ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.44 by root, Fri Nov 2 20:59:14 2007 UTC vs.
Revision 1.72 by root, Tue Nov 6 16:09:37 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31#if EV_USE_CONFIG_H 31#ifndef EV_STANDALONE
32# include "config.h" 32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
33#endif 55#endif
34 56
35#include <math.h> 57#include <math.h>
36#include <stdlib.h> 58#include <stdlib.h>
37#include <unistd.h>
38#include <fcntl.h> 59#include <fcntl.h>
39#include <signal.h>
40#include <stddef.h> 60#include <stddef.h>
41 61
42#include <stdio.h> 62#include <stdio.h>
43 63
44#include <assert.h> 64#include <assert.h>
45#include <errno.h> 65#include <errno.h>
46#include <sys/types.h> 66#include <sys/types.h>
47#include <sys/wait.h>
48#include <sys/time.h>
49#include <time.h> 67#include <time.h>
50 68
69#include <signal.h>
70
71#ifndef WIN32
72# include <unistd.h>
73# include <sys/time.h>
74# include <sys/wait.h>
75#endif
51/**/ 76/**/
52 77
53#ifndef EV_USE_MONOTONIC 78#ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 79# define EV_USE_MONOTONIC 1
55#endif 80#endif
66# define EV_USE_EPOLL 0 91# define EV_USE_EPOLL 0
67#endif 92#endif
68 93
69#ifndef EV_USE_KQUEUE 94#ifndef EV_USE_KQUEUE
70# define EV_USE_KQUEUE 0 95# define EV_USE_KQUEUE 0
96#endif
97
98#ifndef EV_USE_WIN32
99# ifdef WIN32
100# define EV_USE_WIN32 0 /* it does not exist, use select */
101# undef EV_USE_SELECT
102# define EV_USE_SELECT 1
103# else
104# define EV_USE_WIN32 0
105# endif
71#endif 106#endif
72 107
73#ifndef EV_USE_REALTIME 108#ifndef EV_USE_REALTIME
74# define EV_USE_REALTIME 1 109# define EV_USE_REALTIME 1
75#endif 110#endif
111 146
112typedef struct ev_watcher *W; 147typedef struct ev_watcher *W;
113typedef struct ev_watcher_list *WL; 148typedef struct ev_watcher_list *WL;
114typedef struct ev_watcher_time *WT; 149typedef struct ev_watcher_time *WT;
115 150
116static ev_tstamp now_floor, now, diff; /* monotonic clock */ 151static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
117ev_tstamp ev_now;
118int ev_method;
119 152
120static int have_monotonic; /* runtime */ 153#if WIN32
154/* note: the comment below could not be substantiated, but what would I care */
155/* MSDN says this is required to handle SIGFPE */
156volatile double SIGFPE_REQ = 0.0f;
121 157
122static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 158static int
123static void (*method_modify)(int fd, int oev, int nev); 159ev_socketpair_tcp (int filedes [2])
124static void (*method_poll)(ev_tstamp timeout); 160{
161 struct sockaddr_in addr = { 0 };
162 int addr_size = sizeof (addr);
163 SOCKET listener;
164 SOCKET sock [2] = { -1, -1 };
165
166 if ((listener = socket (AF_INET, SOCK_STREAM, 0)) == INVALID_SOCKET)
167 return -1;
168
169 addr.sin_family = AF_INET;
170 addr.sin_addr.s_addr = htonl (INADDR_LOOPBACK);
171 addr.sin_port = 0;
172
173 if (bind (listener, (struct sockaddr *)&addr, addr_size))
174 goto fail;
175
176 if (getsockname(listener, (struct sockaddr *)&addr, &addr_size))
177 goto fail;
178
179 if (listen (listener, 1))
180 goto fail;
181
182 if ((sock [0] = socket (AF_INET, SOCK_STREAM, 0)) == INVALID_SOCKET)
183 goto fail;
184
185 if (connect (sock[0], (struct sockaddr *)&addr, addr_size))
186 goto fail;
187
188 if ((sock[1] = accept (listener, 0, 0)) < 0)
189 goto fail;
190
191 closesocket (listener);
192
193 filedes [0] = sock [0];
194 filedes [1] = sock [1];
195
196 return 0;
197
198fail:
199 closesocket (listener);
200
201 if (sock [0] != INVALID_SOCKET) closesocket (sock [0]);
202 if (sock [1] != INVALID_SOCKET) closesocket (sock [1]);
203
204 return -1;
205}
206
207# define ev_pipe(filedes) ev_socketpair_tcp (filedes)
208#else
209# define ev_pipe(filedes) pipe (filedes)
210#endif
125 211
126/*****************************************************************************/ 212/*****************************************************************************/
127 213
128ev_tstamp 214static void (*syserr_cb)(const char *msg);
215
216void ev_set_syserr_cb (void (*cb)(const char *msg))
217{
218 syserr_cb = cb;
219}
220
221static void
222syserr (const char *msg)
223{
224 if (!msg)
225 msg = "(libev) system error";
226
227 if (syserr_cb)
228 syserr_cb (msg);
229 else
230 {
231 perror (msg);
232 abort ();
233 }
234}
235
236static void *(*alloc)(void *ptr, long size);
237
238void ev_set_allocator (void *(*cb)(void *ptr, long size))
239{
240 alloc = cb;
241}
242
243static void *
244ev_realloc (void *ptr, long size)
245{
246 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
247
248 if (!ptr && size)
249 {
250 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
251 abort ();
252 }
253
254 return ptr;
255}
256
257#define ev_malloc(size) ev_realloc (0, (size))
258#define ev_free(ptr) ev_realloc ((ptr), 0)
259
260/*****************************************************************************/
261
262typedef struct
263{
264 WL head;
265 unsigned char events;
266 unsigned char reify;
267} ANFD;
268
269typedef struct
270{
271 W w;
272 int events;
273} ANPENDING;
274
275#if EV_MULTIPLICITY
276
277struct ev_loop
278{
279# define VAR(name,decl) decl;
280# include "ev_vars.h"
281};
282# undef VAR
283# include "ev_wrap.h"
284
285#else
286
287# define VAR(name,decl) static decl;
288# include "ev_vars.h"
289# undef VAR
290
291#endif
292
293/*****************************************************************************/
294
295inline ev_tstamp
129ev_time (void) 296ev_time (void)
130{ 297{
131#if EV_USE_REALTIME 298#if EV_USE_REALTIME
132 struct timespec ts; 299 struct timespec ts;
133 clock_gettime (CLOCK_REALTIME, &ts); 300 clock_gettime (CLOCK_REALTIME, &ts);
137 gettimeofday (&tv, 0); 304 gettimeofday (&tv, 0);
138 return tv.tv_sec + tv.tv_usec * 1e-6; 305 return tv.tv_sec + tv.tv_usec * 1e-6;
139#endif 306#endif
140} 307}
141 308
142static ev_tstamp 309inline ev_tstamp
143get_clock (void) 310get_clock (void)
144{ 311{
145#if EV_USE_MONOTONIC 312#if EV_USE_MONOTONIC
146 if (expect_true (have_monotonic)) 313 if (expect_true (have_monotonic))
147 { 314 {
152#endif 319#endif
153 320
154 return ev_time (); 321 return ev_time ();
155} 322}
156 323
324ev_tstamp
325ev_now (EV_P)
326{
327 return rt_now;
328}
329
157#define array_roundsize(base,n) ((n) | 4 & ~3) 330#define array_roundsize(base,n) ((n) | 4 & ~3)
158 331
159#define array_needsize(base,cur,cnt,init) \ 332#define array_needsize(base,cur,cnt,init) \
160 if (expect_false ((cnt) > cur)) \ 333 if (expect_false ((cnt) > cur)) \
161 { \ 334 { \
162 int newcnt = cur; \ 335 int newcnt = cur; \
163 do \ 336 do \
164 { \ 337 { \
165 newcnt = array_roundsize (base, newcnt << 1); \ 338 newcnt = array_roundsize (base, newcnt << 1); \
166 } \ 339 } \
167 while ((cnt) > newcnt); \ 340 while ((cnt) > newcnt); \
168 \ 341 \
169 base = realloc (base, sizeof (*base) * (newcnt)); \ 342 base = ev_realloc (base, sizeof (*base) * (newcnt)); \
170 init (base + cur, newcnt - cur); \ 343 init (base + cur, newcnt - cur); \
171 cur = newcnt; \ 344 cur = newcnt; \
172 } 345 }
346
347#define array_slim(stem) \
348 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
349 { \
350 stem ## max = array_roundsize (stem ## cnt >> 1); \
351 base = ev_realloc (base, sizeof (*base) * (stem ## max)); \
352 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
353 }
354
355/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
356/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
357#define array_free_microshit(stem) \
358 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
359
360#define array_free(stem, idx) \
361 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
173 362
174/*****************************************************************************/ 363/*****************************************************************************/
175
176typedef struct
177{
178 struct ev_io *head;
179 unsigned char events;
180 unsigned char reify;
181} ANFD;
182
183static ANFD *anfds;
184static int anfdmax;
185 364
186static void 365static void
187anfds_init (ANFD *base, int count) 366anfds_init (ANFD *base, int count)
188{ 367{
189 while (count--) 368 while (count--)
194 373
195 ++base; 374 ++base;
196 } 375 }
197} 376}
198 377
199typedef struct
200{
201 W w;
202 int events;
203} ANPENDING;
204
205static ANPENDING *pendings [NUMPRI];
206static int pendingmax [NUMPRI], pendingcnt [NUMPRI];
207
208static void 378static void
209event (W w, int events) 379event (EV_P_ W w, int events)
210{ 380{
211 if (w->pending) 381 if (w->pending)
212 { 382 {
213 pendings [ABSPRI (w)][w->pending - 1].events |= events; 383 pendings [ABSPRI (w)][w->pending - 1].events |= events;
214 return; 384 return;
215 } 385 }
216 386
217 w->pending = ++pendingcnt [ABSPRI (w)]; 387 w->pending = ++pendingcnt [ABSPRI (w)];
218 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 388 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], (void));
219 pendings [ABSPRI (w)][w->pending - 1].w = w; 389 pendings [ABSPRI (w)][w->pending - 1].w = w;
220 pendings [ABSPRI (w)][w->pending - 1].events = events; 390 pendings [ABSPRI (w)][w->pending - 1].events = events;
221} 391}
222 392
223static void 393static void
224queue_events (W *events, int eventcnt, int type) 394queue_events (EV_P_ W *events, int eventcnt, int type)
225{ 395{
226 int i; 396 int i;
227 397
228 for (i = 0; i < eventcnt; ++i) 398 for (i = 0; i < eventcnt; ++i)
229 event (events [i], type); 399 event (EV_A_ events [i], type);
230} 400}
231 401
232static void 402static void
233fd_event (int fd, int events) 403fd_event (EV_P_ int fd, int events)
234{ 404{
235 ANFD *anfd = anfds + fd; 405 ANFD *anfd = anfds + fd;
236 struct ev_io *w; 406 struct ev_io *w;
237 407
238 for (w = anfd->head; w; w = w->next) 408 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
239 { 409 {
240 int ev = w->events & events; 410 int ev = w->events & events;
241 411
242 if (ev) 412 if (ev)
243 event ((W)w, ev); 413 event (EV_A_ (W)w, ev);
244 } 414 }
245} 415}
246 416
247/*****************************************************************************/ 417/*****************************************************************************/
248 418
249static int *fdchanges;
250static int fdchangemax, fdchangecnt;
251
252static void 419static void
253fd_reify (void) 420fd_reify (EV_P)
254{ 421{
255 int i; 422 int i;
256 423
257 for (i = 0; i < fdchangecnt; ++i) 424 for (i = 0; i < fdchangecnt; ++i)
258 { 425 {
260 ANFD *anfd = anfds + fd; 427 ANFD *anfd = anfds + fd;
261 struct ev_io *w; 428 struct ev_io *w;
262 429
263 int events = 0; 430 int events = 0;
264 431
265 for (w = anfd->head; w; w = w->next) 432 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
266 events |= w->events; 433 events |= w->events;
267 434
268 anfd->reify = 0; 435 anfd->reify = 0;
269 436
270 if (anfd->events != events)
271 {
272 method_modify (fd, anfd->events, events); 437 method_modify (EV_A_ fd, anfd->events, events);
273 anfd->events = events; 438 anfd->events = events;
274 }
275 } 439 }
276 440
277 fdchangecnt = 0; 441 fdchangecnt = 0;
278} 442}
279 443
280static void 444static void
281fd_change (int fd) 445fd_change (EV_P_ int fd)
282{ 446{
283 if (anfds [fd].reify || fdchangecnt < 0) 447 if (anfds [fd].reify)
284 return; 448 return;
285 449
286 anfds [fd].reify = 1; 450 anfds [fd].reify = 1;
287 451
288 ++fdchangecnt; 452 ++fdchangecnt;
289 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 453 array_needsize (fdchanges, fdchangemax, fdchangecnt, (void));
290 fdchanges [fdchangecnt - 1] = fd; 454 fdchanges [fdchangecnt - 1] = fd;
291} 455}
292 456
293static void 457static void
294fd_kill (int fd) 458fd_kill (EV_P_ int fd)
295{ 459{
296 struct ev_io *w; 460 struct ev_io *w;
297 461
298 printf ("killing fd %d\n", fd);//D
299 while ((w = anfds [fd].head)) 462 while ((w = (struct ev_io *)anfds [fd].head))
300 { 463 {
301 ev_io_stop (w); 464 ev_io_stop (EV_A_ w);
302 event ((W)w, EV_ERROR | EV_READ | EV_WRITE); 465 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
303 } 466 }
467}
468
469static int
470fd_valid (int fd)
471{
472#ifdef WIN32
473 return !!win32_get_osfhandle (fd);
474#else
475 return fcntl (fd, F_GETFD) != -1;
476#endif
304} 477}
305 478
306/* called on EBADF to verify fds */ 479/* called on EBADF to verify fds */
307static void 480static void
308fd_ebadf (void) 481fd_ebadf (EV_P)
309{ 482{
310 int fd; 483 int fd;
311 484
312 for (fd = 0; fd < anfdmax; ++fd) 485 for (fd = 0; fd < anfdmax; ++fd)
313 if (anfds [fd].events) 486 if (anfds [fd].events)
314 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 487 if (!fd_valid (fd) == -1 && errno == EBADF)
315 fd_kill (fd); 488 fd_kill (EV_A_ fd);
316} 489}
317 490
318/* called on ENOMEM in select/poll to kill some fds and retry */ 491/* called on ENOMEM in select/poll to kill some fds and retry */
319static void 492static void
320fd_enomem (void) 493fd_enomem (EV_P)
321{ 494{
322 int fd = anfdmax; 495 int fd;
323 496
324 while (fd--) 497 for (fd = anfdmax; fd--; )
325 if (anfds [fd].events) 498 if (anfds [fd].events)
326 { 499 {
327 close (fd);
328 fd_kill (fd); 500 fd_kill (EV_A_ fd);
329 return; 501 return;
330 } 502 }
331} 503}
332 504
505/* usually called after fork if method needs to re-arm all fds from scratch */
506static void
507fd_rearm_all (EV_P)
508{
509 int fd;
510
511 /* this should be highly optimised to not do anything but set a flag */
512 for (fd = 0; fd < anfdmax; ++fd)
513 if (anfds [fd].events)
514 {
515 anfds [fd].events = 0;
516 fd_change (EV_A_ fd);
517 }
518}
519
333/*****************************************************************************/ 520/*****************************************************************************/
334 521
335static struct ev_timer **timers;
336static int timermax, timercnt;
337
338static struct ev_periodic **periodics;
339static int periodicmax, periodiccnt;
340
341static void 522static void
342upheap (WT *timers, int k) 523upheap (WT *heap, int k)
343{ 524{
344 WT w = timers [k]; 525 WT w = heap [k];
345 526
346 while (k && timers [k >> 1]->at > w->at) 527 while (k && heap [k >> 1]->at > w->at)
347 { 528 {
348 timers [k] = timers [k >> 1]; 529 heap [k] = heap [k >> 1];
349 timers [k]->active = k + 1; 530 ((W)heap [k])->active = k + 1;
350 k >>= 1; 531 k >>= 1;
351 } 532 }
352 533
353 timers [k] = w; 534 heap [k] = w;
354 timers [k]->active = k + 1; 535 ((W)heap [k])->active = k + 1;
355 536
356} 537}
357 538
358static void 539static void
359downheap (WT *timers, int N, int k) 540downheap (WT *heap, int N, int k)
360{ 541{
361 WT w = timers [k]; 542 WT w = heap [k];
362 543
363 while (k < (N >> 1)) 544 while (k < (N >> 1))
364 { 545 {
365 int j = k << 1; 546 int j = k << 1;
366 547
367 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 548 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
368 ++j; 549 ++j;
369 550
370 if (w->at <= timers [j]->at) 551 if (w->at <= heap [j]->at)
371 break; 552 break;
372 553
373 timers [k] = timers [j]; 554 heap [k] = heap [j];
374 timers [k]->active = k + 1; 555 ((W)heap [k])->active = k + 1;
375 k = j; 556 k = j;
376 } 557 }
377 558
378 timers [k] = w; 559 heap [k] = w;
379 timers [k]->active = k + 1; 560 ((W)heap [k])->active = k + 1;
380} 561}
381 562
382/*****************************************************************************/ 563/*****************************************************************************/
383 564
384typedef struct 565typedef struct
385{ 566{
386 struct ev_signal *head; 567 WL head;
387 sig_atomic_t volatile gotsig; 568 sig_atomic_t volatile gotsig;
388} ANSIG; 569} ANSIG;
389 570
390static ANSIG *signals; 571static ANSIG *signals;
391static int signalmax; 572static int signalmax;
407} 588}
408 589
409static void 590static void
410sighandler (int signum) 591sighandler (int signum)
411{ 592{
593#if WIN32
594 signal (signum, sighandler);
595#endif
596
412 signals [signum - 1].gotsig = 1; 597 signals [signum - 1].gotsig = 1;
413 598
414 if (!gotsig) 599 if (!gotsig)
415 { 600 {
601 int old_errno = errno;
416 gotsig = 1; 602 gotsig = 1;
417 write (sigpipe [1], &signum, 1); 603 write (sigpipe [1], &signum, 1);
604 errno = old_errno;
418 } 605 }
419} 606}
420 607
421static void 608static void
422sigcb (struct ev_io *iow, int revents) 609sigcb (EV_P_ struct ev_io *iow, int revents)
423{ 610{
424 struct ev_signal *w; 611 WL w;
425 int signum; 612 int signum;
426 613
427 read (sigpipe [0], &revents, 1); 614 read (sigpipe [0], &revents, 1);
428 gotsig = 0; 615 gotsig = 0;
429 616
431 if (signals [signum].gotsig) 618 if (signals [signum].gotsig)
432 { 619 {
433 signals [signum].gotsig = 0; 620 signals [signum].gotsig = 0;
434 621
435 for (w = signals [signum].head; w; w = w->next) 622 for (w = signals [signum].head; w; w = w->next)
436 event ((W)w, EV_SIGNAL); 623 event (EV_A_ (W)w, EV_SIGNAL);
437 } 624 }
438} 625}
439 626
440static void 627static void
441siginit (void) 628siginit (EV_P)
442{ 629{
630#ifndef WIN32
443 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 631 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
444 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 632 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
445 633
446 /* rather than sort out wether we really need nb, set it */ 634 /* rather than sort out wether we really need nb, set it */
447 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 635 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
448 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 636 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
637#endif
449 638
450 ev_io_set (&sigev, sigpipe [0], EV_READ); 639 ev_io_set (&sigev, sigpipe [0], EV_READ);
451 ev_io_start (&sigev); 640 ev_io_start (EV_A_ &sigev);
641 ev_unref (EV_A); /* child watcher should not keep loop alive */
452} 642}
453 643
454/*****************************************************************************/ 644/*****************************************************************************/
455 645
456static struct ev_idle **idles;
457static int idlemax, idlecnt;
458
459static struct ev_prepare **prepares;
460static int preparemax, preparecnt;
461
462static struct ev_check **checks;
463static int checkmax, checkcnt;
464
465/*****************************************************************************/
466
467static struct ev_child *childs [PID_HASHSIZE]; 646static struct ev_child *childs [PID_HASHSIZE];
647
648#ifndef WIN32
649
468static struct ev_signal childev; 650static struct ev_signal childev;
469 651
470#ifndef WCONTINUED 652#ifndef WCONTINUED
471# define WCONTINUED 0 653# define WCONTINUED 0
472#endif 654#endif
473 655
474static void 656static void
475childcb (struct ev_signal *sw, int revents) 657child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
476{ 658{
477 struct ev_child *w; 659 struct ev_child *w;
660
661 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
662 if (w->pid == pid || !w->pid)
663 {
664 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
665 w->rpid = pid;
666 w->rstatus = status;
667 event (EV_A_ (W)w, EV_CHILD);
668 }
669}
670
671static void
672childcb (EV_P_ struct ev_signal *sw, int revents)
673{
478 int pid, status; 674 int pid, status;
479 675
480 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 676 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
481 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 677 {
482 if (w->pid == pid || !w->pid) 678 /* make sure we are called again until all childs have been reaped */
483 { 679 event (EV_A_ (W)sw, EV_SIGNAL);
484 w->status = status; 680
485 event ((W)w, EV_CHILD); 681 child_reap (EV_A_ sw, pid, pid, status);
486 } 682 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
683 }
487} 684}
685
686#endif
488 687
489/*****************************************************************************/ 688/*****************************************************************************/
490 689
491#if EV_USE_KQUEUE 690#if EV_USE_KQUEUE
492# include "ev_kqueue.c" 691# include "ev_kqueue.c"
511ev_version_minor (void) 710ev_version_minor (void)
512{ 711{
513 return EV_VERSION_MINOR; 712 return EV_VERSION_MINOR;
514} 713}
515 714
516/* return true if we are running with elevated privileges and ignore env variables */ 715/* return true if we are running with elevated privileges and should ignore env variables */
517static int 716static int
518enable_secure () 717enable_secure (void)
519{ 718{
719#ifdef WIN32
720 return 0;
721#else
520 return getuid () != geteuid () 722 return getuid () != geteuid ()
521 || getgid () != getegid (); 723 || getgid () != getegid ();
724#endif
522} 725}
523 726
524int ev_init (int methods) 727int
728ev_method (EV_P)
525{ 729{
730 return method;
731}
732
733static void
734loop_init (EV_P_ int methods)
735{
526 if (!ev_method) 736 if (!method)
527 { 737 {
528#if EV_USE_MONOTONIC 738#if EV_USE_MONOTONIC
529 { 739 {
530 struct timespec ts; 740 struct timespec ts;
531 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 741 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
532 have_monotonic = 1; 742 have_monotonic = 1;
533 } 743 }
534#endif 744#endif
535 745
536 ev_now = ev_time (); 746 rt_now = ev_time ();
537 now = get_clock (); 747 mn_now = get_clock ();
538 now_floor = now; 748 now_floor = mn_now;
539 diff = ev_now - now; 749 rtmn_diff = rt_now - mn_now;
540
541 if (pipe (sigpipe))
542 return 0;
543 750
544 if (methods == EVMETHOD_AUTO) 751 if (methods == EVMETHOD_AUTO)
545 if (!enable_secure () && getenv ("LIBEV_METHODS")) 752 if (!enable_secure () && getenv ("LIBEV_METHODS"))
546 methods = atoi (getenv ("LIBEV_METHODS")); 753 methods = atoi (getenv ("LIBEV_METHODS"));
547 else 754 else
548 methods = EVMETHOD_ANY; 755 methods = EVMETHOD_ANY;
549 756
550 ev_method = 0; 757 method = 0;
758#if EV_USE_WIN32
759 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
760#endif
551#if EV_USE_KQUEUE 761#if EV_USE_KQUEUE
552 if (!ev_method && (methods & EVMETHOD_KQUEUE)) kqueue_init (methods); 762 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
553#endif 763#endif
554#if EV_USE_EPOLL 764#if EV_USE_EPOLL
555 if (!ev_method && (methods & EVMETHOD_EPOLL )) epoll_init (methods); 765 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
556#endif 766#endif
557#if EV_USE_POLL 767#if EV_USE_POLL
558 if (!ev_method && (methods & EVMETHOD_POLL )) poll_init (methods); 768 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
559#endif 769#endif
560#if EV_USE_SELECT 770#if EV_USE_SELECT
561 if (!ev_method && (methods & EVMETHOD_SELECT)) select_init (methods); 771 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
562#endif 772#endif
563 773
774 ev_watcher_init (&sigev, sigcb);
775 ev_set_priority (&sigev, EV_MAXPRI);
776 }
777}
778
779void
780loop_destroy (EV_P)
781{
782 int i;
783
784#if EV_USE_WIN32
785 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
786#endif
787#if EV_USE_KQUEUE
788 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
789#endif
790#if EV_USE_EPOLL
791 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
792#endif
793#if EV_USE_POLL
794 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
795#endif
796#if EV_USE_SELECT
797 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
798#endif
799
800 for (i = NUMPRI; i--; )
801 array_free (pending, [i]);
802
803 /* have to use the microsoft-never-gets-it-right macro */
804 array_free_microshit (fdchange);
805 array_free_microshit (timer);
806 array_free_microshit (periodic);
807 array_free_microshit (idle);
808 array_free_microshit (prepare);
809 array_free_microshit (check);
810
811 method = 0;
812}
813
814static void
815loop_fork (EV_P)
816{
817#if EV_USE_EPOLL
818 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
819#endif
820#if EV_USE_KQUEUE
821 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
822#endif
823
824 if (ev_is_active (&sigev))
825 {
826 /* default loop */
827
828 ev_ref (EV_A);
829 ev_io_stop (EV_A_ &sigev);
830 close (sigpipe [0]);
831 close (sigpipe [1]);
832
833 while (ev_pipe (sigpipe))
834 syserr ("(libev) error creating pipe");
835
836 siginit (EV_A);
837 }
838
839 postfork = 0;
840}
841
842#if EV_MULTIPLICITY
843struct ev_loop *
844ev_loop_new (int methods)
845{
846 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
847
848 memset (loop, 0, sizeof (struct ev_loop));
849
850 loop_init (EV_A_ methods);
851
852 if (ev_method (EV_A))
853 return loop;
854
855 return 0;
856}
857
858void
859ev_loop_destroy (EV_P)
860{
861 loop_destroy (EV_A);
862 ev_free (loop);
863}
864
865void
866ev_loop_fork (EV_P)
867{
868 postfork = 1;
869}
870
871#endif
872
873#if EV_MULTIPLICITY
874struct ev_loop default_loop_struct;
875static struct ev_loop *default_loop;
876
877struct ev_loop *
878#else
879static int default_loop;
880
881int
882#endif
883ev_default_loop (int methods)
884{
885 if (sigpipe [0] == sigpipe [1])
886 if (ev_pipe (sigpipe))
887 return 0;
888
889 if (!default_loop)
890 {
891#if EV_MULTIPLICITY
892 struct ev_loop *loop = default_loop = &default_loop_struct;
893#else
894 default_loop = 1;
895#endif
896
897 loop_init (EV_A_ methods);
898
564 if (ev_method) 899 if (ev_method (EV_A))
565 { 900 {
566 ev_watcher_init (&sigev, sigcb);
567 siginit (); 901 siginit (EV_A);
568 902
903#ifndef WIN32
569 ev_signal_init (&childev, childcb, SIGCHLD); 904 ev_signal_init (&childev, childcb, SIGCHLD);
905 ev_set_priority (&childev, EV_MAXPRI);
570 ev_signal_start (&childev); 906 ev_signal_start (EV_A_ &childev);
907 ev_unref (EV_A); /* child watcher should not keep loop alive */
908#endif
571 } 909 }
910 else
911 default_loop = 0;
572 } 912 }
573 913
574 return ev_method; 914 return default_loop;
915}
916
917void
918ev_default_destroy (void)
919{
920#if EV_MULTIPLICITY
921 struct ev_loop *loop = default_loop;
922#endif
923
924#ifndef WIN32
925 ev_ref (EV_A); /* child watcher */
926 ev_signal_stop (EV_A_ &childev);
927#endif
928
929 ev_ref (EV_A); /* signal watcher */
930 ev_io_stop (EV_A_ &sigev);
931
932 close (sigpipe [0]); sigpipe [0] = 0;
933 close (sigpipe [1]); sigpipe [1] = 0;
934
935 loop_destroy (EV_A);
936}
937
938void
939ev_default_fork (void)
940{
941#if EV_MULTIPLICITY
942 struct ev_loop *loop = default_loop;
943#endif
944
945 if (method)
946 postfork = 1;
575} 947}
576 948
577/*****************************************************************************/ 949/*****************************************************************************/
578 950
579void
580ev_fork_prepare (void)
581{
582 /* nop */
583}
584
585void
586ev_fork_parent (void)
587{
588 /* nop */
589}
590
591void
592ev_fork_child (void)
593{
594#if EV_USE_EPOLL
595 if (ev_method == EVMETHOD_EPOLL)
596 epoll_postfork_child ();
597#endif
598
599 ev_io_stop (&sigev);
600 close (sigpipe [0]);
601 close (sigpipe [1]);
602 pipe (sigpipe);
603 siginit ();
604}
605
606/*****************************************************************************/
607
608static void 951static void
609call_pending (void) 952call_pending (EV_P)
610{ 953{
611 int pri; 954 int pri;
612 955
613 for (pri = NUMPRI; pri--; ) 956 for (pri = NUMPRI; pri--; )
614 while (pendingcnt [pri]) 957 while (pendingcnt [pri])
616 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 959 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
617 960
618 if (p->w) 961 if (p->w)
619 { 962 {
620 p->w->pending = 0; 963 p->w->pending = 0;
621 p->w->cb (p->w, p->events); 964 p->w->cb (EV_A_ p->w, p->events);
622 } 965 }
623 } 966 }
624} 967}
625 968
626static void 969static void
627timers_reify (void) 970timers_reify (EV_P)
628{ 971{
629 while (timercnt && timers [0]->at <= now) 972 while (timercnt && ((WT)timers [0])->at <= mn_now)
630 { 973 {
631 struct ev_timer *w = timers [0]; 974 struct ev_timer *w = timers [0];
975
976 assert (("inactive timer on timer heap detected", ev_is_active (w)));
632 977
633 /* first reschedule or stop timer */ 978 /* first reschedule or stop timer */
634 if (w->repeat) 979 if (w->repeat)
635 { 980 {
636 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 981 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
637 w->at = now + w->repeat; 982 ((WT)w)->at = mn_now + w->repeat;
638 downheap ((WT *)timers, timercnt, 0); 983 downheap ((WT *)timers, timercnt, 0);
639 } 984 }
640 else 985 else
641 ev_timer_stop (w); /* nonrepeating: stop timer */ 986 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
642 987
643 event ((W)w, EV_TIMEOUT); 988 event (EV_A_ (W)w, EV_TIMEOUT);
644 } 989 }
645} 990}
646 991
647static void 992static void
648periodics_reify (void) 993periodics_reify (EV_P)
649{ 994{
650 while (periodiccnt && periodics [0]->at <= ev_now) 995 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
651 { 996 {
652 struct ev_periodic *w = periodics [0]; 997 struct ev_periodic *w = periodics [0];
998
999 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
653 1000
654 /* first reschedule or stop timer */ 1001 /* first reschedule or stop timer */
655 if (w->interval) 1002 if (w->interval)
656 { 1003 {
657 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 1004 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
658 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now)); 1005 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
659 downheap ((WT *)periodics, periodiccnt, 0); 1006 downheap ((WT *)periodics, periodiccnt, 0);
660 } 1007 }
661 else 1008 else
662 ev_periodic_stop (w); /* nonrepeating: stop timer */ 1009 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
663 1010
664 event ((W)w, EV_PERIODIC); 1011 event (EV_A_ (W)w, EV_PERIODIC);
665 } 1012 }
666} 1013}
667 1014
668static void 1015static void
669periodics_reschedule (ev_tstamp diff) 1016periodics_reschedule (EV_P)
670{ 1017{
671 int i; 1018 int i;
672 1019
673 /* adjust periodics after time jump */ 1020 /* adjust periodics after time jump */
674 for (i = 0; i < periodiccnt; ++i) 1021 for (i = 0; i < periodiccnt; ++i)
675 { 1022 {
676 struct ev_periodic *w = periodics [i]; 1023 struct ev_periodic *w = periodics [i];
677 1024
678 if (w->interval) 1025 if (w->interval)
679 { 1026 {
680 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 1027 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
681 1028
682 if (fabs (diff) >= 1e-4) 1029 if (fabs (diff) >= 1e-4)
683 { 1030 {
684 ev_periodic_stop (w); 1031 ev_periodic_stop (EV_A_ w);
685 ev_periodic_start (w); 1032 ev_periodic_start (EV_A_ w);
686 1033
687 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 1034 i = 0; /* restart loop, inefficient, but time jumps should be rare */
688 } 1035 }
689 } 1036 }
690 } 1037 }
691} 1038}
692 1039
693static int 1040inline int
694time_update_monotonic (void) 1041time_update_monotonic (EV_P)
695{ 1042{
696 now = get_clock (); 1043 mn_now = get_clock ();
697 1044
698 if (expect_true (now - now_floor < MIN_TIMEJUMP * .5)) 1045 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
699 { 1046 {
700 ev_now = now + diff; 1047 rt_now = rtmn_diff + mn_now;
701 return 0; 1048 return 0;
702 } 1049 }
703 else 1050 else
704 { 1051 {
705 now_floor = now; 1052 now_floor = mn_now;
706 ev_now = ev_time (); 1053 rt_now = ev_time ();
707 return 1; 1054 return 1;
708 } 1055 }
709} 1056}
710 1057
711static void 1058static void
712time_update (void) 1059time_update (EV_P)
713{ 1060{
714 int i; 1061 int i;
715 1062
716#if EV_USE_MONOTONIC 1063#if EV_USE_MONOTONIC
717 if (expect_true (have_monotonic)) 1064 if (expect_true (have_monotonic))
718 { 1065 {
719 if (time_update_monotonic ()) 1066 if (time_update_monotonic (EV_A))
720 { 1067 {
721 ev_tstamp odiff = diff; 1068 ev_tstamp odiff = rtmn_diff;
722 1069
723 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1070 for (i = 4; --i; ) /* loop a few times, before making important decisions */
724 { 1071 {
725 diff = ev_now - now; 1072 rtmn_diff = rt_now - mn_now;
726 1073
727 if (fabs (odiff - diff) < MIN_TIMEJUMP) 1074 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
728 return; /* all is well */ 1075 return; /* all is well */
729 1076
730 ev_now = ev_time (); 1077 rt_now = ev_time ();
731 now = get_clock (); 1078 mn_now = get_clock ();
732 now_floor = now; 1079 now_floor = mn_now;
733 } 1080 }
734 1081
735 periodics_reschedule (diff - odiff); 1082 periodics_reschedule (EV_A);
736 /* no timer adjustment, as the monotonic clock doesn't jump */ 1083 /* no timer adjustment, as the monotonic clock doesn't jump */
1084 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
737 } 1085 }
738 } 1086 }
739 else 1087 else
740#endif 1088#endif
741 { 1089 {
742 ev_now = ev_time (); 1090 rt_now = ev_time ();
743 1091
744 if (expect_false (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1092 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
745 { 1093 {
746 periodics_reschedule (ev_now - now); 1094 periodics_reschedule (EV_A);
747 1095
748 /* adjust timers. this is easy, as the offset is the same for all */ 1096 /* adjust timers. this is easy, as the offset is the same for all */
749 for (i = 0; i < timercnt; ++i) 1097 for (i = 0; i < timercnt; ++i)
750 timers [i]->at += diff; 1098 ((WT)timers [i])->at += rt_now - mn_now;
751 } 1099 }
752 1100
753 now = ev_now; 1101 mn_now = rt_now;
754 } 1102 }
755} 1103}
756 1104
757int ev_loop_done; 1105void
1106ev_ref (EV_P)
1107{
1108 ++activecnt;
1109}
758 1110
1111void
1112ev_unref (EV_P)
1113{
1114 --activecnt;
1115}
1116
1117static int loop_done;
1118
1119void
759void ev_loop (int flags) 1120ev_loop (EV_P_ int flags)
760{ 1121{
761 double block; 1122 double block;
762 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1123 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
763 1124
764 do 1125 do
765 { 1126 {
766 /* queue check watchers (and execute them) */ 1127 /* queue check watchers (and execute them) */
767 if (expect_false (preparecnt)) 1128 if (expect_false (preparecnt))
768 { 1129 {
769 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 1130 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
770 call_pending (); 1131 call_pending (EV_A);
771 } 1132 }
772 1133
1134 /* we might have forked, so reify kernel state if necessary */
1135 if (expect_false (postfork))
1136 loop_fork (EV_A);
1137
773 /* update fd-related kernel structures */ 1138 /* update fd-related kernel structures */
774 fd_reify (); 1139 fd_reify (EV_A);
775 1140
776 /* calculate blocking time */ 1141 /* calculate blocking time */
777 1142
778 /* we only need this for !monotonic clockor timers, but as we basically 1143 /* we only need this for !monotonic clockor timers, but as we basically
779 always have timers, we just calculate it always */ 1144 always have timers, we just calculate it always */
780#if EV_USE_MONOTONIC 1145#if EV_USE_MONOTONIC
781 if (expect_true (have_monotonic)) 1146 if (expect_true (have_monotonic))
782 time_update_monotonic (); 1147 time_update_monotonic (EV_A);
783 else 1148 else
784#endif 1149#endif
785 { 1150 {
786 ev_now = ev_time (); 1151 rt_now = ev_time ();
787 now = ev_now; 1152 mn_now = rt_now;
788 } 1153 }
789 1154
790 if (flags & EVLOOP_NONBLOCK || idlecnt) 1155 if (flags & EVLOOP_NONBLOCK || idlecnt)
791 block = 0.; 1156 block = 0.;
792 else 1157 else
793 { 1158 {
794 block = MAX_BLOCKTIME; 1159 block = MAX_BLOCKTIME;
795 1160
796 if (timercnt) 1161 if (timercnt)
797 { 1162 {
798 ev_tstamp to = timers [0]->at - now + method_fudge; 1163 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
799 if (block > to) block = to; 1164 if (block > to) block = to;
800 } 1165 }
801 1166
802 if (periodiccnt) 1167 if (periodiccnt)
803 { 1168 {
804 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1169 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
805 if (block > to) block = to; 1170 if (block > to) block = to;
806 } 1171 }
807 1172
808 if (block < 0.) block = 0.; 1173 if (block < 0.) block = 0.;
809 } 1174 }
810 1175
811 method_poll (block); 1176 method_poll (EV_A_ block);
812 1177
813 /* update ev_now, do magic */ 1178 /* update rt_now, do magic */
814 time_update (); 1179 time_update (EV_A);
815 1180
816 /* queue pending timers and reschedule them */ 1181 /* queue pending timers and reschedule them */
817 timers_reify (); /* relative timers called last */ 1182 timers_reify (EV_A); /* relative timers called last */
818 periodics_reify (); /* absolute timers called first */ 1183 periodics_reify (EV_A); /* absolute timers called first */
819 1184
820 /* queue idle watchers unless io or timers are pending */ 1185 /* queue idle watchers unless io or timers are pending */
821 if (!pendingcnt) 1186 if (!pendingcnt)
822 queue_events ((W *)idles, idlecnt, EV_IDLE); 1187 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
823 1188
824 /* queue check watchers, to be executed first */ 1189 /* queue check watchers, to be executed first */
825 if (checkcnt) 1190 if (checkcnt)
826 queue_events ((W *)checks, checkcnt, EV_CHECK); 1191 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
827 1192
828 call_pending (); 1193 call_pending (EV_A);
829 } 1194 }
830 while (!ev_loop_done); 1195 while (activecnt && !loop_done);
831 1196
832 if (ev_loop_done != 2) 1197 if (loop_done != 2)
833 ev_loop_done = 0; 1198 loop_done = 0;
1199}
1200
1201void
1202ev_unloop (EV_P_ int how)
1203{
1204 loop_done = how;
834} 1205}
835 1206
836/*****************************************************************************/ 1207/*****************************************************************************/
837 1208
838static void 1209inline void
839wlist_add (WL *head, WL elem) 1210wlist_add (WL *head, WL elem)
840{ 1211{
841 elem->next = *head; 1212 elem->next = *head;
842 *head = elem; 1213 *head = elem;
843} 1214}
844 1215
845static void 1216inline void
846wlist_del (WL *head, WL elem) 1217wlist_del (WL *head, WL elem)
847{ 1218{
848 while (*head) 1219 while (*head)
849 { 1220 {
850 if (*head == elem) 1221 if (*head == elem)
855 1226
856 head = &(*head)->next; 1227 head = &(*head)->next;
857 } 1228 }
858} 1229}
859 1230
860static void 1231inline void
861ev_clear_pending (W w) 1232ev_clear_pending (EV_P_ W w)
862{ 1233{
863 if (w->pending) 1234 if (w->pending)
864 { 1235 {
865 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1236 pendings [ABSPRI (w)][w->pending - 1].w = 0;
866 w->pending = 0; 1237 w->pending = 0;
867 } 1238 }
868} 1239}
869 1240
870static void 1241inline void
871ev_start (W w, int active) 1242ev_start (EV_P_ W w, int active)
872{ 1243{
873 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1244 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
874 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI; 1245 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
875 1246
876 w->active = active; 1247 w->active = active;
1248 ev_ref (EV_A);
877} 1249}
878 1250
879static void 1251inline void
880ev_stop (W w) 1252ev_stop (EV_P_ W w)
881{ 1253{
1254 ev_unref (EV_A);
882 w->active = 0; 1255 w->active = 0;
883} 1256}
884 1257
885/*****************************************************************************/ 1258/*****************************************************************************/
886 1259
887void 1260void
888ev_io_start (struct ev_io *w) 1261ev_io_start (EV_P_ struct ev_io *w)
889{ 1262{
890 int fd = w->fd; 1263 int fd = w->fd;
891 1264
892 if (ev_is_active (w)) 1265 if (ev_is_active (w))
893 return; 1266 return;
894 1267
895 assert (("ev_io_start called with negative fd", fd >= 0)); 1268 assert (("ev_io_start called with negative fd", fd >= 0));
896 1269
897 ev_start ((W)w, 1); 1270 ev_start (EV_A_ (W)w, 1);
898 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1271 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
899 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1272 wlist_add ((WL *)&anfds[fd].head, (WL)w);
900 1273
901 fd_change (fd); 1274 fd_change (EV_A_ fd);
902} 1275}
903 1276
904void 1277void
905ev_io_stop (struct ev_io *w) 1278ev_io_stop (EV_P_ struct ev_io *w)
906{ 1279{
907 ev_clear_pending ((W)w); 1280 ev_clear_pending (EV_A_ (W)w);
908 if (!ev_is_active (w)) 1281 if (!ev_is_active (w))
909 return; 1282 return;
910 1283
911 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1284 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
912 ev_stop ((W)w); 1285 ev_stop (EV_A_ (W)w);
913 1286
914 fd_change (w->fd); 1287 fd_change (EV_A_ w->fd);
915} 1288}
916 1289
917void 1290void
918ev_timer_start (struct ev_timer *w) 1291ev_timer_start (EV_P_ struct ev_timer *w)
919{ 1292{
920 if (ev_is_active (w)) 1293 if (ev_is_active (w))
921 return; 1294 return;
922 1295
923 w->at += now; 1296 ((WT)w)->at += mn_now;
924 1297
925 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1298 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
926 1299
927 ev_start ((W)w, ++timercnt); 1300 ev_start (EV_A_ (W)w, ++timercnt);
928 array_needsize (timers, timermax, timercnt, ); 1301 array_needsize (timers, timermax, timercnt, (void));
929 timers [timercnt - 1] = w; 1302 timers [timercnt - 1] = w;
930 upheap ((WT *)timers, timercnt - 1); 1303 upheap ((WT *)timers, timercnt - 1);
931}
932 1304
1305 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1306}
1307
933void 1308void
934ev_timer_stop (struct ev_timer *w) 1309ev_timer_stop (EV_P_ struct ev_timer *w)
935{ 1310{
936 ev_clear_pending ((W)w); 1311 ev_clear_pending (EV_A_ (W)w);
937 if (!ev_is_active (w)) 1312 if (!ev_is_active (w))
938 return; 1313 return;
939 1314
1315 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1316
940 if (w->active < timercnt--) 1317 if (((W)w)->active < timercnt--)
941 { 1318 {
942 timers [w->active - 1] = timers [timercnt]; 1319 timers [((W)w)->active - 1] = timers [timercnt];
943 downheap ((WT *)timers, timercnt, w->active - 1); 1320 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
944 } 1321 }
945 1322
946 w->at = w->repeat; 1323 ((WT)w)->at = w->repeat;
947 1324
948 ev_stop ((W)w); 1325 ev_stop (EV_A_ (W)w);
949} 1326}
950 1327
951void 1328void
952ev_timer_again (struct ev_timer *w) 1329ev_timer_again (EV_P_ struct ev_timer *w)
953{ 1330{
954 if (ev_is_active (w)) 1331 if (ev_is_active (w))
955 { 1332 {
956 if (w->repeat) 1333 if (w->repeat)
957 { 1334 {
958 w->at = now + w->repeat; 1335 ((WT)w)->at = mn_now + w->repeat;
959 downheap ((WT *)timers, timercnt, w->active - 1); 1336 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
960 } 1337 }
961 else 1338 else
962 ev_timer_stop (w); 1339 ev_timer_stop (EV_A_ w);
963 } 1340 }
964 else if (w->repeat) 1341 else if (w->repeat)
965 ev_timer_start (w); 1342 ev_timer_start (EV_A_ w);
966} 1343}
967 1344
968void 1345void
969ev_periodic_start (struct ev_periodic *w) 1346ev_periodic_start (EV_P_ struct ev_periodic *w)
970{ 1347{
971 if (ev_is_active (w)) 1348 if (ev_is_active (w))
972 return; 1349 return;
973 1350
974 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1351 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
975 1352
976 /* this formula differs from the one in periodic_reify because we do not always round up */ 1353 /* this formula differs from the one in periodic_reify because we do not always round up */
977 if (w->interval) 1354 if (w->interval)
978 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1355 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
979 1356
980 ev_start ((W)w, ++periodiccnt); 1357 ev_start (EV_A_ (W)w, ++periodiccnt);
981 array_needsize (periodics, periodicmax, periodiccnt, ); 1358 array_needsize (periodics, periodicmax, periodiccnt, (void));
982 periodics [periodiccnt - 1] = w; 1359 periodics [periodiccnt - 1] = w;
983 upheap ((WT *)periodics, periodiccnt - 1); 1360 upheap ((WT *)periodics, periodiccnt - 1);
984}
985 1361
1362 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1363}
1364
986void 1365void
987ev_periodic_stop (struct ev_periodic *w) 1366ev_periodic_stop (EV_P_ struct ev_periodic *w)
988{ 1367{
989 ev_clear_pending ((W)w); 1368 ev_clear_pending (EV_A_ (W)w);
990 if (!ev_is_active (w)) 1369 if (!ev_is_active (w))
991 return; 1370 return;
992 1371
1372 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1373
993 if (w->active < periodiccnt--) 1374 if (((W)w)->active < periodiccnt--)
994 { 1375 {
995 periodics [w->active - 1] = periodics [periodiccnt]; 1376 periodics [((W)w)->active - 1] = periodics [periodiccnt];
996 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1377 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
997 } 1378 }
998 1379
999 ev_stop ((W)w); 1380 ev_stop (EV_A_ (W)w);
1000} 1381}
1001 1382
1002void 1383void
1003ev_signal_start (struct ev_signal *w) 1384ev_idle_start (EV_P_ struct ev_idle *w)
1004{ 1385{
1005 if (ev_is_active (w)) 1386 if (ev_is_active (w))
1006 return; 1387 return;
1007 1388
1389 ev_start (EV_A_ (W)w, ++idlecnt);
1390 array_needsize (idles, idlemax, idlecnt, (void));
1391 idles [idlecnt - 1] = w;
1392}
1393
1394void
1395ev_idle_stop (EV_P_ struct ev_idle *w)
1396{
1397 ev_clear_pending (EV_A_ (W)w);
1398 if (ev_is_active (w))
1399 return;
1400
1401 idles [((W)w)->active - 1] = idles [--idlecnt];
1402 ev_stop (EV_A_ (W)w);
1403}
1404
1405void
1406ev_prepare_start (EV_P_ struct ev_prepare *w)
1407{
1408 if (ev_is_active (w))
1409 return;
1410
1411 ev_start (EV_A_ (W)w, ++preparecnt);
1412 array_needsize (prepares, preparemax, preparecnt, (void));
1413 prepares [preparecnt - 1] = w;
1414}
1415
1416void
1417ev_prepare_stop (EV_P_ struct ev_prepare *w)
1418{
1419 ev_clear_pending (EV_A_ (W)w);
1420 if (ev_is_active (w))
1421 return;
1422
1423 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1424 ev_stop (EV_A_ (W)w);
1425}
1426
1427void
1428ev_check_start (EV_P_ struct ev_check *w)
1429{
1430 if (ev_is_active (w))
1431 return;
1432
1433 ev_start (EV_A_ (W)w, ++checkcnt);
1434 array_needsize (checks, checkmax, checkcnt, (void));
1435 checks [checkcnt - 1] = w;
1436}
1437
1438void
1439ev_check_stop (EV_P_ struct ev_check *w)
1440{
1441 ev_clear_pending (EV_A_ (W)w);
1442 if (ev_is_active (w))
1443 return;
1444
1445 checks [((W)w)->active - 1] = checks [--checkcnt];
1446 ev_stop (EV_A_ (W)w);
1447}
1448
1449#ifndef SA_RESTART
1450# define SA_RESTART 0
1451#endif
1452
1453void
1454ev_signal_start (EV_P_ struct ev_signal *w)
1455{
1456#if EV_MULTIPLICITY
1457 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1458#endif
1459 if (ev_is_active (w))
1460 return;
1461
1008 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1462 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1009 1463
1010 ev_start ((W)w, 1); 1464 ev_start (EV_A_ (W)w, 1);
1011 array_needsize (signals, signalmax, w->signum, signals_init); 1465 array_needsize (signals, signalmax, w->signum, signals_init);
1012 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1466 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1013 1467
1014 if (!w->next) 1468 if (!((WL)w)->next)
1015 { 1469 {
1470#if WIN32
1471 signal (w->signum, sighandler);
1472#else
1016 struct sigaction sa; 1473 struct sigaction sa;
1017 sa.sa_handler = sighandler; 1474 sa.sa_handler = sighandler;
1018 sigfillset (&sa.sa_mask); 1475 sigfillset (&sa.sa_mask);
1019 sa.sa_flags = 0; 1476 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1020 sigaction (w->signum, &sa, 0); 1477 sigaction (w->signum, &sa, 0);
1478#endif
1021 } 1479 }
1022} 1480}
1023 1481
1024void 1482void
1025ev_signal_stop (struct ev_signal *w) 1483ev_signal_stop (EV_P_ struct ev_signal *w)
1026{ 1484{
1027 ev_clear_pending ((W)w); 1485 ev_clear_pending (EV_A_ (W)w);
1028 if (!ev_is_active (w)) 1486 if (!ev_is_active (w))
1029 return; 1487 return;
1030 1488
1031 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1489 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1032 ev_stop ((W)w); 1490 ev_stop (EV_A_ (W)w);
1033 1491
1034 if (!signals [w->signum - 1].head) 1492 if (!signals [w->signum - 1].head)
1035 signal (w->signum, SIG_DFL); 1493 signal (w->signum, SIG_DFL);
1036} 1494}
1037 1495
1038void 1496void
1039ev_idle_start (struct ev_idle *w) 1497ev_child_start (EV_P_ struct ev_child *w)
1040{ 1498{
1499#if EV_MULTIPLICITY
1500 assert (("child watchers are only supported in the default loop", loop == default_loop));
1501#endif
1041 if (ev_is_active (w)) 1502 if (ev_is_active (w))
1042 return; 1503 return;
1043 1504
1044 ev_start ((W)w, ++idlecnt); 1505 ev_start (EV_A_ (W)w, 1);
1045 array_needsize (idles, idlemax, idlecnt, ); 1506 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1046 idles [idlecnt - 1] = w;
1047} 1507}
1048 1508
1049void 1509void
1050ev_idle_stop (struct ev_idle *w) 1510ev_child_stop (EV_P_ struct ev_child *w)
1051{ 1511{
1052 ev_clear_pending ((W)w); 1512 ev_clear_pending (EV_A_ (W)w);
1053 if (ev_is_active (w)) 1513 if (ev_is_active (w))
1054 return; 1514 return;
1055 1515
1056 idles [w->active - 1] = idles [--idlecnt];
1057 ev_stop ((W)w);
1058}
1059
1060void
1061ev_prepare_start (struct ev_prepare *w)
1062{
1063 if (ev_is_active (w))
1064 return;
1065
1066 ev_start ((W)w, ++preparecnt);
1067 array_needsize (prepares, preparemax, preparecnt, );
1068 prepares [preparecnt - 1] = w;
1069}
1070
1071void
1072ev_prepare_stop (struct ev_prepare *w)
1073{
1074 ev_clear_pending ((W)w);
1075 if (ev_is_active (w))
1076 return;
1077
1078 prepares [w->active - 1] = prepares [--preparecnt];
1079 ev_stop ((W)w);
1080}
1081
1082void
1083ev_check_start (struct ev_check *w)
1084{
1085 if (ev_is_active (w))
1086 return;
1087
1088 ev_start ((W)w, ++checkcnt);
1089 array_needsize (checks, checkmax, checkcnt, );
1090 checks [checkcnt - 1] = w;
1091}
1092
1093void
1094ev_check_stop (struct ev_check *w)
1095{
1096 ev_clear_pending ((W)w);
1097 if (ev_is_active (w))
1098 return;
1099
1100 checks [w->active - 1] = checks [--checkcnt];
1101 ev_stop ((W)w);
1102}
1103
1104void
1105ev_child_start (struct ev_child *w)
1106{
1107 if (ev_is_active (w))
1108 return;
1109
1110 ev_start ((W)w, 1);
1111 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1112}
1113
1114void
1115ev_child_stop (struct ev_child *w)
1116{
1117 ev_clear_pending ((W)w);
1118 if (ev_is_active (w))
1119 return;
1120
1121 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1516 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1122 ev_stop ((W)w); 1517 ev_stop (EV_A_ (W)w);
1123} 1518}
1124 1519
1125/*****************************************************************************/ 1520/*****************************************************************************/
1126 1521
1127struct ev_once 1522struct ev_once
1131 void (*cb)(int revents, void *arg); 1526 void (*cb)(int revents, void *arg);
1132 void *arg; 1527 void *arg;
1133}; 1528};
1134 1529
1135static void 1530static void
1136once_cb (struct ev_once *once, int revents) 1531once_cb (EV_P_ struct ev_once *once, int revents)
1137{ 1532{
1138 void (*cb)(int revents, void *arg) = once->cb; 1533 void (*cb)(int revents, void *arg) = once->cb;
1139 void *arg = once->arg; 1534 void *arg = once->arg;
1140 1535
1141 ev_io_stop (&once->io); 1536 ev_io_stop (EV_A_ &once->io);
1142 ev_timer_stop (&once->to); 1537 ev_timer_stop (EV_A_ &once->to);
1143 free (once); 1538 ev_free (once);
1144 1539
1145 cb (revents, arg); 1540 cb (revents, arg);
1146} 1541}
1147 1542
1148static void 1543static void
1149once_cb_io (struct ev_io *w, int revents) 1544once_cb_io (EV_P_ struct ev_io *w, int revents)
1150{ 1545{
1151 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1546 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1152} 1547}
1153 1548
1154static void 1549static void
1155once_cb_to (struct ev_timer *w, int revents) 1550once_cb_to (EV_P_ struct ev_timer *w, int revents)
1156{ 1551{
1157 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1552 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1158} 1553}
1159 1554
1160void 1555void
1161ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1556ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1162{ 1557{
1163 struct ev_once *once = malloc (sizeof (struct ev_once)); 1558 struct ev_once *once = ev_malloc (sizeof (struct ev_once));
1164 1559
1165 if (!once) 1560 if (!once)
1166 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1561 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1167 else 1562 else
1168 { 1563 {
1171 1566
1172 ev_watcher_init (&once->io, once_cb_io); 1567 ev_watcher_init (&once->io, once_cb_io);
1173 if (fd >= 0) 1568 if (fd >= 0)
1174 { 1569 {
1175 ev_io_set (&once->io, fd, events); 1570 ev_io_set (&once->io, fd, events);
1176 ev_io_start (&once->io); 1571 ev_io_start (EV_A_ &once->io);
1177 } 1572 }
1178 1573
1179 ev_watcher_init (&once->to, once_cb_to); 1574 ev_watcher_init (&once->to, once_cb_to);
1180 if (timeout >= 0.) 1575 if (timeout >= 0.)
1181 { 1576 {
1182 ev_timer_set (&once->to, timeout, 0.); 1577 ev_timer_set (&once->to, timeout, 0.);
1183 ev_timer_start (&once->to); 1578 ev_timer_start (EV_A_ &once->to);
1184 } 1579 }
1185 } 1580 }
1186} 1581}
1187 1582
1188/*****************************************************************************/
1189
1190#if 0
1191
1192struct ev_io wio;
1193
1194static void
1195sin_cb (struct ev_io *w, int revents)
1196{
1197 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1198}
1199
1200static void
1201ocb (struct ev_timer *w, int revents)
1202{
1203 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1204 ev_timer_stop (w);
1205 ev_timer_start (w);
1206}
1207
1208static void
1209scb (struct ev_signal *w, int revents)
1210{
1211 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1212 ev_io_stop (&wio);
1213 ev_io_start (&wio);
1214}
1215
1216static void
1217gcb (struct ev_signal *w, int revents)
1218{
1219 fprintf (stderr, "generic %x\n", revents);
1220
1221}
1222
1223int main (void)
1224{
1225 ev_init (0);
1226
1227 ev_io_init (&wio, sin_cb, 0, EV_READ);
1228 ev_io_start (&wio);
1229
1230 struct ev_timer t[10000];
1231
1232#if 0
1233 int i;
1234 for (i = 0; i < 10000; ++i)
1235 {
1236 struct ev_timer *w = t + i;
1237 ev_watcher_init (w, ocb, i);
1238 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1239 ev_timer_start (w);
1240 if (drand48 () < 0.5)
1241 ev_timer_stop (w);
1242 }
1243#endif
1244
1245 struct ev_timer t1;
1246 ev_timer_init (&t1, ocb, 5, 10);
1247 ev_timer_start (&t1);
1248
1249 struct ev_signal sig;
1250 ev_signal_init (&sig, scb, SIGQUIT);
1251 ev_signal_start (&sig);
1252
1253 struct ev_check cw;
1254 ev_check_init (&cw, gcb);
1255 ev_check_start (&cw);
1256
1257 struct ev_idle iw;
1258 ev_idle_init (&iw, gcb);
1259 ev_idle_start (&iw);
1260
1261 ev_loop (0);
1262
1263 return 0;
1264}
1265
1266#endif
1267
1268
1269
1270

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines