ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.214 by root, Tue Feb 19 19:21:20 2008 UTC vs.
Revision 1.440 by root, Tue May 29 21:37:14 2012 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
41extern "C" {
42#endif
43
44#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
46# include EV_CONFIG_H 43# include EV_CONFIG_H
47# else 44# else
48# include "config.h" 45# include "config.h"
49# endif 46# endif
50 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
51# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
52# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
53# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
54# endif 71# endif
55# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
57# endif 74# endif
58# else 75# else
59# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
60# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
61# endif 78# endif
62# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
63# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
64# endif 81# endif
65# endif 82# endif
66 83
84# if HAVE_NANOSLEEP
67# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
68# if HAVE_NANOSLEEP
69# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
70# else 88# else
89# undef EV_USE_NANOSLEEP
71# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
72# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
73# endif 100# endif
74 101
102# if HAVE_POLL && HAVE_POLL_H
75# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
76# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
77# define EV_USE_SELECT 1
78# else
79# define EV_USE_SELECT 0
80# endif 105# endif
81# endif
82
83# ifndef EV_USE_POLL
84# if HAVE_POLL && HAVE_POLL_H
85# define EV_USE_POLL 1
86# else 106# else
107# undef EV_USE_POLL
87# define EV_USE_POLL 0 108# define EV_USE_POLL 0
88# endif
89# endif 109# endif
90 110
91# ifndef EV_USE_EPOLL
92# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
93# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
94# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
95# define EV_USE_EPOLL 0
96# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
97# endif 118# endif
98 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
99# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
100# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
101# define EV_USE_KQUEUE 1
102# else
103# define EV_USE_KQUEUE 0
104# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
105# endif 127# endif
106 128
107# ifndef EV_USE_PORT
108# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
109# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
110# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
111# define EV_USE_PORT 0
112# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
113# endif 136# endif
114 137
115# ifndef EV_USE_INOTIFY
116# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
117# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
118# else
119# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
120# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
121# endif 145# endif
122 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
123#endif 154# endif
124 155
125#include <math.h> 156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
126#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
127#include <fcntl.h> 169#include <fcntl.h>
128#include <stddef.h> 170#include <stddef.h>
129 171
130#include <stdio.h> 172#include <stdio.h>
131 173
132#include <assert.h> 174#include <assert.h>
133#include <errno.h> 175#include <errno.h>
134#include <sys/types.h> 176#include <sys/types.h>
135#include <time.h> 177#include <time.h>
178#include <limits.h>
136 179
137#include <signal.h> 180#include <signal.h>
138 181
139#ifdef EV_H 182#ifdef EV_H
140# include EV_H 183# include EV_H
141#else 184#else
142# include "ev.h" 185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
143#endif 197#endif
144 198
145#ifndef _WIN32 199#ifndef _WIN32
146# include <sys/time.h> 200# include <sys/time.h>
147# include <sys/wait.h> 201# include <sys/wait.h>
148# include <unistd.h> 202# include <unistd.h>
149#else 203#else
204# include <io.h>
150# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
151# include <windows.h> 207# include <windows.h>
152# ifndef EV_SELECT_IS_WINSOCKET 208# ifndef EV_SELECT_IS_WINSOCKET
153# define EV_SELECT_IS_WINSOCKET 1 209# define EV_SELECT_IS_WINSOCKET 1
154# endif 210# endif
211# undef EV_AVOID_STDIO
212#endif
213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
221
222/* this block tries to deduce configuration from header-defined symbols and defaults */
223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# error "unable to find value for NSIG, please report"
247/* to make it compile regardless, just remove the above line, */
248/* but consider reporting it, too! :) */
249# define EV_NSIG 65
250#endif
251
252#ifndef EV_USE_FLOOR
253# define EV_USE_FLOOR 0
254#endif
255
256#ifndef EV_USE_CLOCK_SYSCALL
257# if __linux && __GLIBC__ >= 2
258# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
259# else
260# define EV_USE_CLOCK_SYSCALL 0
155#endif 261# endif
156 262#endif
157/**/
158 263
159#ifndef EV_USE_MONOTONIC 264#ifndef EV_USE_MONOTONIC
265# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
266# define EV_USE_MONOTONIC EV_FEATURE_OS
267# else
160# define EV_USE_MONOTONIC 0 268# define EV_USE_MONOTONIC 0
269# endif
161#endif 270#endif
162 271
163#ifndef EV_USE_REALTIME 272#ifndef EV_USE_REALTIME
164# define EV_USE_REALTIME 0 273# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
165#endif 274#endif
166 275
167#ifndef EV_USE_NANOSLEEP 276#ifndef EV_USE_NANOSLEEP
277# if _POSIX_C_SOURCE >= 199309L
278# define EV_USE_NANOSLEEP EV_FEATURE_OS
279# else
168# define EV_USE_NANOSLEEP 0 280# define EV_USE_NANOSLEEP 0
281# endif
169#endif 282#endif
170 283
171#ifndef EV_USE_SELECT 284#ifndef EV_USE_SELECT
172# define EV_USE_SELECT 1 285# define EV_USE_SELECT EV_FEATURE_BACKENDS
173#endif 286#endif
174 287
175#ifndef EV_USE_POLL 288#ifndef EV_USE_POLL
176# ifdef _WIN32 289# ifdef _WIN32
177# define EV_USE_POLL 0 290# define EV_USE_POLL 0
178# else 291# else
179# define EV_USE_POLL 1 292# define EV_USE_POLL EV_FEATURE_BACKENDS
180# endif 293# endif
181#endif 294#endif
182 295
183#ifndef EV_USE_EPOLL 296#ifndef EV_USE_EPOLL
297# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
298# define EV_USE_EPOLL EV_FEATURE_BACKENDS
299# else
184# define EV_USE_EPOLL 0 300# define EV_USE_EPOLL 0
301# endif
185#endif 302#endif
186 303
187#ifndef EV_USE_KQUEUE 304#ifndef EV_USE_KQUEUE
188# define EV_USE_KQUEUE 0 305# define EV_USE_KQUEUE 0
189#endif 306#endif
191#ifndef EV_USE_PORT 308#ifndef EV_USE_PORT
192# define EV_USE_PORT 0 309# define EV_USE_PORT 0
193#endif 310#endif
194 311
195#ifndef EV_USE_INOTIFY 312#ifndef EV_USE_INOTIFY
313# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
314# define EV_USE_INOTIFY EV_FEATURE_OS
315# else
196# define EV_USE_INOTIFY 0 316# define EV_USE_INOTIFY 0
317# endif
197#endif 318#endif
198 319
199#ifndef EV_PID_HASHSIZE 320#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL 321# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
201# define EV_PID_HASHSIZE 1 322#endif
323
324#ifndef EV_INOTIFY_HASHSIZE
325# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
326#endif
327
328#ifndef EV_USE_EVENTFD
329# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
330# define EV_USE_EVENTFD EV_FEATURE_OS
202# else 331# else
203# define EV_PID_HASHSIZE 16 332# define EV_USE_EVENTFD 0
204# endif 333# endif
205#endif 334#endif
206 335
207#ifndef EV_INOTIFY_HASHSIZE 336#ifndef EV_USE_SIGNALFD
208# if EV_MINIMAL 337# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
209# define EV_INOTIFY_HASHSIZE 1 338# define EV_USE_SIGNALFD EV_FEATURE_OS
210# else 339# else
211# define EV_INOTIFY_HASHSIZE 16 340# define EV_USE_SIGNALFD 0
212# endif 341# endif
213#endif 342#endif
214 343
215/**/ 344#if 0 /* debugging */
345# define EV_VERIFY 3
346# define EV_USE_4HEAP 1
347# define EV_HEAP_CACHE_AT 1
348#endif
349
350#ifndef EV_VERIFY
351# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
352#endif
353
354#ifndef EV_USE_4HEAP
355# define EV_USE_4HEAP EV_FEATURE_DATA
356#endif
357
358#ifndef EV_HEAP_CACHE_AT
359# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
360#endif
361
362/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
363/* which makes programs even slower. might work on other unices, too. */
364#if EV_USE_CLOCK_SYSCALL
365# include <sys/syscall.h>
366# ifdef SYS_clock_gettime
367# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
368# undef EV_USE_MONOTONIC
369# define EV_USE_MONOTONIC 1
370# else
371# undef EV_USE_CLOCK_SYSCALL
372# define EV_USE_CLOCK_SYSCALL 0
373# endif
374#endif
375
376/* this block fixes any misconfiguration where we know we run into trouble otherwise */
377
378#ifdef _AIX
379/* AIX has a completely broken poll.h header */
380# undef EV_USE_POLL
381# define EV_USE_POLL 0
382#endif
216 383
217#ifndef CLOCK_MONOTONIC 384#ifndef CLOCK_MONOTONIC
218# undef EV_USE_MONOTONIC 385# undef EV_USE_MONOTONIC
219# define EV_USE_MONOTONIC 0 386# define EV_USE_MONOTONIC 0
220#endif 387#endif
228# undef EV_USE_INOTIFY 395# undef EV_USE_INOTIFY
229# define EV_USE_INOTIFY 0 396# define EV_USE_INOTIFY 0
230#endif 397#endif
231 398
232#if !EV_USE_NANOSLEEP 399#if !EV_USE_NANOSLEEP
233# ifndef _WIN32 400/* hp-ux has it in sys/time.h, which we unconditionally include above */
401# if !defined _WIN32 && !defined __hpux
234# include <sys/select.h> 402# include <sys/select.h>
235# endif 403# endif
236#endif 404#endif
237 405
238#if EV_USE_INOTIFY 406#if EV_USE_INOTIFY
407# include <sys/statfs.h>
239# include <sys/inotify.h> 408# include <sys/inotify.h>
409/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
410# ifndef IN_DONT_FOLLOW
411# undef EV_USE_INOTIFY
412# define EV_USE_INOTIFY 0
240#endif 413# endif
414#endif
241 415
242#if EV_SELECT_IS_WINSOCKET 416#if EV_USE_EVENTFD
417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
243# include <winsock.h> 418# include <stdint.h>
419# ifndef EFD_NONBLOCK
420# define EFD_NONBLOCK O_NONBLOCK
421# endif
422# ifndef EFD_CLOEXEC
423# ifdef O_CLOEXEC
424# define EFD_CLOEXEC O_CLOEXEC
425# else
426# define EFD_CLOEXEC 02000000
427# endif
428# endif
429EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
430#endif
431
432#if EV_USE_SIGNALFD
433/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
434# include <stdint.h>
435# ifndef SFD_NONBLOCK
436# define SFD_NONBLOCK O_NONBLOCK
437# endif
438# ifndef SFD_CLOEXEC
439# ifdef O_CLOEXEC
440# define SFD_CLOEXEC O_CLOEXEC
441# else
442# define SFD_CLOEXEC 02000000
443# endif
444# endif
445EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
446
447struct signalfd_siginfo
448{
449 uint32_t ssi_signo;
450 char pad[128 - sizeof (uint32_t)];
451};
244#endif 452#endif
245 453
246/**/ 454/**/
247 455
456#if EV_VERIFY >= 3
457# define EV_FREQUENT_CHECK ev_verify (EV_A)
458#else
459# define EV_FREQUENT_CHECK do { } while (0)
460#endif
461
248/* 462/*
249 * This is used to avoid floating point rounding problems. 463 * This is used to work around floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding
252 * errors are against us.
253 * This value is good at least till the year 4000. 464 * This value is good at least till the year 4000.
254 * Better solutions welcome.
255 */ 465 */
256#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 466#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
467/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
257 468
258#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 469#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
259#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 470#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
260/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
261 471
472#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
473#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
474
475/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
476/* ECB.H BEGIN */
477/*
478 * libecb - http://software.schmorp.de/pkg/libecb
479 *
480 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
481 * Copyright (©) 2011 Emanuele Giaquinta
482 * All rights reserved.
483 *
484 * Redistribution and use in source and binary forms, with or without modifica-
485 * tion, are permitted provided that the following conditions are met:
486 *
487 * 1. Redistributions of source code must retain the above copyright notice,
488 * this list of conditions and the following disclaimer.
489 *
490 * 2. Redistributions in binary form must reproduce the above copyright
491 * notice, this list of conditions and the following disclaimer in the
492 * documentation and/or other materials provided with the distribution.
493 *
494 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
495 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
496 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
497 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
498 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
499 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
500 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
501 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
502 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
503 * OF THE POSSIBILITY OF SUCH DAMAGE.
504 */
505
506#ifndef ECB_H
507#define ECB_H
508
509/* 16 bits major, 16 bits minor */
510#define ECB_VERSION 0x00010001
511
512#ifdef _WIN32
513 typedef signed char int8_t;
514 typedef unsigned char uint8_t;
515 typedef signed short int16_t;
516 typedef unsigned short uint16_t;
517 typedef signed int int32_t;
518 typedef unsigned int uint32_t;
262#if __GNUC__ >= 4 519 #if __GNUC__
263# define expect(expr,value) __builtin_expect ((expr),(value)) 520 typedef signed long long int64_t;
264# define noinline __attribute__ ((noinline)) 521 typedef unsigned long long uint64_t;
522 #else /* _MSC_VER || __BORLANDC__ */
523 typedef signed __int64 int64_t;
524 typedef unsigned __int64 uint64_t;
525 #endif
526 #ifdef _WIN64
527 #define ECB_PTRSIZE 8
528 typedef uint64_t uintptr_t;
529 typedef int64_t intptr_t;
530 #else
531 #define ECB_PTRSIZE 4
532 typedef uint32_t uintptr_t;
533 typedef int32_t intptr_t;
534 #endif
535 typedef intptr_t ptrdiff_t;
265#else 536#else
266# define expect(expr,value) (expr) 537 #include <inttypes.h>
267# define noinline 538 #if UINTMAX_MAX > 0xffffffffU
268# if __STDC_VERSION__ < 199901L 539 #define ECB_PTRSIZE 8
269# define inline 540 #else
541 #define ECB_PTRSIZE 4
542 #endif
270# endif 543#endif
544
545/* many compilers define _GNUC_ to some versions but then only implement
546 * what their idiot authors think are the "more important" extensions,
547 * causing enormous grief in return for some better fake benchmark numbers.
548 * or so.
549 * we try to detect these and simply assume they are not gcc - if they have
550 * an issue with that they should have done it right in the first place.
551 */
552#ifndef ECB_GCC_VERSION
553 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
554 #define ECB_GCC_VERSION(major,minor) 0
555 #else
556 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
271#endif 557 #endif
558#endif
272 559
560#define ECB_C (__STDC__+0) /* this assumes that __STDC__ is either empty or a number */
561#define ECB_C99 (__STDC_VERSION__ >= 199901L)
562#define ECB_C11 (__STDC_VERSION__ >= 201112L)
563#define ECB_CPP (__cplusplus+0)
564#define ECB_CPP98 (__cplusplus >= 199711L)
565#define ECB_CPP11 (__cplusplus >= 201103L)
566
567/*****************************************************************************/
568
569/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
570/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
571
572#if ECB_NO_THREADS
573 #define ECB_NO_SMP 1
574#endif
575
576#if ECB_NO_SMP
577 #define ECB_MEMORY_FENCE do { } while (0)
578#endif
579
580#ifndef ECB_MEMORY_FENCE
581 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
582 #if __i386 || __i386__
583 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
584 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
585 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
586 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
587 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
588 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
589 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
590 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
591 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
592 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
593 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
594 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
595 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
596 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
597 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
598 #elif __sparc || __sparc__
599 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
600 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
601 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
602 #elif defined __s390__ || defined __s390x__
603 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
604 #elif defined __mips__
605 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
606 #elif defined __alpha__
607 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
608 #elif defined __hppa__
609 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
610 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
611 #elif defined __ia64__
612 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
613 #endif
614 #endif
615#endif
616
617#ifndef ECB_MEMORY_FENCE
618 #if ECB_GCC_VERSION(4,7)
619 /* see comment below about the C11 memory model. in short - avoid */
620 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
621 #elif defined __clang && __has_feature (cxx_atomic)
622 /* see above */
623 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
624 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
625 #define ECB_MEMORY_FENCE __sync_synchronize ()
626 #elif _MSC_VER >= 1400 /* VC++ 2005 */
627 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
628 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
629 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
630 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
631 #elif defined _WIN32
632 #include <WinNT.h>
633 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
634 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
635 #include <mbarrier.h>
636 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
637 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
638 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
639 #elif __xlC__
640 #define ECB_MEMORY_FENCE __sync ()
641 #endif
642#endif
643
644#ifndef ECB_MEMORY_FENCE
645 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
646 /* we assume that these memory fences work on all variables/all memory accesses, */
647 /* not just C11 atomics and atomic accesses */
648 #include <stdatomic.h>
649 /* unfortunately, the C11 memory model seems to be very limited, and unable to express */
650 /* simple barrier semantics. That means we need to take out thor's hammer. */
651 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
652 #endif
653#endif
654
655#ifndef ECB_MEMORY_FENCE
656 #if !ECB_AVOID_PTHREADS
657 /*
658 * if you get undefined symbol references to pthread_mutex_lock,
659 * or failure to find pthread.h, then you should implement
660 * the ECB_MEMORY_FENCE operations for your cpu/compiler
661 * OR provide pthread.h and link against the posix thread library
662 * of your system.
663 */
664 #include <pthread.h>
665 #define ECB_NEEDS_PTHREADS 1
666 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
667
668 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
669 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
670 #endif
671#endif
672
673#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
674 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
675#endif
676
677#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
678 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
679#endif
680
681/*****************************************************************************/
682
683#if __cplusplus
684 #define ecb_inline static inline
685#elif ECB_GCC_VERSION(2,5)
686 #define ecb_inline static __inline__
687#elif ECB_C99
688 #define ecb_inline static inline
689#else
690 #define ecb_inline static
691#endif
692
693#if ECB_GCC_VERSION(3,3)
694 #define ecb_restrict __restrict__
695#elif ECB_C99
696 #define ecb_restrict restrict
697#else
698 #define ecb_restrict
699#endif
700
701typedef int ecb_bool;
702
703#define ECB_CONCAT_(a, b) a ## b
704#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
705#define ECB_STRINGIFY_(a) # a
706#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
707
708#define ecb_function_ ecb_inline
709
710#if ECB_GCC_VERSION(3,1)
711 #define ecb_attribute(attrlist) __attribute__(attrlist)
712 #define ecb_is_constant(expr) __builtin_constant_p (expr)
713 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
714 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
715#else
716 #define ecb_attribute(attrlist)
717 #define ecb_is_constant(expr) 0
718 #define ecb_expect(expr,value) (expr)
719 #define ecb_prefetch(addr,rw,locality)
720#endif
721
722/* no emulation for ecb_decltype */
723#if ECB_GCC_VERSION(4,5)
724 #define ecb_decltype(x) __decltype(x)
725#elif ECB_GCC_VERSION(3,0)
726 #define ecb_decltype(x) __typeof(x)
727#endif
728
729#define ecb_noinline ecb_attribute ((__noinline__))
730#define ecb_unused ecb_attribute ((__unused__))
731#define ecb_const ecb_attribute ((__const__))
732#define ecb_pure ecb_attribute ((__pure__))
733
734#if ECB_C11
735 #define ecb_noreturn _Noreturn
736#else
737 #define ecb_noreturn ecb_attribute ((__noreturn__))
738#endif
739
740#if ECB_GCC_VERSION(4,3)
741 #define ecb_artificial ecb_attribute ((__artificial__))
742 #define ecb_hot ecb_attribute ((__hot__))
743 #define ecb_cold ecb_attribute ((__cold__))
744#else
745 #define ecb_artificial
746 #define ecb_hot
747 #define ecb_cold
748#endif
749
750/* put around conditional expressions if you are very sure that the */
751/* expression is mostly true or mostly false. note that these return */
752/* booleans, not the expression. */
273#define expect_false(expr) expect ((expr) != 0, 0) 753#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
274#define expect_true(expr) expect ((expr) != 0, 1) 754#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
755/* for compatibility to the rest of the world */
756#define ecb_likely(expr) ecb_expect_true (expr)
757#define ecb_unlikely(expr) ecb_expect_false (expr)
758
759/* count trailing zero bits and count # of one bits */
760#if ECB_GCC_VERSION(3,4)
761 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
762 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
763 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
764 #define ecb_ctz32(x) __builtin_ctz (x)
765 #define ecb_ctz64(x) __builtin_ctzll (x)
766 #define ecb_popcount32(x) __builtin_popcount (x)
767 /* no popcountll */
768#else
769 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
770 ecb_function_ int
771 ecb_ctz32 (uint32_t x)
772 {
773 int r = 0;
774
775 x &= ~x + 1; /* this isolates the lowest bit */
776
777#if ECB_branchless_on_i386
778 r += !!(x & 0xaaaaaaaa) << 0;
779 r += !!(x & 0xcccccccc) << 1;
780 r += !!(x & 0xf0f0f0f0) << 2;
781 r += !!(x & 0xff00ff00) << 3;
782 r += !!(x & 0xffff0000) << 4;
783#else
784 if (x & 0xaaaaaaaa) r += 1;
785 if (x & 0xcccccccc) r += 2;
786 if (x & 0xf0f0f0f0) r += 4;
787 if (x & 0xff00ff00) r += 8;
788 if (x & 0xffff0000) r += 16;
789#endif
790
791 return r;
792 }
793
794 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
795 ecb_function_ int
796 ecb_ctz64 (uint64_t x)
797 {
798 int shift = x & 0xffffffffU ? 0 : 32;
799 return ecb_ctz32 (x >> shift) + shift;
800 }
801
802 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
803 ecb_function_ int
804 ecb_popcount32 (uint32_t x)
805 {
806 x -= (x >> 1) & 0x55555555;
807 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
808 x = ((x >> 4) + x) & 0x0f0f0f0f;
809 x *= 0x01010101;
810
811 return x >> 24;
812 }
813
814 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
815 ecb_function_ int ecb_ld32 (uint32_t x)
816 {
817 int r = 0;
818
819 if (x >> 16) { x >>= 16; r += 16; }
820 if (x >> 8) { x >>= 8; r += 8; }
821 if (x >> 4) { x >>= 4; r += 4; }
822 if (x >> 2) { x >>= 2; r += 2; }
823 if (x >> 1) { r += 1; }
824
825 return r;
826 }
827
828 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
829 ecb_function_ int ecb_ld64 (uint64_t x)
830 {
831 int r = 0;
832
833 if (x >> 32) { x >>= 32; r += 32; }
834
835 return r + ecb_ld32 (x);
836 }
837#endif
838
839ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
840ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
841ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
842ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
843
844ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
845ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
846{
847 return ( (x * 0x0802U & 0x22110U)
848 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
849}
850
851ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
852ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
853{
854 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
855 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
856 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
857 x = ( x >> 8 ) | ( x << 8);
858
859 return x;
860}
861
862ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
863ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
864{
865 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
866 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
867 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
868 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
869 x = ( x >> 16 ) | ( x << 16);
870
871 return x;
872}
873
874/* popcount64 is only available on 64 bit cpus as gcc builtin */
875/* so for this version we are lazy */
876ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
877ecb_function_ int
878ecb_popcount64 (uint64_t x)
879{
880 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
881}
882
883ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
884ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
885ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
886ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
887ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
888ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
889ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
890ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
891
892ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
893ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
894ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
895ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
896ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
897ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
898ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
899ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
900
901#if ECB_GCC_VERSION(4,3)
902 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
903 #define ecb_bswap32(x) __builtin_bswap32 (x)
904 #define ecb_bswap64(x) __builtin_bswap64 (x)
905#else
906 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
907 ecb_function_ uint16_t
908 ecb_bswap16 (uint16_t x)
909 {
910 return ecb_rotl16 (x, 8);
911 }
912
913 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
914 ecb_function_ uint32_t
915 ecb_bswap32 (uint32_t x)
916 {
917 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
918 }
919
920 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
921 ecb_function_ uint64_t
922 ecb_bswap64 (uint64_t x)
923 {
924 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
925 }
926#endif
927
928#if ECB_GCC_VERSION(4,5)
929 #define ecb_unreachable() __builtin_unreachable ()
930#else
931 /* this seems to work fine, but gcc always emits a warning for it :/ */
932 ecb_inline void ecb_unreachable (void) ecb_noreturn;
933 ecb_inline void ecb_unreachable (void) { }
934#endif
935
936/* try to tell the compiler that some condition is definitely true */
937#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
938
939ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
940ecb_inline unsigned char
941ecb_byteorder_helper (void)
942{
943 const uint32_t u = 0x11223344;
944 return *(unsigned char *)&u;
945}
946
947ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
948ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
949ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
950ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
951
952#if ECB_GCC_VERSION(3,0) || ECB_C99
953 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
954#else
955 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
956#endif
957
958#if __cplusplus
959 template<typename T>
960 static inline T ecb_div_rd (T val, T div)
961 {
962 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
963 }
964 template<typename T>
965 static inline T ecb_div_ru (T val, T div)
966 {
967 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
968 }
969#else
970 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
971 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
972#endif
973
974#if ecb_cplusplus_does_not_suck
975 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
976 template<typename T, int N>
977 static inline int ecb_array_length (const T (&arr)[N])
978 {
979 return N;
980 }
981#else
982 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
983#endif
984
985#endif
986
987/* ECB.H END */
988
989#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
990/* if your architecture doesn't need memory fences, e.g. because it is
991 * single-cpu/core, or if you use libev in a project that doesn't use libev
992 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
993 * libev, in which cases the memory fences become nops.
994 * alternatively, you can remove this #error and link against libpthread,
995 * which will then provide the memory fences.
996 */
997# error "memory fences not defined for your architecture, please report"
998#endif
999
1000#ifndef ECB_MEMORY_FENCE
1001# define ECB_MEMORY_FENCE do { } while (0)
1002# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1003# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1004#endif
1005
1006#define expect_false(cond) ecb_expect_false (cond)
1007#define expect_true(cond) ecb_expect_true (cond)
1008#define noinline ecb_noinline
1009
275#define inline_size static inline 1010#define inline_size ecb_inline
276 1011
277#if EV_MINIMAL 1012#if EV_FEATURE_CODE
1013# define inline_speed ecb_inline
1014#else
278# define inline_speed static noinline 1015# define inline_speed static noinline
1016#endif
1017
1018#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1019
1020#if EV_MINPRI == EV_MAXPRI
1021# define ABSPRI(w) (((W)w), 0)
279#else 1022#else
280# define inline_speed static inline
281#endif
282
283#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
284#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1023# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1024#endif
285 1025
286#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1026#define EMPTY /* required for microsofts broken pseudo-c compiler */
287#define EMPTY2(a,b) /* used to suppress some warnings */ 1027#define EMPTY2(a,b) /* used to suppress some warnings */
288 1028
289typedef ev_watcher *W; 1029typedef ev_watcher *W;
290typedef ev_watcher_list *WL; 1030typedef ev_watcher_list *WL;
291typedef ev_watcher_time *WT; 1031typedef ev_watcher_time *WT;
292 1032
1033#define ev_active(w) ((W)(w))->active
1034#define ev_at(w) ((WT)(w))->at
1035
1036#if EV_USE_REALTIME
1037/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1038/* giving it a reasonably high chance of working on typical architectures */
1039static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1040#endif
1041
293#if EV_USE_MONOTONIC 1042#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */
296static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1043static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1044#endif
1045
1046#ifndef EV_FD_TO_WIN32_HANDLE
1047# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1048#endif
1049#ifndef EV_WIN32_HANDLE_TO_FD
1050# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1051#endif
1052#ifndef EV_WIN32_CLOSE_FD
1053# define EV_WIN32_CLOSE_FD(fd) close (fd)
297#endif 1054#endif
298 1055
299#ifdef _WIN32 1056#ifdef _WIN32
300# include "ev_win32.c" 1057# include "ev_win32.c"
301#endif 1058#endif
302 1059
303/*****************************************************************************/ 1060/*****************************************************************************/
304 1061
1062/* define a suitable floor function (only used by periodics atm) */
1063
1064#if EV_USE_FLOOR
1065# include <math.h>
1066# define ev_floor(v) floor (v)
1067#else
1068
1069#include <float.h>
1070
1071/* a floor() replacement function, should be independent of ev_tstamp type */
1072static ev_tstamp noinline
1073ev_floor (ev_tstamp v)
1074{
1075 /* the choice of shift factor is not terribly important */
1076#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1077 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1078#else
1079 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1080#endif
1081
1082 /* argument too large for an unsigned long? */
1083 if (expect_false (v >= shift))
1084 {
1085 ev_tstamp f;
1086
1087 if (v == v - 1.)
1088 return v; /* very large number */
1089
1090 f = shift * ev_floor (v * (1. / shift));
1091 return f + ev_floor (v - f);
1092 }
1093
1094 /* special treatment for negative args? */
1095 if (expect_false (v < 0.))
1096 {
1097 ev_tstamp f = -ev_floor (-v);
1098
1099 return f - (f == v ? 0 : 1);
1100 }
1101
1102 /* fits into an unsigned long */
1103 return (unsigned long)v;
1104}
1105
1106#endif
1107
1108/*****************************************************************************/
1109
1110#ifdef __linux
1111# include <sys/utsname.h>
1112#endif
1113
1114static unsigned int noinline ecb_cold
1115ev_linux_version (void)
1116{
1117#ifdef __linux
1118 unsigned int v = 0;
1119 struct utsname buf;
1120 int i;
1121 char *p = buf.release;
1122
1123 if (uname (&buf))
1124 return 0;
1125
1126 for (i = 3+1; --i; )
1127 {
1128 unsigned int c = 0;
1129
1130 for (;;)
1131 {
1132 if (*p >= '0' && *p <= '9')
1133 c = c * 10 + *p++ - '0';
1134 else
1135 {
1136 p += *p == '.';
1137 break;
1138 }
1139 }
1140
1141 v = (v << 8) | c;
1142 }
1143
1144 return v;
1145#else
1146 return 0;
1147#endif
1148}
1149
1150/*****************************************************************************/
1151
1152#if EV_AVOID_STDIO
1153static void noinline ecb_cold
1154ev_printerr (const char *msg)
1155{
1156 write (STDERR_FILENO, msg, strlen (msg));
1157}
1158#endif
1159
305static void (*syserr_cb)(const char *msg); 1160static void (*syserr_cb)(const char *msg) EV_THROW;
306 1161
307void 1162void ecb_cold
308ev_set_syserr_cb (void (*cb)(const char *msg)) 1163ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
309{ 1164{
310 syserr_cb = cb; 1165 syserr_cb = cb;
311} 1166}
312 1167
313static void noinline 1168static void noinline ecb_cold
314syserr (const char *msg) 1169ev_syserr (const char *msg)
315{ 1170{
316 if (!msg) 1171 if (!msg)
317 msg = "(libev) system error"; 1172 msg = "(libev) system error";
318 1173
319 if (syserr_cb) 1174 if (syserr_cb)
320 syserr_cb (msg); 1175 syserr_cb (msg);
321 else 1176 else
322 { 1177 {
1178#if EV_AVOID_STDIO
1179 ev_printerr (msg);
1180 ev_printerr (": ");
1181 ev_printerr (strerror (errno));
1182 ev_printerr ("\n");
1183#else
323 perror (msg); 1184 perror (msg);
1185#endif
324 abort (); 1186 abort ();
325 } 1187 }
326} 1188}
327 1189
1190static void *
1191ev_realloc_emul (void *ptr, long size) EV_THROW
1192{
1193#if __GLIBC__
1194 return realloc (ptr, size);
1195#else
1196 /* some systems, notably openbsd and darwin, fail to properly
1197 * implement realloc (x, 0) (as required by both ansi c-89 and
1198 * the single unix specification, so work around them here.
1199 */
1200
1201 if (size)
1202 return realloc (ptr, size);
1203
1204 free (ptr);
1205 return 0;
1206#endif
1207}
1208
328static void *(*alloc)(void *ptr, long size); 1209static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
329 1210
330void 1211void ecb_cold
331ev_set_allocator (void *(*cb)(void *ptr, long size)) 1212ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
332{ 1213{
333 alloc = cb; 1214 alloc = cb;
334} 1215}
335 1216
336inline_speed void * 1217inline_speed void *
337ev_realloc (void *ptr, long size) 1218ev_realloc (void *ptr, long size)
338{ 1219{
339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1220 ptr = alloc (ptr, size);
340 1221
341 if (!ptr && size) 1222 if (!ptr && size)
342 { 1223 {
1224#if EV_AVOID_STDIO
1225 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1226#else
343 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1227 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1228#endif
344 abort (); 1229 abort ();
345 } 1230 }
346 1231
347 return ptr; 1232 return ptr;
348} 1233}
350#define ev_malloc(size) ev_realloc (0, (size)) 1235#define ev_malloc(size) ev_realloc (0, (size))
351#define ev_free(ptr) ev_realloc ((ptr), 0) 1236#define ev_free(ptr) ev_realloc ((ptr), 0)
352 1237
353/*****************************************************************************/ 1238/*****************************************************************************/
354 1239
1240/* set in reify when reification needed */
1241#define EV_ANFD_REIFY 1
1242
1243/* file descriptor info structure */
355typedef struct 1244typedef struct
356{ 1245{
357 WL head; 1246 WL head;
358 unsigned char events; 1247 unsigned char events; /* the events watched for */
1248 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1249 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
359 unsigned char reify; 1250 unsigned char unused;
1251#if EV_USE_EPOLL
1252 unsigned int egen; /* generation counter to counter epoll bugs */
1253#endif
360#if EV_SELECT_IS_WINSOCKET 1254#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
361 SOCKET handle; 1255 SOCKET handle;
362#endif 1256#endif
1257#if EV_USE_IOCP
1258 OVERLAPPED or, ow;
1259#endif
363} ANFD; 1260} ANFD;
364 1261
1262/* stores the pending event set for a given watcher */
365typedef struct 1263typedef struct
366{ 1264{
367 W w; 1265 W w;
368 int events; 1266 int events; /* the pending event set for the given watcher */
369} ANPENDING; 1267} ANPENDING;
370 1268
371#if EV_USE_INOTIFY 1269#if EV_USE_INOTIFY
1270/* hash table entry per inotify-id */
372typedef struct 1271typedef struct
373{ 1272{
374 WL head; 1273 WL head;
375} ANFS; 1274} ANFS;
1275#endif
1276
1277/* Heap Entry */
1278#if EV_HEAP_CACHE_AT
1279 /* a heap element */
1280 typedef struct {
1281 ev_tstamp at;
1282 WT w;
1283 } ANHE;
1284
1285 #define ANHE_w(he) (he).w /* access watcher, read-write */
1286 #define ANHE_at(he) (he).at /* access cached at, read-only */
1287 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1288#else
1289 /* a heap element */
1290 typedef WT ANHE;
1291
1292 #define ANHE_w(he) (he)
1293 #define ANHE_at(he) (he)->at
1294 #define ANHE_at_cache(he)
376#endif 1295#endif
377 1296
378#if EV_MULTIPLICITY 1297#if EV_MULTIPLICITY
379 1298
380 struct ev_loop 1299 struct ev_loop
386 #undef VAR 1305 #undef VAR
387 }; 1306 };
388 #include "ev_wrap.h" 1307 #include "ev_wrap.h"
389 1308
390 static struct ev_loop default_loop_struct; 1309 static struct ev_loop default_loop_struct;
391 struct ev_loop *ev_default_loop_ptr; 1310 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
392 1311
393#else 1312#else
394 1313
395 ev_tstamp ev_rt_now; 1314 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
396 #define VAR(name,decl) static decl; 1315 #define VAR(name,decl) static decl;
397 #include "ev_vars.h" 1316 #include "ev_vars.h"
398 #undef VAR 1317 #undef VAR
399 1318
400 static int ev_default_loop_ptr; 1319 static int ev_default_loop_ptr;
401 1320
402#endif 1321#endif
403 1322
1323#if EV_FEATURE_API
1324# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1325# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1326# define EV_INVOKE_PENDING invoke_cb (EV_A)
1327#else
1328# define EV_RELEASE_CB (void)0
1329# define EV_ACQUIRE_CB (void)0
1330# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1331#endif
1332
1333#define EVBREAK_RECURSE 0x80
1334
404/*****************************************************************************/ 1335/*****************************************************************************/
405 1336
1337#ifndef EV_HAVE_EV_TIME
406ev_tstamp 1338ev_tstamp
407ev_time (void) 1339ev_time (void) EV_THROW
408{ 1340{
409#if EV_USE_REALTIME 1341#if EV_USE_REALTIME
1342 if (expect_true (have_realtime))
1343 {
410 struct timespec ts; 1344 struct timespec ts;
411 clock_gettime (CLOCK_REALTIME, &ts); 1345 clock_gettime (CLOCK_REALTIME, &ts);
412 return ts.tv_sec + ts.tv_nsec * 1e-9; 1346 return ts.tv_sec + ts.tv_nsec * 1e-9;
413#else 1347 }
1348#endif
1349
414 struct timeval tv; 1350 struct timeval tv;
415 gettimeofday (&tv, 0); 1351 gettimeofday (&tv, 0);
416 return tv.tv_sec + tv.tv_usec * 1e-6; 1352 return tv.tv_sec + tv.tv_usec * 1e-6;
417#endif
418} 1353}
1354#endif
419 1355
420ev_tstamp inline_size 1356inline_size ev_tstamp
421get_clock (void) 1357get_clock (void)
422{ 1358{
423#if EV_USE_MONOTONIC 1359#if EV_USE_MONOTONIC
424 if (expect_true (have_monotonic)) 1360 if (expect_true (have_monotonic))
425 { 1361 {
432 return ev_time (); 1368 return ev_time ();
433} 1369}
434 1370
435#if EV_MULTIPLICITY 1371#if EV_MULTIPLICITY
436ev_tstamp 1372ev_tstamp
437ev_now (EV_P) 1373ev_now (EV_P) EV_THROW
438{ 1374{
439 return ev_rt_now; 1375 return ev_rt_now;
440} 1376}
441#endif 1377#endif
442 1378
443void 1379void
444ev_sleep (ev_tstamp delay) 1380ev_sleep (ev_tstamp delay) EV_THROW
445{ 1381{
446 if (delay > 0.) 1382 if (delay > 0.)
447 { 1383 {
448#if EV_USE_NANOSLEEP 1384#if EV_USE_NANOSLEEP
449 struct timespec ts; 1385 struct timespec ts;
450 1386
451 ts.tv_sec = (time_t)delay; 1387 EV_TS_SET (ts, delay);
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453
454 nanosleep (&ts, 0); 1388 nanosleep (&ts, 0);
455#elif defined(_WIN32) 1389#elif defined _WIN32
456 Sleep (delay * 1e3); 1390 Sleep ((unsigned long)(delay * 1e3));
457#else 1391#else
458 struct timeval tv; 1392 struct timeval tv;
459 1393
460 tv.tv_sec = (time_t)delay; 1394 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 1395 /* something not guaranteed by newer posix versions, but guaranteed */
462 1396 /* by older ones */
1397 EV_TV_SET (tv, delay);
463 select (0, 0, 0, 0, &tv); 1398 select (0, 0, 0, 0, &tv);
464#endif 1399#endif
465 } 1400 }
466} 1401}
467 1402
468/*****************************************************************************/ 1403/*****************************************************************************/
469 1404
470int inline_size 1405#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1406
1407/* find a suitable new size for the given array, */
1408/* hopefully by rounding to a nice-to-malloc size */
1409inline_size int
471array_nextsize (int elem, int cur, int cnt) 1410array_nextsize (int elem, int cur, int cnt)
472{ 1411{
473 int ncur = cur + 1; 1412 int ncur = cur + 1;
474 1413
475 do 1414 do
476 ncur <<= 1; 1415 ncur <<= 1;
477 while (cnt > ncur); 1416 while (cnt > ncur);
478 1417
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 1418 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
480 if (elem * ncur > 4096) 1419 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
481 { 1420 {
482 ncur *= elem; 1421 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 1422 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
484 ncur = ncur - sizeof (void *) * 4; 1423 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem; 1424 ncur /= elem;
486 } 1425 }
487 1426
488 return ncur; 1427 return ncur;
489} 1428}
490 1429
491static noinline void * 1430static void * noinline ecb_cold
492array_realloc (int elem, void *base, int *cur, int cnt) 1431array_realloc (int elem, void *base, int *cur, int cnt)
493{ 1432{
494 *cur = array_nextsize (elem, *cur, cnt); 1433 *cur = array_nextsize (elem, *cur, cnt);
495 return ev_realloc (base, elem * *cur); 1434 return ev_realloc (base, elem * *cur);
496} 1435}
1436
1437#define array_init_zero(base,count) \
1438 memset ((void *)(base), 0, sizeof (*(base)) * (count))
497 1439
498#define array_needsize(type,base,cur,cnt,init) \ 1440#define array_needsize(type,base,cur,cnt,init) \
499 if (expect_false ((cnt) > (cur))) \ 1441 if (expect_false ((cnt) > (cur))) \
500 { \ 1442 { \
501 int ocur_ = (cur); \ 1443 int ecb_unused ocur_ = (cur); \
502 (base) = (type *)array_realloc \ 1444 (base) = (type *)array_realloc \
503 (sizeof (type), (base), &(cur), (cnt)); \ 1445 (sizeof (type), (base), &(cur), (cnt)); \
504 init ((base) + (ocur_), (cur) - ocur_); \ 1446 init ((base) + (ocur_), (cur) - ocur_); \
505 } 1447 }
506 1448
513 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1455 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
514 } 1456 }
515#endif 1457#endif
516 1458
517#define array_free(stem, idx) \ 1459#define array_free(stem, idx) \
518 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1460 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
519 1461
520/*****************************************************************************/ 1462/*****************************************************************************/
521 1463
1464/* dummy callback for pending events */
1465static void noinline
1466pendingcb (EV_P_ ev_prepare *w, int revents)
1467{
1468}
1469
522void noinline 1470void noinline
523ev_feed_event (EV_P_ void *w, int revents) 1471ev_feed_event (EV_P_ void *w, int revents) EV_THROW
524{ 1472{
525 W w_ = (W)w; 1473 W w_ = (W)w;
526 int pri = ABSPRI (w_); 1474 int pri = ABSPRI (w_);
527 1475
528 if (expect_false (w_->pending)) 1476 if (expect_false (w_->pending))
532 w_->pending = ++pendingcnt [pri]; 1480 w_->pending = ++pendingcnt [pri];
533 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 1481 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
534 pendings [pri][w_->pending - 1].w = w_; 1482 pendings [pri][w_->pending - 1].w = w_;
535 pendings [pri][w_->pending - 1].events = revents; 1483 pendings [pri][w_->pending - 1].events = revents;
536 } 1484 }
537}
538 1485
539void inline_speed 1486 pendingpri = NUMPRI - 1;
1487}
1488
1489inline_speed void
1490feed_reverse (EV_P_ W w)
1491{
1492 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1493 rfeeds [rfeedcnt++] = w;
1494}
1495
1496inline_size void
1497feed_reverse_done (EV_P_ int revents)
1498{
1499 do
1500 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1501 while (rfeedcnt);
1502}
1503
1504inline_speed void
540queue_events (EV_P_ W *events, int eventcnt, int type) 1505queue_events (EV_P_ W *events, int eventcnt, int type)
541{ 1506{
542 int i; 1507 int i;
543 1508
544 for (i = 0; i < eventcnt; ++i) 1509 for (i = 0; i < eventcnt; ++i)
545 ev_feed_event (EV_A_ events [i], type); 1510 ev_feed_event (EV_A_ events [i], type);
546} 1511}
547 1512
548/*****************************************************************************/ 1513/*****************************************************************************/
549 1514
550void inline_size 1515inline_speed void
551anfds_init (ANFD *base, int count)
552{
553 while (count--)
554 {
555 base->head = 0;
556 base->events = EV_NONE;
557 base->reify = 0;
558
559 ++base;
560 }
561}
562
563void inline_speed
564fd_event (EV_P_ int fd, int revents) 1516fd_event_nocheck (EV_P_ int fd, int revents)
565{ 1517{
566 ANFD *anfd = anfds + fd; 1518 ANFD *anfd = anfds + fd;
567 ev_io *w; 1519 ev_io *w;
568 1520
569 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1521 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
573 if (ev) 1525 if (ev)
574 ev_feed_event (EV_A_ (W)w, ev); 1526 ev_feed_event (EV_A_ (W)w, ev);
575 } 1527 }
576} 1528}
577 1529
1530/* do not submit kernel events for fds that have reify set */
1531/* because that means they changed while we were polling for new events */
1532inline_speed void
1533fd_event (EV_P_ int fd, int revents)
1534{
1535 ANFD *anfd = anfds + fd;
1536
1537 if (expect_true (!anfd->reify))
1538 fd_event_nocheck (EV_A_ fd, revents);
1539}
1540
578void 1541void
579ev_feed_fd_event (EV_P_ int fd, int revents) 1542ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
580{ 1543{
581 if (fd >= 0 && fd < anfdmax) 1544 if (fd >= 0 && fd < anfdmax)
582 fd_event (EV_A_ fd, revents); 1545 fd_event_nocheck (EV_A_ fd, revents);
583} 1546}
584 1547
585void inline_size 1548/* make sure the external fd watch events are in-sync */
1549/* with the kernel/libev internal state */
1550inline_size void
586fd_reify (EV_P) 1551fd_reify (EV_P)
587{ 1552{
588 int i; 1553 int i;
1554
1555#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1556 for (i = 0; i < fdchangecnt; ++i)
1557 {
1558 int fd = fdchanges [i];
1559 ANFD *anfd = anfds + fd;
1560
1561 if (anfd->reify & EV__IOFDSET && anfd->head)
1562 {
1563 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1564
1565 if (handle != anfd->handle)
1566 {
1567 unsigned long arg;
1568
1569 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1570
1571 /* handle changed, but fd didn't - we need to do it in two steps */
1572 backend_modify (EV_A_ fd, anfd->events, 0);
1573 anfd->events = 0;
1574 anfd->handle = handle;
1575 }
1576 }
1577 }
1578#endif
589 1579
590 for (i = 0; i < fdchangecnt; ++i) 1580 for (i = 0; i < fdchangecnt; ++i)
591 { 1581 {
592 int fd = fdchanges [i]; 1582 int fd = fdchanges [i];
593 ANFD *anfd = anfds + fd; 1583 ANFD *anfd = anfds + fd;
594 ev_io *w; 1584 ev_io *w;
595 1585
596 unsigned char events = 0; 1586 unsigned char o_events = anfd->events;
1587 unsigned char o_reify = anfd->reify;
597 1588
598 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1589 anfd->reify = 0;
599 events |= (unsigned char)w->events;
600 1590
601#if EV_SELECT_IS_WINSOCKET 1591 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
602 if (events)
603 { 1592 {
604 unsigned long argp; 1593 anfd->events = 0;
605 #ifdef EV_FD_TO_WIN32_HANDLE 1594
606 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1595 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
607 #else 1596 anfd->events |= (unsigned char)w->events;
608 anfd->handle = _get_osfhandle (fd); 1597
609 #endif 1598 if (o_events != anfd->events)
610 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1599 o_reify = EV__IOFDSET; /* actually |= */
611 } 1600 }
612#endif
613 1601
614 { 1602 if (o_reify & EV__IOFDSET)
615 unsigned char o_events = anfd->events;
616 unsigned char o_reify = anfd->reify;
617
618 anfd->reify = 0;
619 anfd->events = events;
620
621 if (o_events != events || o_reify & EV_IOFDSET)
622 backend_modify (EV_A_ fd, o_events, events); 1603 backend_modify (EV_A_ fd, o_events, anfd->events);
623 }
624 } 1604 }
625 1605
626 fdchangecnt = 0; 1606 fdchangecnt = 0;
627} 1607}
628 1608
629void inline_size 1609/* something about the given fd changed */
1610inline_size void
630fd_change (EV_P_ int fd, int flags) 1611fd_change (EV_P_ int fd, int flags)
631{ 1612{
632 unsigned char reify = anfds [fd].reify; 1613 unsigned char reify = anfds [fd].reify;
633 anfds [fd].reify |= flags; 1614 anfds [fd].reify |= flags;
634 1615
638 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1619 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
639 fdchanges [fdchangecnt - 1] = fd; 1620 fdchanges [fdchangecnt - 1] = fd;
640 } 1621 }
641} 1622}
642 1623
643void inline_speed 1624/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1625inline_speed void ecb_cold
644fd_kill (EV_P_ int fd) 1626fd_kill (EV_P_ int fd)
645{ 1627{
646 ev_io *w; 1628 ev_io *w;
647 1629
648 while ((w = (ev_io *)anfds [fd].head)) 1630 while ((w = (ev_io *)anfds [fd].head))
650 ev_io_stop (EV_A_ w); 1632 ev_io_stop (EV_A_ w);
651 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1633 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
652 } 1634 }
653} 1635}
654 1636
655int inline_size 1637/* check whether the given fd is actually valid, for error recovery */
1638inline_size int ecb_cold
656fd_valid (int fd) 1639fd_valid (int fd)
657{ 1640{
658#ifdef _WIN32 1641#ifdef _WIN32
659 return _get_osfhandle (fd) != -1; 1642 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
660#else 1643#else
661 return fcntl (fd, F_GETFD) != -1; 1644 return fcntl (fd, F_GETFD) != -1;
662#endif 1645#endif
663} 1646}
664 1647
665/* called on EBADF to verify fds */ 1648/* called on EBADF to verify fds */
666static void noinline 1649static void noinline ecb_cold
667fd_ebadf (EV_P) 1650fd_ebadf (EV_P)
668{ 1651{
669 int fd; 1652 int fd;
670 1653
671 for (fd = 0; fd < anfdmax; ++fd) 1654 for (fd = 0; fd < anfdmax; ++fd)
672 if (anfds [fd].events) 1655 if (anfds [fd].events)
673 if (!fd_valid (fd) == -1 && errno == EBADF) 1656 if (!fd_valid (fd) && errno == EBADF)
674 fd_kill (EV_A_ fd); 1657 fd_kill (EV_A_ fd);
675} 1658}
676 1659
677/* called on ENOMEM in select/poll to kill some fds and retry */ 1660/* called on ENOMEM in select/poll to kill some fds and retry */
678static void noinline 1661static void noinline ecb_cold
679fd_enomem (EV_P) 1662fd_enomem (EV_P)
680{ 1663{
681 int fd; 1664 int fd;
682 1665
683 for (fd = anfdmax; fd--; ) 1666 for (fd = anfdmax; fd--; )
684 if (anfds [fd].events) 1667 if (anfds [fd].events)
685 { 1668 {
686 fd_kill (EV_A_ fd); 1669 fd_kill (EV_A_ fd);
687 return; 1670 break;
688 } 1671 }
689} 1672}
690 1673
691/* usually called after fork if backend needs to re-arm all fds from scratch */ 1674/* usually called after fork if backend needs to re-arm all fds from scratch */
692static void noinline 1675static void noinline
696 1679
697 for (fd = 0; fd < anfdmax; ++fd) 1680 for (fd = 0; fd < anfdmax; ++fd)
698 if (anfds [fd].events) 1681 if (anfds [fd].events)
699 { 1682 {
700 anfds [fd].events = 0; 1683 anfds [fd].events = 0;
1684 anfds [fd].emask = 0;
701 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1685 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
702 } 1686 }
703} 1687}
704 1688
705/*****************************************************************************/ 1689/* used to prepare libev internal fd's */
706 1690/* this is not fork-safe */
707void inline_speed 1691inline_speed void
708upheap (WT *heap, int k)
709{
710 WT w = heap [k];
711
712 while (k)
713 {
714 int p = (k - 1) >> 1;
715
716 if (heap [p]->at <= w->at)
717 break;
718
719 heap [k] = heap [p];
720 ((W)heap [k])->active = k + 1;
721 k = p;
722 }
723
724 heap [k] = w;
725 ((W)heap [k])->active = k + 1;
726}
727
728void inline_speed
729downheap (WT *heap, int N, int k)
730{
731 WT w = heap [k];
732
733 for (;;)
734 {
735 int c = (k << 1) + 1;
736
737 if (c >= N)
738 break;
739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
746 heap [k] = heap [c];
747 ((W)heap [k])->active = k + 1;
748
749 k = c;
750 }
751
752 heap [k] = w;
753 ((W)heap [k])->active = k + 1;
754}
755
756void inline_size
757adjustheap (WT *heap, int N, int k)
758{
759 upheap (heap, k);
760 downheap (heap, N, k);
761}
762
763/*****************************************************************************/
764
765typedef struct
766{
767 WL head;
768 EV_ATOMIC_T gotsig;
769} ANSIG;
770
771static ANSIG *signals;
772static int signalmax;
773
774static EV_ATOMIC_T gotsig;
775
776void inline_size
777signals_init (ANSIG *base, int count)
778{
779 while (count--)
780 {
781 base->head = 0;
782 base->gotsig = 0;
783
784 ++base;
785 }
786}
787
788/*****************************************************************************/
789
790void inline_speed
791fd_intern (int fd) 1692fd_intern (int fd)
792{ 1693{
793#ifdef _WIN32 1694#ifdef _WIN32
794 int arg = 1; 1695 unsigned long arg = 1;
795 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1696 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
796#else 1697#else
797 fcntl (fd, F_SETFD, FD_CLOEXEC); 1698 fcntl (fd, F_SETFD, FD_CLOEXEC);
798 fcntl (fd, F_SETFL, O_NONBLOCK); 1699 fcntl (fd, F_SETFL, O_NONBLOCK);
799#endif 1700#endif
800} 1701}
801 1702
1703/*****************************************************************************/
1704
1705/*
1706 * the heap functions want a real array index. array index 0 is guaranteed to not
1707 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1708 * the branching factor of the d-tree.
1709 */
1710
1711/*
1712 * at the moment we allow libev the luxury of two heaps,
1713 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1714 * which is more cache-efficient.
1715 * the difference is about 5% with 50000+ watchers.
1716 */
1717#if EV_USE_4HEAP
1718
1719#define DHEAP 4
1720#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1721#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1722#define UPHEAP_DONE(p,k) ((p) == (k))
1723
1724/* away from the root */
1725inline_speed void
1726downheap (ANHE *heap, int N, int k)
1727{
1728 ANHE he = heap [k];
1729 ANHE *E = heap + N + HEAP0;
1730
1731 for (;;)
1732 {
1733 ev_tstamp minat;
1734 ANHE *minpos;
1735 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1736
1737 /* find minimum child */
1738 if (expect_true (pos + DHEAP - 1 < E))
1739 {
1740 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1741 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1742 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1743 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1744 }
1745 else if (pos < E)
1746 {
1747 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1748 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1749 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1750 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1751 }
1752 else
1753 break;
1754
1755 if (ANHE_at (he) <= minat)
1756 break;
1757
1758 heap [k] = *minpos;
1759 ev_active (ANHE_w (*minpos)) = k;
1760
1761 k = minpos - heap;
1762 }
1763
1764 heap [k] = he;
1765 ev_active (ANHE_w (he)) = k;
1766}
1767
1768#else /* 4HEAP */
1769
1770#define HEAP0 1
1771#define HPARENT(k) ((k) >> 1)
1772#define UPHEAP_DONE(p,k) (!(p))
1773
1774/* away from the root */
1775inline_speed void
1776downheap (ANHE *heap, int N, int k)
1777{
1778 ANHE he = heap [k];
1779
1780 for (;;)
1781 {
1782 int c = k << 1;
1783
1784 if (c >= N + HEAP0)
1785 break;
1786
1787 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1788 ? 1 : 0;
1789
1790 if (ANHE_at (he) <= ANHE_at (heap [c]))
1791 break;
1792
1793 heap [k] = heap [c];
1794 ev_active (ANHE_w (heap [k])) = k;
1795
1796 k = c;
1797 }
1798
1799 heap [k] = he;
1800 ev_active (ANHE_w (he)) = k;
1801}
1802#endif
1803
1804/* towards the root */
1805inline_speed void
1806upheap (ANHE *heap, int k)
1807{
1808 ANHE he = heap [k];
1809
1810 for (;;)
1811 {
1812 int p = HPARENT (k);
1813
1814 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1815 break;
1816
1817 heap [k] = heap [p];
1818 ev_active (ANHE_w (heap [k])) = k;
1819 k = p;
1820 }
1821
1822 heap [k] = he;
1823 ev_active (ANHE_w (he)) = k;
1824}
1825
1826/* move an element suitably so it is in a correct place */
1827inline_size void
1828adjustheap (ANHE *heap, int N, int k)
1829{
1830 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1831 upheap (heap, k);
1832 else
1833 downheap (heap, N, k);
1834}
1835
1836/* rebuild the heap: this function is used only once and executed rarely */
1837inline_size void
1838reheap (ANHE *heap, int N)
1839{
1840 int i;
1841
1842 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1843 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1844 for (i = 0; i < N; ++i)
1845 upheap (heap, i + HEAP0);
1846}
1847
1848/*****************************************************************************/
1849
1850/* associate signal watchers to a signal signal */
1851typedef struct
1852{
1853 EV_ATOMIC_T pending;
1854#if EV_MULTIPLICITY
1855 EV_P;
1856#endif
1857 WL head;
1858} ANSIG;
1859
1860static ANSIG signals [EV_NSIG - 1];
1861
1862/*****************************************************************************/
1863
1864#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1865
802static void noinline 1866static void noinline ecb_cold
803evpipe_init (EV_P) 1867evpipe_init (EV_P)
804{ 1868{
805 if (!ev_is_active (&pipeev)) 1869 if (!ev_is_active (&pipe_w))
806 { 1870 {
1871# if EV_USE_EVENTFD
1872 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1873 if (evfd < 0 && errno == EINVAL)
1874 evfd = eventfd (0, 0);
1875
1876 if (evfd >= 0)
1877 {
1878 evpipe [0] = -1;
1879 fd_intern (evfd); /* doing it twice doesn't hurt */
1880 ev_io_set (&pipe_w, evfd, EV_READ);
1881 }
1882 else
1883# endif
1884 {
807 while (pipe (evpipe)) 1885 while (pipe (evpipe))
808 syserr ("(libev) error creating signal/async pipe"); 1886 ev_syserr ("(libev) error creating signal/async pipe");
809 1887
810 fd_intern (evpipe [0]); 1888 fd_intern (evpipe [0]);
811 fd_intern (evpipe [1]); 1889 fd_intern (evpipe [1]);
812
813 ev_io_set (&pipeev, evpipe [0], EV_READ); 1890 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1891 }
1892
814 ev_io_start (EV_A_ &pipeev); 1893 ev_io_start (EV_A_ &pipe_w);
815 ev_unref (EV_A); /* watcher should not keep loop alive */ 1894 ev_unref (EV_A); /* watcher should not keep loop alive */
816 } 1895 }
817} 1896}
818 1897
819void inline_size 1898inline_speed void
820evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1899evpipe_write (EV_P_ EV_ATOMIC_T *flag)
821{ 1900{
822 if (!*flag) 1901 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
1902
1903 if (expect_true (*flag))
1904 return;
1905
1906 *flag = 1;
1907 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1908
1909 pipe_write_skipped = 1;
1910
1911 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1912
1913 if (pipe_write_wanted)
823 { 1914 {
1915 int old_errno;
1916
1917 pipe_write_skipped = 0;
1918 ECB_MEMORY_FENCE_RELEASE;
1919
824 int old_errno = errno; /* save errno becaue write might clobber it */ 1920 old_errno = errno; /* save errno because write will clobber it */
825 1921
826 *flag = 1; 1922#if EV_USE_EVENTFD
827 write (evpipe [1], &old_errno, 1); 1923 if (evfd >= 0)
1924 {
1925 uint64_t counter = 1;
1926 write (evfd, &counter, sizeof (uint64_t));
1927 }
1928 else
1929#endif
1930 {
1931#ifdef _WIN32
1932 WSABUF buf;
1933 DWORD sent;
1934 buf.buf = &buf;
1935 buf.len = 1;
1936 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
1937#else
1938 write (evpipe [1], &(evpipe [1]), 1);
1939#endif
1940 }
828 1941
829 errno = old_errno; 1942 errno = old_errno;
830 } 1943 }
831} 1944}
832 1945
1946/* called whenever the libev signal pipe */
1947/* got some events (signal, async) */
833static void 1948static void
834pipecb (EV_P_ ev_io *iow, int revents) 1949pipecb (EV_P_ ev_io *iow, int revents)
835{ 1950{
1951 int i;
1952
1953 if (revents & EV_READ)
836 { 1954 {
837 int dummy; 1955#if EV_USE_EVENTFD
1956 if (evfd >= 0)
1957 {
1958 uint64_t counter;
1959 read (evfd, &counter, sizeof (uint64_t));
1960 }
1961 else
1962#endif
1963 {
1964 char dummy[4];
1965#ifdef _WIN32
1966 WSABUF buf;
1967 DWORD recvd;
1968 DWORD flags = 0;
1969 buf.buf = dummy;
1970 buf.len = sizeof (dummy);
1971 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
1972#else
838 read (evpipe [0], &dummy, 1); 1973 read (evpipe [0], &dummy, sizeof (dummy));
1974#endif
1975 }
839 } 1976 }
840 1977
841 if (gotsig && ev_is_default_loop (EV_A)) 1978 pipe_write_skipped = 0;
842 {
843 int signum;
844 gotsig = 0;
845 1979
846 for (signum = signalmax; signum--; ) 1980 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
847 if (signals [signum].gotsig) 1981
1982#if EV_SIGNAL_ENABLE
1983 if (sig_pending)
1984 {
1985 sig_pending = 0;
1986
1987 ECB_MEMORY_FENCE;
1988
1989 for (i = EV_NSIG - 1; i--; )
1990 if (expect_false (signals [i].pending))
848 ev_feed_signal_event (EV_A_ signum + 1); 1991 ev_feed_signal_event (EV_A_ i + 1);
849 } 1992 }
1993#endif
850 1994
851#if EV_ASYNC_ENABLE 1995#if EV_ASYNC_ENABLE
852 if (gotasync) 1996 if (async_pending)
853 { 1997 {
854 int i; 1998 async_pending = 0;
855 gotasync = 0; 1999
2000 ECB_MEMORY_FENCE;
856 2001
857 for (i = asynccnt; i--; ) 2002 for (i = asynccnt; i--; )
858 if (asyncs [i]->sent) 2003 if (asyncs [i]->sent)
859 { 2004 {
860 asyncs [i]->sent = 0; 2005 asyncs [i]->sent = 0;
2006 ECB_MEMORY_FENCE_RELEASE;
861 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); 2007 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
862 } 2008 }
863 } 2009 }
864#endif 2010#endif
865} 2011}
866 2012
867/*****************************************************************************/ 2013/*****************************************************************************/
868 2014
2015void
2016ev_feed_signal (int signum) EV_THROW
2017{
2018#if EV_MULTIPLICITY
2019 EV_P = signals [signum - 1].loop;
2020
2021 if (!EV_A)
2022 return;
2023#endif
2024
2025 if (!ev_active (&pipe_w))
2026 return;
2027
2028 signals [signum - 1].pending = 1;
2029 evpipe_write (EV_A_ &sig_pending);
2030}
2031
869static void 2032static void
870sighandler (int signum) 2033ev_sighandler (int signum)
871{ 2034{
2035#ifdef _WIN32
2036 signal (signum, ev_sighandler);
2037#endif
2038
2039 ev_feed_signal (signum);
2040}
2041
2042void noinline
2043ev_feed_signal_event (EV_P_ int signum) EV_THROW
2044{
2045 WL w;
2046
2047 if (expect_false (signum <= 0 || signum > EV_NSIG))
2048 return;
2049
2050 --signum;
2051
872#if EV_MULTIPLICITY 2052#if EV_MULTIPLICITY
873 struct ev_loop *loop = &default_loop_struct; 2053 /* it is permissible to try to feed a signal to the wrong loop */
874#endif 2054 /* or, likely more useful, feeding a signal nobody is waiting for */
875 2055
876#if _WIN32 2056 if (expect_false (signals [signum].loop != EV_A))
877 signal (signum, sighandler);
878#endif
879
880 signals [signum - 1].gotsig = 1;
881 evpipe_write (EV_A_ &gotsig);
882}
883
884void noinline
885ev_feed_signal_event (EV_P_ int signum)
886{
887 WL w;
888
889#if EV_MULTIPLICITY
890 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
891#endif
892
893 --signum;
894
895 if (signum < 0 || signum >= signalmax)
896 return; 2057 return;
2058#endif
897 2059
898 signals [signum].gotsig = 0; 2060 signals [signum].pending = 0;
2061 ECB_MEMORY_FENCE_RELEASE;
899 2062
900 for (w = signals [signum].head; w; w = w->next) 2063 for (w = signals [signum].head; w; w = w->next)
901 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2064 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
902} 2065}
903 2066
2067#if EV_USE_SIGNALFD
2068static void
2069sigfdcb (EV_P_ ev_io *iow, int revents)
2070{
2071 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2072
2073 for (;;)
2074 {
2075 ssize_t res = read (sigfd, si, sizeof (si));
2076
2077 /* not ISO-C, as res might be -1, but works with SuS */
2078 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2079 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2080
2081 if (res < (ssize_t)sizeof (si))
2082 break;
2083 }
2084}
2085#endif
2086
2087#endif
2088
904/*****************************************************************************/ 2089/*****************************************************************************/
905 2090
2091#if EV_CHILD_ENABLE
906static WL childs [EV_PID_HASHSIZE]; 2092static WL childs [EV_PID_HASHSIZE];
907
908#ifndef _WIN32
909 2093
910static ev_signal childev; 2094static ev_signal childev;
911 2095
912#ifndef WIFCONTINUED 2096#ifndef WIFCONTINUED
913# define WIFCONTINUED(status) 0 2097# define WIFCONTINUED(status) 0
914#endif 2098#endif
915 2099
916void inline_speed 2100/* handle a single child status event */
2101inline_speed void
917child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 2102child_reap (EV_P_ int chain, int pid, int status)
918{ 2103{
919 ev_child *w; 2104 ev_child *w;
920 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2105 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
921 2106
922 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2107 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
923 { 2108 {
924 if ((w->pid == pid || !w->pid) 2109 if ((w->pid == pid || !w->pid)
925 && (!traced || (w->flags & 1))) 2110 && (!traced || (w->flags & 1)))
926 { 2111 {
927 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 2112 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
928 w->rpid = pid; 2113 w->rpid = pid;
929 w->rstatus = status; 2114 w->rstatus = status;
930 ev_feed_event (EV_A_ (W)w, EV_CHILD); 2115 ev_feed_event (EV_A_ (W)w, EV_CHILD);
931 } 2116 }
932 } 2117 }
934 2119
935#ifndef WCONTINUED 2120#ifndef WCONTINUED
936# define WCONTINUED 0 2121# define WCONTINUED 0
937#endif 2122#endif
938 2123
2124/* called on sigchld etc., calls waitpid */
939static void 2125static void
940childcb (EV_P_ ev_signal *sw, int revents) 2126childcb (EV_P_ ev_signal *sw, int revents)
941{ 2127{
942 int pid, status; 2128 int pid, status;
943 2129
946 if (!WCONTINUED 2132 if (!WCONTINUED
947 || errno != EINVAL 2133 || errno != EINVAL
948 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 2134 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
949 return; 2135 return;
950 2136
951 /* make sure we are called again until all childs have been reaped */ 2137 /* make sure we are called again until all children have been reaped */
952 /* we need to do it this way so that the callback gets called before we continue */ 2138 /* we need to do it this way so that the callback gets called before we continue */
953 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2139 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
954 2140
955 child_reap (EV_A_ sw, pid, pid, status); 2141 child_reap (EV_A_ pid, pid, status);
956 if (EV_PID_HASHSIZE > 1) 2142 if ((EV_PID_HASHSIZE) > 1)
957 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2143 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
958} 2144}
959 2145
960#endif 2146#endif
961 2147
962/*****************************************************************************/ 2148/*****************************************************************************/
963 2149
2150#if EV_USE_IOCP
2151# include "ev_iocp.c"
2152#endif
964#if EV_USE_PORT 2153#if EV_USE_PORT
965# include "ev_port.c" 2154# include "ev_port.c"
966#endif 2155#endif
967#if EV_USE_KQUEUE 2156#if EV_USE_KQUEUE
968# include "ev_kqueue.c" 2157# include "ev_kqueue.c"
975#endif 2164#endif
976#if EV_USE_SELECT 2165#if EV_USE_SELECT
977# include "ev_select.c" 2166# include "ev_select.c"
978#endif 2167#endif
979 2168
980int 2169int ecb_cold
981ev_version_major (void) 2170ev_version_major (void) EV_THROW
982{ 2171{
983 return EV_VERSION_MAJOR; 2172 return EV_VERSION_MAJOR;
984} 2173}
985 2174
986int 2175int ecb_cold
987ev_version_minor (void) 2176ev_version_minor (void) EV_THROW
988{ 2177{
989 return EV_VERSION_MINOR; 2178 return EV_VERSION_MINOR;
990} 2179}
991 2180
992/* return true if we are running with elevated privileges and should ignore env variables */ 2181/* return true if we are running with elevated privileges and should ignore env variables */
993int inline_size 2182int inline_size ecb_cold
994enable_secure (void) 2183enable_secure (void)
995{ 2184{
996#ifdef _WIN32 2185#ifdef _WIN32
997 return 0; 2186 return 0;
998#else 2187#else
999 return getuid () != geteuid () 2188 return getuid () != geteuid ()
1000 || getgid () != getegid (); 2189 || getgid () != getegid ();
1001#endif 2190#endif
1002} 2191}
1003 2192
1004unsigned int 2193unsigned int ecb_cold
1005ev_supported_backends (void) 2194ev_supported_backends (void) EV_THROW
1006{ 2195{
1007 unsigned int flags = 0; 2196 unsigned int flags = 0;
1008 2197
1009 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2198 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1010 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2199 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1013 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2202 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1014 2203
1015 return flags; 2204 return flags;
1016} 2205}
1017 2206
1018unsigned int 2207unsigned int ecb_cold
1019ev_recommended_backends (void) 2208ev_recommended_backends (void) EV_THROW
1020{ 2209{
1021 unsigned int flags = ev_supported_backends (); 2210 unsigned int flags = ev_supported_backends ();
1022 2211
1023#ifndef __NetBSD__ 2212#ifndef __NetBSD__
1024 /* kqueue is borked on everything but netbsd apparently */ 2213 /* kqueue is borked on everything but netbsd apparently */
1025 /* it usually doesn't work correctly on anything but sockets and pipes */ 2214 /* it usually doesn't work correctly on anything but sockets and pipes */
1026 flags &= ~EVBACKEND_KQUEUE; 2215 flags &= ~EVBACKEND_KQUEUE;
1027#endif 2216#endif
1028#ifdef __APPLE__ 2217#ifdef __APPLE__
1029 // flags &= ~EVBACKEND_KQUEUE; for documentation 2218 /* only select works correctly on that "unix-certified" platform */
1030 flags &= ~EVBACKEND_POLL; 2219 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2220 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2221#endif
2222#ifdef __FreeBSD__
2223 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1031#endif 2224#endif
1032 2225
1033 return flags; 2226 return flags;
1034} 2227}
1035 2228
2229unsigned int ecb_cold
2230ev_embeddable_backends (void) EV_THROW
2231{
2232 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2233
2234 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2235 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2236 flags &= ~EVBACKEND_EPOLL;
2237
2238 return flags;
2239}
2240
1036unsigned int 2241unsigned int
1037ev_embeddable_backends (void) 2242ev_backend (EV_P) EV_THROW
1038{ 2243{
1039 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2244 return backend;
1040
1041 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1042 /* please fix it and tell me how to detect the fix */
1043 flags &= ~EVBACKEND_EPOLL;
1044
1045 return flags;
1046} 2245}
1047 2246
2247#if EV_FEATURE_API
1048unsigned int 2248unsigned int
1049ev_backend (EV_P) 2249ev_iteration (EV_P) EV_THROW
1050{ 2250{
1051 return backend; 2251 return loop_count;
1052} 2252}
1053 2253
1054unsigned int 2254unsigned int
1055ev_loop_count (EV_P) 2255ev_depth (EV_P) EV_THROW
1056{ 2256{
1057 return loop_count; 2257 return loop_depth;
1058} 2258}
1059 2259
1060void 2260void
1061ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2261ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1062{ 2262{
1063 io_blocktime = interval; 2263 io_blocktime = interval;
1064} 2264}
1065 2265
1066void 2266void
1067ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2267ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1068{ 2268{
1069 timeout_blocktime = interval; 2269 timeout_blocktime = interval;
1070} 2270}
1071 2271
2272void
2273ev_set_userdata (EV_P_ void *data) EV_THROW
2274{
2275 userdata = data;
2276}
2277
2278void *
2279ev_userdata (EV_P) EV_THROW
2280{
2281 return userdata;
2282}
2283
2284void
2285ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2286{
2287 invoke_cb = invoke_pending_cb;
2288}
2289
2290void
2291ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2292{
2293 release_cb = release;
2294 acquire_cb = acquire;
2295}
2296#endif
2297
2298/* initialise a loop structure, must be zero-initialised */
1072static void noinline 2299static void noinline ecb_cold
1073loop_init (EV_P_ unsigned int flags) 2300loop_init (EV_P_ unsigned int flags) EV_THROW
1074{ 2301{
1075 if (!backend) 2302 if (!backend)
1076 { 2303 {
2304 origflags = flags;
2305
2306#if EV_USE_REALTIME
2307 if (!have_realtime)
2308 {
2309 struct timespec ts;
2310
2311 if (!clock_gettime (CLOCK_REALTIME, &ts))
2312 have_realtime = 1;
2313 }
2314#endif
2315
1077#if EV_USE_MONOTONIC 2316#if EV_USE_MONOTONIC
2317 if (!have_monotonic)
1078 { 2318 {
1079 struct timespec ts; 2319 struct timespec ts;
2320
1080 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2321 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1081 have_monotonic = 1; 2322 have_monotonic = 1;
1082 } 2323 }
1083#endif
1084
1085 ev_rt_now = ev_time ();
1086 mn_now = get_clock ();
1087 now_floor = mn_now;
1088 rtmn_diff = ev_rt_now - mn_now;
1089
1090 io_blocktime = 0.;
1091 timeout_blocktime = 0.;
1092 backend = 0;
1093 backend_fd = -1;
1094 gotasync = 0;
1095#if EV_USE_INOTIFY
1096 fs_fd = -2;
1097#endif 2324#endif
1098 2325
1099 /* pid check not overridable via env */ 2326 /* pid check not overridable via env */
1100#ifndef _WIN32 2327#ifndef _WIN32
1101 if (flags & EVFLAG_FORKCHECK) 2328 if (flags & EVFLAG_FORKCHECK)
1105 if (!(flags & EVFLAG_NOENV) 2332 if (!(flags & EVFLAG_NOENV)
1106 && !enable_secure () 2333 && !enable_secure ()
1107 && getenv ("LIBEV_FLAGS")) 2334 && getenv ("LIBEV_FLAGS"))
1108 flags = atoi (getenv ("LIBEV_FLAGS")); 2335 flags = atoi (getenv ("LIBEV_FLAGS"));
1109 2336
1110 if (!(flags & 0x0000ffffUL)) 2337 ev_rt_now = ev_time ();
2338 mn_now = get_clock ();
2339 now_floor = mn_now;
2340 rtmn_diff = ev_rt_now - mn_now;
2341#if EV_FEATURE_API
2342 invoke_cb = ev_invoke_pending;
2343#endif
2344
2345 io_blocktime = 0.;
2346 timeout_blocktime = 0.;
2347 backend = 0;
2348 backend_fd = -1;
2349 sig_pending = 0;
2350#if EV_ASYNC_ENABLE
2351 async_pending = 0;
2352#endif
2353 pipe_write_skipped = 0;
2354 pipe_write_wanted = 0;
2355#if EV_USE_INOTIFY
2356 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2357#endif
2358#if EV_USE_SIGNALFD
2359 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2360#endif
2361
2362 if (!(flags & EVBACKEND_MASK))
1111 flags |= ev_recommended_backends (); 2363 flags |= ev_recommended_backends ();
1112 2364
2365#if EV_USE_IOCP
2366 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2367#endif
1113#if EV_USE_PORT 2368#if EV_USE_PORT
1114 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2369 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1115#endif 2370#endif
1116#if EV_USE_KQUEUE 2371#if EV_USE_KQUEUE
1117 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2372 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1124#endif 2379#endif
1125#if EV_USE_SELECT 2380#if EV_USE_SELECT
1126 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2381 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1127#endif 2382#endif
1128 2383
2384 ev_prepare_init (&pending_w, pendingcb);
2385
2386#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1129 ev_init (&pipeev, pipecb); 2387 ev_init (&pipe_w, pipecb);
1130 ev_set_priority (&pipeev, EV_MAXPRI); 2388 ev_set_priority (&pipe_w, EV_MAXPRI);
2389#endif
1131 } 2390 }
1132} 2391}
1133 2392
1134static void noinline 2393/* free up a loop structure */
2394void ecb_cold
1135loop_destroy (EV_P) 2395ev_loop_destroy (EV_P)
1136{ 2396{
1137 int i; 2397 int i;
1138 2398
2399#if EV_MULTIPLICITY
2400 /* mimic free (0) */
2401 if (!EV_A)
2402 return;
2403#endif
2404
2405#if EV_CLEANUP_ENABLE
2406 /* queue cleanup watchers (and execute them) */
2407 if (expect_false (cleanupcnt))
2408 {
2409 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2410 EV_INVOKE_PENDING;
2411 }
2412#endif
2413
2414#if EV_CHILD_ENABLE
2415 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2416 {
2417 ev_ref (EV_A); /* child watcher */
2418 ev_signal_stop (EV_A_ &childev);
2419 }
2420#endif
2421
1139 if (ev_is_active (&pipeev)) 2422 if (ev_is_active (&pipe_w))
1140 { 2423 {
1141 ev_ref (EV_A); /* signal watcher */ 2424 /*ev_ref (EV_A);*/
1142 ev_io_stop (EV_A_ &pipeev); 2425 /*ev_io_stop (EV_A_ &pipe_w);*/
1143 2426
1144 close (evpipe [0]); evpipe [0] = 0; 2427#if EV_USE_EVENTFD
1145 close (evpipe [1]); evpipe [1] = 0; 2428 if (evfd >= 0)
2429 close (evfd);
2430#endif
2431
2432 if (evpipe [0] >= 0)
2433 {
2434 EV_WIN32_CLOSE_FD (evpipe [0]);
2435 EV_WIN32_CLOSE_FD (evpipe [1]);
2436 }
1146 } 2437 }
2438
2439#if EV_USE_SIGNALFD
2440 if (ev_is_active (&sigfd_w))
2441 close (sigfd);
2442#endif
1147 2443
1148#if EV_USE_INOTIFY 2444#if EV_USE_INOTIFY
1149 if (fs_fd >= 0) 2445 if (fs_fd >= 0)
1150 close (fs_fd); 2446 close (fs_fd);
1151#endif 2447#endif
1152 2448
1153 if (backend_fd >= 0) 2449 if (backend_fd >= 0)
1154 close (backend_fd); 2450 close (backend_fd);
1155 2451
2452#if EV_USE_IOCP
2453 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2454#endif
1156#if EV_USE_PORT 2455#if EV_USE_PORT
1157 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2456 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1158#endif 2457#endif
1159#if EV_USE_KQUEUE 2458#if EV_USE_KQUEUE
1160 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2459 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1175#if EV_IDLE_ENABLE 2474#if EV_IDLE_ENABLE
1176 array_free (idle, [i]); 2475 array_free (idle, [i]);
1177#endif 2476#endif
1178 } 2477 }
1179 2478
1180 ev_free (anfds); anfdmax = 0; 2479 ev_free (anfds); anfds = 0; anfdmax = 0;
1181 2480
1182 /* have to use the microsoft-never-gets-it-right macro */ 2481 /* have to use the microsoft-never-gets-it-right macro */
2482 array_free (rfeed, EMPTY);
1183 array_free (fdchange, EMPTY); 2483 array_free (fdchange, EMPTY);
1184 array_free (timer, EMPTY); 2484 array_free (timer, EMPTY);
1185#if EV_PERIODIC_ENABLE 2485#if EV_PERIODIC_ENABLE
1186 array_free (periodic, EMPTY); 2486 array_free (periodic, EMPTY);
1187#endif 2487#endif
1188#if EV_FORK_ENABLE 2488#if EV_FORK_ENABLE
1189 array_free (fork, EMPTY); 2489 array_free (fork, EMPTY);
1190#endif 2490#endif
2491#if EV_CLEANUP_ENABLE
2492 array_free (cleanup, EMPTY);
2493#endif
1191 array_free (prepare, EMPTY); 2494 array_free (prepare, EMPTY);
1192 array_free (check, EMPTY); 2495 array_free (check, EMPTY);
1193#if EV_ASYNC_ENABLE 2496#if EV_ASYNC_ENABLE
1194 array_free (async, EMPTY); 2497 array_free (async, EMPTY);
1195#endif 2498#endif
1196 2499
1197 backend = 0; 2500 backend = 0;
1198}
1199 2501
2502#if EV_MULTIPLICITY
2503 if (ev_is_default_loop (EV_A))
2504#endif
2505 ev_default_loop_ptr = 0;
2506#if EV_MULTIPLICITY
2507 else
2508 ev_free (EV_A);
2509#endif
2510}
2511
2512#if EV_USE_INOTIFY
1200void inline_size infy_fork (EV_P); 2513inline_size void infy_fork (EV_P);
2514#endif
1201 2515
1202void inline_size 2516inline_size void
1203loop_fork (EV_P) 2517loop_fork (EV_P)
1204{ 2518{
1205#if EV_USE_PORT 2519#if EV_USE_PORT
1206 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2520 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1207#endif 2521#endif
1213#endif 2527#endif
1214#if EV_USE_INOTIFY 2528#if EV_USE_INOTIFY
1215 infy_fork (EV_A); 2529 infy_fork (EV_A);
1216#endif 2530#endif
1217 2531
1218 if (ev_is_active (&pipeev)) 2532 if (ev_is_active (&pipe_w))
1219 { 2533 {
1220 /* this "locks" the handlers against writing to the pipe */ 2534 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1221 /* while we modify the fd vars */
1222 gotsig = 1;
1223#if EV_ASYNC_ENABLE
1224 gotasync = 1;
1225#endif
1226 2535
1227 ev_ref (EV_A); 2536 ev_ref (EV_A);
1228 ev_io_stop (EV_A_ &pipeev); 2537 ev_io_stop (EV_A_ &pipe_w);
1229 close (evpipe [0]);
1230 close (evpipe [1]);
1231 2538
2539#if EV_USE_EVENTFD
2540 if (evfd >= 0)
2541 close (evfd);
2542#endif
2543
2544 if (evpipe [0] >= 0)
2545 {
2546 EV_WIN32_CLOSE_FD (evpipe [0]);
2547 EV_WIN32_CLOSE_FD (evpipe [1]);
2548 }
2549
2550#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1232 evpipe_init (EV_A); 2551 evpipe_init (EV_A);
1233 /* now iterate over everything, in case we missed something */ 2552 /* now iterate over everything, in case we missed something */
1234 pipecb (EV_A_ &pipeev, EV_READ); 2553 pipecb (EV_A_ &pipe_w, EV_READ);
2554#endif
1235 } 2555 }
1236 2556
1237 postfork = 0; 2557 postfork = 0;
1238} 2558}
1239 2559
1240#if EV_MULTIPLICITY 2560#if EV_MULTIPLICITY
2561
1241struct ev_loop * 2562struct ev_loop * ecb_cold
1242ev_loop_new (unsigned int flags) 2563ev_loop_new (unsigned int flags) EV_THROW
1243{ 2564{
1244 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2565 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1245 2566
1246 memset (loop, 0, sizeof (struct ev_loop)); 2567 memset (EV_A, 0, sizeof (struct ev_loop));
1247
1248 loop_init (EV_A_ flags); 2568 loop_init (EV_A_ flags);
1249 2569
1250 if (ev_backend (EV_A)) 2570 if (ev_backend (EV_A))
1251 return loop; 2571 return EV_A;
1252 2572
2573 ev_free (EV_A);
1253 return 0; 2574 return 0;
1254} 2575}
1255 2576
1256void 2577#endif /* multiplicity */
1257ev_loop_destroy (EV_P)
1258{
1259 loop_destroy (EV_A);
1260 ev_free (loop);
1261}
1262 2578
1263void 2579#if EV_VERIFY
1264ev_loop_fork (EV_P) 2580static void noinline ecb_cold
2581verify_watcher (EV_P_ W w)
1265{ 2582{
1266 postfork = 1; /* must be in line with ev_default_fork */ 2583 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1267}
1268 2584
2585 if (w->pending)
2586 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2587}
2588
2589static void noinline ecb_cold
2590verify_heap (EV_P_ ANHE *heap, int N)
2591{
2592 int i;
2593
2594 for (i = HEAP0; i < N + HEAP0; ++i)
2595 {
2596 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2597 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2598 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2599
2600 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2601 }
2602}
2603
2604static void noinline ecb_cold
2605array_verify (EV_P_ W *ws, int cnt)
2606{
2607 while (cnt--)
2608 {
2609 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2610 verify_watcher (EV_A_ ws [cnt]);
2611 }
2612}
2613#endif
2614
2615#if EV_FEATURE_API
2616void ecb_cold
2617ev_verify (EV_P) EV_THROW
2618{
2619#if EV_VERIFY
2620 int i;
2621 WL w, w2;
2622
2623 assert (activecnt >= -1);
2624
2625 assert (fdchangemax >= fdchangecnt);
2626 for (i = 0; i < fdchangecnt; ++i)
2627 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2628
2629 assert (anfdmax >= 0);
2630 for (i = 0; i < anfdmax; ++i)
2631 {
2632 int j = 0;
2633
2634 for (w = w2 = anfds [i].head; w; w = w->next)
2635 {
2636 verify_watcher (EV_A_ (W)w);
2637
2638 if (j++ & 1)
2639 {
2640 assert (("libev: io watcher list contains a loop", w != w2));
2641 w2 = w2->next;
2642 }
2643
2644 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2645 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2646 }
2647 }
2648
2649 assert (timermax >= timercnt);
2650 verify_heap (EV_A_ timers, timercnt);
2651
2652#if EV_PERIODIC_ENABLE
2653 assert (periodicmax >= periodiccnt);
2654 verify_heap (EV_A_ periodics, periodiccnt);
2655#endif
2656
2657 for (i = NUMPRI; i--; )
2658 {
2659 assert (pendingmax [i] >= pendingcnt [i]);
2660#if EV_IDLE_ENABLE
2661 assert (idleall >= 0);
2662 assert (idlemax [i] >= idlecnt [i]);
2663 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2664#endif
2665 }
2666
2667#if EV_FORK_ENABLE
2668 assert (forkmax >= forkcnt);
2669 array_verify (EV_A_ (W *)forks, forkcnt);
2670#endif
2671
2672#if EV_CLEANUP_ENABLE
2673 assert (cleanupmax >= cleanupcnt);
2674 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2675#endif
2676
2677#if EV_ASYNC_ENABLE
2678 assert (asyncmax >= asynccnt);
2679 array_verify (EV_A_ (W *)asyncs, asynccnt);
2680#endif
2681
2682#if EV_PREPARE_ENABLE
2683 assert (preparemax >= preparecnt);
2684 array_verify (EV_A_ (W *)prepares, preparecnt);
2685#endif
2686
2687#if EV_CHECK_ENABLE
2688 assert (checkmax >= checkcnt);
2689 array_verify (EV_A_ (W *)checks, checkcnt);
2690#endif
2691
2692# if 0
2693#if EV_CHILD_ENABLE
2694 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2695 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2696#endif
2697# endif
2698#endif
2699}
1269#endif 2700#endif
1270 2701
1271#if EV_MULTIPLICITY 2702#if EV_MULTIPLICITY
1272struct ev_loop * 2703struct ev_loop * ecb_cold
1273ev_default_loop_init (unsigned int flags)
1274#else 2704#else
1275int 2705int
2706#endif
1276ev_default_loop (unsigned int flags) 2707ev_default_loop (unsigned int flags) EV_THROW
1277#endif
1278{ 2708{
1279 if (!ev_default_loop_ptr) 2709 if (!ev_default_loop_ptr)
1280 { 2710 {
1281#if EV_MULTIPLICITY 2711#if EV_MULTIPLICITY
1282 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2712 EV_P = ev_default_loop_ptr = &default_loop_struct;
1283#else 2713#else
1284 ev_default_loop_ptr = 1; 2714 ev_default_loop_ptr = 1;
1285#endif 2715#endif
1286 2716
1287 loop_init (EV_A_ flags); 2717 loop_init (EV_A_ flags);
1288 2718
1289 if (ev_backend (EV_A)) 2719 if (ev_backend (EV_A))
1290 { 2720 {
1291#ifndef _WIN32 2721#if EV_CHILD_ENABLE
1292 ev_signal_init (&childev, childcb, SIGCHLD); 2722 ev_signal_init (&childev, childcb, SIGCHLD);
1293 ev_set_priority (&childev, EV_MAXPRI); 2723 ev_set_priority (&childev, EV_MAXPRI);
1294 ev_signal_start (EV_A_ &childev); 2724 ev_signal_start (EV_A_ &childev);
1295 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2725 ev_unref (EV_A); /* child watcher should not keep loop alive */
1296#endif 2726#endif
1301 2731
1302 return ev_default_loop_ptr; 2732 return ev_default_loop_ptr;
1303} 2733}
1304 2734
1305void 2735void
1306ev_default_destroy (void) 2736ev_loop_fork (EV_P) EV_THROW
1307{ 2737{
1308#if EV_MULTIPLICITY 2738 postfork = 1;
1309 struct ev_loop *loop = ev_default_loop_ptr;
1310#endif
1311
1312#ifndef _WIN32
1313 ev_ref (EV_A); /* child watcher */
1314 ev_signal_stop (EV_A_ &childev);
1315#endif
1316
1317 loop_destroy (EV_A);
1318}
1319
1320void
1321ev_default_fork (void)
1322{
1323#if EV_MULTIPLICITY
1324 struct ev_loop *loop = ev_default_loop_ptr;
1325#endif
1326
1327 if (backend)
1328 postfork = 1; /* must be in line with ev_loop_fork */
1329} 2739}
1330 2740
1331/*****************************************************************************/ 2741/*****************************************************************************/
1332 2742
1333void 2743void
1334ev_invoke (EV_P_ void *w, int revents) 2744ev_invoke (EV_P_ void *w, int revents)
1335{ 2745{
1336 EV_CB_INVOKE ((W)w, revents); 2746 EV_CB_INVOKE ((W)w, revents);
1337} 2747}
1338 2748
1339void inline_speed 2749unsigned int
1340call_pending (EV_P) 2750ev_pending_count (EV_P) EV_THROW
1341{ 2751{
1342 int pri; 2752 int pri;
2753 unsigned int count = 0;
1343 2754
1344 for (pri = NUMPRI; pri--; ) 2755 for (pri = NUMPRI; pri--; )
2756 count += pendingcnt [pri];
2757
2758 return count;
2759}
2760
2761void noinline
2762ev_invoke_pending (EV_P)
2763{
2764 for (pendingpri = NUMPRI; pendingpri--; ) /* pendingpri is modified during the loop */
1345 while (pendingcnt [pri]) 2765 while (pendingcnt [pendingpri])
1346 { 2766 {
1347 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2767 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1348 2768
1349 if (expect_true (p->w))
1350 {
1351 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1352
1353 p->w->pending = 0; 2769 p->w->pending = 0;
1354 EV_CB_INVOKE (p->w, p->events); 2770 EV_CB_INVOKE (p->w, p->events);
1355 } 2771 EV_FREQUENT_CHECK;
1356 } 2772 }
1357} 2773}
1358 2774
1359void inline_size
1360timers_reify (EV_P)
1361{
1362 while (timercnt && ((WT)timers [0])->at <= mn_now)
1363 {
1364 ev_timer *w = (ev_timer *)timers [0];
1365
1366 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1367
1368 /* first reschedule or stop timer */
1369 if (w->repeat)
1370 {
1371 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1372
1373 ((WT)w)->at += w->repeat;
1374 if (((WT)w)->at < mn_now)
1375 ((WT)w)->at = mn_now;
1376
1377 downheap (timers, timercnt, 0);
1378 }
1379 else
1380 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1381
1382 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1383 }
1384}
1385
1386#if EV_PERIODIC_ENABLE
1387void inline_size
1388periodics_reify (EV_P)
1389{
1390 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1391 {
1392 ev_periodic *w = (ev_periodic *)periodics [0];
1393
1394 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1395
1396 /* first reschedule or stop timer */
1397 if (w->reschedule_cb)
1398 {
1399 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1400 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1401 downheap (periodics, periodiccnt, 0);
1402 }
1403 else if (w->interval)
1404 {
1405 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1406 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1407 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1408 downheap (periodics, periodiccnt, 0);
1409 }
1410 else
1411 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1412
1413 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1414 }
1415}
1416
1417static void noinline
1418periodics_reschedule (EV_P)
1419{
1420 int i;
1421
1422 /* adjust periodics after time jump */
1423 for (i = 0; i < periodiccnt; ++i)
1424 {
1425 ev_periodic *w = (ev_periodic *)periodics [i];
1426
1427 if (w->reschedule_cb)
1428 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1429 else if (w->interval)
1430 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1431 }
1432
1433 /* now rebuild the heap */
1434 for (i = periodiccnt >> 1; i--; )
1435 downheap (periodics, periodiccnt, i);
1436}
1437#endif
1438
1439#if EV_IDLE_ENABLE 2775#if EV_IDLE_ENABLE
1440void inline_size 2776/* make idle watchers pending. this handles the "call-idle */
2777/* only when higher priorities are idle" logic */
2778inline_size void
1441idle_reify (EV_P) 2779idle_reify (EV_P)
1442{ 2780{
1443 if (expect_false (idleall)) 2781 if (expect_false (idleall))
1444 { 2782 {
1445 int pri; 2783 int pri;
1457 } 2795 }
1458 } 2796 }
1459} 2797}
1460#endif 2798#endif
1461 2799
1462void inline_speed 2800/* make timers pending */
2801inline_size void
2802timers_reify (EV_P)
2803{
2804 EV_FREQUENT_CHECK;
2805
2806 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2807 {
2808 do
2809 {
2810 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2811
2812 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2813
2814 /* first reschedule or stop timer */
2815 if (w->repeat)
2816 {
2817 ev_at (w) += w->repeat;
2818 if (ev_at (w) < mn_now)
2819 ev_at (w) = mn_now;
2820
2821 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2822
2823 ANHE_at_cache (timers [HEAP0]);
2824 downheap (timers, timercnt, HEAP0);
2825 }
2826 else
2827 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2828
2829 EV_FREQUENT_CHECK;
2830 feed_reverse (EV_A_ (W)w);
2831 }
2832 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2833
2834 feed_reverse_done (EV_A_ EV_TIMER);
2835 }
2836}
2837
2838#if EV_PERIODIC_ENABLE
2839
2840static void noinline
2841periodic_recalc (EV_P_ ev_periodic *w)
2842{
2843 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2844 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2845
2846 /* the above almost always errs on the low side */
2847 while (at <= ev_rt_now)
2848 {
2849 ev_tstamp nat = at + w->interval;
2850
2851 /* when resolution fails us, we use ev_rt_now */
2852 if (expect_false (nat == at))
2853 {
2854 at = ev_rt_now;
2855 break;
2856 }
2857
2858 at = nat;
2859 }
2860
2861 ev_at (w) = at;
2862}
2863
2864/* make periodics pending */
2865inline_size void
2866periodics_reify (EV_P)
2867{
2868 EV_FREQUENT_CHECK;
2869
2870 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2871 {
2872 do
2873 {
2874 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2875
2876 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2877
2878 /* first reschedule or stop timer */
2879 if (w->reschedule_cb)
2880 {
2881 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2882
2883 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2884
2885 ANHE_at_cache (periodics [HEAP0]);
2886 downheap (periodics, periodiccnt, HEAP0);
2887 }
2888 else if (w->interval)
2889 {
2890 periodic_recalc (EV_A_ w);
2891 ANHE_at_cache (periodics [HEAP0]);
2892 downheap (periodics, periodiccnt, HEAP0);
2893 }
2894 else
2895 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2896
2897 EV_FREQUENT_CHECK;
2898 feed_reverse (EV_A_ (W)w);
2899 }
2900 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2901
2902 feed_reverse_done (EV_A_ EV_PERIODIC);
2903 }
2904}
2905
2906/* simply recalculate all periodics */
2907/* TODO: maybe ensure that at least one event happens when jumping forward? */
2908static void noinline ecb_cold
2909periodics_reschedule (EV_P)
2910{
2911 int i;
2912
2913 /* adjust periodics after time jump */
2914 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2915 {
2916 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2917
2918 if (w->reschedule_cb)
2919 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2920 else if (w->interval)
2921 periodic_recalc (EV_A_ w);
2922
2923 ANHE_at_cache (periodics [i]);
2924 }
2925
2926 reheap (periodics, periodiccnt);
2927}
2928#endif
2929
2930/* adjust all timers by a given offset */
2931static void noinline ecb_cold
2932timers_reschedule (EV_P_ ev_tstamp adjust)
2933{
2934 int i;
2935
2936 for (i = 0; i < timercnt; ++i)
2937 {
2938 ANHE *he = timers + i + HEAP0;
2939 ANHE_w (*he)->at += adjust;
2940 ANHE_at_cache (*he);
2941 }
2942}
2943
2944/* fetch new monotonic and realtime times from the kernel */
2945/* also detect if there was a timejump, and act accordingly */
2946inline_speed void
1463time_update (EV_P_ ev_tstamp max_block) 2947time_update (EV_P_ ev_tstamp max_block)
1464{ 2948{
1465 int i;
1466
1467#if EV_USE_MONOTONIC 2949#if EV_USE_MONOTONIC
1468 if (expect_true (have_monotonic)) 2950 if (expect_true (have_monotonic))
1469 { 2951 {
2952 int i;
1470 ev_tstamp odiff = rtmn_diff; 2953 ev_tstamp odiff = rtmn_diff;
1471 2954
1472 mn_now = get_clock (); 2955 mn_now = get_clock ();
1473 2956
1474 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2957 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1490 * doesn't hurt either as we only do this on time-jumps or 2973 * doesn't hurt either as we only do this on time-jumps or
1491 * in the unlikely event of having been preempted here. 2974 * in the unlikely event of having been preempted here.
1492 */ 2975 */
1493 for (i = 4; --i; ) 2976 for (i = 4; --i; )
1494 { 2977 {
2978 ev_tstamp diff;
1495 rtmn_diff = ev_rt_now - mn_now; 2979 rtmn_diff = ev_rt_now - mn_now;
1496 2980
1497 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2981 diff = odiff - rtmn_diff;
2982
2983 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1498 return; /* all is well */ 2984 return; /* all is well */
1499 2985
1500 ev_rt_now = ev_time (); 2986 ev_rt_now = ev_time ();
1501 mn_now = get_clock (); 2987 mn_now = get_clock ();
1502 now_floor = mn_now; 2988 now_floor = mn_now;
1503 } 2989 }
1504 2990
2991 /* no timer adjustment, as the monotonic clock doesn't jump */
2992 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1505# if EV_PERIODIC_ENABLE 2993# if EV_PERIODIC_ENABLE
1506 periodics_reschedule (EV_A); 2994 periodics_reschedule (EV_A);
1507# endif 2995# endif
1508 /* no timer adjustment, as the monotonic clock doesn't jump */
1509 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1510 } 2996 }
1511 else 2997 else
1512#endif 2998#endif
1513 { 2999 {
1514 ev_rt_now = ev_time (); 3000 ev_rt_now = ev_time ();
1515 3001
1516 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 3002 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1517 { 3003 {
3004 /* adjust timers. this is easy, as the offset is the same for all of them */
3005 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1518#if EV_PERIODIC_ENABLE 3006#if EV_PERIODIC_ENABLE
1519 periodics_reschedule (EV_A); 3007 periodics_reschedule (EV_A);
1520#endif 3008#endif
1521 /* adjust timers. this is easy, as the offset is the same for all of them */
1522 for (i = 0; i < timercnt; ++i)
1523 ((WT)timers [i])->at += ev_rt_now - mn_now;
1524 } 3009 }
1525 3010
1526 mn_now = ev_rt_now; 3011 mn_now = ev_rt_now;
1527 } 3012 }
1528} 3013}
1529 3014
1530void 3015int
1531ev_ref (EV_P)
1532{
1533 ++activecnt;
1534}
1535
1536void
1537ev_unref (EV_P)
1538{
1539 --activecnt;
1540}
1541
1542static int loop_done;
1543
1544void
1545ev_loop (EV_P_ int flags) 3016ev_run (EV_P_ int flags)
1546{ 3017{
1547 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 3018#if EV_FEATURE_API
1548 ? EVUNLOOP_ONE 3019 ++loop_depth;
1549 : EVUNLOOP_CANCEL; 3020#endif
1550 3021
3022 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3023
3024 loop_done = EVBREAK_CANCEL;
3025
1551 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3026 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1552 3027
1553 do 3028 do
1554 { 3029 {
3030#if EV_VERIFY >= 2
3031 ev_verify (EV_A);
3032#endif
3033
1555#ifndef _WIN32 3034#ifndef _WIN32
1556 if (expect_false (curpid)) /* penalise the forking check even more */ 3035 if (expect_false (curpid)) /* penalise the forking check even more */
1557 if (expect_false (getpid () != curpid)) 3036 if (expect_false (getpid () != curpid))
1558 { 3037 {
1559 curpid = getpid (); 3038 curpid = getpid ();
1565 /* we might have forked, so queue fork handlers */ 3044 /* we might have forked, so queue fork handlers */
1566 if (expect_false (postfork)) 3045 if (expect_false (postfork))
1567 if (forkcnt) 3046 if (forkcnt)
1568 { 3047 {
1569 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3048 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1570 call_pending (EV_A); 3049 EV_INVOKE_PENDING;
1571 } 3050 }
1572#endif 3051#endif
1573 3052
3053#if EV_PREPARE_ENABLE
1574 /* queue prepare watchers (and execute them) */ 3054 /* queue prepare watchers (and execute them) */
1575 if (expect_false (preparecnt)) 3055 if (expect_false (preparecnt))
1576 { 3056 {
1577 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3057 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1578 call_pending (EV_A); 3058 EV_INVOKE_PENDING;
1579 } 3059 }
3060#endif
1580 3061
1581 if (expect_false (!activecnt)) 3062 if (expect_false (loop_done))
1582 break; 3063 break;
1583 3064
1584 /* we might have forked, so reify kernel state if necessary */ 3065 /* we might have forked, so reify kernel state if necessary */
1585 if (expect_false (postfork)) 3066 if (expect_false (postfork))
1586 loop_fork (EV_A); 3067 loop_fork (EV_A);
1591 /* calculate blocking time */ 3072 /* calculate blocking time */
1592 { 3073 {
1593 ev_tstamp waittime = 0.; 3074 ev_tstamp waittime = 0.;
1594 ev_tstamp sleeptime = 0.; 3075 ev_tstamp sleeptime = 0.;
1595 3076
3077 /* remember old timestamp for io_blocktime calculation */
3078 ev_tstamp prev_mn_now = mn_now;
3079
3080 /* update time to cancel out callback processing overhead */
3081 time_update (EV_A_ 1e100);
3082
3083 /* from now on, we want a pipe-wake-up */
3084 pipe_write_wanted = 1;
3085
3086 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3087
1596 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3088 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1597 { 3089 {
1598 /* update time to cancel out callback processing overhead */
1599 time_update (EV_A_ 1e100);
1600
1601 waittime = MAX_BLOCKTIME; 3090 waittime = MAX_BLOCKTIME;
1602 3091
1603 if (timercnt) 3092 if (timercnt)
1604 { 3093 {
1605 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 3094 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1606 if (waittime > to) waittime = to; 3095 if (waittime > to) waittime = to;
1607 } 3096 }
1608 3097
1609#if EV_PERIODIC_ENABLE 3098#if EV_PERIODIC_ENABLE
1610 if (periodiccnt) 3099 if (periodiccnt)
1611 { 3100 {
1612 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 3101 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1613 if (waittime > to) waittime = to; 3102 if (waittime > to) waittime = to;
1614 } 3103 }
1615#endif 3104#endif
1616 3105
3106 /* don't let timeouts decrease the waittime below timeout_blocktime */
1617 if (expect_false (waittime < timeout_blocktime)) 3107 if (expect_false (waittime < timeout_blocktime))
1618 waittime = timeout_blocktime; 3108 waittime = timeout_blocktime;
1619 3109
1620 sleeptime = waittime - backend_fudge; 3110 /* at this point, we NEED to wait, so we have to ensure */
3111 /* to pass a minimum nonzero value to the backend */
3112 if (expect_false (waittime < backend_mintime))
3113 waittime = backend_mintime;
1621 3114
3115 /* extra check because io_blocktime is commonly 0 */
1622 if (expect_true (sleeptime > io_blocktime)) 3116 if (expect_false (io_blocktime))
1623 sleeptime = io_blocktime;
1624
1625 if (sleeptime)
1626 { 3117 {
3118 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3119
3120 if (sleeptime > waittime - backend_mintime)
3121 sleeptime = waittime - backend_mintime;
3122
3123 if (expect_true (sleeptime > 0.))
3124 {
1627 ev_sleep (sleeptime); 3125 ev_sleep (sleeptime);
1628 waittime -= sleeptime; 3126 waittime -= sleeptime;
3127 }
1629 } 3128 }
1630 } 3129 }
1631 3130
3131#if EV_FEATURE_API
1632 ++loop_count; 3132 ++loop_count;
3133#endif
3134 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1633 backend_poll (EV_A_ waittime); 3135 backend_poll (EV_A_ waittime);
3136 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3137
3138 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3139
3140 if (pipe_write_skipped)
3141 {
3142 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3143 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3144 }
3145
1634 3146
1635 /* update ev_rt_now, do magic */ 3147 /* update ev_rt_now, do magic */
1636 time_update (EV_A_ waittime + sleeptime); 3148 time_update (EV_A_ waittime + sleeptime);
1637 } 3149 }
1638 3150
1645#if EV_IDLE_ENABLE 3157#if EV_IDLE_ENABLE
1646 /* queue idle watchers unless other events are pending */ 3158 /* queue idle watchers unless other events are pending */
1647 idle_reify (EV_A); 3159 idle_reify (EV_A);
1648#endif 3160#endif
1649 3161
3162#if EV_CHECK_ENABLE
1650 /* queue check watchers, to be executed first */ 3163 /* queue check watchers, to be executed first */
1651 if (expect_false (checkcnt)) 3164 if (expect_false (checkcnt))
1652 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3165 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3166#endif
1653 3167
1654 call_pending (EV_A); 3168 EV_INVOKE_PENDING;
1655
1656 } 3169 }
1657 while (expect_true (activecnt && !loop_done)); 3170 while (expect_true (
3171 activecnt
3172 && !loop_done
3173 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3174 ));
1658 3175
1659 if (loop_done == EVUNLOOP_ONE) 3176 if (loop_done == EVBREAK_ONE)
1660 loop_done = EVUNLOOP_CANCEL; 3177 loop_done = EVBREAK_CANCEL;
3178
3179#if EV_FEATURE_API
3180 --loop_depth;
3181#endif
3182
3183 return activecnt;
1661} 3184}
1662 3185
1663void 3186void
1664ev_unloop (EV_P_ int how) 3187ev_break (EV_P_ int how) EV_THROW
1665{ 3188{
1666 loop_done = how; 3189 loop_done = how;
1667} 3190}
1668 3191
3192void
3193ev_ref (EV_P) EV_THROW
3194{
3195 ++activecnt;
3196}
3197
3198void
3199ev_unref (EV_P) EV_THROW
3200{
3201 --activecnt;
3202}
3203
3204void
3205ev_now_update (EV_P) EV_THROW
3206{
3207 time_update (EV_A_ 1e100);
3208}
3209
3210void
3211ev_suspend (EV_P) EV_THROW
3212{
3213 ev_now_update (EV_A);
3214}
3215
3216void
3217ev_resume (EV_P) EV_THROW
3218{
3219 ev_tstamp mn_prev = mn_now;
3220
3221 ev_now_update (EV_A);
3222 timers_reschedule (EV_A_ mn_now - mn_prev);
3223#if EV_PERIODIC_ENABLE
3224 /* TODO: really do this? */
3225 periodics_reschedule (EV_A);
3226#endif
3227}
3228
1669/*****************************************************************************/ 3229/*****************************************************************************/
3230/* singly-linked list management, used when the expected list length is short */
1670 3231
1671void inline_size 3232inline_size void
1672wlist_add (WL *head, WL elem) 3233wlist_add (WL *head, WL elem)
1673{ 3234{
1674 elem->next = *head; 3235 elem->next = *head;
1675 *head = elem; 3236 *head = elem;
1676} 3237}
1677 3238
1678void inline_size 3239inline_size void
1679wlist_del (WL *head, WL elem) 3240wlist_del (WL *head, WL elem)
1680{ 3241{
1681 while (*head) 3242 while (*head)
1682 { 3243 {
1683 if (*head == elem) 3244 if (expect_true (*head == elem))
1684 { 3245 {
1685 *head = elem->next; 3246 *head = elem->next;
1686 return; 3247 break;
1687 } 3248 }
1688 3249
1689 head = &(*head)->next; 3250 head = &(*head)->next;
1690 } 3251 }
1691} 3252}
1692 3253
1693void inline_speed 3254/* internal, faster, version of ev_clear_pending */
3255inline_speed void
1694clear_pending (EV_P_ W w) 3256clear_pending (EV_P_ W w)
1695{ 3257{
1696 if (w->pending) 3258 if (w->pending)
1697 { 3259 {
1698 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3260 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1699 w->pending = 0; 3261 w->pending = 0;
1700 } 3262 }
1701} 3263}
1702 3264
1703int 3265int
1704ev_clear_pending (EV_P_ void *w) 3266ev_clear_pending (EV_P_ void *w) EV_THROW
1705{ 3267{
1706 W w_ = (W)w; 3268 W w_ = (W)w;
1707 int pending = w_->pending; 3269 int pending = w_->pending;
1708 3270
1709 if (expect_true (pending)) 3271 if (expect_true (pending))
1710 { 3272 {
1711 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3273 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3274 p->w = (W)&pending_w;
1712 w_->pending = 0; 3275 w_->pending = 0;
1713 p->w = 0;
1714 return p->events; 3276 return p->events;
1715 } 3277 }
1716 else 3278 else
1717 return 0; 3279 return 0;
1718} 3280}
1719 3281
1720void inline_size 3282inline_size void
1721pri_adjust (EV_P_ W w) 3283pri_adjust (EV_P_ W w)
1722{ 3284{
1723 int pri = w->priority; 3285 int pri = ev_priority (w);
1724 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3286 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1725 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3287 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1726 w->priority = pri; 3288 ev_set_priority (w, pri);
1727} 3289}
1728 3290
1729void inline_speed 3291inline_speed void
1730ev_start (EV_P_ W w, int active) 3292ev_start (EV_P_ W w, int active)
1731{ 3293{
1732 pri_adjust (EV_A_ w); 3294 pri_adjust (EV_A_ w);
1733 w->active = active; 3295 w->active = active;
1734 ev_ref (EV_A); 3296 ev_ref (EV_A);
1735} 3297}
1736 3298
1737void inline_size 3299inline_size void
1738ev_stop (EV_P_ W w) 3300ev_stop (EV_P_ W w)
1739{ 3301{
1740 ev_unref (EV_A); 3302 ev_unref (EV_A);
1741 w->active = 0; 3303 w->active = 0;
1742} 3304}
1743 3305
1744/*****************************************************************************/ 3306/*****************************************************************************/
1745 3307
1746void noinline 3308void noinline
1747ev_io_start (EV_P_ ev_io *w) 3309ev_io_start (EV_P_ ev_io *w) EV_THROW
1748{ 3310{
1749 int fd = w->fd; 3311 int fd = w->fd;
1750 3312
1751 if (expect_false (ev_is_active (w))) 3313 if (expect_false (ev_is_active (w)))
1752 return; 3314 return;
1753 3315
1754 assert (("ev_io_start called with negative fd", fd >= 0)); 3316 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3317 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3318
3319 EV_FREQUENT_CHECK;
1755 3320
1756 ev_start (EV_A_ (W)w, 1); 3321 ev_start (EV_A_ (W)w, 1);
1757 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3322 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1758 wlist_add (&anfds[fd].head, (WL)w); 3323 wlist_add (&anfds[fd].head, (WL)w);
1759 3324
3325 /* common bug, apparently */
3326 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3327
1760 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3328 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1761 w->events &= ~EV_IOFDSET; 3329 w->events &= ~EV__IOFDSET;
3330
3331 EV_FREQUENT_CHECK;
1762} 3332}
1763 3333
1764void noinline 3334void noinline
1765ev_io_stop (EV_P_ ev_io *w) 3335ev_io_stop (EV_P_ ev_io *w) EV_THROW
1766{ 3336{
1767 clear_pending (EV_A_ (W)w); 3337 clear_pending (EV_A_ (W)w);
1768 if (expect_false (!ev_is_active (w))) 3338 if (expect_false (!ev_is_active (w)))
1769 return; 3339 return;
1770 3340
1771 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3341 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3342
3343 EV_FREQUENT_CHECK;
1772 3344
1773 wlist_del (&anfds[w->fd].head, (WL)w); 3345 wlist_del (&anfds[w->fd].head, (WL)w);
1774 ev_stop (EV_A_ (W)w); 3346 ev_stop (EV_A_ (W)w);
1775 3347
1776 fd_change (EV_A_ w->fd, 1); 3348 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3349
3350 EV_FREQUENT_CHECK;
1777} 3351}
1778 3352
1779void noinline 3353void noinline
1780ev_timer_start (EV_P_ ev_timer *w) 3354ev_timer_start (EV_P_ ev_timer *w) EV_THROW
1781{ 3355{
1782 if (expect_false (ev_is_active (w))) 3356 if (expect_false (ev_is_active (w)))
1783 return; 3357 return;
1784 3358
1785 ((WT)w)->at += mn_now; 3359 ev_at (w) += mn_now;
1786 3360
1787 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3361 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1788 3362
3363 EV_FREQUENT_CHECK;
3364
3365 ++timercnt;
1789 ev_start (EV_A_ (W)w, ++timercnt); 3366 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1790 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 3367 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1791 timers [timercnt - 1] = (WT)w; 3368 ANHE_w (timers [ev_active (w)]) = (WT)w;
1792 upheap (timers, timercnt - 1); 3369 ANHE_at_cache (timers [ev_active (w)]);
3370 upheap (timers, ev_active (w));
1793 3371
3372 EV_FREQUENT_CHECK;
3373
1794 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 3374 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1795} 3375}
1796 3376
1797void noinline 3377void noinline
1798ev_timer_stop (EV_P_ ev_timer *w) 3378ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
1799{ 3379{
1800 clear_pending (EV_A_ (W)w); 3380 clear_pending (EV_A_ (W)w);
1801 if (expect_false (!ev_is_active (w))) 3381 if (expect_false (!ev_is_active (w)))
1802 return; 3382 return;
1803 3383
1804 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 3384 EV_FREQUENT_CHECK;
1805 3385
1806 { 3386 {
1807 int active = ((W)w)->active; 3387 int active = ev_active (w);
1808 3388
3389 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3390
3391 --timercnt;
3392
1809 if (expect_true (--active < --timercnt)) 3393 if (expect_true (active < timercnt + HEAP0))
1810 { 3394 {
1811 timers [active] = timers [timercnt]; 3395 timers [active] = timers [timercnt + HEAP0];
1812 adjustheap (timers, timercnt, active); 3396 adjustheap (timers, timercnt, active);
1813 } 3397 }
1814 } 3398 }
1815 3399
1816 ((WT)w)->at -= mn_now; 3400 ev_at (w) -= mn_now;
1817 3401
1818 ev_stop (EV_A_ (W)w); 3402 ev_stop (EV_A_ (W)w);
3403
3404 EV_FREQUENT_CHECK;
1819} 3405}
1820 3406
1821void noinline 3407void noinline
1822ev_timer_again (EV_P_ ev_timer *w) 3408ev_timer_again (EV_P_ ev_timer *w) EV_THROW
1823{ 3409{
3410 EV_FREQUENT_CHECK;
3411
3412 clear_pending (EV_A_ (W)w);
3413
1824 if (ev_is_active (w)) 3414 if (ev_is_active (w))
1825 { 3415 {
1826 if (w->repeat) 3416 if (w->repeat)
1827 { 3417 {
1828 ((WT)w)->at = mn_now + w->repeat; 3418 ev_at (w) = mn_now + w->repeat;
3419 ANHE_at_cache (timers [ev_active (w)]);
1829 adjustheap (timers, timercnt, ((W)w)->active - 1); 3420 adjustheap (timers, timercnt, ev_active (w));
1830 } 3421 }
1831 else 3422 else
1832 ev_timer_stop (EV_A_ w); 3423 ev_timer_stop (EV_A_ w);
1833 } 3424 }
1834 else if (w->repeat) 3425 else if (w->repeat)
1835 { 3426 {
1836 w->at = w->repeat; 3427 ev_at (w) = w->repeat;
1837 ev_timer_start (EV_A_ w); 3428 ev_timer_start (EV_A_ w);
1838 } 3429 }
3430
3431 EV_FREQUENT_CHECK;
3432}
3433
3434ev_tstamp
3435ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3436{
3437 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1839} 3438}
1840 3439
1841#if EV_PERIODIC_ENABLE 3440#if EV_PERIODIC_ENABLE
1842void noinline 3441void noinline
1843ev_periodic_start (EV_P_ ev_periodic *w) 3442ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
1844{ 3443{
1845 if (expect_false (ev_is_active (w))) 3444 if (expect_false (ev_is_active (w)))
1846 return; 3445 return;
1847 3446
1848 if (w->reschedule_cb) 3447 if (w->reschedule_cb)
1849 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 3448 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1850 else if (w->interval) 3449 else if (w->interval)
1851 { 3450 {
1852 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3451 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1853 /* this formula differs from the one in periodic_reify because we do not always round up */ 3452 periodic_recalc (EV_A_ w);
1854 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1855 } 3453 }
1856 else 3454 else
1857 ((WT)w)->at = w->offset; 3455 ev_at (w) = w->offset;
1858 3456
3457 EV_FREQUENT_CHECK;
3458
3459 ++periodiccnt;
1859 ev_start (EV_A_ (W)w, ++periodiccnt); 3460 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1860 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 3461 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1861 periodics [periodiccnt - 1] = (WT)w; 3462 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1862 upheap (periodics, periodiccnt - 1); 3463 ANHE_at_cache (periodics [ev_active (w)]);
3464 upheap (periodics, ev_active (w));
1863 3465
3466 EV_FREQUENT_CHECK;
3467
1864 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 3468 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1865} 3469}
1866 3470
1867void noinline 3471void noinline
1868ev_periodic_stop (EV_P_ ev_periodic *w) 3472ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
1869{ 3473{
1870 clear_pending (EV_A_ (W)w); 3474 clear_pending (EV_A_ (W)w);
1871 if (expect_false (!ev_is_active (w))) 3475 if (expect_false (!ev_is_active (w)))
1872 return; 3476 return;
1873 3477
1874 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 3478 EV_FREQUENT_CHECK;
1875 3479
1876 { 3480 {
1877 int active = ((W)w)->active; 3481 int active = ev_active (w);
1878 3482
3483 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3484
3485 --periodiccnt;
3486
1879 if (expect_true (--active < --periodiccnt)) 3487 if (expect_true (active < periodiccnt + HEAP0))
1880 { 3488 {
1881 periodics [active] = periodics [periodiccnt]; 3489 periodics [active] = periodics [periodiccnt + HEAP0];
1882 adjustheap (periodics, periodiccnt, active); 3490 adjustheap (periodics, periodiccnt, active);
1883 } 3491 }
1884 } 3492 }
1885 3493
1886 ev_stop (EV_A_ (W)w); 3494 ev_stop (EV_A_ (W)w);
3495
3496 EV_FREQUENT_CHECK;
1887} 3497}
1888 3498
1889void noinline 3499void noinline
1890ev_periodic_again (EV_P_ ev_periodic *w) 3500ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
1891{ 3501{
1892 /* TODO: use adjustheap and recalculation */ 3502 /* TODO: use adjustheap and recalculation */
1893 ev_periodic_stop (EV_A_ w); 3503 ev_periodic_stop (EV_A_ w);
1894 ev_periodic_start (EV_A_ w); 3504 ev_periodic_start (EV_A_ w);
1895} 3505}
1897 3507
1898#ifndef SA_RESTART 3508#ifndef SA_RESTART
1899# define SA_RESTART 0 3509# define SA_RESTART 0
1900#endif 3510#endif
1901 3511
3512#if EV_SIGNAL_ENABLE
3513
1902void noinline 3514void noinline
1903ev_signal_start (EV_P_ ev_signal *w) 3515ev_signal_start (EV_P_ ev_signal *w) EV_THROW
1904{ 3516{
1905#if EV_MULTIPLICITY
1906 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1907#endif
1908 if (expect_false (ev_is_active (w))) 3517 if (expect_false (ev_is_active (w)))
1909 return; 3518 return;
1910 3519
1911 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3520 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
1912 3521
1913 evpipe_init (EV_A); 3522#if EV_MULTIPLICITY
3523 assert (("libev: a signal must not be attached to two different loops",
3524 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
1914 3525
3526 signals [w->signum - 1].loop = EV_A;
3527#endif
3528
3529 EV_FREQUENT_CHECK;
3530
3531#if EV_USE_SIGNALFD
3532 if (sigfd == -2)
1915 { 3533 {
1916#ifndef _WIN32 3534 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
1917 sigset_t full, prev; 3535 if (sigfd < 0 && errno == EINVAL)
1918 sigfillset (&full); 3536 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
1919 sigprocmask (SIG_SETMASK, &full, &prev);
1920#endif
1921 3537
1922 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3538 if (sigfd >= 0)
3539 {
3540 fd_intern (sigfd); /* doing it twice will not hurt */
1923 3541
1924#ifndef _WIN32 3542 sigemptyset (&sigfd_set);
1925 sigprocmask (SIG_SETMASK, &prev, 0); 3543
1926#endif 3544 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3545 ev_set_priority (&sigfd_w, EV_MAXPRI);
3546 ev_io_start (EV_A_ &sigfd_w);
3547 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3548 }
1927 } 3549 }
3550
3551 if (sigfd >= 0)
3552 {
3553 /* TODO: check .head */
3554 sigaddset (&sigfd_set, w->signum);
3555 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3556
3557 signalfd (sigfd, &sigfd_set, 0);
3558 }
3559#endif
1928 3560
1929 ev_start (EV_A_ (W)w, 1); 3561 ev_start (EV_A_ (W)w, 1);
1930 wlist_add (&signals [w->signum - 1].head, (WL)w); 3562 wlist_add (&signals [w->signum - 1].head, (WL)w);
1931 3563
1932 if (!((WL)w)->next) 3564 if (!((WL)w)->next)
3565# if EV_USE_SIGNALFD
3566 if (sigfd < 0) /*TODO*/
3567# endif
1933 { 3568 {
1934#if _WIN32 3569# ifdef _WIN32
3570 evpipe_init (EV_A);
3571
1935 signal (w->signum, sighandler); 3572 signal (w->signum, ev_sighandler);
1936#else 3573# else
1937 struct sigaction sa; 3574 struct sigaction sa;
3575
3576 evpipe_init (EV_A);
3577
1938 sa.sa_handler = sighandler; 3578 sa.sa_handler = ev_sighandler;
1939 sigfillset (&sa.sa_mask); 3579 sigfillset (&sa.sa_mask);
1940 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3580 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1941 sigaction (w->signum, &sa, 0); 3581 sigaction (w->signum, &sa, 0);
3582
3583 if (origflags & EVFLAG_NOSIGMASK)
3584 {
3585 sigemptyset (&sa.sa_mask);
3586 sigaddset (&sa.sa_mask, w->signum);
3587 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3588 }
1942#endif 3589#endif
1943 } 3590 }
3591
3592 EV_FREQUENT_CHECK;
1944} 3593}
1945 3594
1946void noinline 3595void noinline
1947ev_signal_stop (EV_P_ ev_signal *w) 3596ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
1948{ 3597{
1949 clear_pending (EV_A_ (W)w); 3598 clear_pending (EV_A_ (W)w);
1950 if (expect_false (!ev_is_active (w))) 3599 if (expect_false (!ev_is_active (w)))
1951 return; 3600 return;
1952 3601
3602 EV_FREQUENT_CHECK;
3603
1953 wlist_del (&signals [w->signum - 1].head, (WL)w); 3604 wlist_del (&signals [w->signum - 1].head, (WL)w);
1954 ev_stop (EV_A_ (W)w); 3605 ev_stop (EV_A_ (W)w);
1955 3606
1956 if (!signals [w->signum - 1].head) 3607 if (!signals [w->signum - 1].head)
3608 {
3609#if EV_MULTIPLICITY
3610 signals [w->signum - 1].loop = 0; /* unattach from signal */
3611#endif
3612#if EV_USE_SIGNALFD
3613 if (sigfd >= 0)
3614 {
3615 sigset_t ss;
3616
3617 sigemptyset (&ss);
3618 sigaddset (&ss, w->signum);
3619 sigdelset (&sigfd_set, w->signum);
3620
3621 signalfd (sigfd, &sigfd_set, 0);
3622 sigprocmask (SIG_UNBLOCK, &ss, 0);
3623 }
3624 else
3625#endif
1957 signal (w->signum, SIG_DFL); 3626 signal (w->signum, SIG_DFL);
3627 }
3628
3629 EV_FREQUENT_CHECK;
1958} 3630}
3631
3632#endif
3633
3634#if EV_CHILD_ENABLE
1959 3635
1960void 3636void
1961ev_child_start (EV_P_ ev_child *w) 3637ev_child_start (EV_P_ ev_child *w) EV_THROW
1962{ 3638{
1963#if EV_MULTIPLICITY 3639#if EV_MULTIPLICITY
1964 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3640 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1965#endif 3641#endif
1966 if (expect_false (ev_is_active (w))) 3642 if (expect_false (ev_is_active (w)))
1967 return; 3643 return;
1968 3644
3645 EV_FREQUENT_CHECK;
3646
1969 ev_start (EV_A_ (W)w, 1); 3647 ev_start (EV_A_ (W)w, 1);
1970 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3648 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3649
3650 EV_FREQUENT_CHECK;
1971} 3651}
1972 3652
1973void 3653void
1974ev_child_stop (EV_P_ ev_child *w) 3654ev_child_stop (EV_P_ ev_child *w) EV_THROW
1975{ 3655{
1976 clear_pending (EV_A_ (W)w); 3656 clear_pending (EV_A_ (W)w);
1977 if (expect_false (!ev_is_active (w))) 3657 if (expect_false (!ev_is_active (w)))
1978 return; 3658 return;
1979 3659
3660 EV_FREQUENT_CHECK;
3661
1980 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3662 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1981 ev_stop (EV_A_ (W)w); 3663 ev_stop (EV_A_ (W)w);
3664
3665 EV_FREQUENT_CHECK;
1982} 3666}
3667
3668#endif
1983 3669
1984#if EV_STAT_ENABLE 3670#if EV_STAT_ENABLE
1985 3671
1986# ifdef _WIN32 3672# ifdef _WIN32
1987# undef lstat 3673# undef lstat
1988# define lstat(a,b) _stati64 (a,b) 3674# define lstat(a,b) _stati64 (a,b)
1989# endif 3675# endif
1990 3676
1991#define DEF_STAT_INTERVAL 5.0074891 3677#define DEF_STAT_INTERVAL 5.0074891
3678#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1992#define MIN_STAT_INTERVAL 0.1074891 3679#define MIN_STAT_INTERVAL 0.1074891
1993 3680
1994static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3681static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1995 3682
1996#if EV_USE_INOTIFY 3683#if EV_USE_INOTIFY
1997# define EV_INOTIFY_BUFSIZE 8192 3684
3685/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3686# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
1998 3687
1999static void noinline 3688static void noinline
2000infy_add (EV_P_ ev_stat *w) 3689infy_add (EV_P_ ev_stat *w)
2001{ 3690{
2002 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3691 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2003 3692
2004 if (w->wd < 0) 3693 if (w->wd >= 0)
3694 {
3695 struct statfs sfs;
3696
3697 /* now local changes will be tracked by inotify, but remote changes won't */
3698 /* unless the filesystem is known to be local, we therefore still poll */
3699 /* also do poll on <2.6.25, but with normal frequency */
3700
3701 if (!fs_2625)
3702 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3703 else if (!statfs (w->path, &sfs)
3704 && (sfs.f_type == 0x1373 /* devfs */
3705 || sfs.f_type == 0xEF53 /* ext2/3 */
3706 || sfs.f_type == 0x3153464a /* jfs */
3707 || sfs.f_type == 0x52654973 /* reiser3 */
3708 || sfs.f_type == 0x01021994 /* tempfs */
3709 || sfs.f_type == 0x58465342 /* xfs */))
3710 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3711 else
3712 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2005 { 3713 }
2006 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3714 else
3715 {
3716 /* can't use inotify, continue to stat */
3717 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2007 3718
2008 /* monitor some parent directory for speedup hints */ 3719 /* if path is not there, monitor some parent directory for speedup hints */
3720 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3721 /* but an efficiency issue only */
2009 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3722 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2010 { 3723 {
2011 char path [4096]; 3724 char path [4096];
2012 strcpy (path, w->path); 3725 strcpy (path, w->path);
2013 3726
2016 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3729 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2017 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3730 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2018 3731
2019 char *pend = strrchr (path, '/'); 3732 char *pend = strrchr (path, '/');
2020 3733
2021 if (!pend) 3734 if (!pend || pend == path)
2022 break; /* whoops, no '/', complain to your admin */ 3735 break;
2023 3736
2024 *pend = 0; 3737 *pend = 0;
2025 w->wd = inotify_add_watch (fs_fd, path, mask); 3738 w->wd = inotify_add_watch (fs_fd, path, mask);
2026 } 3739 }
2027 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3740 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2028 } 3741 }
2029 } 3742 }
2030 else
2031 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2032 3743
2033 if (w->wd >= 0) 3744 if (w->wd >= 0)
2034 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3745 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3746
3747 /* now re-arm timer, if required */
3748 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3749 ev_timer_again (EV_A_ &w->timer);
3750 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2035} 3751}
2036 3752
2037static void noinline 3753static void noinline
2038infy_del (EV_P_ ev_stat *w) 3754infy_del (EV_P_ ev_stat *w)
2039{ 3755{
2042 3758
2043 if (wd < 0) 3759 if (wd < 0)
2044 return; 3760 return;
2045 3761
2046 w->wd = -2; 3762 w->wd = -2;
2047 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3763 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2048 wlist_del (&fs_hash [slot].head, (WL)w); 3764 wlist_del (&fs_hash [slot].head, (WL)w);
2049 3765
2050 /* remove this watcher, if others are watching it, they will rearm */ 3766 /* remove this watcher, if others are watching it, they will rearm */
2051 inotify_rm_watch (fs_fd, wd); 3767 inotify_rm_watch (fs_fd, wd);
2052} 3768}
2053 3769
2054static void noinline 3770static void noinline
2055infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3771infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2056{ 3772{
2057 if (slot < 0) 3773 if (slot < 0)
2058 /* overflow, need to check for all hahs slots */ 3774 /* overflow, need to check for all hash slots */
2059 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3775 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2060 infy_wd (EV_A_ slot, wd, ev); 3776 infy_wd (EV_A_ slot, wd, ev);
2061 else 3777 else
2062 { 3778 {
2063 WL w_; 3779 WL w_;
2064 3780
2065 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3781 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2066 { 3782 {
2067 ev_stat *w = (ev_stat *)w_; 3783 ev_stat *w = (ev_stat *)w_;
2068 w_ = w_->next; /* lets us remove this watcher and all before it */ 3784 w_ = w_->next; /* lets us remove this watcher and all before it */
2069 3785
2070 if (w->wd == wd || wd == -1) 3786 if (w->wd == wd || wd == -1)
2071 { 3787 {
2072 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3788 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2073 { 3789 {
3790 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2074 w->wd = -1; 3791 w->wd = -1;
2075 infy_add (EV_A_ w); /* re-add, no matter what */ 3792 infy_add (EV_A_ w); /* re-add, no matter what */
2076 } 3793 }
2077 3794
2078 stat_timer_cb (EV_A_ &w->timer, 0); 3795 stat_timer_cb (EV_A_ &w->timer, 0);
2083 3800
2084static void 3801static void
2085infy_cb (EV_P_ ev_io *w, int revents) 3802infy_cb (EV_P_ ev_io *w, int revents)
2086{ 3803{
2087 char buf [EV_INOTIFY_BUFSIZE]; 3804 char buf [EV_INOTIFY_BUFSIZE];
2088 struct inotify_event *ev = (struct inotify_event *)buf;
2089 int ofs; 3805 int ofs;
2090 int len = read (fs_fd, buf, sizeof (buf)); 3806 int len = read (fs_fd, buf, sizeof (buf));
2091 3807
2092 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3808 for (ofs = 0; ofs < len; )
3809 {
3810 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2093 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3811 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3812 ofs += sizeof (struct inotify_event) + ev->len;
3813 }
2094} 3814}
2095 3815
2096void inline_size 3816inline_size void ecb_cold
3817ev_check_2625 (EV_P)
3818{
3819 /* kernels < 2.6.25 are borked
3820 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3821 */
3822 if (ev_linux_version () < 0x020619)
3823 return;
3824
3825 fs_2625 = 1;
3826}
3827
3828inline_size int
3829infy_newfd (void)
3830{
3831#if defined IN_CLOEXEC && defined IN_NONBLOCK
3832 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3833 if (fd >= 0)
3834 return fd;
3835#endif
3836 return inotify_init ();
3837}
3838
3839inline_size void
2097infy_init (EV_P) 3840infy_init (EV_P)
2098{ 3841{
2099 if (fs_fd != -2) 3842 if (fs_fd != -2)
2100 return; 3843 return;
2101 3844
3845 fs_fd = -1;
3846
3847 ev_check_2625 (EV_A);
3848
2102 fs_fd = inotify_init (); 3849 fs_fd = infy_newfd ();
2103 3850
2104 if (fs_fd >= 0) 3851 if (fs_fd >= 0)
2105 { 3852 {
3853 fd_intern (fs_fd);
2106 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3854 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2107 ev_set_priority (&fs_w, EV_MAXPRI); 3855 ev_set_priority (&fs_w, EV_MAXPRI);
2108 ev_io_start (EV_A_ &fs_w); 3856 ev_io_start (EV_A_ &fs_w);
3857 ev_unref (EV_A);
2109 } 3858 }
2110} 3859}
2111 3860
2112void inline_size 3861inline_size void
2113infy_fork (EV_P) 3862infy_fork (EV_P)
2114{ 3863{
2115 int slot; 3864 int slot;
2116 3865
2117 if (fs_fd < 0) 3866 if (fs_fd < 0)
2118 return; 3867 return;
2119 3868
3869 ev_ref (EV_A);
3870 ev_io_stop (EV_A_ &fs_w);
2120 close (fs_fd); 3871 close (fs_fd);
2121 fs_fd = inotify_init (); 3872 fs_fd = infy_newfd ();
2122 3873
3874 if (fs_fd >= 0)
3875 {
3876 fd_intern (fs_fd);
3877 ev_io_set (&fs_w, fs_fd, EV_READ);
3878 ev_io_start (EV_A_ &fs_w);
3879 ev_unref (EV_A);
3880 }
3881
2123 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3882 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2124 { 3883 {
2125 WL w_ = fs_hash [slot].head; 3884 WL w_ = fs_hash [slot].head;
2126 fs_hash [slot].head = 0; 3885 fs_hash [slot].head = 0;
2127 3886
2128 while (w_) 3887 while (w_)
2133 w->wd = -1; 3892 w->wd = -1;
2134 3893
2135 if (fs_fd >= 0) 3894 if (fs_fd >= 0)
2136 infy_add (EV_A_ w); /* re-add, no matter what */ 3895 infy_add (EV_A_ w); /* re-add, no matter what */
2137 else 3896 else
3897 {
3898 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3899 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2138 ev_timer_start (EV_A_ &w->timer); 3900 ev_timer_again (EV_A_ &w->timer);
3901 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3902 }
2139 } 3903 }
2140
2141 } 3904 }
2142} 3905}
2143 3906
3907#endif
3908
3909#ifdef _WIN32
3910# define EV_LSTAT(p,b) _stati64 (p, b)
3911#else
3912# define EV_LSTAT(p,b) lstat (p, b)
2144#endif 3913#endif
2145 3914
2146void 3915void
2147ev_stat_stat (EV_P_ ev_stat *w) 3916ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
2148{ 3917{
2149 if (lstat (w->path, &w->attr) < 0) 3918 if (lstat (w->path, &w->attr) < 0)
2150 w->attr.st_nlink = 0; 3919 w->attr.st_nlink = 0;
2151 else if (!w->attr.st_nlink) 3920 else if (!w->attr.st_nlink)
2152 w->attr.st_nlink = 1; 3921 w->attr.st_nlink = 1;
2155static void noinline 3924static void noinline
2156stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3925stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2157{ 3926{
2158 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3927 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2159 3928
2160 /* we copy this here each the time so that */ 3929 ev_statdata prev = w->attr;
2161 /* prev has the old value when the callback gets invoked */
2162 w->prev = w->attr;
2163 ev_stat_stat (EV_A_ w); 3930 ev_stat_stat (EV_A_ w);
2164 3931
2165 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3932 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2166 if ( 3933 if (
2167 w->prev.st_dev != w->attr.st_dev 3934 prev.st_dev != w->attr.st_dev
2168 || w->prev.st_ino != w->attr.st_ino 3935 || prev.st_ino != w->attr.st_ino
2169 || w->prev.st_mode != w->attr.st_mode 3936 || prev.st_mode != w->attr.st_mode
2170 || w->prev.st_nlink != w->attr.st_nlink 3937 || prev.st_nlink != w->attr.st_nlink
2171 || w->prev.st_uid != w->attr.st_uid 3938 || prev.st_uid != w->attr.st_uid
2172 || w->prev.st_gid != w->attr.st_gid 3939 || prev.st_gid != w->attr.st_gid
2173 || w->prev.st_rdev != w->attr.st_rdev 3940 || prev.st_rdev != w->attr.st_rdev
2174 || w->prev.st_size != w->attr.st_size 3941 || prev.st_size != w->attr.st_size
2175 || w->prev.st_atime != w->attr.st_atime 3942 || prev.st_atime != w->attr.st_atime
2176 || w->prev.st_mtime != w->attr.st_mtime 3943 || prev.st_mtime != w->attr.st_mtime
2177 || w->prev.st_ctime != w->attr.st_ctime 3944 || prev.st_ctime != w->attr.st_ctime
2178 ) { 3945 ) {
3946 /* we only update w->prev on actual differences */
3947 /* in case we test more often than invoke the callback, */
3948 /* to ensure that prev is always different to attr */
3949 w->prev = prev;
3950
2179 #if EV_USE_INOTIFY 3951 #if EV_USE_INOTIFY
3952 if (fs_fd >= 0)
3953 {
2180 infy_del (EV_A_ w); 3954 infy_del (EV_A_ w);
2181 infy_add (EV_A_ w); 3955 infy_add (EV_A_ w);
2182 ev_stat_stat (EV_A_ w); /* avoid race... */ 3956 ev_stat_stat (EV_A_ w); /* avoid race... */
3957 }
2183 #endif 3958 #endif
2184 3959
2185 ev_feed_event (EV_A_ w, EV_STAT); 3960 ev_feed_event (EV_A_ w, EV_STAT);
2186 } 3961 }
2187} 3962}
2188 3963
2189void 3964void
2190ev_stat_start (EV_P_ ev_stat *w) 3965ev_stat_start (EV_P_ ev_stat *w) EV_THROW
2191{ 3966{
2192 if (expect_false (ev_is_active (w))) 3967 if (expect_false (ev_is_active (w)))
2193 return; 3968 return;
2194 3969
2195 /* since we use memcmp, we need to clear any padding data etc. */
2196 memset (&w->prev, 0, sizeof (ev_statdata));
2197 memset (&w->attr, 0, sizeof (ev_statdata));
2198
2199 ev_stat_stat (EV_A_ w); 3970 ev_stat_stat (EV_A_ w);
2200 3971
3972 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2201 if (w->interval < MIN_STAT_INTERVAL) 3973 w->interval = MIN_STAT_INTERVAL;
2202 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2203 3974
2204 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3975 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2205 ev_set_priority (&w->timer, ev_priority (w)); 3976 ev_set_priority (&w->timer, ev_priority (w));
2206 3977
2207#if EV_USE_INOTIFY 3978#if EV_USE_INOTIFY
2208 infy_init (EV_A); 3979 infy_init (EV_A);
2209 3980
2210 if (fs_fd >= 0) 3981 if (fs_fd >= 0)
2211 infy_add (EV_A_ w); 3982 infy_add (EV_A_ w);
2212 else 3983 else
2213#endif 3984#endif
3985 {
2214 ev_timer_start (EV_A_ &w->timer); 3986 ev_timer_again (EV_A_ &w->timer);
3987 ev_unref (EV_A);
3988 }
2215 3989
2216 ev_start (EV_A_ (W)w, 1); 3990 ev_start (EV_A_ (W)w, 1);
3991
3992 EV_FREQUENT_CHECK;
2217} 3993}
2218 3994
2219void 3995void
2220ev_stat_stop (EV_P_ ev_stat *w) 3996ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
2221{ 3997{
2222 clear_pending (EV_A_ (W)w); 3998 clear_pending (EV_A_ (W)w);
2223 if (expect_false (!ev_is_active (w))) 3999 if (expect_false (!ev_is_active (w)))
2224 return; 4000 return;
2225 4001
4002 EV_FREQUENT_CHECK;
4003
2226#if EV_USE_INOTIFY 4004#if EV_USE_INOTIFY
2227 infy_del (EV_A_ w); 4005 infy_del (EV_A_ w);
2228#endif 4006#endif
4007
4008 if (ev_is_active (&w->timer))
4009 {
4010 ev_ref (EV_A);
2229 ev_timer_stop (EV_A_ &w->timer); 4011 ev_timer_stop (EV_A_ &w->timer);
4012 }
2230 4013
2231 ev_stop (EV_A_ (W)w); 4014 ev_stop (EV_A_ (W)w);
4015
4016 EV_FREQUENT_CHECK;
2232} 4017}
2233#endif 4018#endif
2234 4019
2235#if EV_IDLE_ENABLE 4020#if EV_IDLE_ENABLE
2236void 4021void
2237ev_idle_start (EV_P_ ev_idle *w) 4022ev_idle_start (EV_P_ ev_idle *w) EV_THROW
2238{ 4023{
2239 if (expect_false (ev_is_active (w))) 4024 if (expect_false (ev_is_active (w)))
2240 return; 4025 return;
2241 4026
2242 pri_adjust (EV_A_ (W)w); 4027 pri_adjust (EV_A_ (W)w);
4028
4029 EV_FREQUENT_CHECK;
2243 4030
2244 { 4031 {
2245 int active = ++idlecnt [ABSPRI (w)]; 4032 int active = ++idlecnt [ABSPRI (w)];
2246 4033
2247 ++idleall; 4034 ++idleall;
2248 ev_start (EV_A_ (W)w, active); 4035 ev_start (EV_A_ (W)w, active);
2249 4036
2250 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 4037 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2251 idles [ABSPRI (w)][active - 1] = w; 4038 idles [ABSPRI (w)][active - 1] = w;
2252 } 4039 }
4040
4041 EV_FREQUENT_CHECK;
2253} 4042}
2254 4043
2255void 4044void
2256ev_idle_stop (EV_P_ ev_idle *w) 4045ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
2257{ 4046{
2258 clear_pending (EV_A_ (W)w); 4047 clear_pending (EV_A_ (W)w);
2259 if (expect_false (!ev_is_active (w))) 4048 if (expect_false (!ev_is_active (w)))
2260 return; 4049 return;
2261 4050
4051 EV_FREQUENT_CHECK;
4052
2262 { 4053 {
2263 int active = ((W)w)->active; 4054 int active = ev_active (w);
2264 4055
2265 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 4056 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2266 ((W)idles [ABSPRI (w)][active - 1])->active = active; 4057 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2267 4058
2268 ev_stop (EV_A_ (W)w); 4059 ev_stop (EV_A_ (W)w);
2269 --idleall; 4060 --idleall;
2270 } 4061 }
2271}
2272#endif
2273 4062
4063 EV_FREQUENT_CHECK;
4064}
4065#endif
4066
4067#if EV_PREPARE_ENABLE
2274void 4068void
2275ev_prepare_start (EV_P_ ev_prepare *w) 4069ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
2276{ 4070{
2277 if (expect_false (ev_is_active (w))) 4071 if (expect_false (ev_is_active (w)))
2278 return; 4072 return;
4073
4074 EV_FREQUENT_CHECK;
2279 4075
2280 ev_start (EV_A_ (W)w, ++preparecnt); 4076 ev_start (EV_A_ (W)w, ++preparecnt);
2281 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 4077 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2282 prepares [preparecnt - 1] = w; 4078 prepares [preparecnt - 1] = w;
4079
4080 EV_FREQUENT_CHECK;
2283} 4081}
2284 4082
2285void 4083void
2286ev_prepare_stop (EV_P_ ev_prepare *w) 4084ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
2287{ 4085{
2288 clear_pending (EV_A_ (W)w); 4086 clear_pending (EV_A_ (W)w);
2289 if (expect_false (!ev_is_active (w))) 4087 if (expect_false (!ev_is_active (w)))
2290 return; 4088 return;
2291 4089
4090 EV_FREQUENT_CHECK;
4091
2292 { 4092 {
2293 int active = ((W)w)->active; 4093 int active = ev_active (w);
4094
2294 prepares [active - 1] = prepares [--preparecnt]; 4095 prepares [active - 1] = prepares [--preparecnt];
2295 ((W)prepares [active - 1])->active = active; 4096 ev_active (prepares [active - 1]) = active;
2296 } 4097 }
2297 4098
2298 ev_stop (EV_A_ (W)w); 4099 ev_stop (EV_A_ (W)w);
2299}
2300 4100
4101 EV_FREQUENT_CHECK;
4102}
4103#endif
4104
4105#if EV_CHECK_ENABLE
2301void 4106void
2302ev_check_start (EV_P_ ev_check *w) 4107ev_check_start (EV_P_ ev_check *w) EV_THROW
2303{ 4108{
2304 if (expect_false (ev_is_active (w))) 4109 if (expect_false (ev_is_active (w)))
2305 return; 4110 return;
4111
4112 EV_FREQUENT_CHECK;
2306 4113
2307 ev_start (EV_A_ (W)w, ++checkcnt); 4114 ev_start (EV_A_ (W)w, ++checkcnt);
2308 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 4115 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2309 checks [checkcnt - 1] = w; 4116 checks [checkcnt - 1] = w;
4117
4118 EV_FREQUENT_CHECK;
2310} 4119}
2311 4120
2312void 4121void
2313ev_check_stop (EV_P_ ev_check *w) 4122ev_check_stop (EV_P_ ev_check *w) EV_THROW
2314{ 4123{
2315 clear_pending (EV_A_ (W)w); 4124 clear_pending (EV_A_ (W)w);
2316 if (expect_false (!ev_is_active (w))) 4125 if (expect_false (!ev_is_active (w)))
2317 return; 4126 return;
2318 4127
4128 EV_FREQUENT_CHECK;
4129
2319 { 4130 {
2320 int active = ((W)w)->active; 4131 int active = ev_active (w);
4132
2321 checks [active - 1] = checks [--checkcnt]; 4133 checks [active - 1] = checks [--checkcnt];
2322 ((W)checks [active - 1])->active = active; 4134 ev_active (checks [active - 1]) = active;
2323 } 4135 }
2324 4136
2325 ev_stop (EV_A_ (W)w); 4137 ev_stop (EV_A_ (W)w);
4138
4139 EV_FREQUENT_CHECK;
2326} 4140}
4141#endif
2327 4142
2328#if EV_EMBED_ENABLE 4143#if EV_EMBED_ENABLE
2329void noinline 4144void noinline
2330ev_embed_sweep (EV_P_ ev_embed *w) 4145ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
2331{ 4146{
2332 ev_loop (w->other, EVLOOP_NONBLOCK); 4147 ev_run (w->other, EVRUN_NOWAIT);
2333} 4148}
2334 4149
2335static void 4150static void
2336embed_io_cb (EV_P_ ev_io *io, int revents) 4151embed_io_cb (EV_P_ ev_io *io, int revents)
2337{ 4152{
2338 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4153 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2339 4154
2340 if (ev_cb (w)) 4155 if (ev_cb (w))
2341 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4156 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2342 else 4157 else
2343 ev_loop (w->other, EVLOOP_NONBLOCK); 4158 ev_run (w->other, EVRUN_NOWAIT);
2344} 4159}
2345 4160
2346static void 4161static void
2347embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4162embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2348{ 4163{
2349 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4164 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2350 4165
2351 { 4166 {
2352 struct ev_loop *loop = w->other; 4167 EV_P = w->other;
2353 4168
2354 while (fdchangecnt) 4169 while (fdchangecnt)
2355 { 4170 {
2356 fd_reify (EV_A); 4171 fd_reify (EV_A);
2357 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4172 ev_run (EV_A_ EVRUN_NOWAIT);
2358 } 4173 }
2359 } 4174 }
4175}
4176
4177static void
4178embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4179{
4180 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4181
4182 ev_embed_stop (EV_A_ w);
4183
4184 {
4185 EV_P = w->other;
4186
4187 ev_loop_fork (EV_A);
4188 ev_run (EV_A_ EVRUN_NOWAIT);
4189 }
4190
4191 ev_embed_start (EV_A_ w);
2360} 4192}
2361 4193
2362#if 0 4194#if 0
2363static void 4195static void
2364embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4196embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2366 ev_idle_stop (EV_A_ idle); 4198 ev_idle_stop (EV_A_ idle);
2367} 4199}
2368#endif 4200#endif
2369 4201
2370void 4202void
2371ev_embed_start (EV_P_ ev_embed *w) 4203ev_embed_start (EV_P_ ev_embed *w) EV_THROW
2372{ 4204{
2373 if (expect_false (ev_is_active (w))) 4205 if (expect_false (ev_is_active (w)))
2374 return; 4206 return;
2375 4207
2376 { 4208 {
2377 struct ev_loop *loop = w->other; 4209 EV_P = w->other;
2378 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4210 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2379 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4211 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2380 } 4212 }
4213
4214 EV_FREQUENT_CHECK;
2381 4215
2382 ev_set_priority (&w->io, ev_priority (w)); 4216 ev_set_priority (&w->io, ev_priority (w));
2383 ev_io_start (EV_A_ &w->io); 4217 ev_io_start (EV_A_ &w->io);
2384 4218
2385 ev_prepare_init (&w->prepare, embed_prepare_cb); 4219 ev_prepare_init (&w->prepare, embed_prepare_cb);
2386 ev_set_priority (&w->prepare, EV_MINPRI); 4220 ev_set_priority (&w->prepare, EV_MINPRI);
2387 ev_prepare_start (EV_A_ &w->prepare); 4221 ev_prepare_start (EV_A_ &w->prepare);
2388 4222
4223 ev_fork_init (&w->fork, embed_fork_cb);
4224 ev_fork_start (EV_A_ &w->fork);
4225
2389 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 4226 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2390 4227
2391 ev_start (EV_A_ (W)w, 1); 4228 ev_start (EV_A_ (W)w, 1);
4229
4230 EV_FREQUENT_CHECK;
2392} 4231}
2393 4232
2394void 4233void
2395ev_embed_stop (EV_P_ ev_embed *w) 4234ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
2396{ 4235{
2397 clear_pending (EV_A_ (W)w); 4236 clear_pending (EV_A_ (W)w);
2398 if (expect_false (!ev_is_active (w))) 4237 if (expect_false (!ev_is_active (w)))
2399 return; 4238 return;
2400 4239
4240 EV_FREQUENT_CHECK;
4241
2401 ev_io_stop (EV_A_ &w->io); 4242 ev_io_stop (EV_A_ &w->io);
2402 ev_prepare_stop (EV_A_ &w->prepare); 4243 ev_prepare_stop (EV_A_ &w->prepare);
4244 ev_fork_stop (EV_A_ &w->fork);
2403 4245
2404 ev_stop (EV_A_ (W)w); 4246 ev_stop (EV_A_ (W)w);
4247
4248 EV_FREQUENT_CHECK;
2405} 4249}
2406#endif 4250#endif
2407 4251
2408#if EV_FORK_ENABLE 4252#if EV_FORK_ENABLE
2409void 4253void
2410ev_fork_start (EV_P_ ev_fork *w) 4254ev_fork_start (EV_P_ ev_fork *w) EV_THROW
2411{ 4255{
2412 if (expect_false (ev_is_active (w))) 4256 if (expect_false (ev_is_active (w)))
2413 return; 4257 return;
4258
4259 EV_FREQUENT_CHECK;
2414 4260
2415 ev_start (EV_A_ (W)w, ++forkcnt); 4261 ev_start (EV_A_ (W)w, ++forkcnt);
2416 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 4262 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2417 forks [forkcnt - 1] = w; 4263 forks [forkcnt - 1] = w;
4264
4265 EV_FREQUENT_CHECK;
2418} 4266}
2419 4267
2420void 4268void
2421ev_fork_stop (EV_P_ ev_fork *w) 4269ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
2422{ 4270{
2423 clear_pending (EV_A_ (W)w); 4271 clear_pending (EV_A_ (W)w);
2424 if (expect_false (!ev_is_active (w))) 4272 if (expect_false (!ev_is_active (w)))
2425 return; 4273 return;
2426 4274
4275 EV_FREQUENT_CHECK;
4276
2427 { 4277 {
2428 int active = ((W)w)->active; 4278 int active = ev_active (w);
4279
2429 forks [active - 1] = forks [--forkcnt]; 4280 forks [active - 1] = forks [--forkcnt];
2430 ((W)forks [active - 1])->active = active; 4281 ev_active (forks [active - 1]) = active;
2431 } 4282 }
2432 4283
2433 ev_stop (EV_A_ (W)w); 4284 ev_stop (EV_A_ (W)w);
4285
4286 EV_FREQUENT_CHECK;
4287}
4288#endif
4289
4290#if EV_CLEANUP_ENABLE
4291void
4292ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4293{
4294 if (expect_false (ev_is_active (w)))
4295 return;
4296
4297 EV_FREQUENT_CHECK;
4298
4299 ev_start (EV_A_ (W)w, ++cleanupcnt);
4300 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4301 cleanups [cleanupcnt - 1] = w;
4302
4303 /* cleanup watchers should never keep a refcount on the loop */
4304 ev_unref (EV_A);
4305 EV_FREQUENT_CHECK;
4306}
4307
4308void
4309ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4310{
4311 clear_pending (EV_A_ (W)w);
4312 if (expect_false (!ev_is_active (w)))
4313 return;
4314
4315 EV_FREQUENT_CHECK;
4316 ev_ref (EV_A);
4317
4318 {
4319 int active = ev_active (w);
4320
4321 cleanups [active - 1] = cleanups [--cleanupcnt];
4322 ev_active (cleanups [active - 1]) = active;
4323 }
4324
4325 ev_stop (EV_A_ (W)w);
4326
4327 EV_FREQUENT_CHECK;
2434} 4328}
2435#endif 4329#endif
2436 4330
2437#if EV_ASYNC_ENABLE 4331#if EV_ASYNC_ENABLE
2438void 4332void
2439ev_async_start (EV_P_ ev_async *w) 4333ev_async_start (EV_P_ ev_async *w) EV_THROW
2440{ 4334{
2441 if (expect_false (ev_is_active (w))) 4335 if (expect_false (ev_is_active (w)))
2442 return; 4336 return;
2443 4337
4338 w->sent = 0;
4339
2444 evpipe_init (EV_A); 4340 evpipe_init (EV_A);
4341
4342 EV_FREQUENT_CHECK;
2445 4343
2446 ev_start (EV_A_ (W)w, ++asynccnt); 4344 ev_start (EV_A_ (W)w, ++asynccnt);
2447 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 4345 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2448 asyncs [asynccnt - 1] = w; 4346 asyncs [asynccnt - 1] = w;
4347
4348 EV_FREQUENT_CHECK;
2449} 4349}
2450 4350
2451void 4351void
2452ev_async_stop (EV_P_ ev_async *w) 4352ev_async_stop (EV_P_ ev_async *w) EV_THROW
2453{ 4353{
2454 clear_pending (EV_A_ (W)w); 4354 clear_pending (EV_A_ (W)w);
2455 if (expect_false (!ev_is_active (w))) 4355 if (expect_false (!ev_is_active (w)))
2456 return; 4356 return;
2457 4357
4358 EV_FREQUENT_CHECK;
4359
2458 { 4360 {
2459 int active = ((W)w)->active; 4361 int active = ev_active (w);
4362
2460 asyncs [active - 1] = asyncs [--asynccnt]; 4363 asyncs [active - 1] = asyncs [--asynccnt];
2461 ((W)asyncs [active - 1])->active = active; 4364 ev_active (asyncs [active - 1]) = active;
2462 } 4365 }
2463 4366
2464 ev_stop (EV_A_ (W)w); 4367 ev_stop (EV_A_ (W)w);
4368
4369 EV_FREQUENT_CHECK;
2465} 4370}
2466 4371
2467void 4372void
2468ev_async_send (EV_P_ ev_async *w) 4373ev_async_send (EV_P_ ev_async *w) EV_THROW
2469{ 4374{
2470 w->sent = 1; 4375 w->sent = 1;
2471 evpipe_write (EV_A_ &gotasync); 4376 evpipe_write (EV_A_ &async_pending);
2472} 4377}
2473#endif 4378#endif
2474 4379
2475/*****************************************************************************/ 4380/*****************************************************************************/
2476 4381
2486once_cb (EV_P_ struct ev_once *once, int revents) 4391once_cb (EV_P_ struct ev_once *once, int revents)
2487{ 4392{
2488 void (*cb)(int revents, void *arg) = once->cb; 4393 void (*cb)(int revents, void *arg) = once->cb;
2489 void *arg = once->arg; 4394 void *arg = once->arg;
2490 4395
2491 ev_io_stop (EV_A_ &once->io); 4396 ev_io_stop (EV_A_ &once->io);
2492 ev_timer_stop (EV_A_ &once->to); 4397 ev_timer_stop (EV_A_ &once->to);
2493 ev_free (once); 4398 ev_free (once);
2494 4399
2495 cb (revents, arg); 4400 cb (revents, arg);
2496} 4401}
2497 4402
2498static void 4403static void
2499once_cb_io (EV_P_ ev_io *w, int revents) 4404once_cb_io (EV_P_ ev_io *w, int revents)
2500{ 4405{
2501 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4406 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4407
4408 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2502} 4409}
2503 4410
2504static void 4411static void
2505once_cb_to (EV_P_ ev_timer *w, int revents) 4412once_cb_to (EV_P_ ev_timer *w, int revents)
2506{ 4413{
2507 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4414 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4415
4416 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2508} 4417}
2509 4418
2510void 4419void
2511ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4420ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
2512{ 4421{
2513 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4422 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2514 4423
2515 if (expect_false (!once)) 4424 if (expect_false (!once))
2516 { 4425 {
2517 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4426 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2518 return; 4427 return;
2519 } 4428 }
2520 4429
2521 once->cb = cb; 4430 once->cb = cb;
2522 once->arg = arg; 4431 once->arg = arg;
2534 ev_timer_set (&once->to, timeout, 0.); 4443 ev_timer_set (&once->to, timeout, 0.);
2535 ev_timer_start (EV_A_ &once->to); 4444 ev_timer_start (EV_A_ &once->to);
2536 } 4445 }
2537} 4446}
2538 4447
4448/*****************************************************************************/
4449
4450#if EV_WALK_ENABLE
4451void ecb_cold
4452ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4453{
4454 int i, j;
4455 ev_watcher_list *wl, *wn;
4456
4457 if (types & (EV_IO | EV_EMBED))
4458 for (i = 0; i < anfdmax; ++i)
4459 for (wl = anfds [i].head; wl; )
4460 {
4461 wn = wl->next;
4462
4463#if EV_EMBED_ENABLE
4464 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4465 {
4466 if (types & EV_EMBED)
4467 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4468 }
4469 else
4470#endif
4471#if EV_USE_INOTIFY
4472 if (ev_cb ((ev_io *)wl) == infy_cb)
4473 ;
4474 else
4475#endif
4476 if ((ev_io *)wl != &pipe_w)
4477 if (types & EV_IO)
4478 cb (EV_A_ EV_IO, wl);
4479
4480 wl = wn;
4481 }
4482
4483 if (types & (EV_TIMER | EV_STAT))
4484 for (i = timercnt + HEAP0; i-- > HEAP0; )
4485#if EV_STAT_ENABLE
4486 /*TODO: timer is not always active*/
4487 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4488 {
4489 if (types & EV_STAT)
4490 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4491 }
4492 else
4493#endif
4494 if (types & EV_TIMER)
4495 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4496
4497#if EV_PERIODIC_ENABLE
4498 if (types & EV_PERIODIC)
4499 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4500 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4501#endif
4502
4503#if EV_IDLE_ENABLE
4504 if (types & EV_IDLE)
4505 for (j = NUMPRI; j--; )
4506 for (i = idlecnt [j]; i--; )
4507 cb (EV_A_ EV_IDLE, idles [j][i]);
4508#endif
4509
4510#if EV_FORK_ENABLE
4511 if (types & EV_FORK)
4512 for (i = forkcnt; i--; )
4513 if (ev_cb (forks [i]) != embed_fork_cb)
4514 cb (EV_A_ EV_FORK, forks [i]);
4515#endif
4516
4517#if EV_ASYNC_ENABLE
4518 if (types & EV_ASYNC)
4519 for (i = asynccnt; i--; )
4520 cb (EV_A_ EV_ASYNC, asyncs [i]);
4521#endif
4522
4523#if EV_PREPARE_ENABLE
4524 if (types & EV_PREPARE)
4525 for (i = preparecnt; i--; )
4526# if EV_EMBED_ENABLE
4527 if (ev_cb (prepares [i]) != embed_prepare_cb)
4528# endif
4529 cb (EV_A_ EV_PREPARE, prepares [i]);
4530#endif
4531
4532#if EV_CHECK_ENABLE
4533 if (types & EV_CHECK)
4534 for (i = checkcnt; i--; )
4535 cb (EV_A_ EV_CHECK, checks [i]);
4536#endif
4537
4538#if EV_SIGNAL_ENABLE
4539 if (types & EV_SIGNAL)
4540 for (i = 0; i < EV_NSIG - 1; ++i)
4541 for (wl = signals [i].head; wl; )
4542 {
4543 wn = wl->next;
4544 cb (EV_A_ EV_SIGNAL, wl);
4545 wl = wn;
4546 }
4547#endif
4548
4549#if EV_CHILD_ENABLE
4550 if (types & EV_CHILD)
4551 for (i = (EV_PID_HASHSIZE); i--; )
4552 for (wl = childs [i]; wl; )
4553 {
4554 wn = wl->next;
4555 cb (EV_A_ EV_CHILD, wl);
4556 wl = wn;
4557 }
4558#endif
4559/* EV_STAT 0x00001000 /* stat data changed */
4560/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4561}
4562#endif
4563
2539#if EV_MULTIPLICITY 4564#if EV_MULTIPLICITY
2540 #include "ev_wrap.h" 4565 #include "ev_wrap.h"
2541#endif 4566#endif
2542 4567
2543#ifdef __cplusplus
2544}
2545#endif
2546

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines