ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.131 by root, Fri Nov 23 05:43:45 2007 UTC vs.
Revision 1.441 by root, Wed May 30 15:45:40 2012 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
37# include "config.h" 45# include "config.h"
46# endif
47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
38 67
39# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
42# endif 71# endif
43# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
45# endif 74# endif
46# else 75# else
47# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
48# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
49# endif 78# endif
50# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
51# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
52# endif 81# endif
53# endif 82# endif
54 83
84# if HAVE_NANOSLEEP
55# ifndef EV_USE_SELECT 85# ifndef EV_USE_NANOSLEEP
56# if HAVE_SELECT && HAVE_SYS_SELECT_H 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
57# define EV_USE_SELECT 1
58# else
59# define EV_USE_SELECT 0
60# endif 87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
61# endif 91# endif
62 92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
63# ifndef EV_USE_POLL 94# ifndef EV_USE_SELECT
64# if HAVE_POLL && HAVE_POLL_H 95# define EV_USE_SELECT EV_FEATURE_BACKENDS
65# define EV_USE_POLL 1
66# else
67# define EV_USE_POLL 0
68# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
100# endif
101
102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
108# define EV_USE_POLL 0
69# endif 109# endif
70 110
71# ifndef EV_USE_EPOLL
72# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
73# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
74# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
75# define EV_USE_EPOLL 0
76# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
77# endif 118# endif
78 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
79# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
80# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
81# define EV_USE_KQUEUE 1
82# else
83# define EV_USE_KQUEUE 0
84# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
85# endif 127# endif
86 128
87# ifndef EV_USE_PORT
88# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
89# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
90# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
91# define EV_USE_PORT 0
92# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
93# endif 136# endif
94 137
138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139# ifndef EV_USE_INOTIFY
140# define EV_USE_INOTIFY EV_FEATURE_OS
141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
95#endif 145# endif
96 146
97#include <math.h> 147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
98#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
99#include <fcntl.h> 169#include <fcntl.h>
100#include <stddef.h> 170#include <stddef.h>
101 171
102#include <stdio.h> 172#include <stdio.h>
103 173
104#include <assert.h> 174#include <assert.h>
105#include <errno.h> 175#include <errno.h>
106#include <sys/types.h> 176#include <sys/types.h>
107#include <time.h> 177#include <time.h>
178#include <limits.h>
108 179
109#include <signal.h> 180#include <signal.h>
110 181
182#ifdef EV_H
183# include EV_H
184#else
185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
197#endif
198
111#ifndef _WIN32 199#ifndef _WIN32
112# include <unistd.h>
113# include <sys/time.h> 200# include <sys/time.h>
114# include <sys/wait.h> 201# include <sys/wait.h>
202# include <unistd.h>
115#else 203#else
204# include <io.h>
116# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
117# include <windows.h> 207# include <windows.h>
118# ifndef EV_SELECT_IS_WINSOCKET 208# ifndef EV_SELECT_IS_WINSOCKET
119# define EV_SELECT_IS_WINSOCKET 1 209# define EV_SELECT_IS_WINSOCKET 1
120# endif 210# endif
211# undef EV_AVOID_STDIO
212#endif
213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
221
222/* this block tries to deduce configuration from header-defined symbols and defaults */
223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# error "unable to find value for NSIG, please report"
247/* to make it compile regardless, just remove the above line, */
248/* but consider reporting it, too! :) */
249# define EV_NSIG 65
250#endif
251
252#ifndef EV_USE_FLOOR
253# define EV_USE_FLOOR 0
254#endif
255
256#ifndef EV_USE_CLOCK_SYSCALL
257# if __linux && __GLIBC__ >= 2
258# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
259# else
260# define EV_USE_CLOCK_SYSCALL 0
121#endif 261# endif
122 262#endif
123/**/
124 263
125#ifndef EV_USE_MONOTONIC 264#ifndef EV_USE_MONOTONIC
265# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
266# define EV_USE_MONOTONIC EV_FEATURE_OS
267# else
126# define EV_USE_MONOTONIC 0 268# define EV_USE_MONOTONIC 0
269# endif
127#endif 270#endif
128 271
129#ifndef EV_USE_REALTIME 272#ifndef EV_USE_REALTIME
130# define EV_USE_REALTIME 0 273# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
274#endif
275
276#ifndef EV_USE_NANOSLEEP
277# if _POSIX_C_SOURCE >= 199309L
278# define EV_USE_NANOSLEEP EV_FEATURE_OS
279# else
280# define EV_USE_NANOSLEEP 0
281# endif
131#endif 282#endif
132 283
133#ifndef EV_USE_SELECT 284#ifndef EV_USE_SELECT
134# define EV_USE_SELECT 1 285# define EV_USE_SELECT EV_FEATURE_BACKENDS
135#endif 286#endif
136 287
137#ifndef EV_USE_POLL 288#ifndef EV_USE_POLL
138# ifdef _WIN32 289# ifdef _WIN32
139# define EV_USE_POLL 0 290# define EV_USE_POLL 0
140# else 291# else
141# define EV_USE_POLL 1 292# define EV_USE_POLL EV_FEATURE_BACKENDS
142# endif 293# endif
143#endif 294#endif
144 295
145#ifndef EV_USE_EPOLL 296#ifndef EV_USE_EPOLL
297# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
298# define EV_USE_EPOLL EV_FEATURE_BACKENDS
299# else
146# define EV_USE_EPOLL 0 300# define EV_USE_EPOLL 0
301# endif
147#endif 302#endif
148 303
149#ifndef EV_USE_KQUEUE 304#ifndef EV_USE_KQUEUE
150# define EV_USE_KQUEUE 0 305# define EV_USE_KQUEUE 0
151#endif 306#endif
152 307
153#ifndef EV_USE_PORT 308#ifndef EV_USE_PORT
154# define EV_USE_PORT 0 309# define EV_USE_PORT 0
155#endif 310#endif
156 311
157/**/ 312#ifndef EV_USE_INOTIFY
313# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
314# define EV_USE_INOTIFY EV_FEATURE_OS
315# else
316# define EV_USE_INOTIFY 0
317# endif
318#endif
319
320#ifndef EV_PID_HASHSIZE
321# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
322#endif
323
324#ifndef EV_INOTIFY_HASHSIZE
325# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
326#endif
327
328#ifndef EV_USE_EVENTFD
329# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
330# define EV_USE_EVENTFD EV_FEATURE_OS
331# else
332# define EV_USE_EVENTFD 0
333# endif
334#endif
335
336#ifndef EV_USE_SIGNALFD
337# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
338# define EV_USE_SIGNALFD EV_FEATURE_OS
339# else
340# define EV_USE_SIGNALFD 0
341# endif
342#endif
343
344#if 0 /* debugging */
345# define EV_VERIFY 3
346# define EV_USE_4HEAP 1
347# define EV_HEAP_CACHE_AT 1
348#endif
349
350#ifndef EV_VERIFY
351# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
352#endif
353
354#ifndef EV_USE_4HEAP
355# define EV_USE_4HEAP EV_FEATURE_DATA
356#endif
357
358#ifndef EV_HEAP_CACHE_AT
359# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
360#endif
361
362/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
363/* which makes programs even slower. might work on other unices, too. */
364#if EV_USE_CLOCK_SYSCALL
365# include <sys/syscall.h>
366# ifdef SYS_clock_gettime
367# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
368# undef EV_USE_MONOTONIC
369# define EV_USE_MONOTONIC 1
370# else
371# undef EV_USE_CLOCK_SYSCALL
372# define EV_USE_CLOCK_SYSCALL 0
373# endif
374#endif
375
376/* this block fixes any misconfiguration where we know we run into trouble otherwise */
377
378#ifdef _AIX
379/* AIX has a completely broken poll.h header */
380# undef EV_USE_POLL
381# define EV_USE_POLL 0
382#endif
158 383
159#ifndef CLOCK_MONOTONIC 384#ifndef CLOCK_MONOTONIC
160# undef EV_USE_MONOTONIC 385# undef EV_USE_MONOTONIC
161# define EV_USE_MONOTONIC 0 386# define EV_USE_MONOTONIC 0
162#endif 387#endif
164#ifndef CLOCK_REALTIME 389#ifndef CLOCK_REALTIME
165# undef EV_USE_REALTIME 390# undef EV_USE_REALTIME
166# define EV_USE_REALTIME 0 391# define EV_USE_REALTIME 0
167#endif 392#endif
168 393
169#if EV_SELECT_IS_WINSOCKET 394#if !EV_STAT_ENABLE
395# undef EV_USE_INOTIFY
396# define EV_USE_INOTIFY 0
397#endif
398
399#if !EV_USE_NANOSLEEP
400/* hp-ux has it in sys/time.h, which we unconditionally include above */
401# if !defined _WIN32 && !defined __hpux
402# include <sys/select.h>
403# endif
404#endif
405
406#if EV_USE_INOTIFY
407# include <sys/statfs.h>
408# include <sys/inotify.h>
409/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
410# ifndef IN_DONT_FOLLOW
411# undef EV_USE_INOTIFY
412# define EV_USE_INOTIFY 0
413# endif
414#endif
415
416#if EV_USE_EVENTFD
417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
170# include <winsock.h> 418# include <stdint.h>
419# ifndef EFD_NONBLOCK
420# define EFD_NONBLOCK O_NONBLOCK
421# endif
422# ifndef EFD_CLOEXEC
423# ifdef O_CLOEXEC
424# define EFD_CLOEXEC O_CLOEXEC
425# else
426# define EFD_CLOEXEC 02000000
427# endif
428# endif
429EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
430#endif
431
432#if EV_USE_SIGNALFD
433/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
434# include <stdint.h>
435# ifndef SFD_NONBLOCK
436# define SFD_NONBLOCK O_NONBLOCK
437# endif
438# ifndef SFD_CLOEXEC
439# ifdef O_CLOEXEC
440# define SFD_CLOEXEC O_CLOEXEC
441# else
442# define SFD_CLOEXEC 02000000
443# endif
444# endif
445EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
446
447struct signalfd_siginfo
448{
449 uint32_t ssi_signo;
450 char pad[128 - sizeof (uint32_t)];
451};
171#endif 452#endif
172 453
173/**/ 454/**/
455
456#if EV_VERIFY >= 3
457# define EV_FREQUENT_CHECK ev_verify (EV_A)
458#else
459# define EV_FREQUENT_CHECK do { } while (0)
460#endif
461
462/*
463 * This is used to work around floating point rounding problems.
464 * This value is good at least till the year 4000.
465 */
466#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
467/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
174 468
175#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 469#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
176#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 470#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
177#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
178/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
179 471
472#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
473#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
474
475/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
476/* ECB.H BEGIN */
477/*
478 * libecb - http://software.schmorp.de/pkg/libecb
479 *
480 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
481 * Copyright (©) 2011 Emanuele Giaquinta
482 * All rights reserved.
483 *
484 * Redistribution and use in source and binary forms, with or without modifica-
485 * tion, are permitted provided that the following conditions are met:
486 *
487 * 1. Redistributions of source code must retain the above copyright notice,
488 * this list of conditions and the following disclaimer.
489 *
490 * 2. Redistributions in binary form must reproduce the above copyright
491 * notice, this list of conditions and the following disclaimer in the
492 * documentation and/or other materials provided with the distribution.
493 *
494 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
495 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
496 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
497 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
498 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
499 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
500 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
501 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
502 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
503 * OF THE POSSIBILITY OF SUCH DAMAGE.
504 */
505
180#ifdef EV_H 506#ifndef ECB_H
181# include EV_H 507#define ECB_H
508
509/* 16 bits major, 16 bits minor */
510#define ECB_VERSION 0x00010001
511
512#ifdef _WIN32
513 typedef signed char int8_t;
514 typedef unsigned char uint8_t;
515 typedef signed short int16_t;
516 typedef unsigned short uint16_t;
517 typedef signed int int32_t;
518 typedef unsigned int uint32_t;
519 #if __GNUC__
520 typedef signed long long int64_t;
521 typedef unsigned long long uint64_t;
522 #else /* _MSC_VER || __BORLANDC__ */
523 typedef signed __int64 int64_t;
524 typedef unsigned __int64 uint64_t;
525 #endif
526 #ifdef _WIN64
527 #define ECB_PTRSIZE 8
528 typedef uint64_t uintptr_t;
529 typedef int64_t intptr_t;
530 #else
531 #define ECB_PTRSIZE 4
532 typedef uint32_t uintptr_t;
533 typedef int32_t intptr_t;
534 #endif
535 typedef intptr_t ptrdiff_t;
182#else 536#else
183# include "ev.h" 537 #include <inttypes.h>
538 #if UINTMAX_MAX > 0xffffffffU
539 #define ECB_PTRSIZE 8
540 #else
541 #define ECB_PTRSIZE 4
184#endif 542 #endif
543#endif
185 544
186#if __GNUC__ >= 3 545/* many compilers define _GNUC_ to some versions but then only implement
187# define expect(expr,value) __builtin_expect ((expr),(value)) 546 * what their idiot authors think are the "more important" extensions,
188# define inline static inline 547 * causing enormous grief in return for some better fake benchmark numbers.
548 * or so.
549 * we try to detect these and simply assume they are not gcc - if they have
550 * an issue with that they should have done it right in the first place.
551 */
552#ifndef ECB_GCC_VERSION
553 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
554 #define ECB_GCC_VERSION(major,minor) 0
555 #else
556 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
557 #endif
558#endif
559
560#define ECB_C (__STDC__+0) /* this assumes that __STDC__ is either empty or a number */
561#define ECB_C99 (__STDC_VERSION__ >= 199901L)
562#define ECB_C11 (__STDC_VERSION__ >= 201112L)
563#define ECB_CPP (__cplusplus+0)
564#define ECB_CPP98 (__cplusplus >= 199711L)
565#define ECB_CPP11 (__cplusplus >= 201103L)
566
567/*****************************************************************************/
568
569/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
570/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
571
572#if ECB_NO_THREADS
573 #define ECB_NO_SMP 1
574#endif
575
576#if ECB_NO_SMP
577 #define ECB_MEMORY_FENCE do { } while (0)
578#endif
579
580#ifndef ECB_MEMORY_FENCE
581 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
582 #if __i386 || __i386__
583 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
584 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
585 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
586 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
587 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
588 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
589 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
590 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
591 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
592 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
593 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
594 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
595 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
596 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
597 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
598 #elif __sparc || __sparc__
599 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
600 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
601 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
602 #elif defined __s390__ || defined __s390x__
603 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
604 #elif defined __mips__
605 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
606 #elif defined __alpha__
607 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
608 #elif defined __hppa__
609 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
610 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
611 #elif defined __ia64__
612 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
613 #endif
614 #endif
615#endif
616
617#ifndef ECB_MEMORY_FENCE
618 #if ECB_GCC_VERSION(4,7)
619 /* see comment below about the C11 memory model. in short - avoid */
620 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
621 #elif defined __clang && __has_feature (cxx_atomic)
622 /* see above */
623 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
624 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
625 #define ECB_MEMORY_FENCE __sync_synchronize ()
626 #elif _MSC_VER >= 1400 /* VC++ 2005 */
627 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
628 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
629 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
630 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
631 #elif defined _WIN32
632 #include <WinNT.h>
633 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
634 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
635 #include <mbarrier.h>
636 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
637 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
638 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
639 #elif __xlC__
640 #define ECB_MEMORY_FENCE __sync ()
641 #endif
642#endif
643
644#ifndef ECB_MEMORY_FENCE
645 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
646 /* we assume that these memory fences work on all variables/all memory accesses, */
647 /* not just C11 atomics and atomic accesses */
648 #include <stdatomic.h>
649 /* unfortunately, the C11 memory model seems to be very limited, and unable to express */
650 /* simple barrier semantics. That means we need to take out thor's hammer. */
651 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
652 #endif
653#endif
654
655#ifndef ECB_MEMORY_FENCE
656 #if !ECB_AVOID_PTHREADS
657 /*
658 * if you get undefined symbol references to pthread_mutex_lock,
659 * or failure to find pthread.h, then you should implement
660 * the ECB_MEMORY_FENCE operations for your cpu/compiler
661 * OR provide pthread.h and link against the posix thread library
662 * of your system.
663 */
664 #include <pthread.h>
665 #define ECB_NEEDS_PTHREADS 1
666 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
667
668 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
669 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
670 #endif
671#endif
672
673#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
674 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
675#endif
676
677#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
678 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
679#endif
680
681/*****************************************************************************/
682
683#if __cplusplus
684 #define ecb_inline static inline
685#elif ECB_GCC_VERSION(2,5)
686 #define ecb_inline static __inline__
687#elif ECB_C99
688 #define ecb_inline static inline
189#else 689#else
690 #define ecb_inline static
691#endif
692
693#if ECB_GCC_VERSION(3,3)
694 #define ecb_restrict __restrict__
695#elif ECB_C99
696 #define ecb_restrict restrict
697#else
698 #define ecb_restrict
699#endif
700
701typedef int ecb_bool;
702
703#define ECB_CONCAT_(a, b) a ## b
704#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
705#define ECB_STRINGIFY_(a) # a
706#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
707
708#define ecb_function_ ecb_inline
709
710#if ECB_GCC_VERSION(3,1)
711 #define ecb_attribute(attrlist) __attribute__(attrlist)
712 #define ecb_is_constant(expr) __builtin_constant_p (expr)
713 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
714 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
715#else
716 #define ecb_attribute(attrlist)
717 #define ecb_is_constant(expr) 0
190# define expect(expr,value) (expr) 718 #define ecb_expect(expr,value) (expr)
191# define inline static 719 #define ecb_prefetch(addr,rw,locality)
192#endif 720#endif
193 721
722/* no emulation for ecb_decltype */
723#if ECB_GCC_VERSION(4,5)
724 #define ecb_decltype(x) __decltype(x)
725#elif ECB_GCC_VERSION(3,0)
726 #define ecb_decltype(x) __typeof(x)
727#endif
728
729#define ecb_noinline ecb_attribute ((__noinline__))
730#define ecb_unused ecb_attribute ((__unused__))
731#define ecb_const ecb_attribute ((__const__))
732#define ecb_pure ecb_attribute ((__pure__))
733
734#if ECB_C11
735 #define ecb_noreturn _Noreturn
736#else
737 #define ecb_noreturn ecb_attribute ((__noreturn__))
738#endif
739
740#if ECB_GCC_VERSION(4,3)
741 #define ecb_artificial ecb_attribute ((__artificial__))
742 #define ecb_hot ecb_attribute ((__hot__))
743 #define ecb_cold ecb_attribute ((__cold__))
744#else
745 #define ecb_artificial
746 #define ecb_hot
747 #define ecb_cold
748#endif
749
750/* put around conditional expressions if you are very sure that the */
751/* expression is mostly true or mostly false. note that these return */
752/* booleans, not the expression. */
194#define expect_false(expr) expect ((expr) != 0, 0) 753#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
195#define expect_true(expr) expect ((expr) != 0, 1) 754#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
755/* for compatibility to the rest of the world */
756#define ecb_likely(expr) ecb_expect_true (expr)
757#define ecb_unlikely(expr) ecb_expect_false (expr)
196 758
759/* count trailing zero bits and count # of one bits */
760#if ECB_GCC_VERSION(3,4)
761 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
762 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
763 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
764 #define ecb_ctz32(x) __builtin_ctz (x)
765 #define ecb_ctz64(x) __builtin_ctzll (x)
766 #define ecb_popcount32(x) __builtin_popcount (x)
767 /* no popcountll */
768#else
769 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
770 ecb_function_ int
771 ecb_ctz32 (uint32_t x)
772 {
773 int r = 0;
774
775 x &= ~x + 1; /* this isolates the lowest bit */
776
777#if ECB_branchless_on_i386
778 r += !!(x & 0xaaaaaaaa) << 0;
779 r += !!(x & 0xcccccccc) << 1;
780 r += !!(x & 0xf0f0f0f0) << 2;
781 r += !!(x & 0xff00ff00) << 3;
782 r += !!(x & 0xffff0000) << 4;
783#else
784 if (x & 0xaaaaaaaa) r += 1;
785 if (x & 0xcccccccc) r += 2;
786 if (x & 0xf0f0f0f0) r += 4;
787 if (x & 0xff00ff00) r += 8;
788 if (x & 0xffff0000) r += 16;
789#endif
790
791 return r;
792 }
793
794 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
795 ecb_function_ int
796 ecb_ctz64 (uint64_t x)
797 {
798 int shift = x & 0xffffffffU ? 0 : 32;
799 return ecb_ctz32 (x >> shift) + shift;
800 }
801
802 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
803 ecb_function_ int
804 ecb_popcount32 (uint32_t x)
805 {
806 x -= (x >> 1) & 0x55555555;
807 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
808 x = ((x >> 4) + x) & 0x0f0f0f0f;
809 x *= 0x01010101;
810
811 return x >> 24;
812 }
813
814 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
815 ecb_function_ int ecb_ld32 (uint32_t x)
816 {
817 int r = 0;
818
819 if (x >> 16) { x >>= 16; r += 16; }
820 if (x >> 8) { x >>= 8; r += 8; }
821 if (x >> 4) { x >>= 4; r += 4; }
822 if (x >> 2) { x >>= 2; r += 2; }
823 if (x >> 1) { r += 1; }
824
825 return r;
826 }
827
828 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
829 ecb_function_ int ecb_ld64 (uint64_t x)
830 {
831 int r = 0;
832
833 if (x >> 32) { x >>= 32; r += 32; }
834
835 return r + ecb_ld32 (x);
836 }
837#endif
838
839ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
840ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
841ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
842ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
843
844ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
845ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
846{
847 return ( (x * 0x0802U & 0x22110U)
848 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
849}
850
851ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
852ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
853{
854 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
855 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
856 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
857 x = ( x >> 8 ) | ( x << 8);
858
859 return x;
860}
861
862ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
863ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
864{
865 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
866 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
867 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
868 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
869 x = ( x >> 16 ) | ( x << 16);
870
871 return x;
872}
873
874/* popcount64 is only available on 64 bit cpus as gcc builtin */
875/* so for this version we are lazy */
876ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
877ecb_function_ int
878ecb_popcount64 (uint64_t x)
879{
880 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
881}
882
883ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
884ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
885ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
886ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
887ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
888ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
889ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
890ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
891
892ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
893ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
894ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
895ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
896ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
897ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
898ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
899ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
900
901#if ECB_GCC_VERSION(4,3)
902 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
903 #define ecb_bswap32(x) __builtin_bswap32 (x)
904 #define ecb_bswap64(x) __builtin_bswap64 (x)
905#else
906 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
907 ecb_function_ uint16_t
908 ecb_bswap16 (uint16_t x)
909 {
910 return ecb_rotl16 (x, 8);
911 }
912
913 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
914 ecb_function_ uint32_t
915 ecb_bswap32 (uint32_t x)
916 {
917 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
918 }
919
920 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
921 ecb_function_ uint64_t
922 ecb_bswap64 (uint64_t x)
923 {
924 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
925 }
926#endif
927
928#if ECB_GCC_VERSION(4,5)
929 #define ecb_unreachable() __builtin_unreachable ()
930#else
931 /* this seems to work fine, but gcc always emits a warning for it :/ */
932 ecb_inline void ecb_unreachable (void) ecb_noreturn;
933 ecb_inline void ecb_unreachable (void) { }
934#endif
935
936/* try to tell the compiler that some condition is definitely true */
937#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
938
939ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
940ecb_inline unsigned char
941ecb_byteorder_helper (void)
942{
943 const uint32_t u = 0x11223344;
944 return *(unsigned char *)&u;
945}
946
947ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
948ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
949ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
950ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
951
952#if ECB_GCC_VERSION(3,0) || ECB_C99
953 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
954#else
955 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
956#endif
957
958#if __cplusplus
959 template<typename T>
960 static inline T ecb_div_rd (T val, T div)
961 {
962 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
963 }
964 template<typename T>
965 static inline T ecb_div_ru (T val, T div)
966 {
967 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
968 }
969#else
970 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
971 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
972#endif
973
974#if ecb_cplusplus_does_not_suck
975 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
976 template<typename T, int N>
977 static inline int ecb_array_length (const T (&arr)[N])
978 {
979 return N;
980 }
981#else
982 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
983#endif
984
985#endif
986
987/* ECB.H END */
988
989#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
990/* if your architecture doesn't need memory fences, e.g. because it is
991 * single-cpu/core, or if you use libev in a project that doesn't use libev
992 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
993 * libev, in which cases the memory fences become nops.
994 * alternatively, you can remove this #error and link against libpthread,
995 * which will then provide the memory fences.
996 */
997# error "memory fences not defined for your architecture, please report"
998#endif
999
1000#ifndef ECB_MEMORY_FENCE
1001# define ECB_MEMORY_FENCE do { } while (0)
1002# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1003# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1004#endif
1005
1006#define expect_false(cond) ecb_expect_false (cond)
1007#define expect_true(cond) ecb_expect_true (cond)
1008#define noinline ecb_noinline
1009
1010#define inline_size ecb_inline
1011
1012#if EV_FEATURE_CODE
1013# define inline_speed ecb_inline
1014#else
1015# define inline_speed static noinline
1016#endif
1017
197#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 1018#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1019
1020#if EV_MINPRI == EV_MAXPRI
1021# define ABSPRI(w) (((W)w), 0)
1022#else
198#define ABSPRI(w) ((w)->priority - EV_MINPRI) 1023# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1024#endif
199 1025
200#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 1026#define EMPTY /* required for microsofts broken pseudo-c compiler */
201#define EMPTY2(a,b) /* used to suppress some warnings */ 1027#define EMPTY2(a,b) /* used to suppress some warnings */
202 1028
203typedef struct ev_watcher *W; 1029typedef ev_watcher *W;
204typedef struct ev_watcher_list *WL; 1030typedef ev_watcher_list *WL;
205typedef struct ev_watcher_time *WT; 1031typedef ev_watcher_time *WT;
206 1032
1033#define ev_active(w) ((W)(w))->active
1034#define ev_at(w) ((WT)(w))->at
1035
1036#if EV_USE_REALTIME
1037/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1038/* giving it a reasonably high chance of working on typical architectures */
1039static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1040#endif
1041
1042#if EV_USE_MONOTONIC
207static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1043static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1044#endif
1045
1046#ifndef EV_FD_TO_WIN32_HANDLE
1047# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1048#endif
1049#ifndef EV_WIN32_HANDLE_TO_FD
1050# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1051#endif
1052#ifndef EV_WIN32_CLOSE_FD
1053# define EV_WIN32_CLOSE_FD(fd) close (fd)
1054#endif
208 1055
209#ifdef _WIN32 1056#ifdef _WIN32
210# include "ev_win32.c" 1057# include "ev_win32.c"
211#endif 1058#endif
212 1059
213/*****************************************************************************/ 1060/*****************************************************************************/
214 1061
1062/* define a suitable floor function (only used by periodics atm) */
1063
1064#if EV_USE_FLOOR
1065# include <math.h>
1066# define ev_floor(v) floor (v)
1067#else
1068
1069#include <float.h>
1070
1071/* a floor() replacement function, should be independent of ev_tstamp type */
1072static ev_tstamp noinline
1073ev_floor (ev_tstamp v)
1074{
1075 /* the choice of shift factor is not terribly important */
1076#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1077 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1078#else
1079 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1080#endif
1081
1082 /* argument too large for an unsigned long? */
1083 if (expect_false (v >= shift))
1084 {
1085 ev_tstamp f;
1086
1087 if (v == v - 1.)
1088 return v; /* very large number */
1089
1090 f = shift * ev_floor (v * (1. / shift));
1091 return f + ev_floor (v - f);
1092 }
1093
1094 /* special treatment for negative args? */
1095 if (expect_false (v < 0.))
1096 {
1097 ev_tstamp f = -ev_floor (-v);
1098
1099 return f - (f == v ? 0 : 1);
1100 }
1101
1102 /* fits into an unsigned long */
1103 return (unsigned long)v;
1104}
1105
1106#endif
1107
1108/*****************************************************************************/
1109
1110#ifdef __linux
1111# include <sys/utsname.h>
1112#endif
1113
1114static unsigned int noinline ecb_cold
1115ev_linux_version (void)
1116{
1117#ifdef __linux
1118 unsigned int v = 0;
1119 struct utsname buf;
1120 int i;
1121 char *p = buf.release;
1122
1123 if (uname (&buf))
1124 return 0;
1125
1126 for (i = 3+1; --i; )
1127 {
1128 unsigned int c = 0;
1129
1130 for (;;)
1131 {
1132 if (*p >= '0' && *p <= '9')
1133 c = c * 10 + *p++ - '0';
1134 else
1135 {
1136 p += *p == '.';
1137 break;
1138 }
1139 }
1140
1141 v = (v << 8) | c;
1142 }
1143
1144 return v;
1145#else
1146 return 0;
1147#endif
1148}
1149
1150/*****************************************************************************/
1151
1152#if EV_AVOID_STDIO
1153static void noinline ecb_cold
1154ev_printerr (const char *msg)
1155{
1156 write (STDERR_FILENO, msg, strlen (msg));
1157}
1158#endif
1159
215static void (*syserr_cb)(const char *msg); 1160static void (*syserr_cb)(const char *msg) EV_THROW;
216 1161
1162void ecb_cold
217void ev_set_syserr_cb (void (*cb)(const char *msg)) 1163ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
218{ 1164{
219 syserr_cb = cb; 1165 syserr_cb = cb;
220} 1166}
221 1167
222static void 1168static void noinline ecb_cold
223syserr (const char *msg) 1169ev_syserr (const char *msg)
224{ 1170{
225 if (!msg) 1171 if (!msg)
226 msg = "(libev) system error"; 1172 msg = "(libev) system error";
227 1173
228 if (syserr_cb) 1174 if (syserr_cb)
229 syserr_cb (msg); 1175 syserr_cb (msg);
230 else 1176 else
231 { 1177 {
1178#if EV_AVOID_STDIO
1179 ev_printerr (msg);
1180 ev_printerr (": ");
1181 ev_printerr (strerror (errno));
1182 ev_printerr ("\n");
1183#else
232 perror (msg); 1184 perror (msg);
1185#endif
233 abort (); 1186 abort ();
234 } 1187 }
235} 1188}
236 1189
1190static void *
1191ev_realloc_emul (void *ptr, long size) EV_THROW
1192{
1193#if __GLIBC__
1194 return realloc (ptr, size);
1195#else
1196 /* some systems, notably openbsd and darwin, fail to properly
1197 * implement realloc (x, 0) (as required by both ansi c-89 and
1198 * the single unix specification, so work around them here.
1199 */
1200
1201 if (size)
1202 return realloc (ptr, size);
1203
1204 free (ptr);
1205 return 0;
1206#endif
1207}
1208
237static void *(*alloc)(void *ptr, long size); 1209static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
238 1210
1211void ecb_cold
239void ev_set_allocator (void *(*cb)(void *ptr, long size)) 1212ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
240{ 1213{
241 alloc = cb; 1214 alloc = cb;
242} 1215}
243 1216
244static void * 1217inline_speed void *
245ev_realloc (void *ptr, long size) 1218ev_realloc (void *ptr, long size)
246{ 1219{
247 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1220 ptr = alloc (ptr, size);
248 1221
249 if (!ptr && size) 1222 if (!ptr && size)
250 { 1223 {
1224#if EV_AVOID_STDIO
1225 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1226#else
251 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1227 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1228#endif
252 abort (); 1229 abort ();
253 } 1230 }
254 1231
255 return ptr; 1232 return ptr;
256} 1233}
258#define ev_malloc(size) ev_realloc (0, (size)) 1235#define ev_malloc(size) ev_realloc (0, (size))
259#define ev_free(ptr) ev_realloc ((ptr), 0) 1236#define ev_free(ptr) ev_realloc ((ptr), 0)
260 1237
261/*****************************************************************************/ 1238/*****************************************************************************/
262 1239
1240/* set in reify when reification needed */
1241#define EV_ANFD_REIFY 1
1242
1243/* file descriptor info structure */
263typedef struct 1244typedef struct
264{ 1245{
265 WL head; 1246 WL head;
266 unsigned char events; 1247 unsigned char events; /* the events watched for */
1248 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1249 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
267 unsigned char reify; 1250 unsigned char unused;
1251#if EV_USE_EPOLL
1252 unsigned int egen; /* generation counter to counter epoll bugs */
1253#endif
268#if EV_SELECT_IS_WINSOCKET 1254#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
269 SOCKET handle; 1255 SOCKET handle;
270#endif 1256#endif
1257#if EV_USE_IOCP
1258 OVERLAPPED or, ow;
1259#endif
271} ANFD; 1260} ANFD;
272 1261
1262/* stores the pending event set for a given watcher */
273typedef struct 1263typedef struct
274{ 1264{
275 W w; 1265 W w;
276 int events; 1266 int events; /* the pending event set for the given watcher */
277} ANPENDING; 1267} ANPENDING;
1268
1269#if EV_USE_INOTIFY
1270/* hash table entry per inotify-id */
1271typedef struct
1272{
1273 WL head;
1274} ANFS;
1275#endif
1276
1277/* Heap Entry */
1278#if EV_HEAP_CACHE_AT
1279 /* a heap element */
1280 typedef struct {
1281 ev_tstamp at;
1282 WT w;
1283 } ANHE;
1284
1285 #define ANHE_w(he) (he).w /* access watcher, read-write */
1286 #define ANHE_at(he) (he).at /* access cached at, read-only */
1287 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1288#else
1289 /* a heap element */
1290 typedef WT ANHE;
1291
1292 #define ANHE_w(he) (he)
1293 #define ANHE_at(he) (he)->at
1294 #define ANHE_at_cache(he)
1295#endif
278 1296
279#if EV_MULTIPLICITY 1297#if EV_MULTIPLICITY
280 1298
281 struct ev_loop 1299 struct ev_loop
282 { 1300 {
287 #undef VAR 1305 #undef VAR
288 }; 1306 };
289 #include "ev_wrap.h" 1307 #include "ev_wrap.h"
290 1308
291 static struct ev_loop default_loop_struct; 1309 static struct ev_loop default_loop_struct;
292 struct ev_loop *ev_default_loop_ptr; 1310 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
293 1311
294#else 1312#else
295 1313
296 ev_tstamp ev_rt_now; 1314 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
297 #define VAR(name,decl) static decl; 1315 #define VAR(name,decl) static decl;
298 #include "ev_vars.h" 1316 #include "ev_vars.h"
299 #undef VAR 1317 #undef VAR
300 1318
301 static int ev_default_loop_ptr; 1319 static int ev_default_loop_ptr;
302 1320
303#endif 1321#endif
304 1322
1323#if EV_FEATURE_API
1324# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1325# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1326# define EV_INVOKE_PENDING invoke_cb (EV_A)
1327#else
1328# define EV_RELEASE_CB (void)0
1329# define EV_ACQUIRE_CB (void)0
1330# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1331#endif
1332
1333#define EVBREAK_RECURSE 0x80
1334
305/*****************************************************************************/ 1335/*****************************************************************************/
306 1336
1337#ifndef EV_HAVE_EV_TIME
307ev_tstamp 1338ev_tstamp
308ev_time (void) 1339ev_time (void) EV_THROW
309{ 1340{
310#if EV_USE_REALTIME 1341#if EV_USE_REALTIME
1342 if (expect_true (have_realtime))
1343 {
311 struct timespec ts; 1344 struct timespec ts;
312 clock_gettime (CLOCK_REALTIME, &ts); 1345 clock_gettime (CLOCK_REALTIME, &ts);
313 return ts.tv_sec + ts.tv_nsec * 1e-9; 1346 return ts.tv_sec + ts.tv_nsec * 1e-9;
314#else 1347 }
1348#endif
1349
315 struct timeval tv; 1350 struct timeval tv;
316 gettimeofday (&tv, 0); 1351 gettimeofday (&tv, 0);
317 return tv.tv_sec + tv.tv_usec * 1e-6; 1352 return tv.tv_sec + tv.tv_usec * 1e-6;
318#endif
319} 1353}
1354#endif
320 1355
321inline ev_tstamp 1356inline_size ev_tstamp
322get_clock (void) 1357get_clock (void)
323{ 1358{
324#if EV_USE_MONOTONIC 1359#if EV_USE_MONOTONIC
325 if (expect_true (have_monotonic)) 1360 if (expect_true (have_monotonic))
326 { 1361 {
333 return ev_time (); 1368 return ev_time ();
334} 1369}
335 1370
336#if EV_MULTIPLICITY 1371#if EV_MULTIPLICITY
337ev_tstamp 1372ev_tstamp
338ev_now (EV_P) 1373ev_now (EV_P) EV_THROW
339{ 1374{
340 return ev_rt_now; 1375 return ev_rt_now;
341} 1376}
342#endif 1377#endif
343 1378
344#define array_roundsize(type,n) (((n) | 4) & ~3) 1379void
1380ev_sleep (ev_tstamp delay) EV_THROW
1381{
1382 if (delay > 0.)
1383 {
1384#if EV_USE_NANOSLEEP
1385 struct timespec ts;
1386
1387 EV_TS_SET (ts, delay);
1388 nanosleep (&ts, 0);
1389#elif defined _WIN32
1390 Sleep ((unsigned long)(delay * 1e3));
1391#else
1392 struct timeval tv;
1393
1394 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1395 /* something not guaranteed by newer posix versions, but guaranteed */
1396 /* by older ones */
1397 EV_TV_SET (tv, delay);
1398 select (0, 0, 0, 0, &tv);
1399#endif
1400 }
1401}
1402
1403/*****************************************************************************/
1404
1405#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1406
1407/* find a suitable new size for the given array, */
1408/* hopefully by rounding to a nice-to-malloc size */
1409inline_size int
1410array_nextsize (int elem, int cur, int cnt)
1411{
1412 int ncur = cur + 1;
1413
1414 do
1415 ncur <<= 1;
1416 while (cnt > ncur);
1417
1418 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1419 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1420 {
1421 ncur *= elem;
1422 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1423 ncur = ncur - sizeof (void *) * 4;
1424 ncur /= elem;
1425 }
1426
1427 return ncur;
1428}
1429
1430static void * noinline ecb_cold
1431array_realloc (int elem, void *base, int *cur, int cnt)
1432{
1433 *cur = array_nextsize (elem, *cur, cnt);
1434 return ev_realloc (base, elem * *cur);
1435}
1436
1437#define array_init_zero(base,count) \
1438 memset ((void *)(base), 0, sizeof (*(base)) * (count))
345 1439
346#define array_needsize(type,base,cur,cnt,init) \ 1440#define array_needsize(type,base,cur,cnt,init) \
347 if (expect_false ((cnt) > cur)) \ 1441 if (expect_false ((cnt) > (cur))) \
348 { \ 1442 { \
349 int newcnt = cur; \ 1443 int ecb_unused ocur_ = (cur); \
350 do \ 1444 (base) = (type *)array_realloc \
351 { \ 1445 (sizeof (type), (base), &(cur), (cnt)); \
352 newcnt = array_roundsize (type, newcnt << 1); \ 1446 init ((base) + (ocur_), (cur) - ocur_); \
353 } \
354 while ((cnt) > newcnt); \
355 \
356 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
357 init (base + cur, newcnt - cur); \
358 cur = newcnt; \
359 } 1447 }
360 1448
1449#if 0
361#define array_slim(type,stem) \ 1450#define array_slim(type,stem) \
362 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 1451 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
363 { \ 1452 { \
364 stem ## max = array_roundsize (stem ## cnt >> 1); \ 1453 stem ## max = array_roundsize (stem ## cnt >> 1); \
365 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 1454 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
366 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1455 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
367 } 1456 }
1457#endif
368 1458
369#define array_free(stem, idx) \ 1459#define array_free(stem, idx) \
370 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1460 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
371 1461
372/*****************************************************************************/ 1462/*****************************************************************************/
373 1463
374static void 1464/* dummy callback for pending events */
375anfds_init (ANFD *base, int count) 1465static void noinline
1466pendingcb (EV_P_ ev_prepare *w, int revents)
376{ 1467{
377 while (count--)
378 {
379 base->head = 0;
380 base->events = EV_NONE;
381 base->reify = 0;
382
383 ++base;
384 }
385} 1468}
386 1469
387void 1470void noinline
388ev_feed_event (EV_P_ void *w, int revents) 1471ev_feed_event (EV_P_ void *w, int revents) EV_THROW
389{ 1472{
390 W w_ = (W)w; 1473 W w_ = (W)w;
1474 int pri = ABSPRI (w_);
391 1475
392 if (expect_false (w_->pending)) 1476 if (expect_false (w_->pending))
1477 pendings [pri][w_->pending - 1].events |= revents;
1478 else
393 { 1479 {
1480 w_->pending = ++pendingcnt [pri];
1481 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1482 pendings [pri][w_->pending - 1].w = w_;
394 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 1483 pendings [pri][w_->pending - 1].events = revents;
395 return;
396 } 1484 }
397 1485
398 w_->pending = ++pendingcnt [ABSPRI (w_)]; 1486 pendingpri = NUMPRI - 1;
399 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
400 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
401 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
402} 1487}
403 1488
404static void 1489inline_speed void
1490feed_reverse (EV_P_ W w)
1491{
1492 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1493 rfeeds [rfeedcnt++] = w;
1494}
1495
1496inline_size void
1497feed_reverse_done (EV_P_ int revents)
1498{
1499 do
1500 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1501 while (rfeedcnt);
1502}
1503
1504inline_speed void
405queue_events (EV_P_ W *events, int eventcnt, int type) 1505queue_events (EV_P_ W *events, int eventcnt, int type)
406{ 1506{
407 int i; 1507 int i;
408 1508
409 for (i = 0; i < eventcnt; ++i) 1509 for (i = 0; i < eventcnt; ++i)
410 ev_feed_event (EV_A_ events [i], type); 1510 ev_feed_event (EV_A_ events [i], type);
411} 1511}
412 1512
1513/*****************************************************************************/
1514
413inline void 1515inline_speed void
414fd_event (EV_P_ int fd, int revents) 1516fd_event_nocheck (EV_P_ int fd, int revents)
415{ 1517{
416 ANFD *anfd = anfds + fd; 1518 ANFD *anfd = anfds + fd;
417 struct ev_io *w; 1519 ev_io *w;
418 1520
419 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 1521 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
420 { 1522 {
421 int ev = w->events & revents; 1523 int ev = w->events & revents;
422 1524
423 if (ev) 1525 if (ev)
424 ev_feed_event (EV_A_ (W)w, ev); 1526 ev_feed_event (EV_A_ (W)w, ev);
425 } 1527 }
426} 1528}
427 1529
1530/* do not submit kernel events for fds that have reify set */
1531/* because that means they changed while we were polling for new events */
1532inline_speed void
1533fd_event (EV_P_ int fd, int revents)
1534{
1535 ANFD *anfd = anfds + fd;
1536
1537 if (expect_true (!anfd->reify))
1538 fd_event_nocheck (EV_A_ fd, revents);
1539}
1540
428void 1541void
429ev_feed_fd_event (EV_P_ int fd, int revents) 1542ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
430{ 1543{
1544 if (fd >= 0 && fd < anfdmax)
431 fd_event (EV_A_ fd, revents); 1545 fd_event_nocheck (EV_A_ fd, revents);
432} 1546}
433 1547
434/*****************************************************************************/ 1548/* make sure the external fd watch events are in-sync */
435 1549/* with the kernel/libev internal state */
436inline void 1550inline_size void
437fd_reify (EV_P) 1551fd_reify (EV_P)
438{ 1552{
439 int i; 1553 int i;
440 1554
1555#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
441 for (i = 0; i < fdchangecnt; ++i) 1556 for (i = 0; i < fdchangecnt; ++i)
442 { 1557 {
443 int fd = fdchanges [i]; 1558 int fd = fdchanges [i];
444 ANFD *anfd = anfds + fd; 1559 ANFD *anfd = anfds + fd;
445 struct ev_io *w;
446 1560
447 int events = 0; 1561 if (anfd->reify & EV__IOFDSET && anfd->head)
448
449 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
450 events |= w->events;
451
452#if EV_SELECT_IS_WINSOCKET
453 if (events)
454 { 1562 {
1563 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1564
1565 if (handle != anfd->handle)
1566 {
455 unsigned long argp; 1567 unsigned long arg;
456 anfd->handle = _get_osfhandle (fd); 1568
457 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1569 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1570
1571 /* handle changed, but fd didn't - we need to do it in two steps */
1572 backend_modify (EV_A_ fd, anfd->events, 0);
1573 anfd->events = 0;
1574 anfd->handle = handle;
1575 }
458 } 1576 }
1577 }
459#endif 1578#endif
460 1579
1580 for (i = 0; i < fdchangecnt; ++i)
1581 {
1582 int fd = fdchanges [i];
1583 ANFD *anfd = anfds + fd;
1584 ev_io *w;
1585
1586 unsigned char o_events = anfd->events;
1587 unsigned char o_reify = anfd->reify;
1588
461 anfd->reify = 0; 1589 anfd->reify = 0;
462 1590
1591 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1592 {
1593 anfd->events = 0;
1594
1595 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1596 anfd->events |= (unsigned char)w->events;
1597
1598 if (o_events != anfd->events)
1599 o_reify = EV__IOFDSET; /* actually |= */
1600 }
1601
1602 if (o_reify & EV__IOFDSET)
463 backend_modify (EV_A_ fd, anfd->events, events); 1603 backend_modify (EV_A_ fd, o_events, anfd->events);
464 anfd->events = events;
465 } 1604 }
466 1605
467 fdchangecnt = 0; 1606 fdchangecnt = 0;
468} 1607}
469 1608
470static void 1609/* something about the given fd changed */
1610inline_size void
471fd_change (EV_P_ int fd) 1611fd_change (EV_P_ int fd, int flags)
472{ 1612{
473 if (expect_false (anfds [fd].reify)) 1613 unsigned char reify = anfds [fd].reify;
474 return;
475
476 anfds [fd].reify = 1; 1614 anfds [fd].reify |= flags;
477 1615
1616 if (expect_true (!reify))
1617 {
478 ++fdchangecnt; 1618 ++fdchangecnt;
479 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1619 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
480 fdchanges [fdchangecnt - 1] = fd; 1620 fdchanges [fdchangecnt - 1] = fd;
1621 }
481} 1622}
482 1623
483static void 1624/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1625inline_speed void ecb_cold
484fd_kill (EV_P_ int fd) 1626fd_kill (EV_P_ int fd)
485{ 1627{
486 struct ev_io *w; 1628 ev_io *w;
487 1629
488 while ((w = (struct ev_io *)anfds [fd].head)) 1630 while ((w = (ev_io *)anfds [fd].head))
489 { 1631 {
490 ev_io_stop (EV_A_ w); 1632 ev_io_stop (EV_A_ w);
491 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1633 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
492 } 1634 }
493} 1635}
494 1636
495inline int 1637/* check whether the given fd is actually valid, for error recovery */
1638inline_size int ecb_cold
496fd_valid (int fd) 1639fd_valid (int fd)
497{ 1640{
498#ifdef _WIN32 1641#ifdef _WIN32
499 return _get_osfhandle (fd) != -1; 1642 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
500#else 1643#else
501 return fcntl (fd, F_GETFD) != -1; 1644 return fcntl (fd, F_GETFD) != -1;
502#endif 1645#endif
503} 1646}
504 1647
505/* called on EBADF to verify fds */ 1648/* called on EBADF to verify fds */
506static void 1649static void noinline ecb_cold
507fd_ebadf (EV_P) 1650fd_ebadf (EV_P)
508{ 1651{
509 int fd; 1652 int fd;
510 1653
511 for (fd = 0; fd < anfdmax; ++fd) 1654 for (fd = 0; fd < anfdmax; ++fd)
512 if (anfds [fd].events) 1655 if (anfds [fd].events)
513 if (!fd_valid (fd) == -1 && errno == EBADF) 1656 if (!fd_valid (fd) && errno == EBADF)
514 fd_kill (EV_A_ fd); 1657 fd_kill (EV_A_ fd);
515} 1658}
516 1659
517/* called on ENOMEM in select/poll to kill some fds and retry */ 1660/* called on ENOMEM in select/poll to kill some fds and retry */
518static void 1661static void noinline ecb_cold
519fd_enomem (EV_P) 1662fd_enomem (EV_P)
520{ 1663{
521 int fd; 1664 int fd;
522 1665
523 for (fd = anfdmax; fd--; ) 1666 for (fd = anfdmax; fd--; )
524 if (anfds [fd].events) 1667 if (anfds [fd].events)
525 { 1668 {
526 fd_kill (EV_A_ fd); 1669 fd_kill (EV_A_ fd);
527 return; 1670 break;
528 } 1671 }
529} 1672}
530 1673
531/* usually called after fork if backend needs to re-arm all fds from scratch */ 1674/* usually called after fork if backend needs to re-arm all fds from scratch */
532static void 1675static void noinline
533fd_rearm_all (EV_P) 1676fd_rearm_all (EV_P)
534{ 1677{
535 int fd; 1678 int fd;
536 1679
537 /* this should be highly optimised to not do anything but set a flag */
538 for (fd = 0; fd < anfdmax; ++fd) 1680 for (fd = 0; fd < anfdmax; ++fd)
539 if (anfds [fd].events) 1681 if (anfds [fd].events)
540 { 1682 {
541 anfds [fd].events = 0; 1683 anfds [fd].events = 0;
542 fd_change (EV_A_ fd); 1684 anfds [fd].emask = 0;
1685 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
543 } 1686 }
544} 1687}
545 1688
546/*****************************************************************************/ 1689/* used to prepare libev internal fd's */
547 1690/* this is not fork-safe */
548static void
549upheap (WT *heap, int k)
550{
551 WT w = heap [k];
552
553 while (k && heap [k >> 1]->at > w->at)
554 {
555 heap [k] = heap [k >> 1];
556 ((W)heap [k])->active = k + 1;
557 k >>= 1;
558 }
559
560 heap [k] = w;
561 ((W)heap [k])->active = k + 1;
562
563}
564
565static void
566downheap (WT *heap, int N, int k)
567{
568 WT w = heap [k];
569
570 while (k < (N >> 1))
571 {
572 int j = k << 1;
573
574 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
575 ++j;
576
577 if (w->at <= heap [j]->at)
578 break;
579
580 heap [k] = heap [j];
581 ((W)heap [k])->active = k + 1;
582 k = j;
583 }
584
585 heap [k] = w;
586 ((W)heap [k])->active = k + 1;
587}
588
589inline void 1691inline_speed void
590adjustheap (WT *heap, int N, int k)
591{
592 upheap (heap, k);
593 downheap (heap, N, k);
594}
595
596/*****************************************************************************/
597
598typedef struct
599{
600 WL head;
601 sig_atomic_t volatile gotsig;
602} ANSIG;
603
604static ANSIG *signals;
605static int signalmax;
606
607static int sigpipe [2];
608static sig_atomic_t volatile gotsig;
609static struct ev_io sigev;
610
611static void
612signals_init (ANSIG *base, int count)
613{
614 while (count--)
615 {
616 base->head = 0;
617 base->gotsig = 0;
618
619 ++base;
620 }
621}
622
623static void
624sighandler (int signum)
625{
626#if _WIN32
627 signal (signum, sighandler);
628#endif
629
630 signals [signum - 1].gotsig = 1;
631
632 if (!gotsig)
633 {
634 int old_errno = errno;
635 gotsig = 1;
636 write (sigpipe [1], &signum, 1);
637 errno = old_errno;
638 }
639}
640
641void
642ev_feed_signal_event (EV_P_ int signum)
643{
644 WL w;
645
646#if EV_MULTIPLICITY
647 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
648#endif
649
650 --signum;
651
652 if (signum < 0 || signum >= signalmax)
653 return;
654
655 signals [signum].gotsig = 0;
656
657 for (w = signals [signum].head; w; w = w->next)
658 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
659}
660
661static void
662sigcb (EV_P_ struct ev_io *iow, int revents)
663{
664 int signum;
665
666 read (sigpipe [0], &revents, 1);
667 gotsig = 0;
668
669 for (signum = signalmax; signum--; )
670 if (signals [signum].gotsig)
671 ev_feed_signal_event (EV_A_ signum + 1);
672}
673
674static void
675fd_intern (int fd) 1692fd_intern (int fd)
676{ 1693{
677#ifdef _WIN32 1694#ifdef _WIN32
678 int arg = 1; 1695 unsigned long arg = 1;
679 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1696 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
680#else 1697#else
681 fcntl (fd, F_SETFD, FD_CLOEXEC); 1698 fcntl (fd, F_SETFD, FD_CLOEXEC);
682 fcntl (fd, F_SETFL, O_NONBLOCK); 1699 fcntl (fd, F_SETFL, O_NONBLOCK);
683#endif 1700#endif
684} 1701}
685 1702
1703/*****************************************************************************/
1704
1705/*
1706 * the heap functions want a real array index. array index 0 is guaranteed to not
1707 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1708 * the branching factor of the d-tree.
1709 */
1710
1711/*
1712 * at the moment we allow libev the luxury of two heaps,
1713 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1714 * which is more cache-efficient.
1715 * the difference is about 5% with 50000+ watchers.
1716 */
1717#if EV_USE_4HEAP
1718
1719#define DHEAP 4
1720#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1721#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1722#define UPHEAP_DONE(p,k) ((p) == (k))
1723
1724/* away from the root */
1725inline_speed void
1726downheap (ANHE *heap, int N, int k)
1727{
1728 ANHE he = heap [k];
1729 ANHE *E = heap + N + HEAP0;
1730
1731 for (;;)
1732 {
1733 ev_tstamp minat;
1734 ANHE *minpos;
1735 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1736
1737 /* find minimum child */
1738 if (expect_true (pos + DHEAP - 1 < E))
1739 {
1740 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1741 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1742 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1743 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1744 }
1745 else if (pos < E)
1746 {
1747 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1748 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1749 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1750 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1751 }
1752 else
1753 break;
1754
1755 if (ANHE_at (he) <= minat)
1756 break;
1757
1758 heap [k] = *minpos;
1759 ev_active (ANHE_w (*minpos)) = k;
1760
1761 k = minpos - heap;
1762 }
1763
1764 heap [k] = he;
1765 ev_active (ANHE_w (he)) = k;
1766}
1767
1768#else /* 4HEAP */
1769
1770#define HEAP0 1
1771#define HPARENT(k) ((k) >> 1)
1772#define UPHEAP_DONE(p,k) (!(p))
1773
1774/* away from the root */
1775inline_speed void
1776downheap (ANHE *heap, int N, int k)
1777{
1778 ANHE he = heap [k];
1779
1780 for (;;)
1781 {
1782 int c = k << 1;
1783
1784 if (c >= N + HEAP0)
1785 break;
1786
1787 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1788 ? 1 : 0;
1789
1790 if (ANHE_at (he) <= ANHE_at (heap [c]))
1791 break;
1792
1793 heap [k] = heap [c];
1794 ev_active (ANHE_w (heap [k])) = k;
1795
1796 k = c;
1797 }
1798
1799 heap [k] = he;
1800 ev_active (ANHE_w (he)) = k;
1801}
1802#endif
1803
1804/* towards the root */
1805inline_speed void
1806upheap (ANHE *heap, int k)
1807{
1808 ANHE he = heap [k];
1809
1810 for (;;)
1811 {
1812 int p = HPARENT (k);
1813
1814 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1815 break;
1816
1817 heap [k] = heap [p];
1818 ev_active (ANHE_w (heap [k])) = k;
1819 k = p;
1820 }
1821
1822 heap [k] = he;
1823 ev_active (ANHE_w (he)) = k;
1824}
1825
1826/* move an element suitably so it is in a correct place */
1827inline_size void
1828adjustheap (ANHE *heap, int N, int k)
1829{
1830 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1831 upheap (heap, k);
1832 else
1833 downheap (heap, N, k);
1834}
1835
1836/* rebuild the heap: this function is used only once and executed rarely */
1837inline_size void
1838reheap (ANHE *heap, int N)
1839{
1840 int i;
1841
1842 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1843 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1844 for (i = 0; i < N; ++i)
1845 upheap (heap, i + HEAP0);
1846}
1847
1848/*****************************************************************************/
1849
1850/* associate signal watchers to a signal signal */
1851typedef struct
1852{
1853 EV_ATOMIC_T pending;
1854#if EV_MULTIPLICITY
1855 EV_P;
1856#endif
1857 WL head;
1858} ANSIG;
1859
1860static ANSIG signals [EV_NSIG - 1];
1861
1862/*****************************************************************************/
1863
1864#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1865
1866static void noinline ecb_cold
1867evpipe_init (EV_P)
1868{
1869 if (!ev_is_active (&pipe_w))
1870 {
1871# if EV_USE_EVENTFD
1872 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1873 if (evfd < 0 && errno == EINVAL)
1874 evfd = eventfd (0, 0);
1875
1876 if (evfd >= 0)
1877 {
1878 evpipe [0] = -1;
1879 fd_intern (evfd); /* doing it twice doesn't hurt */
1880 ev_io_set (&pipe_w, evfd, EV_READ);
1881 }
1882 else
1883# endif
1884 {
1885 while (pipe (evpipe))
1886 ev_syserr ("(libev) error creating signal/async pipe");
1887
1888 fd_intern (evpipe [0]);
1889 fd_intern (evpipe [1]);
1890 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1891 }
1892
1893 ev_io_start (EV_A_ &pipe_w);
1894 ev_unref (EV_A); /* watcher should not keep loop alive */
1895 }
1896}
1897
1898inline_speed void
1899evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1900{
1901 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
1902
1903 if (expect_true (*flag))
1904 return;
1905
1906 *flag = 1;
1907 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1908
1909 pipe_write_skipped = 1;
1910
1911 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1912
1913 if (pipe_write_wanted)
1914 {
1915 int old_errno;
1916
1917 pipe_write_skipped = 0;
1918 ECB_MEMORY_FENCE_RELEASE;
1919
1920 old_errno = errno; /* save errno because write will clobber it */
1921
1922#if EV_USE_EVENTFD
1923 if (evfd >= 0)
1924 {
1925 uint64_t counter = 1;
1926 write (evfd, &counter, sizeof (uint64_t));
1927 }
1928 else
1929#endif
1930 {
1931#ifdef _WIN32
1932 WSABUF buf;
1933 DWORD sent;
1934 buf.buf = &buf;
1935 buf.len = 1;
1936 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
1937#else
1938 write (evpipe [1], &(evpipe [1]), 1);
1939#endif
1940 }
1941
1942 errno = old_errno;
1943 }
1944}
1945
1946/* called whenever the libev signal pipe */
1947/* got some events (signal, async) */
686static void 1948static void
687siginit (EV_P) 1949pipecb (EV_P_ ev_io *iow, int revents)
688{ 1950{
689 fd_intern (sigpipe [0]); 1951 int i;
690 fd_intern (sigpipe [1]);
691 1952
692 ev_io_set (&sigev, sigpipe [0], EV_READ); 1953 if (revents & EV_READ)
693 ev_io_start (EV_A_ &sigev); 1954 {
694 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1955#if EV_USE_EVENTFD
1956 if (evfd >= 0)
1957 {
1958 uint64_t counter;
1959 read (evfd, &counter, sizeof (uint64_t));
1960 }
1961 else
1962#endif
1963 {
1964 char dummy[4];
1965#ifdef _WIN32
1966 WSABUF buf;
1967 DWORD recvd;
1968 DWORD flags = 0;
1969 buf.buf = dummy;
1970 buf.len = sizeof (dummy);
1971 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
1972#else
1973 read (evpipe [0], &dummy, sizeof (dummy));
1974#endif
1975 }
1976 }
1977
1978 pipe_write_skipped = 0;
1979
1980 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
1981
1982#if EV_SIGNAL_ENABLE
1983 if (sig_pending)
1984 {
1985 sig_pending = 0;
1986
1987 ECB_MEMORY_FENCE;
1988
1989 for (i = EV_NSIG - 1; i--; )
1990 if (expect_false (signals [i].pending))
1991 ev_feed_signal_event (EV_A_ i + 1);
1992 }
1993#endif
1994
1995#if EV_ASYNC_ENABLE
1996 if (async_pending)
1997 {
1998 async_pending = 0;
1999
2000 ECB_MEMORY_FENCE;
2001
2002 for (i = asynccnt; i--; )
2003 if (asyncs [i]->sent)
2004 {
2005 asyncs [i]->sent = 0;
2006 ECB_MEMORY_FENCE_RELEASE;
2007 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2008 }
2009 }
2010#endif
695} 2011}
696 2012
697/*****************************************************************************/ 2013/*****************************************************************************/
698 2014
699static struct ev_child *childs [PID_HASHSIZE]; 2015void
2016ev_feed_signal (int signum) EV_THROW
2017{
2018#if EV_MULTIPLICITY
2019 EV_P = signals [signum - 1].loop;
700 2020
2021 if (!EV_A)
2022 return;
2023#endif
2024
2025 if (!ev_active (&pipe_w))
2026 return;
2027
2028 signals [signum - 1].pending = 1;
2029 evpipe_write (EV_A_ &sig_pending);
2030}
2031
2032static void
2033ev_sighandler (int signum)
2034{
701#ifndef _WIN32 2035#ifdef _WIN32
2036 signal (signum, ev_sighandler);
2037#endif
702 2038
2039 ev_feed_signal (signum);
2040}
2041
2042void noinline
2043ev_feed_signal_event (EV_P_ int signum) EV_THROW
2044{
2045 WL w;
2046
2047 if (expect_false (signum <= 0 || signum > EV_NSIG))
2048 return;
2049
2050 --signum;
2051
2052#if EV_MULTIPLICITY
2053 /* it is permissible to try to feed a signal to the wrong loop */
2054 /* or, likely more useful, feeding a signal nobody is waiting for */
2055
2056 if (expect_false (signals [signum].loop != EV_A))
2057 return;
2058#endif
2059
2060 signals [signum].pending = 0;
2061 ECB_MEMORY_FENCE_RELEASE;
2062
2063 for (w = signals [signum].head; w; w = w->next)
2064 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2065}
2066
2067#if EV_USE_SIGNALFD
2068static void
2069sigfdcb (EV_P_ ev_io *iow, int revents)
2070{
2071 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2072
2073 for (;;)
2074 {
2075 ssize_t res = read (sigfd, si, sizeof (si));
2076
2077 /* not ISO-C, as res might be -1, but works with SuS */
2078 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2079 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2080
2081 if (res < (ssize_t)sizeof (si))
2082 break;
2083 }
2084}
2085#endif
2086
2087#endif
2088
2089/*****************************************************************************/
2090
2091#if EV_CHILD_ENABLE
2092static WL childs [EV_PID_HASHSIZE];
2093
703static struct ev_signal childev; 2094static ev_signal childev;
2095
2096#ifndef WIFCONTINUED
2097# define WIFCONTINUED(status) 0
2098#endif
2099
2100/* handle a single child status event */
2101inline_speed void
2102child_reap (EV_P_ int chain, int pid, int status)
2103{
2104 ev_child *w;
2105 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2106
2107 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2108 {
2109 if ((w->pid == pid || !w->pid)
2110 && (!traced || (w->flags & 1)))
2111 {
2112 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2113 w->rpid = pid;
2114 w->rstatus = status;
2115 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2116 }
2117 }
2118}
704 2119
705#ifndef WCONTINUED 2120#ifndef WCONTINUED
706# define WCONTINUED 0 2121# define WCONTINUED 0
707#endif 2122#endif
708 2123
2124/* called on sigchld etc., calls waitpid */
709static void 2125static void
710child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
711{
712 struct ev_child *w;
713
714 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
715 if (w->pid == pid || !w->pid)
716 {
717 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
718 w->rpid = pid;
719 w->rstatus = status;
720 ev_feed_event (EV_A_ (W)w, EV_CHILD);
721 }
722}
723
724static void
725childcb (EV_P_ struct ev_signal *sw, int revents) 2126childcb (EV_P_ ev_signal *sw, int revents)
726{ 2127{
727 int pid, status; 2128 int pid, status;
728 2129
2130 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
729 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 2131 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
730 { 2132 if (!WCONTINUED
2133 || errno != EINVAL
2134 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2135 return;
2136
731 /* make sure we are called again until all childs have been reaped */ 2137 /* make sure we are called again until all children have been reaped */
2138 /* we need to do it this way so that the callback gets called before we continue */
732 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2139 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
733 2140
734 child_reap (EV_A_ sw, pid, pid, status); 2141 child_reap (EV_A_ pid, pid, status);
2142 if ((EV_PID_HASHSIZE) > 1)
735 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 2143 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
736 }
737} 2144}
738 2145
739#endif 2146#endif
740 2147
741/*****************************************************************************/ 2148/*****************************************************************************/
742 2149
2150#if EV_USE_IOCP
2151# include "ev_iocp.c"
2152#endif
743#if EV_USE_PORT 2153#if EV_USE_PORT
744# include "ev_port.c" 2154# include "ev_port.c"
745#endif 2155#endif
746#if EV_USE_KQUEUE 2156#if EV_USE_KQUEUE
747# include "ev_kqueue.c" 2157# include "ev_kqueue.c"
754#endif 2164#endif
755#if EV_USE_SELECT 2165#if EV_USE_SELECT
756# include "ev_select.c" 2166# include "ev_select.c"
757#endif 2167#endif
758 2168
759int 2169int ecb_cold
760ev_version_major (void) 2170ev_version_major (void) EV_THROW
761{ 2171{
762 return EV_VERSION_MAJOR; 2172 return EV_VERSION_MAJOR;
763} 2173}
764 2174
765int 2175int ecb_cold
766ev_version_minor (void) 2176ev_version_minor (void) EV_THROW
767{ 2177{
768 return EV_VERSION_MINOR; 2178 return EV_VERSION_MINOR;
769} 2179}
770 2180
771/* return true if we are running with elevated privileges and should ignore env variables */ 2181/* return true if we are running with elevated privileges and should ignore env variables */
772static int 2182int inline_size ecb_cold
773enable_secure (void) 2183enable_secure (void)
774{ 2184{
775#ifdef _WIN32 2185#ifdef _WIN32
776 return 0; 2186 return 0;
777#else 2187#else
778 return getuid () != geteuid () 2188 return getuid () != geteuid ()
779 || getgid () != getegid (); 2189 || getgid () != getegid ();
780#endif 2190#endif
781} 2191}
782 2192
783unsigned int 2193unsigned int ecb_cold
784ev_supported_backends (void) 2194ev_supported_backends (void) EV_THROW
785{ 2195{
786 unsigned int flags = 0; 2196 unsigned int flags = 0;
787 2197
788 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2198 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
789 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2199 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
792 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2202 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
793 2203
794 return flags; 2204 return flags;
795} 2205}
796 2206
797unsigned int 2207unsigned int ecb_cold
798ev_recommended_backends (void) 2208ev_recommended_backends (void) EV_THROW
799{ 2209{
800 unsigned int flags = ev_supported_backends (); 2210 unsigned int flags = ev_supported_backends ();
801 2211
802#ifndef __NetBSD__ 2212#ifndef __NetBSD__
803 /* kqueue is borked on everything but netbsd apparently */ 2213 /* kqueue is borked on everything but netbsd apparently */
804 /* it usually doesn't work correctly on anything but sockets and pipes */ 2214 /* it usually doesn't work correctly on anything but sockets and pipes */
805 flags &= ~EVBACKEND_KQUEUE; 2215 flags &= ~EVBACKEND_KQUEUE;
806#endif 2216#endif
807#ifdef __APPLE__ 2217#ifdef __APPLE__
808 // flags &= ~EVBACKEND_KQUEUE; for documentation 2218 /* only select works correctly on that "unix-certified" platform */
809 flags &= ~EVBACKEND_POLL; 2219 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2220 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2221#endif
2222#ifdef __FreeBSD__
2223 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
810#endif 2224#endif
811 2225
812 return flags; 2226 return flags;
813} 2227}
814 2228
2229unsigned int ecb_cold
2230ev_embeddable_backends (void) EV_THROW
2231{
2232 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2233
2234 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2235 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2236 flags &= ~EVBACKEND_EPOLL;
2237
2238 return flags;
2239}
2240
815unsigned int 2241unsigned int
816ev_backend (EV_P) 2242ev_backend (EV_P) EV_THROW
817{ 2243{
818 return backend; 2244 return backend;
819} 2245}
820 2246
821static void 2247#if EV_FEATURE_API
2248unsigned int
2249ev_iteration (EV_P) EV_THROW
2250{
2251 return loop_count;
2252}
2253
2254unsigned int
2255ev_depth (EV_P) EV_THROW
2256{
2257 return loop_depth;
2258}
2259
2260void
2261ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2262{
2263 io_blocktime = interval;
2264}
2265
2266void
2267ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2268{
2269 timeout_blocktime = interval;
2270}
2271
2272void
2273ev_set_userdata (EV_P_ void *data) EV_THROW
2274{
2275 userdata = data;
2276}
2277
2278void *
2279ev_userdata (EV_P) EV_THROW
2280{
2281 return userdata;
2282}
2283
2284void
2285ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2286{
2287 invoke_cb = invoke_pending_cb;
2288}
2289
2290void
2291ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2292{
2293 release_cb = release;
2294 acquire_cb = acquire;
2295}
2296#endif
2297
2298/* initialise a loop structure, must be zero-initialised */
2299static void noinline ecb_cold
822loop_init (EV_P_ unsigned int flags) 2300loop_init (EV_P_ unsigned int flags) EV_THROW
823{ 2301{
824 if (!backend) 2302 if (!backend)
825 { 2303 {
2304 origflags = flags;
2305
2306#if EV_USE_REALTIME
2307 if (!have_realtime)
2308 {
2309 struct timespec ts;
2310
2311 if (!clock_gettime (CLOCK_REALTIME, &ts))
2312 have_realtime = 1;
2313 }
2314#endif
2315
826#if EV_USE_MONOTONIC 2316#if EV_USE_MONOTONIC
2317 if (!have_monotonic)
827 { 2318 {
828 struct timespec ts; 2319 struct timespec ts;
2320
829 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2321 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
830 have_monotonic = 1; 2322 have_monotonic = 1;
831 } 2323 }
832#endif 2324#endif
833 2325
834 ev_rt_now = ev_time (); 2326 /* pid check not overridable via env */
835 mn_now = get_clock (); 2327#ifndef _WIN32
836 now_floor = mn_now; 2328 if (flags & EVFLAG_FORKCHECK)
837 rtmn_diff = ev_rt_now - mn_now; 2329 curpid = getpid ();
2330#endif
838 2331
839 if (!(flags & EVFLAG_NOENV) 2332 if (!(flags & EVFLAG_NOENV)
840 && !enable_secure () 2333 && !enable_secure ()
841 && getenv ("LIBEV_FLAGS")) 2334 && getenv ("LIBEV_FLAGS"))
842 flags = atoi (getenv ("LIBEV_FLAGS")); 2335 flags = atoi (getenv ("LIBEV_FLAGS"));
843 2336
844 if (!(flags & 0x0000ffffUL)) 2337 ev_rt_now = ev_time ();
2338 mn_now = get_clock ();
2339 now_floor = mn_now;
2340 rtmn_diff = ev_rt_now - mn_now;
2341#if EV_FEATURE_API
2342 invoke_cb = ev_invoke_pending;
2343#endif
2344
2345 io_blocktime = 0.;
2346 timeout_blocktime = 0.;
2347 backend = 0;
2348 backend_fd = -1;
2349 sig_pending = 0;
2350#if EV_ASYNC_ENABLE
2351 async_pending = 0;
2352#endif
2353 pipe_write_skipped = 0;
2354 pipe_write_wanted = 0;
2355#if EV_USE_INOTIFY
2356 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2357#endif
2358#if EV_USE_SIGNALFD
2359 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2360#endif
2361
2362 if (!(flags & EVBACKEND_MASK))
845 flags |= ev_recommended_backends (); 2363 flags |= ev_recommended_backends ();
846 2364
847 backend = 0; 2365#if EV_USE_IOCP
2366 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2367#endif
848#if EV_USE_PORT 2368#if EV_USE_PORT
849 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2369 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
850#endif 2370#endif
851#if EV_USE_KQUEUE 2371#if EV_USE_KQUEUE
852 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2372 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
859#endif 2379#endif
860#if EV_USE_SELECT 2380#if EV_USE_SELECT
861 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2381 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
862#endif 2382#endif
863 2383
2384 ev_prepare_init (&pending_w, pendingcb);
2385
2386#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
864 ev_init (&sigev, sigcb); 2387 ev_init (&pipe_w, pipecb);
865 ev_set_priority (&sigev, EV_MAXPRI); 2388 ev_set_priority (&pipe_w, EV_MAXPRI);
2389#endif
866 } 2390 }
867} 2391}
868 2392
869static void 2393/* free up a loop structure */
2394void ecb_cold
870loop_destroy (EV_P) 2395ev_loop_destroy (EV_P)
871{ 2396{
872 int i; 2397 int i;
873 2398
2399#if EV_MULTIPLICITY
2400 /* mimic free (0) */
2401 if (!EV_A)
2402 return;
2403#endif
2404
2405#if EV_CLEANUP_ENABLE
2406 /* queue cleanup watchers (and execute them) */
2407 if (expect_false (cleanupcnt))
2408 {
2409 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2410 EV_INVOKE_PENDING;
2411 }
2412#endif
2413
2414#if EV_CHILD_ENABLE
2415 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2416 {
2417 ev_ref (EV_A); /* child watcher */
2418 ev_signal_stop (EV_A_ &childev);
2419 }
2420#endif
2421
2422 if (ev_is_active (&pipe_w))
2423 {
2424 /*ev_ref (EV_A);*/
2425 /*ev_io_stop (EV_A_ &pipe_w);*/
2426
2427#if EV_USE_EVENTFD
2428 if (evfd >= 0)
2429 close (evfd);
2430#endif
2431
2432 if (evpipe [0] >= 0)
2433 {
2434 EV_WIN32_CLOSE_FD (evpipe [0]);
2435 EV_WIN32_CLOSE_FD (evpipe [1]);
2436 }
2437 }
2438
2439#if EV_USE_SIGNALFD
2440 if (ev_is_active (&sigfd_w))
2441 close (sigfd);
2442#endif
2443
2444#if EV_USE_INOTIFY
2445 if (fs_fd >= 0)
2446 close (fs_fd);
2447#endif
2448
2449 if (backend_fd >= 0)
2450 close (backend_fd);
2451
2452#if EV_USE_IOCP
2453 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2454#endif
874#if EV_USE_PORT 2455#if EV_USE_PORT
875 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2456 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
876#endif 2457#endif
877#if EV_USE_KQUEUE 2458#if EV_USE_KQUEUE
878 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2459 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
886#if EV_USE_SELECT 2467#if EV_USE_SELECT
887 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 2468 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
888#endif 2469#endif
889 2470
890 for (i = NUMPRI; i--; ) 2471 for (i = NUMPRI; i--; )
2472 {
891 array_free (pending, [i]); 2473 array_free (pending, [i]);
2474#if EV_IDLE_ENABLE
2475 array_free (idle, [i]);
2476#endif
2477 }
2478
2479 ev_free (anfds); anfds = 0; anfdmax = 0;
892 2480
893 /* have to use the microsoft-never-gets-it-right macro */ 2481 /* have to use the microsoft-never-gets-it-right macro */
2482 array_free (rfeed, EMPTY);
894 array_free (fdchange, EMPTY0); 2483 array_free (fdchange, EMPTY);
895 array_free (timer, EMPTY0); 2484 array_free (timer, EMPTY);
896#if EV_PERIODICS 2485#if EV_PERIODIC_ENABLE
897 array_free (periodic, EMPTY0); 2486 array_free (periodic, EMPTY);
898#endif 2487#endif
2488#if EV_FORK_ENABLE
2489 array_free (fork, EMPTY);
2490#endif
2491#if EV_CLEANUP_ENABLE
899 array_free (idle, EMPTY0); 2492 array_free (cleanup, EMPTY);
2493#endif
900 array_free (prepare, EMPTY0); 2494 array_free (prepare, EMPTY);
901 array_free (check, EMPTY0); 2495 array_free (check, EMPTY);
2496#if EV_ASYNC_ENABLE
2497 array_free (async, EMPTY);
2498#endif
902 2499
903 backend = 0; 2500 backend = 0;
904}
905 2501
906static void 2502#if EV_MULTIPLICITY
2503 if (ev_is_default_loop (EV_A))
2504#endif
2505 ev_default_loop_ptr = 0;
2506#if EV_MULTIPLICITY
2507 else
2508 ev_free (EV_A);
2509#endif
2510}
2511
2512#if EV_USE_INOTIFY
2513inline_size void infy_fork (EV_P);
2514#endif
2515
2516inline_size void
907loop_fork (EV_P) 2517loop_fork (EV_P)
908{ 2518{
909#if EV_USE_PORT 2519#if EV_USE_PORT
910 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2520 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
911#endif 2521#endif
913 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 2523 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
914#endif 2524#endif
915#if EV_USE_EPOLL 2525#if EV_USE_EPOLL
916 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 2526 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
917#endif 2527#endif
2528#if EV_USE_INOTIFY
2529 infy_fork (EV_A);
2530#endif
918 2531
919 if (ev_is_active (&sigev)) 2532 if (ev_is_active (&pipe_w))
920 { 2533 {
921 /* default loop */ 2534 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
922 2535
923 ev_ref (EV_A); 2536 ev_ref (EV_A);
924 ev_io_stop (EV_A_ &sigev); 2537 ev_io_stop (EV_A_ &pipe_w);
925 close (sigpipe [0]);
926 close (sigpipe [1]);
927 2538
928 while (pipe (sigpipe)) 2539#if EV_USE_EVENTFD
929 syserr ("(libev) error creating pipe"); 2540 if (evfd >= 0)
2541 close (evfd);
2542#endif
930 2543
2544 if (evpipe [0] >= 0)
2545 {
2546 EV_WIN32_CLOSE_FD (evpipe [0]);
2547 EV_WIN32_CLOSE_FD (evpipe [1]);
2548 }
2549
2550#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
931 siginit (EV_A); 2551 evpipe_init (EV_A);
2552 /* now iterate over everything, in case we missed something */
2553 pipecb (EV_A_ &pipe_w, EV_READ);
2554#endif
932 } 2555 }
933 2556
934 postfork = 0; 2557 postfork = 0;
935} 2558}
936 2559
937#if EV_MULTIPLICITY 2560#if EV_MULTIPLICITY
2561
938struct ev_loop * 2562struct ev_loop * ecb_cold
939ev_loop_new (unsigned int flags) 2563ev_loop_new (unsigned int flags) EV_THROW
940{ 2564{
941 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2565 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
942 2566
943 memset (loop, 0, sizeof (struct ev_loop)); 2567 memset (EV_A, 0, sizeof (struct ev_loop));
944
945 loop_init (EV_A_ flags); 2568 loop_init (EV_A_ flags);
946 2569
947 if (ev_backend (EV_A)) 2570 if (ev_backend (EV_A))
948 return loop; 2571 return EV_A;
949 2572
2573 ev_free (EV_A);
950 return 0; 2574 return 0;
951} 2575}
952 2576
953void 2577#endif /* multiplicity */
954ev_loop_destroy (EV_P)
955{
956 loop_destroy (EV_A);
957 ev_free (loop);
958}
959 2578
960void 2579#if EV_VERIFY
961ev_loop_fork (EV_P) 2580static void noinline ecb_cold
2581verify_watcher (EV_P_ W w)
962{ 2582{
963 postfork = 1; 2583 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
964}
965 2584
2585 if (w->pending)
2586 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2587}
2588
2589static void noinline ecb_cold
2590verify_heap (EV_P_ ANHE *heap, int N)
2591{
2592 int i;
2593
2594 for (i = HEAP0; i < N + HEAP0; ++i)
2595 {
2596 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2597 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2598 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2599
2600 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2601 }
2602}
2603
2604static void noinline ecb_cold
2605array_verify (EV_P_ W *ws, int cnt)
2606{
2607 while (cnt--)
2608 {
2609 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2610 verify_watcher (EV_A_ ws [cnt]);
2611 }
2612}
2613#endif
2614
2615#if EV_FEATURE_API
2616void ecb_cold
2617ev_verify (EV_P) EV_THROW
2618{
2619#if EV_VERIFY
2620 int i;
2621 WL w, w2;
2622
2623 assert (activecnt >= -1);
2624
2625 assert (fdchangemax >= fdchangecnt);
2626 for (i = 0; i < fdchangecnt; ++i)
2627 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2628
2629 assert (anfdmax >= 0);
2630 for (i = 0; i < anfdmax; ++i)
2631 {
2632 int j = 0;
2633
2634 for (w = w2 = anfds [i].head; w; w = w->next)
2635 {
2636 verify_watcher (EV_A_ (W)w);
2637
2638 if (j++ & 1)
2639 {
2640 assert (("libev: io watcher list contains a loop", w != w2));
2641 w2 = w2->next;
2642 }
2643
2644 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2645 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2646 }
2647 }
2648
2649 assert (timermax >= timercnt);
2650 verify_heap (EV_A_ timers, timercnt);
2651
2652#if EV_PERIODIC_ENABLE
2653 assert (periodicmax >= periodiccnt);
2654 verify_heap (EV_A_ periodics, periodiccnt);
2655#endif
2656
2657 for (i = NUMPRI; i--; )
2658 {
2659 assert (pendingmax [i] >= pendingcnt [i]);
2660#if EV_IDLE_ENABLE
2661 assert (idleall >= 0);
2662 assert (idlemax [i] >= idlecnt [i]);
2663 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2664#endif
2665 }
2666
2667#if EV_FORK_ENABLE
2668 assert (forkmax >= forkcnt);
2669 array_verify (EV_A_ (W *)forks, forkcnt);
2670#endif
2671
2672#if EV_CLEANUP_ENABLE
2673 assert (cleanupmax >= cleanupcnt);
2674 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2675#endif
2676
2677#if EV_ASYNC_ENABLE
2678 assert (asyncmax >= asynccnt);
2679 array_verify (EV_A_ (W *)asyncs, asynccnt);
2680#endif
2681
2682#if EV_PREPARE_ENABLE
2683 assert (preparemax >= preparecnt);
2684 array_verify (EV_A_ (W *)prepares, preparecnt);
2685#endif
2686
2687#if EV_CHECK_ENABLE
2688 assert (checkmax >= checkcnt);
2689 array_verify (EV_A_ (W *)checks, checkcnt);
2690#endif
2691
2692# if 0
2693#if EV_CHILD_ENABLE
2694 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2695 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2696#endif
2697# endif
2698#endif
2699}
966#endif 2700#endif
967 2701
968#if EV_MULTIPLICITY 2702#if EV_MULTIPLICITY
969struct ev_loop * 2703struct ev_loop * ecb_cold
970ev_default_loop_init (unsigned int flags)
971#else 2704#else
972int 2705int
2706#endif
973ev_default_loop (unsigned int flags) 2707ev_default_loop (unsigned int flags) EV_THROW
974#endif
975{ 2708{
976 if (sigpipe [0] == sigpipe [1])
977 if (pipe (sigpipe))
978 return 0;
979
980 if (!ev_default_loop_ptr) 2709 if (!ev_default_loop_ptr)
981 { 2710 {
982#if EV_MULTIPLICITY 2711#if EV_MULTIPLICITY
983 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2712 EV_P = ev_default_loop_ptr = &default_loop_struct;
984#else 2713#else
985 ev_default_loop_ptr = 1; 2714 ev_default_loop_ptr = 1;
986#endif 2715#endif
987 2716
988 loop_init (EV_A_ flags); 2717 loop_init (EV_A_ flags);
989 2718
990 if (ev_backend (EV_A)) 2719 if (ev_backend (EV_A))
991 { 2720 {
992 siginit (EV_A); 2721#if EV_CHILD_ENABLE
993
994#ifndef _WIN32
995 ev_signal_init (&childev, childcb, SIGCHLD); 2722 ev_signal_init (&childev, childcb, SIGCHLD);
996 ev_set_priority (&childev, EV_MAXPRI); 2723 ev_set_priority (&childev, EV_MAXPRI);
997 ev_signal_start (EV_A_ &childev); 2724 ev_signal_start (EV_A_ &childev);
998 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2725 ev_unref (EV_A); /* child watcher should not keep loop alive */
999#endif 2726#endif
1004 2731
1005 return ev_default_loop_ptr; 2732 return ev_default_loop_ptr;
1006} 2733}
1007 2734
1008void 2735void
1009ev_default_destroy (void) 2736ev_loop_fork (EV_P) EV_THROW
1010{ 2737{
1011#if EV_MULTIPLICITY 2738 postfork = 1;
1012 struct ev_loop *loop = ev_default_loop_ptr;
1013#endif
1014
1015#ifndef _WIN32
1016 ev_ref (EV_A); /* child watcher */
1017 ev_signal_stop (EV_A_ &childev);
1018#endif
1019
1020 ev_ref (EV_A); /* signal watcher */
1021 ev_io_stop (EV_A_ &sigev);
1022
1023 close (sigpipe [0]); sigpipe [0] = 0;
1024 close (sigpipe [1]); sigpipe [1] = 0;
1025
1026 loop_destroy (EV_A);
1027} 2739}
2740
2741/*****************************************************************************/
1028 2742
1029void 2743void
1030ev_default_fork (void) 2744ev_invoke (EV_P_ void *w, int revents)
1031{ 2745{
1032#if EV_MULTIPLICITY 2746 EV_CB_INVOKE ((W)w, revents);
1033 struct ev_loop *loop = ev_default_loop_ptr;
1034#endif
1035
1036 if (backend)
1037 postfork = 1;
1038} 2747}
1039 2748
1040/*****************************************************************************/ 2749unsigned int
1041 2750ev_pending_count (EV_P) EV_THROW
1042static int
1043any_pending (EV_P)
1044{ 2751{
1045 int pri; 2752 int pri;
2753 unsigned int count = 0;
1046 2754
1047 for (pri = NUMPRI; pri--; ) 2755 for (pri = NUMPRI; pri--; )
1048 if (pendingcnt [pri]) 2756 count += pendingcnt [pri];
1049 return 1;
1050 2757
1051 return 0; 2758 return count;
1052} 2759}
1053 2760
1054inline void 2761void noinline
1055call_pending (EV_P) 2762ev_invoke_pending (EV_P)
1056{ 2763{
1057 int pri; 2764 for (pendingpri = NUMPRI; pendingpri--; ) /* pendingpri is modified during the loop */
1058
1059 for (pri = NUMPRI; pri--; )
1060 while (pendingcnt [pri]) 2765 while (pendingcnt [pendingpri])
1061 { 2766 {
1062 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2767 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1063 2768
1064 if (expect_true (p->w))
1065 {
1066 p->w->pending = 0; 2769 p->w->pending = 0;
1067 EV_CB_INVOKE (p->w, p->events); 2770 EV_CB_INVOKE (p->w, p->events);
1068 } 2771 EV_FREQUENT_CHECK;
1069 } 2772 }
1070} 2773}
1071 2774
2775#if EV_IDLE_ENABLE
2776/* make idle watchers pending. this handles the "call-idle */
2777/* only when higher priorities are idle" logic */
1072inline void 2778inline_size void
2779idle_reify (EV_P)
2780{
2781 if (expect_false (idleall))
2782 {
2783 int pri;
2784
2785 for (pri = NUMPRI; pri--; )
2786 {
2787 if (pendingcnt [pri])
2788 break;
2789
2790 if (idlecnt [pri])
2791 {
2792 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2793 break;
2794 }
2795 }
2796 }
2797}
2798#endif
2799
2800/* make timers pending */
2801inline_size void
1073timers_reify (EV_P) 2802timers_reify (EV_P)
1074{ 2803{
2804 EV_FREQUENT_CHECK;
2805
1075 while (timercnt && ((WT)timers [0])->at <= mn_now) 2806 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1076 { 2807 {
1077 struct ev_timer *w = timers [0]; 2808 do
1078
1079 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1080
1081 /* first reschedule or stop timer */
1082 if (w->repeat)
1083 { 2809 {
2810 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2811
2812 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2813
2814 /* first reschedule or stop timer */
2815 if (w->repeat)
2816 {
2817 ev_at (w) += w->repeat;
2818 if (ev_at (w) < mn_now)
2819 ev_at (w) = mn_now;
2820
1084 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2821 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1085 2822
1086 ((WT)w)->at += w->repeat; 2823 ANHE_at_cache (timers [HEAP0]);
1087 if (((WT)w)->at < mn_now)
1088 ((WT)w)->at = mn_now;
1089
1090 downheap ((WT *)timers, timercnt, 0); 2824 downheap (timers, timercnt, HEAP0);
2825 }
2826 else
2827 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2828
2829 EV_FREQUENT_CHECK;
2830 feed_reverse (EV_A_ (W)w);
1091 } 2831 }
1092 else 2832 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1093 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1094 2833
1095 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2834 feed_reverse_done (EV_A_ EV_TIMER);
2835 }
2836}
2837
2838#if EV_PERIODIC_ENABLE
2839
2840static void noinline
2841periodic_recalc (EV_P_ ev_periodic *w)
2842{
2843 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2844 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2845
2846 /* the above almost always errs on the low side */
2847 while (at <= ev_rt_now)
1096 } 2848 {
1097} 2849 ev_tstamp nat = at + w->interval;
1098 2850
1099#if EV_PERIODICS 2851 /* when resolution fails us, we use ev_rt_now */
2852 if (expect_false (nat == at))
2853 {
2854 at = ev_rt_now;
2855 break;
2856 }
2857
2858 at = nat;
2859 }
2860
2861 ev_at (w) = at;
2862}
2863
2864/* make periodics pending */
1100inline void 2865inline_size void
1101periodics_reify (EV_P) 2866periodics_reify (EV_P)
1102{ 2867{
2868 EV_FREQUENT_CHECK;
2869
1103 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2870 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1104 { 2871 {
1105 struct ev_periodic *w = periodics [0]; 2872 do
2873 {
2874 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1106 2875
1107 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 2876 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1108 2877
1109 /* first reschedule or stop timer */ 2878 /* first reschedule or stop timer */
2879 if (w->reschedule_cb)
2880 {
2881 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2882
2883 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2884
2885 ANHE_at_cache (periodics [HEAP0]);
2886 downheap (periodics, periodiccnt, HEAP0);
2887 }
2888 else if (w->interval)
2889 {
2890 periodic_recalc (EV_A_ w);
2891 ANHE_at_cache (periodics [HEAP0]);
2892 downheap (periodics, periodiccnt, HEAP0);
2893 }
2894 else
2895 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2896
2897 EV_FREQUENT_CHECK;
2898 feed_reverse (EV_A_ (W)w);
2899 }
2900 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2901
2902 feed_reverse_done (EV_A_ EV_PERIODIC);
2903 }
2904}
2905
2906/* simply recalculate all periodics */
2907/* TODO: maybe ensure that at least one event happens when jumping forward? */
2908static void noinline ecb_cold
2909periodics_reschedule (EV_P)
2910{
2911 int i;
2912
2913 /* adjust periodics after time jump */
2914 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2915 {
2916 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2917
1110 if (w->reschedule_cb) 2918 if (w->reschedule_cb)
2919 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2920 else if (w->interval)
2921 periodic_recalc (EV_A_ w);
2922
2923 ANHE_at_cache (periodics [i]);
2924 }
2925
2926 reheap (periodics, periodiccnt);
2927}
2928#endif
2929
2930/* adjust all timers by a given offset */
2931static void noinline ecb_cold
2932timers_reschedule (EV_P_ ev_tstamp adjust)
2933{
2934 int i;
2935
2936 for (i = 0; i < timercnt; ++i)
2937 {
2938 ANHE *he = timers + i + HEAP0;
2939 ANHE_w (*he)->at += adjust;
2940 ANHE_at_cache (*he);
2941 }
2942}
2943
2944/* fetch new monotonic and realtime times from the kernel */
2945/* also detect if there was a timejump, and act accordingly */
2946inline_speed void
2947time_update (EV_P_ ev_tstamp max_block)
2948{
2949#if EV_USE_MONOTONIC
2950 if (expect_true (have_monotonic))
2951 {
2952 int i;
2953 ev_tstamp odiff = rtmn_diff;
2954
2955 mn_now = get_clock ();
2956
2957 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2958 /* interpolate in the meantime */
2959 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1111 { 2960 {
1112 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2961 ev_rt_now = rtmn_diff + mn_now;
1113 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 2962 return;
1114 downheap ((WT *)periodics, periodiccnt, 0);
1115 } 2963 }
1116 else if (w->interval)
1117 {
1118 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1119 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1120 downheap ((WT *)periodics, periodiccnt, 0);
1121 }
1122 else
1123 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1124 2964
1125 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1126 }
1127}
1128
1129static void
1130periodics_reschedule (EV_P)
1131{
1132 int i;
1133
1134 /* adjust periodics after time jump */
1135 for (i = 0; i < periodiccnt; ++i)
1136 {
1137 struct ev_periodic *w = periodics [i];
1138
1139 if (w->reschedule_cb)
1140 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1141 else if (w->interval)
1142 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1143 }
1144
1145 /* now rebuild the heap */
1146 for (i = periodiccnt >> 1; i--; )
1147 downheap ((WT *)periodics, periodiccnt, i);
1148}
1149#endif
1150
1151inline int
1152time_update_monotonic (EV_P)
1153{
1154 mn_now = get_clock ();
1155
1156 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1157 {
1158 ev_rt_now = rtmn_diff + mn_now;
1159 return 0;
1160 }
1161 else
1162 {
1163 now_floor = mn_now; 2965 now_floor = mn_now;
1164 ev_rt_now = ev_time (); 2966 ev_rt_now = ev_time ();
1165 return 1;
1166 }
1167}
1168 2967
1169inline void 2968 /* loop a few times, before making important decisions.
1170time_update (EV_P) 2969 * on the choice of "4": one iteration isn't enough,
1171{ 2970 * in case we get preempted during the calls to
1172 int i; 2971 * ev_time and get_clock. a second call is almost guaranteed
1173 2972 * to succeed in that case, though. and looping a few more times
1174#if EV_USE_MONOTONIC 2973 * doesn't hurt either as we only do this on time-jumps or
1175 if (expect_true (have_monotonic)) 2974 * in the unlikely event of having been preempted here.
1176 { 2975 */
1177 if (time_update_monotonic (EV_A)) 2976 for (i = 4; --i; )
1178 { 2977 {
1179 ev_tstamp odiff = rtmn_diff; 2978 ev_tstamp diff;
1180
1181 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1182 {
1183 rtmn_diff = ev_rt_now - mn_now; 2979 rtmn_diff = ev_rt_now - mn_now;
1184 2980
1185 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2981 diff = odiff - rtmn_diff;
2982
2983 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1186 return; /* all is well */ 2984 return; /* all is well */
1187 2985
1188 ev_rt_now = ev_time (); 2986 ev_rt_now = ev_time ();
1189 mn_now = get_clock (); 2987 mn_now = get_clock ();
1190 now_floor = mn_now; 2988 now_floor = mn_now;
1191 } 2989 }
1192 2990
2991 /* no timer adjustment, as the monotonic clock doesn't jump */
2992 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1193# if EV_PERIODICS 2993# if EV_PERIODIC_ENABLE
2994 periodics_reschedule (EV_A);
2995# endif
2996 }
2997 else
2998#endif
2999 {
3000 ev_rt_now = ev_time ();
3001
3002 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
3003 {
3004 /* adjust timers. this is easy, as the offset is the same for all of them */
3005 timers_reschedule (EV_A_ ev_rt_now - mn_now);
3006#if EV_PERIODIC_ENABLE
1194 periodics_reschedule (EV_A); 3007 periodics_reschedule (EV_A);
1195# endif 3008#endif
1196 /* no timer adjustment, as the monotonic clock doesn't jump */
1197 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1198 } 3009 }
1199 }
1200 else
1201#endif
1202 {
1203 ev_rt_now = ev_time ();
1204
1205 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1206 {
1207#if EV_PERIODICS
1208 periodics_reschedule (EV_A);
1209#endif
1210
1211 /* adjust timers. this is easy, as the offset is the same for all */
1212 for (i = 0; i < timercnt; ++i)
1213 ((WT)timers [i])->at += ev_rt_now - mn_now;
1214 }
1215 3010
1216 mn_now = ev_rt_now; 3011 mn_now = ev_rt_now;
1217 } 3012 }
1218} 3013}
1219 3014
1220void 3015int
1221ev_ref (EV_P)
1222{
1223 ++activecnt;
1224}
1225
1226void
1227ev_unref (EV_P)
1228{
1229 --activecnt;
1230}
1231
1232static int loop_done;
1233
1234void
1235ev_loop (EV_P_ int flags) 3016ev_run (EV_P_ int flags)
1236{ 3017{
1237 double block; 3018#if EV_FEATURE_API
1238 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 3019 ++loop_depth;
3020#endif
1239 3021
1240 while (activecnt) 3022 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3023
3024 loop_done = EVBREAK_CANCEL;
3025
3026 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
3027
3028 do
1241 { 3029 {
3030#if EV_VERIFY >= 2
3031 ev_verify (EV_A);
3032#endif
3033
3034#ifndef _WIN32
3035 if (expect_false (curpid)) /* penalise the forking check even more */
3036 if (expect_false (getpid () != curpid))
3037 {
3038 curpid = getpid ();
3039 postfork = 1;
3040 }
3041#endif
3042
3043#if EV_FORK_ENABLE
3044 /* we might have forked, so queue fork handlers */
3045 if (expect_false (postfork))
3046 if (forkcnt)
3047 {
3048 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3049 EV_INVOKE_PENDING;
3050 }
3051#endif
3052
3053#if EV_PREPARE_ENABLE
1242 /* queue check watchers (and execute them) */ 3054 /* queue prepare watchers (and execute them) */
1243 if (expect_false (preparecnt)) 3055 if (expect_false (preparecnt))
1244 { 3056 {
1245 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3057 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1246 call_pending (EV_A); 3058 EV_INVOKE_PENDING;
1247 } 3059 }
3060#endif
3061
3062 if (expect_false (loop_done))
3063 break;
1248 3064
1249 /* we might have forked, so reify kernel state if necessary */ 3065 /* we might have forked, so reify kernel state if necessary */
1250 if (expect_false (postfork)) 3066 if (expect_false (postfork))
1251 loop_fork (EV_A); 3067 loop_fork (EV_A);
1252 3068
1253 /* update fd-related kernel structures */ 3069 /* update fd-related kernel structures */
1254 fd_reify (EV_A); 3070 fd_reify (EV_A);
1255 3071
1256 /* calculate blocking time */ 3072 /* calculate blocking time */
3073 {
3074 ev_tstamp waittime = 0.;
3075 ev_tstamp sleeptime = 0.;
1257 3076
1258 /* we only need this for !monotonic clock or timers, but as we basically 3077 /* remember old timestamp for io_blocktime calculation */
1259 always have timers, we just calculate it always */ 3078 ev_tstamp prev_mn_now = mn_now;
1260#if EV_USE_MONOTONIC 3079
1261 if (expect_true (have_monotonic)) 3080 /* update time to cancel out callback processing overhead */
1262 time_update_monotonic (EV_A); 3081 time_update (EV_A_ 1e100);
1263 else 3082
1264#endif 3083 /* from now on, we want a pipe-wake-up */
3084 pipe_write_wanted = 1;
3085
3086 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3087
3088 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1265 { 3089 {
1266 ev_rt_now = ev_time ();
1267 mn_now = ev_rt_now;
1268 }
1269
1270 if (flags & EVLOOP_NONBLOCK || idlecnt)
1271 block = 0.;
1272 else
1273 {
1274 block = MAX_BLOCKTIME; 3090 waittime = MAX_BLOCKTIME;
1275 3091
1276 if (timercnt) 3092 if (timercnt)
1277 { 3093 {
1278 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 3094 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1279 if (block > to) block = to; 3095 if (waittime > to) waittime = to;
1280 } 3096 }
1281 3097
1282#if EV_PERIODICS 3098#if EV_PERIODIC_ENABLE
1283 if (periodiccnt) 3099 if (periodiccnt)
1284 { 3100 {
1285 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 3101 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1286 if (block > to) block = to; 3102 if (waittime > to) waittime = to;
1287 } 3103 }
1288#endif 3104#endif
1289 3105
1290 if (expect_false (block < 0.)) block = 0.; 3106 /* don't let timeouts decrease the waittime below timeout_blocktime */
3107 if (expect_false (waittime < timeout_blocktime))
3108 waittime = timeout_blocktime;
3109
3110 /* at this point, we NEED to wait, so we have to ensure */
3111 /* to pass a minimum nonzero value to the backend */
3112 if (expect_false (waittime < backend_mintime))
3113 waittime = backend_mintime;
3114
3115 /* extra check because io_blocktime is commonly 0 */
3116 if (expect_false (io_blocktime))
3117 {
3118 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3119
3120 if (sleeptime > waittime - backend_mintime)
3121 sleeptime = waittime - backend_mintime;
3122
3123 if (expect_true (sleeptime > 0.))
3124 {
3125 ev_sleep (sleeptime);
3126 waittime -= sleeptime;
3127 }
3128 }
1291 } 3129 }
1292 3130
3131#if EV_FEATURE_API
3132 ++loop_count;
3133#endif
3134 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1293 backend_poll (EV_A_ block); 3135 backend_poll (EV_A_ waittime);
3136 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1294 3137
3138 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3139
3140 MEMORY_FENCE_ACQUIRE;
3141 if (pipe_write_skipped)
3142 {
3143 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3144 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3145 }
3146
3147
1295 /* update ev_rt_now, do magic */ 3148 /* update ev_rt_now, do magic */
1296 time_update (EV_A); 3149 time_update (EV_A_ waittime + sleeptime);
3150 }
1297 3151
1298 /* queue pending timers and reschedule them */ 3152 /* queue pending timers and reschedule them */
1299 timers_reify (EV_A); /* relative timers called last */ 3153 timers_reify (EV_A); /* relative timers called last */
1300#if EV_PERIODICS 3154#if EV_PERIODIC_ENABLE
1301 periodics_reify (EV_A); /* absolute timers called first */ 3155 periodics_reify (EV_A); /* absolute timers called first */
1302#endif 3156#endif
1303 3157
3158#if EV_IDLE_ENABLE
1304 /* queue idle watchers unless io or timers are pending */ 3159 /* queue idle watchers unless other events are pending */
1305 if (idlecnt && !any_pending (EV_A)) 3160 idle_reify (EV_A);
1306 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 3161#endif
1307 3162
3163#if EV_CHECK_ENABLE
1308 /* queue check watchers, to be executed first */ 3164 /* queue check watchers, to be executed first */
1309 if (expect_false (checkcnt)) 3165 if (expect_false (checkcnt))
1310 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3166 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3167#endif
1311 3168
1312 call_pending (EV_A); 3169 EV_INVOKE_PENDING;
1313
1314 if (expect_false (loop_done))
1315 break;
1316 } 3170 }
3171 while (expect_true (
3172 activecnt
3173 && !loop_done
3174 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3175 ));
1317 3176
1318 if (loop_done != 2) 3177 if (loop_done == EVBREAK_ONE)
1319 loop_done = 0; 3178 loop_done = EVBREAK_CANCEL;
3179
3180#if EV_FEATURE_API
3181 --loop_depth;
3182#endif
3183
3184 return activecnt;
1320} 3185}
1321 3186
1322void 3187void
1323ev_unloop (EV_P_ int how) 3188ev_break (EV_P_ int how) EV_THROW
1324{ 3189{
1325 loop_done = how; 3190 loop_done = how;
1326} 3191}
1327 3192
3193void
3194ev_ref (EV_P) EV_THROW
3195{
3196 ++activecnt;
3197}
3198
3199void
3200ev_unref (EV_P) EV_THROW
3201{
3202 --activecnt;
3203}
3204
3205void
3206ev_now_update (EV_P) EV_THROW
3207{
3208 time_update (EV_A_ 1e100);
3209}
3210
3211void
3212ev_suspend (EV_P) EV_THROW
3213{
3214 ev_now_update (EV_A);
3215}
3216
3217void
3218ev_resume (EV_P) EV_THROW
3219{
3220 ev_tstamp mn_prev = mn_now;
3221
3222 ev_now_update (EV_A);
3223 timers_reschedule (EV_A_ mn_now - mn_prev);
3224#if EV_PERIODIC_ENABLE
3225 /* TODO: really do this? */
3226 periodics_reschedule (EV_A);
3227#endif
3228}
3229
1328/*****************************************************************************/ 3230/*****************************************************************************/
3231/* singly-linked list management, used when the expected list length is short */
1329 3232
1330inline void 3233inline_size void
1331wlist_add (WL *head, WL elem) 3234wlist_add (WL *head, WL elem)
1332{ 3235{
1333 elem->next = *head; 3236 elem->next = *head;
1334 *head = elem; 3237 *head = elem;
1335} 3238}
1336 3239
1337inline void 3240inline_size void
1338wlist_del (WL *head, WL elem) 3241wlist_del (WL *head, WL elem)
1339{ 3242{
1340 while (*head) 3243 while (*head)
1341 { 3244 {
1342 if (*head == elem) 3245 if (expect_true (*head == elem))
1343 { 3246 {
1344 *head = elem->next; 3247 *head = elem->next;
1345 return; 3248 break;
1346 } 3249 }
1347 3250
1348 head = &(*head)->next; 3251 head = &(*head)->next;
1349 } 3252 }
1350} 3253}
1351 3254
3255/* internal, faster, version of ev_clear_pending */
1352inline void 3256inline_speed void
1353ev_clear_pending (EV_P_ W w) 3257clear_pending (EV_P_ W w)
1354{ 3258{
1355 if (w->pending) 3259 if (w->pending)
1356 { 3260 {
1357 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3261 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1358 w->pending = 0; 3262 w->pending = 0;
1359 } 3263 }
1360} 3264}
1361 3265
3266int
3267ev_clear_pending (EV_P_ void *w) EV_THROW
3268{
3269 W w_ = (W)w;
3270 int pending = w_->pending;
3271
3272 if (expect_true (pending))
3273 {
3274 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3275 p->w = (W)&pending_w;
3276 w_->pending = 0;
3277 return p->events;
3278 }
3279 else
3280 return 0;
3281}
3282
1362inline void 3283inline_size void
3284pri_adjust (EV_P_ W w)
3285{
3286 int pri = ev_priority (w);
3287 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3288 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3289 ev_set_priority (w, pri);
3290}
3291
3292inline_speed void
1363ev_start (EV_P_ W w, int active) 3293ev_start (EV_P_ W w, int active)
1364{ 3294{
1365 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 3295 pri_adjust (EV_A_ w);
1366 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1367
1368 w->active = active; 3296 w->active = active;
1369 ev_ref (EV_A); 3297 ev_ref (EV_A);
1370} 3298}
1371 3299
1372inline void 3300inline_size void
1373ev_stop (EV_P_ W w) 3301ev_stop (EV_P_ W w)
1374{ 3302{
1375 ev_unref (EV_A); 3303 ev_unref (EV_A);
1376 w->active = 0; 3304 w->active = 0;
1377} 3305}
1378 3306
1379/*****************************************************************************/ 3307/*****************************************************************************/
1380 3308
1381void 3309void noinline
1382ev_io_start (EV_P_ struct ev_io *w) 3310ev_io_start (EV_P_ ev_io *w) EV_THROW
1383{ 3311{
1384 int fd = w->fd; 3312 int fd = w->fd;
1385 3313
1386 if (expect_false (ev_is_active (w))) 3314 if (expect_false (ev_is_active (w)))
1387 return; 3315 return;
1388 3316
1389 assert (("ev_io_start called with negative fd", fd >= 0)); 3317 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3318 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3319
3320 EV_FREQUENT_CHECK;
1390 3321
1391 ev_start (EV_A_ (W)w, 1); 3322 ev_start (EV_A_ (W)w, 1);
1392 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3323 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1393 wlist_add ((WL *)&anfds[fd].head, (WL)w); 3324 wlist_add (&anfds[fd].head, (WL)w);
1394 3325
1395 fd_change (EV_A_ fd); 3326 /* common bug, apparently */
1396} 3327 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
1397 3328
1398void 3329 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3330 w->events &= ~EV__IOFDSET;
3331
3332 EV_FREQUENT_CHECK;
3333}
3334
3335void noinline
1399ev_io_stop (EV_P_ struct ev_io *w) 3336ev_io_stop (EV_P_ ev_io *w) EV_THROW
1400{ 3337{
1401 ev_clear_pending (EV_A_ (W)w); 3338 clear_pending (EV_A_ (W)w);
1402 if (expect_false (!ev_is_active (w))) 3339 if (expect_false (!ev_is_active (w)))
1403 return; 3340 return;
1404 3341
1405 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3342 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1406 3343
3344 EV_FREQUENT_CHECK;
3345
1407 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 3346 wlist_del (&anfds[w->fd].head, (WL)w);
1408 ev_stop (EV_A_ (W)w); 3347 ev_stop (EV_A_ (W)w);
1409 3348
1410 fd_change (EV_A_ w->fd); 3349 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1411}
1412 3350
1413void 3351 EV_FREQUENT_CHECK;
3352}
3353
3354void noinline
1414ev_timer_start (EV_P_ struct ev_timer *w) 3355ev_timer_start (EV_P_ ev_timer *w) EV_THROW
1415{ 3356{
1416 if (expect_false (ev_is_active (w))) 3357 if (expect_false (ev_is_active (w)))
1417 return; 3358 return;
1418 3359
1419 ((WT)w)->at += mn_now; 3360 ev_at (w) += mn_now;
1420 3361
1421 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3362 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1422 3363
3364 EV_FREQUENT_CHECK;
3365
3366 ++timercnt;
1423 ev_start (EV_A_ (W)w, ++timercnt); 3367 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1424 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 3368 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1425 timers [timercnt - 1] = w; 3369 ANHE_w (timers [ev_active (w)]) = (WT)w;
1426 upheap ((WT *)timers, timercnt - 1); 3370 ANHE_at_cache (timers [ev_active (w)]);
3371 upheap (timers, ev_active (w));
1427 3372
3373 EV_FREQUENT_CHECK;
3374
1428 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3375 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1429} 3376}
1430 3377
1431void 3378void noinline
1432ev_timer_stop (EV_P_ struct ev_timer *w) 3379ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
1433{ 3380{
1434 ev_clear_pending (EV_A_ (W)w); 3381 clear_pending (EV_A_ (W)w);
1435 if (expect_false (!ev_is_active (w))) 3382 if (expect_false (!ev_is_active (w)))
1436 return; 3383 return;
1437 3384
3385 EV_FREQUENT_CHECK;
3386
3387 {
3388 int active = ev_active (w);
3389
1438 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3390 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1439 3391
3392 --timercnt;
3393
1440 if (expect_true (((W)w)->active < timercnt--)) 3394 if (expect_true (active < timercnt + HEAP0))
1441 { 3395 {
1442 timers [((W)w)->active - 1] = timers [timercnt]; 3396 timers [active] = timers [timercnt + HEAP0];
1443 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 3397 adjustheap (timers, timercnt, active);
1444 } 3398 }
3399 }
1445 3400
1446 ((WT)w)->at -= mn_now; 3401 ev_at (w) -= mn_now;
1447 3402
1448 ev_stop (EV_A_ (W)w); 3403 ev_stop (EV_A_ (W)w);
1449}
1450 3404
1451void 3405 EV_FREQUENT_CHECK;
3406}
3407
3408void noinline
1452ev_timer_again (EV_P_ struct ev_timer *w) 3409ev_timer_again (EV_P_ ev_timer *w) EV_THROW
1453{ 3410{
3411 EV_FREQUENT_CHECK;
3412
3413 clear_pending (EV_A_ (W)w);
3414
1454 if (ev_is_active (w)) 3415 if (ev_is_active (w))
1455 { 3416 {
1456 if (w->repeat) 3417 if (w->repeat)
1457 { 3418 {
1458 ((WT)w)->at = mn_now + w->repeat; 3419 ev_at (w) = mn_now + w->repeat;
3420 ANHE_at_cache (timers [ev_active (w)]);
1459 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 3421 adjustheap (timers, timercnt, ev_active (w));
1460 } 3422 }
1461 else 3423 else
1462 ev_timer_stop (EV_A_ w); 3424 ev_timer_stop (EV_A_ w);
1463 } 3425 }
1464 else if (w->repeat) 3426 else if (w->repeat)
1465 { 3427 {
1466 w->at = w->repeat; 3428 ev_at (w) = w->repeat;
1467 ev_timer_start (EV_A_ w); 3429 ev_timer_start (EV_A_ w);
1468 } 3430 }
1469}
1470 3431
3432 EV_FREQUENT_CHECK;
3433}
3434
3435ev_tstamp
3436ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3437{
3438 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3439}
3440
1471#if EV_PERIODICS 3441#if EV_PERIODIC_ENABLE
1472void 3442void noinline
1473ev_periodic_start (EV_P_ struct ev_periodic *w) 3443ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
1474{ 3444{
1475 if (expect_false (ev_is_active (w))) 3445 if (expect_false (ev_is_active (w)))
1476 return; 3446 return;
1477 3447
1478 if (w->reschedule_cb) 3448 if (w->reschedule_cb)
1479 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 3449 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1480 else if (w->interval) 3450 else if (w->interval)
1481 { 3451 {
1482 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3452 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1483 /* this formula differs from the one in periodic_reify because we do not always round up */ 3453 periodic_recalc (EV_A_ w);
1484 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1485 } 3454 }
3455 else
3456 ev_at (w) = w->offset;
1486 3457
3458 EV_FREQUENT_CHECK;
3459
3460 ++periodiccnt;
1487 ev_start (EV_A_ (W)w, ++periodiccnt); 3461 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1488 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 3462 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1489 periodics [periodiccnt - 1] = w; 3463 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1490 upheap ((WT *)periodics, periodiccnt - 1); 3464 ANHE_at_cache (periodics [ev_active (w)]);
3465 upheap (periodics, ev_active (w));
1491 3466
3467 EV_FREQUENT_CHECK;
3468
1492 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3469 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1493} 3470}
1494 3471
1495void 3472void noinline
1496ev_periodic_stop (EV_P_ struct ev_periodic *w) 3473ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
1497{ 3474{
1498 ev_clear_pending (EV_A_ (W)w); 3475 clear_pending (EV_A_ (W)w);
1499 if (expect_false (!ev_is_active (w))) 3476 if (expect_false (!ev_is_active (w)))
1500 return; 3477 return;
1501 3478
3479 EV_FREQUENT_CHECK;
3480
3481 {
3482 int active = ev_active (w);
3483
1502 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3484 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1503 3485
3486 --periodiccnt;
3487
1504 if (expect_true (((W)w)->active < periodiccnt--)) 3488 if (expect_true (active < periodiccnt + HEAP0))
1505 { 3489 {
1506 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 3490 periodics [active] = periodics [periodiccnt + HEAP0];
1507 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 3491 adjustheap (periodics, periodiccnt, active);
1508 } 3492 }
3493 }
1509 3494
1510 ev_stop (EV_A_ (W)w); 3495 ev_stop (EV_A_ (W)w);
1511}
1512 3496
1513void 3497 EV_FREQUENT_CHECK;
3498}
3499
3500void noinline
1514ev_periodic_again (EV_P_ struct ev_periodic *w) 3501ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
1515{ 3502{
1516 /* TODO: use adjustheap and recalculation */ 3503 /* TODO: use adjustheap and recalculation */
1517 ev_periodic_stop (EV_A_ w); 3504 ev_periodic_stop (EV_A_ w);
1518 ev_periodic_start (EV_A_ w); 3505 ev_periodic_start (EV_A_ w);
1519} 3506}
1520#endif 3507#endif
1521 3508
1522void 3509#ifndef SA_RESTART
1523ev_idle_start (EV_P_ struct ev_idle *w) 3510# define SA_RESTART 0
3511#endif
3512
3513#if EV_SIGNAL_ENABLE
3514
3515void noinline
3516ev_signal_start (EV_P_ ev_signal *w) EV_THROW
1524{ 3517{
1525 if (expect_false (ev_is_active (w))) 3518 if (expect_false (ev_is_active (w)))
1526 return; 3519 return;
1527 3520
3521 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3522
3523#if EV_MULTIPLICITY
3524 assert (("libev: a signal must not be attached to two different loops",
3525 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3526
3527 signals [w->signum - 1].loop = EV_A;
3528#endif
3529
3530 EV_FREQUENT_CHECK;
3531
3532#if EV_USE_SIGNALFD
3533 if (sigfd == -2)
3534 {
3535 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3536 if (sigfd < 0 && errno == EINVAL)
3537 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3538
3539 if (sigfd >= 0)
3540 {
3541 fd_intern (sigfd); /* doing it twice will not hurt */
3542
3543 sigemptyset (&sigfd_set);
3544
3545 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3546 ev_set_priority (&sigfd_w, EV_MAXPRI);
3547 ev_io_start (EV_A_ &sigfd_w);
3548 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3549 }
3550 }
3551
3552 if (sigfd >= 0)
3553 {
3554 /* TODO: check .head */
3555 sigaddset (&sigfd_set, w->signum);
3556 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3557
3558 signalfd (sigfd, &sigfd_set, 0);
3559 }
3560#endif
3561
1528 ev_start (EV_A_ (W)w, ++idlecnt); 3562 ev_start (EV_A_ (W)w, 1);
1529 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2); 3563 wlist_add (&signals [w->signum - 1].head, (WL)w);
1530 idles [idlecnt - 1] = w;
1531}
1532 3564
1533void 3565 if (!((WL)w)->next)
1534ev_idle_stop (EV_P_ struct ev_idle *w) 3566# if EV_USE_SIGNALFD
3567 if (sigfd < 0) /*TODO*/
3568# endif
3569 {
3570# ifdef _WIN32
3571 evpipe_init (EV_A);
3572
3573 signal (w->signum, ev_sighandler);
3574# else
3575 struct sigaction sa;
3576
3577 evpipe_init (EV_A);
3578
3579 sa.sa_handler = ev_sighandler;
3580 sigfillset (&sa.sa_mask);
3581 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3582 sigaction (w->signum, &sa, 0);
3583
3584 if (origflags & EVFLAG_NOSIGMASK)
3585 {
3586 sigemptyset (&sa.sa_mask);
3587 sigaddset (&sa.sa_mask, w->signum);
3588 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3589 }
3590#endif
3591 }
3592
3593 EV_FREQUENT_CHECK;
3594}
3595
3596void noinline
3597ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
1535{ 3598{
1536 ev_clear_pending (EV_A_ (W)w); 3599 clear_pending (EV_A_ (W)w);
1537 if (expect_false (!ev_is_active (w))) 3600 if (expect_false (!ev_is_active (w)))
1538 return; 3601 return;
1539 3602
1540 idles [((W)w)->active - 1] = idles [--idlecnt]; 3603 EV_FREQUENT_CHECK;
3604
3605 wlist_del (&signals [w->signum - 1].head, (WL)w);
1541 ev_stop (EV_A_ (W)w); 3606 ev_stop (EV_A_ (W)w);
3607
3608 if (!signals [w->signum - 1].head)
3609 {
3610#if EV_MULTIPLICITY
3611 signals [w->signum - 1].loop = 0; /* unattach from signal */
3612#endif
3613#if EV_USE_SIGNALFD
3614 if (sigfd >= 0)
3615 {
3616 sigset_t ss;
3617
3618 sigemptyset (&ss);
3619 sigaddset (&ss, w->signum);
3620 sigdelset (&sigfd_set, w->signum);
3621
3622 signalfd (sigfd, &sigfd_set, 0);
3623 sigprocmask (SIG_UNBLOCK, &ss, 0);
3624 }
3625 else
3626#endif
3627 signal (w->signum, SIG_DFL);
3628 }
3629
3630 EV_FREQUENT_CHECK;
1542} 3631}
3632
3633#endif
3634
3635#if EV_CHILD_ENABLE
1543 3636
1544void 3637void
1545ev_prepare_start (EV_P_ struct ev_prepare *w) 3638ev_child_start (EV_P_ ev_child *w) EV_THROW
1546{ 3639{
3640#if EV_MULTIPLICITY
3641 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
3642#endif
1547 if (expect_false (ev_is_active (w))) 3643 if (expect_false (ev_is_active (w)))
1548 return; 3644 return;
1549 3645
3646 EV_FREQUENT_CHECK;
3647
1550 ev_start (EV_A_ (W)w, ++preparecnt); 3648 ev_start (EV_A_ (W)w, 1);
1551 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3649 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1552 prepares [preparecnt - 1] = w; 3650
3651 EV_FREQUENT_CHECK;
1553} 3652}
1554 3653
1555void 3654void
1556ev_prepare_stop (EV_P_ struct ev_prepare *w) 3655ev_child_stop (EV_P_ ev_child *w) EV_THROW
1557{ 3656{
1558 ev_clear_pending (EV_A_ (W)w); 3657 clear_pending (EV_A_ (W)w);
1559 if (expect_false (!ev_is_active (w))) 3658 if (expect_false (!ev_is_active (w)))
1560 return; 3659 return;
1561 3660
1562 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 3661 EV_FREQUENT_CHECK;
3662
3663 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1563 ev_stop (EV_A_ (W)w); 3664 ev_stop (EV_A_ (W)w);
3665
3666 EV_FREQUENT_CHECK;
1564} 3667}
3668
3669#endif
3670
3671#if EV_STAT_ENABLE
3672
3673# ifdef _WIN32
3674# undef lstat
3675# define lstat(a,b) _stati64 (a,b)
3676# endif
3677
3678#define DEF_STAT_INTERVAL 5.0074891
3679#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3680#define MIN_STAT_INTERVAL 0.1074891
3681
3682static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3683
3684#if EV_USE_INOTIFY
3685
3686/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3687# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3688
3689static void noinline
3690infy_add (EV_P_ ev_stat *w)
3691{
3692 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3693
3694 if (w->wd >= 0)
3695 {
3696 struct statfs sfs;
3697
3698 /* now local changes will be tracked by inotify, but remote changes won't */
3699 /* unless the filesystem is known to be local, we therefore still poll */
3700 /* also do poll on <2.6.25, but with normal frequency */
3701
3702 if (!fs_2625)
3703 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3704 else if (!statfs (w->path, &sfs)
3705 && (sfs.f_type == 0x1373 /* devfs */
3706 || sfs.f_type == 0xEF53 /* ext2/3 */
3707 || sfs.f_type == 0x3153464a /* jfs */
3708 || sfs.f_type == 0x52654973 /* reiser3 */
3709 || sfs.f_type == 0x01021994 /* tempfs */
3710 || sfs.f_type == 0x58465342 /* xfs */))
3711 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3712 else
3713 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3714 }
3715 else
3716 {
3717 /* can't use inotify, continue to stat */
3718 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3719
3720 /* if path is not there, monitor some parent directory for speedup hints */
3721 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3722 /* but an efficiency issue only */
3723 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3724 {
3725 char path [4096];
3726 strcpy (path, w->path);
3727
3728 do
3729 {
3730 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3731 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3732
3733 char *pend = strrchr (path, '/');
3734
3735 if (!pend || pend == path)
3736 break;
3737
3738 *pend = 0;
3739 w->wd = inotify_add_watch (fs_fd, path, mask);
3740 }
3741 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3742 }
3743 }
3744
3745 if (w->wd >= 0)
3746 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3747
3748 /* now re-arm timer, if required */
3749 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3750 ev_timer_again (EV_A_ &w->timer);
3751 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3752}
3753
3754static void noinline
3755infy_del (EV_P_ ev_stat *w)
3756{
3757 int slot;
3758 int wd = w->wd;
3759
3760 if (wd < 0)
3761 return;
3762
3763 w->wd = -2;
3764 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3765 wlist_del (&fs_hash [slot].head, (WL)w);
3766
3767 /* remove this watcher, if others are watching it, they will rearm */
3768 inotify_rm_watch (fs_fd, wd);
3769}
3770
3771static void noinline
3772infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3773{
3774 if (slot < 0)
3775 /* overflow, need to check for all hash slots */
3776 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3777 infy_wd (EV_A_ slot, wd, ev);
3778 else
3779 {
3780 WL w_;
3781
3782 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3783 {
3784 ev_stat *w = (ev_stat *)w_;
3785 w_ = w_->next; /* lets us remove this watcher and all before it */
3786
3787 if (w->wd == wd || wd == -1)
3788 {
3789 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3790 {
3791 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3792 w->wd = -1;
3793 infy_add (EV_A_ w); /* re-add, no matter what */
3794 }
3795
3796 stat_timer_cb (EV_A_ &w->timer, 0);
3797 }
3798 }
3799 }
3800}
3801
3802static void
3803infy_cb (EV_P_ ev_io *w, int revents)
3804{
3805 char buf [EV_INOTIFY_BUFSIZE];
3806 int ofs;
3807 int len = read (fs_fd, buf, sizeof (buf));
3808
3809 for (ofs = 0; ofs < len; )
3810 {
3811 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3812 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3813 ofs += sizeof (struct inotify_event) + ev->len;
3814 }
3815}
3816
3817inline_size void ecb_cold
3818ev_check_2625 (EV_P)
3819{
3820 /* kernels < 2.6.25 are borked
3821 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3822 */
3823 if (ev_linux_version () < 0x020619)
3824 return;
3825
3826 fs_2625 = 1;
3827}
3828
3829inline_size int
3830infy_newfd (void)
3831{
3832#if defined IN_CLOEXEC && defined IN_NONBLOCK
3833 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3834 if (fd >= 0)
3835 return fd;
3836#endif
3837 return inotify_init ();
3838}
3839
3840inline_size void
3841infy_init (EV_P)
3842{
3843 if (fs_fd != -2)
3844 return;
3845
3846 fs_fd = -1;
3847
3848 ev_check_2625 (EV_A);
3849
3850 fs_fd = infy_newfd ();
3851
3852 if (fs_fd >= 0)
3853 {
3854 fd_intern (fs_fd);
3855 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3856 ev_set_priority (&fs_w, EV_MAXPRI);
3857 ev_io_start (EV_A_ &fs_w);
3858 ev_unref (EV_A);
3859 }
3860}
3861
3862inline_size void
3863infy_fork (EV_P)
3864{
3865 int slot;
3866
3867 if (fs_fd < 0)
3868 return;
3869
3870 ev_ref (EV_A);
3871 ev_io_stop (EV_A_ &fs_w);
3872 close (fs_fd);
3873 fs_fd = infy_newfd ();
3874
3875 if (fs_fd >= 0)
3876 {
3877 fd_intern (fs_fd);
3878 ev_io_set (&fs_w, fs_fd, EV_READ);
3879 ev_io_start (EV_A_ &fs_w);
3880 ev_unref (EV_A);
3881 }
3882
3883 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3884 {
3885 WL w_ = fs_hash [slot].head;
3886 fs_hash [slot].head = 0;
3887
3888 while (w_)
3889 {
3890 ev_stat *w = (ev_stat *)w_;
3891 w_ = w_->next; /* lets us add this watcher */
3892
3893 w->wd = -1;
3894
3895 if (fs_fd >= 0)
3896 infy_add (EV_A_ w); /* re-add, no matter what */
3897 else
3898 {
3899 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3900 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3901 ev_timer_again (EV_A_ &w->timer);
3902 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3903 }
3904 }
3905 }
3906}
3907
3908#endif
3909
3910#ifdef _WIN32
3911# define EV_LSTAT(p,b) _stati64 (p, b)
3912#else
3913# define EV_LSTAT(p,b) lstat (p, b)
3914#endif
1565 3915
1566void 3916void
1567ev_check_start (EV_P_ struct ev_check *w) 3917ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
3918{
3919 if (lstat (w->path, &w->attr) < 0)
3920 w->attr.st_nlink = 0;
3921 else if (!w->attr.st_nlink)
3922 w->attr.st_nlink = 1;
3923}
3924
3925static void noinline
3926stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3927{
3928 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3929
3930 ev_statdata prev = w->attr;
3931 ev_stat_stat (EV_A_ w);
3932
3933 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3934 if (
3935 prev.st_dev != w->attr.st_dev
3936 || prev.st_ino != w->attr.st_ino
3937 || prev.st_mode != w->attr.st_mode
3938 || prev.st_nlink != w->attr.st_nlink
3939 || prev.st_uid != w->attr.st_uid
3940 || prev.st_gid != w->attr.st_gid
3941 || prev.st_rdev != w->attr.st_rdev
3942 || prev.st_size != w->attr.st_size
3943 || prev.st_atime != w->attr.st_atime
3944 || prev.st_mtime != w->attr.st_mtime
3945 || prev.st_ctime != w->attr.st_ctime
3946 ) {
3947 /* we only update w->prev on actual differences */
3948 /* in case we test more often than invoke the callback, */
3949 /* to ensure that prev is always different to attr */
3950 w->prev = prev;
3951
3952 #if EV_USE_INOTIFY
3953 if (fs_fd >= 0)
3954 {
3955 infy_del (EV_A_ w);
3956 infy_add (EV_A_ w);
3957 ev_stat_stat (EV_A_ w); /* avoid race... */
3958 }
3959 #endif
3960
3961 ev_feed_event (EV_A_ w, EV_STAT);
3962 }
3963}
3964
3965void
3966ev_stat_start (EV_P_ ev_stat *w) EV_THROW
1568{ 3967{
1569 if (expect_false (ev_is_active (w))) 3968 if (expect_false (ev_is_active (w)))
1570 return; 3969 return;
1571 3970
3971 ev_stat_stat (EV_A_ w);
3972
3973 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3974 w->interval = MIN_STAT_INTERVAL;
3975
3976 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3977 ev_set_priority (&w->timer, ev_priority (w));
3978
3979#if EV_USE_INOTIFY
3980 infy_init (EV_A);
3981
3982 if (fs_fd >= 0)
3983 infy_add (EV_A_ w);
3984 else
3985#endif
3986 {
3987 ev_timer_again (EV_A_ &w->timer);
3988 ev_unref (EV_A);
3989 }
3990
1572 ev_start (EV_A_ (W)w, ++checkcnt); 3991 ev_start (EV_A_ (W)w, 1);
1573 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2); 3992
1574 checks [checkcnt - 1] = w; 3993 EV_FREQUENT_CHECK;
1575} 3994}
1576 3995
1577void 3996void
1578ev_check_stop (EV_P_ struct ev_check *w) 3997ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
1579{ 3998{
1580 ev_clear_pending (EV_A_ (W)w); 3999 clear_pending (EV_A_ (W)w);
1581 if (expect_false (!ev_is_active (w))) 4000 if (expect_false (!ev_is_active (w)))
1582 return; 4001 return;
1583 4002
1584 checks [((W)w)->active - 1] = checks [--checkcnt]; 4003 EV_FREQUENT_CHECK;
4004
4005#if EV_USE_INOTIFY
4006 infy_del (EV_A_ w);
4007#endif
4008
4009 if (ev_is_active (&w->timer))
4010 {
4011 ev_ref (EV_A);
4012 ev_timer_stop (EV_A_ &w->timer);
4013 }
4014
1585 ev_stop (EV_A_ (W)w); 4015 ev_stop (EV_A_ (W)w);
1586}
1587 4016
1588#ifndef SA_RESTART 4017 EV_FREQUENT_CHECK;
1589# define SA_RESTART 0 4018}
1590#endif 4019#endif
1591 4020
4021#if EV_IDLE_ENABLE
1592void 4022void
1593ev_signal_start (EV_P_ struct ev_signal *w) 4023ev_idle_start (EV_P_ ev_idle *w) EV_THROW
1594{ 4024{
1595#if EV_MULTIPLICITY
1596 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1597#endif
1598 if (expect_false (ev_is_active (w))) 4025 if (expect_false (ev_is_active (w)))
1599 return; 4026 return;
1600 4027
1601 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 4028 pri_adjust (EV_A_ (W)w);
1602 4029
4030 EV_FREQUENT_CHECK;
4031
4032 {
4033 int active = ++idlecnt [ABSPRI (w)];
4034
4035 ++idleall;
1603 ev_start (EV_A_ (W)w, 1); 4036 ev_start (EV_A_ (W)w, active);
1604 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1605 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1606 4037
1607 if (!((WL)w)->next) 4038 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1608 { 4039 idles [ABSPRI (w)][active - 1] = w;
1609#if _WIN32
1610 signal (w->signum, sighandler);
1611#else
1612 struct sigaction sa;
1613 sa.sa_handler = sighandler;
1614 sigfillset (&sa.sa_mask);
1615 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1616 sigaction (w->signum, &sa, 0);
1617#endif
1618 } 4040 }
4041
4042 EV_FREQUENT_CHECK;
1619} 4043}
1620 4044
1621void 4045void
1622ev_signal_stop (EV_P_ struct ev_signal *w) 4046ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
1623{ 4047{
1624 ev_clear_pending (EV_A_ (W)w); 4048 clear_pending (EV_A_ (W)w);
1625 if (expect_false (!ev_is_active (w))) 4049 if (expect_false (!ev_is_active (w)))
1626 return; 4050 return;
1627 4051
1628 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 4052 EV_FREQUENT_CHECK;
4053
4054 {
4055 int active = ev_active (w);
4056
4057 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4058 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4059
1629 ev_stop (EV_A_ (W)w); 4060 ev_stop (EV_A_ (W)w);
4061 --idleall;
4062 }
1630 4063
1631 if (!signals [w->signum - 1].head) 4064 EV_FREQUENT_CHECK;
1632 signal (w->signum, SIG_DFL);
1633} 4065}
4066#endif
1634 4067
4068#if EV_PREPARE_ENABLE
1635void 4069void
1636ev_child_start (EV_P_ struct ev_child *w) 4070ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
1637{ 4071{
1638#if EV_MULTIPLICITY
1639 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1640#endif
1641 if (expect_false (ev_is_active (w))) 4072 if (expect_false (ev_is_active (w)))
1642 return; 4073 return;
1643 4074
4075 EV_FREQUENT_CHECK;
4076
1644 ev_start (EV_A_ (W)w, 1); 4077 ev_start (EV_A_ (W)w, ++preparecnt);
1645 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 4078 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
4079 prepares [preparecnt - 1] = w;
4080
4081 EV_FREQUENT_CHECK;
1646} 4082}
1647 4083
1648void 4084void
1649ev_child_stop (EV_P_ struct ev_child *w) 4085ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
1650{ 4086{
1651 ev_clear_pending (EV_A_ (W)w); 4087 clear_pending (EV_A_ (W)w);
1652 if (expect_false (!ev_is_active (w))) 4088 if (expect_false (!ev_is_active (w)))
1653 return; 4089 return;
1654 4090
1655 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 4091 EV_FREQUENT_CHECK;
4092
4093 {
4094 int active = ev_active (w);
4095
4096 prepares [active - 1] = prepares [--preparecnt];
4097 ev_active (prepares [active - 1]) = active;
4098 }
4099
1656 ev_stop (EV_A_ (W)w); 4100 ev_stop (EV_A_ (W)w);
4101
4102 EV_FREQUENT_CHECK;
1657} 4103}
4104#endif
4105
4106#if EV_CHECK_ENABLE
4107void
4108ev_check_start (EV_P_ ev_check *w) EV_THROW
4109{
4110 if (expect_false (ev_is_active (w)))
4111 return;
4112
4113 EV_FREQUENT_CHECK;
4114
4115 ev_start (EV_A_ (W)w, ++checkcnt);
4116 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4117 checks [checkcnt - 1] = w;
4118
4119 EV_FREQUENT_CHECK;
4120}
4121
4122void
4123ev_check_stop (EV_P_ ev_check *w) EV_THROW
4124{
4125 clear_pending (EV_A_ (W)w);
4126 if (expect_false (!ev_is_active (w)))
4127 return;
4128
4129 EV_FREQUENT_CHECK;
4130
4131 {
4132 int active = ev_active (w);
4133
4134 checks [active - 1] = checks [--checkcnt];
4135 ev_active (checks [active - 1]) = active;
4136 }
4137
4138 ev_stop (EV_A_ (W)w);
4139
4140 EV_FREQUENT_CHECK;
4141}
4142#endif
4143
4144#if EV_EMBED_ENABLE
4145void noinline
4146ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
4147{
4148 ev_run (w->other, EVRUN_NOWAIT);
4149}
4150
4151static void
4152embed_io_cb (EV_P_ ev_io *io, int revents)
4153{
4154 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4155
4156 if (ev_cb (w))
4157 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4158 else
4159 ev_run (w->other, EVRUN_NOWAIT);
4160}
4161
4162static void
4163embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4164{
4165 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4166
4167 {
4168 EV_P = w->other;
4169
4170 while (fdchangecnt)
4171 {
4172 fd_reify (EV_A);
4173 ev_run (EV_A_ EVRUN_NOWAIT);
4174 }
4175 }
4176}
4177
4178static void
4179embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4180{
4181 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4182
4183 ev_embed_stop (EV_A_ w);
4184
4185 {
4186 EV_P = w->other;
4187
4188 ev_loop_fork (EV_A);
4189 ev_run (EV_A_ EVRUN_NOWAIT);
4190 }
4191
4192 ev_embed_start (EV_A_ w);
4193}
4194
4195#if 0
4196static void
4197embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4198{
4199 ev_idle_stop (EV_A_ idle);
4200}
4201#endif
4202
4203void
4204ev_embed_start (EV_P_ ev_embed *w) EV_THROW
4205{
4206 if (expect_false (ev_is_active (w)))
4207 return;
4208
4209 {
4210 EV_P = w->other;
4211 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4212 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4213 }
4214
4215 EV_FREQUENT_CHECK;
4216
4217 ev_set_priority (&w->io, ev_priority (w));
4218 ev_io_start (EV_A_ &w->io);
4219
4220 ev_prepare_init (&w->prepare, embed_prepare_cb);
4221 ev_set_priority (&w->prepare, EV_MINPRI);
4222 ev_prepare_start (EV_A_ &w->prepare);
4223
4224 ev_fork_init (&w->fork, embed_fork_cb);
4225 ev_fork_start (EV_A_ &w->fork);
4226
4227 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4228
4229 ev_start (EV_A_ (W)w, 1);
4230
4231 EV_FREQUENT_CHECK;
4232}
4233
4234void
4235ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
4236{
4237 clear_pending (EV_A_ (W)w);
4238 if (expect_false (!ev_is_active (w)))
4239 return;
4240
4241 EV_FREQUENT_CHECK;
4242
4243 ev_io_stop (EV_A_ &w->io);
4244 ev_prepare_stop (EV_A_ &w->prepare);
4245 ev_fork_stop (EV_A_ &w->fork);
4246
4247 ev_stop (EV_A_ (W)w);
4248
4249 EV_FREQUENT_CHECK;
4250}
4251#endif
4252
4253#if EV_FORK_ENABLE
4254void
4255ev_fork_start (EV_P_ ev_fork *w) EV_THROW
4256{
4257 if (expect_false (ev_is_active (w)))
4258 return;
4259
4260 EV_FREQUENT_CHECK;
4261
4262 ev_start (EV_A_ (W)w, ++forkcnt);
4263 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4264 forks [forkcnt - 1] = w;
4265
4266 EV_FREQUENT_CHECK;
4267}
4268
4269void
4270ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
4271{
4272 clear_pending (EV_A_ (W)w);
4273 if (expect_false (!ev_is_active (w)))
4274 return;
4275
4276 EV_FREQUENT_CHECK;
4277
4278 {
4279 int active = ev_active (w);
4280
4281 forks [active - 1] = forks [--forkcnt];
4282 ev_active (forks [active - 1]) = active;
4283 }
4284
4285 ev_stop (EV_A_ (W)w);
4286
4287 EV_FREQUENT_CHECK;
4288}
4289#endif
4290
4291#if EV_CLEANUP_ENABLE
4292void
4293ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4294{
4295 if (expect_false (ev_is_active (w)))
4296 return;
4297
4298 EV_FREQUENT_CHECK;
4299
4300 ev_start (EV_A_ (W)w, ++cleanupcnt);
4301 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4302 cleanups [cleanupcnt - 1] = w;
4303
4304 /* cleanup watchers should never keep a refcount on the loop */
4305 ev_unref (EV_A);
4306 EV_FREQUENT_CHECK;
4307}
4308
4309void
4310ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4311{
4312 clear_pending (EV_A_ (W)w);
4313 if (expect_false (!ev_is_active (w)))
4314 return;
4315
4316 EV_FREQUENT_CHECK;
4317 ev_ref (EV_A);
4318
4319 {
4320 int active = ev_active (w);
4321
4322 cleanups [active - 1] = cleanups [--cleanupcnt];
4323 ev_active (cleanups [active - 1]) = active;
4324 }
4325
4326 ev_stop (EV_A_ (W)w);
4327
4328 EV_FREQUENT_CHECK;
4329}
4330#endif
4331
4332#if EV_ASYNC_ENABLE
4333void
4334ev_async_start (EV_P_ ev_async *w) EV_THROW
4335{
4336 if (expect_false (ev_is_active (w)))
4337 return;
4338
4339 w->sent = 0;
4340
4341 evpipe_init (EV_A);
4342
4343 EV_FREQUENT_CHECK;
4344
4345 ev_start (EV_A_ (W)w, ++asynccnt);
4346 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4347 asyncs [asynccnt - 1] = w;
4348
4349 EV_FREQUENT_CHECK;
4350}
4351
4352void
4353ev_async_stop (EV_P_ ev_async *w) EV_THROW
4354{
4355 clear_pending (EV_A_ (W)w);
4356 if (expect_false (!ev_is_active (w)))
4357 return;
4358
4359 EV_FREQUENT_CHECK;
4360
4361 {
4362 int active = ev_active (w);
4363
4364 asyncs [active - 1] = asyncs [--asynccnt];
4365 ev_active (asyncs [active - 1]) = active;
4366 }
4367
4368 ev_stop (EV_A_ (W)w);
4369
4370 EV_FREQUENT_CHECK;
4371}
4372
4373void
4374ev_async_send (EV_P_ ev_async *w) EV_THROW
4375{
4376 w->sent = 1;
4377 evpipe_write (EV_A_ &async_pending);
4378}
4379#endif
1658 4380
1659/*****************************************************************************/ 4381/*****************************************************************************/
1660 4382
1661struct ev_once 4383struct ev_once
1662{ 4384{
1663 struct ev_io io; 4385 ev_io io;
1664 struct ev_timer to; 4386 ev_timer to;
1665 void (*cb)(int revents, void *arg); 4387 void (*cb)(int revents, void *arg);
1666 void *arg; 4388 void *arg;
1667}; 4389};
1668 4390
1669static void 4391static void
1670once_cb (EV_P_ struct ev_once *once, int revents) 4392once_cb (EV_P_ struct ev_once *once, int revents)
1671{ 4393{
1672 void (*cb)(int revents, void *arg) = once->cb; 4394 void (*cb)(int revents, void *arg) = once->cb;
1673 void *arg = once->arg; 4395 void *arg = once->arg;
1674 4396
1675 ev_io_stop (EV_A_ &once->io); 4397 ev_io_stop (EV_A_ &once->io);
1676 ev_timer_stop (EV_A_ &once->to); 4398 ev_timer_stop (EV_A_ &once->to);
1677 ev_free (once); 4399 ev_free (once);
1678 4400
1679 cb (revents, arg); 4401 cb (revents, arg);
1680} 4402}
1681 4403
1682static void 4404static void
1683once_cb_io (EV_P_ struct ev_io *w, int revents) 4405once_cb_io (EV_P_ ev_io *w, int revents)
1684{ 4406{
1685 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4407 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4408
4409 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1686} 4410}
1687 4411
1688static void 4412static void
1689once_cb_to (EV_P_ struct ev_timer *w, int revents) 4413once_cb_to (EV_P_ ev_timer *w, int revents)
1690{ 4414{
1691 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4415 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4416
4417 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1692} 4418}
1693 4419
1694void 4420void
1695ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4421ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
1696{ 4422{
1697 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4423 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1698 4424
1699 if (expect_false (!once)) 4425 if (expect_false (!once))
1700 { 4426 {
1701 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4427 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1702 return; 4428 return;
1703 } 4429 }
1704 4430
1705 once->cb = cb; 4431 once->cb = cb;
1706 once->arg = arg; 4432 once->arg = arg;
1718 ev_timer_set (&once->to, timeout, 0.); 4444 ev_timer_set (&once->to, timeout, 0.);
1719 ev_timer_start (EV_A_ &once->to); 4445 ev_timer_start (EV_A_ &once->to);
1720 } 4446 }
1721} 4447}
1722 4448
1723#ifdef __cplusplus 4449/*****************************************************************************/
1724} 4450
4451#if EV_WALK_ENABLE
4452void ecb_cold
4453ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4454{
4455 int i, j;
4456 ev_watcher_list *wl, *wn;
4457
4458 if (types & (EV_IO | EV_EMBED))
4459 for (i = 0; i < anfdmax; ++i)
4460 for (wl = anfds [i].head; wl; )
4461 {
4462 wn = wl->next;
4463
4464#if EV_EMBED_ENABLE
4465 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4466 {
4467 if (types & EV_EMBED)
4468 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4469 }
4470 else
4471#endif
4472#if EV_USE_INOTIFY
4473 if (ev_cb ((ev_io *)wl) == infy_cb)
4474 ;
4475 else
4476#endif
4477 if ((ev_io *)wl != &pipe_w)
4478 if (types & EV_IO)
4479 cb (EV_A_ EV_IO, wl);
4480
4481 wl = wn;
4482 }
4483
4484 if (types & (EV_TIMER | EV_STAT))
4485 for (i = timercnt + HEAP0; i-- > HEAP0; )
4486#if EV_STAT_ENABLE
4487 /*TODO: timer is not always active*/
4488 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4489 {
4490 if (types & EV_STAT)
4491 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4492 }
4493 else
4494#endif
4495 if (types & EV_TIMER)
4496 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4497
4498#if EV_PERIODIC_ENABLE
4499 if (types & EV_PERIODIC)
4500 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4501 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4502#endif
4503
4504#if EV_IDLE_ENABLE
4505 if (types & EV_IDLE)
4506 for (j = NUMPRI; j--; )
4507 for (i = idlecnt [j]; i--; )
4508 cb (EV_A_ EV_IDLE, idles [j][i]);
4509#endif
4510
4511#if EV_FORK_ENABLE
4512 if (types & EV_FORK)
4513 for (i = forkcnt; i--; )
4514 if (ev_cb (forks [i]) != embed_fork_cb)
4515 cb (EV_A_ EV_FORK, forks [i]);
4516#endif
4517
4518#if EV_ASYNC_ENABLE
4519 if (types & EV_ASYNC)
4520 for (i = asynccnt; i--; )
4521 cb (EV_A_ EV_ASYNC, asyncs [i]);
4522#endif
4523
4524#if EV_PREPARE_ENABLE
4525 if (types & EV_PREPARE)
4526 for (i = preparecnt; i--; )
4527# if EV_EMBED_ENABLE
4528 if (ev_cb (prepares [i]) != embed_prepare_cb)
1725#endif 4529# endif
4530 cb (EV_A_ EV_PREPARE, prepares [i]);
4531#endif
1726 4532
4533#if EV_CHECK_ENABLE
4534 if (types & EV_CHECK)
4535 for (i = checkcnt; i--; )
4536 cb (EV_A_ EV_CHECK, checks [i]);
4537#endif
4538
4539#if EV_SIGNAL_ENABLE
4540 if (types & EV_SIGNAL)
4541 for (i = 0; i < EV_NSIG - 1; ++i)
4542 for (wl = signals [i].head; wl; )
4543 {
4544 wn = wl->next;
4545 cb (EV_A_ EV_SIGNAL, wl);
4546 wl = wn;
4547 }
4548#endif
4549
4550#if EV_CHILD_ENABLE
4551 if (types & EV_CHILD)
4552 for (i = (EV_PID_HASHSIZE); i--; )
4553 for (wl = childs [i]; wl; )
4554 {
4555 wn = wl->next;
4556 cb (EV_A_ EV_CHILD, wl);
4557 wl = wn;
4558 }
4559#endif
4560/* EV_STAT 0x00001000 /* stat data changed */
4561/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4562}
4563#endif
4564
4565#if EV_MULTIPLICITY
4566 #include "ev_wrap.h"
4567#endif
4568

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines