ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.44 by root, Fri Nov 2 20:59:14 2007 UTC vs.
Revision 1.84 by root, Fri Nov 9 23:04:35 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31#if EV_USE_CONFIG_H 31#ifndef EV_STANDALONE
32# include "config.h" 32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
33#endif 55#endif
34 56
35#include <math.h> 57#include <math.h>
36#include <stdlib.h> 58#include <stdlib.h>
37#include <unistd.h>
38#include <fcntl.h> 59#include <fcntl.h>
39#include <signal.h>
40#include <stddef.h> 60#include <stddef.h>
41 61
42#include <stdio.h> 62#include <stdio.h>
43 63
44#include <assert.h> 64#include <assert.h>
45#include <errno.h> 65#include <errno.h>
46#include <sys/types.h> 66#include <sys/types.h>
47#include <sys/wait.h>
48#include <sys/time.h>
49#include <time.h> 67#include <time.h>
50 68
69#include <signal.h>
70
71#ifndef WIN32
72# include <unistd.h>
73# include <sys/time.h>
74# include <sys/wait.h>
75#endif
51/**/ 76/**/
52 77
53#ifndef EV_USE_MONOTONIC 78#ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 79# define EV_USE_MONOTONIC 1
55#endif 80#endif
66# define EV_USE_EPOLL 0 91# define EV_USE_EPOLL 0
67#endif 92#endif
68 93
69#ifndef EV_USE_KQUEUE 94#ifndef EV_USE_KQUEUE
70# define EV_USE_KQUEUE 0 95# define EV_USE_KQUEUE 0
96#endif
97
98#ifndef EV_USE_WIN32
99# ifdef WIN32
100# define EV_USE_WIN32 0 /* it does not exist, use select */
101# undef EV_USE_SELECT
102# define EV_USE_SELECT 1
103# else
104# define EV_USE_WIN32 0
105# endif
71#endif 106#endif
72 107
73#ifndef EV_USE_REALTIME 108#ifndef EV_USE_REALTIME
74# define EV_USE_REALTIME 1 109# define EV_USE_REALTIME 1
75#endif 110#endif
91#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
92#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
93#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
94/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
95 130
131#ifdef EV_H
132# include EV_H
133#else
96#include "ev.h" 134# include "ev.h"
135#endif
97 136
98#if __GNUC__ >= 3 137#if __GNUC__ >= 3
99# define expect(expr,value) __builtin_expect ((expr),(value)) 138# define expect(expr,value) __builtin_expect ((expr),(value))
100# define inline inline 139# define inline inline
101#else 140#else
111 150
112typedef struct ev_watcher *W; 151typedef struct ev_watcher *W;
113typedef struct ev_watcher_list *WL; 152typedef struct ev_watcher_list *WL;
114typedef struct ev_watcher_time *WT; 153typedef struct ev_watcher_time *WT;
115 154
116static ev_tstamp now_floor, now, diff; /* monotonic clock */ 155static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
117ev_tstamp ev_now;
118int ev_method;
119 156
120static int have_monotonic; /* runtime */ 157#include "ev_win32.c"
121
122static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */
123static void (*method_modify)(int fd, int oev, int nev);
124static void (*method_poll)(ev_tstamp timeout);
125 158
126/*****************************************************************************/ 159/*****************************************************************************/
127 160
128ev_tstamp 161static void (*syserr_cb)(const char *msg);
162
163void ev_set_syserr_cb (void (*cb)(const char *msg))
164{
165 syserr_cb = cb;
166}
167
168static void
169syserr (const char *msg)
170{
171 if (!msg)
172 msg = "(libev) system error";
173
174 if (syserr_cb)
175 syserr_cb (msg);
176 else
177 {
178 perror (msg);
179 abort ();
180 }
181}
182
183static void *(*alloc)(void *ptr, long size);
184
185void ev_set_allocator (void *(*cb)(void *ptr, long size))
186{
187 alloc = cb;
188}
189
190static void *
191ev_realloc (void *ptr, long size)
192{
193 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
194
195 if (!ptr && size)
196 {
197 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
198 abort ();
199 }
200
201 return ptr;
202}
203
204#define ev_malloc(size) ev_realloc (0, (size))
205#define ev_free(ptr) ev_realloc ((ptr), 0)
206
207/*****************************************************************************/
208
209typedef struct
210{
211 WL head;
212 unsigned char events;
213 unsigned char reify;
214} ANFD;
215
216typedef struct
217{
218 W w;
219 int events;
220} ANPENDING;
221
222#if EV_MULTIPLICITY
223
224 struct ev_loop
225 {
226 #define VAR(name,decl) decl;
227 #include "ev_vars.h"
228 #undef VAR
229 };
230 #include "ev_wrap.h"
231
232 struct ev_loop default_loop_struct;
233 static struct ev_loop *default_loop;
234
235#else
236
237 #define VAR(name,decl) static decl;
238 #include "ev_vars.h"
239 #undef VAR
240
241 static int default_loop;
242
243#endif
244
245/*****************************************************************************/
246
247inline ev_tstamp
129ev_time (void) 248ev_time (void)
130{ 249{
131#if EV_USE_REALTIME 250#if EV_USE_REALTIME
132 struct timespec ts; 251 struct timespec ts;
133 clock_gettime (CLOCK_REALTIME, &ts); 252 clock_gettime (CLOCK_REALTIME, &ts);
137 gettimeofday (&tv, 0); 256 gettimeofday (&tv, 0);
138 return tv.tv_sec + tv.tv_usec * 1e-6; 257 return tv.tv_sec + tv.tv_usec * 1e-6;
139#endif 258#endif
140} 259}
141 260
142static ev_tstamp 261inline ev_tstamp
143get_clock (void) 262get_clock (void)
144{ 263{
145#if EV_USE_MONOTONIC 264#if EV_USE_MONOTONIC
146 if (expect_true (have_monotonic)) 265 if (expect_true (have_monotonic))
147 { 266 {
152#endif 271#endif
153 272
154 return ev_time (); 273 return ev_time ();
155} 274}
156 275
276ev_tstamp
277ev_now (EV_P)
278{
279 return rt_now;
280}
281
157#define array_roundsize(base,n) ((n) | 4 & ~3) 282#define array_roundsize(type,n) ((n) | 4 & ~3)
158 283
159#define array_needsize(base,cur,cnt,init) \ 284#define array_needsize(type,base,cur,cnt,init) \
160 if (expect_false ((cnt) > cur)) \ 285 if (expect_false ((cnt) > cur)) \
161 { \ 286 { \
162 int newcnt = cur; \ 287 int newcnt = cur; \
163 do \ 288 do \
164 { \ 289 { \
165 newcnt = array_roundsize (base, newcnt << 1); \ 290 newcnt = array_roundsize (type, newcnt << 1); \
166 } \ 291 } \
167 while ((cnt) > newcnt); \ 292 while ((cnt) > newcnt); \
168 \ 293 \
169 base = realloc (base, sizeof (*base) * (newcnt)); \ 294 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
170 init (base + cur, newcnt - cur); \ 295 init (base + cur, newcnt - cur); \
171 cur = newcnt; \ 296 cur = newcnt; \
172 } 297 }
298
299#define array_slim(type,stem) \
300 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
301 { \
302 stem ## max = array_roundsize (stem ## cnt >> 1); \
303 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
304 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
305 }
306
307/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
308/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
309#define array_free_microshit(stem) \
310 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
311
312#define array_free(stem, idx) \
313 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
173 314
174/*****************************************************************************/ 315/*****************************************************************************/
175
176typedef struct
177{
178 struct ev_io *head;
179 unsigned char events;
180 unsigned char reify;
181} ANFD;
182
183static ANFD *anfds;
184static int anfdmax;
185 316
186static void 317static void
187anfds_init (ANFD *base, int count) 318anfds_init (ANFD *base, int count)
188{ 319{
189 while (count--) 320 while (count--)
194 325
195 ++base; 326 ++base;
196 } 327 }
197} 328}
198 329
199typedef struct 330void
331ev_feed_event (EV_P_ void *w, int revents)
200{ 332{
201 W w; 333 W w_ = (W)w;
202 int events;
203} ANPENDING;
204 334
205static ANPENDING *pendings [NUMPRI];
206static int pendingmax [NUMPRI], pendingcnt [NUMPRI];
207
208static void
209event (W w, int events)
210{
211 if (w->pending) 335 if (w_->pending)
212 { 336 {
213 pendings [ABSPRI (w)][w->pending - 1].events |= events; 337 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
214 return; 338 return;
215 } 339 }
216 340
217 w->pending = ++pendingcnt [ABSPRI (w)]; 341 w_->pending = ++pendingcnt [ABSPRI (w_)];
218 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 342 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
219 pendings [ABSPRI (w)][w->pending - 1].w = w; 343 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
220 pendings [ABSPRI (w)][w->pending - 1].events = events; 344 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
221} 345}
222 346
223static void 347static void
224queue_events (W *events, int eventcnt, int type) 348queue_events (EV_P_ W *events, int eventcnt, int type)
225{ 349{
226 int i; 350 int i;
227 351
228 for (i = 0; i < eventcnt; ++i) 352 for (i = 0; i < eventcnt; ++i)
229 event (events [i], type); 353 ev_feed_event (EV_A_ events [i], type);
230} 354}
231 355
232static void 356inline void
233fd_event (int fd, int events) 357fd_event (EV_P_ int fd, int revents)
234{ 358{
235 ANFD *anfd = anfds + fd; 359 ANFD *anfd = anfds + fd;
236 struct ev_io *w; 360 struct ev_io *w;
237 361
238 for (w = anfd->head; w; w = w->next) 362 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
239 { 363 {
240 int ev = w->events & events; 364 int ev = w->events & revents;
241 365
242 if (ev) 366 if (ev)
243 event ((W)w, ev); 367 ev_feed_event (EV_A_ (W)w, ev);
244 } 368 }
369}
370
371void
372ev_feed_fd_event (EV_P_ int fd, int revents)
373{
374 fd_event (EV_A_ fd, revents);
245} 375}
246 376
247/*****************************************************************************/ 377/*****************************************************************************/
248 378
249static int *fdchanges;
250static int fdchangemax, fdchangecnt;
251
252static void 379static void
253fd_reify (void) 380fd_reify (EV_P)
254{ 381{
255 int i; 382 int i;
256 383
257 for (i = 0; i < fdchangecnt; ++i) 384 for (i = 0; i < fdchangecnt; ++i)
258 { 385 {
260 ANFD *anfd = anfds + fd; 387 ANFD *anfd = anfds + fd;
261 struct ev_io *w; 388 struct ev_io *w;
262 389
263 int events = 0; 390 int events = 0;
264 391
265 for (w = anfd->head; w; w = w->next) 392 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
266 events |= w->events; 393 events |= w->events;
267 394
268 anfd->reify = 0; 395 anfd->reify = 0;
269 396
270 if (anfd->events != events)
271 {
272 method_modify (fd, anfd->events, events); 397 method_modify (EV_A_ fd, anfd->events, events);
273 anfd->events = events; 398 anfd->events = events;
274 }
275 } 399 }
276 400
277 fdchangecnt = 0; 401 fdchangecnt = 0;
278} 402}
279 403
280static void 404static void
281fd_change (int fd) 405fd_change (EV_P_ int fd)
282{ 406{
283 if (anfds [fd].reify || fdchangecnt < 0) 407 if (anfds [fd].reify)
284 return; 408 return;
285 409
286 anfds [fd].reify = 1; 410 anfds [fd].reify = 1;
287 411
288 ++fdchangecnt; 412 ++fdchangecnt;
289 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 413 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
290 fdchanges [fdchangecnt - 1] = fd; 414 fdchanges [fdchangecnt - 1] = fd;
291} 415}
292 416
293static void 417static void
294fd_kill (int fd) 418fd_kill (EV_P_ int fd)
295{ 419{
296 struct ev_io *w; 420 struct ev_io *w;
297 421
298 printf ("killing fd %d\n", fd);//D
299 while ((w = anfds [fd].head)) 422 while ((w = (struct ev_io *)anfds [fd].head))
300 { 423 {
301 ev_io_stop (w); 424 ev_io_stop (EV_A_ w);
302 event ((W)w, EV_ERROR | EV_READ | EV_WRITE); 425 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
303 } 426 }
427}
428
429static int
430fd_valid (int fd)
431{
432#ifdef WIN32
433 return !!win32_get_osfhandle (fd);
434#else
435 return fcntl (fd, F_GETFD) != -1;
436#endif
304} 437}
305 438
306/* called on EBADF to verify fds */ 439/* called on EBADF to verify fds */
307static void 440static void
308fd_ebadf (void) 441fd_ebadf (EV_P)
309{ 442{
310 int fd; 443 int fd;
311 444
312 for (fd = 0; fd < anfdmax; ++fd) 445 for (fd = 0; fd < anfdmax; ++fd)
313 if (anfds [fd].events) 446 if (anfds [fd].events)
314 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 447 if (!fd_valid (fd) == -1 && errno == EBADF)
315 fd_kill (fd); 448 fd_kill (EV_A_ fd);
316} 449}
317 450
318/* called on ENOMEM in select/poll to kill some fds and retry */ 451/* called on ENOMEM in select/poll to kill some fds and retry */
319static void 452static void
320fd_enomem (void) 453fd_enomem (EV_P)
321{ 454{
322 int fd = anfdmax; 455 int fd;
323 456
324 while (fd--) 457 for (fd = anfdmax; fd--; )
325 if (anfds [fd].events) 458 if (anfds [fd].events)
326 { 459 {
327 close (fd);
328 fd_kill (fd); 460 fd_kill (EV_A_ fd);
329 return; 461 return;
330 } 462 }
331} 463}
332 464
465/* usually called after fork if method needs to re-arm all fds from scratch */
466static void
467fd_rearm_all (EV_P)
468{
469 int fd;
470
471 /* this should be highly optimised to not do anything but set a flag */
472 for (fd = 0; fd < anfdmax; ++fd)
473 if (anfds [fd].events)
474 {
475 anfds [fd].events = 0;
476 fd_change (EV_A_ fd);
477 }
478}
479
333/*****************************************************************************/ 480/*****************************************************************************/
334 481
335static struct ev_timer **timers;
336static int timermax, timercnt;
337
338static struct ev_periodic **periodics;
339static int periodicmax, periodiccnt;
340
341static void 482static void
342upheap (WT *timers, int k) 483upheap (WT *heap, int k)
343{ 484{
344 WT w = timers [k]; 485 WT w = heap [k];
345 486
346 while (k && timers [k >> 1]->at > w->at) 487 while (k && heap [k >> 1]->at > w->at)
347 { 488 {
348 timers [k] = timers [k >> 1]; 489 heap [k] = heap [k >> 1];
349 timers [k]->active = k + 1; 490 ((W)heap [k])->active = k + 1;
350 k >>= 1; 491 k >>= 1;
351 } 492 }
352 493
353 timers [k] = w; 494 heap [k] = w;
354 timers [k]->active = k + 1; 495 ((W)heap [k])->active = k + 1;
355 496
356} 497}
357 498
358static void 499static void
359downheap (WT *timers, int N, int k) 500downheap (WT *heap, int N, int k)
360{ 501{
361 WT w = timers [k]; 502 WT w = heap [k];
362 503
363 while (k < (N >> 1)) 504 while (k < (N >> 1))
364 { 505 {
365 int j = k << 1; 506 int j = k << 1;
366 507
367 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 508 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
368 ++j; 509 ++j;
369 510
370 if (w->at <= timers [j]->at) 511 if (w->at <= heap [j]->at)
371 break; 512 break;
372 513
373 timers [k] = timers [j]; 514 heap [k] = heap [j];
374 timers [k]->active = k + 1; 515 ((W)heap [k])->active = k + 1;
375 k = j; 516 k = j;
376 } 517 }
377 518
378 timers [k] = w; 519 heap [k] = w;
379 timers [k]->active = k + 1; 520 ((W)heap [k])->active = k + 1;
521}
522
523inline void
524adjustheap (WT *heap, int N, int k, ev_tstamp at)
525{
526 ev_tstamp old_at = heap [k]->at;
527 heap [k]->at = at;
528
529 if (old_at < at)
530 downheap (heap, N, k);
531 else
532 upheap (heap, k);
380} 533}
381 534
382/*****************************************************************************/ 535/*****************************************************************************/
383 536
384typedef struct 537typedef struct
385{ 538{
386 struct ev_signal *head; 539 WL head;
387 sig_atomic_t volatile gotsig; 540 sig_atomic_t volatile gotsig;
388} ANSIG; 541} ANSIG;
389 542
390static ANSIG *signals; 543static ANSIG *signals;
391static int signalmax; 544static int signalmax;
407} 560}
408 561
409static void 562static void
410sighandler (int signum) 563sighandler (int signum)
411{ 564{
565#if WIN32
566 signal (signum, sighandler);
567#endif
568
412 signals [signum - 1].gotsig = 1; 569 signals [signum - 1].gotsig = 1;
413 570
414 if (!gotsig) 571 if (!gotsig)
415 { 572 {
573 int old_errno = errno;
416 gotsig = 1; 574 gotsig = 1;
575#ifdef WIN32
576 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
577#else
417 write (sigpipe [1], &signum, 1); 578 write (sigpipe [1], &signum, 1);
579#endif
580 errno = old_errno;
418 } 581 }
419} 582}
420 583
584void
585ev_feed_signal_event (EV_P_ int signum)
586{
587 WL w;
588
589#if EV_MULTIPLICITY
590 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
591#endif
592
593 --signum;
594
595 if (signum < 0 || signum >= signalmax)
596 return;
597
598 signals [signum].gotsig = 0;
599
600 for (w = signals [signum].head; w; w = w->next)
601 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
602}
603
421static void 604static void
422sigcb (struct ev_io *iow, int revents) 605sigcb (EV_P_ struct ev_io *iow, int revents)
423{ 606{
424 struct ev_signal *w;
425 int signum; 607 int signum;
426 608
609#ifdef WIN32
610 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
611#else
427 read (sigpipe [0], &revents, 1); 612 read (sigpipe [0], &revents, 1);
613#endif
428 gotsig = 0; 614 gotsig = 0;
429 615
430 for (signum = signalmax; signum--; ) 616 for (signum = signalmax; signum--; )
431 if (signals [signum].gotsig) 617 if (signals [signum].gotsig)
432 { 618 ev_feed_signal_event (EV_A_ signum + 1);
433 signals [signum].gotsig = 0;
434
435 for (w = signals [signum].head; w; w = w->next)
436 event ((W)w, EV_SIGNAL);
437 }
438} 619}
439 620
440static void 621static void
441siginit (void) 622siginit (EV_P)
442{ 623{
624#ifndef WIN32
443 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 625 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
444 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 626 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
445 627
446 /* rather than sort out wether we really need nb, set it */ 628 /* rather than sort out wether we really need nb, set it */
447 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 629 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
448 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 630 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
631#endif
449 632
450 ev_io_set (&sigev, sigpipe [0], EV_READ); 633 ev_io_set (&sigev, sigpipe [0], EV_READ);
451 ev_io_start (&sigev); 634 ev_io_start (EV_A_ &sigev);
635 ev_unref (EV_A); /* child watcher should not keep loop alive */
452} 636}
453 637
454/*****************************************************************************/ 638/*****************************************************************************/
455 639
456static struct ev_idle **idles;
457static int idlemax, idlecnt;
458
459static struct ev_prepare **prepares;
460static int preparemax, preparecnt;
461
462static struct ev_check **checks;
463static int checkmax, checkcnt;
464
465/*****************************************************************************/
466
467static struct ev_child *childs [PID_HASHSIZE]; 640static struct ev_child *childs [PID_HASHSIZE];
641
642#ifndef WIN32
643
468static struct ev_signal childev; 644static struct ev_signal childev;
469 645
470#ifndef WCONTINUED 646#ifndef WCONTINUED
471# define WCONTINUED 0 647# define WCONTINUED 0
472#endif 648#endif
473 649
474static void 650static void
475childcb (struct ev_signal *sw, int revents) 651child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
476{ 652{
477 struct ev_child *w; 653 struct ev_child *w;
654
655 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
656 if (w->pid == pid || !w->pid)
657 {
658 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
659 w->rpid = pid;
660 w->rstatus = status;
661 ev_feed_event (EV_A_ (W)w, EV_CHILD);
662 }
663}
664
665static void
666childcb (EV_P_ struct ev_signal *sw, int revents)
667{
478 int pid, status; 668 int pid, status;
479 669
480 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 670 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
481 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 671 {
482 if (w->pid == pid || !w->pid) 672 /* make sure we are called again until all childs have been reaped */
483 { 673 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
484 w->status = status; 674
485 event ((W)w, EV_CHILD); 675 child_reap (EV_A_ sw, pid, pid, status);
486 } 676 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
677 }
487} 678}
679
680#endif
488 681
489/*****************************************************************************/ 682/*****************************************************************************/
490 683
491#if EV_USE_KQUEUE 684#if EV_USE_KQUEUE
492# include "ev_kqueue.c" 685# include "ev_kqueue.c"
511ev_version_minor (void) 704ev_version_minor (void)
512{ 705{
513 return EV_VERSION_MINOR; 706 return EV_VERSION_MINOR;
514} 707}
515 708
516/* return true if we are running with elevated privileges and ignore env variables */ 709/* return true if we are running with elevated privileges and should ignore env variables */
517static int 710static int
518enable_secure () 711enable_secure (void)
519{ 712{
713#ifdef WIN32
714 return 0;
715#else
520 return getuid () != geteuid () 716 return getuid () != geteuid ()
521 || getgid () != getegid (); 717 || getgid () != getegid ();
718#endif
522} 719}
523 720
524int ev_init (int methods) 721int
722ev_method (EV_P)
525{ 723{
724 return method;
725}
726
727static void
728loop_init (EV_P_ int methods)
729{
526 if (!ev_method) 730 if (!method)
527 { 731 {
528#if EV_USE_MONOTONIC 732#if EV_USE_MONOTONIC
529 { 733 {
530 struct timespec ts; 734 struct timespec ts;
531 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 735 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
532 have_monotonic = 1; 736 have_monotonic = 1;
533 } 737 }
534#endif 738#endif
535 739
536 ev_now = ev_time (); 740 rt_now = ev_time ();
537 now = get_clock (); 741 mn_now = get_clock ();
538 now_floor = now; 742 now_floor = mn_now;
539 diff = ev_now - now; 743 rtmn_diff = rt_now - mn_now;
540
541 if (pipe (sigpipe))
542 return 0;
543 744
544 if (methods == EVMETHOD_AUTO) 745 if (methods == EVMETHOD_AUTO)
545 if (!enable_secure () && getenv ("LIBEV_METHODS")) 746 if (!enable_secure () && getenv ("LIBEV_METHODS"))
546 methods = atoi (getenv ("LIBEV_METHODS")); 747 methods = atoi (getenv ("LIBEV_METHODS"));
547 else 748 else
548 methods = EVMETHOD_ANY; 749 methods = EVMETHOD_ANY;
549 750
550 ev_method = 0; 751 method = 0;
752#if EV_USE_WIN32
753 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
754#endif
551#if EV_USE_KQUEUE 755#if EV_USE_KQUEUE
552 if (!ev_method && (methods & EVMETHOD_KQUEUE)) kqueue_init (methods); 756 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
553#endif 757#endif
554#if EV_USE_EPOLL 758#if EV_USE_EPOLL
555 if (!ev_method && (methods & EVMETHOD_EPOLL )) epoll_init (methods); 759 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
556#endif 760#endif
557#if EV_USE_POLL 761#if EV_USE_POLL
558 if (!ev_method && (methods & EVMETHOD_POLL )) poll_init (methods); 762 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
559#endif 763#endif
560#if EV_USE_SELECT 764#if EV_USE_SELECT
561 if (!ev_method && (methods & EVMETHOD_SELECT)) select_init (methods); 765 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
562#endif 766#endif
563 767
768 ev_init (&sigev, sigcb);
769 ev_set_priority (&sigev, EV_MAXPRI);
770 }
771}
772
773void
774loop_destroy (EV_P)
775{
776 int i;
777
778#if EV_USE_WIN32
779 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
780#endif
781#if EV_USE_KQUEUE
782 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
783#endif
784#if EV_USE_EPOLL
785 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
786#endif
787#if EV_USE_POLL
788 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
789#endif
790#if EV_USE_SELECT
791 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
792#endif
793
794 for (i = NUMPRI; i--; )
795 array_free (pending, [i]);
796
797 /* have to use the microsoft-never-gets-it-right macro */
798 array_free_microshit (fdchange);
799 array_free_microshit (timer);
800 array_free_microshit (periodic);
801 array_free_microshit (idle);
802 array_free_microshit (prepare);
803 array_free_microshit (check);
804
805 method = 0;
806}
807
808static void
809loop_fork (EV_P)
810{
811#if EV_USE_EPOLL
812 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
813#endif
814#if EV_USE_KQUEUE
815 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
816#endif
817
818 if (ev_is_active (&sigev))
819 {
820 /* default loop */
821
822 ev_ref (EV_A);
823 ev_io_stop (EV_A_ &sigev);
824 close (sigpipe [0]);
825 close (sigpipe [1]);
826
827 while (pipe (sigpipe))
828 syserr ("(libev) error creating pipe");
829
830 siginit (EV_A);
831 }
832
833 postfork = 0;
834}
835
836#if EV_MULTIPLICITY
837struct ev_loop *
838ev_loop_new (int methods)
839{
840 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
841
842 memset (loop, 0, sizeof (struct ev_loop));
843
844 loop_init (EV_A_ methods);
845
846 if (ev_method (EV_A))
847 return loop;
848
849 return 0;
850}
851
852void
853ev_loop_destroy (EV_P)
854{
855 loop_destroy (EV_A);
856 ev_free (loop);
857}
858
859void
860ev_loop_fork (EV_P)
861{
862 postfork = 1;
863}
864
865#endif
866
867#if EV_MULTIPLICITY
868struct ev_loop *
869#else
870int
871#endif
872ev_default_loop (int methods)
873{
874 if (sigpipe [0] == sigpipe [1])
875 if (pipe (sigpipe))
876 return 0;
877
878 if (!default_loop)
879 {
880#if EV_MULTIPLICITY
881 struct ev_loop *loop = default_loop = &default_loop_struct;
882#else
883 default_loop = 1;
884#endif
885
886 loop_init (EV_A_ methods);
887
564 if (ev_method) 888 if (ev_method (EV_A))
565 { 889 {
566 ev_watcher_init (&sigev, sigcb);
567 siginit (); 890 siginit (EV_A);
568 891
892#ifndef WIN32
569 ev_signal_init (&childev, childcb, SIGCHLD); 893 ev_signal_init (&childev, childcb, SIGCHLD);
894 ev_set_priority (&childev, EV_MAXPRI);
570 ev_signal_start (&childev); 895 ev_signal_start (EV_A_ &childev);
896 ev_unref (EV_A); /* child watcher should not keep loop alive */
897#endif
571 } 898 }
899 else
900 default_loop = 0;
572 } 901 }
573 902
574 return ev_method; 903 return default_loop;
904}
905
906void
907ev_default_destroy (void)
908{
909#if EV_MULTIPLICITY
910 struct ev_loop *loop = default_loop;
911#endif
912
913#ifndef WIN32
914 ev_ref (EV_A); /* child watcher */
915 ev_signal_stop (EV_A_ &childev);
916#endif
917
918 ev_ref (EV_A); /* signal watcher */
919 ev_io_stop (EV_A_ &sigev);
920
921 close (sigpipe [0]); sigpipe [0] = 0;
922 close (sigpipe [1]); sigpipe [1] = 0;
923
924 loop_destroy (EV_A);
925}
926
927void
928ev_default_fork (void)
929{
930#if EV_MULTIPLICITY
931 struct ev_loop *loop = default_loop;
932#endif
933
934 if (method)
935 postfork = 1;
575} 936}
576 937
577/*****************************************************************************/ 938/*****************************************************************************/
578 939
579void
580ev_fork_prepare (void)
581{
582 /* nop */
583}
584
585void
586ev_fork_parent (void)
587{
588 /* nop */
589}
590
591void
592ev_fork_child (void)
593{
594#if EV_USE_EPOLL
595 if (ev_method == EVMETHOD_EPOLL)
596 epoll_postfork_child ();
597#endif
598
599 ev_io_stop (&sigev);
600 close (sigpipe [0]);
601 close (sigpipe [1]);
602 pipe (sigpipe);
603 siginit ();
604}
605
606/*****************************************************************************/
607
608static void 940static int
941any_pending (EV_P)
942{
943 int pri;
944
945 for (pri = NUMPRI; pri--; )
946 if (pendingcnt [pri])
947 return 1;
948
949 return 0;
950}
951
952static void
609call_pending (void) 953call_pending (EV_P)
610{ 954{
611 int pri; 955 int pri;
612 956
613 for (pri = NUMPRI; pri--; ) 957 for (pri = NUMPRI; pri--; )
614 while (pendingcnt [pri]) 958 while (pendingcnt [pri])
616 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 960 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
617 961
618 if (p->w) 962 if (p->w)
619 { 963 {
620 p->w->pending = 0; 964 p->w->pending = 0;
621 p->w->cb (p->w, p->events); 965 EV_CB_INVOKE (p->w, p->events);
622 } 966 }
623 } 967 }
624} 968}
625 969
626static void 970static void
627timers_reify (void) 971timers_reify (EV_P)
628{ 972{
629 while (timercnt && timers [0]->at <= now) 973 while (timercnt && ((WT)timers [0])->at <= mn_now)
630 { 974 {
631 struct ev_timer *w = timers [0]; 975 struct ev_timer *w = timers [0];
976
977 assert (("inactive timer on timer heap detected", ev_is_active (w)));
632 978
633 /* first reschedule or stop timer */ 979 /* first reschedule or stop timer */
634 if (w->repeat) 980 if (w->repeat)
635 { 981 {
636 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 982 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
637 w->at = now + w->repeat; 983 ((WT)w)->at = mn_now + w->repeat;
638 downheap ((WT *)timers, timercnt, 0); 984 downheap ((WT *)timers, timercnt, 0);
639 } 985 }
640 else 986 else
641 ev_timer_stop (w); /* nonrepeating: stop timer */ 987 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
642 988
643 event ((W)w, EV_TIMEOUT); 989 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
644 } 990 }
645} 991}
646 992
647static void 993static void
648periodics_reify (void) 994periodics_reify (EV_P)
649{ 995{
650 while (periodiccnt && periodics [0]->at <= ev_now) 996 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
651 { 997 {
652 struct ev_periodic *w = periodics [0]; 998 struct ev_periodic *w = periodics [0];
653 999
1000 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
1001
654 /* first reschedule or stop timer */ 1002 /* first reschedule or stop timer */
655 if (w->interval) 1003 if (w->reschedule_cb)
656 { 1004 {
1005 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, rt_now + 0.0001);
1006
1007 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > rt_now));
1008 downheap ((WT *)periodics, periodiccnt, 0);
1009 }
1010 else if (w->interval)
1011 {
657 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 1012 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
658 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now)); 1013 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
659 downheap ((WT *)periodics, periodiccnt, 0); 1014 downheap ((WT *)periodics, periodiccnt, 0);
660 } 1015 }
661 else 1016 else
662 ev_periodic_stop (w); /* nonrepeating: stop timer */ 1017 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
663 1018
664 event ((W)w, EV_PERIODIC); 1019 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
665 } 1020 }
666} 1021}
667 1022
668static void 1023static void
669periodics_reschedule (ev_tstamp diff) 1024periodics_reschedule (EV_P)
670{ 1025{
671 int i; 1026 int i;
672 1027
673 /* adjust periodics after time jump */ 1028 /* adjust periodics after time jump */
674 for (i = 0; i < periodiccnt; ++i) 1029 for (i = 0; i < periodiccnt; ++i)
675 { 1030 {
676 struct ev_periodic *w = periodics [i]; 1031 struct ev_periodic *w = periodics [i];
677 1032
1033 if (w->reschedule_cb)
1034 ((WT)w)->at = w->reschedule_cb (w, rt_now);
678 if (w->interval) 1035 else if (w->interval)
679 {
680 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 1036 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
681
682 if (fabs (diff) >= 1e-4)
683 {
684 ev_periodic_stop (w);
685 ev_periodic_start (w);
686
687 i = 0; /* restart loop, inefficient, but time jumps should be rare */
688 }
689 }
690 } 1037 }
691}
692 1038
693static int 1039 /* now rebuild the heap */
1040 for (i = periodiccnt >> 1; i--; )
1041 downheap ((WT *)periodics, periodiccnt, i);
1042}
1043
1044inline int
694time_update_monotonic (void) 1045time_update_monotonic (EV_P)
695{ 1046{
696 now = get_clock (); 1047 mn_now = get_clock ();
697 1048
698 if (expect_true (now - now_floor < MIN_TIMEJUMP * .5)) 1049 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
699 { 1050 {
700 ev_now = now + diff; 1051 rt_now = rtmn_diff + mn_now;
701 return 0; 1052 return 0;
702 } 1053 }
703 else 1054 else
704 { 1055 {
705 now_floor = now; 1056 now_floor = mn_now;
706 ev_now = ev_time (); 1057 rt_now = ev_time ();
707 return 1; 1058 return 1;
708 } 1059 }
709} 1060}
710 1061
711static void 1062static void
712time_update (void) 1063time_update (EV_P)
713{ 1064{
714 int i; 1065 int i;
715 1066
716#if EV_USE_MONOTONIC 1067#if EV_USE_MONOTONIC
717 if (expect_true (have_monotonic)) 1068 if (expect_true (have_monotonic))
718 { 1069 {
719 if (time_update_monotonic ()) 1070 if (time_update_monotonic (EV_A))
720 { 1071 {
721 ev_tstamp odiff = diff; 1072 ev_tstamp odiff = rtmn_diff;
722 1073
723 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1074 for (i = 4; --i; ) /* loop a few times, before making important decisions */
724 { 1075 {
725 diff = ev_now - now; 1076 rtmn_diff = rt_now - mn_now;
726 1077
727 if (fabs (odiff - diff) < MIN_TIMEJUMP) 1078 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
728 return; /* all is well */ 1079 return; /* all is well */
729 1080
730 ev_now = ev_time (); 1081 rt_now = ev_time ();
731 now = get_clock (); 1082 mn_now = get_clock ();
732 now_floor = now; 1083 now_floor = mn_now;
733 } 1084 }
734 1085
735 periodics_reschedule (diff - odiff); 1086 periodics_reschedule (EV_A);
736 /* no timer adjustment, as the monotonic clock doesn't jump */ 1087 /* no timer adjustment, as the monotonic clock doesn't jump */
1088 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
737 } 1089 }
738 } 1090 }
739 else 1091 else
740#endif 1092#endif
741 { 1093 {
742 ev_now = ev_time (); 1094 rt_now = ev_time ();
743 1095
744 if (expect_false (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1096 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
745 { 1097 {
746 periodics_reschedule (ev_now - now); 1098 periodics_reschedule (EV_A);
747 1099
748 /* adjust timers. this is easy, as the offset is the same for all */ 1100 /* adjust timers. this is easy, as the offset is the same for all */
749 for (i = 0; i < timercnt; ++i) 1101 for (i = 0; i < timercnt; ++i)
750 timers [i]->at += diff; 1102 ((WT)timers [i])->at += rt_now - mn_now;
751 } 1103 }
752 1104
753 now = ev_now; 1105 mn_now = rt_now;
754 } 1106 }
755} 1107}
756 1108
757int ev_loop_done; 1109void
1110ev_ref (EV_P)
1111{
1112 ++activecnt;
1113}
758 1114
1115void
1116ev_unref (EV_P)
1117{
1118 --activecnt;
1119}
1120
1121static int loop_done;
1122
1123void
759void ev_loop (int flags) 1124ev_loop (EV_P_ int flags)
760{ 1125{
761 double block; 1126 double block;
762 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1127 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
763 1128
764 do 1129 do
765 { 1130 {
766 /* queue check watchers (and execute them) */ 1131 /* queue check watchers (and execute them) */
767 if (expect_false (preparecnt)) 1132 if (expect_false (preparecnt))
768 { 1133 {
769 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 1134 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
770 call_pending (); 1135 call_pending (EV_A);
771 } 1136 }
772 1137
1138 /* we might have forked, so reify kernel state if necessary */
1139 if (expect_false (postfork))
1140 loop_fork (EV_A);
1141
773 /* update fd-related kernel structures */ 1142 /* update fd-related kernel structures */
774 fd_reify (); 1143 fd_reify (EV_A);
775 1144
776 /* calculate blocking time */ 1145 /* calculate blocking time */
777 1146
778 /* we only need this for !monotonic clockor timers, but as we basically 1147 /* we only need this for !monotonic clock or timers, but as we basically
779 always have timers, we just calculate it always */ 1148 always have timers, we just calculate it always */
780#if EV_USE_MONOTONIC 1149#if EV_USE_MONOTONIC
781 if (expect_true (have_monotonic)) 1150 if (expect_true (have_monotonic))
782 time_update_monotonic (); 1151 time_update_monotonic (EV_A);
783 else 1152 else
784#endif 1153#endif
785 { 1154 {
786 ev_now = ev_time (); 1155 rt_now = ev_time ();
787 now = ev_now; 1156 mn_now = rt_now;
788 } 1157 }
789 1158
790 if (flags & EVLOOP_NONBLOCK || idlecnt) 1159 if (flags & EVLOOP_NONBLOCK || idlecnt)
791 block = 0.; 1160 block = 0.;
792 else 1161 else
793 { 1162 {
794 block = MAX_BLOCKTIME; 1163 block = MAX_BLOCKTIME;
795 1164
796 if (timercnt) 1165 if (timercnt)
797 { 1166 {
798 ev_tstamp to = timers [0]->at - now + method_fudge; 1167 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
799 if (block > to) block = to; 1168 if (block > to) block = to;
800 } 1169 }
801 1170
802 if (periodiccnt) 1171 if (periodiccnt)
803 { 1172 {
804 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1173 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
805 if (block > to) block = to; 1174 if (block > to) block = to;
806 } 1175 }
807 1176
808 if (block < 0.) block = 0.; 1177 if (block < 0.) block = 0.;
809 } 1178 }
810 1179
811 method_poll (block); 1180 method_poll (EV_A_ block);
812 1181
813 /* update ev_now, do magic */ 1182 /* update rt_now, do magic */
814 time_update (); 1183 time_update (EV_A);
815 1184
816 /* queue pending timers and reschedule them */ 1185 /* queue pending timers and reschedule them */
817 timers_reify (); /* relative timers called last */ 1186 timers_reify (EV_A); /* relative timers called last */
818 periodics_reify (); /* absolute timers called first */ 1187 periodics_reify (EV_A); /* absolute timers called first */
819 1188
820 /* queue idle watchers unless io or timers are pending */ 1189 /* queue idle watchers unless io or timers are pending */
821 if (!pendingcnt) 1190 if (idlecnt && !any_pending (EV_A))
822 queue_events ((W *)idles, idlecnt, EV_IDLE); 1191 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
823 1192
824 /* queue check watchers, to be executed first */ 1193 /* queue check watchers, to be executed first */
825 if (checkcnt) 1194 if (checkcnt)
826 queue_events ((W *)checks, checkcnt, EV_CHECK); 1195 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
827 1196
828 call_pending (); 1197 call_pending (EV_A);
829 } 1198 }
830 while (!ev_loop_done); 1199 while (activecnt && !loop_done);
831 1200
832 if (ev_loop_done != 2) 1201 if (loop_done != 2)
833 ev_loop_done = 0; 1202 loop_done = 0;
1203}
1204
1205void
1206ev_unloop (EV_P_ int how)
1207{
1208 loop_done = how;
834} 1209}
835 1210
836/*****************************************************************************/ 1211/*****************************************************************************/
837 1212
838static void 1213inline void
839wlist_add (WL *head, WL elem) 1214wlist_add (WL *head, WL elem)
840{ 1215{
841 elem->next = *head; 1216 elem->next = *head;
842 *head = elem; 1217 *head = elem;
843} 1218}
844 1219
845static void 1220inline void
846wlist_del (WL *head, WL elem) 1221wlist_del (WL *head, WL elem)
847{ 1222{
848 while (*head) 1223 while (*head)
849 { 1224 {
850 if (*head == elem) 1225 if (*head == elem)
855 1230
856 head = &(*head)->next; 1231 head = &(*head)->next;
857 } 1232 }
858} 1233}
859 1234
860static void 1235inline void
861ev_clear_pending (W w) 1236ev_clear_pending (EV_P_ W w)
862{ 1237{
863 if (w->pending) 1238 if (w->pending)
864 { 1239 {
865 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1240 pendings [ABSPRI (w)][w->pending - 1].w = 0;
866 w->pending = 0; 1241 w->pending = 0;
867 } 1242 }
868} 1243}
869 1244
870static void 1245inline void
871ev_start (W w, int active) 1246ev_start (EV_P_ W w, int active)
872{ 1247{
873 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1248 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
874 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI; 1249 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
875 1250
876 w->active = active; 1251 w->active = active;
1252 ev_ref (EV_A);
877} 1253}
878 1254
879static void 1255inline void
880ev_stop (W w) 1256ev_stop (EV_P_ W w)
881{ 1257{
1258 ev_unref (EV_A);
882 w->active = 0; 1259 w->active = 0;
883} 1260}
884 1261
885/*****************************************************************************/ 1262/*****************************************************************************/
886 1263
887void 1264void
888ev_io_start (struct ev_io *w) 1265ev_io_start (EV_P_ struct ev_io *w)
889{ 1266{
890 int fd = w->fd; 1267 int fd = w->fd;
891 1268
892 if (ev_is_active (w)) 1269 if (ev_is_active (w))
893 return; 1270 return;
894 1271
895 assert (("ev_io_start called with negative fd", fd >= 0)); 1272 assert (("ev_io_start called with negative fd", fd >= 0));
896 1273
897 ev_start ((W)w, 1); 1274 ev_start (EV_A_ (W)w, 1);
898 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1275 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
899 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1276 wlist_add ((WL *)&anfds[fd].head, (WL)w);
900 1277
901 fd_change (fd); 1278 fd_change (EV_A_ fd);
902} 1279}
903 1280
904void 1281void
905ev_io_stop (struct ev_io *w) 1282ev_io_stop (EV_P_ struct ev_io *w)
906{ 1283{
907 ev_clear_pending ((W)w); 1284 ev_clear_pending (EV_A_ (W)w);
908 if (!ev_is_active (w)) 1285 if (!ev_is_active (w))
909 return; 1286 return;
910 1287
911 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1288 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
912 ev_stop ((W)w); 1289 ev_stop (EV_A_ (W)w);
913 1290
914 fd_change (w->fd); 1291 fd_change (EV_A_ w->fd);
915} 1292}
916 1293
917void 1294void
918ev_timer_start (struct ev_timer *w) 1295ev_timer_start (EV_P_ struct ev_timer *w)
919{ 1296{
920 if (ev_is_active (w)) 1297 if (ev_is_active (w))
921 return; 1298 return;
922 1299
923 w->at += now; 1300 ((WT)w)->at += mn_now;
924 1301
925 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1302 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
926 1303
927 ev_start ((W)w, ++timercnt); 1304 ev_start (EV_A_ (W)w, ++timercnt);
928 array_needsize (timers, timermax, timercnt, ); 1305 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
929 timers [timercnt - 1] = w; 1306 timers [timercnt - 1] = w;
930 upheap ((WT *)timers, timercnt - 1); 1307 upheap ((WT *)timers, timercnt - 1);
931}
932 1308
1309 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1310}
1311
933void 1312void
934ev_timer_stop (struct ev_timer *w) 1313ev_timer_stop (EV_P_ struct ev_timer *w)
935{ 1314{
936 ev_clear_pending ((W)w); 1315 ev_clear_pending (EV_A_ (W)w);
937 if (!ev_is_active (w)) 1316 if (!ev_is_active (w))
938 return; 1317 return;
939 1318
1319 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1320
940 if (w->active < timercnt--) 1321 if (((W)w)->active < timercnt--)
941 { 1322 {
942 timers [w->active - 1] = timers [timercnt]; 1323 timers [((W)w)->active - 1] = timers [timercnt];
943 downheap ((WT *)timers, timercnt, w->active - 1); 1324 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
944 } 1325 }
945 1326
946 w->at = w->repeat; 1327 ((WT)w)->at = w->repeat;
947 1328
948 ev_stop ((W)w); 1329 ev_stop (EV_A_ (W)w);
949} 1330}
950 1331
951void 1332void
952ev_timer_again (struct ev_timer *w) 1333ev_timer_again (EV_P_ struct ev_timer *w)
953{ 1334{
954 if (ev_is_active (w)) 1335 if (ev_is_active (w))
955 { 1336 {
956 if (w->repeat) 1337 if (w->repeat)
957 {
958 w->at = now + w->repeat;
959 downheap ((WT *)timers, timercnt, w->active - 1); 1338 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1, mn_now + w->repeat);
960 }
961 else 1339 else
962 ev_timer_stop (w); 1340 ev_timer_stop (EV_A_ w);
963 } 1341 }
964 else if (w->repeat) 1342 else if (w->repeat)
965 ev_timer_start (w); 1343 ev_timer_start (EV_A_ w);
966} 1344}
967 1345
968void 1346void
969ev_periodic_start (struct ev_periodic *w) 1347ev_periodic_start (EV_P_ struct ev_periodic *w)
970{ 1348{
971 if (ev_is_active (w)) 1349 if (ev_is_active (w))
972 return; 1350 return;
973 1351
1352 if (w->reschedule_cb)
1353 ((WT)w)->at = w->reschedule_cb (w, rt_now);
1354 else if (w->interval)
1355 {
974 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1356 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
975
976 /* this formula differs from the one in periodic_reify because we do not always round up */ 1357 /* this formula differs from the one in periodic_reify because we do not always round up */
977 if (w->interval)
978 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1358 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1359 }
979 1360
980 ev_start ((W)w, ++periodiccnt); 1361 ev_start (EV_A_ (W)w, ++periodiccnt);
981 array_needsize (periodics, periodicmax, periodiccnt, ); 1362 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
982 periodics [periodiccnt - 1] = w; 1363 periodics [periodiccnt - 1] = w;
983 upheap ((WT *)periodics, periodiccnt - 1); 1364 upheap ((WT *)periodics, periodiccnt - 1);
984}
985 1365
1366 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1367}
1368
986void 1369void
987ev_periodic_stop (struct ev_periodic *w) 1370ev_periodic_stop (EV_P_ struct ev_periodic *w)
988{ 1371{
989 ev_clear_pending ((W)w); 1372 ev_clear_pending (EV_A_ (W)w);
990 if (!ev_is_active (w)) 1373 if (!ev_is_active (w))
991 return; 1374 return;
992 1375
1376 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1377
993 if (w->active < periodiccnt--) 1378 if (((W)w)->active < periodiccnt--)
994 { 1379 {
995 periodics [w->active - 1] = periodics [periodiccnt]; 1380 periodics [((W)w)->active - 1] = periodics [periodiccnt];
996 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1381 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
997 } 1382 }
998 1383
999 ev_stop ((W)w); 1384 ev_stop (EV_A_ (W)w);
1000} 1385}
1001 1386
1002void 1387void
1388ev_periodic_again (EV_P_ struct ev_periodic *w)
1389{
1390 /* TODO: use adjustheap and recalculation */
1391 ev_periodic_stop (EV_A_ w);
1392 ev_periodic_start (EV_A_ w);
1393}
1394
1395void
1003ev_signal_start (struct ev_signal *w) 1396ev_idle_start (EV_P_ struct ev_idle *w)
1004{ 1397{
1005 if (ev_is_active (w)) 1398 if (ev_is_active (w))
1006 return; 1399 return;
1007 1400
1401 ev_start (EV_A_ (W)w, ++idlecnt);
1402 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1403 idles [idlecnt - 1] = w;
1404}
1405
1406void
1407ev_idle_stop (EV_P_ struct ev_idle *w)
1408{
1409 ev_clear_pending (EV_A_ (W)w);
1410 if (ev_is_active (w))
1411 return;
1412
1413 idles [((W)w)->active - 1] = idles [--idlecnt];
1414 ev_stop (EV_A_ (W)w);
1415}
1416
1417void
1418ev_prepare_start (EV_P_ struct ev_prepare *w)
1419{
1420 if (ev_is_active (w))
1421 return;
1422
1423 ev_start (EV_A_ (W)w, ++preparecnt);
1424 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1425 prepares [preparecnt - 1] = w;
1426}
1427
1428void
1429ev_prepare_stop (EV_P_ struct ev_prepare *w)
1430{
1431 ev_clear_pending (EV_A_ (W)w);
1432 if (ev_is_active (w))
1433 return;
1434
1435 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1436 ev_stop (EV_A_ (W)w);
1437}
1438
1439void
1440ev_check_start (EV_P_ struct ev_check *w)
1441{
1442 if (ev_is_active (w))
1443 return;
1444
1445 ev_start (EV_A_ (W)w, ++checkcnt);
1446 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1447 checks [checkcnt - 1] = w;
1448}
1449
1450void
1451ev_check_stop (EV_P_ struct ev_check *w)
1452{
1453 ev_clear_pending (EV_A_ (W)w);
1454 if (ev_is_active (w))
1455 return;
1456
1457 checks [((W)w)->active - 1] = checks [--checkcnt];
1458 ev_stop (EV_A_ (W)w);
1459}
1460
1461#ifndef SA_RESTART
1462# define SA_RESTART 0
1463#endif
1464
1465void
1466ev_signal_start (EV_P_ struct ev_signal *w)
1467{
1468#if EV_MULTIPLICITY
1469 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1470#endif
1471 if (ev_is_active (w))
1472 return;
1473
1008 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1474 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1009 1475
1010 ev_start ((W)w, 1); 1476 ev_start (EV_A_ (W)w, 1);
1011 array_needsize (signals, signalmax, w->signum, signals_init); 1477 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1012 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1478 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1013 1479
1014 if (!w->next) 1480 if (!((WL)w)->next)
1015 { 1481 {
1482#if WIN32
1483 signal (w->signum, sighandler);
1484#else
1016 struct sigaction sa; 1485 struct sigaction sa;
1017 sa.sa_handler = sighandler; 1486 sa.sa_handler = sighandler;
1018 sigfillset (&sa.sa_mask); 1487 sigfillset (&sa.sa_mask);
1019 sa.sa_flags = 0; 1488 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1020 sigaction (w->signum, &sa, 0); 1489 sigaction (w->signum, &sa, 0);
1490#endif
1021 } 1491 }
1022} 1492}
1023 1493
1024void 1494void
1025ev_signal_stop (struct ev_signal *w) 1495ev_signal_stop (EV_P_ struct ev_signal *w)
1026{ 1496{
1027 ev_clear_pending ((W)w); 1497 ev_clear_pending (EV_A_ (W)w);
1028 if (!ev_is_active (w)) 1498 if (!ev_is_active (w))
1029 return; 1499 return;
1030 1500
1031 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1501 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1032 ev_stop ((W)w); 1502 ev_stop (EV_A_ (W)w);
1033 1503
1034 if (!signals [w->signum - 1].head) 1504 if (!signals [w->signum - 1].head)
1035 signal (w->signum, SIG_DFL); 1505 signal (w->signum, SIG_DFL);
1036} 1506}
1037 1507
1038void 1508void
1039ev_idle_start (struct ev_idle *w) 1509ev_child_start (EV_P_ struct ev_child *w)
1040{ 1510{
1511#if EV_MULTIPLICITY
1512 assert (("child watchers are only supported in the default loop", loop == default_loop));
1513#endif
1041 if (ev_is_active (w)) 1514 if (ev_is_active (w))
1042 return; 1515 return;
1043 1516
1044 ev_start ((W)w, ++idlecnt); 1517 ev_start (EV_A_ (W)w, 1);
1045 array_needsize (idles, idlemax, idlecnt, ); 1518 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1046 idles [idlecnt - 1] = w;
1047} 1519}
1048 1520
1049void 1521void
1050ev_idle_stop (struct ev_idle *w) 1522ev_child_stop (EV_P_ struct ev_child *w)
1051{ 1523{
1052 ev_clear_pending ((W)w); 1524 ev_clear_pending (EV_A_ (W)w);
1053 if (ev_is_active (w)) 1525 if (ev_is_active (w))
1054 return; 1526 return;
1055 1527
1056 idles [w->active - 1] = idles [--idlecnt];
1057 ev_stop ((W)w);
1058}
1059
1060void
1061ev_prepare_start (struct ev_prepare *w)
1062{
1063 if (ev_is_active (w))
1064 return;
1065
1066 ev_start ((W)w, ++preparecnt);
1067 array_needsize (prepares, preparemax, preparecnt, );
1068 prepares [preparecnt - 1] = w;
1069}
1070
1071void
1072ev_prepare_stop (struct ev_prepare *w)
1073{
1074 ev_clear_pending ((W)w);
1075 if (ev_is_active (w))
1076 return;
1077
1078 prepares [w->active - 1] = prepares [--preparecnt];
1079 ev_stop ((W)w);
1080}
1081
1082void
1083ev_check_start (struct ev_check *w)
1084{
1085 if (ev_is_active (w))
1086 return;
1087
1088 ev_start ((W)w, ++checkcnt);
1089 array_needsize (checks, checkmax, checkcnt, );
1090 checks [checkcnt - 1] = w;
1091}
1092
1093void
1094ev_check_stop (struct ev_check *w)
1095{
1096 ev_clear_pending ((W)w);
1097 if (ev_is_active (w))
1098 return;
1099
1100 checks [w->active - 1] = checks [--checkcnt];
1101 ev_stop ((W)w);
1102}
1103
1104void
1105ev_child_start (struct ev_child *w)
1106{
1107 if (ev_is_active (w))
1108 return;
1109
1110 ev_start ((W)w, 1);
1111 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1112}
1113
1114void
1115ev_child_stop (struct ev_child *w)
1116{
1117 ev_clear_pending ((W)w);
1118 if (ev_is_active (w))
1119 return;
1120
1121 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1528 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1122 ev_stop ((W)w); 1529 ev_stop (EV_A_ (W)w);
1123} 1530}
1124 1531
1125/*****************************************************************************/ 1532/*****************************************************************************/
1126 1533
1127struct ev_once 1534struct ev_once
1131 void (*cb)(int revents, void *arg); 1538 void (*cb)(int revents, void *arg);
1132 void *arg; 1539 void *arg;
1133}; 1540};
1134 1541
1135static void 1542static void
1136once_cb (struct ev_once *once, int revents) 1543once_cb (EV_P_ struct ev_once *once, int revents)
1137{ 1544{
1138 void (*cb)(int revents, void *arg) = once->cb; 1545 void (*cb)(int revents, void *arg) = once->cb;
1139 void *arg = once->arg; 1546 void *arg = once->arg;
1140 1547
1141 ev_io_stop (&once->io); 1548 ev_io_stop (EV_A_ &once->io);
1142 ev_timer_stop (&once->to); 1549 ev_timer_stop (EV_A_ &once->to);
1143 free (once); 1550 ev_free (once);
1144 1551
1145 cb (revents, arg); 1552 cb (revents, arg);
1146} 1553}
1147 1554
1148static void 1555static void
1149once_cb_io (struct ev_io *w, int revents) 1556once_cb_io (EV_P_ struct ev_io *w, int revents)
1150{ 1557{
1151 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1558 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1152} 1559}
1153 1560
1154static void 1561static void
1155once_cb_to (struct ev_timer *w, int revents) 1562once_cb_to (EV_P_ struct ev_timer *w, int revents)
1156{ 1563{
1157 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1564 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1158} 1565}
1159 1566
1160void 1567void
1161ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1568ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1162{ 1569{
1163 struct ev_once *once = malloc (sizeof (struct ev_once)); 1570 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1164 1571
1165 if (!once) 1572 if (!once)
1166 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1573 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1167 else 1574 else
1168 { 1575 {
1169 once->cb = cb; 1576 once->cb = cb;
1170 once->arg = arg; 1577 once->arg = arg;
1171 1578
1172 ev_watcher_init (&once->io, once_cb_io); 1579 ev_init (&once->io, once_cb_io);
1173 if (fd >= 0) 1580 if (fd >= 0)
1174 { 1581 {
1175 ev_io_set (&once->io, fd, events); 1582 ev_io_set (&once->io, fd, events);
1176 ev_io_start (&once->io); 1583 ev_io_start (EV_A_ &once->io);
1177 } 1584 }
1178 1585
1179 ev_watcher_init (&once->to, once_cb_to); 1586 ev_init (&once->to, once_cb_to);
1180 if (timeout >= 0.) 1587 if (timeout >= 0.)
1181 { 1588 {
1182 ev_timer_set (&once->to, timeout, 0.); 1589 ev_timer_set (&once->to, timeout, 0.);
1183 ev_timer_start (&once->to); 1590 ev_timer_start (EV_A_ &once->to);
1184 } 1591 }
1185 } 1592 }
1186} 1593}
1187 1594
1188/*****************************************************************************/
1189
1190#if 0
1191
1192struct ev_io wio;
1193
1194static void
1195sin_cb (struct ev_io *w, int revents)
1196{
1197 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1198}
1199
1200static void
1201ocb (struct ev_timer *w, int revents)
1202{
1203 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1204 ev_timer_stop (w);
1205 ev_timer_start (w);
1206}
1207
1208static void
1209scb (struct ev_signal *w, int revents)
1210{
1211 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1212 ev_io_stop (&wio);
1213 ev_io_start (&wio);
1214}
1215
1216static void
1217gcb (struct ev_signal *w, int revents)
1218{
1219 fprintf (stderr, "generic %x\n", revents);
1220
1221}
1222
1223int main (void)
1224{
1225 ev_init (0);
1226
1227 ev_io_init (&wio, sin_cb, 0, EV_READ);
1228 ev_io_start (&wio);
1229
1230 struct ev_timer t[10000];
1231
1232#if 0
1233 int i;
1234 for (i = 0; i < 10000; ++i)
1235 {
1236 struct ev_timer *w = t + i;
1237 ev_watcher_init (w, ocb, i);
1238 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1239 ev_timer_start (w);
1240 if (drand48 () < 0.5)
1241 ev_timer_stop (w);
1242 }
1243#endif
1244
1245 struct ev_timer t1;
1246 ev_timer_init (&t1, ocb, 5, 10);
1247 ev_timer_start (&t1);
1248
1249 struct ev_signal sig;
1250 ev_signal_init (&sig, scb, SIGQUIT);
1251 ev_signal_start (&sig);
1252
1253 struct ev_check cw;
1254 ev_check_init (&cw, gcb);
1255 ev_check_start (&cw);
1256
1257 struct ev_idle iw;
1258 ev_idle_init (&iw, gcb);
1259 ev_idle_start (&iw);
1260
1261 ev_loop (0);
1262
1263 return 0;
1264}
1265
1266#endif
1267
1268
1269
1270

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines