ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.44 by root, Fri Nov 2 20:59:14 2007 UTC vs.
Revision 1.86 by root, Sat Nov 10 03:19:21 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31#if EV_USE_CONFIG_H 31#ifndef EV_STANDALONE
32# include "config.h" 32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
33#endif 55#endif
34 56
35#include <math.h> 57#include <math.h>
36#include <stdlib.h> 58#include <stdlib.h>
37#include <unistd.h>
38#include <fcntl.h> 59#include <fcntl.h>
39#include <signal.h>
40#include <stddef.h> 60#include <stddef.h>
41 61
42#include <stdio.h> 62#include <stdio.h>
43 63
44#include <assert.h> 64#include <assert.h>
45#include <errno.h> 65#include <errno.h>
46#include <sys/types.h> 66#include <sys/types.h>
47#include <sys/wait.h>
48#include <sys/time.h>
49#include <time.h> 67#include <time.h>
50 68
69#include <signal.h>
70
71#ifndef WIN32
72# include <unistd.h>
73# include <sys/time.h>
74# include <sys/wait.h>
75#endif
51/**/ 76/**/
52 77
53#ifndef EV_USE_MONOTONIC 78#ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 79# define EV_USE_MONOTONIC 1
55#endif 80#endif
66# define EV_USE_EPOLL 0 91# define EV_USE_EPOLL 0
67#endif 92#endif
68 93
69#ifndef EV_USE_KQUEUE 94#ifndef EV_USE_KQUEUE
70# define EV_USE_KQUEUE 0 95# define EV_USE_KQUEUE 0
96#endif
97
98#ifndef EV_USE_WIN32
99# ifdef WIN32
100# define EV_USE_WIN32 0 /* it does not exist, use select */
101# undef EV_USE_SELECT
102# define EV_USE_SELECT 1
103# else
104# define EV_USE_WIN32 0
105# endif
71#endif 106#endif
72 107
73#ifndef EV_USE_REALTIME 108#ifndef EV_USE_REALTIME
74# define EV_USE_REALTIME 1 109# define EV_USE_REALTIME 1
75#endif 110#endif
91#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
92#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
93#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
94/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
95 130
131#ifdef EV_H
132# include EV_H
133#else
96#include "ev.h" 134# include "ev.h"
135#endif
97 136
98#if __GNUC__ >= 3 137#if __GNUC__ >= 3
99# define expect(expr,value) __builtin_expect ((expr),(value)) 138# define expect(expr,value) __builtin_expect ((expr),(value))
100# define inline inline 139# define inline inline
101#else 140#else
111 150
112typedef struct ev_watcher *W; 151typedef struct ev_watcher *W;
113typedef struct ev_watcher_list *WL; 152typedef struct ev_watcher_list *WL;
114typedef struct ev_watcher_time *WT; 153typedef struct ev_watcher_time *WT;
115 154
116static ev_tstamp now_floor, now, diff; /* monotonic clock */ 155static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
117ev_tstamp ev_now;
118int ev_method;
119 156
120static int have_monotonic; /* runtime */ 157#include "ev_win32.c"
121
122static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */
123static void (*method_modify)(int fd, int oev, int nev);
124static void (*method_poll)(ev_tstamp timeout);
125 158
126/*****************************************************************************/ 159/*****************************************************************************/
127 160
128ev_tstamp 161static void (*syserr_cb)(const char *msg);
162
163void ev_set_syserr_cb (void (*cb)(const char *msg))
164{
165 syserr_cb = cb;
166}
167
168static void
169syserr (const char *msg)
170{
171 if (!msg)
172 msg = "(libev) system error";
173
174 if (syserr_cb)
175 syserr_cb (msg);
176 else
177 {
178 perror (msg);
179 abort ();
180 }
181}
182
183static void *(*alloc)(void *ptr, long size);
184
185void ev_set_allocator (void *(*cb)(void *ptr, long size))
186{
187 alloc = cb;
188}
189
190static void *
191ev_realloc (void *ptr, long size)
192{
193 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
194
195 if (!ptr && size)
196 {
197 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
198 abort ();
199 }
200
201 return ptr;
202}
203
204#define ev_malloc(size) ev_realloc (0, (size))
205#define ev_free(ptr) ev_realloc ((ptr), 0)
206
207/*****************************************************************************/
208
209typedef struct
210{
211 WL head;
212 unsigned char events;
213 unsigned char reify;
214} ANFD;
215
216typedef struct
217{
218 W w;
219 int events;
220} ANPENDING;
221
222#if EV_MULTIPLICITY
223
224 struct ev_loop
225 {
226 ev_tstamp ev_rt_now;
227 #define VAR(name,decl) decl;
228 #include "ev_vars.h"
229 #undef VAR
230 };
231 #include "ev_wrap.h"
232
233 struct ev_loop default_loop_struct;
234 static struct ev_loop *default_loop;
235
236#else
237
238 ev_tstamp ev_rt_now;
239 #define VAR(name,decl) static decl;
240 #include "ev_vars.h"
241 #undef VAR
242
243 static int default_loop;
244
245#endif
246
247/*****************************************************************************/
248
249inline ev_tstamp
129ev_time (void) 250ev_time (void)
130{ 251{
131#if EV_USE_REALTIME 252#if EV_USE_REALTIME
132 struct timespec ts; 253 struct timespec ts;
133 clock_gettime (CLOCK_REALTIME, &ts); 254 clock_gettime (CLOCK_REALTIME, &ts);
137 gettimeofday (&tv, 0); 258 gettimeofday (&tv, 0);
138 return tv.tv_sec + tv.tv_usec * 1e-6; 259 return tv.tv_sec + tv.tv_usec * 1e-6;
139#endif 260#endif
140} 261}
141 262
142static ev_tstamp 263inline ev_tstamp
143get_clock (void) 264get_clock (void)
144{ 265{
145#if EV_USE_MONOTONIC 266#if EV_USE_MONOTONIC
146 if (expect_true (have_monotonic)) 267 if (expect_true (have_monotonic))
147 { 268 {
152#endif 273#endif
153 274
154 return ev_time (); 275 return ev_time ();
155} 276}
156 277
278#if EV_MULTIPLICITY
279ev_tstamp
280ev_now (EV_P)
281{
282 return ev_rt_now;
283}
284#endif
285
157#define array_roundsize(base,n) ((n) | 4 & ~3) 286#define array_roundsize(type,n) ((n) | 4 & ~3)
158 287
159#define array_needsize(base,cur,cnt,init) \ 288#define array_needsize(type,base,cur,cnt,init) \
160 if (expect_false ((cnt) > cur)) \ 289 if (expect_false ((cnt) > cur)) \
161 { \ 290 { \
162 int newcnt = cur; \ 291 int newcnt = cur; \
163 do \ 292 do \
164 { \ 293 { \
165 newcnt = array_roundsize (base, newcnt << 1); \ 294 newcnt = array_roundsize (type, newcnt << 1); \
166 } \ 295 } \
167 while ((cnt) > newcnt); \ 296 while ((cnt) > newcnt); \
168 \ 297 \
169 base = realloc (base, sizeof (*base) * (newcnt)); \ 298 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
170 init (base + cur, newcnt - cur); \ 299 init (base + cur, newcnt - cur); \
171 cur = newcnt; \ 300 cur = newcnt; \
172 } 301 }
302
303#define array_slim(type,stem) \
304 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
305 { \
306 stem ## max = array_roundsize (stem ## cnt >> 1); \
307 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
308 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
309 }
310
311/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
312/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
313#define array_free_microshit(stem) \
314 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
315
316#define array_free(stem, idx) \
317 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
173 318
174/*****************************************************************************/ 319/*****************************************************************************/
175
176typedef struct
177{
178 struct ev_io *head;
179 unsigned char events;
180 unsigned char reify;
181} ANFD;
182
183static ANFD *anfds;
184static int anfdmax;
185 320
186static void 321static void
187anfds_init (ANFD *base, int count) 322anfds_init (ANFD *base, int count)
188{ 323{
189 while (count--) 324 while (count--)
194 329
195 ++base; 330 ++base;
196 } 331 }
197} 332}
198 333
199typedef struct 334void
335ev_feed_event (EV_P_ void *w, int revents)
200{ 336{
201 W w; 337 W w_ = (W)w;
202 int events;
203} ANPENDING;
204 338
205static ANPENDING *pendings [NUMPRI];
206static int pendingmax [NUMPRI], pendingcnt [NUMPRI];
207
208static void
209event (W w, int events)
210{
211 if (w->pending) 339 if (w_->pending)
212 { 340 {
213 pendings [ABSPRI (w)][w->pending - 1].events |= events; 341 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
214 return; 342 return;
215 } 343 }
216 344
217 w->pending = ++pendingcnt [ABSPRI (w)]; 345 w_->pending = ++pendingcnt [ABSPRI (w_)];
218 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 346 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
219 pendings [ABSPRI (w)][w->pending - 1].w = w; 347 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
220 pendings [ABSPRI (w)][w->pending - 1].events = events; 348 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
221} 349}
222 350
223static void 351static void
224queue_events (W *events, int eventcnt, int type) 352queue_events (EV_P_ W *events, int eventcnt, int type)
225{ 353{
226 int i; 354 int i;
227 355
228 for (i = 0; i < eventcnt; ++i) 356 for (i = 0; i < eventcnt; ++i)
229 event (events [i], type); 357 ev_feed_event (EV_A_ events [i], type);
230} 358}
231 359
232static void 360inline void
233fd_event (int fd, int events) 361fd_event (EV_P_ int fd, int revents)
234{ 362{
235 ANFD *anfd = anfds + fd; 363 ANFD *anfd = anfds + fd;
236 struct ev_io *w; 364 struct ev_io *w;
237 365
238 for (w = anfd->head; w; w = w->next) 366 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
239 { 367 {
240 int ev = w->events & events; 368 int ev = w->events & revents;
241 369
242 if (ev) 370 if (ev)
243 event ((W)w, ev); 371 ev_feed_event (EV_A_ (W)w, ev);
244 } 372 }
373}
374
375void
376ev_feed_fd_event (EV_P_ int fd, int revents)
377{
378 fd_event (EV_A_ fd, revents);
245} 379}
246 380
247/*****************************************************************************/ 381/*****************************************************************************/
248 382
249static int *fdchanges;
250static int fdchangemax, fdchangecnt;
251
252static void 383static void
253fd_reify (void) 384fd_reify (EV_P)
254{ 385{
255 int i; 386 int i;
256 387
257 for (i = 0; i < fdchangecnt; ++i) 388 for (i = 0; i < fdchangecnt; ++i)
258 { 389 {
260 ANFD *anfd = anfds + fd; 391 ANFD *anfd = anfds + fd;
261 struct ev_io *w; 392 struct ev_io *w;
262 393
263 int events = 0; 394 int events = 0;
264 395
265 for (w = anfd->head; w; w = w->next) 396 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
266 events |= w->events; 397 events |= w->events;
267 398
268 anfd->reify = 0; 399 anfd->reify = 0;
269 400
270 if (anfd->events != events)
271 {
272 method_modify (fd, anfd->events, events); 401 method_modify (EV_A_ fd, anfd->events, events);
273 anfd->events = events; 402 anfd->events = events;
274 }
275 } 403 }
276 404
277 fdchangecnt = 0; 405 fdchangecnt = 0;
278} 406}
279 407
280static void 408static void
281fd_change (int fd) 409fd_change (EV_P_ int fd)
282{ 410{
283 if (anfds [fd].reify || fdchangecnt < 0) 411 if (anfds [fd].reify)
284 return; 412 return;
285 413
286 anfds [fd].reify = 1; 414 anfds [fd].reify = 1;
287 415
288 ++fdchangecnt; 416 ++fdchangecnt;
289 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 417 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
290 fdchanges [fdchangecnt - 1] = fd; 418 fdchanges [fdchangecnt - 1] = fd;
291} 419}
292 420
293static void 421static void
294fd_kill (int fd) 422fd_kill (EV_P_ int fd)
295{ 423{
296 struct ev_io *w; 424 struct ev_io *w;
297 425
298 printf ("killing fd %d\n", fd);//D
299 while ((w = anfds [fd].head)) 426 while ((w = (struct ev_io *)anfds [fd].head))
300 { 427 {
301 ev_io_stop (w); 428 ev_io_stop (EV_A_ w);
302 event ((W)w, EV_ERROR | EV_READ | EV_WRITE); 429 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
303 } 430 }
431}
432
433static int
434fd_valid (int fd)
435{
436#ifdef WIN32
437 return !!win32_get_osfhandle (fd);
438#else
439 return fcntl (fd, F_GETFD) != -1;
440#endif
304} 441}
305 442
306/* called on EBADF to verify fds */ 443/* called on EBADF to verify fds */
307static void 444static void
308fd_ebadf (void) 445fd_ebadf (EV_P)
309{ 446{
310 int fd; 447 int fd;
311 448
312 for (fd = 0; fd < anfdmax; ++fd) 449 for (fd = 0; fd < anfdmax; ++fd)
313 if (anfds [fd].events) 450 if (anfds [fd].events)
314 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 451 if (!fd_valid (fd) == -1 && errno == EBADF)
315 fd_kill (fd); 452 fd_kill (EV_A_ fd);
316} 453}
317 454
318/* called on ENOMEM in select/poll to kill some fds and retry */ 455/* called on ENOMEM in select/poll to kill some fds and retry */
319static void 456static void
320fd_enomem (void) 457fd_enomem (EV_P)
321{ 458{
322 int fd = anfdmax; 459 int fd;
323 460
324 while (fd--) 461 for (fd = anfdmax; fd--; )
325 if (anfds [fd].events) 462 if (anfds [fd].events)
326 { 463 {
327 close (fd);
328 fd_kill (fd); 464 fd_kill (EV_A_ fd);
329 return; 465 return;
330 } 466 }
331} 467}
332 468
469/* usually called after fork if method needs to re-arm all fds from scratch */
470static void
471fd_rearm_all (EV_P)
472{
473 int fd;
474
475 /* this should be highly optimised to not do anything but set a flag */
476 for (fd = 0; fd < anfdmax; ++fd)
477 if (anfds [fd].events)
478 {
479 anfds [fd].events = 0;
480 fd_change (EV_A_ fd);
481 }
482}
483
333/*****************************************************************************/ 484/*****************************************************************************/
334 485
335static struct ev_timer **timers;
336static int timermax, timercnt;
337
338static struct ev_periodic **periodics;
339static int periodicmax, periodiccnt;
340
341static void 486static void
342upheap (WT *timers, int k) 487upheap (WT *heap, int k)
343{ 488{
344 WT w = timers [k]; 489 WT w = heap [k];
345 490
346 while (k && timers [k >> 1]->at > w->at) 491 while (k && heap [k >> 1]->at > w->at)
347 { 492 {
348 timers [k] = timers [k >> 1]; 493 heap [k] = heap [k >> 1];
349 timers [k]->active = k + 1; 494 ((W)heap [k])->active = k + 1;
350 k >>= 1; 495 k >>= 1;
351 } 496 }
352 497
353 timers [k] = w; 498 heap [k] = w;
354 timers [k]->active = k + 1; 499 ((W)heap [k])->active = k + 1;
355 500
356} 501}
357 502
358static void 503static void
359downheap (WT *timers, int N, int k) 504downheap (WT *heap, int N, int k)
360{ 505{
361 WT w = timers [k]; 506 WT w = heap [k];
362 507
363 while (k < (N >> 1)) 508 while (k < (N >> 1))
364 { 509 {
365 int j = k << 1; 510 int j = k << 1;
366 511
367 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 512 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
368 ++j; 513 ++j;
369 514
370 if (w->at <= timers [j]->at) 515 if (w->at <= heap [j]->at)
371 break; 516 break;
372 517
373 timers [k] = timers [j]; 518 heap [k] = heap [j];
374 timers [k]->active = k + 1; 519 ((W)heap [k])->active = k + 1;
375 k = j; 520 k = j;
376 } 521 }
377 522
378 timers [k] = w; 523 heap [k] = w;
379 timers [k]->active = k + 1; 524 ((W)heap [k])->active = k + 1;
525}
526
527inline void
528adjustheap (WT *heap, int N, int k, ev_tstamp at)
529{
530 ev_tstamp old_at = heap [k]->at;
531 heap [k]->at = at;
532
533 if (old_at < at)
534 downheap (heap, N, k);
535 else
536 upheap (heap, k);
380} 537}
381 538
382/*****************************************************************************/ 539/*****************************************************************************/
383 540
384typedef struct 541typedef struct
385{ 542{
386 struct ev_signal *head; 543 WL head;
387 sig_atomic_t volatile gotsig; 544 sig_atomic_t volatile gotsig;
388} ANSIG; 545} ANSIG;
389 546
390static ANSIG *signals; 547static ANSIG *signals;
391static int signalmax; 548static int signalmax;
407} 564}
408 565
409static void 566static void
410sighandler (int signum) 567sighandler (int signum)
411{ 568{
569#if WIN32
570 signal (signum, sighandler);
571#endif
572
412 signals [signum - 1].gotsig = 1; 573 signals [signum - 1].gotsig = 1;
413 574
414 if (!gotsig) 575 if (!gotsig)
415 { 576 {
577 int old_errno = errno;
416 gotsig = 1; 578 gotsig = 1;
579#ifdef WIN32
580 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
581#else
417 write (sigpipe [1], &signum, 1); 582 write (sigpipe [1], &signum, 1);
583#endif
584 errno = old_errno;
418 } 585 }
419} 586}
420 587
588void
589ev_feed_signal_event (EV_P_ int signum)
590{
591 WL w;
592
593#if EV_MULTIPLICITY
594 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
595#endif
596
597 --signum;
598
599 if (signum < 0 || signum >= signalmax)
600 return;
601
602 signals [signum].gotsig = 0;
603
604 for (w = signals [signum].head; w; w = w->next)
605 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
606}
607
421static void 608static void
422sigcb (struct ev_io *iow, int revents) 609sigcb (EV_P_ struct ev_io *iow, int revents)
423{ 610{
424 struct ev_signal *w;
425 int signum; 611 int signum;
426 612
613#ifdef WIN32
614 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
615#else
427 read (sigpipe [0], &revents, 1); 616 read (sigpipe [0], &revents, 1);
617#endif
428 gotsig = 0; 618 gotsig = 0;
429 619
430 for (signum = signalmax; signum--; ) 620 for (signum = signalmax; signum--; )
431 if (signals [signum].gotsig) 621 if (signals [signum].gotsig)
432 { 622 ev_feed_signal_event (EV_A_ signum + 1);
433 signals [signum].gotsig = 0;
434
435 for (w = signals [signum].head; w; w = w->next)
436 event ((W)w, EV_SIGNAL);
437 }
438} 623}
439 624
440static void 625static void
441siginit (void) 626siginit (EV_P)
442{ 627{
628#ifndef WIN32
443 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 629 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
444 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 630 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
445 631
446 /* rather than sort out wether we really need nb, set it */ 632 /* rather than sort out wether we really need nb, set it */
447 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 633 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
448 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 634 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
635#endif
449 636
450 ev_io_set (&sigev, sigpipe [0], EV_READ); 637 ev_io_set (&sigev, sigpipe [0], EV_READ);
451 ev_io_start (&sigev); 638 ev_io_start (EV_A_ &sigev);
639 ev_unref (EV_A); /* child watcher should not keep loop alive */
452} 640}
453 641
454/*****************************************************************************/ 642/*****************************************************************************/
455 643
456static struct ev_idle **idles;
457static int idlemax, idlecnt;
458
459static struct ev_prepare **prepares;
460static int preparemax, preparecnt;
461
462static struct ev_check **checks;
463static int checkmax, checkcnt;
464
465/*****************************************************************************/
466
467static struct ev_child *childs [PID_HASHSIZE]; 644static struct ev_child *childs [PID_HASHSIZE];
645
646#ifndef WIN32
647
468static struct ev_signal childev; 648static struct ev_signal childev;
469 649
470#ifndef WCONTINUED 650#ifndef WCONTINUED
471# define WCONTINUED 0 651# define WCONTINUED 0
472#endif 652#endif
473 653
474static void 654static void
475childcb (struct ev_signal *sw, int revents) 655child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
476{ 656{
477 struct ev_child *w; 657 struct ev_child *w;
658
659 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
660 if (w->pid == pid || !w->pid)
661 {
662 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
663 w->rpid = pid;
664 w->rstatus = status;
665 ev_feed_event (EV_A_ (W)w, EV_CHILD);
666 }
667}
668
669static void
670childcb (EV_P_ struct ev_signal *sw, int revents)
671{
478 int pid, status; 672 int pid, status;
479 673
480 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 674 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
481 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 675 {
482 if (w->pid == pid || !w->pid) 676 /* make sure we are called again until all childs have been reaped */
483 { 677 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
484 w->status = status; 678
485 event ((W)w, EV_CHILD); 679 child_reap (EV_A_ sw, pid, pid, status);
486 } 680 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
681 }
487} 682}
683
684#endif
488 685
489/*****************************************************************************/ 686/*****************************************************************************/
490 687
491#if EV_USE_KQUEUE 688#if EV_USE_KQUEUE
492# include "ev_kqueue.c" 689# include "ev_kqueue.c"
511ev_version_minor (void) 708ev_version_minor (void)
512{ 709{
513 return EV_VERSION_MINOR; 710 return EV_VERSION_MINOR;
514} 711}
515 712
516/* return true if we are running with elevated privileges and ignore env variables */ 713/* return true if we are running with elevated privileges and should ignore env variables */
517static int 714static int
518enable_secure () 715enable_secure (void)
519{ 716{
717#ifdef WIN32
718 return 0;
719#else
520 return getuid () != geteuid () 720 return getuid () != geteuid ()
521 || getgid () != getegid (); 721 || getgid () != getegid ();
722#endif
522} 723}
523 724
524int ev_init (int methods) 725int
726ev_method (EV_P)
525{ 727{
728 return method;
729}
730
731static void
732loop_init (EV_P_ int methods)
733{
526 if (!ev_method) 734 if (!method)
527 { 735 {
528#if EV_USE_MONOTONIC 736#if EV_USE_MONOTONIC
529 { 737 {
530 struct timespec ts; 738 struct timespec ts;
531 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 739 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
532 have_monotonic = 1; 740 have_monotonic = 1;
533 } 741 }
534#endif 742#endif
535 743
536 ev_now = ev_time (); 744 ev_rt_now = ev_time ();
537 now = get_clock (); 745 mn_now = get_clock ();
538 now_floor = now; 746 now_floor = mn_now;
539 diff = ev_now - now; 747 rtmn_diff = ev_rt_now - mn_now;
540
541 if (pipe (sigpipe))
542 return 0;
543 748
544 if (methods == EVMETHOD_AUTO) 749 if (methods == EVMETHOD_AUTO)
545 if (!enable_secure () && getenv ("LIBEV_METHODS")) 750 if (!enable_secure () && getenv ("LIBEV_METHODS"))
546 methods = atoi (getenv ("LIBEV_METHODS")); 751 methods = atoi (getenv ("LIBEV_METHODS"));
547 else 752 else
548 methods = EVMETHOD_ANY; 753 methods = EVMETHOD_ANY;
549 754
550 ev_method = 0; 755 method = 0;
756#if EV_USE_WIN32
757 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
758#endif
551#if EV_USE_KQUEUE 759#if EV_USE_KQUEUE
552 if (!ev_method && (methods & EVMETHOD_KQUEUE)) kqueue_init (methods); 760 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
553#endif 761#endif
554#if EV_USE_EPOLL 762#if EV_USE_EPOLL
555 if (!ev_method && (methods & EVMETHOD_EPOLL )) epoll_init (methods); 763 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
556#endif 764#endif
557#if EV_USE_POLL 765#if EV_USE_POLL
558 if (!ev_method && (methods & EVMETHOD_POLL )) poll_init (methods); 766 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
559#endif 767#endif
560#if EV_USE_SELECT 768#if EV_USE_SELECT
561 if (!ev_method && (methods & EVMETHOD_SELECT)) select_init (methods); 769 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
562#endif 770#endif
563 771
772 ev_init (&sigev, sigcb);
773 ev_set_priority (&sigev, EV_MAXPRI);
774 }
775}
776
777void
778loop_destroy (EV_P)
779{
780 int i;
781
782#if EV_USE_WIN32
783 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
784#endif
785#if EV_USE_KQUEUE
786 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
787#endif
788#if EV_USE_EPOLL
789 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
790#endif
791#if EV_USE_POLL
792 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
793#endif
794#if EV_USE_SELECT
795 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
796#endif
797
798 for (i = NUMPRI; i--; )
799 array_free (pending, [i]);
800
801 /* have to use the microsoft-never-gets-it-right macro */
802 array_free_microshit (fdchange);
803 array_free_microshit (timer);
804 array_free_microshit (periodic);
805 array_free_microshit (idle);
806 array_free_microshit (prepare);
807 array_free_microshit (check);
808
809 method = 0;
810}
811
812static void
813loop_fork (EV_P)
814{
815#if EV_USE_EPOLL
816 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
817#endif
818#if EV_USE_KQUEUE
819 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
820#endif
821
822 if (ev_is_active (&sigev))
823 {
824 /* default loop */
825
826 ev_ref (EV_A);
827 ev_io_stop (EV_A_ &sigev);
828 close (sigpipe [0]);
829 close (sigpipe [1]);
830
831 while (pipe (sigpipe))
832 syserr ("(libev) error creating pipe");
833
834 siginit (EV_A);
835 }
836
837 postfork = 0;
838}
839
840#if EV_MULTIPLICITY
841struct ev_loop *
842ev_loop_new (int methods)
843{
844 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
845
846 memset (loop, 0, sizeof (struct ev_loop));
847
848 loop_init (EV_A_ methods);
849
850 if (ev_method (EV_A))
851 return loop;
852
853 return 0;
854}
855
856void
857ev_loop_destroy (EV_P)
858{
859 loop_destroy (EV_A);
860 ev_free (loop);
861}
862
863void
864ev_loop_fork (EV_P)
865{
866 postfork = 1;
867}
868
869#endif
870
871#if EV_MULTIPLICITY
872struct ev_loop *
873#else
874int
875#endif
876ev_default_loop (int methods)
877{
878 if (sigpipe [0] == sigpipe [1])
879 if (pipe (sigpipe))
880 return 0;
881
882 if (!default_loop)
883 {
884#if EV_MULTIPLICITY
885 struct ev_loop *loop = default_loop = &default_loop_struct;
886#else
887 default_loop = 1;
888#endif
889
890 loop_init (EV_A_ methods);
891
564 if (ev_method) 892 if (ev_method (EV_A))
565 { 893 {
566 ev_watcher_init (&sigev, sigcb);
567 siginit (); 894 siginit (EV_A);
568 895
896#ifndef WIN32
569 ev_signal_init (&childev, childcb, SIGCHLD); 897 ev_signal_init (&childev, childcb, SIGCHLD);
898 ev_set_priority (&childev, EV_MAXPRI);
570 ev_signal_start (&childev); 899 ev_signal_start (EV_A_ &childev);
900 ev_unref (EV_A); /* child watcher should not keep loop alive */
901#endif
571 } 902 }
903 else
904 default_loop = 0;
572 } 905 }
573 906
574 return ev_method; 907 return default_loop;
908}
909
910void
911ev_default_destroy (void)
912{
913#if EV_MULTIPLICITY
914 struct ev_loop *loop = default_loop;
915#endif
916
917#ifndef WIN32
918 ev_ref (EV_A); /* child watcher */
919 ev_signal_stop (EV_A_ &childev);
920#endif
921
922 ev_ref (EV_A); /* signal watcher */
923 ev_io_stop (EV_A_ &sigev);
924
925 close (sigpipe [0]); sigpipe [0] = 0;
926 close (sigpipe [1]); sigpipe [1] = 0;
927
928 loop_destroy (EV_A);
929}
930
931void
932ev_default_fork (void)
933{
934#if EV_MULTIPLICITY
935 struct ev_loop *loop = default_loop;
936#endif
937
938 if (method)
939 postfork = 1;
575} 940}
576 941
577/*****************************************************************************/ 942/*****************************************************************************/
578 943
579void
580ev_fork_prepare (void)
581{
582 /* nop */
583}
584
585void
586ev_fork_parent (void)
587{
588 /* nop */
589}
590
591void
592ev_fork_child (void)
593{
594#if EV_USE_EPOLL
595 if (ev_method == EVMETHOD_EPOLL)
596 epoll_postfork_child ();
597#endif
598
599 ev_io_stop (&sigev);
600 close (sigpipe [0]);
601 close (sigpipe [1]);
602 pipe (sigpipe);
603 siginit ();
604}
605
606/*****************************************************************************/
607
608static void 944static int
945any_pending (EV_P)
946{
947 int pri;
948
949 for (pri = NUMPRI; pri--; )
950 if (pendingcnt [pri])
951 return 1;
952
953 return 0;
954}
955
956static void
609call_pending (void) 957call_pending (EV_P)
610{ 958{
611 int pri; 959 int pri;
612 960
613 for (pri = NUMPRI; pri--; ) 961 for (pri = NUMPRI; pri--; )
614 while (pendingcnt [pri]) 962 while (pendingcnt [pri])
616 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 964 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
617 965
618 if (p->w) 966 if (p->w)
619 { 967 {
620 p->w->pending = 0; 968 p->w->pending = 0;
621 p->w->cb (p->w, p->events); 969 EV_CB_INVOKE (p->w, p->events);
622 } 970 }
623 } 971 }
624} 972}
625 973
626static void 974static void
627timers_reify (void) 975timers_reify (EV_P)
628{ 976{
629 while (timercnt && timers [0]->at <= now) 977 while (timercnt && ((WT)timers [0])->at <= mn_now)
630 { 978 {
631 struct ev_timer *w = timers [0]; 979 struct ev_timer *w = timers [0];
980
981 assert (("inactive timer on timer heap detected", ev_is_active (w)));
632 982
633 /* first reschedule or stop timer */ 983 /* first reschedule or stop timer */
634 if (w->repeat) 984 if (w->repeat)
635 { 985 {
636 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 986 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
637 w->at = now + w->repeat; 987 ((WT)w)->at = mn_now + w->repeat;
638 downheap ((WT *)timers, timercnt, 0); 988 downheap ((WT *)timers, timercnt, 0);
639 } 989 }
640 else 990 else
641 ev_timer_stop (w); /* nonrepeating: stop timer */ 991 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
642 992
643 event ((W)w, EV_TIMEOUT); 993 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
644 } 994 }
645} 995}
646 996
647static void 997static void
648periodics_reify (void) 998periodics_reify (EV_P)
649{ 999{
650 while (periodiccnt && periodics [0]->at <= ev_now) 1000 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
651 { 1001 {
652 struct ev_periodic *w = periodics [0]; 1002 struct ev_periodic *w = periodics [0];
653 1003
1004 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
1005
654 /* first reschedule or stop timer */ 1006 /* first reschedule or stop timer */
655 if (w->interval) 1007 if (w->reschedule_cb)
656 { 1008 {
1009 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1010
1011 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1012 downheap ((WT *)periodics, periodiccnt, 0);
1013 }
1014 else if (w->interval)
1015 {
657 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 1016 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
658 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now)); 1017 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
659 downheap ((WT *)periodics, periodiccnt, 0); 1018 downheap ((WT *)periodics, periodiccnt, 0);
660 } 1019 }
661 else 1020 else
662 ev_periodic_stop (w); /* nonrepeating: stop timer */ 1021 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
663 1022
664 event ((W)w, EV_PERIODIC); 1023 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
665 } 1024 }
666} 1025}
667 1026
668static void 1027static void
669periodics_reschedule (ev_tstamp diff) 1028periodics_reschedule (EV_P)
670{ 1029{
671 int i; 1030 int i;
672 1031
673 /* adjust periodics after time jump */ 1032 /* adjust periodics after time jump */
674 for (i = 0; i < periodiccnt; ++i) 1033 for (i = 0; i < periodiccnt; ++i)
675 { 1034 {
676 struct ev_periodic *w = periodics [i]; 1035 struct ev_periodic *w = periodics [i];
677 1036
1037 if (w->reschedule_cb)
1038 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
678 if (w->interval) 1039 else if (w->interval)
679 {
680 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 1040 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
681
682 if (fabs (diff) >= 1e-4)
683 {
684 ev_periodic_stop (w);
685 ev_periodic_start (w);
686
687 i = 0; /* restart loop, inefficient, but time jumps should be rare */
688 }
689 }
690 } 1041 }
691}
692 1042
693static int 1043 /* now rebuild the heap */
1044 for (i = periodiccnt >> 1; i--; )
1045 downheap ((WT *)periodics, periodiccnt, i);
1046}
1047
1048inline int
694time_update_monotonic (void) 1049time_update_monotonic (EV_P)
695{ 1050{
696 now = get_clock (); 1051 mn_now = get_clock ();
697 1052
698 if (expect_true (now - now_floor < MIN_TIMEJUMP * .5)) 1053 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
699 { 1054 {
700 ev_now = now + diff; 1055 ev_rt_now = rtmn_diff + mn_now;
701 return 0; 1056 return 0;
702 } 1057 }
703 else 1058 else
704 { 1059 {
705 now_floor = now; 1060 now_floor = mn_now;
706 ev_now = ev_time (); 1061 ev_rt_now = ev_time ();
707 return 1; 1062 return 1;
708 } 1063 }
709} 1064}
710 1065
711static void 1066static void
712time_update (void) 1067time_update (EV_P)
713{ 1068{
714 int i; 1069 int i;
715 1070
716#if EV_USE_MONOTONIC 1071#if EV_USE_MONOTONIC
717 if (expect_true (have_monotonic)) 1072 if (expect_true (have_monotonic))
718 { 1073 {
719 if (time_update_monotonic ()) 1074 if (time_update_monotonic (EV_A))
720 { 1075 {
721 ev_tstamp odiff = diff; 1076 ev_tstamp odiff = rtmn_diff;
722 1077
723 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1078 for (i = 4; --i; ) /* loop a few times, before making important decisions */
724 { 1079 {
725 diff = ev_now - now; 1080 rtmn_diff = ev_rt_now - mn_now;
726 1081
727 if (fabs (odiff - diff) < MIN_TIMEJUMP) 1082 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
728 return; /* all is well */ 1083 return; /* all is well */
729 1084
730 ev_now = ev_time (); 1085 ev_rt_now = ev_time ();
731 now = get_clock (); 1086 mn_now = get_clock ();
732 now_floor = now; 1087 now_floor = mn_now;
733 } 1088 }
734 1089
735 periodics_reschedule (diff - odiff); 1090 periodics_reschedule (EV_A);
736 /* no timer adjustment, as the monotonic clock doesn't jump */ 1091 /* no timer adjustment, as the monotonic clock doesn't jump */
1092 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
737 } 1093 }
738 } 1094 }
739 else 1095 else
740#endif 1096#endif
741 { 1097 {
742 ev_now = ev_time (); 1098 ev_rt_now = ev_time ();
743 1099
744 if (expect_false (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1100 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
745 { 1101 {
746 periodics_reschedule (ev_now - now); 1102 periodics_reschedule (EV_A);
747 1103
748 /* adjust timers. this is easy, as the offset is the same for all */ 1104 /* adjust timers. this is easy, as the offset is the same for all */
749 for (i = 0; i < timercnt; ++i) 1105 for (i = 0; i < timercnt; ++i)
750 timers [i]->at += diff; 1106 ((WT)timers [i])->at += ev_rt_now - mn_now;
751 } 1107 }
752 1108
753 now = ev_now; 1109 mn_now = ev_rt_now;
754 } 1110 }
755} 1111}
756 1112
757int ev_loop_done; 1113void
1114ev_ref (EV_P)
1115{
1116 ++activecnt;
1117}
758 1118
1119void
1120ev_unref (EV_P)
1121{
1122 --activecnt;
1123}
1124
1125static int loop_done;
1126
1127void
759void ev_loop (int flags) 1128ev_loop (EV_P_ int flags)
760{ 1129{
761 double block; 1130 double block;
762 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1131 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
763 1132
764 do 1133 do
765 { 1134 {
766 /* queue check watchers (and execute them) */ 1135 /* queue check watchers (and execute them) */
767 if (expect_false (preparecnt)) 1136 if (expect_false (preparecnt))
768 { 1137 {
769 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 1138 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
770 call_pending (); 1139 call_pending (EV_A);
771 } 1140 }
772 1141
1142 /* we might have forked, so reify kernel state if necessary */
1143 if (expect_false (postfork))
1144 loop_fork (EV_A);
1145
773 /* update fd-related kernel structures */ 1146 /* update fd-related kernel structures */
774 fd_reify (); 1147 fd_reify (EV_A);
775 1148
776 /* calculate blocking time */ 1149 /* calculate blocking time */
777 1150
778 /* we only need this for !monotonic clockor timers, but as we basically 1151 /* we only need this for !monotonic clock or timers, but as we basically
779 always have timers, we just calculate it always */ 1152 always have timers, we just calculate it always */
780#if EV_USE_MONOTONIC 1153#if EV_USE_MONOTONIC
781 if (expect_true (have_monotonic)) 1154 if (expect_true (have_monotonic))
782 time_update_monotonic (); 1155 time_update_monotonic (EV_A);
783 else 1156 else
784#endif 1157#endif
785 { 1158 {
786 ev_now = ev_time (); 1159 ev_rt_now = ev_time ();
787 now = ev_now; 1160 mn_now = ev_rt_now;
788 } 1161 }
789 1162
790 if (flags & EVLOOP_NONBLOCK || idlecnt) 1163 if (flags & EVLOOP_NONBLOCK || idlecnt)
791 block = 0.; 1164 block = 0.;
792 else 1165 else
793 { 1166 {
794 block = MAX_BLOCKTIME; 1167 block = MAX_BLOCKTIME;
795 1168
796 if (timercnt) 1169 if (timercnt)
797 { 1170 {
798 ev_tstamp to = timers [0]->at - now + method_fudge; 1171 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
799 if (block > to) block = to; 1172 if (block > to) block = to;
800 } 1173 }
801 1174
802 if (periodiccnt) 1175 if (periodiccnt)
803 { 1176 {
804 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1177 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
805 if (block > to) block = to; 1178 if (block > to) block = to;
806 } 1179 }
807 1180
808 if (block < 0.) block = 0.; 1181 if (block < 0.) block = 0.;
809 } 1182 }
810 1183
811 method_poll (block); 1184 method_poll (EV_A_ block);
812 1185
813 /* update ev_now, do magic */ 1186 /* update ev_rt_now, do magic */
814 time_update (); 1187 time_update (EV_A);
815 1188
816 /* queue pending timers and reschedule them */ 1189 /* queue pending timers and reschedule them */
817 timers_reify (); /* relative timers called last */ 1190 timers_reify (EV_A); /* relative timers called last */
818 periodics_reify (); /* absolute timers called first */ 1191 periodics_reify (EV_A); /* absolute timers called first */
819 1192
820 /* queue idle watchers unless io or timers are pending */ 1193 /* queue idle watchers unless io or timers are pending */
821 if (!pendingcnt) 1194 if (idlecnt && !any_pending (EV_A))
822 queue_events ((W *)idles, idlecnt, EV_IDLE); 1195 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
823 1196
824 /* queue check watchers, to be executed first */ 1197 /* queue check watchers, to be executed first */
825 if (checkcnt) 1198 if (checkcnt)
826 queue_events ((W *)checks, checkcnt, EV_CHECK); 1199 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
827 1200
828 call_pending (); 1201 call_pending (EV_A);
829 } 1202 }
830 while (!ev_loop_done); 1203 while (activecnt && !loop_done);
831 1204
832 if (ev_loop_done != 2) 1205 if (loop_done != 2)
833 ev_loop_done = 0; 1206 loop_done = 0;
1207}
1208
1209void
1210ev_unloop (EV_P_ int how)
1211{
1212 loop_done = how;
834} 1213}
835 1214
836/*****************************************************************************/ 1215/*****************************************************************************/
837 1216
838static void 1217inline void
839wlist_add (WL *head, WL elem) 1218wlist_add (WL *head, WL elem)
840{ 1219{
841 elem->next = *head; 1220 elem->next = *head;
842 *head = elem; 1221 *head = elem;
843} 1222}
844 1223
845static void 1224inline void
846wlist_del (WL *head, WL elem) 1225wlist_del (WL *head, WL elem)
847{ 1226{
848 while (*head) 1227 while (*head)
849 { 1228 {
850 if (*head == elem) 1229 if (*head == elem)
855 1234
856 head = &(*head)->next; 1235 head = &(*head)->next;
857 } 1236 }
858} 1237}
859 1238
860static void 1239inline void
861ev_clear_pending (W w) 1240ev_clear_pending (EV_P_ W w)
862{ 1241{
863 if (w->pending) 1242 if (w->pending)
864 { 1243 {
865 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1244 pendings [ABSPRI (w)][w->pending - 1].w = 0;
866 w->pending = 0; 1245 w->pending = 0;
867 } 1246 }
868} 1247}
869 1248
870static void 1249inline void
871ev_start (W w, int active) 1250ev_start (EV_P_ W w, int active)
872{ 1251{
873 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1252 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
874 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI; 1253 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
875 1254
876 w->active = active; 1255 w->active = active;
1256 ev_ref (EV_A);
877} 1257}
878 1258
879static void 1259inline void
880ev_stop (W w) 1260ev_stop (EV_P_ W w)
881{ 1261{
1262 ev_unref (EV_A);
882 w->active = 0; 1263 w->active = 0;
883} 1264}
884 1265
885/*****************************************************************************/ 1266/*****************************************************************************/
886 1267
887void 1268void
888ev_io_start (struct ev_io *w) 1269ev_io_start (EV_P_ struct ev_io *w)
889{ 1270{
890 int fd = w->fd; 1271 int fd = w->fd;
891 1272
892 if (ev_is_active (w)) 1273 if (ev_is_active (w))
893 return; 1274 return;
894 1275
895 assert (("ev_io_start called with negative fd", fd >= 0)); 1276 assert (("ev_io_start called with negative fd", fd >= 0));
896 1277
897 ev_start ((W)w, 1); 1278 ev_start (EV_A_ (W)w, 1);
898 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1279 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
899 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1280 wlist_add ((WL *)&anfds[fd].head, (WL)w);
900 1281
901 fd_change (fd); 1282 fd_change (EV_A_ fd);
902} 1283}
903 1284
904void 1285void
905ev_io_stop (struct ev_io *w) 1286ev_io_stop (EV_P_ struct ev_io *w)
906{ 1287{
907 ev_clear_pending ((W)w); 1288 ev_clear_pending (EV_A_ (W)w);
908 if (!ev_is_active (w)) 1289 if (!ev_is_active (w))
909 return; 1290 return;
910 1291
911 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1292 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
912 ev_stop ((W)w); 1293 ev_stop (EV_A_ (W)w);
913 1294
914 fd_change (w->fd); 1295 fd_change (EV_A_ w->fd);
915} 1296}
916 1297
917void 1298void
918ev_timer_start (struct ev_timer *w) 1299ev_timer_start (EV_P_ struct ev_timer *w)
919{ 1300{
920 if (ev_is_active (w)) 1301 if (ev_is_active (w))
921 return; 1302 return;
922 1303
923 w->at += now; 1304 ((WT)w)->at += mn_now;
924 1305
925 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1306 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
926 1307
927 ev_start ((W)w, ++timercnt); 1308 ev_start (EV_A_ (W)w, ++timercnt);
928 array_needsize (timers, timermax, timercnt, ); 1309 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
929 timers [timercnt - 1] = w; 1310 timers [timercnt - 1] = w;
930 upheap ((WT *)timers, timercnt - 1); 1311 upheap ((WT *)timers, timercnt - 1);
931}
932 1312
1313 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1314}
1315
933void 1316void
934ev_timer_stop (struct ev_timer *w) 1317ev_timer_stop (EV_P_ struct ev_timer *w)
935{ 1318{
936 ev_clear_pending ((W)w); 1319 ev_clear_pending (EV_A_ (W)w);
937 if (!ev_is_active (w)) 1320 if (!ev_is_active (w))
938 return; 1321 return;
939 1322
1323 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1324
940 if (w->active < timercnt--) 1325 if (((W)w)->active < timercnt--)
941 { 1326 {
942 timers [w->active - 1] = timers [timercnt]; 1327 timers [((W)w)->active - 1] = timers [timercnt];
943 downheap ((WT *)timers, timercnt, w->active - 1); 1328 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
944 } 1329 }
945 1330
946 w->at = w->repeat; 1331 ((WT)w)->at = w->repeat;
947 1332
948 ev_stop ((W)w); 1333 ev_stop (EV_A_ (W)w);
949} 1334}
950 1335
951void 1336void
952ev_timer_again (struct ev_timer *w) 1337ev_timer_again (EV_P_ struct ev_timer *w)
953{ 1338{
954 if (ev_is_active (w)) 1339 if (ev_is_active (w))
955 { 1340 {
956 if (w->repeat) 1341 if (w->repeat)
957 {
958 w->at = now + w->repeat;
959 downheap ((WT *)timers, timercnt, w->active - 1); 1342 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1, mn_now + w->repeat);
960 }
961 else 1343 else
962 ev_timer_stop (w); 1344 ev_timer_stop (EV_A_ w);
963 } 1345 }
964 else if (w->repeat) 1346 else if (w->repeat)
965 ev_timer_start (w); 1347 ev_timer_start (EV_A_ w);
966} 1348}
967 1349
968void 1350void
969ev_periodic_start (struct ev_periodic *w) 1351ev_periodic_start (EV_P_ struct ev_periodic *w)
970{ 1352{
971 if (ev_is_active (w)) 1353 if (ev_is_active (w))
972 return; 1354 return;
973 1355
1356 if (w->reschedule_cb)
1357 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1358 else if (w->interval)
1359 {
974 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1360 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
975
976 /* this formula differs from the one in periodic_reify because we do not always round up */ 1361 /* this formula differs from the one in periodic_reify because we do not always round up */
977 if (w->interval)
978 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1362 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1363 }
979 1364
980 ev_start ((W)w, ++periodiccnt); 1365 ev_start (EV_A_ (W)w, ++periodiccnt);
981 array_needsize (periodics, periodicmax, periodiccnt, ); 1366 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
982 periodics [periodiccnt - 1] = w; 1367 periodics [periodiccnt - 1] = w;
983 upheap ((WT *)periodics, periodiccnt - 1); 1368 upheap ((WT *)periodics, periodiccnt - 1);
984}
985 1369
1370 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1371}
1372
986void 1373void
987ev_periodic_stop (struct ev_periodic *w) 1374ev_periodic_stop (EV_P_ struct ev_periodic *w)
988{ 1375{
989 ev_clear_pending ((W)w); 1376 ev_clear_pending (EV_A_ (W)w);
990 if (!ev_is_active (w)) 1377 if (!ev_is_active (w))
991 return; 1378 return;
992 1379
1380 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1381
993 if (w->active < periodiccnt--) 1382 if (((W)w)->active < periodiccnt--)
994 { 1383 {
995 periodics [w->active - 1] = periodics [periodiccnt]; 1384 periodics [((W)w)->active - 1] = periodics [periodiccnt];
996 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1385 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
997 } 1386 }
998 1387
999 ev_stop ((W)w); 1388 ev_stop (EV_A_ (W)w);
1000} 1389}
1001 1390
1002void 1391void
1392ev_periodic_again (EV_P_ struct ev_periodic *w)
1393{
1394 /* TODO: use adjustheap and recalculation */
1395 ev_periodic_stop (EV_A_ w);
1396 ev_periodic_start (EV_A_ w);
1397}
1398
1399void
1003ev_signal_start (struct ev_signal *w) 1400ev_idle_start (EV_P_ struct ev_idle *w)
1004{ 1401{
1005 if (ev_is_active (w)) 1402 if (ev_is_active (w))
1006 return; 1403 return;
1007 1404
1405 ev_start (EV_A_ (W)w, ++idlecnt);
1406 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1407 idles [idlecnt - 1] = w;
1408}
1409
1410void
1411ev_idle_stop (EV_P_ struct ev_idle *w)
1412{
1413 ev_clear_pending (EV_A_ (W)w);
1414 if (ev_is_active (w))
1415 return;
1416
1417 idles [((W)w)->active - 1] = idles [--idlecnt];
1418 ev_stop (EV_A_ (W)w);
1419}
1420
1421void
1422ev_prepare_start (EV_P_ struct ev_prepare *w)
1423{
1424 if (ev_is_active (w))
1425 return;
1426
1427 ev_start (EV_A_ (W)w, ++preparecnt);
1428 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1429 prepares [preparecnt - 1] = w;
1430}
1431
1432void
1433ev_prepare_stop (EV_P_ struct ev_prepare *w)
1434{
1435 ev_clear_pending (EV_A_ (W)w);
1436 if (ev_is_active (w))
1437 return;
1438
1439 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1440 ev_stop (EV_A_ (W)w);
1441}
1442
1443void
1444ev_check_start (EV_P_ struct ev_check *w)
1445{
1446 if (ev_is_active (w))
1447 return;
1448
1449 ev_start (EV_A_ (W)w, ++checkcnt);
1450 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1451 checks [checkcnt - 1] = w;
1452}
1453
1454void
1455ev_check_stop (EV_P_ struct ev_check *w)
1456{
1457 ev_clear_pending (EV_A_ (W)w);
1458 if (ev_is_active (w))
1459 return;
1460
1461 checks [((W)w)->active - 1] = checks [--checkcnt];
1462 ev_stop (EV_A_ (W)w);
1463}
1464
1465#ifndef SA_RESTART
1466# define SA_RESTART 0
1467#endif
1468
1469void
1470ev_signal_start (EV_P_ struct ev_signal *w)
1471{
1472#if EV_MULTIPLICITY
1473 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1474#endif
1475 if (ev_is_active (w))
1476 return;
1477
1008 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1478 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1009 1479
1010 ev_start ((W)w, 1); 1480 ev_start (EV_A_ (W)w, 1);
1011 array_needsize (signals, signalmax, w->signum, signals_init); 1481 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1012 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1482 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1013 1483
1014 if (!w->next) 1484 if (!((WL)w)->next)
1015 { 1485 {
1486#if WIN32
1487 signal (w->signum, sighandler);
1488#else
1016 struct sigaction sa; 1489 struct sigaction sa;
1017 sa.sa_handler = sighandler; 1490 sa.sa_handler = sighandler;
1018 sigfillset (&sa.sa_mask); 1491 sigfillset (&sa.sa_mask);
1019 sa.sa_flags = 0; 1492 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1020 sigaction (w->signum, &sa, 0); 1493 sigaction (w->signum, &sa, 0);
1494#endif
1021 } 1495 }
1022} 1496}
1023 1497
1024void 1498void
1025ev_signal_stop (struct ev_signal *w) 1499ev_signal_stop (EV_P_ struct ev_signal *w)
1026{ 1500{
1027 ev_clear_pending ((W)w); 1501 ev_clear_pending (EV_A_ (W)w);
1028 if (!ev_is_active (w)) 1502 if (!ev_is_active (w))
1029 return; 1503 return;
1030 1504
1031 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1505 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1032 ev_stop ((W)w); 1506 ev_stop (EV_A_ (W)w);
1033 1507
1034 if (!signals [w->signum - 1].head) 1508 if (!signals [w->signum - 1].head)
1035 signal (w->signum, SIG_DFL); 1509 signal (w->signum, SIG_DFL);
1036} 1510}
1037 1511
1038void 1512void
1039ev_idle_start (struct ev_idle *w) 1513ev_child_start (EV_P_ struct ev_child *w)
1040{ 1514{
1515#if EV_MULTIPLICITY
1516 assert (("child watchers are only supported in the default loop", loop == default_loop));
1517#endif
1041 if (ev_is_active (w)) 1518 if (ev_is_active (w))
1042 return; 1519 return;
1043 1520
1044 ev_start ((W)w, ++idlecnt); 1521 ev_start (EV_A_ (W)w, 1);
1045 array_needsize (idles, idlemax, idlecnt, ); 1522 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1046 idles [idlecnt - 1] = w;
1047} 1523}
1048 1524
1049void 1525void
1050ev_idle_stop (struct ev_idle *w) 1526ev_child_stop (EV_P_ struct ev_child *w)
1051{ 1527{
1052 ev_clear_pending ((W)w); 1528 ev_clear_pending (EV_A_ (W)w);
1053 if (ev_is_active (w)) 1529 if (ev_is_active (w))
1054 return; 1530 return;
1055 1531
1056 idles [w->active - 1] = idles [--idlecnt];
1057 ev_stop ((W)w);
1058}
1059
1060void
1061ev_prepare_start (struct ev_prepare *w)
1062{
1063 if (ev_is_active (w))
1064 return;
1065
1066 ev_start ((W)w, ++preparecnt);
1067 array_needsize (prepares, preparemax, preparecnt, );
1068 prepares [preparecnt - 1] = w;
1069}
1070
1071void
1072ev_prepare_stop (struct ev_prepare *w)
1073{
1074 ev_clear_pending ((W)w);
1075 if (ev_is_active (w))
1076 return;
1077
1078 prepares [w->active - 1] = prepares [--preparecnt];
1079 ev_stop ((W)w);
1080}
1081
1082void
1083ev_check_start (struct ev_check *w)
1084{
1085 if (ev_is_active (w))
1086 return;
1087
1088 ev_start ((W)w, ++checkcnt);
1089 array_needsize (checks, checkmax, checkcnt, );
1090 checks [checkcnt - 1] = w;
1091}
1092
1093void
1094ev_check_stop (struct ev_check *w)
1095{
1096 ev_clear_pending ((W)w);
1097 if (ev_is_active (w))
1098 return;
1099
1100 checks [w->active - 1] = checks [--checkcnt];
1101 ev_stop ((W)w);
1102}
1103
1104void
1105ev_child_start (struct ev_child *w)
1106{
1107 if (ev_is_active (w))
1108 return;
1109
1110 ev_start ((W)w, 1);
1111 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1112}
1113
1114void
1115ev_child_stop (struct ev_child *w)
1116{
1117 ev_clear_pending ((W)w);
1118 if (ev_is_active (w))
1119 return;
1120
1121 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1532 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1122 ev_stop ((W)w); 1533 ev_stop (EV_A_ (W)w);
1123} 1534}
1124 1535
1125/*****************************************************************************/ 1536/*****************************************************************************/
1126 1537
1127struct ev_once 1538struct ev_once
1131 void (*cb)(int revents, void *arg); 1542 void (*cb)(int revents, void *arg);
1132 void *arg; 1543 void *arg;
1133}; 1544};
1134 1545
1135static void 1546static void
1136once_cb (struct ev_once *once, int revents) 1547once_cb (EV_P_ struct ev_once *once, int revents)
1137{ 1548{
1138 void (*cb)(int revents, void *arg) = once->cb; 1549 void (*cb)(int revents, void *arg) = once->cb;
1139 void *arg = once->arg; 1550 void *arg = once->arg;
1140 1551
1141 ev_io_stop (&once->io); 1552 ev_io_stop (EV_A_ &once->io);
1142 ev_timer_stop (&once->to); 1553 ev_timer_stop (EV_A_ &once->to);
1143 free (once); 1554 ev_free (once);
1144 1555
1145 cb (revents, arg); 1556 cb (revents, arg);
1146} 1557}
1147 1558
1148static void 1559static void
1149once_cb_io (struct ev_io *w, int revents) 1560once_cb_io (EV_P_ struct ev_io *w, int revents)
1150{ 1561{
1151 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1562 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1152} 1563}
1153 1564
1154static void 1565static void
1155once_cb_to (struct ev_timer *w, int revents) 1566once_cb_to (EV_P_ struct ev_timer *w, int revents)
1156{ 1567{
1157 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1568 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1158} 1569}
1159 1570
1160void 1571void
1161ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1572ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1162{ 1573{
1163 struct ev_once *once = malloc (sizeof (struct ev_once)); 1574 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1164 1575
1165 if (!once) 1576 if (!once)
1166 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1577 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1167 else 1578 else
1168 { 1579 {
1169 once->cb = cb; 1580 once->cb = cb;
1170 once->arg = arg; 1581 once->arg = arg;
1171 1582
1172 ev_watcher_init (&once->io, once_cb_io); 1583 ev_init (&once->io, once_cb_io);
1173 if (fd >= 0) 1584 if (fd >= 0)
1174 { 1585 {
1175 ev_io_set (&once->io, fd, events); 1586 ev_io_set (&once->io, fd, events);
1176 ev_io_start (&once->io); 1587 ev_io_start (EV_A_ &once->io);
1177 } 1588 }
1178 1589
1179 ev_watcher_init (&once->to, once_cb_to); 1590 ev_init (&once->to, once_cb_to);
1180 if (timeout >= 0.) 1591 if (timeout >= 0.)
1181 { 1592 {
1182 ev_timer_set (&once->to, timeout, 0.); 1593 ev_timer_set (&once->to, timeout, 0.);
1183 ev_timer_start (&once->to); 1594 ev_timer_start (EV_A_ &once->to);
1184 } 1595 }
1185 } 1596 }
1186} 1597}
1187 1598
1188/*****************************************************************************/
1189
1190#if 0
1191
1192struct ev_io wio;
1193
1194static void
1195sin_cb (struct ev_io *w, int revents)
1196{
1197 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1198}
1199
1200static void
1201ocb (struct ev_timer *w, int revents)
1202{
1203 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1204 ev_timer_stop (w);
1205 ev_timer_start (w);
1206}
1207
1208static void
1209scb (struct ev_signal *w, int revents)
1210{
1211 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1212 ev_io_stop (&wio);
1213 ev_io_start (&wio);
1214}
1215
1216static void
1217gcb (struct ev_signal *w, int revents)
1218{
1219 fprintf (stderr, "generic %x\n", revents);
1220
1221}
1222
1223int main (void)
1224{
1225 ev_init (0);
1226
1227 ev_io_init (&wio, sin_cb, 0, EV_READ);
1228 ev_io_start (&wio);
1229
1230 struct ev_timer t[10000];
1231
1232#if 0
1233 int i;
1234 for (i = 0; i < 10000; ++i)
1235 {
1236 struct ev_timer *w = t + i;
1237 ev_watcher_init (w, ocb, i);
1238 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1239 ev_timer_start (w);
1240 if (drand48 () < 0.5)
1241 ev_timer_stop (w);
1242 }
1243#endif
1244
1245 struct ev_timer t1;
1246 ev_timer_init (&t1, ocb, 5, 10);
1247 ev_timer_start (&t1);
1248
1249 struct ev_signal sig;
1250 ev_signal_init (&sig, scb, SIGQUIT);
1251 ev_signal_start (&sig);
1252
1253 struct ev_check cw;
1254 ev_check_init (&cw, gcb);
1255 ev_check_start (&cw);
1256
1257 struct ev_idle iw;
1258 ev_idle_init (&iw, gcb);
1259 ev_idle_start (&iw);
1260
1261 ev_loop (0);
1262
1263 return 0;
1264}
1265
1266#endif
1267
1268
1269
1270

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines