void
405queue_events (EV_P_ W *events, int eventcnt, int type) 1508queue_events (EV_P_ W *events, int eventcnt, int type)
406{ 1509{
407 int i; 1510 int i;
408 1511
409 for (i = 0; i < eventcnt; ++i) 1512 for (i = 0; i < eventcnt; ++i)
410 ev_feed_event (EV_A_ events [i], type); 1513 ev_feed_event (EV_A_ events [i], type);
411} 1514}
412 1515
1516/*****************************************************************************/
1517
413inline void 1518inline_speed void
414fd_event (EV_P_ int fd, int revents) 1519fd_event_nocheck (EV_P_ int fd, int revents)
415{ 1520{
416 ANFD *anfd = anfds + fd; 1521 ANFD *anfd = anfds + fd;
417 struct ev_io *w; 1522 ev_io *w;
418 1523
419 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 1524 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
420 { 1525 {
421 int ev = w->events & revents; 1526 int ev = w->events & revents;
422 1527
423 if (ev) 1528 if (ev)
424 ev_feed_event (EV_A_ (W)w, ev); 1529 ev_feed_event (EV_A_ (W)w, ev);
425 } 1530 }
426} 1531}
427 1532
1533/* do not submit kernel events for fds that have reify set */
1534/* because that means they changed while we were polling for new events */
1535inline_speed void
1536fd_event (EV_P_ int fd, int revents)
1537{
1538 ANFD *anfd = anfds + fd;
1539
1540 if (expect_true (!anfd->reify))
1541 fd_event_nocheck (EV_A_ fd, revents);
1542}
1543
428void 1544void
429ev_feed_fd_event (EV_P_ int fd, int revents) 1545ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
430{ 1546{
1547 if (fd >= 0 && fd < anfdmax)
431 fd_event (EV_A_ fd, revents); 1548 fd_event_nocheck (EV_A_ fd, revents);
432} 1549}
433 1550
434/*****************************************************************************/ 1551/* make sure the external fd watch events are in-sync */
435 1552/* with the kernel/libev internal state */
436inline void 1553inline_size void
437fd_reify (EV_P) 1554fd_reify (EV_P)
438{ 1555{
439 int i; 1556 int i;
440 1557
1558#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
441 for (i = 0; i < fdchangecnt; ++i) 1559 for (i = 0; i < fdchangecnt; ++i)
442 { 1560 {
443 int fd = fdchanges [i]; 1561 int fd = fdchanges [i];
444 ANFD *anfd = anfds + fd; 1562 ANFD *anfd = anfds + fd;
445 struct ev_io *w;
446 1563
447 int events = 0; 1564 if (anfd->reify & EV__IOFDSET && anfd->head)
448
449 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
450 events |= w->events;
451
452#if EV_SELECT_IS_WINSOCKET
453 if (events)
454 { 1565 {
1566 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1567
1568 if (handle != anfd->handle)
1569 {
455 unsigned long argp; 1570 unsigned long arg;
456 anfd->handle = _get_osfhandle (fd); 1571
457 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1572 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1573
1574 /* handle changed, but fd didn't - we need to do it in two steps */
1575 backend_modify (EV_A_ fd, anfd->events, 0);
1576 anfd->events = 0;
1577 anfd->handle = handle;
1578 }
458 } 1579 }
1580 }
459#endif 1581#endif
460 1582
1583 for (i = 0; i < fdchangecnt; ++i)
1584 {
1585 int fd = fdchanges [i];
1586 ANFD *anfd = anfds + fd;
1587 ev_io *w;
1588
1589 unsigned char o_events = anfd->events;
1590 unsigned char o_reify = anfd->reify;
1591
461 anfd->reify = 0; 1592 anfd->reify = 0;
462 1593
1594 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1595 {
1596 anfd->events = 0;
1597
1598 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1599 anfd->events |= (unsigned char)w->events;
1600
1601 if (o_events != anfd->events)
1602 o_reify = EV__IOFDSET; /* actually |= */
1603 }
1604
1605 if (o_reify & EV__IOFDSET)
463 backend_modify (EV_A_ fd, anfd->events, events); 1606 backend_modify (EV_A_ fd, o_events, anfd->events);
464 anfd->events = events;
465 } 1607 }
466 1608
467 fdchangecnt = 0; 1609 fdchangecnt = 0;
468} 1610}
469 1611
470static void 1612/* something about the given fd changed */
1613inline_size void
471fd_change (EV_P_ int fd) 1614fd_change (EV_P_ int fd, int flags)
472{ 1615{
473 if (expect_false (anfds [fd].reify)) 1616 unsigned char reify = anfds [fd].reify;
474 return;
475
476 anfds [fd].reify = 1; 1617 anfds [fd].reify |= flags;
477 1618
1619 if (expect_true (!reify))
1620 {
478 ++fdchangecnt; 1621 ++fdchangecnt;
479 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1622 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
480 fdchanges [fdchangecnt - 1] = fd; 1623 fdchanges [fdchangecnt - 1] = fd;
1624 }
481} 1625}
482 1626
483static void 1627/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1628inline_speed void ecb_cold
484fd_kill (EV_P_ int fd) 1629fd_kill (EV_P_ int fd)
485{ 1630{
486 struct ev_io *w; 1631 ev_io *w;
487 1632
488 while ((w = (struct ev_io *)anfds [fd].head)) 1633 while ((w = (ev_io *)anfds [fd].head))
489 { 1634 {
490 ev_io_stop (EV_A_ w); 1635 ev_io_stop (EV_A_ w);
491 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1636 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
492 } 1637 }
493} 1638}
494 1639
495inline int 1640/* check whether the given fd is actually valid, for error recovery */
1641inline_size int ecb_cold
496fd_valid (int fd) 1642fd_valid (int fd)
497{ 1643{
498#ifdef _WIN32 1644#ifdef _WIN32
499 return _get_osfhandle (fd) != -1; 1645 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
500#else 1646#else
501 return fcntl (fd, F_GETFD) != -1; 1647 return fcntl (fd, F_GETFD) != -1;
502#endif 1648#endif
503} 1649}
504 1650
505/* called on EBADF to verify fds */ 1651/* called on EBADF to verify fds */
506static void 1652static void noinline ecb_cold
507fd_ebadf (EV_P) 1653fd_ebadf (EV_P)
508{ 1654{
509 int fd; 1655 int fd;
510 1656
511 for (fd = 0; fd < anfdmax; ++fd) 1657 for (fd = 0; fd < anfdmax; ++fd)
512 if (anfds [fd].events) 1658 if (anfds [fd].events)
513 if (!fd_valid (fd) == -1 && errno == EBADF) 1659 if (!fd_valid (fd) && errno == EBADF)
514 fd_kill (EV_A_ fd); 1660 fd_kill (EV_A_ fd);
515} 1661}
516 1662
517/* called on ENOMEM in select/poll to kill some fds and retry */ 1663/* called on ENOMEM in select/poll to kill some fds and retry */
518static void 1664static void noinline ecb_cold
519fd_enomem (EV_P) 1665fd_enomem (EV_P)
520{ 1666{
521 int fd; 1667 int fd;
522 1668
523 for (fd = anfdmax; fd--; ) 1669 for (fd = anfdmax; fd--; )
524 if (anfds [fd].events) 1670 if (anfds [fd].events)
525 { 1671 {
526 fd_kill (EV_A_ fd); 1672 fd_kill (EV_A_ fd);
527 return; 1673 break;
528 } 1674 }
529} 1675}
530 1676
531/* usually called after fork if backend needs to re-arm all fds from scratch */ 1677/* usually called after fork if backend needs to re-arm all fds from scratch */
532static void 1678static void noinline
533fd_rearm_all (EV_P) 1679fd_rearm_all (EV_P)
534{ 1680{
535 int fd; 1681 int fd;
536 1682
537 /* this should be highly optimised to not do anything but set a flag */
538 for (fd = 0; fd < anfdmax; ++fd) 1683 for (fd = 0; fd < anfdmax; ++fd)
539 if (anfds [fd].events) 1684 if (anfds [fd].events)
540 { 1685 {
541 anfds [fd].events = 0; 1686 anfds [fd].events = 0;
542 fd_change (EV_A_ fd); 1687 anfds [fd].emask = 0;
1688 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
543 } 1689 }
544} 1690}
545 1691
546/*****************************************************************************/ 1692/* used to prepare libev internal fd's */
547 1693/* this is not fork-safe */
548static void
549upheap (WT *heap, int k)
550{
551 WT w = heap [k];
552
553 while (k && heap [k >> 1]->at > w->at)
554 {
555 heap [k] = heap [k >> 1];
556 ((W)heap [k])->active = k + 1;
557 k >>= 1;
558 }
559
560 heap [k] = w;
561 ((W)heap [k])->active = k + 1;
562
563}
564
565static void
566downheap (WT *heap, int N, int k)
567{
568 WT w = heap [k];
569
570 while (k < (N >> 1))
571 {
572 int j = k << 1;
573
574 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
575 ++j;
576
577 if (w->at <= heap [j]->at)
578 break;
579
580 heap [k] = heap [j];
581 ((W)heap [k])->active = k + 1;
582 k = j;
583 }
584
585 heap [k] = w;
586 ((W)heap [k])->active = k + 1;
587}
588
589inline void 1694inline_speed void
590adjustheap (WT *heap, int N, int k)
591{
592 upheap (heap, k);
593 downheap (heap, N, k);
594}
595
596/*****************************************************************************/
597
598typedef struct
599{
600 WL head;
601 sig_atomic_t volatile gotsig;
602} ANSIG;
603
604static ANSIG *signals;
605static int signalmax;
606
607static int sigpipe [2];
608static sig_atomic_t volatile gotsig;
609static struct ev_io sigev;
610
611static void
612signals_init (ANSIG *base, int count)
613{
614 while (count--)
615 {
616 base->head = 0;
617 base->gotsig = 0;
618
619 ++base;
620 }
621}
622
623static void
624sighandler (int signum)
625{
626#if _WIN32
627 signal (signum, sighandler);
628#endif
629
630 signals [signum - 1].gotsig = 1;
631
632 if (!gotsig)
633 {
634 int old_errno = errno;
635 gotsig = 1;
636 write (sigpipe [1], &signum, 1);
637 errno = old_errno;
638 }
639}
640
641void
642ev_feed_signal_event (EV_P_ int signum)
643{
644 WL w;
645
646#if EV_MULTIPLICITY
647 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
648#endif
649
650 --signum;
651
652 if (signum < 0 || signum >= signalmax)
653 return;
654
655 signals [signum].gotsig = 0;
656
657 for (w = signals [signum].head; w; w = w->next)
658 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
659}
660
661static void
662sigcb (EV_P_ struct ev_io *iow, int revents)
663{
664 int signum;
665
666 read (sigpipe [0], &revents, 1);
667 gotsig = 0;
668
669 for (signum = signalmax; signum--; )
670 if (signals [signum].gotsig)
671 ev_feed_signal_event (EV_A_ signum + 1);
672}
673
674static void
675fd_intern (int fd) 1695fd_intern (int fd)
676{ 1696{
677#ifdef _WIN32 1697#ifdef _WIN32
678 int arg = 1; 1698 unsigned long arg = 1;
679 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1699 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
680#else 1700#else
681 fcntl (fd, F_SETFD, FD_CLOEXEC); 1701 fcntl (fd, F_SETFD, FD_CLOEXEC);
682 fcntl (fd, F_SETFL, O_NONBLOCK); 1702 fcntl (fd, F_SETFL, O_NONBLOCK);
683#endif 1703#endif
684} 1704}
685 1705
1706/*****************************************************************************/
1707
1708/*
1709 * the heap functions want a real array index. array index 0 is guaranteed to not
1710 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1711 * the branching factor of the d-tree.
1712 */
1713
1714/*
1715 * at the moment we allow libev the luxury of two heaps,
1716 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1717 * which is more cache-efficient.
1718 * the difference is about 5% with 50000+ watchers.
1719 */
1720#if EV_USE_4HEAP
1721
1722#define DHEAP 4
1723#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1724#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1725#define UPHEAP_DONE(p,k) ((p) == (k))
1726
1727/* away from the root */
1728inline_speed void
1729downheap (ANHE *heap, int N, int k)
1730{
1731 ANHE he = heap [k];
1732 ANHE *E = heap + N + HEAP0;
1733
1734 for (;;)
1735 {
1736 ev_tstamp minat;
1737 ANHE *minpos;
1738 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1739
1740 /* find minimum child */
1741 if (expect_true (pos + DHEAP - 1 < E))
1742 {
1743 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1744 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1745 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1746 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1747 }
1748 else if (pos < E)
1749 {
1750 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1751 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1752 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1753 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1754 }
1755 else
1756 break;
1757
1758 if (ANHE_at (he) <= minat)
1759 break;
1760
1761 heap [k] = *minpos;
1762 ev_active (ANHE_w (*minpos)) = k;
1763
1764 k = minpos - heap;
1765 }
1766
1767 heap [k] = he;
1768 ev_active (ANHE_w (he)) = k;
1769}
1770
1771#else /* 4HEAP */
1772
1773#define HEAP0 1
1774#define HPARENT(k) ((k) >> 1)
1775#define UPHEAP_DONE(p,k) (!(p))
1776
1777/* away from the root */
1778inline_speed void
1779downheap (ANHE *heap, int N, int k)
1780{
1781 ANHE he = heap [k];
1782
1783 for (;;)
1784 {
1785 int c = k << 1;
1786
1787 if (c >= N + HEAP0)
1788 break;
1789
1790 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1791 ? 1 : 0;
1792
1793 if (ANHE_at (he) <= ANHE_at (heap [c]))
1794 break;
1795
1796 heap [k] = heap [c];
1797 ev_active (ANHE_w (heap [k])) = k;
1798
1799 k = c;
1800 }
1801
1802 heap [k] = he;
1803 ev_active (ANHE_w (he)) = k;
1804}
1805#endif
1806
1807/* towards the root */
1808inline_speed void
1809upheap (ANHE *heap, int k)
1810{
1811 ANHE he = heap [k];
1812
1813 for (;;)
1814 {
1815 int p = HPARENT (k);
1816
1817 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1818 break;
1819
1820 heap [k] = heap [p];
1821 ev_active (ANHE_w (heap [k])) = k;
1822 k = p;
1823 }
1824
1825 heap [k] = he;
1826 ev_active (ANHE_w (he)) = k;
1827}
1828
1829/* move an element suitably so it is in a correct place */
1830inline_size void
1831adjustheap (ANHE *heap, int N, int k)
1832{
1833 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1834 upheap (heap, k);
1835 else
1836 downheap (heap, N, k);
1837}
1838
1839/* rebuild the heap: this function is used only once and executed rarely */
1840inline_size void
1841reheap (ANHE *heap, int N)
1842{
1843 int i;
1844
1845 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1846 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1847 for (i = 0; i < N; ++i)
1848 upheap (heap, i + HEAP0);
1849}
1850
1851/*****************************************************************************/
1852
1853/* associate signal watchers to a signal signal */
1854typedef struct
1855{
1856 EV_ATOMIC_T pending;
1857#if EV_MULTIPLICITY
1858 EV_P;
1859#endif
1860 WL head;
1861} ANSIG;
1862
1863static ANSIG signals [EV_NSIG - 1];
1864
1865/*****************************************************************************/
1866
1867#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1868
1869static void noinline ecb_cold
1870evpipe_init (EV_P)
1871{
1872 if (!ev_is_active (&pipe_w))
1873 {
1874# if EV_USE_EVENTFD
1875 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1876 if (evfd < 0 && errno == EINVAL)
1877 evfd = eventfd (0, 0);
1878
1879 if (evfd >= 0)
1880 {
1881 evpipe [0] = -1;
1882 fd_intern (evfd); /* doing it twice doesn't hurt */
1883 ev_io_set (&pipe_w, evfd, EV_READ);
1884 }
1885 else
1886# endif
1887 {
1888 while (pipe (evpipe))
1889 ev_syserr ("(libev) error creating signal/async pipe");
1890
1891 fd_intern (evpipe [0]);
1892 fd_intern (evpipe [1]);
1893 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1894 }
1895
1896 ev_io_start (EV_A_ &pipe_w);
1897 ev_unref (EV_A); /* watcher should not keep loop alive */
1898 }
1899}
1900
1901inline_speed void
1902evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1903{
1904 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
1905
1906 if (expect_true (*flag))
1907 return;
1908
1909 *flag = 1;
1910 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1911
1912 pipe_write_skipped = 1;
1913
1914 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1915
1916 if (pipe_write_wanted)
1917 {
1918 int old_errno;
1919
1920 pipe_write_skipped = 0;
1921 ECB_MEMORY_FENCE_RELEASE;
1922
1923 old_errno = errno; /* save errno because write will clobber it */
1924
1925#if EV_USE_EVENTFD
1926 if (evfd >= 0)
1927 {
1928 uint64_t counter = 1;
1929 write (evfd, &counter, sizeof (uint64_t));
1930 }
1931 else
1932#endif
1933 {
1934#ifdef _WIN32
1935 WSABUF buf;
1936 DWORD sent;
1937 buf.buf = &buf;
1938 buf.len = 1;
1939 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
1940#else
1941 write (evpipe [1], &(evpipe [1]), 1);
1942#endif
1943 }
1944
1945 errno = old_errno;
1946 }
1947}
1948
1949/* called whenever the libev signal pipe */
1950/* got some events (signal, async) */
686static void 1951static void
687siginit (EV_P) 1952pipecb (EV_P_ ev_io *iow, int revents)
688{ 1953{
689 fd_intern (sigpipe [0]); 1954 int i;
690 fd_intern (sigpipe [1]);
691 1955
692 ev_io_set (&sigev, sigpipe [0], EV_READ); 1956 if (revents & EV_READ)
693 ev_io_start (EV_A_ &sigev); 1957 {
694 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1958#if EV_USE_EVENTFD
1959 if (evfd >= 0)
1960 {
1961 uint64_t counter;
1962 read (evfd, &counter, sizeof (uint64_t));
1963 }
1964 else
1965#endif
1966 {
1967 char dummy[4];
1968#ifdef _WIN32
1969 WSABUF buf;
1970 DWORD recvd;
1971 DWORD flags = 0;
1972 buf.buf = dummy;
1973 buf.len = sizeof (dummy);
1974 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
1975#else
1976 read (evpipe [0], &dummy, sizeof (dummy));
1977#endif
1978 }
1979 }
1980
1981 pipe_write_skipped = 0;
1982
1983 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
1984
1985#if EV_SIGNAL_ENABLE
1986 if (sig_pending)
1987 {
1988 sig_pending = 0;
1989
1990 ECB_MEMORY_FENCE;
1991
1992 for (i = EV_NSIG - 1; i--; )
1993 if (expect_false (signals [i].pending))
1994 ev_feed_signal_event (EV_A_ i + 1);
1995 }
1996#endif
1997
1998#if EV_ASYNC_ENABLE
1999 if (async_pending)
2000 {
2001 async_pending = 0;
2002
2003 ECB_MEMORY_FENCE;
2004
2005 for (i = asynccnt; i--; )
2006 if (asyncs [i]->sent)
2007 {
2008 asyncs [i]->sent = 0;
2009 ECB_MEMORY_FENCE_RELEASE;
2010 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2011 }
2012 }
2013#endif
695} 2014}
696 2015
697/*****************************************************************************/ 2016/*****************************************************************************/
698 2017
699static struct ev_child *childs [PID_HASHSIZE]; 2018void
2019ev_feed_signal (int signum) EV_THROW
2020{
2021#if EV_MULTIPLICITY
2022 EV_P = signals [signum - 1].loop;
700 2023
2024 if (!EV_A)
2025 return;
2026#endif
2027
2028 if (!ev_active (&pipe_w))
2029 return;
2030
2031 signals [signum - 1].pending = 1;
2032 evpipe_write (EV_A_ &sig_pending);
2033}
2034
2035static void
2036ev_sighandler (int signum)
2037{
701#ifndef _WIN32 2038#ifdef _WIN32
2039 signal (signum, ev_sighandler);
2040#endif
702 2041
2042 ev_feed_signal (signum);
2043}
2044
2045void noinline
2046ev_feed_signal_event (EV_P_ int signum) EV_THROW
2047{
2048 WL w;
2049
2050 if (expect_false (signum <= 0 || signum > EV_NSIG))
2051 return;
2052
2053 --signum;
2054
2055#if EV_MULTIPLICITY
2056 /* it is permissible to try to feed a signal to the wrong loop */
2057 /* or, likely more useful, feeding a signal nobody is waiting for */
2058
2059 if (expect_false (signals [signum].loop != EV_A))
2060 return;
2061#endif
2062
2063 signals [signum].pending = 0;
2064 MEMORY_FENCE_RELEASE;
2065
2066 for (w = signals [signum].head; w; w = w->next)
2067 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2068}
2069
2070#if EV_USE_SIGNALFD
2071static void
2072sigfdcb (EV_P_ ev_io *iow, int revents)
2073{
2074 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2075
2076 for (;;)
2077 {
2078 ssize_t res = read (sigfd, si, sizeof (si));
2079
2080 /* not ISO-C, as res might be -1, but works with SuS */
2081 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2082 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2083
2084 if (res < (ssize_t)sizeof (si))
2085 break;
2086 }
2087}
2088#endif
2089
2090#endif
2091
2092/*****************************************************************************/
2093
2094#if EV_CHILD_ENABLE
2095static WL childs [EV_PID_HASHSIZE];
2096
703static struct ev_signal childev; 2097static ev_signal childev;
2098
2099#ifndef WIFCONTINUED
2100# define WIFCONTINUED(status) 0
2101#endif
2102
2103/* handle a single child status event */
2104inline_speed void
2105child_reap (EV_P_ int chain, int pid, int status)
2106{
2107 ev_child *w;
2108 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2109
2110 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2111 {
2112 if ((w->pid == pid || !w->pid)
2113 && (!traced || (w->flags & 1)))
2114 {
2115 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2116 w->rpid = pid;
2117 w->rstatus = status;
2118 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2119 }
2120 }
2121}
704 2122
705#ifndef WCONTINUED 2123#ifndef WCONTINUED
706# define WCONTINUED 0 2124# define WCONTINUED 0
707#endif 2125#endif
708 2126
2127/* called on sigchld etc., calls waitpid */
709static void 2128static void
710child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
711{
712 struct ev_child *w;
713
714 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
715 if (w->pid == pid || !w->pid)
716 {
717 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
718 w->rpid = pid;
719 w->rstatus = status;
720 ev_feed_event (EV_A_ (W)w, EV_CHILD);
721 }
722}
723
724static void
725childcb (EV_P_ struct ev_signal *sw, int revents) 2129childcb (EV_P_ ev_signal *sw, int revents)
726{ 2130{
727 int pid, status; 2131 int pid, status;
728 2132
2133 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
729 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 2134 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
730 { 2135 if (!WCONTINUED
2136 || errno != EINVAL
2137 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2138 return;
2139
731 /* make sure we are called again until all childs have been reaped */ 2140 /* make sure we are called again until all children have been reaped */
2141 /* we need to do it this way so that the callback gets called before we continue */
732 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2142 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
733 2143
734 child_reap (EV_A_ sw, pid, pid, status); 2144 child_reap (EV_A_ pid, pid, status);
2145 if ((EV_PID_HASHSIZE) > 1)
735 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 2146 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
736 }
737} 2147}
738 2148
739#endif 2149#endif
740 2150
741/*****************************************************************************/ 2151/*****************************************************************************/
742 2152
2153#if EV_USE_IOCP
2154# include "ev_iocp.c"
2155#endif
743#if EV_USE_PORT 2156#if EV_USE_PORT
744# include "ev_port.c" 2157# include "ev_port.c"
745#endif 2158#endif
746#if EV_USE_KQUEUE 2159#if EV_USE_KQUEUE
747# include "ev_kqueue.c" 2160# include "ev_kqueue.c"
754#endif 2167#endif
755#if EV_USE_SELECT 2168#if EV_USE_SELECT
756# include "ev_select.c" 2169# include "ev_select.c"
757#endif 2170#endif
758 2171
759int 2172int ecb_cold
760ev_version_major (void) 2173ev_version_major (void) EV_THROW
761{ 2174{
762 return EV_VERSION_MAJOR; 2175 return EV_VERSION_MAJOR;
763} 2176}
764 2177
765int 2178int ecb_cold
766ev_version_minor (void) 2179ev_version_minor (void) EV_THROW
767{ 2180{
768 return EV_VERSION_MINOR; 2181 return EV_VERSION_MINOR;
769} 2182}
770 2183
771/* return true if we are running with elevated privileges and should ignore env variables */ 2184/* return true if we are running with elevated privileges and should ignore env variables */
772static int 2185int inline_size ecb_cold
773enable_secure (void) 2186enable_secure (void)
774{ 2187{
775#ifdef _WIN32 2188#ifdef _WIN32
776 return 0; 2189 return 0;
777#else 2190#else
778 return getuid () != geteuid () 2191 return getuid () != geteuid ()
779 || getgid () != getegid (); 2192 || getgid () != getegid ();
780#endif 2193#endif
781} 2194}
782 2195
783unsigned int 2196unsigned int ecb_cold
784ev_supported_backends (void) 2197ev_supported_backends (void) EV_THROW
785{ 2198{
786 unsigned int flags = 0; 2199 unsigned int flags = 0;
787 2200
788 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2201 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
789 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2202 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
792 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2205 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
793 2206
794 return flags; 2207 return flags;
795} 2208}
796 2209
797unsigned int 2210unsigned int ecb_cold
798ev_recommended_backends (void) 2211ev_recommended_backends (void) EV_THROW
799{ 2212{
800 unsigned int flags = ev_supported_backends (); 2213 unsigned int flags = ev_supported_backends ();
801 2214
802#ifndef __NetBSD__ 2215#ifndef __NetBSD__
803 /* kqueue is borked on everything but netbsd apparently */ 2216 /* kqueue is borked on everything but netbsd apparently */
804 /* it usually doesn't work correctly on anything but sockets and pipes */ 2217 /* it usually doesn't work correctly on anything but sockets and pipes */
805 flags &= ~EVBACKEND_KQUEUE; 2218 flags &= ~EVBACKEND_KQUEUE;
806#endif 2219#endif
807#ifdef __APPLE__ 2220#ifdef __APPLE__
808 // flags &= ~EVBACKEND_KQUEUE; for documentation 2221 /* only select works correctly on that "unix-certified" platform */
809 flags &= ~EVBACKEND_POLL; 2222 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2223 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2224#endif
2225#ifdef __FreeBSD__
2226 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
810#endif 2227#endif
811 2228
812 return flags; 2229 return flags;
813} 2230}
814 2231
2232unsigned int ecb_cold
2233ev_embeddable_backends (void) EV_THROW
2234{
2235 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2236
2237 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2238 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2239 flags &= ~EVBACKEND_EPOLL;
2240
2241 return flags;
2242}
2243
815unsigned int 2244unsigned int
816ev_backend (EV_P) 2245ev_backend (EV_P) EV_THROW
817{ 2246{
818 return backend; 2247 return backend;
819} 2248}
820 2249
821static void 2250#if EV_FEATURE_API
2251unsigned int
2252ev_iteration (EV_P) EV_THROW
2253{
2254 return loop_count;
2255}
2256
2257unsigned int
2258ev_depth (EV_P) EV_THROW
2259{
2260 return loop_depth;
2261}
2262
2263void
2264ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2265{
2266 io_blocktime = interval;
2267}
2268
2269void
2270ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2271{
2272 timeout_blocktime = interval;
2273}
2274
2275void
2276ev_set_userdata (EV_P_ void *data) EV_THROW
2277{
2278 userdata = data;
2279}
2280
2281void *
2282ev_userdata (EV_P) EV_THROW
2283{
2284 return userdata;
2285}
2286
2287void
2288ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2289{
2290 invoke_cb = invoke_pending_cb;
2291}
2292
2293void
2294ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2295{
2296 release_cb = release;
2297 acquire_cb = acquire;
2298}
2299#endif
2300
2301/* initialise a loop structure, must be zero-initialised */
2302static void noinline ecb_cold
822loop_init (EV_P_ unsigned int flags) 2303loop_init (EV_P_ unsigned int flags) EV_THROW
823{ 2304{
824 if (!backend) 2305 if (!backend)
825 { 2306 {
2307 origflags = flags;
2308
2309#if EV_USE_REALTIME
2310 if (!have_realtime)
2311 {
2312 struct timespec ts;
2313
2314 if (!clock_gettime (CLOCK_REALTIME, &ts))
2315 have_realtime = 1;
2316 }
2317#endif
2318
826#if EV_USE_MONOTONIC 2319#if EV_USE_MONOTONIC
2320 if (!have_monotonic)
827 { 2321 {
828 struct timespec ts; 2322 struct timespec ts;
2323
829 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2324 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
830 have_monotonic = 1; 2325 have_monotonic = 1;
831 } 2326 }
832#endif 2327#endif
833 2328
834 ev_rt_now = ev_time (); 2329 /* pid check not overridable via env */
835 mn_now = get_clock (); 2330#ifndef _WIN32
836 now_floor = mn_now; 2331 if (flags & EVFLAG_FORKCHECK)
837 rtmn_diff = ev_rt_now - mn_now; 2332 curpid = getpid ();
2333#endif
838 2334
839 if (!(flags & EVFLAG_NOENV) 2335 if (!(flags & EVFLAG_NOENV)
840 && !enable_secure () 2336 && !enable_secure ()
841 && getenv ("LIBEV_FLAGS")) 2337 && getenv ("LIBEV_FLAGS"))
842 flags = atoi (getenv ("LIBEV_FLAGS")); 2338 flags = atoi (getenv ("LIBEV_FLAGS"));
843 2339
844 if (!(flags & 0x0000ffffUL)) 2340 ev_rt_now = ev_time ();
2341 mn_now = get_clock ();
2342 now_floor = mn_now;
2343 rtmn_diff = ev_rt_now - mn_now;
2344#if EV_FEATURE_API
2345 invoke_cb = ev_invoke_pending;
2346#endif
2347
2348 io_blocktime = 0.;
2349 timeout_blocktime = 0.;
2350 backend = 0;
2351 backend_fd = -1;
2352 sig_pending = 0;
2353#if EV_ASYNC_ENABLE
2354 async_pending = 0;
2355#endif
2356 pipe_write_skipped = 0;
2357 pipe_write_wanted = 0;
2358#if EV_USE_INOTIFY
2359 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2360#endif
2361#if EV_USE_SIGNALFD
2362 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2363#endif
2364
2365 if (!(flags & EVBACKEND_MASK))
845 flags |= ev_recommended_backends (); 2366 flags |= ev_recommended_backends ();
846 2367
847 backend = 0; 2368#if EV_USE_IOCP
2369 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2370#endif
848#if EV_USE_PORT 2371#if EV_USE_PORT
849 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2372 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
850#endif 2373#endif
851#if EV_USE_KQUEUE 2374#if EV_USE_KQUEUE
852 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2375 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
859#endif 2382#endif
860#if EV_USE_SELECT 2383#if EV_USE_SELECT
861 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2384 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
862#endif 2385#endif
863 2386
2387 ev_prepare_init (&pending_w, pendingcb);
2388
2389#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
864 ev_init (&sigev, sigcb); 2390 ev_init (&pipe_w, pipecb);
865 ev_set_priority (&sigev, EV_MAXPRI); 2391 ev_set_priority (&pipe_w, EV_MAXPRI);
2392#endif
866 } 2393 }
867} 2394}
868 2395
869static void 2396/* free up a loop structure */
2397void ecb_cold
870loop_destroy (EV_P) 2398ev_loop_destroy (EV_P)
871{ 2399{
872 int i; 2400 int i;
873 2401
2402#if EV_MULTIPLICITY
2403 /* mimic free (0) */
2404 if (!EV_A)
2405 return;
2406#endif
2407
2408#if EV_CLEANUP_ENABLE
2409 /* queue cleanup watchers (and execute them) */
2410 if (expect_false (cleanupcnt))
2411 {
2412 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2413 EV_INVOKE_PENDING;
2414 }
2415#endif
2416
2417#if EV_CHILD_ENABLE
2418 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2419 {
2420 ev_ref (EV_A); /* child watcher */
2421 ev_signal_stop (EV_A_ &childev);
2422 }
2423#endif
2424
2425 if (ev_is_active (&pipe_w))
2426 {
2427 /*ev_ref (EV_A);*/
2428 /*ev_io_stop (EV_A_ &pipe_w);*/
2429
2430#if EV_USE_EVENTFD
2431 if (evfd >= 0)
2432 close (evfd);
2433#endif
2434
2435 if (evpipe [0] >= 0)
2436 {
2437 EV_WIN32_CLOSE_FD (evpipe [0]);
2438 EV_WIN32_CLOSE_FD (evpipe [1]);
2439 }
2440 }
2441
2442#if EV_USE_SIGNALFD
2443 if (ev_is_active (&sigfd_w))
2444 close (sigfd);
2445#endif
2446
2447#if EV_USE_INOTIFY
2448 if (fs_fd >= 0)
2449 close (fs_fd);
2450#endif
2451
2452 if (backend_fd >= 0)
2453 close (backend_fd);
2454
2455#if EV_USE_IOCP
2456 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2457#endif
874#if EV_USE_PORT 2458#if EV_USE_PORT
875 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2459 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
876#endif 2460#endif
877#if EV_USE_KQUEUE 2461#if EV_USE_KQUEUE
878 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2462 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
886#if EV_USE_SELECT 2470#if EV_USE_SELECT
887 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 2471 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
888#endif 2472#endif
889 2473
890 for (i = NUMPRI; i--; ) 2474 for (i = NUMPRI; i--; )
2475 {
891 array_free (pending, [i]); 2476 array_free (pending, [i]);
2477#if EV_IDLE_ENABLE
2478 array_free (idle, [i]);
2479#endif
2480 }
2481
2482 ev_free (anfds); anfds = 0; anfdmax = 0;
892 2483
893 /* have to use the microsoft-never-gets-it-right macro */ 2484 /* have to use the microsoft-never-gets-it-right macro */
2485 array_free (rfeed, EMPTY);
894 array_free (fdchange, EMPTY0); 2486 array_free (fdchange, EMPTY);
895 array_free (timer, EMPTY0); 2487 array_free (timer, EMPTY);
896#if EV_PERIODICS 2488#if EV_PERIODIC_ENABLE
897 array_free (periodic, EMPTY0); 2489 array_free (periodic, EMPTY);
898#endif 2490#endif
2491#if EV_FORK_ENABLE
2492 array_free (fork, EMPTY);
2493#endif
2494#if EV_CLEANUP_ENABLE
899 array_free (idle, EMPTY0); 2495 array_free (cleanup, EMPTY);
2496#endif
900 array_free (prepare, EMPTY0); 2497 array_free (prepare, EMPTY);
901 array_free (check, EMPTY0); 2498 array_free (check, EMPTY);
2499#if EV_ASYNC_ENABLE
2500 array_free (async, EMPTY);
2501#endif
902 2502
903 backend = 0; 2503 backend = 0;
904}
905 2504
906static void 2505#if EV_MULTIPLICITY
2506 if (ev_is_default_loop (EV_A))
2507#endif
2508 ev_default_loop_ptr = 0;
2509#if EV_MULTIPLICITY
2510 else
2511 ev_free (EV_A);
2512#endif
2513}
2514
2515#if EV_USE_INOTIFY
2516inline_size void infy_fork (EV_P);
2517#endif
2518
2519inline_size void
907loop_fork (EV_P) 2520loop_fork (EV_P)
908{ 2521{
909#if EV_USE_PORT 2522#if EV_USE_PORT
910 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2523 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
911#endif 2524#endif
913 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 2526 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
914#endif 2527#endif
915#if EV_USE_EPOLL 2528#if EV_USE_EPOLL
916 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 2529 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
917#endif 2530#endif
2531#if EV_USE_INOTIFY
2532 infy_fork (EV_A);
2533#endif
918 2534
919 if (ev_is_active (&sigev)) 2535 if (ev_is_active (&pipe_w))
920 { 2536 {
921 /* default loop */ 2537 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
922 2538
923 ev_ref (EV_A); 2539 ev_ref (EV_A);
924 ev_io_stop (EV_A_ &sigev); 2540 ev_io_stop (EV_A_ &pipe_w);
925 close (sigpipe [0]);
926 close (sigpipe [1]);
927 2541
928 while (pipe (sigpipe)) 2542#if EV_USE_EVENTFD
929 syserr ("(libev) error creating pipe"); 2543 if (evfd >= 0)
2544 close (evfd);
2545#endif
930 2546
2547 if (evpipe [0] >= 0)
2548 {
2549 EV_WIN32_CLOSE_FD (evpipe [0]);
2550 EV_WIN32_CLOSE_FD (evpipe [1]);
2551 }
2552
2553#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
931 siginit (EV_A); 2554 evpipe_init (EV_A);
2555 /* now iterate over everything, in case we missed something */
2556 pipecb (EV_A_ &pipe_w, EV_READ);
2557#endif
932 } 2558 }
933 2559
934 postfork = 0; 2560 postfork = 0;
935} 2561}
936 2562
937#if EV_MULTIPLICITY 2563#if EV_MULTIPLICITY
2564
938struct ev_loop * 2565struct ev_loop * ecb_cold
939ev_loop_new (unsigned int flags) 2566ev_loop_new (unsigned int flags) EV_THROW
940{ 2567{
941 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2568 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
942 2569
943 memset (loop, 0, sizeof (struct ev_loop)); 2570 memset (EV_A, 0, sizeof (struct ev_loop));
944
945 loop_init (EV_A_ flags); 2571 loop_init (EV_A_ flags);
946 2572
947 if (ev_backend (EV_A)) 2573 if (ev_backend (EV_A))
948 return loop; 2574 return EV_A;
949 2575
2576 ev_free (EV_A);
950 return 0; 2577 return 0;
951} 2578}
952 2579
953void 2580#endif /* multiplicity */
954ev_loop_destroy (EV_P)
955{
956 loop_destroy (EV_A);
957 ev_free (loop);
958}
959 2581
960void 2582#if EV_VERIFY
961ev_loop_fork (EV_P) 2583static void noinline ecb_cold
2584verify_watcher (EV_P_ W w)
962{ 2585{
963 postfork = 1; 2586 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
964}
965 2587
2588 if (w->pending)
2589 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2590}
2591
2592static void noinline ecb_cold
2593verify_heap (EV_P_ ANHE *heap, int N)
2594{
2595 int i;
2596
2597 for (i = HEAP0; i < N + HEAP0; ++i)
2598 {
2599 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2600 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2601 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2602
2603 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2604 }
2605}
2606
2607static void noinline ecb_cold
2608array_verify (EV_P_ W *ws, int cnt)
2609{
2610 while (cnt--)
2611 {
2612 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2613 verify_watcher (EV_A_ ws [cnt]);
2614 }
2615}
2616#endif
2617
2618#if EV_FEATURE_API
2619void ecb_cold
2620ev_verify (EV_P) EV_THROW
2621{
2622#if EV_VERIFY
2623 int i;
2624 WL w, w2;
2625
2626 assert (activecnt >= -1);
2627
2628 assert (fdchangemax >= fdchangecnt);
2629 for (i = 0; i < fdchangecnt; ++i)
2630 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2631
2632 assert (anfdmax >= 0);
2633 for (i = 0; i < anfdmax; ++i)
2634 {
2635 int j = 0;
2636
2637 for (w = w2 = anfds [i].head; w; w = w->next)
2638 {
2639 verify_watcher (EV_A_ (W)w);
2640
2641 if (j++ & 1)
2642 {
2643 assert (("libev: io watcher list contains a loop", w != w2));
2644 w2 = w2->next;
2645 }
2646
2647 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2648 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2649 }
2650 }
2651
2652 assert (timermax >= timercnt);
2653 verify_heap (EV_A_ timers, timercnt);
2654
2655#if EV_PERIODIC_ENABLE
2656 assert (periodicmax >= periodiccnt);
2657 verify_heap (EV_A_ periodics, periodiccnt);
2658#endif
2659
2660 for (i = NUMPRI; i--; )
2661 {
2662 assert (pendingmax [i] >= pendingcnt [i]);
2663#if EV_IDLE_ENABLE
2664 assert (idleall >= 0);
2665 assert (idlemax [i] >= idlecnt [i]);
2666 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2667#endif
2668 }
2669
2670#if EV_FORK_ENABLE
2671 assert (forkmax >= forkcnt);
2672 array_verify (EV_A_ (W *)forks, forkcnt);
2673#endif
2674
2675#if EV_CLEANUP_ENABLE
2676 assert (cleanupmax >= cleanupcnt);
2677 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2678#endif
2679
2680#if EV_ASYNC_ENABLE
2681 assert (asyncmax >= asynccnt);
2682 array_verify (EV_A_ (W *)asyncs, asynccnt);
2683#endif
2684
2685#if EV_PREPARE_ENABLE
2686 assert (preparemax >= preparecnt);
2687 array_verify (EV_A_ (W *)prepares, preparecnt);
2688#endif
2689
2690#if EV_CHECK_ENABLE
2691 assert (checkmax >= checkcnt);
2692 array_verify (EV_A_ (W *)checks, checkcnt);
2693#endif
2694
2695# if 0
2696#if EV_CHILD_ENABLE
2697 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2698 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2699#endif
2700# endif
2701#endif
2702}
966#endif 2703#endif
967 2704
968#if EV_MULTIPLICITY 2705#if EV_MULTIPLICITY
969struct ev_loop * 2706struct ev_loop * ecb_cold
970ev_default_loop_init (unsigned int flags)
971#else 2707#else
972int 2708int
2709#endif
973ev_default_loop (unsigned int flags) 2710ev_default_loop (unsigned int flags) EV_THROW
974#endif
975{ 2711{
976 if (sigpipe [0] == sigpipe [1])
977 if (pipe (sigpipe))
978 return 0;
979
980 if (!ev_default_loop_ptr) 2712 if (!ev_default_loop_ptr)
981 { 2713 {
982#if EV_MULTIPLICITY 2714#if EV_MULTIPLICITY
983 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2715 EV_P = ev_default_loop_ptr = &default_loop_struct;
984#else 2716#else
985 ev_default_loop_ptr = 1; 2717 ev_default_loop_ptr = 1;
986#endif 2718#endif
987 2719
988 loop_init (EV_A_ flags); 2720 loop_init (EV_A_ flags);
989 2721
990 if (ev_backend (EV_A)) 2722 if (ev_backend (EV_A))
991 { 2723 {
992 siginit (EV_A); 2724#if EV_CHILD_ENABLE
993
994#ifndef _WIN32
995 ev_signal_init (&childev, childcb, SIGCHLD); 2725 ev_signal_init (&childev, childcb, SIGCHLD);
996 ev_set_priority (&childev, EV_MAXPRI); 2726 ev_set_priority (&childev, EV_MAXPRI);
997 ev_signal_start (EV_A_ &childev); 2727 ev_signal_start (EV_A_ &childev);
998 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2728 ev_unref (EV_A); /* child watcher should not keep loop alive */
999#endif 2729#endif
1004 2734
1005 return ev_default_loop_ptr; 2735 return ev_default_loop_ptr;
1006} 2736}
1007 2737
1008void 2738void
1009ev_default_destroy (void) 2739ev_loop_fork (EV_P) EV_THROW
1010{ 2740{
1011#if EV_MULTIPLICITY 2741 postfork = 1; /* must be in line with ev_default_fork */
1012 struct ev_loop *loop = ev_default_loop_ptr;
1013#endif
1014
1015#ifndef _WIN32
1016 ev_ref (EV_A); /* child watcher */
1017 ev_signal_stop (EV_A_ &childev);
1018#endif
1019
1020 ev_ref (EV_A); /* signal watcher */
1021 ev_io_stop (EV_A_ &sigev);
1022
1023 close (sigpipe [0]); sigpipe [0] = 0;
1024 close (sigpipe [1]); sigpipe [1] = 0;
1025
1026 loop_destroy (EV_A);
1027} 2742}
2743
2744/*****************************************************************************/
1028 2745
1029void 2746void
1030ev_default_fork (void) 2747ev_invoke (EV_P_ void *w, int revents)
1031{ 2748{
1032#if EV_MULTIPLICITY 2749 EV_CB_INVOKE ((W)w, revents);
1033 struct ev_loop *loop = ev_default_loop_ptr;
1034#endif
1035
1036 if (backend)
1037 postfork = 1;
1038} 2750}
1039 2751
1040/*****************************************************************************/ 2752unsigned int
1041 2753ev_pending_count (EV_P) EV_THROW
1042static int
1043any_pending (EV_P)
1044{ 2754{
1045 int pri; 2755 int pri;
2756 unsigned int count = 0;
1046 2757
1047 for (pri = NUMPRI; pri--; ) 2758 for (pri = NUMPRI; pri--; )
1048 if (pendingcnt [pri]) 2759 count += pendingcnt [pri];
1049 return 1;
1050 2760
1051 return 0; 2761 return count;
1052} 2762}
1053 2763
1054inline void 2764void noinline
1055call_pending (EV_P) 2765ev_invoke_pending (EV_P)
1056{ 2766{
1057 int pri; 2767 for (pendingpri = NUMPRI; pendingpri--; ) /* pendingpri is modified during the loop */
1058
1059 for (pri = NUMPRI; pri--; )
1060 while (pendingcnt [pri]) 2768 while (pendingcnt [pendingpri])
1061 { 2769 {
1062 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2770 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1063 2771
1064 if (expect_true (p->w))
1065 {
1066 p->w->pending = 0; 2772 p->w->pending = 0;
1067 EV_CB_INVOKE (p->w, p->events); 2773 EV_CB_INVOKE (p->w, p->events);
1068 } 2774 EV_FREQUENT_CHECK;
1069 } 2775 }
1070} 2776}
1071 2777
2778#if EV_IDLE_ENABLE
2779/* make idle watchers pending. this handles the "call-idle */
2780/* only when higher priorities are idle" logic */
1072inline void 2781inline_size void
2782idle_reify (EV_P)
2783{
2784 if (expect_false (idleall))
2785 {
2786 int pri;
2787
2788 for (pri = NUMPRI; pri--; )
2789 {
2790 if (pendingcnt [pri])
2791 break;
2792
2793 if (idlecnt [pri])
2794 {
2795 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2796 break;
2797 }
2798 }
2799 }
2800}
2801#endif
2802
2803/* make timers pending */
2804inline_size void
1073timers_reify (EV_P) 2805timers_reify (EV_P)
1074{ 2806{
2807 EV_FREQUENT_CHECK;
2808
1075 while (timercnt && ((WT)timers [0])->at <= mn_now) 2809 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1076 { 2810 {
1077 struct ev_timer *w = timers [0]; 2811 do
1078
1079 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1080
1081 /* first reschedule or stop timer */
1082 if (w->repeat)
1083 { 2812 {
2813 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2814
2815 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2816
2817 /* first reschedule or stop timer */
2818 if (w->repeat)
2819 {
2820 ev_at (w) += w->repeat;
2821 if (ev_at (w) < mn_now)
2822 ev_at (w) = mn_now;
2823
1084 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2824 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1085 2825
1086 ((WT)w)->at += w->repeat; 2826 ANHE_at_cache (timers [HEAP0]);
1087 if (((WT)w)->at < mn_now)
1088 ((WT)w)->at = mn_now;
1089
1090 downheap ((WT *)timers, timercnt, 0); 2827 downheap (timers, timercnt, HEAP0);
2828 }
2829 else
2830 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2831
2832 EV_FREQUENT_CHECK;
2833 feed_reverse (EV_A_ (W)w);
1091 } 2834 }
1092 else 2835 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1093 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1094 2836
1095 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2837 feed_reverse_done (EV_A_ EV_TIMER);
2838 }
2839}
2840
2841#if EV_PERIODIC_ENABLE
2842
2843static void noinline
2844periodic_recalc (EV_P_ ev_periodic *w)
2845{
2846 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2847 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2848
2849 /* the above almost always errs on the low side */
2850 while (at <= ev_rt_now)
1096 } 2851 {
1097} 2852 ev_tstamp nat = at + w->interval;
1098 2853
1099#if EV_PERIODICS 2854 /* when resolution fails us, we use ev_rt_now */
2855 if (expect_false (nat == at))
2856 {
2857 at = ev_rt_now;
2858 break;
2859 }
2860
2861 at = nat;
2862 }
2863
2864 ev_at (w) = at;
2865}
2866
2867/* make periodics pending */
1100inline void 2868inline_size void
1101periodics_reify (EV_P) 2869periodics_reify (EV_P)
1102{ 2870{
2871 EV_FREQUENT_CHECK;
2872
1103 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2873 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1104 { 2874 {
1105 struct ev_periodic *w = periodics [0]; 2875 do
2876 {
2877 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1106 2878
1107 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 2879 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1108 2880
1109 /* first reschedule or stop timer */ 2881 /* first reschedule or stop timer */
2882 if (w->reschedule_cb)
2883 {
2884 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2885
2886 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2887
2888 ANHE_at_cache (periodics [HEAP0]);
2889 downheap (periodics, periodiccnt, HEAP0);
2890 }
2891 else if (w->interval)
2892 {
2893 periodic_recalc (EV_A_ w);
2894 ANHE_at_cache (periodics [HEAP0]);
2895 downheap (periodics, periodiccnt, HEAP0);
2896 }
2897 else
2898 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2899
2900 EV_FREQUENT_CHECK;
2901 feed_reverse (EV_A_ (W)w);
2902 }
2903 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2904
2905 feed_reverse_done (EV_A_ EV_PERIODIC);
2906 }
2907}
2908
2909/* simply recalculate all periodics */
2910/* TODO: maybe ensure that at least one event happens when jumping forward? */
2911static void noinline ecb_cold
2912periodics_reschedule (EV_P)
2913{
2914 int i;
2915
2916 /* adjust periodics after time jump */
2917 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2918 {
2919 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2920
1110 if (w->reschedule_cb) 2921 if (w->reschedule_cb)
2922 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2923 else if (w->interval)
2924 periodic_recalc (EV_A_ w);
2925
2926 ANHE_at_cache (periodics [i]);
2927 }
2928
2929 reheap (periodics, periodiccnt);
2930}
2931#endif
2932
2933/* adjust all timers by a given offset */
2934static void noinline ecb_cold
2935timers_reschedule (EV_P_ ev_tstamp adjust)
2936{
2937 int i;
2938
2939 for (i = 0; i < timercnt; ++i)
2940 {
2941 ANHE *he = timers + i + HEAP0;
2942 ANHE_w (*he)->at += adjust;
2943 ANHE_at_cache (*he);
2944 }
2945}
2946
2947/* fetch new monotonic and realtime times from the kernel */
2948/* also detect if there was a timejump, and act accordingly */
2949inline_speed void
2950time_update (EV_P_ ev_tstamp max_block)
2951{
2952#if EV_USE_MONOTONIC
2953 if (expect_true (have_monotonic))
2954 {
2955 int i;
2956 ev_tstamp odiff = rtmn_diff;
2957
2958 mn_now = get_clock ();
2959
2960 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2961 /* interpolate in the meantime */
2962 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1111 { 2963 {
1112 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2964 ev_rt_now = rtmn_diff + mn_now;
1113 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 2965 return;
1114 downheap ((WT *)periodics, periodiccnt, 0);
1115 } 2966 }
1116 else if (w->interval)
1117 {
1118 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1119 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1120 downheap ((WT *)periodics, periodiccnt, 0);
1121 }
1122 else
1123 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1124 2967
1125 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1126 }
1127}
1128
1129static void
1130periodics_reschedule (EV_P)
1131{
1132 int i;
1133
1134 /* adjust periodics after time jump */
1135 for (i = 0; i < periodiccnt; ++i)
1136 {
1137 struct ev_periodic *w = periodics [i];
1138
1139 if (w->reschedule_cb)
1140 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1141 else if (w->interval)
1142 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1143 }
1144
1145 /* now rebuild the heap */
1146 for (i = periodiccnt >> 1; i--; )
1147 downheap ((WT *)periodics, periodiccnt, i);
1148}
1149#endif
1150
1151inline int
1152time_update_monotonic (EV_P)
1153{
1154 mn_now = get_clock ();
1155
1156 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1157 {
1158 ev_rt_now = rtmn_diff + mn_now;
1159 return 0;
1160 }
1161 else
1162 {
1163 now_floor = mn_now; 2968 now_floor = mn_now;
1164 ev_rt_now = ev_time (); 2969 ev_rt_now = ev_time ();
1165 return 1;
1166 }
1167}
1168 2970
1169inline void 2971 /* loop a few times, before making important decisions.
1170time_update (EV_P) 2972 * on the choice of "4": one iteration isn't enough,
1171{ 2973 * in case we get preempted during the calls to
1172 int i; 2974 * ev_time and get_clock. a second call is almost guaranteed
1173 2975 * to succeed in that case, though. and looping a few more times
1174#if EV_USE_MONOTONIC 2976 * doesn't hurt either as we only do this on time-jumps or
1175 if (expect_true (have_monotonic)) 2977 * in the unlikely event of having been preempted here.
1176 { 2978 */
1177 if (time_update_monotonic (EV_A)) 2979 for (i = 4; --i; )
1178 { 2980 {
1179 ev_tstamp odiff = rtmn_diff; 2981 ev_tstamp diff;
1180
1181 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1182 {
1183 rtmn_diff = ev_rt_now - mn_now; 2982 rtmn_diff = ev_rt_now - mn_now;
1184 2983
1185 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2984 diff = odiff - rtmn_diff;
2985
2986 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1186 return; /* all is well */ 2987 return; /* all is well */
1187 2988
1188 ev_rt_now = ev_time (); 2989 ev_rt_now = ev_time ();
1189 mn_now = get_clock (); 2990 mn_now = get_clock ();
1190 now_floor = mn_now; 2991 now_floor = mn_now;
1191 } 2992 }
1192 2993
2994 /* no timer adjustment, as the monotonic clock doesn't jump */
2995 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1193# if EV_PERIODICS 2996# if EV_PERIODIC_ENABLE
2997 periodics_reschedule (EV_A);
2998# endif
2999 }
3000 else
3001#endif
3002 {
3003 ev_rt_now = ev_time ();
3004
3005 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
3006 {
3007 /* adjust timers. this is easy, as the offset is the same for all of them */
3008 timers_reschedule (EV_A_ ev_rt_now - mn_now);
3009#if EV_PERIODIC_ENABLE
1194 periodics_reschedule (EV_A); 3010 periodics_reschedule (EV_A);
1195# endif 3011#endif
1196 /* no timer adjustment, as the monotonic clock doesn't jump */
1197 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1198 } 3012 }
1199 }
1200 else
1201#endif
1202 {
1203 ev_rt_now = ev_time ();
1204
1205 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1206 {
1207#if EV_PERIODICS
1208 periodics_reschedule (EV_A);
1209#endif
1210
1211 /* adjust timers. this is easy, as the offset is the same for all */
1212 for (i = 0; i < timercnt; ++i)
1213 ((WT)timers [i])->at += ev_rt_now - mn_now;
1214 }
1215 3013
1216 mn_now = ev_rt_now; 3014 mn_now = ev_rt_now;
1217 } 3015 }
1218} 3016}
1219 3017
1220void 3018int
1221ev_ref (EV_P)
1222{
1223 ++activecnt;
1224}
1225
1226void
1227ev_unref (EV_P)
1228{
1229 --activecnt;
1230}
1231
1232static int loop_done;
1233
1234void
1235ev_loop (EV_P_ int flags) 3019ev_run (EV_P_ int flags)
1236{ 3020{
1237 double block; 3021#if EV_FEATURE_API
1238 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 3022 ++loop_depth;
3023#endif
1239 3024
1240 while (activecnt) 3025 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3026
3027 loop_done = EVBREAK_CANCEL;
3028
3029 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
3030
3031 do
1241 { 3032 {
3033#if EV_VERIFY >= 2
3034 ev_verify (EV_A);
3035#endif
3036
3037#ifndef _WIN32
3038 if (expect_false (curpid)) /* penalise the forking check even more */
3039 if (expect_false (getpid () != curpid))
3040 {
3041 curpid = getpid ();
3042 postfork = 1;
3043 }
3044#endif
3045
3046#if EV_FORK_ENABLE
3047 /* we might have forked, so queue fork handlers */
3048 if (expect_false (postfork))
3049 if (forkcnt)
3050 {
3051 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3052 EV_INVOKE_PENDING;
3053 }
3054#endif
3055
3056#if EV_PREPARE_ENABLE
1242 /* queue check watchers (and execute them) */ 3057 /* queue prepare watchers (and execute them) */
1243 if (expect_false (preparecnt)) 3058 if (expect_false (preparecnt))
1244 { 3059 {
1245 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3060 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1246 call_pending (EV_A); 3061 EV_INVOKE_PENDING;
1247 } 3062 }
3063#endif
3064
3065 if (expect_false (loop_done))
3066 break;
1248 3067
1249 /* we might have forked, so reify kernel state if necessary */ 3068 /* we might have forked, so reify kernel state if necessary */
1250 if (expect_false (postfork)) 3069 if (expect_false (postfork))
1251 loop_fork (EV_A); 3070 loop_fork (EV_A);
1252 3071
1253 /* update fd-related kernel structures */ 3072 /* update fd-related kernel structures */
1254 fd_reify (EV_A); 3073 fd_reify (EV_A);
1255 3074
1256 /* calculate blocking time */ 3075 /* calculate blocking time */
3076 {
3077 ev_tstamp waittime = 0.;
3078 ev_tstamp sleeptime = 0.;
1257 3079
1258 /* we only need this for !monotonic clock or timers, but as we basically 3080 /* remember old timestamp for io_blocktime calculation */
1259 always have timers, we just calculate it always */ 3081 ev_tstamp prev_mn_now = mn_now;
1260#if EV_USE_MONOTONIC 3082
1261 if (expect_true (have_monotonic)) 3083 /* update time to cancel out callback processing overhead */
1262 time_update_monotonic (EV_A); 3084 time_update (EV_A_ 1e100);
1263 else 3085
1264#endif 3086 /* from now on, we want a pipe-wake-up */
3087 pipe_write_wanted = 1;
3088
3089 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3090
3091 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1265 { 3092 {
1266 ev_rt_now = ev_time ();
1267 mn_now = ev_rt_now;
1268 }
1269
1270 if (flags & EVLOOP_NONBLOCK || idlecnt)
1271 block = 0.;
1272 else
1273 {
1274 block = MAX_BLOCKTIME; 3093 waittime = MAX_BLOCKTIME;
1275 3094
1276 if (timercnt) 3095 if (timercnt)
1277 { 3096 {
1278 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 3097 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1279 if (block > to) block = to; 3098 if (waittime > to) waittime = to;
1280 } 3099 }
1281 3100
1282#if EV_PERIODICS 3101#if EV_PERIODIC_ENABLE
1283 if (periodiccnt) 3102 if (periodiccnt)
1284 { 3103 {
1285 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 3104 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1286 if (block > to) block = to; 3105 if (waittime > to) waittime = to;
1287 } 3106 }
1288#endif 3107#endif
1289 3108
1290 if (expect_false (block < 0.)) block = 0.; 3109 /* don't let timeouts decrease the waittime below timeout_blocktime */
3110 if (expect_false (waittime < timeout_blocktime))
3111 waittime = timeout_blocktime;
3112
3113 /* at this point, we NEED to wait, so we have to ensure */
3114 /* to pass a minimum nonzero value to the backend */
3115 if (expect_false (waittime < backend_mintime))
3116 waittime = backend_mintime;
3117
3118 /* extra check because io_blocktime is commonly 0 */
3119 if (expect_false (io_blocktime))
3120 {
3121 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3122
3123 if (sleeptime > waittime - backend_mintime)
3124 sleeptime = waittime - backend_mintime;
3125
3126 if (expect_true (sleeptime > 0.))
3127 {
3128 ev_sleep (sleeptime);
3129 waittime -= sleeptime;
3130 }
3131 }
1291 } 3132 }
1292 3133
3134#if EV_FEATURE_API
3135 ++loop_count;
3136#endif
3137 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1293 backend_poll (EV_A_ block); 3138 backend_poll (EV_A_ waittime);
3139 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1294 3140
3141 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3142
3143 if (pipe_write_skipped)
3144 {
3145 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3146 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3147 }
3148
3149
1295 /* update ev_rt_now, do magic */ 3150 /* update ev_rt_now, do magic */
1296 time_update (EV_A); 3151 time_update (EV_A_ waittime + sleeptime);
3152 }
1297 3153
1298 /* queue pending timers and reschedule them */ 3154 /* queue pending timers and reschedule them */
1299 timers_reify (EV_A); /* relative timers called last */ 3155 timers_reify (EV_A); /* relative timers called last */
1300#if EV_PERIODICS 3156#if EV_PERIODIC_ENABLE
1301 periodics_reify (EV_A); /* absolute timers called first */ 3157 periodics_reify (EV_A); /* absolute timers called first */
1302#endif 3158#endif
1303 3159
3160#if EV_IDLE_ENABLE
1304 /* queue idle watchers unless io or timers are pending */ 3161 /* queue idle watchers unless other events are pending */
1305 if (idlecnt && !any_pending (EV_A)) 3162 idle_reify (EV_A);
1306 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 3163#endif
1307 3164
3165#if EV_CHECK_ENABLE
1308 /* queue check watchers, to be executed first */ 3166 /* queue check watchers, to be executed first */
1309 if (expect_false (checkcnt)) 3167 if (expect_false (checkcnt))
1310 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3168 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3169#endif
1311 3170
1312 call_pending (EV_A); 3171 EV_INVOKE_PENDING;
1313
1314 if (expect_false (loop_done))
1315 break;
1316 } 3172 }
3173 while (expect_true (
3174 activecnt
3175 && !loop_done
3176 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3177 ));
1317 3178
1318 if (loop_done != 2) 3179 if (loop_done == EVBREAK_ONE)
1319 loop_done = 0; 3180 loop_done = EVBREAK_CANCEL;
3181
3182#if EV_FEATURE_API
3183 --loop_depth;
3184#endif
3185
3186 return activecnt;
1320} 3187}
1321 3188
1322void 3189void
1323ev_unloop (EV_P_ int how) 3190ev_break (EV_P_ int how) EV_THROW
1324{ 3191{
1325 loop_done = how; 3192 loop_done = how;
1326} 3193}
1327 3194
3195void
3196ev_ref (EV_P) EV_THROW
3197{
3198 ++activecnt;
3199}
3200
3201void
3202ev_unref (EV_P) EV_THROW
3203{
3204 --activecnt;
3205}
3206
3207void
3208ev_now_update (EV_P) EV_THROW
3209{
3210 time_update (EV_A_ 1e100);
3211}
3212
3213void
3214ev_suspend (EV_P) EV_THROW
3215{
3216 ev_now_update (EV_A);
3217}
3218
3219void
3220ev_resume (EV_P) EV_THROW
3221{
3222 ev_tstamp mn_prev = mn_now;
3223
3224 ev_now_update (EV_A);
3225 timers_reschedule (EV_A_ mn_now - mn_prev);
3226#if EV_PERIODIC_ENABLE
3227 /* TODO: really do this? */
3228 periodics_reschedule (EV_A);
3229#endif
3230}
3231
1328/*****************************************************************************/ 3232/*****************************************************************************/
3233/* singly-linked list management, used when the expected list length is short */
1329 3234
1330inline void 3235inline_size void
1331wlist_add (WL *head, WL elem) 3236wlist_add (WL *head, WL elem)
1332{ 3237{
1333 elem->next = *head; 3238 elem->next = *head;
1334 *head = elem; 3239 *head = elem;
1335} 3240}
1336 3241
1337inline void 3242inline_size void
1338wlist_del (WL *head, WL elem) 3243wlist_del (WL *head, WL elem)
1339{ 3244{
1340 while (*head) 3245 while (*head)
1341 { 3246 {
1342 if (*head == elem) 3247 if (expect_true (*head == elem))
1343 { 3248 {
1344 *head = elem->next; 3249 *head = elem->next;
1345 return; 3250 break;
1346 } 3251 }
1347 3252
1348 head = &(*head)->next; 3253 head = &(*head)->next;
1349 } 3254 }
1350} 3255}
1351 3256
3257/* internal, faster, version of ev_clear_pending */
1352inline void 3258inline_speed void
1353ev_clear_pending (EV_P_ W w) 3259clear_pending (EV_P_ W w)
1354{ 3260{
1355 if (w->pending) 3261 if (w->pending)
1356 { 3262 {
1357 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3263 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1358 w->pending = 0; 3264 w->pending = 0;
1359 } 3265 }
1360} 3266}
1361 3267
3268int
3269ev_clear_pending (EV_P_ void *w) EV_THROW
3270{
3271 W w_ = (W)w;
3272 int pending = w_->pending;
3273
3274 if (expect_true (pending))
3275 {
3276 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3277 p->w = (W)&pending_w;
3278 w_->pending = 0;
3279 return p->events;
3280 }
3281 else
3282 return 0;
3283}
3284
1362inline void 3285inline_size void
3286pri_adjust (EV_P_ W w)
3287{
3288 int pri = ev_priority (w);
3289 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3290 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3291 ev_set_priority (w, pri);
3292}
3293
3294inline_speed void
1363ev_start (EV_P_ W w, int active) 3295ev_start (EV_P_ W w, int active)
1364{ 3296{
1365 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 3297 pri_adjust (EV_A_ w);
1366 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1367
1368 w->active = active; 3298 w->active = active;
1369 ev_ref (EV_A); 3299 ev_ref (EV_A);
1370} 3300}
1371 3301
1372inline void 3302inline_size void
1373ev_stop (EV_P_ W w) 3303ev_stop (EV_P_ W w)
1374{ 3304{
1375 ev_unref (EV_A); 3305 ev_unref (EV_A);
1376 w->active = 0; 3306 w->active = 0;
1377} 3307}
1378 3308
1379/*****************************************************************************/ 3309/*****************************************************************************/
1380 3310
1381void 3311void noinline
1382ev_io_start (EV_P_ struct ev_io *w) 3312ev_io_start (EV_P_ ev_io *w) EV_THROW
1383{ 3313{
1384 int fd = w->fd; 3314 int fd = w->fd;
1385 3315
1386 if (expect_false (ev_is_active (w))) 3316 if (expect_false (ev_is_active (w)))
1387 return; 3317 return;
1388 3318
1389 assert (("ev_io_start called with negative fd", fd >= 0)); 3319 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3320 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3321
3322 EV_FREQUENT_CHECK;
1390 3323
1391 ev_start (EV_A_ (W)w, 1); 3324 ev_start (EV_A_ (W)w, 1);
1392 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3325 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1393 wlist_add ((WL *)&anfds[fd].head, (WL)w); 3326 wlist_add (&anfds[fd].head, (WL)w);
1394 3327
1395 fd_change (EV_A_ fd); 3328 /* common bug, apparently */
1396} 3329 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
1397 3330
1398void 3331 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3332 w->events &= ~EV__IOFDSET;
3333
3334 EV_FREQUENT_CHECK;
3335}
3336
3337void noinline
1399ev_io_stop (EV_P_ struct ev_io *w) 3338ev_io_stop (EV_P_ ev_io *w) EV_THROW
1400{ 3339{
1401 ev_clear_pending (EV_A_ (W)w); 3340 clear_pending (EV_A_ (W)w);
1402 if (expect_false (!ev_is_active (w))) 3341 if (expect_false (!ev_is_active (w)))
1403 return; 3342 return;
1404 3343
1405 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3344 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1406 3345
3346 EV_FREQUENT_CHECK;
3347
1407 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 3348 wlist_del (&anfds[w->fd].head, (WL)w);
1408 ev_stop (EV_A_ (W)w); 3349 ev_stop (EV_A_ (W)w);
1409 3350
1410 fd_change (EV_A_ w->fd); 3351 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1411}
1412 3352
1413void 3353 EV_FREQUENT_CHECK;
3354}
3355
3356void noinline
1414ev_timer_start (EV_P_ struct ev_timer *w) 3357ev_timer_start (EV_P_ ev_timer *w) EV_THROW
1415{ 3358{
1416 if (expect_false (ev_is_active (w))) 3359 if (expect_false (ev_is_active (w)))
1417 return; 3360 return;
1418 3361
1419 ((WT)w)->at += mn_now; 3362 ev_at (w) += mn_now;
1420 3363
1421 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3364 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1422 3365
3366 EV_FREQUENT_CHECK;
3367
3368 ++timercnt;
1423 ev_start (EV_A_ (W)w, ++timercnt); 3369 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1424 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 3370 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1425 timers [timercnt - 1] = w; 3371 ANHE_w (timers [ev_active (w)]) = (WT)w;
1426 upheap ((WT *)timers, timercnt - 1); 3372 ANHE_at_cache (timers [ev_active (w)]);
3373 upheap (timers, ev_active (w));
1427 3374
3375 EV_FREQUENT_CHECK;
3376
1428 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3377 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1429} 3378}
1430 3379
1431void 3380void noinline
1432ev_timer_stop (EV_P_ struct ev_timer *w) 3381ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
1433{ 3382{
1434 ev_clear_pending (EV_A_ (W)w); 3383 clear_pending (EV_A_ (W)w);
1435 if (expect_false (!ev_is_active (w))) 3384 if (expect_false (!ev_is_active (w)))
1436 return; 3385 return;
1437 3386
3387 EV_FREQUENT_CHECK;
3388
3389 {
3390 int active = ev_active (w);
3391
1438 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3392 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1439 3393
3394 --timercnt;
3395
1440 if (expect_true (((W)w)->active < timercnt--)) 3396 if (expect_true (active < timercnt + HEAP0))
1441 { 3397 {
1442 timers [((W)w)->active - 1] = timers [timercnt]; 3398 timers [active] = timers [timercnt + HEAP0];
1443 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 3399 adjustheap (timers, timercnt, active);
1444 } 3400 }
3401 }
1445 3402
1446 ((WT)w)->at -= mn_now; 3403 ev_at (w) -= mn_now;
1447 3404
1448 ev_stop (EV_A_ (W)w); 3405 ev_stop (EV_A_ (W)w);
1449}
1450 3406
1451void 3407 EV_FREQUENT_CHECK;
3408}
3409
3410void noinline
1452ev_timer_again (EV_P_ struct ev_timer *w) 3411ev_timer_again (EV_P_ ev_timer *w) EV_THROW
1453{ 3412{
3413 EV_FREQUENT_CHECK;
3414
3415 clear_pending (EV_A_ (W)w);
3416
1454 if (ev_is_active (w)) 3417 if (ev_is_active (w))
1455 { 3418 {
1456 if (w->repeat) 3419 if (w->repeat)
1457 { 3420 {
1458 ((WT)w)->at = mn_now + w->repeat; 3421 ev_at (w) = mn_now + w->repeat;
3422 ANHE_at_cache (timers [ev_active (w)]);
1459 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 3423 adjustheap (timers, timercnt, ev_active (w));
1460 } 3424 }
1461 else 3425 else
1462 ev_timer_stop (EV_A_ w); 3426 ev_timer_stop (EV_A_ w);
1463 } 3427 }
1464 else if (w->repeat) 3428 else if (w->repeat)
1465 { 3429 {
1466 w->at = w->repeat; 3430 ev_at (w) = w->repeat;
1467 ev_timer_start (EV_A_ w); 3431 ev_timer_start (EV_A_ w);
1468 } 3432 }
1469}
1470 3433
3434 EV_FREQUENT_CHECK;
3435}
3436
3437ev_tstamp
3438ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3439{
3440 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3441}
3442
1471#if EV_PERIODICS 3443#if EV_PERIODIC_ENABLE
1472void 3444void noinline
1473ev_periodic_start (EV_P_ struct ev_periodic *w) 3445ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
1474{ 3446{
1475 if (expect_false (ev_is_active (w))) 3447 if (expect_false (ev_is_active (w)))
1476 return; 3448 return;
1477 3449
1478 if (w->reschedule_cb) 3450 if (w->reschedule_cb)
1479 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 3451 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1480 else if (w->interval) 3452 else if (w->interval)
1481 { 3453 {
1482 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3454 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1483 /* this formula differs from the one in periodic_reify because we do not always round up */ 3455 periodic_recalc (EV_A_ w);
1484 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1485 } 3456 }
3457 else
3458 ev_at (w) = w->offset;
1486 3459
3460 EV_FREQUENT_CHECK;
3461
3462 ++periodiccnt;
1487 ev_start (EV_A_ (W)w, ++periodiccnt); 3463 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1488 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 3464 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1489 periodics [periodiccnt - 1] = w; 3465 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1490 upheap ((WT *)periodics, periodiccnt - 1); 3466 ANHE_at_cache (periodics [ev_active (w)]);
3467 upheap (periodics, ev_active (w));
1491 3468
3469 EV_FREQUENT_CHECK;
3470
1492 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3471 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1493} 3472}
1494 3473
1495void 3474void noinline
1496ev_periodic_stop (EV_P_ struct ev_periodic *w) 3475ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
1497{ 3476{
1498 ev_clear_pending (EV_A_ (W)w); 3477 clear_pending (EV_A_ (W)w);
1499 if (expect_false (!ev_is_active (w))) 3478 if (expect_false (!ev_is_active (w)))
1500 return; 3479 return;
1501 3480
3481 EV_FREQUENT_CHECK;
3482
3483 {
3484 int active = ev_active (w);
3485
1502 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3486 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1503 3487
3488 --periodiccnt;
3489
1504 if (expect_true (((W)w)->active < periodiccnt--)) 3490 if (expect_true (active < periodiccnt + HEAP0))
1505 { 3491 {
1506 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 3492 periodics [active] = periodics [periodiccnt + HEAP0];
1507 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 3493 adjustheap (periodics, periodiccnt, active);
1508 } 3494 }
3495 }
1509 3496
1510 ev_stop (EV_A_ (W)w); 3497 ev_stop (EV_A_ (W)w);
1511}
1512 3498
1513void 3499 EV_FREQUENT_CHECK;
3500}
3501
3502void noinline
1514ev_periodic_again (EV_P_ struct ev_periodic *w) 3503ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
1515{ 3504{
1516 /* TODO: use adjustheap and recalculation */ 3505 /* TODO: use adjustheap and recalculation */
1517 ev_periodic_stop (EV_A_ w); 3506 ev_periodic_stop (EV_A_ w);
1518 ev_periodic_start (EV_A_ w); 3507 ev_periodic_start (EV_A_ w);
1519} 3508}
1520#endif 3509#endif
1521 3510
1522void 3511#ifndef SA_RESTART
1523ev_idle_start (EV_P_ struct ev_idle *w) 3512# define SA_RESTART 0
3513#endif
3514
3515#if EV_SIGNAL_ENABLE
3516
3517void noinline
3518ev_signal_start (EV_P_ ev_signal *w) EV_THROW
1524{ 3519{
1525 if (expect_false (ev_is_active (w))) 3520 if (expect_false (ev_is_active (w)))
1526 return; 3521 return;
1527 3522
3523 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3524
3525#if EV_MULTIPLICITY
3526 assert (("libev: a signal must not be attached to two different loops",
3527 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3528
3529 signals [w->signum - 1].loop = EV_A;
3530#endif
3531
3532 EV_FREQUENT_CHECK;
3533
3534#if EV_USE_SIGNALFD
3535 if (sigfd == -2)
3536 {
3537 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3538 if (sigfd < 0 && errno == EINVAL)
3539 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3540
3541 if (sigfd >= 0)
3542 {
3543 fd_intern (sigfd); /* doing it twice will not hurt */
3544
3545 sigemptyset (&sigfd_set);
3546
3547 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3548 ev_set_priority (&sigfd_w, EV_MAXPRI);
3549 ev_io_start (EV_A_ &sigfd_w);
3550 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3551 }
3552 }
3553
3554 if (sigfd >= 0)
3555 {
3556 /* TODO: check .head */
3557 sigaddset (&sigfd_set, w->signum);
3558 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3559
3560 signalfd (sigfd, &sigfd_set, 0);
3561 }
3562#endif
3563
1528 ev_start (EV_A_ (W)w, ++idlecnt); 3564 ev_start (EV_A_ (W)w, 1);
1529 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2); 3565 wlist_add (&signals [w->signum - 1].head, (WL)w);
1530 idles [idlecnt - 1] = w;
1531}
1532 3566
1533void 3567 if (!((WL)w)->next)
1534ev_idle_stop (EV_P_ struct ev_idle *w) 3568# if EV_USE_SIGNALFD
3569 if (sigfd < 0) /*TODO*/
3570# endif
3571 {
3572# ifdef _WIN32
3573 evpipe_init (EV_A);
3574
3575 signal (w->signum, ev_sighandler);
3576# else
3577 struct sigaction sa;
3578
3579 evpipe_init (EV_A);
3580
3581 sa.sa_handler = ev_sighandler;
3582 sigfillset (&sa.sa_mask);
3583 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3584 sigaction (w->signum, &sa, 0);
3585
3586 if (origflags & EVFLAG_NOSIGMASK)
3587 {
3588 sigemptyset (&sa.sa_mask);
3589 sigaddset (&sa.sa_mask, w->signum);
3590 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3591 }
3592#endif
3593 }
3594
3595 EV_FREQUENT_CHECK;
3596}
3597
3598void noinline
3599ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
1535{ 3600{
1536 ev_clear_pending (EV_A_ (W)w); 3601 clear_pending (EV_A_ (W)w);
1537 if (expect_false (!ev_is_active (w))) 3602 if (expect_false (!ev_is_active (w)))
1538 return; 3603 return;
1539 3604
1540 idles [((W)w)->active - 1] = idles [--idlecnt]; 3605 EV_FREQUENT_CHECK;
3606
3607 wlist_del (&signals [w->signum - 1].head, (WL)w);
1541 ev_stop (EV_A_ (W)w); 3608 ev_stop (EV_A_ (W)w);
3609
3610 if (!signals [w->signum - 1].head)
3611 {
3612#if EV_MULTIPLICITY
3613 signals [w->signum - 1].loop = 0; /* unattach from signal */
3614#endif
3615#if EV_USE_SIGNALFD
3616 if (sigfd >= 0)
3617 {
3618 sigset_t ss;
3619
3620 sigemptyset (&ss);
3621 sigaddset (&ss, w->signum);
3622 sigdelset (&sigfd_set, w->signum);
3623
3624 signalfd (sigfd, &sigfd_set, 0);
3625 sigprocmask (SIG_UNBLOCK, &ss, 0);
3626 }
3627 else
3628#endif
3629 signal (w->signum, SIG_DFL);
3630 }
3631
3632 EV_FREQUENT_CHECK;
1542} 3633}
3634
3635#endif
3636
3637#if EV_CHILD_ENABLE
1543 3638
1544void 3639void
1545ev_prepare_start (EV_P_ struct ev_prepare *w) 3640ev_child_start (EV_P_ ev_child *w) EV_THROW
1546{ 3641{
3642#if EV_MULTIPLICITY
3643 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
3644#endif
1547 if (expect_false (ev_is_active (w))) 3645 if (expect_false (ev_is_active (w)))
1548 return; 3646 return;
1549 3647
3648 EV_FREQUENT_CHECK;
3649
1550 ev_start (EV_A_ (W)w, ++preparecnt); 3650 ev_start (EV_A_ (W)w, 1);
1551 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3651 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1552 prepares [preparecnt - 1] = w; 3652
3653 EV_FREQUENT_CHECK;
1553} 3654}
1554 3655
1555void 3656void
1556ev_prepare_stop (EV_P_ struct ev_prepare *w) 3657ev_child_stop (EV_P_ ev_child *w) EV_THROW
1557{ 3658{
1558 ev_clear_pending (EV_A_ (W)w); 3659 clear_pending (EV_A_ (W)w);
1559 if (expect_false (!ev_is_active (w))) 3660 if (expect_false (!ev_is_active (w)))
1560 return; 3661 return;
1561 3662
1562 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 3663 EV_FREQUENT_CHECK;
3664
3665 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1563 ev_stop (EV_A_ (W)w); 3666 ev_stop (EV_A_ (W)w);
3667
3668 EV_FREQUENT_CHECK;
1564} 3669}
3670
3671#endif
3672
3673#if EV_STAT_ENABLE
3674
3675# ifdef _WIN32
3676# undef lstat
3677# define lstat(a,b) _stati64 (a,b)
3678# endif
3679
3680#define DEF_STAT_INTERVAL 5.0074891
3681#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3682#define MIN_STAT_INTERVAL 0.1074891
3683
3684static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3685
3686#if EV_USE_INOTIFY
3687
3688/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3689# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3690
3691static void noinline
3692infy_add (EV_P_ ev_stat *w)
3693{
3694 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3695
3696 if (w->wd >= 0)
3697 {
3698 struct statfs sfs;
3699
3700 /* now local changes will be tracked by inotify, but remote changes won't */
3701 /* unless the filesystem is known to be local, we therefore still poll */
3702 /* also do poll on <2.6.25, but with normal frequency */
3703
3704 if (!fs_2625)
3705 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3706 else if (!statfs (w->path, &sfs)
3707 && (sfs.f_type == 0x1373 /* devfs */
3708 || sfs.f_type == 0xEF53 /* ext2/3 */
3709 || sfs.f_type == 0x3153464a /* jfs */
3710 || sfs.f_type == 0x52654973 /* reiser3 */
3711 || sfs.f_type == 0x01021994 /* tempfs */
3712 || sfs.f_type == 0x58465342 /* xfs */))
3713 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3714 else
3715 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3716 }
3717 else
3718 {
3719 /* can't use inotify, continue to stat */
3720 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3721
3722 /* if path is not there, monitor some parent directory for speedup hints */
3723 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3724 /* but an efficiency issue only */
3725 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3726 {
3727 char path [4096];
3728 strcpy (path, w->path);
3729
3730 do
3731 {
3732 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3733 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3734
3735 char *pend = strrchr (path, '/');
3736
3737 if (!pend || pend == path)
3738 break;
3739
3740 *pend = 0;
3741 w->wd = inotify_add_watch (fs_fd, path, mask);
3742 }
3743 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3744 }
3745 }
3746
3747 if (w->wd >= 0)
3748 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3749
3750 /* now re-arm timer, if required */
3751 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3752 ev_timer_again (EV_A_ &w->timer);
3753 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3754}
3755
3756static void noinline
3757infy_del (EV_P_ ev_stat *w)
3758{
3759 int slot;
3760 int wd = w->wd;
3761
3762 if (wd < 0)
3763 return;
3764
3765 w->wd = -2;
3766 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3767 wlist_del (&fs_hash [slot].head, (WL)w);
3768
3769 /* remove this watcher, if others are watching it, they will rearm */
3770 inotify_rm_watch (fs_fd, wd);
3771}
3772
3773static void noinline
3774infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3775{
3776 if (slot < 0)
3777 /* overflow, need to check for all hash slots */
3778 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3779 infy_wd (EV_A_ slot, wd, ev);
3780 else
3781 {
3782 WL w_;
3783
3784 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3785 {
3786 ev_stat *w = (ev_stat *)w_;
3787 w_ = w_->next; /* lets us remove this watcher and all before it */
3788
3789 if (w->wd == wd || wd == -1)
3790 {
3791 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3792 {
3793 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3794 w->wd = -1;
3795 infy_add (EV_A_ w); /* re-add, no matter what */
3796 }
3797
3798 stat_timer_cb (EV_A_ &w->timer, 0);
3799 }
3800 }
3801 }
3802}
3803
3804static void
3805infy_cb (EV_P_ ev_io *w, int revents)
3806{
3807 char buf [EV_INOTIFY_BUFSIZE];
3808 int ofs;
3809 int len = read (fs_fd, buf, sizeof (buf));
3810
3811 for (ofs = 0; ofs < len; )
3812 {
3813 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3814 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3815 ofs += sizeof (struct inotify_event) + ev->len;
3816 }
3817}
3818
3819inline_size void ecb_cold
3820ev_check_2625 (EV_P)
3821{
3822 /* kernels < 2.6.25 are borked
3823 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3824 */
3825 if (ev_linux_version () < 0x020619)
3826 return;
3827
3828 fs_2625 = 1;
3829}
3830
3831inline_size int
3832infy_newfd (void)
3833{
3834#if defined IN_CLOEXEC && defined IN_NONBLOCK
3835 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3836 if (fd >= 0)
3837 return fd;
3838#endif
3839 return inotify_init ();
3840}
3841
3842inline_size void
3843infy_init (EV_P)
3844{
3845 if (fs_fd != -2)
3846 return;
3847
3848 fs_fd = -1;
3849
3850 ev_check_2625 (EV_A);
3851
3852 fs_fd = infy_newfd ();
3853
3854 if (fs_fd >= 0)
3855 {
3856 fd_intern (fs_fd);
3857 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3858 ev_set_priority (&fs_w, EV_MAXPRI);
3859 ev_io_start (EV_A_ &fs_w);
3860 ev_unref (EV_A);
3861 }
3862}
3863
3864inline_size void
3865infy_fork (EV_P)
3866{
3867 int slot;
3868
3869 if (fs_fd < 0)
3870 return;
3871
3872 ev_ref (EV_A);
3873 ev_io_stop (EV_A_ &fs_w);
3874 close (fs_fd);
3875 fs_fd = infy_newfd ();
3876
3877 if (fs_fd >= 0)
3878 {
3879 fd_intern (fs_fd);
3880 ev_io_set (&fs_w, fs_fd, EV_READ);
3881 ev_io_start (EV_A_ &fs_w);
3882 ev_unref (EV_A);
3883 }
3884
3885 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3886 {
3887 WL w_ = fs_hash [slot].head;
3888 fs_hash [slot].head = 0;
3889
3890 while (w_)
3891 {
3892 ev_stat *w = (ev_stat *)w_;
3893 w_ = w_->next; /* lets us add this watcher */
3894
3895 w->wd = -1;
3896
3897 if (fs_fd >= 0)
3898 infy_add (EV_A_ w); /* re-add, no matter what */
3899 else
3900 {
3901 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3902 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3903 ev_timer_again (EV_A_ &w->timer);
3904 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3905 }
3906 }
3907 }
3908}
3909
3910#endif
3911
3912#ifdef _WIN32
3913# define EV_LSTAT(p,b) _stati64 (p, b)
3914#else
3915# define EV_LSTAT(p,b) lstat (p, b)
3916#endif
1565 3917
1566void 3918void
1567ev_check_start (EV_P_ struct ev_check *w) 3919ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
3920{
3921 if (lstat (w->path, &w->attr) < 0)
3922 w->attr.st_nlink = 0;
3923 else if (!w->attr.st_nlink)
3924 w->attr.st_nlink = 1;
3925}
3926
3927static void noinline
3928stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3929{
3930 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3931
3932 ev_statdata prev = w->attr;
3933 ev_stat_stat (EV_A_ w);
3934
3935 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3936 if (
3937 prev.st_dev != w->attr.st_dev
3938 || prev.st_ino != w->attr.st_ino
3939 || prev.st_mode != w->attr.st_mode
3940 || prev.st_nlink != w->attr.st_nlink
3941 || prev.st_uid != w->attr.st_uid
3942 || prev.st_gid != w->attr.st_gid
3943 || prev.st_rdev != w->attr.st_rdev
3944 || prev.st_size != w->attr.st_size
3945 || prev.st_atime != w->attr.st_atime
3946 || prev.st_mtime != w->attr.st_mtime
3947 || prev.st_ctime != w->attr.st_ctime
3948 ) {
3949 /* we only update w->prev on actual differences */
3950 /* in case we test more often than invoke the callback, */
3951 /* to ensure that prev is always different to attr */
3952 w->prev = prev;
3953
3954 #if EV_USE_INOTIFY
3955 if (fs_fd >= 0)
3956 {
3957 infy_del (EV_A_ w);
3958 infy_add (EV_A_ w);
3959 ev_stat_stat (EV_A_ w); /* avoid race... */
3960 }
3961 #endif
3962
3963 ev_feed_event (EV_A_ w, EV_STAT);
3964 }
3965}
3966
3967void
3968ev_stat_start (EV_P_ ev_stat *w) EV_THROW
1568{ 3969{
1569 if (expect_false (ev_is_active (w))) 3970 if (expect_false (ev_is_active (w)))
1570 return; 3971 return;
1571 3972
3973 ev_stat_stat (EV_A_ w);
3974
3975 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3976 w->interval = MIN_STAT_INTERVAL;
3977
3978 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3979 ev_set_priority (&w->timer, ev_priority (w));
3980
3981#if EV_USE_INOTIFY
3982 infy_init (EV_A);
3983
3984 if (fs_fd >= 0)
3985 infy_add (EV_A_ w);
3986 else
3987#endif
3988 {
3989 ev_timer_again (EV_A_ &w->timer);
3990 ev_unref (EV_A);
3991 }
3992
1572 ev_start (EV_A_ (W)w, ++checkcnt); 3993 ev_start (EV_A_ (W)w, 1);
1573 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2); 3994
1574 checks [checkcnt - 1] = w; 3995 EV_FREQUENT_CHECK;
1575} 3996}
1576 3997
1577void 3998void
1578ev_check_stop (EV_P_ struct ev_check *w) 3999ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
1579{ 4000{
1580 ev_clear_pending (EV_A_ (W)w); 4001 clear_pending (EV_A_ (W)w);
1581 if (expect_false (!ev_is_active (w))) 4002 if (expect_false (!ev_is_active (w)))
1582 return; 4003 return;
1583 4004
1584 checks [((W)w)->active - 1] = checks [--checkcnt]; 4005 EV_FREQUENT_CHECK;
4006
4007#if EV_USE_INOTIFY
4008 infy_del (EV_A_ w);
4009#endif
4010
4011 if (ev_is_active (&w->timer))
4012 {
4013 ev_ref (EV_A);
4014 ev_timer_stop (EV_A_ &w->timer);
4015 }
4016
1585 ev_stop (EV_A_ (W)w); 4017 ev_stop (EV_A_ (W)w);
1586}
1587 4018
1588#ifndef SA_RESTART 4019 EV_FREQUENT_CHECK;
1589# define SA_RESTART 0 4020}
1590#endif 4021#endif
1591 4022
4023#if EV_IDLE_ENABLE
1592void 4024void
1593ev_signal_start (EV_P_ struct ev_signal *w) 4025ev_idle_start (EV_P_ ev_idle *w) EV_THROW
1594{ 4026{
1595#if EV_MULTIPLICITY
1596 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1597#endif
1598 if (expect_false (ev_is_active (w))) 4027 if (expect_false (ev_is_active (w)))
1599 return; 4028 return;
1600 4029
1601 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 4030 pri_adjust (EV_A_ (W)w);
1602 4031
4032 EV_FREQUENT_CHECK;
4033
4034 {
4035 int active = ++idlecnt [ABSPRI (w)];
4036
4037 ++idleall;
1603 ev_start (EV_A_ (W)w, 1); 4038 ev_start (EV_A_ (W)w, active);
1604 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1605 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1606 4039
1607 if (!((WL)w)->next) 4040 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1608 { 4041 idles [ABSPRI (w)][active - 1] = w;
1609#if _WIN32
1610 signal (w->signum, sighandler);
1611#else
1612 struct sigaction sa;
1613 sa.sa_handler = sighandler;
1614 sigfillset (&sa.sa_mask);
1615 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1616 sigaction (w->signum, &sa, 0);
1617#endif
1618 } 4042 }
4043
4044 EV_FREQUENT_CHECK;
1619} 4045}
1620 4046
1621void 4047void
1622ev_signal_stop (EV_P_ struct ev_signal *w) 4048ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
1623{ 4049{
1624 ev_clear_pending (EV_A_ (W)w); 4050 clear_pending (EV_A_ (W)w);
1625 if (expect_false (!ev_is_active (w))) 4051 if (expect_false (!ev_is_active (w)))
1626 return; 4052 return;
1627 4053
1628 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 4054 EV_FREQUENT_CHECK;
4055
4056 {
4057 int active = ev_active (w);
4058
4059 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4060 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4061
1629 ev_stop (EV_A_ (W)w); 4062 ev_stop (EV_A_ (W)w);
4063 --idleall;
4064 }
1630 4065
1631 if (!signals [w->signum - 1].head) 4066 EV_FREQUENT_CHECK;
1632 signal (w->signum, SIG_DFL);
1633} 4067}
4068#endif
1634 4069
4070#if EV_PREPARE_ENABLE
1635void 4071void
1636ev_child_start (EV_P_ struct ev_child *w) 4072ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
1637{ 4073{
1638#if EV_MULTIPLICITY
1639 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1640#endif
1641 if (expect_false (ev_is_active (w))) 4074 if (expect_false (ev_is_active (w)))
1642 return; 4075 return;
1643 4076
4077 EV_FREQUENT_CHECK;
4078
1644 ev_start (EV_A_ (W)w, 1); 4079 ev_start (EV_A_ (W)w, ++preparecnt);
1645 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 4080 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
4081 prepares [preparecnt - 1] = w;
4082
4083 EV_FREQUENT_CHECK;
1646} 4084}
1647 4085
1648void 4086void
1649ev_child_stop (EV_P_ struct ev_child *w) 4087ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
1650{ 4088{
1651 ev_clear_pending (EV_A_ (W)w); 4089 clear_pending (EV_A_ (W)w);
1652 if (expect_false (!ev_is_active (w))) 4090 if (expect_false (!ev_is_active (w)))
1653 return; 4091 return;
1654 4092
1655 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 4093 EV_FREQUENT_CHECK;
4094
4095 {
4096 int active = ev_active (w);
4097
4098 prepares [active - 1] = prepares [--preparecnt];
4099 ev_active (prepares [active - 1]) = active;
4100 }
4101
1656 ev_stop (EV_A_ (W)w); 4102 ev_stop (EV_A_ (W)w);
4103
4104 EV_FREQUENT_CHECK;
1657} 4105}
4106#endif
4107
4108#if EV_CHECK_ENABLE
4109void
4110ev_check_start (EV_P_ ev_check *w) EV_THROW
4111{
4112 if (expect_false (ev_is_active (w)))
4113 return;
4114
4115 EV_FREQUENT_CHECK;
4116
4117 ev_start (EV_A_ (W)w, ++checkcnt);
4118 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4119 checks [checkcnt - 1] = w;
4120
4121 EV_FREQUENT_CHECK;
4122}
4123
4124void
4125ev_check_stop (EV_P_ ev_check *w) EV_THROW
4126{
4127 clear_pending (EV_A_ (W)w);
4128 if (expect_false (!ev_is_active (w)))
4129 return;
4130
4131 EV_FREQUENT_CHECK;
4132
4133 {
4134 int active = ev_active (w);
4135
4136 checks [active - 1] = checks [--checkcnt];
4137 ev_active (checks [active - 1]) = active;
4138 }
4139
4140 ev_stop (EV_A_ (W)w);
4141
4142 EV_FREQUENT_CHECK;
4143}
4144#endif
4145
4146#if EV_EMBED_ENABLE
4147void noinline
4148ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
4149{
4150 ev_run (w->other, EVRUN_NOWAIT);
4151}
4152
4153static void
4154embed_io_cb (EV_P_ ev_io *io, int revents)
4155{
4156 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4157
4158 if (ev_cb (w))
4159 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4160 else
4161 ev_run (w->other, EVRUN_NOWAIT);
4162}
4163
4164static void
4165embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4166{
4167 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4168
4169 {
4170 EV_P = w->other;
4171
4172 while (fdchangecnt)
4173 {
4174 fd_reify (EV_A);
4175 ev_run (EV_A_ EVRUN_NOWAIT);
4176 }
4177 }
4178}
4179
4180static void
4181embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4182{
4183 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4184
4185 ev_embed_stop (EV_A_ w);
4186
4187 {
4188 EV_P = w->other;
4189
4190 ev_loop_fork (EV_A);
4191 ev_run (EV_A_ EVRUN_NOWAIT);
4192 }
4193
4194 ev_embed_start (EV_A_ w);
4195}
4196
4197#if 0
4198static void
4199embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4200{
4201 ev_idle_stop (EV_A_ idle);
4202}
4203#endif
4204
4205void
4206ev_embed_start (EV_P_ ev_embed *w) EV_THROW
4207{
4208 if (expect_false (ev_is_active (w)))
4209 return;
4210
4211 {
4212 EV_P = w->other;
4213 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4214 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4215 }
4216
4217 EV_FREQUENT_CHECK;
4218
4219 ev_set_priority (&w->io, ev_priority (w));
4220 ev_io_start (EV_A_ &w->io);
4221
4222 ev_prepare_init (&w->prepare, embed_prepare_cb);
4223 ev_set_priority (&w->prepare, EV_MINPRI);
4224 ev_prepare_start (EV_A_ &w->prepare);
4225
4226 ev_fork_init (&w->fork, embed_fork_cb);
4227 ev_fork_start (EV_A_ &w->fork);
4228
4229 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4230
4231 ev_start (EV_A_ (W)w, 1);
4232
4233 EV_FREQUENT_CHECK;
4234}
4235
4236void
4237ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
4238{
4239 clear_pending (EV_A_ (W)w);
4240 if (expect_false (!ev_is_active (w)))
4241 return;
4242
4243 EV_FREQUENT_CHECK;
4244
4245 ev_io_stop (EV_A_ &w->io);
4246 ev_prepare_stop (EV_A_ &w->prepare);
4247 ev_fork_stop (EV_A_ &w->fork);
4248
4249 ev_stop (EV_A_ (W)w);
4250
4251 EV_FREQUENT_CHECK;
4252}
4253#endif
4254
4255#if EV_FORK_ENABLE
4256void
4257ev_fork_start (EV_P_ ev_fork *w) EV_THROW
4258{
4259 if (expect_false (ev_is_active (w)))
4260 return;
4261
4262 EV_FREQUENT_CHECK;
4263
4264 ev_start (EV_A_ (W)w, ++forkcnt);
4265 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4266 forks [forkcnt - 1] = w;
4267
4268 EV_FREQUENT_CHECK;
4269}
4270
4271void
4272ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
4273{
4274 clear_pending (EV_A_ (W)w);
4275 if (expect_false (!ev_is_active (w)))
4276 return;
4277
4278 EV_FREQUENT_CHECK;
4279
4280 {
4281 int active = ev_active (w);
4282
4283 forks [active - 1] = forks [--forkcnt];
4284 ev_active (forks [active - 1]) = active;
4285 }
4286
4287 ev_stop (EV_A_ (W)w);
4288
4289 EV_FREQUENT_CHECK;
4290}
4291#endif
4292
4293#if EV_CLEANUP_ENABLE
4294void
4295ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4296{
4297 if (expect_false (ev_is_active (w)))
4298 return;
4299
4300 EV_FREQUENT_CHECK;
4301
4302 ev_start (EV_A_ (W)w, ++cleanupcnt);
4303 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4304 cleanups [cleanupcnt - 1] = w;
4305
4306 /* cleanup watchers should never keep a refcount on the loop */
4307 ev_unref (EV_A);
4308 EV_FREQUENT_CHECK;
4309}
4310
4311void
4312ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4313{
4314 clear_pending (EV_A_ (W)w);
4315 if (expect_false (!ev_is_active (w)))
4316 return;
4317
4318 EV_FREQUENT_CHECK;
4319 ev_ref (EV_A);
4320
4321 {
4322 int active = ev_active (w);
4323
4324 cleanups [active - 1] = cleanups [--cleanupcnt];
4325 ev_active (cleanups [active - 1]) = active;
4326 }
4327
4328 ev_stop (EV_A_ (W)w);
4329
4330 EV_FREQUENT_CHECK;
4331}
4332#endif
4333
4334#if EV_ASYNC_ENABLE
4335void
4336ev_async_start (EV_P_ ev_async *w) EV_THROW
4337{
4338 if (expect_false (ev_is_active (w)))
4339 return;
4340
4341 w->sent = 0;
4342
4343 evpipe_init (EV_A);
4344
4345 EV_FREQUENT_CHECK;
4346
4347 ev_start (EV_A_ (W)w, ++asynccnt);
4348 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4349 asyncs [asynccnt - 1] = w;
4350
4351 EV_FREQUENT_CHECK;
4352}
4353
4354void
4355ev_async_stop (EV_P_ ev_async *w) EV_THROW
4356{
4357 clear_pending (EV_A_ (W)w);
4358 if (expect_false (!ev_is_active (w)))
4359 return;
4360
4361 EV_FREQUENT_CHECK;
4362
4363 {
4364 int active = ev_active (w);
4365
4366 asyncs [active - 1] = asyncs [--asynccnt];
4367 ev_active (asyncs [active - 1]) = active;
4368 }
4369
4370 ev_stop (EV_A_ (W)w);
4371
4372 EV_FREQUENT_CHECK;
4373}
4374
4375void
4376ev_async_send (EV_P_ ev_async *w) EV_THROW
4377{
4378 w->sent = 1;
4379 evpipe_write (EV_A_ &async_pending);
4380}
4381#endif
1658 4382
1659/*****************************************************************************/ 4383/*****************************************************************************/
1660 4384
1661struct ev_once 4385struct ev_once
1662{ 4386{
1663 struct ev_io io; 4387 ev_io io;
1664 struct ev_timer to; 4388 ev_timer to;
1665 void (*cb)(int revents, void *arg); 4389 void (*cb)(int revents, void *arg);
1666 void *arg; 4390 void *arg;
1667}; 4391};
1668 4392
1669static void 4393static void
1670once_cb (EV_P_ struct ev_once *once, int revents) 4394once_cb (EV_P_ struct ev_once *once, int revents)
1671{ 4395{
1672 void (*cb)(int revents, void *arg) = once->cb; 4396 void (*cb)(int revents, void *arg) = once->cb;
1673 void *arg = once->arg; 4397 void *arg = once->arg;
1674 4398
1675 ev_io_stop (EV_A_ &once->io); 4399 ev_io_stop (EV_A_ &once->io);
1676 ev_timer_stop (EV_A_ &once->to); 4400 ev_timer_stop (EV_A_ &once->to);
1677 ev_free (once); 4401 ev_free (once);
1678 4402
1679 cb (revents, arg); 4403 cb (revents, arg);
1680} 4404}
1681 4405
1682static void 4406static void
1683once_cb_io (EV_P_ struct ev_io *w, int revents) 4407once_cb_io (EV_P_ ev_io *w, int revents)
1684{ 4408{
1685 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4409 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4410
4411 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1686} 4412}
1687 4413
1688static void 4414static void
1689once_cb_to (EV_P_ struct ev_timer *w, int revents) 4415once_cb_to (EV_P_ ev_timer *w, int revents)
1690{ 4416{
1691 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4417 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4418
4419 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1692} 4420}
1693 4421
1694void 4422void
1695ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4423ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
1696{ 4424{
1697 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4425 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1698 4426
1699 if (expect_false (!once)) 4427 if (expect_false (!once))
1700 { 4428 {
1701 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4429 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1702 return; 4430 return;
1703 } 4431 }
1704 4432
1705 once->cb = cb; 4433 once->cb = cb;
1706 once->arg = arg; 4434 once->arg = arg;
1718 ev_timer_set (&once->to, timeout, 0.); 4446 ev_timer_set (&once->to, timeout, 0.);
1719 ev_timer_start (EV_A_ &once->to); 4447 ev_timer_start (EV_A_ &once->to);
1720 } 4448 }
1721} 4449}
1722 4450
1723#ifdef __cplusplus 4451/*****************************************************************************/
1724} 4452
4453#if EV_WALK_ENABLE
4454void ecb_cold
4455ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4456{
4457 int i, j;
4458 ev_watcher_list *wl, *wn;
4459
4460 if (types & (EV_IO | EV_EMBED))
4461 for (i = 0; i < anfdmax; ++i)
4462 for (wl = anfds [i].head; wl; )
4463 {
4464 wn = wl->next;
4465
4466#if EV_EMBED_ENABLE
4467 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4468 {
4469 if (types & EV_EMBED)
4470 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4471 }
4472 else
4473#endif
4474#if EV_USE_INOTIFY
4475 if (ev_cb ((ev_io *)wl) == infy_cb)
4476 ;
4477 else
4478#endif
4479 if ((ev_io *)wl != &pipe_w)
4480 if (types & EV_IO)
4481 cb (EV_A_ EV_IO, wl);
4482
4483 wl = wn;
4484 }
4485
4486 if (types & (EV_TIMER | EV_STAT))
4487 for (i = timercnt + HEAP0; i-- > HEAP0; )
4488#if EV_STAT_ENABLE
4489 /*TODO: timer is not always active*/
4490 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4491 {
4492 if (types & EV_STAT)
4493 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4494 }
4495 else
4496#endif
4497 if (types & EV_TIMER)
4498 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4499
4500#if EV_PERIODIC_ENABLE
4501 if (types & EV_PERIODIC)
4502 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4503 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4504#endif
4505
4506#if EV_IDLE_ENABLE
4507 if (types & EV_IDLE)
4508 for (j = NUMPRI; j--; )
4509 for (i = idlecnt [j]; i--; )
4510 cb (EV_A_ EV_IDLE, idles [j][i]);
4511#endif
4512
4513#if EV_FORK_ENABLE
4514 if (types & EV_FORK)
4515 for (i = forkcnt; i--; )
4516 if (ev_cb (forks [i]) != embed_fork_cb)
4517 cb (EV_A_ EV_FORK, forks [i]);
4518#endif
4519
4520#if EV_ASYNC_ENABLE
4521 if (types & EV_ASYNC)
4522 for (i = asynccnt; i--; )
4523 cb (EV_A_ EV_ASYNC, asyncs [i]);
4524#endif
4525
4526#if EV_PREPARE_ENABLE
4527 if (types & EV_PREPARE)
4528 for (i = preparecnt; i--; )
4529# if EV_EMBED_ENABLE
4530 if (ev_cb (prepares [i]) != embed_prepare_cb)
1725#endif 4531# endif
4532 cb (EV_A_ EV_PREPARE, prepares [i]);
4533#endif
1726 4534
4535#if EV_CHECK_ENABLE
4536 if (types & EV_CHECK)
4537 for (i = checkcnt; i--; )
4538 cb (EV_A_ EV_CHECK, checks [i]);
4539#endif
4540
4541#if EV_SIGNAL_ENABLE
4542 if (types & EV_SIGNAL)
4543 for (i = 0; i < EV_NSIG - 1; ++i)
4544 for (wl = signals [i].head; wl; )
4545 {
4546 wn = wl->next;
4547 cb (EV_A_ EV_SIGNAL, wl);
4548 wl = wn;
4549 }
4550#endif
4551
4552#if EV_CHILD_ENABLE
4553 if (types & EV_CHILD)
4554 for (i = (EV_PID_HASHSIZE); i--; )
4555 for (wl = childs [i]; wl; )
4556 {
4557 wn = wl->next;
4558 cb (EV_A_ EV_CHILD, wl);
4559 wl = wn;
4560 }
4561#endif
4562/* EV_STAT 0x00001000 /* stat data changed */
4563/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4564}
4565#endif
4566
4567#if EV_MULTIPLICITY
4568 #include "ev_wrap.h"
4569#endif
4570

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines