ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.227 by root, Fri May 2 07:20:01 2008 UTC vs.
Revision 1.441 by root, Wed May 30 15:45:40 2012 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
52# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
55# endif 71# endif
56# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
58# endif 74# endif
59# else 75# else
60# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
62# endif 78# endif
63# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
65# endif 81# endif
66# endif 82# endif
67 83
84# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
71# else 88# else
89# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
74# endif 100# endif
75 101
102# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 105# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 106# else
107# undef EV_USE_POLL
88# define EV_USE_POLL 0 108# define EV_USE_POLL 0
89# endif
90# endif 109# endif
91 110
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
95# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
98# endif 118# endif
99 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
106# endif 127# endif
107 128
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
111# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
114# endif 136# endif
115 137
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
122# endif 145# endif
123 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 148# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 149# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
130# endif 154# endif
131 155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
132#endif 163# endif
164
165#endif
133 166
134#include <math.h>
135#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
136#include <fcntl.h> 169#include <fcntl.h>
137#include <stddef.h> 170#include <stddef.h>
138 171
139#include <stdio.h> 172#include <stdio.h>
140 173
141#include <assert.h> 174#include <assert.h>
142#include <errno.h> 175#include <errno.h>
143#include <sys/types.h> 176#include <sys/types.h>
144#include <time.h> 177#include <time.h>
178#include <limits.h>
145 179
146#include <signal.h> 180#include <signal.h>
147 181
148#ifdef EV_H 182#ifdef EV_H
149# include EV_H 183# include EV_H
150#else 184#else
151# include "ev.h" 185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
152#endif 197#endif
153 198
154#ifndef _WIN32 199#ifndef _WIN32
155# include <sys/time.h> 200# include <sys/time.h>
156# include <sys/wait.h> 201# include <sys/wait.h>
157# include <unistd.h> 202# include <unistd.h>
158#else 203#else
204# include <io.h>
159# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
160# include <windows.h> 207# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 208# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 209# define EV_SELECT_IS_WINSOCKET 1
163# endif 210# endif
211# undef EV_AVOID_STDIO
164#endif 212#endif
213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
165 221
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 222/* this block tries to deduce configuration from header-defined symbols and defaults */
167 223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# error "unable to find value for NSIG, please report"
247/* to make it compile regardless, just remove the above line, */
248/* but consider reporting it, too! :) */
249# define EV_NSIG 65
250#endif
251
252#ifndef EV_USE_FLOOR
253# define EV_USE_FLOOR 0
254#endif
255
256#ifndef EV_USE_CLOCK_SYSCALL
257# if __linux && __GLIBC__ >= 2
258# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
259# else
260# define EV_USE_CLOCK_SYSCALL 0
261# endif
262#endif
263
168#ifndef EV_USE_MONOTONIC 264#ifndef EV_USE_MONOTONIC
265# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
266# define EV_USE_MONOTONIC EV_FEATURE_OS
267# else
169# define EV_USE_MONOTONIC 0 268# define EV_USE_MONOTONIC 0
269# endif
170#endif 270#endif
171 271
172#ifndef EV_USE_REALTIME 272#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 273# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 274#endif
175 275
176#ifndef EV_USE_NANOSLEEP 276#ifndef EV_USE_NANOSLEEP
277# if _POSIX_C_SOURCE >= 199309L
278# define EV_USE_NANOSLEEP EV_FEATURE_OS
279# else
177# define EV_USE_NANOSLEEP 0 280# define EV_USE_NANOSLEEP 0
281# endif
178#endif 282#endif
179 283
180#ifndef EV_USE_SELECT 284#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 285# define EV_USE_SELECT EV_FEATURE_BACKENDS
182#endif 286#endif
183 287
184#ifndef EV_USE_POLL 288#ifndef EV_USE_POLL
185# ifdef _WIN32 289# ifdef _WIN32
186# define EV_USE_POLL 0 290# define EV_USE_POLL 0
187# else 291# else
188# define EV_USE_POLL 1 292# define EV_USE_POLL EV_FEATURE_BACKENDS
189# endif 293# endif
190#endif 294#endif
191 295
192#ifndef EV_USE_EPOLL 296#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 297# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1 298# define EV_USE_EPOLL EV_FEATURE_BACKENDS
195# else 299# else
196# define EV_USE_EPOLL 0 300# define EV_USE_EPOLL 0
197# endif 301# endif
198#endif 302#endif
199 303
205# define EV_USE_PORT 0 309# define EV_USE_PORT 0
206#endif 310#endif
207 311
208#ifndef EV_USE_INOTIFY 312#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 313# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1 314# define EV_USE_INOTIFY EV_FEATURE_OS
211# else 315# else
212# define EV_USE_INOTIFY 0 316# define EV_USE_INOTIFY 0
213# endif 317# endif
214#endif 318#endif
215 319
216#ifndef EV_PID_HASHSIZE 320#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL 321# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif 322#endif
223 323
224#ifndef EV_INOTIFY_HASHSIZE 324#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL 325# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif 326#endif
231 327
232#ifndef EV_USE_EVENTFD 328#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 329# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 330# define EV_USE_EVENTFD EV_FEATURE_OS
235# else 331# else
236# define EV_USE_EVENTFD 0 332# define EV_USE_EVENTFD 0
237# endif 333# endif
238#endif 334#endif
239 335
336#ifndef EV_USE_SIGNALFD
337# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
338# define EV_USE_SIGNALFD EV_FEATURE_OS
339# else
340# define EV_USE_SIGNALFD 0
341# endif
342#endif
343
344#if 0 /* debugging */
345# define EV_VERIFY 3
346# define EV_USE_4HEAP 1
347# define EV_HEAP_CACHE_AT 1
348#endif
349
350#ifndef EV_VERIFY
351# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
352#endif
353
354#ifndef EV_USE_4HEAP
355# define EV_USE_4HEAP EV_FEATURE_DATA
356#endif
357
358#ifndef EV_HEAP_CACHE_AT
359# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
360#endif
361
362/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
363/* which makes programs even slower. might work on other unices, too. */
364#if EV_USE_CLOCK_SYSCALL
365# include <sys/syscall.h>
366# ifdef SYS_clock_gettime
367# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
368# undef EV_USE_MONOTONIC
369# define EV_USE_MONOTONIC 1
370# else
371# undef EV_USE_CLOCK_SYSCALL
372# define EV_USE_CLOCK_SYSCALL 0
373# endif
374#endif
375
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 376/* this block fixes any misconfiguration where we know we run into trouble otherwise */
377
378#ifdef _AIX
379/* AIX has a completely broken poll.h header */
380# undef EV_USE_POLL
381# define EV_USE_POLL 0
382#endif
241 383
242#ifndef CLOCK_MONOTONIC 384#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 385# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 386# define EV_USE_MONOTONIC 0
245#endif 387#endif
253# undef EV_USE_INOTIFY 395# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0 396# define EV_USE_INOTIFY 0
255#endif 397#endif
256 398
257#if !EV_USE_NANOSLEEP 399#if !EV_USE_NANOSLEEP
258# ifndef _WIN32 400/* hp-ux has it in sys/time.h, which we unconditionally include above */
401# if !defined _WIN32 && !defined __hpux
259# include <sys/select.h> 402# include <sys/select.h>
260# endif 403# endif
261#endif 404#endif
262 405
263#if EV_USE_INOTIFY 406#if EV_USE_INOTIFY
407# include <sys/statfs.h>
264# include <sys/inotify.h> 408# include <sys/inotify.h>
409/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
410# ifndef IN_DONT_FOLLOW
411# undef EV_USE_INOTIFY
412# define EV_USE_INOTIFY 0
265#endif 413# endif
266
267#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h>
269#endif 414#endif
270 415
271#if EV_USE_EVENTFD 416#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h> 418# include <stdint.h>
274# ifdef __cplusplus 419# ifndef EFD_NONBLOCK
275extern "C" { 420# define EFD_NONBLOCK O_NONBLOCK
276# endif 421# endif
277int eventfd (unsigned int initval, int flags); 422# ifndef EFD_CLOEXEC
278# ifdef __cplusplus 423# ifdef O_CLOEXEC
279} 424# define EFD_CLOEXEC O_CLOEXEC
425# else
426# define EFD_CLOEXEC 02000000
427# endif
280# endif 428# endif
429EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
430#endif
431
432#if EV_USE_SIGNALFD
433/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
434# include <stdint.h>
435# ifndef SFD_NONBLOCK
436# define SFD_NONBLOCK O_NONBLOCK
437# endif
438# ifndef SFD_CLOEXEC
439# ifdef O_CLOEXEC
440# define SFD_CLOEXEC O_CLOEXEC
441# else
442# define SFD_CLOEXEC 02000000
443# endif
444# endif
445EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
446
447struct signalfd_siginfo
448{
449 uint32_t ssi_signo;
450 char pad[128 - sizeof (uint32_t)];
451};
281#endif 452#endif
282 453
283/**/ 454/**/
284 455
456#if EV_VERIFY >= 3
457# define EV_FREQUENT_CHECK ev_verify (EV_A)
458#else
459# define EV_FREQUENT_CHECK do { } while (0)
460#endif
461
285/* 462/*
286 * This is used to avoid floating point rounding problems. 463 * This is used to work around floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding
289 * errors are against us.
290 * This value is good at least till the year 4000. 464 * This value is good at least till the year 4000.
291 * Better solutions welcome.
292 */ 465 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 466#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
467/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
294 468
295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 469#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 470#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
298 471
472#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
473#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
474
475/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
476/* ECB.H BEGIN */
477/*
478 * libecb - http://software.schmorp.de/pkg/libecb
479 *
480 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
481 * Copyright (©) 2011 Emanuele Giaquinta
482 * All rights reserved.
483 *
484 * Redistribution and use in source and binary forms, with or without modifica-
485 * tion, are permitted provided that the following conditions are met:
486 *
487 * 1. Redistributions of source code must retain the above copyright notice,
488 * this list of conditions and the following disclaimer.
489 *
490 * 2. Redistributions in binary form must reproduce the above copyright
491 * notice, this list of conditions and the following disclaimer in the
492 * documentation and/or other materials provided with the distribution.
493 *
494 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
495 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
496 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
497 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
498 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
499 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
500 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
501 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
502 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
503 * OF THE POSSIBILITY OF SUCH DAMAGE.
504 */
505
506#ifndef ECB_H
507#define ECB_H
508
509/* 16 bits major, 16 bits minor */
510#define ECB_VERSION 0x00010001
511
512#ifdef _WIN32
513 typedef signed char int8_t;
514 typedef unsigned char uint8_t;
515 typedef signed short int16_t;
516 typedef unsigned short uint16_t;
517 typedef signed int int32_t;
518 typedef unsigned int uint32_t;
299#if __GNUC__ >= 4 519 #if __GNUC__
300# define expect(expr,value) __builtin_expect ((expr),(value)) 520 typedef signed long long int64_t;
301# define noinline __attribute__ ((noinline)) 521 typedef unsigned long long uint64_t;
522 #else /* _MSC_VER || __BORLANDC__ */
523 typedef signed __int64 int64_t;
524 typedef unsigned __int64 uint64_t;
525 #endif
526 #ifdef _WIN64
527 #define ECB_PTRSIZE 8
528 typedef uint64_t uintptr_t;
529 typedef int64_t intptr_t;
530 #else
531 #define ECB_PTRSIZE 4
532 typedef uint32_t uintptr_t;
533 typedef int32_t intptr_t;
534 #endif
535 typedef intptr_t ptrdiff_t;
302#else 536#else
303# define expect(expr,value) (expr) 537 #include <inttypes.h>
304# define noinline 538 #if UINTMAX_MAX > 0xffffffffU
305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2 539 #define ECB_PTRSIZE 8
306# define inline 540 #else
541 #define ECB_PTRSIZE 4
542 #endif
307# endif 543#endif
544
545/* many compilers define _GNUC_ to some versions but then only implement
546 * what their idiot authors think are the "more important" extensions,
547 * causing enormous grief in return for some better fake benchmark numbers.
548 * or so.
549 * we try to detect these and simply assume they are not gcc - if they have
550 * an issue with that they should have done it right in the first place.
551 */
552#ifndef ECB_GCC_VERSION
553 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
554 #define ECB_GCC_VERSION(major,minor) 0
555 #else
556 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
308#endif 557 #endif
558#endif
309 559
560#define ECB_C (__STDC__+0) /* this assumes that __STDC__ is either empty or a number */
561#define ECB_C99 (__STDC_VERSION__ >= 199901L)
562#define ECB_C11 (__STDC_VERSION__ >= 201112L)
563#define ECB_CPP (__cplusplus+0)
564#define ECB_CPP98 (__cplusplus >= 199711L)
565#define ECB_CPP11 (__cplusplus >= 201103L)
566
567/*****************************************************************************/
568
569/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
570/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
571
572#if ECB_NO_THREADS
573 #define ECB_NO_SMP 1
574#endif
575
576#if ECB_NO_SMP
577 #define ECB_MEMORY_FENCE do { } while (0)
578#endif
579
580#ifndef ECB_MEMORY_FENCE
581 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
582 #if __i386 || __i386__
583 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
584 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
585 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
586 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
587 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
588 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
589 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
590 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
591 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
592 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
593 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
594 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
595 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
596 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
597 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
598 #elif __sparc || __sparc__
599 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
600 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
601 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
602 #elif defined __s390__ || defined __s390x__
603 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
604 #elif defined __mips__
605 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
606 #elif defined __alpha__
607 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
608 #elif defined __hppa__
609 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
610 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
611 #elif defined __ia64__
612 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
613 #endif
614 #endif
615#endif
616
617#ifndef ECB_MEMORY_FENCE
618 #if ECB_GCC_VERSION(4,7)
619 /* see comment below about the C11 memory model. in short - avoid */
620 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
621 #elif defined __clang && __has_feature (cxx_atomic)
622 /* see above */
623 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
624 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
625 #define ECB_MEMORY_FENCE __sync_synchronize ()
626 #elif _MSC_VER >= 1400 /* VC++ 2005 */
627 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
628 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
629 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
630 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
631 #elif defined _WIN32
632 #include <WinNT.h>
633 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
634 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
635 #include <mbarrier.h>
636 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
637 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
638 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
639 #elif __xlC__
640 #define ECB_MEMORY_FENCE __sync ()
641 #endif
642#endif
643
644#ifndef ECB_MEMORY_FENCE
645 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
646 /* we assume that these memory fences work on all variables/all memory accesses, */
647 /* not just C11 atomics and atomic accesses */
648 #include <stdatomic.h>
649 /* unfortunately, the C11 memory model seems to be very limited, and unable to express */
650 /* simple barrier semantics. That means we need to take out thor's hammer. */
651 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
652 #endif
653#endif
654
655#ifndef ECB_MEMORY_FENCE
656 #if !ECB_AVOID_PTHREADS
657 /*
658 * if you get undefined symbol references to pthread_mutex_lock,
659 * or failure to find pthread.h, then you should implement
660 * the ECB_MEMORY_FENCE operations for your cpu/compiler
661 * OR provide pthread.h and link against the posix thread library
662 * of your system.
663 */
664 #include <pthread.h>
665 #define ECB_NEEDS_PTHREADS 1
666 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
667
668 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
669 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
670 #endif
671#endif
672
673#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
674 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
675#endif
676
677#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
678 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
679#endif
680
681/*****************************************************************************/
682
683#if __cplusplus
684 #define ecb_inline static inline
685#elif ECB_GCC_VERSION(2,5)
686 #define ecb_inline static __inline__
687#elif ECB_C99
688 #define ecb_inline static inline
689#else
690 #define ecb_inline static
691#endif
692
693#if ECB_GCC_VERSION(3,3)
694 #define ecb_restrict __restrict__
695#elif ECB_C99
696 #define ecb_restrict restrict
697#else
698 #define ecb_restrict
699#endif
700
701typedef int ecb_bool;
702
703#define ECB_CONCAT_(a, b) a ## b
704#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
705#define ECB_STRINGIFY_(a) # a
706#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
707
708#define ecb_function_ ecb_inline
709
710#if ECB_GCC_VERSION(3,1)
711 #define ecb_attribute(attrlist) __attribute__(attrlist)
712 #define ecb_is_constant(expr) __builtin_constant_p (expr)
713 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
714 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
715#else
716 #define ecb_attribute(attrlist)
717 #define ecb_is_constant(expr) 0
718 #define ecb_expect(expr,value) (expr)
719 #define ecb_prefetch(addr,rw,locality)
720#endif
721
722/* no emulation for ecb_decltype */
723#if ECB_GCC_VERSION(4,5)
724 #define ecb_decltype(x) __decltype(x)
725#elif ECB_GCC_VERSION(3,0)
726 #define ecb_decltype(x) __typeof(x)
727#endif
728
729#define ecb_noinline ecb_attribute ((__noinline__))
730#define ecb_unused ecb_attribute ((__unused__))
731#define ecb_const ecb_attribute ((__const__))
732#define ecb_pure ecb_attribute ((__pure__))
733
734#if ECB_C11
735 #define ecb_noreturn _Noreturn
736#else
737 #define ecb_noreturn ecb_attribute ((__noreturn__))
738#endif
739
740#if ECB_GCC_VERSION(4,3)
741 #define ecb_artificial ecb_attribute ((__artificial__))
742 #define ecb_hot ecb_attribute ((__hot__))
743 #define ecb_cold ecb_attribute ((__cold__))
744#else
745 #define ecb_artificial
746 #define ecb_hot
747 #define ecb_cold
748#endif
749
750/* put around conditional expressions if you are very sure that the */
751/* expression is mostly true or mostly false. note that these return */
752/* booleans, not the expression. */
310#define expect_false(expr) expect ((expr) != 0, 0) 753#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
311#define expect_true(expr) expect ((expr) != 0, 1) 754#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
755/* for compatibility to the rest of the world */
756#define ecb_likely(expr) ecb_expect_true (expr)
757#define ecb_unlikely(expr) ecb_expect_false (expr)
758
759/* count trailing zero bits and count # of one bits */
760#if ECB_GCC_VERSION(3,4)
761 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
762 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
763 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
764 #define ecb_ctz32(x) __builtin_ctz (x)
765 #define ecb_ctz64(x) __builtin_ctzll (x)
766 #define ecb_popcount32(x) __builtin_popcount (x)
767 /* no popcountll */
768#else
769 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
770 ecb_function_ int
771 ecb_ctz32 (uint32_t x)
772 {
773 int r = 0;
774
775 x &= ~x + 1; /* this isolates the lowest bit */
776
777#if ECB_branchless_on_i386
778 r += !!(x & 0xaaaaaaaa) << 0;
779 r += !!(x & 0xcccccccc) << 1;
780 r += !!(x & 0xf0f0f0f0) << 2;
781 r += !!(x & 0xff00ff00) << 3;
782 r += !!(x & 0xffff0000) << 4;
783#else
784 if (x & 0xaaaaaaaa) r += 1;
785 if (x & 0xcccccccc) r += 2;
786 if (x & 0xf0f0f0f0) r += 4;
787 if (x & 0xff00ff00) r += 8;
788 if (x & 0xffff0000) r += 16;
789#endif
790
791 return r;
792 }
793
794 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
795 ecb_function_ int
796 ecb_ctz64 (uint64_t x)
797 {
798 int shift = x & 0xffffffffU ? 0 : 32;
799 return ecb_ctz32 (x >> shift) + shift;
800 }
801
802 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
803 ecb_function_ int
804 ecb_popcount32 (uint32_t x)
805 {
806 x -= (x >> 1) & 0x55555555;
807 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
808 x = ((x >> 4) + x) & 0x0f0f0f0f;
809 x *= 0x01010101;
810
811 return x >> 24;
812 }
813
814 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
815 ecb_function_ int ecb_ld32 (uint32_t x)
816 {
817 int r = 0;
818
819 if (x >> 16) { x >>= 16; r += 16; }
820 if (x >> 8) { x >>= 8; r += 8; }
821 if (x >> 4) { x >>= 4; r += 4; }
822 if (x >> 2) { x >>= 2; r += 2; }
823 if (x >> 1) { r += 1; }
824
825 return r;
826 }
827
828 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
829 ecb_function_ int ecb_ld64 (uint64_t x)
830 {
831 int r = 0;
832
833 if (x >> 32) { x >>= 32; r += 32; }
834
835 return r + ecb_ld32 (x);
836 }
837#endif
838
839ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
840ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
841ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
842ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
843
844ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
845ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
846{
847 return ( (x * 0x0802U & 0x22110U)
848 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
849}
850
851ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
852ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
853{
854 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
855 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
856 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
857 x = ( x >> 8 ) | ( x << 8);
858
859 return x;
860}
861
862ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
863ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
864{
865 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
866 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
867 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
868 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
869 x = ( x >> 16 ) | ( x << 16);
870
871 return x;
872}
873
874/* popcount64 is only available on 64 bit cpus as gcc builtin */
875/* so for this version we are lazy */
876ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
877ecb_function_ int
878ecb_popcount64 (uint64_t x)
879{
880 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
881}
882
883ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
884ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
885ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
886ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
887ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
888ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
889ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
890ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
891
892ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
893ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
894ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
895ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
896ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
897ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
898ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
899ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
900
901#if ECB_GCC_VERSION(4,3)
902 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
903 #define ecb_bswap32(x) __builtin_bswap32 (x)
904 #define ecb_bswap64(x) __builtin_bswap64 (x)
905#else
906 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
907 ecb_function_ uint16_t
908 ecb_bswap16 (uint16_t x)
909 {
910 return ecb_rotl16 (x, 8);
911 }
912
913 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
914 ecb_function_ uint32_t
915 ecb_bswap32 (uint32_t x)
916 {
917 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
918 }
919
920 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
921 ecb_function_ uint64_t
922 ecb_bswap64 (uint64_t x)
923 {
924 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
925 }
926#endif
927
928#if ECB_GCC_VERSION(4,5)
929 #define ecb_unreachable() __builtin_unreachable ()
930#else
931 /* this seems to work fine, but gcc always emits a warning for it :/ */
932 ecb_inline void ecb_unreachable (void) ecb_noreturn;
933 ecb_inline void ecb_unreachable (void) { }
934#endif
935
936/* try to tell the compiler that some condition is definitely true */
937#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
938
939ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
940ecb_inline unsigned char
941ecb_byteorder_helper (void)
942{
943 const uint32_t u = 0x11223344;
944 return *(unsigned char *)&u;
945}
946
947ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
948ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
949ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
950ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
951
952#if ECB_GCC_VERSION(3,0) || ECB_C99
953 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
954#else
955 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
956#endif
957
958#if __cplusplus
959 template<typename T>
960 static inline T ecb_div_rd (T val, T div)
961 {
962 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
963 }
964 template<typename T>
965 static inline T ecb_div_ru (T val, T div)
966 {
967 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
968 }
969#else
970 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
971 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
972#endif
973
974#if ecb_cplusplus_does_not_suck
975 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
976 template<typename T, int N>
977 static inline int ecb_array_length (const T (&arr)[N])
978 {
979 return N;
980 }
981#else
982 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
983#endif
984
985#endif
986
987/* ECB.H END */
988
989#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
990/* if your architecture doesn't need memory fences, e.g. because it is
991 * single-cpu/core, or if you use libev in a project that doesn't use libev
992 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
993 * libev, in which cases the memory fences become nops.
994 * alternatively, you can remove this #error and link against libpthread,
995 * which will then provide the memory fences.
996 */
997# error "memory fences not defined for your architecture, please report"
998#endif
999
1000#ifndef ECB_MEMORY_FENCE
1001# define ECB_MEMORY_FENCE do { } while (0)
1002# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1003# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1004#endif
1005
1006#define expect_false(cond) ecb_expect_false (cond)
1007#define expect_true(cond) ecb_expect_true (cond)
1008#define noinline ecb_noinline
1009
312#define inline_size static inline 1010#define inline_size ecb_inline
313 1011
314#if EV_MINIMAL 1012#if EV_FEATURE_CODE
1013# define inline_speed ecb_inline
1014#else
315# define inline_speed static noinline 1015# define inline_speed static noinline
1016#endif
1017
1018#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1019
1020#if EV_MINPRI == EV_MAXPRI
1021# define ABSPRI(w) (((W)w), 0)
316#else 1022#else
317# define inline_speed static inline
318#endif
319
320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1023# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1024#endif
322 1025
323#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1026#define EMPTY /* required for microsofts broken pseudo-c compiler */
324#define EMPTY2(a,b) /* used to suppress some warnings */ 1027#define EMPTY2(a,b) /* used to suppress some warnings */
325 1028
326typedef ev_watcher *W; 1029typedef ev_watcher *W;
327typedef ev_watcher_list *WL; 1030typedef ev_watcher_list *WL;
328typedef ev_watcher_time *WT; 1031typedef ev_watcher_time *WT;
329 1032
1033#define ev_active(w) ((W)(w))->active
1034#define ev_at(w) ((WT)(w))->at
1035
1036#if EV_USE_REALTIME
1037/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1038/* giving it a reasonably high chance of working on typical architectures */
1039static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1040#endif
1041
330#if EV_USE_MONOTONIC 1042#if EV_USE_MONOTONIC
331/* sig_atomic_t is used to avoid per-thread variables or locking but still */
332/* giving it a reasonably high chance of working on typical architetcures */
333static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1043static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1044#endif
1045
1046#ifndef EV_FD_TO_WIN32_HANDLE
1047# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1048#endif
1049#ifndef EV_WIN32_HANDLE_TO_FD
1050# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1051#endif
1052#ifndef EV_WIN32_CLOSE_FD
1053# define EV_WIN32_CLOSE_FD(fd) close (fd)
334#endif 1054#endif
335 1055
336#ifdef _WIN32 1056#ifdef _WIN32
337# include "ev_win32.c" 1057# include "ev_win32.c"
338#endif 1058#endif
339 1059
340/*****************************************************************************/ 1060/*****************************************************************************/
341 1061
1062/* define a suitable floor function (only used by periodics atm) */
1063
1064#if EV_USE_FLOOR
1065# include <math.h>
1066# define ev_floor(v) floor (v)
1067#else
1068
1069#include <float.h>
1070
1071/* a floor() replacement function, should be independent of ev_tstamp type */
1072static ev_tstamp noinline
1073ev_floor (ev_tstamp v)
1074{
1075 /* the choice of shift factor is not terribly important */
1076#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1077 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1078#else
1079 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1080#endif
1081
1082 /* argument too large for an unsigned long? */
1083 if (expect_false (v >= shift))
1084 {
1085 ev_tstamp f;
1086
1087 if (v == v - 1.)
1088 return v; /* very large number */
1089
1090 f = shift * ev_floor (v * (1. / shift));
1091 return f + ev_floor (v - f);
1092 }
1093
1094 /* special treatment for negative args? */
1095 if (expect_false (v < 0.))
1096 {
1097 ev_tstamp f = -ev_floor (-v);
1098
1099 return f - (f == v ? 0 : 1);
1100 }
1101
1102 /* fits into an unsigned long */
1103 return (unsigned long)v;
1104}
1105
1106#endif
1107
1108/*****************************************************************************/
1109
1110#ifdef __linux
1111# include <sys/utsname.h>
1112#endif
1113
1114static unsigned int noinline ecb_cold
1115ev_linux_version (void)
1116{
1117#ifdef __linux
1118 unsigned int v = 0;
1119 struct utsname buf;
1120 int i;
1121 char *p = buf.release;
1122
1123 if (uname (&buf))
1124 return 0;
1125
1126 for (i = 3+1; --i; )
1127 {
1128 unsigned int c = 0;
1129
1130 for (;;)
1131 {
1132 if (*p >= '0' && *p <= '9')
1133 c = c * 10 + *p++ - '0';
1134 else
1135 {
1136 p += *p == '.';
1137 break;
1138 }
1139 }
1140
1141 v = (v << 8) | c;
1142 }
1143
1144 return v;
1145#else
1146 return 0;
1147#endif
1148}
1149
1150/*****************************************************************************/
1151
1152#if EV_AVOID_STDIO
1153static void noinline ecb_cold
1154ev_printerr (const char *msg)
1155{
1156 write (STDERR_FILENO, msg, strlen (msg));
1157}
1158#endif
1159
342static void (*syserr_cb)(const char *msg); 1160static void (*syserr_cb)(const char *msg) EV_THROW;
343 1161
344void 1162void ecb_cold
345ev_set_syserr_cb (void (*cb)(const char *msg)) 1163ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
346{ 1164{
347 syserr_cb = cb; 1165 syserr_cb = cb;
348} 1166}
349 1167
350static void noinline 1168static void noinline ecb_cold
351syserr (const char *msg) 1169ev_syserr (const char *msg)
352{ 1170{
353 if (!msg) 1171 if (!msg)
354 msg = "(libev) system error"; 1172 msg = "(libev) system error";
355 1173
356 if (syserr_cb) 1174 if (syserr_cb)
357 syserr_cb (msg); 1175 syserr_cb (msg);
358 else 1176 else
359 { 1177 {
1178#if EV_AVOID_STDIO
1179 ev_printerr (msg);
1180 ev_printerr (": ");
1181 ev_printerr (strerror (errno));
1182 ev_printerr ("\n");
1183#else
360 perror (msg); 1184 perror (msg);
1185#endif
361 abort (); 1186 abort ();
362 } 1187 }
363} 1188}
364 1189
365static void * 1190static void *
366ev_realloc_emul (void *ptr, long size) 1191ev_realloc_emul (void *ptr, long size) EV_THROW
367{ 1192{
1193#if __GLIBC__
1194 return realloc (ptr, size);
1195#else
368 /* some systems, notably openbsd and darwin, fail to properly 1196 /* some systems, notably openbsd and darwin, fail to properly
369 * implement realloc (x, 0) (as required by both ansi c-98 and 1197 * implement realloc (x, 0) (as required by both ansi c-89 and
370 * the single unix specification, so work around them here. 1198 * the single unix specification, so work around them here.
371 */ 1199 */
372 1200
373 if (size) 1201 if (size)
374 return realloc (ptr, size); 1202 return realloc (ptr, size);
375 1203
376 free (ptr); 1204 free (ptr);
377 return 0; 1205 return 0;
1206#endif
378} 1207}
379 1208
380static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 1209static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
381 1210
382void 1211void ecb_cold
383ev_set_allocator (void *(*cb)(void *ptr, long size)) 1212ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
384{ 1213{
385 alloc = cb; 1214 alloc = cb;
386} 1215}
387 1216
388inline_speed void * 1217inline_speed void *
390{ 1219{
391 ptr = alloc (ptr, size); 1220 ptr = alloc (ptr, size);
392 1221
393 if (!ptr && size) 1222 if (!ptr && size)
394 { 1223 {
1224#if EV_AVOID_STDIO
1225 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1226#else
395 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1227 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1228#endif
396 abort (); 1229 abort ();
397 } 1230 }
398 1231
399 return ptr; 1232 return ptr;
400} 1233}
402#define ev_malloc(size) ev_realloc (0, (size)) 1235#define ev_malloc(size) ev_realloc (0, (size))
403#define ev_free(ptr) ev_realloc ((ptr), 0) 1236#define ev_free(ptr) ev_realloc ((ptr), 0)
404 1237
405/*****************************************************************************/ 1238/*****************************************************************************/
406 1239
1240/* set in reify when reification needed */
1241#define EV_ANFD_REIFY 1
1242
1243/* file descriptor info structure */
407typedef struct 1244typedef struct
408{ 1245{
409 WL head; 1246 WL head;
410 unsigned char events; 1247 unsigned char events; /* the events watched for */
1248 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1249 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
411 unsigned char reify; 1250 unsigned char unused;
1251#if EV_USE_EPOLL
1252 unsigned int egen; /* generation counter to counter epoll bugs */
1253#endif
412#if EV_SELECT_IS_WINSOCKET 1254#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
413 SOCKET handle; 1255 SOCKET handle;
414#endif 1256#endif
1257#if EV_USE_IOCP
1258 OVERLAPPED or, ow;
1259#endif
415} ANFD; 1260} ANFD;
416 1261
1262/* stores the pending event set for a given watcher */
417typedef struct 1263typedef struct
418{ 1264{
419 W w; 1265 W w;
420 int events; 1266 int events; /* the pending event set for the given watcher */
421} ANPENDING; 1267} ANPENDING;
422 1268
423#if EV_USE_INOTIFY 1269#if EV_USE_INOTIFY
1270/* hash table entry per inotify-id */
424typedef struct 1271typedef struct
425{ 1272{
426 WL head; 1273 WL head;
427} ANFS; 1274} ANFS;
1275#endif
1276
1277/* Heap Entry */
1278#if EV_HEAP_CACHE_AT
1279 /* a heap element */
1280 typedef struct {
1281 ev_tstamp at;
1282 WT w;
1283 } ANHE;
1284
1285 #define ANHE_w(he) (he).w /* access watcher, read-write */
1286 #define ANHE_at(he) (he).at /* access cached at, read-only */
1287 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1288#else
1289 /* a heap element */
1290 typedef WT ANHE;
1291
1292 #define ANHE_w(he) (he)
1293 #define ANHE_at(he) (he)->at
1294 #define ANHE_at_cache(he)
428#endif 1295#endif
429 1296
430#if EV_MULTIPLICITY 1297#if EV_MULTIPLICITY
431 1298
432 struct ev_loop 1299 struct ev_loop
438 #undef VAR 1305 #undef VAR
439 }; 1306 };
440 #include "ev_wrap.h" 1307 #include "ev_wrap.h"
441 1308
442 static struct ev_loop default_loop_struct; 1309 static struct ev_loop default_loop_struct;
443 struct ev_loop *ev_default_loop_ptr; 1310 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
444 1311
445#else 1312#else
446 1313
447 ev_tstamp ev_rt_now; 1314 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
448 #define VAR(name,decl) static decl; 1315 #define VAR(name,decl) static decl;
449 #include "ev_vars.h" 1316 #include "ev_vars.h"
450 #undef VAR 1317 #undef VAR
451 1318
452 static int ev_default_loop_ptr; 1319 static int ev_default_loop_ptr;
453 1320
454#endif 1321#endif
455 1322
1323#if EV_FEATURE_API
1324# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1325# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1326# define EV_INVOKE_PENDING invoke_cb (EV_A)
1327#else
1328# define EV_RELEASE_CB (void)0
1329# define EV_ACQUIRE_CB (void)0
1330# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1331#endif
1332
1333#define EVBREAK_RECURSE 0x80
1334
456/*****************************************************************************/ 1335/*****************************************************************************/
457 1336
1337#ifndef EV_HAVE_EV_TIME
458ev_tstamp 1338ev_tstamp
459ev_time (void) 1339ev_time (void) EV_THROW
460{ 1340{
461#if EV_USE_REALTIME 1341#if EV_USE_REALTIME
1342 if (expect_true (have_realtime))
1343 {
462 struct timespec ts; 1344 struct timespec ts;
463 clock_gettime (CLOCK_REALTIME, &ts); 1345 clock_gettime (CLOCK_REALTIME, &ts);
464 return ts.tv_sec + ts.tv_nsec * 1e-9; 1346 return ts.tv_sec + ts.tv_nsec * 1e-9;
465#else 1347 }
1348#endif
1349
466 struct timeval tv; 1350 struct timeval tv;
467 gettimeofday (&tv, 0); 1351 gettimeofday (&tv, 0);
468 return tv.tv_sec + tv.tv_usec * 1e-6; 1352 return tv.tv_sec + tv.tv_usec * 1e-6;
469#endif
470} 1353}
1354#endif
471 1355
472ev_tstamp inline_size 1356inline_size ev_tstamp
473get_clock (void) 1357get_clock (void)
474{ 1358{
475#if EV_USE_MONOTONIC 1359#if EV_USE_MONOTONIC
476 if (expect_true (have_monotonic)) 1360 if (expect_true (have_monotonic))
477 { 1361 {
484 return ev_time (); 1368 return ev_time ();
485} 1369}
486 1370
487#if EV_MULTIPLICITY 1371#if EV_MULTIPLICITY
488ev_tstamp 1372ev_tstamp
489ev_now (EV_P) 1373ev_now (EV_P) EV_THROW
490{ 1374{
491 return ev_rt_now; 1375 return ev_rt_now;
492} 1376}
493#endif 1377#endif
494 1378
495void 1379void
496ev_sleep (ev_tstamp delay) 1380ev_sleep (ev_tstamp delay) EV_THROW
497{ 1381{
498 if (delay > 0.) 1382 if (delay > 0.)
499 { 1383 {
500#if EV_USE_NANOSLEEP 1384#if EV_USE_NANOSLEEP
501 struct timespec ts; 1385 struct timespec ts;
502 1386
503 ts.tv_sec = (time_t)delay; 1387 EV_TS_SET (ts, delay);
504 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
505
506 nanosleep (&ts, 0); 1388 nanosleep (&ts, 0);
507#elif defined(_WIN32) 1389#elif defined _WIN32
508 Sleep ((unsigned long)(delay * 1e3)); 1390 Sleep ((unsigned long)(delay * 1e3));
509#else 1391#else
510 struct timeval tv; 1392 struct timeval tv;
511 1393
512 tv.tv_sec = (time_t)delay; 1394 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
513 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 1395 /* something not guaranteed by newer posix versions, but guaranteed */
514 1396 /* by older ones */
1397 EV_TV_SET (tv, delay);
515 select (0, 0, 0, 0, &tv); 1398 select (0, 0, 0, 0, &tv);
516#endif 1399#endif
517 } 1400 }
518} 1401}
519 1402
520/*****************************************************************************/ 1403/*****************************************************************************/
521 1404
522int inline_size 1405#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1406
1407/* find a suitable new size for the given array, */
1408/* hopefully by rounding to a nice-to-malloc size */
1409inline_size int
523array_nextsize (int elem, int cur, int cnt) 1410array_nextsize (int elem, int cur, int cnt)
524{ 1411{
525 int ncur = cur + 1; 1412 int ncur = cur + 1;
526 1413
527 do 1414 do
528 ncur <<= 1; 1415 ncur <<= 1;
529 while (cnt > ncur); 1416 while (cnt > ncur);
530 1417
531 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 1418 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
532 if (elem * ncur > 4096) 1419 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
533 { 1420 {
534 ncur *= elem; 1421 ncur *= elem;
535 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 1422 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
536 ncur = ncur - sizeof (void *) * 4; 1423 ncur = ncur - sizeof (void *) * 4;
537 ncur /= elem; 1424 ncur /= elem;
538 } 1425 }
539 1426
540 return ncur; 1427 return ncur;
541} 1428}
542 1429
543static noinline void * 1430static void * noinline ecb_cold
544array_realloc (int elem, void *base, int *cur, int cnt) 1431array_realloc (int elem, void *base, int *cur, int cnt)
545{ 1432{
546 *cur = array_nextsize (elem, *cur, cnt); 1433 *cur = array_nextsize (elem, *cur, cnt);
547 return ev_realloc (base, elem * *cur); 1434 return ev_realloc (base, elem * *cur);
548} 1435}
1436
1437#define array_init_zero(base,count) \
1438 memset ((void *)(base), 0, sizeof (*(base)) * (count))
549 1439
550#define array_needsize(type,base,cur,cnt,init) \ 1440#define array_needsize(type,base,cur,cnt,init) \
551 if (expect_false ((cnt) > (cur))) \ 1441 if (expect_false ((cnt) > (cur))) \
552 { \ 1442 { \
553 int ocur_ = (cur); \ 1443 int ecb_unused ocur_ = (cur); \
554 (base) = (type *)array_realloc \ 1444 (base) = (type *)array_realloc \
555 (sizeof (type), (base), &(cur), (cnt)); \ 1445 (sizeof (type), (base), &(cur), (cnt)); \
556 init ((base) + (ocur_), (cur) - ocur_); \ 1446 init ((base) + (ocur_), (cur) - ocur_); \
557 } 1447 }
558 1448
565 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1455 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
566 } 1456 }
567#endif 1457#endif
568 1458
569#define array_free(stem, idx) \ 1459#define array_free(stem, idx) \
570 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1460 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
571 1461
572/*****************************************************************************/ 1462/*****************************************************************************/
573 1463
1464/* dummy callback for pending events */
1465static void noinline
1466pendingcb (EV_P_ ev_prepare *w, int revents)
1467{
1468}
1469
574void noinline 1470void noinline
575ev_feed_event (EV_P_ void *w, int revents) 1471ev_feed_event (EV_P_ void *w, int revents) EV_THROW
576{ 1472{
577 W w_ = (W)w; 1473 W w_ = (W)w;
578 int pri = ABSPRI (w_); 1474 int pri = ABSPRI (w_);
579 1475
580 if (expect_false (w_->pending)) 1476 if (expect_false (w_->pending))
584 w_->pending = ++pendingcnt [pri]; 1480 w_->pending = ++pendingcnt [pri];
585 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 1481 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
586 pendings [pri][w_->pending - 1].w = w_; 1482 pendings [pri][w_->pending - 1].w = w_;
587 pendings [pri][w_->pending - 1].events = revents; 1483 pendings [pri][w_->pending - 1].events = revents;
588 } 1484 }
589}
590 1485
591void inline_speed 1486 pendingpri = NUMPRI - 1;
1487}
1488
1489inline_speed void
1490feed_reverse (EV_P_ W w)
1491{
1492 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1493 rfeeds [rfeedcnt++] = w;
1494}
1495
1496inline_size void
1497feed_reverse_done (EV_P_ int revents)
1498{
1499 do
1500 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1501 while (rfeedcnt);
1502}
1503
1504inline_speed void
592queue_events (EV_P_ W *events, int eventcnt, int type) 1505queue_events (EV_P_ W *events, int eventcnt, int type)
593{ 1506{
594 int i; 1507 int i;
595 1508
596 for (i = 0; i < eventcnt; ++i) 1509 for (i = 0; i < eventcnt; ++i)
597 ev_feed_event (EV_A_ events [i], type); 1510 ev_feed_event (EV_A_ events [i], type);
598} 1511}
599 1512
600/*****************************************************************************/ 1513/*****************************************************************************/
601 1514
602void inline_size 1515inline_speed void
603anfds_init (ANFD *base, int count)
604{
605 while (count--)
606 {
607 base->head = 0;
608 base->events = EV_NONE;
609 base->reify = 0;
610
611 ++base;
612 }
613}
614
615void inline_speed
616fd_event (EV_P_ int fd, int revents) 1516fd_event_nocheck (EV_P_ int fd, int revents)
617{ 1517{
618 ANFD *anfd = anfds + fd; 1518 ANFD *anfd = anfds + fd;
619 ev_io *w; 1519 ev_io *w;
620 1520
621 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1521 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
625 if (ev) 1525 if (ev)
626 ev_feed_event (EV_A_ (W)w, ev); 1526 ev_feed_event (EV_A_ (W)w, ev);
627 } 1527 }
628} 1528}
629 1529
1530/* do not submit kernel events for fds that have reify set */
1531/* because that means they changed while we were polling for new events */
1532inline_speed void
1533fd_event (EV_P_ int fd, int revents)
1534{
1535 ANFD *anfd = anfds + fd;
1536
1537 if (expect_true (!anfd->reify))
1538 fd_event_nocheck (EV_A_ fd, revents);
1539}
1540
630void 1541void
631ev_feed_fd_event (EV_P_ int fd, int revents) 1542ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
632{ 1543{
633 if (fd >= 0 && fd < anfdmax) 1544 if (fd >= 0 && fd < anfdmax)
634 fd_event (EV_A_ fd, revents); 1545 fd_event_nocheck (EV_A_ fd, revents);
635} 1546}
636 1547
637void inline_size 1548/* make sure the external fd watch events are in-sync */
1549/* with the kernel/libev internal state */
1550inline_size void
638fd_reify (EV_P) 1551fd_reify (EV_P)
639{ 1552{
640 int i; 1553 int i;
1554
1555#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1556 for (i = 0; i < fdchangecnt; ++i)
1557 {
1558 int fd = fdchanges [i];
1559 ANFD *anfd = anfds + fd;
1560
1561 if (anfd->reify & EV__IOFDSET && anfd->head)
1562 {
1563 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1564
1565 if (handle != anfd->handle)
1566 {
1567 unsigned long arg;
1568
1569 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1570
1571 /* handle changed, but fd didn't - we need to do it in two steps */
1572 backend_modify (EV_A_ fd, anfd->events, 0);
1573 anfd->events = 0;
1574 anfd->handle = handle;
1575 }
1576 }
1577 }
1578#endif
641 1579
642 for (i = 0; i < fdchangecnt; ++i) 1580 for (i = 0; i < fdchangecnt; ++i)
643 { 1581 {
644 int fd = fdchanges [i]; 1582 int fd = fdchanges [i];
645 ANFD *anfd = anfds + fd; 1583 ANFD *anfd = anfds + fd;
646 ev_io *w; 1584 ev_io *w;
647 1585
648 unsigned char events = 0; 1586 unsigned char o_events = anfd->events;
1587 unsigned char o_reify = anfd->reify;
649 1588
650 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1589 anfd->reify = 0;
651 events |= (unsigned char)w->events;
652 1590
653#if EV_SELECT_IS_WINSOCKET 1591 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
654 if (events)
655 { 1592 {
656 unsigned long argp; 1593 anfd->events = 0;
657 #ifdef EV_FD_TO_WIN32_HANDLE 1594
658 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1595 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
659 #else 1596 anfd->events |= (unsigned char)w->events;
660 anfd->handle = _get_osfhandle (fd); 1597
661 #endif 1598 if (o_events != anfd->events)
662 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1599 o_reify = EV__IOFDSET; /* actually |= */
663 } 1600 }
664#endif
665 1601
666 { 1602 if (o_reify & EV__IOFDSET)
667 unsigned char o_events = anfd->events;
668 unsigned char o_reify = anfd->reify;
669
670 anfd->reify = 0;
671 anfd->events = events;
672
673 if (o_events != events || o_reify & EV_IOFDSET)
674 backend_modify (EV_A_ fd, o_events, events); 1603 backend_modify (EV_A_ fd, o_events, anfd->events);
675 }
676 } 1604 }
677 1605
678 fdchangecnt = 0; 1606 fdchangecnt = 0;
679} 1607}
680 1608
681void inline_size 1609/* something about the given fd changed */
1610inline_size void
682fd_change (EV_P_ int fd, int flags) 1611fd_change (EV_P_ int fd, int flags)
683{ 1612{
684 unsigned char reify = anfds [fd].reify; 1613 unsigned char reify = anfds [fd].reify;
685 anfds [fd].reify |= flags; 1614 anfds [fd].reify |= flags;
686 1615
690 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1619 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
691 fdchanges [fdchangecnt - 1] = fd; 1620 fdchanges [fdchangecnt - 1] = fd;
692 } 1621 }
693} 1622}
694 1623
695void inline_speed 1624/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1625inline_speed void ecb_cold
696fd_kill (EV_P_ int fd) 1626fd_kill (EV_P_ int fd)
697{ 1627{
698 ev_io *w; 1628 ev_io *w;
699 1629
700 while ((w = (ev_io *)anfds [fd].head)) 1630 while ((w = (ev_io *)anfds [fd].head))
702 ev_io_stop (EV_A_ w); 1632 ev_io_stop (EV_A_ w);
703 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1633 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
704 } 1634 }
705} 1635}
706 1636
707int inline_size 1637/* check whether the given fd is actually valid, for error recovery */
1638inline_size int ecb_cold
708fd_valid (int fd) 1639fd_valid (int fd)
709{ 1640{
710#ifdef _WIN32 1641#ifdef _WIN32
711 return _get_osfhandle (fd) != -1; 1642 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
712#else 1643#else
713 return fcntl (fd, F_GETFD) != -1; 1644 return fcntl (fd, F_GETFD) != -1;
714#endif 1645#endif
715} 1646}
716 1647
717/* called on EBADF to verify fds */ 1648/* called on EBADF to verify fds */
718static void noinline 1649static void noinline ecb_cold
719fd_ebadf (EV_P) 1650fd_ebadf (EV_P)
720{ 1651{
721 int fd; 1652 int fd;
722 1653
723 for (fd = 0; fd < anfdmax; ++fd) 1654 for (fd = 0; fd < anfdmax; ++fd)
724 if (anfds [fd].events) 1655 if (anfds [fd].events)
725 if (!fd_valid (fd) == -1 && errno == EBADF) 1656 if (!fd_valid (fd) && errno == EBADF)
726 fd_kill (EV_A_ fd); 1657 fd_kill (EV_A_ fd);
727} 1658}
728 1659
729/* called on ENOMEM in select/poll to kill some fds and retry */ 1660/* called on ENOMEM in select/poll to kill some fds and retry */
730static void noinline 1661static void noinline ecb_cold
731fd_enomem (EV_P) 1662fd_enomem (EV_P)
732{ 1663{
733 int fd; 1664 int fd;
734 1665
735 for (fd = anfdmax; fd--; ) 1666 for (fd = anfdmax; fd--; )
736 if (anfds [fd].events) 1667 if (anfds [fd].events)
737 { 1668 {
738 fd_kill (EV_A_ fd); 1669 fd_kill (EV_A_ fd);
739 return; 1670 break;
740 } 1671 }
741} 1672}
742 1673
743/* usually called after fork if backend needs to re-arm all fds from scratch */ 1674/* usually called after fork if backend needs to re-arm all fds from scratch */
744static void noinline 1675static void noinline
748 1679
749 for (fd = 0; fd < anfdmax; ++fd) 1680 for (fd = 0; fd < anfdmax; ++fd)
750 if (anfds [fd].events) 1681 if (anfds [fd].events)
751 { 1682 {
752 anfds [fd].events = 0; 1683 anfds [fd].events = 0;
1684 anfds [fd].emask = 0;
753 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1685 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
754 } 1686 }
755} 1687}
756 1688
757/*****************************************************************************/ 1689/* used to prepare libev internal fd's */
758 1690/* this is not fork-safe */
759/* towards the root */ 1691inline_speed void
760void inline_speed
761upheap (WT *heap, int k)
762{
763 WT w = heap [k];
764
765 while (k)
766 {
767 int p = (k - 1) >> 1;
768
769 if (heap [p]->at <= w->at)
770 break;
771
772 heap [k] = heap [p];
773 ((W)heap [k])->active = k + 1;
774 k = p;
775 }
776
777 heap [k] = w;
778 ((W)heap [k])->active = k + 1;
779}
780
781/* away from the root */
782void inline_speed
783downheap (WT *heap, int N, int k)
784{
785 WT w = heap [k];
786
787 for (;;)
788 {
789 int c = (k << 1) + 1;
790
791 if (c >= N)
792 break;
793
794 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
795 ? 1 : 0;
796
797 if (w->at <= heap [c]->at)
798 break;
799
800 heap [k] = heap [c];
801 ((W)heap [k])->active = k + 1;
802
803 k = c;
804 }
805
806 heap [k] = w;
807 ((W)heap [k])->active = k + 1;
808}
809
810void inline_size
811adjustheap (WT *heap, int N, int k)
812{
813 upheap (heap, k);
814 downheap (heap, N, k);
815}
816
817/*****************************************************************************/
818
819typedef struct
820{
821 WL head;
822 EV_ATOMIC_T gotsig;
823} ANSIG;
824
825static ANSIG *signals;
826static int signalmax;
827
828static EV_ATOMIC_T gotsig;
829
830void inline_size
831signals_init (ANSIG *base, int count)
832{
833 while (count--)
834 {
835 base->head = 0;
836 base->gotsig = 0;
837
838 ++base;
839 }
840}
841
842/*****************************************************************************/
843
844void inline_speed
845fd_intern (int fd) 1692fd_intern (int fd)
846{ 1693{
847#ifdef _WIN32 1694#ifdef _WIN32
848 int arg = 1; 1695 unsigned long arg = 1;
849 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1696 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
850#else 1697#else
851 fcntl (fd, F_SETFD, FD_CLOEXEC); 1698 fcntl (fd, F_SETFD, FD_CLOEXEC);
852 fcntl (fd, F_SETFL, O_NONBLOCK); 1699 fcntl (fd, F_SETFL, O_NONBLOCK);
853#endif 1700#endif
854} 1701}
855 1702
1703/*****************************************************************************/
1704
1705/*
1706 * the heap functions want a real array index. array index 0 is guaranteed to not
1707 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1708 * the branching factor of the d-tree.
1709 */
1710
1711/*
1712 * at the moment we allow libev the luxury of two heaps,
1713 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1714 * which is more cache-efficient.
1715 * the difference is about 5% with 50000+ watchers.
1716 */
1717#if EV_USE_4HEAP
1718
1719#define DHEAP 4
1720#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1721#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1722#define UPHEAP_DONE(p,k) ((p) == (k))
1723
1724/* away from the root */
1725inline_speed void
1726downheap (ANHE *heap, int N, int k)
1727{
1728 ANHE he = heap [k];
1729 ANHE *E = heap + N + HEAP0;
1730
1731 for (;;)
1732 {
1733 ev_tstamp minat;
1734 ANHE *minpos;
1735 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1736
1737 /* find minimum child */
1738 if (expect_true (pos + DHEAP - 1 < E))
1739 {
1740 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1741 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1742 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1743 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1744 }
1745 else if (pos < E)
1746 {
1747 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1748 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1749 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1750 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1751 }
1752 else
1753 break;
1754
1755 if (ANHE_at (he) <= minat)
1756 break;
1757
1758 heap [k] = *minpos;
1759 ev_active (ANHE_w (*minpos)) = k;
1760
1761 k = minpos - heap;
1762 }
1763
1764 heap [k] = he;
1765 ev_active (ANHE_w (he)) = k;
1766}
1767
1768#else /* 4HEAP */
1769
1770#define HEAP0 1
1771#define HPARENT(k) ((k) >> 1)
1772#define UPHEAP_DONE(p,k) (!(p))
1773
1774/* away from the root */
1775inline_speed void
1776downheap (ANHE *heap, int N, int k)
1777{
1778 ANHE he = heap [k];
1779
1780 for (;;)
1781 {
1782 int c = k << 1;
1783
1784 if (c >= N + HEAP0)
1785 break;
1786
1787 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1788 ? 1 : 0;
1789
1790 if (ANHE_at (he) <= ANHE_at (heap [c]))
1791 break;
1792
1793 heap [k] = heap [c];
1794 ev_active (ANHE_w (heap [k])) = k;
1795
1796 k = c;
1797 }
1798
1799 heap [k] = he;
1800 ev_active (ANHE_w (he)) = k;
1801}
1802#endif
1803
1804/* towards the root */
1805inline_speed void
1806upheap (ANHE *heap, int k)
1807{
1808 ANHE he = heap [k];
1809
1810 for (;;)
1811 {
1812 int p = HPARENT (k);
1813
1814 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1815 break;
1816
1817 heap [k] = heap [p];
1818 ev_active (ANHE_w (heap [k])) = k;
1819 k = p;
1820 }
1821
1822 heap [k] = he;
1823 ev_active (ANHE_w (he)) = k;
1824}
1825
1826/* move an element suitably so it is in a correct place */
1827inline_size void
1828adjustheap (ANHE *heap, int N, int k)
1829{
1830 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1831 upheap (heap, k);
1832 else
1833 downheap (heap, N, k);
1834}
1835
1836/* rebuild the heap: this function is used only once and executed rarely */
1837inline_size void
1838reheap (ANHE *heap, int N)
1839{
1840 int i;
1841
1842 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1843 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1844 for (i = 0; i < N; ++i)
1845 upheap (heap, i + HEAP0);
1846}
1847
1848/*****************************************************************************/
1849
1850/* associate signal watchers to a signal signal */
1851typedef struct
1852{
1853 EV_ATOMIC_T pending;
1854#if EV_MULTIPLICITY
1855 EV_P;
1856#endif
1857 WL head;
1858} ANSIG;
1859
1860static ANSIG signals [EV_NSIG - 1];
1861
1862/*****************************************************************************/
1863
1864#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1865
856static void noinline 1866static void noinline ecb_cold
857evpipe_init (EV_P) 1867evpipe_init (EV_P)
858{ 1868{
859 if (!ev_is_active (&pipeev)) 1869 if (!ev_is_active (&pipe_w))
860 { 1870 {
861#if EV_USE_EVENTFD 1871# if EV_USE_EVENTFD
1872 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1873 if (evfd < 0 && errno == EINVAL)
862 if ((evfd = eventfd (0, 0)) >= 0) 1874 evfd = eventfd (0, 0);
1875
1876 if (evfd >= 0)
863 { 1877 {
864 evpipe [0] = -1; 1878 evpipe [0] = -1;
865 fd_intern (evfd); 1879 fd_intern (evfd); /* doing it twice doesn't hurt */
866 ev_io_set (&pipeev, evfd, EV_READ); 1880 ev_io_set (&pipe_w, evfd, EV_READ);
867 } 1881 }
868 else 1882 else
869#endif 1883# endif
870 { 1884 {
871 while (pipe (evpipe)) 1885 while (pipe (evpipe))
872 syserr ("(libev) error creating signal/async pipe"); 1886 ev_syserr ("(libev) error creating signal/async pipe");
873 1887
874 fd_intern (evpipe [0]); 1888 fd_intern (evpipe [0]);
875 fd_intern (evpipe [1]); 1889 fd_intern (evpipe [1]);
876 ev_io_set (&pipeev, evpipe [0], EV_READ); 1890 ev_io_set (&pipe_w, evpipe [0], EV_READ);
877 } 1891 }
878 1892
879 ev_io_start (EV_A_ &pipeev); 1893 ev_io_start (EV_A_ &pipe_w);
880 ev_unref (EV_A); /* watcher should not keep loop alive */ 1894 ev_unref (EV_A); /* watcher should not keep loop alive */
881 } 1895 }
882} 1896}
883 1897
884void inline_size 1898inline_speed void
885evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1899evpipe_write (EV_P_ EV_ATOMIC_T *flag)
886{ 1900{
887 if (!*flag) 1901 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
1902
1903 if (expect_true (*flag))
1904 return;
1905
1906 *flag = 1;
1907 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1908
1909 pipe_write_skipped = 1;
1910
1911 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1912
1913 if (pipe_write_wanted)
888 { 1914 {
1915 int old_errno;
1916
1917 pipe_write_skipped = 0;
1918 ECB_MEMORY_FENCE_RELEASE;
1919
889 int old_errno = errno; /* save errno because write might clobber it */ 1920 old_errno = errno; /* save errno because write will clobber it */
890
891 *flag = 1;
892 1921
893#if EV_USE_EVENTFD 1922#if EV_USE_EVENTFD
894 if (evfd >= 0) 1923 if (evfd >= 0)
895 { 1924 {
896 uint64_t counter = 1; 1925 uint64_t counter = 1;
897 write (evfd, &counter, sizeof (uint64_t)); 1926 write (evfd, &counter, sizeof (uint64_t));
898 } 1927 }
899 else 1928 else
900#endif 1929#endif
1930 {
1931#ifdef _WIN32
1932 WSABUF buf;
1933 DWORD sent;
1934 buf.buf = &buf;
1935 buf.len = 1;
1936 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
1937#else
901 write (evpipe [1], &old_errno, 1); 1938 write (evpipe [1], &(evpipe [1]), 1);
1939#endif
1940 }
902 1941
903 errno = old_errno; 1942 errno = old_errno;
904 } 1943 }
905} 1944}
906 1945
1946/* called whenever the libev signal pipe */
1947/* got some events (signal, async) */
907static void 1948static void
908pipecb (EV_P_ ev_io *iow, int revents) 1949pipecb (EV_P_ ev_io *iow, int revents)
909{ 1950{
1951 int i;
1952
1953 if (revents & EV_READ)
1954 {
910#if EV_USE_EVENTFD 1955#if EV_USE_EVENTFD
911 if (evfd >= 0) 1956 if (evfd >= 0)
912 { 1957 {
913 uint64_t counter = 1; 1958 uint64_t counter;
914 read (evfd, &counter, sizeof (uint64_t)); 1959 read (evfd, &counter, sizeof (uint64_t));
915 } 1960 }
916 else 1961 else
917#endif 1962#endif
918 { 1963 {
919 char dummy; 1964 char dummy[4];
1965#ifdef _WIN32
1966 WSABUF buf;
1967 DWORD recvd;
1968 DWORD flags = 0;
1969 buf.buf = dummy;
1970 buf.len = sizeof (dummy);
1971 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
1972#else
920 read (evpipe [0], &dummy, 1); 1973 read (evpipe [0], &dummy, sizeof (dummy));
1974#endif
1975 }
1976 }
1977
1978 pipe_write_skipped = 0;
1979
1980 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
1981
1982#if EV_SIGNAL_ENABLE
1983 if (sig_pending)
921 } 1984 {
1985 sig_pending = 0;
922 1986
923 if (gotsig && ev_is_default_loop (EV_A)) 1987 ECB_MEMORY_FENCE;
924 {
925 int signum;
926 gotsig = 0;
927 1988
928 for (signum = signalmax; signum--; ) 1989 for (i = EV_NSIG - 1; i--; )
929 if (signals [signum].gotsig) 1990 if (expect_false (signals [i].pending))
930 ev_feed_signal_event (EV_A_ signum + 1); 1991 ev_feed_signal_event (EV_A_ i + 1);
931 } 1992 }
1993#endif
932 1994
933#if EV_ASYNC_ENABLE 1995#if EV_ASYNC_ENABLE
934 if (gotasync) 1996 if (async_pending)
935 { 1997 {
936 int i; 1998 async_pending = 0;
937 gotasync = 0; 1999
2000 ECB_MEMORY_FENCE;
938 2001
939 for (i = asynccnt; i--; ) 2002 for (i = asynccnt; i--; )
940 if (asyncs [i]->sent) 2003 if (asyncs [i]->sent)
941 { 2004 {
942 asyncs [i]->sent = 0; 2005 asyncs [i]->sent = 0;
2006 ECB_MEMORY_FENCE_RELEASE;
943 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); 2007 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
944 } 2008 }
945 } 2009 }
946#endif 2010#endif
947} 2011}
948 2012
949/*****************************************************************************/ 2013/*****************************************************************************/
950 2014
2015void
2016ev_feed_signal (int signum) EV_THROW
2017{
2018#if EV_MULTIPLICITY
2019 EV_P = signals [signum - 1].loop;
2020
2021 if (!EV_A)
2022 return;
2023#endif
2024
2025 if (!ev_active (&pipe_w))
2026 return;
2027
2028 signals [signum - 1].pending = 1;
2029 evpipe_write (EV_A_ &sig_pending);
2030}
2031
951static void 2032static void
952ev_sighandler (int signum) 2033ev_sighandler (int signum)
953{ 2034{
2035#ifdef _WIN32
2036 signal (signum, ev_sighandler);
2037#endif
2038
2039 ev_feed_signal (signum);
2040}
2041
2042void noinline
2043ev_feed_signal_event (EV_P_ int signum) EV_THROW
2044{
2045 WL w;
2046
2047 if (expect_false (signum <= 0 || signum > EV_NSIG))
2048 return;
2049
2050 --signum;
2051
954#if EV_MULTIPLICITY 2052#if EV_MULTIPLICITY
955 struct ev_loop *loop = &default_loop_struct; 2053 /* it is permissible to try to feed a signal to the wrong loop */
956#endif 2054 /* or, likely more useful, feeding a signal nobody is waiting for */
957 2055
958#if _WIN32 2056 if (expect_false (signals [signum].loop != EV_A))
959 signal (signum, ev_sighandler);
960#endif
961
962 signals [signum - 1].gotsig = 1;
963 evpipe_write (EV_A_ &gotsig);
964}
965
966void noinline
967ev_feed_signal_event (EV_P_ int signum)
968{
969 WL w;
970
971#if EV_MULTIPLICITY
972 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
973#endif
974
975 --signum;
976
977 if (signum < 0 || signum >= signalmax)
978 return; 2057 return;
2058#endif
979 2059
980 signals [signum].gotsig = 0; 2060 signals [signum].pending = 0;
2061 ECB_MEMORY_FENCE_RELEASE;
981 2062
982 for (w = signals [signum].head; w; w = w->next) 2063 for (w = signals [signum].head; w; w = w->next)
983 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2064 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
984} 2065}
985 2066
2067#if EV_USE_SIGNALFD
2068static void
2069sigfdcb (EV_P_ ev_io *iow, int revents)
2070{
2071 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2072
2073 for (;;)
2074 {
2075 ssize_t res = read (sigfd, si, sizeof (si));
2076
2077 /* not ISO-C, as res might be -1, but works with SuS */
2078 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2079 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2080
2081 if (res < (ssize_t)sizeof (si))
2082 break;
2083 }
2084}
2085#endif
2086
2087#endif
2088
986/*****************************************************************************/ 2089/*****************************************************************************/
987 2090
2091#if EV_CHILD_ENABLE
988static WL childs [EV_PID_HASHSIZE]; 2092static WL childs [EV_PID_HASHSIZE];
989
990#ifndef _WIN32
991 2093
992static ev_signal childev; 2094static ev_signal childev;
993 2095
994#ifndef WIFCONTINUED 2096#ifndef WIFCONTINUED
995# define WIFCONTINUED(status) 0 2097# define WIFCONTINUED(status) 0
996#endif 2098#endif
997 2099
998void inline_speed 2100/* handle a single child status event */
2101inline_speed void
999child_reap (EV_P_ int chain, int pid, int status) 2102child_reap (EV_P_ int chain, int pid, int status)
1000{ 2103{
1001 ev_child *w; 2104 ev_child *w;
1002 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2105 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1003 2106
1004 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2107 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1005 { 2108 {
1006 if ((w->pid == pid || !w->pid) 2109 if ((w->pid == pid || !w->pid)
1007 && (!traced || (w->flags & 1))) 2110 && (!traced || (w->flags & 1)))
1008 { 2111 {
1009 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 2112 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1016 2119
1017#ifndef WCONTINUED 2120#ifndef WCONTINUED
1018# define WCONTINUED 0 2121# define WCONTINUED 0
1019#endif 2122#endif
1020 2123
2124/* called on sigchld etc., calls waitpid */
1021static void 2125static void
1022childcb (EV_P_ ev_signal *sw, int revents) 2126childcb (EV_P_ ev_signal *sw, int revents)
1023{ 2127{
1024 int pid, status; 2128 int pid, status;
1025 2129
1033 /* make sure we are called again until all children have been reaped */ 2137 /* make sure we are called again until all children have been reaped */
1034 /* we need to do it this way so that the callback gets called before we continue */ 2138 /* we need to do it this way so that the callback gets called before we continue */
1035 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2139 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1036 2140
1037 child_reap (EV_A_ pid, pid, status); 2141 child_reap (EV_A_ pid, pid, status);
1038 if (EV_PID_HASHSIZE > 1) 2142 if ((EV_PID_HASHSIZE) > 1)
1039 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2143 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1040} 2144}
1041 2145
1042#endif 2146#endif
1043 2147
1044/*****************************************************************************/ 2148/*****************************************************************************/
1045 2149
2150#if EV_USE_IOCP
2151# include "ev_iocp.c"
2152#endif
1046#if EV_USE_PORT 2153#if EV_USE_PORT
1047# include "ev_port.c" 2154# include "ev_port.c"
1048#endif 2155#endif
1049#if EV_USE_KQUEUE 2156#if EV_USE_KQUEUE
1050# include "ev_kqueue.c" 2157# include "ev_kqueue.c"
1057#endif 2164#endif
1058#if EV_USE_SELECT 2165#if EV_USE_SELECT
1059# include "ev_select.c" 2166# include "ev_select.c"
1060#endif 2167#endif
1061 2168
1062int 2169int ecb_cold
1063ev_version_major (void) 2170ev_version_major (void) EV_THROW
1064{ 2171{
1065 return EV_VERSION_MAJOR; 2172 return EV_VERSION_MAJOR;
1066} 2173}
1067 2174
1068int 2175int ecb_cold
1069ev_version_minor (void) 2176ev_version_minor (void) EV_THROW
1070{ 2177{
1071 return EV_VERSION_MINOR; 2178 return EV_VERSION_MINOR;
1072} 2179}
1073 2180
1074/* return true if we are running with elevated privileges and should ignore env variables */ 2181/* return true if we are running with elevated privileges and should ignore env variables */
1075int inline_size 2182int inline_size ecb_cold
1076enable_secure (void) 2183enable_secure (void)
1077{ 2184{
1078#ifdef _WIN32 2185#ifdef _WIN32
1079 return 0; 2186 return 0;
1080#else 2187#else
1081 return getuid () != geteuid () 2188 return getuid () != geteuid ()
1082 || getgid () != getegid (); 2189 || getgid () != getegid ();
1083#endif 2190#endif
1084} 2191}
1085 2192
1086unsigned int 2193unsigned int ecb_cold
1087ev_supported_backends (void) 2194ev_supported_backends (void) EV_THROW
1088{ 2195{
1089 unsigned int flags = 0; 2196 unsigned int flags = 0;
1090 2197
1091 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2198 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1092 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2199 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1095 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2202 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1096 2203
1097 return flags; 2204 return flags;
1098} 2205}
1099 2206
1100unsigned int 2207unsigned int ecb_cold
1101ev_recommended_backends (void) 2208ev_recommended_backends (void) EV_THROW
1102{ 2209{
1103 unsigned int flags = ev_supported_backends (); 2210 unsigned int flags = ev_supported_backends ();
1104 2211
1105#ifndef __NetBSD__ 2212#ifndef __NetBSD__
1106 /* kqueue is borked on everything but netbsd apparently */ 2213 /* kqueue is borked on everything but netbsd apparently */
1107 /* it usually doesn't work correctly on anything but sockets and pipes */ 2214 /* it usually doesn't work correctly on anything but sockets and pipes */
1108 flags &= ~EVBACKEND_KQUEUE; 2215 flags &= ~EVBACKEND_KQUEUE;
1109#endif 2216#endif
1110#ifdef __APPLE__ 2217#ifdef __APPLE__
1111 // flags &= ~EVBACKEND_KQUEUE; for documentation 2218 /* only select works correctly on that "unix-certified" platform */
1112 flags &= ~EVBACKEND_POLL; 2219 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2220 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2221#endif
2222#ifdef __FreeBSD__
2223 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1113#endif 2224#endif
1114 2225
1115 return flags; 2226 return flags;
1116} 2227}
1117 2228
2229unsigned int ecb_cold
2230ev_embeddable_backends (void) EV_THROW
2231{
2232 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2233
2234 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2235 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2236 flags &= ~EVBACKEND_EPOLL;
2237
2238 return flags;
2239}
2240
1118unsigned int 2241unsigned int
1119ev_embeddable_backends (void) 2242ev_backend (EV_P) EV_THROW
1120{ 2243{
1121 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2244 return backend;
1122
1123 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1124 /* please fix it and tell me how to detect the fix */
1125 flags &= ~EVBACKEND_EPOLL;
1126
1127 return flags;
1128} 2245}
1129 2246
2247#if EV_FEATURE_API
1130unsigned int 2248unsigned int
1131ev_backend (EV_P) 2249ev_iteration (EV_P) EV_THROW
1132{ 2250{
1133 return backend; 2251 return loop_count;
1134} 2252}
1135 2253
1136unsigned int 2254unsigned int
1137ev_loop_count (EV_P) 2255ev_depth (EV_P) EV_THROW
1138{ 2256{
1139 return loop_count; 2257 return loop_depth;
1140} 2258}
1141 2259
1142void 2260void
1143ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2261ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1144{ 2262{
1145 io_blocktime = interval; 2263 io_blocktime = interval;
1146} 2264}
1147 2265
1148void 2266void
1149ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2267ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1150{ 2268{
1151 timeout_blocktime = interval; 2269 timeout_blocktime = interval;
1152} 2270}
1153 2271
2272void
2273ev_set_userdata (EV_P_ void *data) EV_THROW
2274{
2275 userdata = data;
2276}
2277
2278void *
2279ev_userdata (EV_P) EV_THROW
2280{
2281 return userdata;
2282}
2283
2284void
2285ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2286{
2287 invoke_cb = invoke_pending_cb;
2288}
2289
2290void
2291ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2292{
2293 release_cb = release;
2294 acquire_cb = acquire;
2295}
2296#endif
2297
2298/* initialise a loop structure, must be zero-initialised */
1154static void noinline 2299static void noinline ecb_cold
1155loop_init (EV_P_ unsigned int flags) 2300loop_init (EV_P_ unsigned int flags) EV_THROW
1156{ 2301{
1157 if (!backend) 2302 if (!backend)
1158 { 2303 {
2304 origflags = flags;
2305
2306#if EV_USE_REALTIME
2307 if (!have_realtime)
2308 {
2309 struct timespec ts;
2310
2311 if (!clock_gettime (CLOCK_REALTIME, &ts))
2312 have_realtime = 1;
2313 }
2314#endif
2315
1159#if EV_USE_MONOTONIC 2316#if EV_USE_MONOTONIC
2317 if (!have_monotonic)
1160 { 2318 {
1161 struct timespec ts; 2319 struct timespec ts;
2320
1162 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2321 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1163 have_monotonic = 1; 2322 have_monotonic = 1;
1164 } 2323 }
1165#endif
1166
1167 ev_rt_now = ev_time ();
1168 mn_now = get_clock ();
1169 now_floor = mn_now;
1170 rtmn_diff = ev_rt_now - mn_now;
1171
1172 io_blocktime = 0.;
1173 timeout_blocktime = 0.;
1174 backend = 0;
1175 backend_fd = -1;
1176 gotasync = 0;
1177#if EV_USE_INOTIFY
1178 fs_fd = -2;
1179#endif 2324#endif
1180 2325
1181 /* pid check not overridable via env */ 2326 /* pid check not overridable via env */
1182#ifndef _WIN32 2327#ifndef _WIN32
1183 if (flags & EVFLAG_FORKCHECK) 2328 if (flags & EVFLAG_FORKCHECK)
1187 if (!(flags & EVFLAG_NOENV) 2332 if (!(flags & EVFLAG_NOENV)
1188 && !enable_secure () 2333 && !enable_secure ()
1189 && getenv ("LIBEV_FLAGS")) 2334 && getenv ("LIBEV_FLAGS"))
1190 flags = atoi (getenv ("LIBEV_FLAGS")); 2335 flags = atoi (getenv ("LIBEV_FLAGS"));
1191 2336
1192 if (!(flags & 0x0000ffffU)) 2337 ev_rt_now = ev_time ();
2338 mn_now = get_clock ();
2339 now_floor = mn_now;
2340 rtmn_diff = ev_rt_now - mn_now;
2341#if EV_FEATURE_API
2342 invoke_cb = ev_invoke_pending;
2343#endif
2344
2345 io_blocktime = 0.;
2346 timeout_blocktime = 0.;
2347 backend = 0;
2348 backend_fd = -1;
2349 sig_pending = 0;
2350#if EV_ASYNC_ENABLE
2351 async_pending = 0;
2352#endif
2353 pipe_write_skipped = 0;
2354 pipe_write_wanted = 0;
2355#if EV_USE_INOTIFY
2356 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2357#endif
2358#if EV_USE_SIGNALFD
2359 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2360#endif
2361
2362 if (!(flags & EVBACKEND_MASK))
1193 flags |= ev_recommended_backends (); 2363 flags |= ev_recommended_backends ();
1194 2364
2365#if EV_USE_IOCP
2366 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2367#endif
1195#if EV_USE_PORT 2368#if EV_USE_PORT
1196 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2369 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1197#endif 2370#endif
1198#if EV_USE_KQUEUE 2371#if EV_USE_KQUEUE
1199 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2372 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1206#endif 2379#endif
1207#if EV_USE_SELECT 2380#if EV_USE_SELECT
1208 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2381 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1209#endif 2382#endif
1210 2383
2384 ev_prepare_init (&pending_w, pendingcb);
2385
2386#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1211 ev_init (&pipeev, pipecb); 2387 ev_init (&pipe_w, pipecb);
1212 ev_set_priority (&pipeev, EV_MAXPRI); 2388 ev_set_priority (&pipe_w, EV_MAXPRI);
2389#endif
1213 } 2390 }
1214} 2391}
1215 2392
1216static void noinline 2393/* free up a loop structure */
2394void ecb_cold
1217loop_destroy (EV_P) 2395ev_loop_destroy (EV_P)
1218{ 2396{
1219 int i; 2397 int i;
1220 2398
2399#if EV_MULTIPLICITY
2400 /* mimic free (0) */
2401 if (!EV_A)
2402 return;
2403#endif
2404
2405#if EV_CLEANUP_ENABLE
2406 /* queue cleanup watchers (and execute them) */
2407 if (expect_false (cleanupcnt))
2408 {
2409 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2410 EV_INVOKE_PENDING;
2411 }
2412#endif
2413
2414#if EV_CHILD_ENABLE
2415 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2416 {
2417 ev_ref (EV_A); /* child watcher */
2418 ev_signal_stop (EV_A_ &childev);
2419 }
2420#endif
2421
1221 if (ev_is_active (&pipeev)) 2422 if (ev_is_active (&pipe_w))
1222 { 2423 {
1223 ev_ref (EV_A); /* signal watcher */ 2424 /*ev_ref (EV_A);*/
1224 ev_io_stop (EV_A_ &pipeev); 2425 /*ev_io_stop (EV_A_ &pipe_w);*/
1225 2426
1226#if EV_USE_EVENTFD 2427#if EV_USE_EVENTFD
1227 if (evfd >= 0) 2428 if (evfd >= 0)
1228 close (evfd); 2429 close (evfd);
1229#endif 2430#endif
1230 2431
1231 if (evpipe [0] >= 0) 2432 if (evpipe [0] >= 0)
1232 { 2433 {
1233 close (evpipe [0]); 2434 EV_WIN32_CLOSE_FD (evpipe [0]);
1234 close (evpipe [1]); 2435 EV_WIN32_CLOSE_FD (evpipe [1]);
1235 } 2436 }
1236 } 2437 }
2438
2439#if EV_USE_SIGNALFD
2440 if (ev_is_active (&sigfd_w))
2441 close (sigfd);
2442#endif
1237 2443
1238#if EV_USE_INOTIFY 2444#if EV_USE_INOTIFY
1239 if (fs_fd >= 0) 2445 if (fs_fd >= 0)
1240 close (fs_fd); 2446 close (fs_fd);
1241#endif 2447#endif
1242 2448
1243 if (backend_fd >= 0) 2449 if (backend_fd >= 0)
1244 close (backend_fd); 2450 close (backend_fd);
1245 2451
2452#if EV_USE_IOCP
2453 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2454#endif
1246#if EV_USE_PORT 2455#if EV_USE_PORT
1247 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2456 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1248#endif 2457#endif
1249#if EV_USE_KQUEUE 2458#if EV_USE_KQUEUE
1250 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2459 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1265#if EV_IDLE_ENABLE 2474#if EV_IDLE_ENABLE
1266 array_free (idle, [i]); 2475 array_free (idle, [i]);
1267#endif 2476#endif
1268 } 2477 }
1269 2478
1270 ev_free (anfds); anfdmax = 0; 2479 ev_free (anfds); anfds = 0; anfdmax = 0;
1271 2480
1272 /* have to use the microsoft-never-gets-it-right macro */ 2481 /* have to use the microsoft-never-gets-it-right macro */
2482 array_free (rfeed, EMPTY);
1273 array_free (fdchange, EMPTY); 2483 array_free (fdchange, EMPTY);
1274 array_free (timer, EMPTY); 2484 array_free (timer, EMPTY);
1275#if EV_PERIODIC_ENABLE 2485#if EV_PERIODIC_ENABLE
1276 array_free (periodic, EMPTY); 2486 array_free (periodic, EMPTY);
1277#endif 2487#endif
1278#if EV_FORK_ENABLE 2488#if EV_FORK_ENABLE
1279 array_free (fork, EMPTY); 2489 array_free (fork, EMPTY);
1280#endif 2490#endif
2491#if EV_CLEANUP_ENABLE
2492 array_free (cleanup, EMPTY);
2493#endif
1281 array_free (prepare, EMPTY); 2494 array_free (prepare, EMPTY);
1282 array_free (check, EMPTY); 2495 array_free (check, EMPTY);
1283#if EV_ASYNC_ENABLE 2496#if EV_ASYNC_ENABLE
1284 array_free (async, EMPTY); 2497 array_free (async, EMPTY);
1285#endif 2498#endif
1286 2499
1287 backend = 0; 2500 backend = 0;
2501
2502#if EV_MULTIPLICITY
2503 if (ev_is_default_loop (EV_A))
2504#endif
2505 ev_default_loop_ptr = 0;
2506#if EV_MULTIPLICITY
2507 else
2508 ev_free (EV_A);
2509#endif
1288} 2510}
1289 2511
1290#if EV_USE_INOTIFY 2512#if EV_USE_INOTIFY
1291void inline_size infy_fork (EV_P); 2513inline_size void infy_fork (EV_P);
1292#endif 2514#endif
1293 2515
1294void inline_size 2516inline_size void
1295loop_fork (EV_P) 2517loop_fork (EV_P)
1296{ 2518{
1297#if EV_USE_PORT 2519#if EV_USE_PORT
1298 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2520 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1299#endif 2521#endif
1305#endif 2527#endif
1306#if EV_USE_INOTIFY 2528#if EV_USE_INOTIFY
1307 infy_fork (EV_A); 2529 infy_fork (EV_A);
1308#endif 2530#endif
1309 2531
1310 if (ev_is_active (&pipeev)) 2532 if (ev_is_active (&pipe_w))
1311 { 2533 {
1312 /* this "locks" the handlers against writing to the pipe */ 2534 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1313 /* while we modify the fd vars */
1314 gotsig = 1;
1315#if EV_ASYNC_ENABLE
1316 gotasync = 1;
1317#endif
1318 2535
1319 ev_ref (EV_A); 2536 ev_ref (EV_A);
1320 ev_io_stop (EV_A_ &pipeev); 2537 ev_io_stop (EV_A_ &pipe_w);
1321 2538
1322#if EV_USE_EVENTFD 2539#if EV_USE_EVENTFD
1323 if (evfd >= 0) 2540 if (evfd >= 0)
1324 close (evfd); 2541 close (evfd);
1325#endif 2542#endif
1326 2543
1327 if (evpipe [0] >= 0) 2544 if (evpipe [0] >= 0)
1328 { 2545 {
1329 close (evpipe [0]); 2546 EV_WIN32_CLOSE_FD (evpipe [0]);
1330 close (evpipe [1]); 2547 EV_WIN32_CLOSE_FD (evpipe [1]);
1331 } 2548 }
1332 2549
2550#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1333 evpipe_init (EV_A); 2551 evpipe_init (EV_A);
1334 /* now iterate over everything, in case we missed something */ 2552 /* now iterate over everything, in case we missed something */
1335 pipecb (EV_A_ &pipeev, EV_READ); 2553 pipecb (EV_A_ &pipe_w, EV_READ);
2554#endif
1336 } 2555 }
1337 2556
1338 postfork = 0; 2557 postfork = 0;
1339} 2558}
1340 2559
1341#if EV_MULTIPLICITY 2560#if EV_MULTIPLICITY
2561
1342struct ev_loop * 2562struct ev_loop * ecb_cold
1343ev_loop_new (unsigned int flags) 2563ev_loop_new (unsigned int flags) EV_THROW
1344{ 2564{
1345 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2565 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1346 2566
1347 memset (loop, 0, sizeof (struct ev_loop)); 2567 memset (EV_A, 0, sizeof (struct ev_loop));
1348
1349 loop_init (EV_A_ flags); 2568 loop_init (EV_A_ flags);
1350 2569
1351 if (ev_backend (EV_A)) 2570 if (ev_backend (EV_A))
1352 return loop; 2571 return EV_A;
1353 2572
2573 ev_free (EV_A);
1354 return 0; 2574 return 0;
1355} 2575}
1356 2576
1357void 2577#endif /* multiplicity */
1358ev_loop_destroy (EV_P)
1359{
1360 loop_destroy (EV_A);
1361 ev_free (loop);
1362}
1363 2578
1364void 2579#if EV_VERIFY
1365ev_loop_fork (EV_P) 2580static void noinline ecb_cold
2581verify_watcher (EV_P_ W w)
1366{ 2582{
1367 postfork = 1; /* must be in line with ev_default_fork */ 2583 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1368}
1369 2584
2585 if (w->pending)
2586 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2587}
2588
2589static void noinline ecb_cold
2590verify_heap (EV_P_ ANHE *heap, int N)
2591{
2592 int i;
2593
2594 for (i = HEAP0; i < N + HEAP0; ++i)
2595 {
2596 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2597 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2598 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2599
2600 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2601 }
2602}
2603
2604static void noinline ecb_cold
2605array_verify (EV_P_ W *ws, int cnt)
2606{
2607 while (cnt--)
2608 {
2609 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2610 verify_watcher (EV_A_ ws [cnt]);
2611 }
2612}
2613#endif
2614
2615#if EV_FEATURE_API
2616void ecb_cold
2617ev_verify (EV_P) EV_THROW
2618{
2619#if EV_VERIFY
2620 int i;
2621 WL w, w2;
2622
2623 assert (activecnt >= -1);
2624
2625 assert (fdchangemax >= fdchangecnt);
2626 for (i = 0; i < fdchangecnt; ++i)
2627 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2628
2629 assert (anfdmax >= 0);
2630 for (i = 0; i < anfdmax; ++i)
2631 {
2632 int j = 0;
2633
2634 for (w = w2 = anfds [i].head; w; w = w->next)
2635 {
2636 verify_watcher (EV_A_ (W)w);
2637
2638 if (j++ & 1)
2639 {
2640 assert (("libev: io watcher list contains a loop", w != w2));
2641 w2 = w2->next;
2642 }
2643
2644 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2645 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2646 }
2647 }
2648
2649 assert (timermax >= timercnt);
2650 verify_heap (EV_A_ timers, timercnt);
2651
2652#if EV_PERIODIC_ENABLE
2653 assert (periodicmax >= periodiccnt);
2654 verify_heap (EV_A_ periodics, periodiccnt);
2655#endif
2656
2657 for (i = NUMPRI; i--; )
2658 {
2659 assert (pendingmax [i] >= pendingcnt [i]);
2660#if EV_IDLE_ENABLE
2661 assert (idleall >= 0);
2662 assert (idlemax [i] >= idlecnt [i]);
2663 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2664#endif
2665 }
2666
2667#if EV_FORK_ENABLE
2668 assert (forkmax >= forkcnt);
2669 array_verify (EV_A_ (W *)forks, forkcnt);
2670#endif
2671
2672#if EV_CLEANUP_ENABLE
2673 assert (cleanupmax >= cleanupcnt);
2674 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2675#endif
2676
2677#if EV_ASYNC_ENABLE
2678 assert (asyncmax >= asynccnt);
2679 array_verify (EV_A_ (W *)asyncs, asynccnt);
2680#endif
2681
2682#if EV_PREPARE_ENABLE
2683 assert (preparemax >= preparecnt);
2684 array_verify (EV_A_ (W *)prepares, preparecnt);
2685#endif
2686
2687#if EV_CHECK_ENABLE
2688 assert (checkmax >= checkcnt);
2689 array_verify (EV_A_ (W *)checks, checkcnt);
2690#endif
2691
2692# if 0
2693#if EV_CHILD_ENABLE
2694 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2695 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2696#endif
2697# endif
2698#endif
2699}
1370#endif 2700#endif
1371 2701
1372#if EV_MULTIPLICITY 2702#if EV_MULTIPLICITY
1373struct ev_loop * 2703struct ev_loop * ecb_cold
1374ev_default_loop_init (unsigned int flags)
1375#else 2704#else
1376int 2705int
2706#endif
1377ev_default_loop (unsigned int flags) 2707ev_default_loop (unsigned int flags) EV_THROW
1378#endif
1379{ 2708{
1380 if (!ev_default_loop_ptr) 2709 if (!ev_default_loop_ptr)
1381 { 2710 {
1382#if EV_MULTIPLICITY 2711#if EV_MULTIPLICITY
1383 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2712 EV_P = ev_default_loop_ptr = &default_loop_struct;
1384#else 2713#else
1385 ev_default_loop_ptr = 1; 2714 ev_default_loop_ptr = 1;
1386#endif 2715#endif
1387 2716
1388 loop_init (EV_A_ flags); 2717 loop_init (EV_A_ flags);
1389 2718
1390 if (ev_backend (EV_A)) 2719 if (ev_backend (EV_A))
1391 { 2720 {
1392#ifndef _WIN32 2721#if EV_CHILD_ENABLE
1393 ev_signal_init (&childev, childcb, SIGCHLD); 2722 ev_signal_init (&childev, childcb, SIGCHLD);
1394 ev_set_priority (&childev, EV_MAXPRI); 2723 ev_set_priority (&childev, EV_MAXPRI);
1395 ev_signal_start (EV_A_ &childev); 2724 ev_signal_start (EV_A_ &childev);
1396 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2725 ev_unref (EV_A); /* child watcher should not keep loop alive */
1397#endif 2726#endif
1402 2731
1403 return ev_default_loop_ptr; 2732 return ev_default_loop_ptr;
1404} 2733}
1405 2734
1406void 2735void
1407ev_default_destroy (void) 2736ev_loop_fork (EV_P) EV_THROW
1408{ 2737{
1409#if EV_MULTIPLICITY 2738 postfork = 1;
1410 struct ev_loop *loop = ev_default_loop_ptr;
1411#endif
1412
1413#ifndef _WIN32
1414 ev_ref (EV_A); /* child watcher */
1415 ev_signal_stop (EV_A_ &childev);
1416#endif
1417
1418 loop_destroy (EV_A);
1419}
1420
1421void
1422ev_default_fork (void)
1423{
1424#if EV_MULTIPLICITY
1425 struct ev_loop *loop = ev_default_loop_ptr;
1426#endif
1427
1428 if (backend)
1429 postfork = 1; /* must be in line with ev_loop_fork */
1430} 2739}
1431 2740
1432/*****************************************************************************/ 2741/*****************************************************************************/
1433 2742
1434void 2743void
1435ev_invoke (EV_P_ void *w, int revents) 2744ev_invoke (EV_P_ void *w, int revents)
1436{ 2745{
1437 EV_CB_INVOKE ((W)w, revents); 2746 EV_CB_INVOKE ((W)w, revents);
1438} 2747}
1439 2748
1440void inline_speed 2749unsigned int
1441call_pending (EV_P) 2750ev_pending_count (EV_P) EV_THROW
1442{ 2751{
1443 int pri; 2752 int pri;
2753 unsigned int count = 0;
1444 2754
1445 for (pri = NUMPRI; pri--; ) 2755 for (pri = NUMPRI; pri--; )
2756 count += pendingcnt [pri];
2757
2758 return count;
2759}
2760
2761void noinline
2762ev_invoke_pending (EV_P)
2763{
2764 for (pendingpri = NUMPRI; pendingpri--; ) /* pendingpri is modified during the loop */
1446 while (pendingcnt [pri]) 2765 while (pendingcnt [pendingpri])
1447 { 2766 {
1448 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2767 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1449 2768
1450 if (expect_true (p->w))
1451 {
1452 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1453
1454 p->w->pending = 0; 2769 p->w->pending = 0;
1455 EV_CB_INVOKE (p->w, p->events); 2770 EV_CB_INVOKE (p->w, p->events);
1456 } 2771 EV_FREQUENT_CHECK;
1457 } 2772 }
1458} 2773}
1459 2774
1460void inline_size
1461timers_reify (EV_P)
1462{
1463 while (timercnt && ((WT)timers [0])->at <= mn_now)
1464 {
1465 ev_timer *w = (ev_timer *)timers [0];
1466
1467 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1468
1469 /* first reschedule or stop timer */
1470 if (w->repeat)
1471 {
1472 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1473
1474 ((WT)w)->at += w->repeat;
1475 if (((WT)w)->at < mn_now)
1476 ((WT)w)->at = mn_now;
1477
1478 downheap (timers, timercnt, 0);
1479 }
1480 else
1481 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1482
1483 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1484 }
1485}
1486
1487#if EV_PERIODIC_ENABLE
1488void inline_size
1489periodics_reify (EV_P)
1490{
1491 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1492 {
1493 ev_periodic *w = (ev_periodic *)periodics [0];
1494
1495 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1496
1497 /* first reschedule or stop timer */
1498 if (w->reschedule_cb)
1499 {
1500 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1501 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1502 downheap (periodics, periodiccnt, 0);
1503 }
1504 else if (w->interval)
1505 {
1506 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1507 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1508 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1509 downheap (periodics, periodiccnt, 0);
1510 }
1511 else
1512 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1513
1514 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1515 }
1516}
1517
1518static void noinline
1519periodics_reschedule (EV_P)
1520{
1521 int i;
1522
1523 /* adjust periodics after time jump */
1524 for (i = 0; i < periodiccnt; ++i)
1525 {
1526 ev_periodic *w = (ev_periodic *)periodics [i];
1527
1528 if (w->reschedule_cb)
1529 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1530 else if (w->interval)
1531 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1532 }
1533
1534 /* now rebuild the heap */
1535 for (i = periodiccnt >> 1; i--; )
1536 downheap (periodics, periodiccnt, i);
1537}
1538#endif
1539
1540#if EV_IDLE_ENABLE 2775#if EV_IDLE_ENABLE
1541void inline_size 2776/* make idle watchers pending. this handles the "call-idle */
2777/* only when higher priorities are idle" logic */
2778inline_size void
1542idle_reify (EV_P) 2779idle_reify (EV_P)
1543{ 2780{
1544 if (expect_false (idleall)) 2781 if (expect_false (idleall))
1545 { 2782 {
1546 int pri; 2783 int pri;
1558 } 2795 }
1559 } 2796 }
1560} 2797}
1561#endif 2798#endif
1562 2799
1563void inline_speed 2800/* make timers pending */
2801inline_size void
2802timers_reify (EV_P)
2803{
2804 EV_FREQUENT_CHECK;
2805
2806 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2807 {
2808 do
2809 {
2810 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2811
2812 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2813
2814 /* first reschedule or stop timer */
2815 if (w->repeat)
2816 {
2817 ev_at (w) += w->repeat;
2818 if (ev_at (w) < mn_now)
2819 ev_at (w) = mn_now;
2820
2821 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2822
2823 ANHE_at_cache (timers [HEAP0]);
2824 downheap (timers, timercnt, HEAP0);
2825 }
2826 else
2827 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2828
2829 EV_FREQUENT_CHECK;
2830 feed_reverse (EV_A_ (W)w);
2831 }
2832 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2833
2834 feed_reverse_done (EV_A_ EV_TIMER);
2835 }
2836}
2837
2838#if EV_PERIODIC_ENABLE
2839
2840static void noinline
2841periodic_recalc (EV_P_ ev_periodic *w)
2842{
2843 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2844 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2845
2846 /* the above almost always errs on the low side */
2847 while (at <= ev_rt_now)
2848 {
2849 ev_tstamp nat = at + w->interval;
2850
2851 /* when resolution fails us, we use ev_rt_now */
2852 if (expect_false (nat == at))
2853 {
2854 at = ev_rt_now;
2855 break;
2856 }
2857
2858 at = nat;
2859 }
2860
2861 ev_at (w) = at;
2862}
2863
2864/* make periodics pending */
2865inline_size void
2866periodics_reify (EV_P)
2867{
2868 EV_FREQUENT_CHECK;
2869
2870 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2871 {
2872 do
2873 {
2874 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2875
2876 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2877
2878 /* first reschedule or stop timer */
2879 if (w->reschedule_cb)
2880 {
2881 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2882
2883 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2884
2885 ANHE_at_cache (periodics [HEAP0]);
2886 downheap (periodics, periodiccnt, HEAP0);
2887 }
2888 else if (w->interval)
2889 {
2890 periodic_recalc (EV_A_ w);
2891 ANHE_at_cache (periodics [HEAP0]);
2892 downheap (periodics, periodiccnt, HEAP0);
2893 }
2894 else
2895 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2896
2897 EV_FREQUENT_CHECK;
2898 feed_reverse (EV_A_ (W)w);
2899 }
2900 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2901
2902 feed_reverse_done (EV_A_ EV_PERIODIC);
2903 }
2904}
2905
2906/* simply recalculate all periodics */
2907/* TODO: maybe ensure that at least one event happens when jumping forward? */
2908static void noinline ecb_cold
2909periodics_reschedule (EV_P)
2910{
2911 int i;
2912
2913 /* adjust periodics after time jump */
2914 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2915 {
2916 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2917
2918 if (w->reschedule_cb)
2919 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2920 else if (w->interval)
2921 periodic_recalc (EV_A_ w);
2922
2923 ANHE_at_cache (periodics [i]);
2924 }
2925
2926 reheap (periodics, periodiccnt);
2927}
2928#endif
2929
2930/* adjust all timers by a given offset */
2931static void noinline ecb_cold
2932timers_reschedule (EV_P_ ev_tstamp adjust)
2933{
2934 int i;
2935
2936 for (i = 0; i < timercnt; ++i)
2937 {
2938 ANHE *he = timers + i + HEAP0;
2939 ANHE_w (*he)->at += adjust;
2940 ANHE_at_cache (*he);
2941 }
2942}
2943
2944/* fetch new monotonic and realtime times from the kernel */
2945/* also detect if there was a timejump, and act accordingly */
2946inline_speed void
1564time_update (EV_P_ ev_tstamp max_block) 2947time_update (EV_P_ ev_tstamp max_block)
1565{ 2948{
1566 int i;
1567
1568#if EV_USE_MONOTONIC 2949#if EV_USE_MONOTONIC
1569 if (expect_true (have_monotonic)) 2950 if (expect_true (have_monotonic))
1570 { 2951 {
2952 int i;
1571 ev_tstamp odiff = rtmn_diff; 2953 ev_tstamp odiff = rtmn_diff;
1572 2954
1573 mn_now = get_clock (); 2955 mn_now = get_clock ();
1574 2956
1575 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2957 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1591 * doesn't hurt either as we only do this on time-jumps or 2973 * doesn't hurt either as we only do this on time-jumps or
1592 * in the unlikely event of having been preempted here. 2974 * in the unlikely event of having been preempted here.
1593 */ 2975 */
1594 for (i = 4; --i; ) 2976 for (i = 4; --i; )
1595 { 2977 {
2978 ev_tstamp diff;
1596 rtmn_diff = ev_rt_now - mn_now; 2979 rtmn_diff = ev_rt_now - mn_now;
1597 2980
1598 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2981 diff = odiff - rtmn_diff;
2982
2983 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1599 return; /* all is well */ 2984 return; /* all is well */
1600 2985
1601 ev_rt_now = ev_time (); 2986 ev_rt_now = ev_time ();
1602 mn_now = get_clock (); 2987 mn_now = get_clock ();
1603 now_floor = mn_now; 2988 now_floor = mn_now;
1604 } 2989 }
1605 2990
2991 /* no timer adjustment, as the monotonic clock doesn't jump */
2992 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1606# if EV_PERIODIC_ENABLE 2993# if EV_PERIODIC_ENABLE
1607 periodics_reschedule (EV_A); 2994 periodics_reschedule (EV_A);
1608# endif 2995# endif
1609 /* no timer adjustment, as the monotonic clock doesn't jump */
1610 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1611 } 2996 }
1612 else 2997 else
1613#endif 2998#endif
1614 { 2999 {
1615 ev_rt_now = ev_time (); 3000 ev_rt_now = ev_time ();
1616 3001
1617 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 3002 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1618 { 3003 {
3004 /* adjust timers. this is easy, as the offset is the same for all of them */
3005 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1619#if EV_PERIODIC_ENABLE 3006#if EV_PERIODIC_ENABLE
1620 periodics_reschedule (EV_A); 3007 periodics_reschedule (EV_A);
1621#endif 3008#endif
1622 /* adjust timers. this is easy, as the offset is the same for all of them */
1623 for (i = 0; i < timercnt; ++i)
1624 ((WT)timers [i])->at += ev_rt_now - mn_now;
1625 } 3009 }
1626 3010
1627 mn_now = ev_rt_now; 3011 mn_now = ev_rt_now;
1628 } 3012 }
1629} 3013}
1630 3014
1631void 3015int
1632ev_ref (EV_P)
1633{
1634 ++activecnt;
1635}
1636
1637void
1638ev_unref (EV_P)
1639{
1640 --activecnt;
1641}
1642
1643static int loop_done;
1644
1645void
1646ev_loop (EV_P_ int flags) 3016ev_run (EV_P_ int flags)
1647{ 3017{
3018#if EV_FEATURE_API
3019 ++loop_depth;
3020#endif
3021
3022 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3023
1648 loop_done = EVUNLOOP_CANCEL; 3024 loop_done = EVBREAK_CANCEL;
1649 3025
1650 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3026 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1651 3027
1652 do 3028 do
1653 { 3029 {
3030#if EV_VERIFY >= 2
3031 ev_verify (EV_A);
3032#endif
3033
1654#ifndef _WIN32 3034#ifndef _WIN32
1655 if (expect_false (curpid)) /* penalise the forking check even more */ 3035 if (expect_false (curpid)) /* penalise the forking check even more */
1656 if (expect_false (getpid () != curpid)) 3036 if (expect_false (getpid () != curpid))
1657 { 3037 {
1658 curpid = getpid (); 3038 curpid = getpid ();
1664 /* we might have forked, so queue fork handlers */ 3044 /* we might have forked, so queue fork handlers */
1665 if (expect_false (postfork)) 3045 if (expect_false (postfork))
1666 if (forkcnt) 3046 if (forkcnt)
1667 { 3047 {
1668 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3048 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1669 call_pending (EV_A); 3049 EV_INVOKE_PENDING;
1670 } 3050 }
1671#endif 3051#endif
1672 3052
3053#if EV_PREPARE_ENABLE
1673 /* queue prepare watchers (and execute them) */ 3054 /* queue prepare watchers (and execute them) */
1674 if (expect_false (preparecnt)) 3055 if (expect_false (preparecnt))
1675 { 3056 {
1676 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3057 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1677 call_pending (EV_A); 3058 EV_INVOKE_PENDING;
1678 } 3059 }
3060#endif
1679 3061
1680 if (expect_false (!activecnt)) 3062 if (expect_false (loop_done))
1681 break; 3063 break;
1682 3064
1683 /* we might have forked, so reify kernel state if necessary */ 3065 /* we might have forked, so reify kernel state if necessary */
1684 if (expect_false (postfork)) 3066 if (expect_false (postfork))
1685 loop_fork (EV_A); 3067 loop_fork (EV_A);
1690 /* calculate blocking time */ 3072 /* calculate blocking time */
1691 { 3073 {
1692 ev_tstamp waittime = 0.; 3074 ev_tstamp waittime = 0.;
1693 ev_tstamp sleeptime = 0.; 3075 ev_tstamp sleeptime = 0.;
1694 3076
3077 /* remember old timestamp for io_blocktime calculation */
3078 ev_tstamp prev_mn_now = mn_now;
3079
3080 /* update time to cancel out callback processing overhead */
3081 time_update (EV_A_ 1e100);
3082
3083 /* from now on, we want a pipe-wake-up */
3084 pipe_write_wanted = 1;
3085
3086 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3087
1695 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3088 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1696 { 3089 {
1697 /* update time to cancel out callback processing overhead */
1698 time_update (EV_A_ 1e100);
1699
1700 waittime = MAX_BLOCKTIME; 3090 waittime = MAX_BLOCKTIME;
1701 3091
1702 if (timercnt) 3092 if (timercnt)
1703 { 3093 {
1704 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 3094 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1705 if (waittime > to) waittime = to; 3095 if (waittime > to) waittime = to;
1706 } 3096 }
1707 3097
1708#if EV_PERIODIC_ENABLE 3098#if EV_PERIODIC_ENABLE
1709 if (periodiccnt) 3099 if (periodiccnt)
1710 { 3100 {
1711 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 3101 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1712 if (waittime > to) waittime = to; 3102 if (waittime > to) waittime = to;
1713 } 3103 }
1714#endif 3104#endif
1715 3105
3106 /* don't let timeouts decrease the waittime below timeout_blocktime */
1716 if (expect_false (waittime < timeout_blocktime)) 3107 if (expect_false (waittime < timeout_blocktime))
1717 waittime = timeout_blocktime; 3108 waittime = timeout_blocktime;
1718 3109
1719 sleeptime = waittime - backend_fudge; 3110 /* at this point, we NEED to wait, so we have to ensure */
3111 /* to pass a minimum nonzero value to the backend */
3112 if (expect_false (waittime < backend_mintime))
3113 waittime = backend_mintime;
1720 3114
3115 /* extra check because io_blocktime is commonly 0 */
1721 if (expect_true (sleeptime > io_blocktime)) 3116 if (expect_false (io_blocktime))
1722 sleeptime = io_blocktime;
1723
1724 if (sleeptime)
1725 { 3117 {
3118 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3119
3120 if (sleeptime > waittime - backend_mintime)
3121 sleeptime = waittime - backend_mintime;
3122
3123 if (expect_true (sleeptime > 0.))
3124 {
1726 ev_sleep (sleeptime); 3125 ev_sleep (sleeptime);
1727 waittime -= sleeptime; 3126 waittime -= sleeptime;
3127 }
1728 } 3128 }
1729 } 3129 }
1730 3130
3131#if EV_FEATURE_API
1731 ++loop_count; 3132 ++loop_count;
3133#endif
3134 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1732 backend_poll (EV_A_ waittime); 3135 backend_poll (EV_A_ waittime);
3136 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3137
3138 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3139
3140 MEMORY_FENCE_ACQUIRE;
3141 if (pipe_write_skipped)
3142 {
3143 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3144 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3145 }
3146
1733 3147
1734 /* update ev_rt_now, do magic */ 3148 /* update ev_rt_now, do magic */
1735 time_update (EV_A_ waittime + sleeptime); 3149 time_update (EV_A_ waittime + sleeptime);
1736 } 3150 }
1737 3151
1744#if EV_IDLE_ENABLE 3158#if EV_IDLE_ENABLE
1745 /* queue idle watchers unless other events are pending */ 3159 /* queue idle watchers unless other events are pending */
1746 idle_reify (EV_A); 3160 idle_reify (EV_A);
1747#endif 3161#endif
1748 3162
3163#if EV_CHECK_ENABLE
1749 /* queue check watchers, to be executed first */ 3164 /* queue check watchers, to be executed first */
1750 if (expect_false (checkcnt)) 3165 if (expect_false (checkcnt))
1751 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3166 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3167#endif
1752 3168
1753 call_pending (EV_A); 3169 EV_INVOKE_PENDING;
1754 } 3170 }
1755 while (expect_true ( 3171 while (expect_true (
1756 activecnt 3172 activecnt
1757 && !loop_done 3173 && !loop_done
1758 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 3174 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
1759 )); 3175 ));
1760 3176
1761 if (loop_done == EVUNLOOP_ONE) 3177 if (loop_done == EVBREAK_ONE)
1762 loop_done = EVUNLOOP_CANCEL; 3178 loop_done = EVBREAK_CANCEL;
3179
3180#if EV_FEATURE_API
3181 --loop_depth;
3182#endif
3183
3184 return activecnt;
1763} 3185}
1764 3186
1765void 3187void
1766ev_unloop (EV_P_ int how) 3188ev_break (EV_P_ int how) EV_THROW
1767{ 3189{
1768 loop_done = how; 3190 loop_done = how;
1769} 3191}
1770 3192
3193void
3194ev_ref (EV_P) EV_THROW
3195{
3196 ++activecnt;
3197}
3198
3199void
3200ev_unref (EV_P) EV_THROW
3201{
3202 --activecnt;
3203}
3204
3205void
3206ev_now_update (EV_P) EV_THROW
3207{
3208 time_update (EV_A_ 1e100);
3209}
3210
3211void
3212ev_suspend (EV_P) EV_THROW
3213{
3214 ev_now_update (EV_A);
3215}
3216
3217void
3218ev_resume (EV_P) EV_THROW
3219{
3220 ev_tstamp mn_prev = mn_now;
3221
3222 ev_now_update (EV_A);
3223 timers_reschedule (EV_A_ mn_now - mn_prev);
3224#if EV_PERIODIC_ENABLE
3225 /* TODO: really do this? */
3226 periodics_reschedule (EV_A);
3227#endif
3228}
3229
1771/*****************************************************************************/ 3230/*****************************************************************************/
3231/* singly-linked list management, used when the expected list length is short */
1772 3232
1773void inline_size 3233inline_size void
1774wlist_add (WL *head, WL elem) 3234wlist_add (WL *head, WL elem)
1775{ 3235{
1776 elem->next = *head; 3236 elem->next = *head;
1777 *head = elem; 3237 *head = elem;
1778} 3238}
1779 3239
1780void inline_size 3240inline_size void
1781wlist_del (WL *head, WL elem) 3241wlist_del (WL *head, WL elem)
1782{ 3242{
1783 while (*head) 3243 while (*head)
1784 { 3244 {
1785 if (*head == elem) 3245 if (expect_true (*head == elem))
1786 { 3246 {
1787 *head = elem->next; 3247 *head = elem->next;
1788 return; 3248 break;
1789 } 3249 }
1790 3250
1791 head = &(*head)->next; 3251 head = &(*head)->next;
1792 } 3252 }
1793} 3253}
1794 3254
1795void inline_speed 3255/* internal, faster, version of ev_clear_pending */
3256inline_speed void
1796clear_pending (EV_P_ W w) 3257clear_pending (EV_P_ W w)
1797{ 3258{
1798 if (w->pending) 3259 if (w->pending)
1799 { 3260 {
1800 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3261 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1801 w->pending = 0; 3262 w->pending = 0;
1802 } 3263 }
1803} 3264}
1804 3265
1805int 3266int
1806ev_clear_pending (EV_P_ void *w) 3267ev_clear_pending (EV_P_ void *w) EV_THROW
1807{ 3268{
1808 W w_ = (W)w; 3269 W w_ = (W)w;
1809 int pending = w_->pending; 3270 int pending = w_->pending;
1810 3271
1811 if (expect_true (pending)) 3272 if (expect_true (pending))
1812 { 3273 {
1813 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3274 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3275 p->w = (W)&pending_w;
1814 w_->pending = 0; 3276 w_->pending = 0;
1815 p->w = 0;
1816 return p->events; 3277 return p->events;
1817 } 3278 }
1818 else 3279 else
1819 return 0; 3280 return 0;
1820} 3281}
1821 3282
1822void inline_size 3283inline_size void
1823pri_adjust (EV_P_ W w) 3284pri_adjust (EV_P_ W w)
1824{ 3285{
1825 int pri = w->priority; 3286 int pri = ev_priority (w);
1826 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3287 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1827 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3288 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1828 w->priority = pri; 3289 ev_set_priority (w, pri);
1829} 3290}
1830 3291
1831void inline_speed 3292inline_speed void
1832ev_start (EV_P_ W w, int active) 3293ev_start (EV_P_ W w, int active)
1833{ 3294{
1834 pri_adjust (EV_A_ w); 3295 pri_adjust (EV_A_ w);
1835 w->active = active; 3296 w->active = active;
1836 ev_ref (EV_A); 3297 ev_ref (EV_A);
1837} 3298}
1838 3299
1839void inline_size 3300inline_size void
1840ev_stop (EV_P_ W w) 3301ev_stop (EV_P_ W w)
1841{ 3302{
1842 ev_unref (EV_A); 3303 ev_unref (EV_A);
1843 w->active = 0; 3304 w->active = 0;
1844} 3305}
1845 3306
1846/*****************************************************************************/ 3307/*****************************************************************************/
1847 3308
1848void noinline 3309void noinline
1849ev_io_start (EV_P_ ev_io *w) 3310ev_io_start (EV_P_ ev_io *w) EV_THROW
1850{ 3311{
1851 int fd = w->fd; 3312 int fd = w->fd;
1852 3313
1853 if (expect_false (ev_is_active (w))) 3314 if (expect_false (ev_is_active (w)))
1854 return; 3315 return;
1855 3316
1856 assert (("ev_io_start called with negative fd", fd >= 0)); 3317 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3318 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3319
3320 EV_FREQUENT_CHECK;
1857 3321
1858 ev_start (EV_A_ (W)w, 1); 3322 ev_start (EV_A_ (W)w, 1);
1859 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3323 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1860 wlist_add (&anfds[fd].head, (WL)w); 3324 wlist_add (&anfds[fd].head, (WL)w);
1861 3325
3326 /* common bug, apparently */
3327 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3328
1862 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3329 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1863 w->events &= ~EV_IOFDSET; 3330 w->events &= ~EV__IOFDSET;
3331
3332 EV_FREQUENT_CHECK;
1864} 3333}
1865 3334
1866void noinline 3335void noinline
1867ev_io_stop (EV_P_ ev_io *w) 3336ev_io_stop (EV_P_ ev_io *w) EV_THROW
1868{ 3337{
1869 clear_pending (EV_A_ (W)w); 3338 clear_pending (EV_A_ (W)w);
1870 if (expect_false (!ev_is_active (w))) 3339 if (expect_false (!ev_is_active (w)))
1871 return; 3340 return;
1872 3341
1873 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3342 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3343
3344 EV_FREQUENT_CHECK;
1874 3345
1875 wlist_del (&anfds[w->fd].head, (WL)w); 3346 wlist_del (&anfds[w->fd].head, (WL)w);
1876 ev_stop (EV_A_ (W)w); 3347 ev_stop (EV_A_ (W)w);
1877 3348
1878 fd_change (EV_A_ w->fd, 1); 3349 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3350
3351 EV_FREQUENT_CHECK;
1879} 3352}
1880 3353
1881void noinline 3354void noinline
1882ev_timer_start (EV_P_ ev_timer *w) 3355ev_timer_start (EV_P_ ev_timer *w) EV_THROW
1883{ 3356{
1884 if (expect_false (ev_is_active (w))) 3357 if (expect_false (ev_is_active (w)))
1885 return; 3358 return;
1886 3359
1887 ((WT)w)->at += mn_now; 3360 ev_at (w) += mn_now;
1888 3361
1889 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3362 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1890 3363
3364 EV_FREQUENT_CHECK;
3365
3366 ++timercnt;
1891 ev_start (EV_A_ (W)w, ++timercnt); 3367 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1892 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 3368 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1893 timers [timercnt - 1] = (WT)w; 3369 ANHE_w (timers [ev_active (w)]) = (WT)w;
1894 upheap (timers, timercnt - 1); 3370 ANHE_at_cache (timers [ev_active (w)]);
3371 upheap (timers, ev_active (w));
1895 3372
3373 EV_FREQUENT_CHECK;
3374
1896 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 3375 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1897} 3376}
1898 3377
1899void noinline 3378void noinline
1900ev_timer_stop (EV_P_ ev_timer *w) 3379ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
1901{ 3380{
1902 clear_pending (EV_A_ (W)w); 3381 clear_pending (EV_A_ (W)w);
1903 if (expect_false (!ev_is_active (w))) 3382 if (expect_false (!ev_is_active (w)))
1904 return; 3383 return;
1905 3384
1906 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 3385 EV_FREQUENT_CHECK;
1907 3386
1908 { 3387 {
1909 int active = ((W)w)->active; 3388 int active = ev_active (w);
1910 3389
3390 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3391
3392 --timercnt;
3393
1911 if (expect_true (--active < --timercnt)) 3394 if (expect_true (active < timercnt + HEAP0))
1912 { 3395 {
1913 timers [active] = timers [timercnt]; 3396 timers [active] = timers [timercnt + HEAP0];
1914 adjustheap (timers, timercnt, active); 3397 adjustheap (timers, timercnt, active);
1915 } 3398 }
1916 } 3399 }
1917 3400
1918 ((WT)w)->at -= mn_now; 3401 ev_at (w) -= mn_now;
1919 3402
1920 ev_stop (EV_A_ (W)w); 3403 ev_stop (EV_A_ (W)w);
3404
3405 EV_FREQUENT_CHECK;
1921} 3406}
1922 3407
1923void noinline 3408void noinline
1924ev_timer_again (EV_P_ ev_timer *w) 3409ev_timer_again (EV_P_ ev_timer *w) EV_THROW
1925{ 3410{
3411 EV_FREQUENT_CHECK;
3412
3413 clear_pending (EV_A_ (W)w);
3414
1926 if (ev_is_active (w)) 3415 if (ev_is_active (w))
1927 { 3416 {
1928 if (w->repeat) 3417 if (w->repeat)
1929 { 3418 {
1930 ((WT)w)->at = mn_now + w->repeat; 3419 ev_at (w) = mn_now + w->repeat;
3420 ANHE_at_cache (timers [ev_active (w)]);
1931 adjustheap (timers, timercnt, ((W)w)->active - 1); 3421 adjustheap (timers, timercnt, ev_active (w));
1932 } 3422 }
1933 else 3423 else
1934 ev_timer_stop (EV_A_ w); 3424 ev_timer_stop (EV_A_ w);
1935 } 3425 }
1936 else if (w->repeat) 3426 else if (w->repeat)
1937 { 3427 {
1938 w->at = w->repeat; 3428 ev_at (w) = w->repeat;
1939 ev_timer_start (EV_A_ w); 3429 ev_timer_start (EV_A_ w);
1940 } 3430 }
3431
3432 EV_FREQUENT_CHECK;
3433}
3434
3435ev_tstamp
3436ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3437{
3438 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1941} 3439}
1942 3440
1943#if EV_PERIODIC_ENABLE 3441#if EV_PERIODIC_ENABLE
1944void noinline 3442void noinline
1945ev_periodic_start (EV_P_ ev_periodic *w) 3443ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
1946{ 3444{
1947 if (expect_false (ev_is_active (w))) 3445 if (expect_false (ev_is_active (w)))
1948 return; 3446 return;
1949 3447
1950 if (w->reschedule_cb) 3448 if (w->reschedule_cb)
1951 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 3449 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1952 else if (w->interval) 3450 else if (w->interval)
1953 { 3451 {
1954 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3452 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1955 /* this formula differs from the one in periodic_reify because we do not always round up */ 3453 periodic_recalc (EV_A_ w);
1956 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1957 } 3454 }
1958 else 3455 else
1959 ((WT)w)->at = w->offset; 3456 ev_at (w) = w->offset;
1960 3457
3458 EV_FREQUENT_CHECK;
3459
3460 ++periodiccnt;
1961 ev_start (EV_A_ (W)w, ++periodiccnt); 3461 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1962 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 3462 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1963 periodics [periodiccnt - 1] = (WT)w; 3463 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1964 upheap (periodics, periodiccnt - 1); 3464 ANHE_at_cache (periodics [ev_active (w)]);
3465 upheap (periodics, ev_active (w));
1965 3466
3467 EV_FREQUENT_CHECK;
3468
1966 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 3469 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1967} 3470}
1968 3471
1969void noinline 3472void noinline
1970ev_periodic_stop (EV_P_ ev_periodic *w) 3473ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
1971{ 3474{
1972 clear_pending (EV_A_ (W)w); 3475 clear_pending (EV_A_ (W)w);
1973 if (expect_false (!ev_is_active (w))) 3476 if (expect_false (!ev_is_active (w)))
1974 return; 3477 return;
1975 3478
1976 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 3479 EV_FREQUENT_CHECK;
1977 3480
1978 { 3481 {
1979 int active = ((W)w)->active; 3482 int active = ev_active (w);
1980 3483
3484 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3485
3486 --periodiccnt;
3487
1981 if (expect_true (--active < --periodiccnt)) 3488 if (expect_true (active < periodiccnt + HEAP0))
1982 { 3489 {
1983 periodics [active] = periodics [periodiccnt]; 3490 periodics [active] = periodics [periodiccnt + HEAP0];
1984 adjustheap (periodics, periodiccnt, active); 3491 adjustheap (periodics, periodiccnt, active);
1985 } 3492 }
1986 } 3493 }
1987 3494
1988 ev_stop (EV_A_ (W)w); 3495 ev_stop (EV_A_ (W)w);
3496
3497 EV_FREQUENT_CHECK;
1989} 3498}
1990 3499
1991void noinline 3500void noinline
1992ev_periodic_again (EV_P_ ev_periodic *w) 3501ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
1993{ 3502{
1994 /* TODO: use adjustheap and recalculation */ 3503 /* TODO: use adjustheap and recalculation */
1995 ev_periodic_stop (EV_A_ w); 3504 ev_periodic_stop (EV_A_ w);
1996 ev_periodic_start (EV_A_ w); 3505 ev_periodic_start (EV_A_ w);
1997} 3506}
1999 3508
2000#ifndef SA_RESTART 3509#ifndef SA_RESTART
2001# define SA_RESTART 0 3510# define SA_RESTART 0
2002#endif 3511#endif
2003 3512
3513#if EV_SIGNAL_ENABLE
3514
2004void noinline 3515void noinline
2005ev_signal_start (EV_P_ ev_signal *w) 3516ev_signal_start (EV_P_ ev_signal *w) EV_THROW
2006{ 3517{
2007#if EV_MULTIPLICITY
2008 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2009#endif
2010 if (expect_false (ev_is_active (w))) 3518 if (expect_false (ev_is_active (w)))
2011 return; 3519 return;
2012 3520
2013 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3521 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2014 3522
2015 evpipe_init (EV_A); 3523#if EV_MULTIPLICITY
3524 assert (("libev: a signal must not be attached to two different loops",
3525 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2016 3526
3527 signals [w->signum - 1].loop = EV_A;
3528#endif
3529
3530 EV_FREQUENT_CHECK;
3531
3532#if EV_USE_SIGNALFD
3533 if (sigfd == -2)
2017 { 3534 {
2018#ifndef _WIN32 3535 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2019 sigset_t full, prev; 3536 if (sigfd < 0 && errno == EINVAL)
2020 sigfillset (&full); 3537 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2021 sigprocmask (SIG_SETMASK, &full, &prev);
2022#endif
2023 3538
2024 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3539 if (sigfd >= 0)
3540 {
3541 fd_intern (sigfd); /* doing it twice will not hurt */
2025 3542
2026#ifndef _WIN32 3543 sigemptyset (&sigfd_set);
2027 sigprocmask (SIG_SETMASK, &prev, 0); 3544
2028#endif 3545 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3546 ev_set_priority (&sigfd_w, EV_MAXPRI);
3547 ev_io_start (EV_A_ &sigfd_w);
3548 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3549 }
2029 } 3550 }
3551
3552 if (sigfd >= 0)
3553 {
3554 /* TODO: check .head */
3555 sigaddset (&sigfd_set, w->signum);
3556 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3557
3558 signalfd (sigfd, &sigfd_set, 0);
3559 }
3560#endif
2030 3561
2031 ev_start (EV_A_ (W)w, 1); 3562 ev_start (EV_A_ (W)w, 1);
2032 wlist_add (&signals [w->signum - 1].head, (WL)w); 3563 wlist_add (&signals [w->signum - 1].head, (WL)w);
2033 3564
2034 if (!((WL)w)->next) 3565 if (!((WL)w)->next)
3566# if EV_USE_SIGNALFD
3567 if (sigfd < 0) /*TODO*/
3568# endif
2035 { 3569 {
2036#if _WIN32 3570# ifdef _WIN32
3571 evpipe_init (EV_A);
3572
2037 signal (w->signum, ev_sighandler); 3573 signal (w->signum, ev_sighandler);
2038#else 3574# else
2039 struct sigaction sa; 3575 struct sigaction sa;
3576
3577 evpipe_init (EV_A);
3578
2040 sa.sa_handler = ev_sighandler; 3579 sa.sa_handler = ev_sighandler;
2041 sigfillset (&sa.sa_mask); 3580 sigfillset (&sa.sa_mask);
2042 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3581 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2043 sigaction (w->signum, &sa, 0); 3582 sigaction (w->signum, &sa, 0);
3583
3584 if (origflags & EVFLAG_NOSIGMASK)
3585 {
3586 sigemptyset (&sa.sa_mask);
3587 sigaddset (&sa.sa_mask, w->signum);
3588 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3589 }
2044#endif 3590#endif
2045 } 3591 }
3592
3593 EV_FREQUENT_CHECK;
2046} 3594}
2047 3595
2048void noinline 3596void noinline
2049ev_signal_stop (EV_P_ ev_signal *w) 3597ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
2050{ 3598{
2051 clear_pending (EV_A_ (W)w); 3599 clear_pending (EV_A_ (W)w);
2052 if (expect_false (!ev_is_active (w))) 3600 if (expect_false (!ev_is_active (w)))
2053 return; 3601 return;
2054 3602
3603 EV_FREQUENT_CHECK;
3604
2055 wlist_del (&signals [w->signum - 1].head, (WL)w); 3605 wlist_del (&signals [w->signum - 1].head, (WL)w);
2056 ev_stop (EV_A_ (W)w); 3606 ev_stop (EV_A_ (W)w);
2057 3607
2058 if (!signals [w->signum - 1].head) 3608 if (!signals [w->signum - 1].head)
3609 {
3610#if EV_MULTIPLICITY
3611 signals [w->signum - 1].loop = 0; /* unattach from signal */
3612#endif
3613#if EV_USE_SIGNALFD
3614 if (sigfd >= 0)
3615 {
3616 sigset_t ss;
3617
3618 sigemptyset (&ss);
3619 sigaddset (&ss, w->signum);
3620 sigdelset (&sigfd_set, w->signum);
3621
3622 signalfd (sigfd, &sigfd_set, 0);
3623 sigprocmask (SIG_UNBLOCK, &ss, 0);
3624 }
3625 else
3626#endif
2059 signal (w->signum, SIG_DFL); 3627 signal (w->signum, SIG_DFL);
3628 }
3629
3630 EV_FREQUENT_CHECK;
2060} 3631}
3632
3633#endif
3634
3635#if EV_CHILD_ENABLE
2061 3636
2062void 3637void
2063ev_child_start (EV_P_ ev_child *w) 3638ev_child_start (EV_P_ ev_child *w) EV_THROW
2064{ 3639{
2065#if EV_MULTIPLICITY 3640#if EV_MULTIPLICITY
2066 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3641 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2067#endif 3642#endif
2068 if (expect_false (ev_is_active (w))) 3643 if (expect_false (ev_is_active (w)))
2069 return; 3644 return;
2070 3645
3646 EV_FREQUENT_CHECK;
3647
2071 ev_start (EV_A_ (W)w, 1); 3648 ev_start (EV_A_ (W)w, 1);
2072 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3649 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3650
3651 EV_FREQUENT_CHECK;
2073} 3652}
2074 3653
2075void 3654void
2076ev_child_stop (EV_P_ ev_child *w) 3655ev_child_stop (EV_P_ ev_child *w) EV_THROW
2077{ 3656{
2078 clear_pending (EV_A_ (W)w); 3657 clear_pending (EV_A_ (W)w);
2079 if (expect_false (!ev_is_active (w))) 3658 if (expect_false (!ev_is_active (w)))
2080 return; 3659 return;
2081 3660
3661 EV_FREQUENT_CHECK;
3662
2082 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3663 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2083 ev_stop (EV_A_ (W)w); 3664 ev_stop (EV_A_ (W)w);
3665
3666 EV_FREQUENT_CHECK;
2084} 3667}
3668
3669#endif
2085 3670
2086#if EV_STAT_ENABLE 3671#if EV_STAT_ENABLE
2087 3672
2088# ifdef _WIN32 3673# ifdef _WIN32
2089# undef lstat 3674# undef lstat
2090# define lstat(a,b) _stati64 (a,b) 3675# define lstat(a,b) _stati64 (a,b)
2091# endif 3676# endif
2092 3677
2093#define DEF_STAT_INTERVAL 5.0074891 3678#define DEF_STAT_INTERVAL 5.0074891
3679#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2094#define MIN_STAT_INTERVAL 0.1074891 3680#define MIN_STAT_INTERVAL 0.1074891
2095 3681
2096static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3682static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2097 3683
2098#if EV_USE_INOTIFY 3684#if EV_USE_INOTIFY
2099# define EV_INOTIFY_BUFSIZE 8192 3685
3686/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3687# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2100 3688
2101static void noinline 3689static void noinline
2102infy_add (EV_P_ ev_stat *w) 3690infy_add (EV_P_ ev_stat *w)
2103{ 3691{
2104 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3692 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2105 3693
2106 if (w->wd < 0) 3694 if (w->wd >= 0)
3695 {
3696 struct statfs sfs;
3697
3698 /* now local changes will be tracked by inotify, but remote changes won't */
3699 /* unless the filesystem is known to be local, we therefore still poll */
3700 /* also do poll on <2.6.25, but with normal frequency */
3701
3702 if (!fs_2625)
3703 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3704 else if (!statfs (w->path, &sfs)
3705 && (sfs.f_type == 0x1373 /* devfs */
3706 || sfs.f_type == 0xEF53 /* ext2/3 */
3707 || sfs.f_type == 0x3153464a /* jfs */
3708 || sfs.f_type == 0x52654973 /* reiser3 */
3709 || sfs.f_type == 0x01021994 /* tempfs */
3710 || sfs.f_type == 0x58465342 /* xfs */))
3711 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3712 else
3713 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2107 { 3714 }
2108 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3715 else
3716 {
3717 /* can't use inotify, continue to stat */
3718 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2109 3719
2110 /* monitor some parent directory for speedup hints */ 3720 /* if path is not there, monitor some parent directory for speedup hints */
3721 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3722 /* but an efficiency issue only */
2111 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3723 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2112 { 3724 {
2113 char path [4096]; 3725 char path [4096];
2114 strcpy (path, w->path); 3726 strcpy (path, w->path);
2115 3727
2118 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3730 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2119 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3731 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2120 3732
2121 char *pend = strrchr (path, '/'); 3733 char *pend = strrchr (path, '/');
2122 3734
2123 if (!pend) 3735 if (!pend || pend == path)
2124 break; /* whoops, no '/', complain to your admin */ 3736 break;
2125 3737
2126 *pend = 0; 3738 *pend = 0;
2127 w->wd = inotify_add_watch (fs_fd, path, mask); 3739 w->wd = inotify_add_watch (fs_fd, path, mask);
2128 } 3740 }
2129 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3741 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2130 } 3742 }
2131 } 3743 }
2132 else
2133 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2134 3744
2135 if (w->wd >= 0) 3745 if (w->wd >= 0)
2136 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3746 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3747
3748 /* now re-arm timer, if required */
3749 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3750 ev_timer_again (EV_A_ &w->timer);
3751 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2137} 3752}
2138 3753
2139static void noinline 3754static void noinline
2140infy_del (EV_P_ ev_stat *w) 3755infy_del (EV_P_ ev_stat *w)
2141{ 3756{
2144 3759
2145 if (wd < 0) 3760 if (wd < 0)
2146 return; 3761 return;
2147 3762
2148 w->wd = -2; 3763 w->wd = -2;
2149 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3764 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2150 wlist_del (&fs_hash [slot].head, (WL)w); 3765 wlist_del (&fs_hash [slot].head, (WL)w);
2151 3766
2152 /* remove this watcher, if others are watching it, they will rearm */ 3767 /* remove this watcher, if others are watching it, they will rearm */
2153 inotify_rm_watch (fs_fd, wd); 3768 inotify_rm_watch (fs_fd, wd);
2154} 3769}
2155 3770
2156static void noinline 3771static void noinline
2157infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3772infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2158{ 3773{
2159 if (slot < 0) 3774 if (slot < 0)
2160 /* overflow, need to check for all hahs slots */ 3775 /* overflow, need to check for all hash slots */
2161 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3776 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2162 infy_wd (EV_A_ slot, wd, ev); 3777 infy_wd (EV_A_ slot, wd, ev);
2163 else 3778 else
2164 { 3779 {
2165 WL w_; 3780 WL w_;
2166 3781
2167 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3782 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2168 { 3783 {
2169 ev_stat *w = (ev_stat *)w_; 3784 ev_stat *w = (ev_stat *)w_;
2170 w_ = w_->next; /* lets us remove this watcher and all before it */ 3785 w_ = w_->next; /* lets us remove this watcher and all before it */
2171 3786
2172 if (w->wd == wd || wd == -1) 3787 if (w->wd == wd || wd == -1)
2173 { 3788 {
2174 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3789 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2175 { 3790 {
3791 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2176 w->wd = -1; 3792 w->wd = -1;
2177 infy_add (EV_A_ w); /* re-add, no matter what */ 3793 infy_add (EV_A_ w); /* re-add, no matter what */
2178 } 3794 }
2179 3795
2180 stat_timer_cb (EV_A_ &w->timer, 0); 3796 stat_timer_cb (EV_A_ &w->timer, 0);
2185 3801
2186static void 3802static void
2187infy_cb (EV_P_ ev_io *w, int revents) 3803infy_cb (EV_P_ ev_io *w, int revents)
2188{ 3804{
2189 char buf [EV_INOTIFY_BUFSIZE]; 3805 char buf [EV_INOTIFY_BUFSIZE];
2190 struct inotify_event *ev = (struct inotify_event *)buf;
2191 int ofs; 3806 int ofs;
2192 int len = read (fs_fd, buf, sizeof (buf)); 3807 int len = read (fs_fd, buf, sizeof (buf));
2193 3808
2194 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3809 for (ofs = 0; ofs < len; )
3810 {
3811 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2195 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3812 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3813 ofs += sizeof (struct inotify_event) + ev->len;
3814 }
2196} 3815}
2197 3816
2198void inline_size 3817inline_size void ecb_cold
3818ev_check_2625 (EV_P)
3819{
3820 /* kernels < 2.6.25 are borked
3821 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3822 */
3823 if (ev_linux_version () < 0x020619)
3824 return;
3825
3826 fs_2625 = 1;
3827}
3828
3829inline_size int
3830infy_newfd (void)
3831{
3832#if defined IN_CLOEXEC && defined IN_NONBLOCK
3833 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3834 if (fd >= 0)
3835 return fd;
3836#endif
3837 return inotify_init ();
3838}
3839
3840inline_size void
2199infy_init (EV_P) 3841infy_init (EV_P)
2200{ 3842{
2201 if (fs_fd != -2) 3843 if (fs_fd != -2)
2202 return; 3844 return;
2203 3845
3846 fs_fd = -1;
3847
3848 ev_check_2625 (EV_A);
3849
2204 fs_fd = inotify_init (); 3850 fs_fd = infy_newfd ();
2205 3851
2206 if (fs_fd >= 0) 3852 if (fs_fd >= 0)
2207 { 3853 {
3854 fd_intern (fs_fd);
2208 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3855 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2209 ev_set_priority (&fs_w, EV_MAXPRI); 3856 ev_set_priority (&fs_w, EV_MAXPRI);
2210 ev_io_start (EV_A_ &fs_w); 3857 ev_io_start (EV_A_ &fs_w);
3858 ev_unref (EV_A);
2211 } 3859 }
2212} 3860}
2213 3861
2214void inline_size 3862inline_size void
2215infy_fork (EV_P) 3863infy_fork (EV_P)
2216{ 3864{
2217 int slot; 3865 int slot;
2218 3866
2219 if (fs_fd < 0) 3867 if (fs_fd < 0)
2220 return; 3868 return;
2221 3869
3870 ev_ref (EV_A);
3871 ev_io_stop (EV_A_ &fs_w);
2222 close (fs_fd); 3872 close (fs_fd);
2223 fs_fd = inotify_init (); 3873 fs_fd = infy_newfd ();
2224 3874
3875 if (fs_fd >= 0)
3876 {
3877 fd_intern (fs_fd);
3878 ev_io_set (&fs_w, fs_fd, EV_READ);
3879 ev_io_start (EV_A_ &fs_w);
3880 ev_unref (EV_A);
3881 }
3882
2225 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3883 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2226 { 3884 {
2227 WL w_ = fs_hash [slot].head; 3885 WL w_ = fs_hash [slot].head;
2228 fs_hash [slot].head = 0; 3886 fs_hash [slot].head = 0;
2229 3887
2230 while (w_) 3888 while (w_)
2235 w->wd = -1; 3893 w->wd = -1;
2236 3894
2237 if (fs_fd >= 0) 3895 if (fs_fd >= 0)
2238 infy_add (EV_A_ w); /* re-add, no matter what */ 3896 infy_add (EV_A_ w); /* re-add, no matter what */
2239 else 3897 else
3898 {
3899 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3900 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2240 ev_timer_start (EV_A_ &w->timer); 3901 ev_timer_again (EV_A_ &w->timer);
3902 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3903 }
2241 } 3904 }
2242
2243 } 3905 }
2244} 3906}
2245 3907
3908#endif
3909
3910#ifdef _WIN32
3911# define EV_LSTAT(p,b) _stati64 (p, b)
3912#else
3913# define EV_LSTAT(p,b) lstat (p, b)
2246#endif 3914#endif
2247 3915
2248void 3916void
2249ev_stat_stat (EV_P_ ev_stat *w) 3917ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
2250{ 3918{
2251 if (lstat (w->path, &w->attr) < 0) 3919 if (lstat (w->path, &w->attr) < 0)
2252 w->attr.st_nlink = 0; 3920 w->attr.st_nlink = 0;
2253 else if (!w->attr.st_nlink) 3921 else if (!w->attr.st_nlink)
2254 w->attr.st_nlink = 1; 3922 w->attr.st_nlink = 1;
2257static void noinline 3925static void noinline
2258stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3926stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2259{ 3927{
2260 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3928 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2261 3929
2262 /* we copy this here each the time so that */ 3930 ev_statdata prev = w->attr;
2263 /* prev has the old value when the callback gets invoked */
2264 w->prev = w->attr;
2265 ev_stat_stat (EV_A_ w); 3931 ev_stat_stat (EV_A_ w);
2266 3932
2267 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3933 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2268 if ( 3934 if (
2269 w->prev.st_dev != w->attr.st_dev 3935 prev.st_dev != w->attr.st_dev
2270 || w->prev.st_ino != w->attr.st_ino 3936 || prev.st_ino != w->attr.st_ino
2271 || w->prev.st_mode != w->attr.st_mode 3937 || prev.st_mode != w->attr.st_mode
2272 || w->prev.st_nlink != w->attr.st_nlink 3938 || prev.st_nlink != w->attr.st_nlink
2273 || w->prev.st_uid != w->attr.st_uid 3939 || prev.st_uid != w->attr.st_uid
2274 || w->prev.st_gid != w->attr.st_gid 3940 || prev.st_gid != w->attr.st_gid
2275 || w->prev.st_rdev != w->attr.st_rdev 3941 || prev.st_rdev != w->attr.st_rdev
2276 || w->prev.st_size != w->attr.st_size 3942 || prev.st_size != w->attr.st_size
2277 || w->prev.st_atime != w->attr.st_atime 3943 || prev.st_atime != w->attr.st_atime
2278 || w->prev.st_mtime != w->attr.st_mtime 3944 || prev.st_mtime != w->attr.st_mtime
2279 || w->prev.st_ctime != w->attr.st_ctime 3945 || prev.st_ctime != w->attr.st_ctime
2280 ) { 3946 ) {
3947 /* we only update w->prev on actual differences */
3948 /* in case we test more often than invoke the callback, */
3949 /* to ensure that prev is always different to attr */
3950 w->prev = prev;
3951
2281 #if EV_USE_INOTIFY 3952 #if EV_USE_INOTIFY
3953 if (fs_fd >= 0)
3954 {
2282 infy_del (EV_A_ w); 3955 infy_del (EV_A_ w);
2283 infy_add (EV_A_ w); 3956 infy_add (EV_A_ w);
2284 ev_stat_stat (EV_A_ w); /* avoid race... */ 3957 ev_stat_stat (EV_A_ w); /* avoid race... */
3958 }
2285 #endif 3959 #endif
2286 3960
2287 ev_feed_event (EV_A_ w, EV_STAT); 3961 ev_feed_event (EV_A_ w, EV_STAT);
2288 } 3962 }
2289} 3963}
2290 3964
2291void 3965void
2292ev_stat_start (EV_P_ ev_stat *w) 3966ev_stat_start (EV_P_ ev_stat *w) EV_THROW
2293{ 3967{
2294 if (expect_false (ev_is_active (w))) 3968 if (expect_false (ev_is_active (w)))
2295 return; 3969 return;
2296 3970
2297 /* since we use memcmp, we need to clear any padding data etc. */
2298 memset (&w->prev, 0, sizeof (ev_statdata));
2299 memset (&w->attr, 0, sizeof (ev_statdata));
2300
2301 ev_stat_stat (EV_A_ w); 3971 ev_stat_stat (EV_A_ w);
2302 3972
3973 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2303 if (w->interval < MIN_STAT_INTERVAL) 3974 w->interval = MIN_STAT_INTERVAL;
2304 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2305 3975
2306 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3976 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2307 ev_set_priority (&w->timer, ev_priority (w)); 3977 ev_set_priority (&w->timer, ev_priority (w));
2308 3978
2309#if EV_USE_INOTIFY 3979#if EV_USE_INOTIFY
2310 infy_init (EV_A); 3980 infy_init (EV_A);
2311 3981
2312 if (fs_fd >= 0) 3982 if (fs_fd >= 0)
2313 infy_add (EV_A_ w); 3983 infy_add (EV_A_ w);
2314 else 3984 else
2315#endif 3985#endif
3986 {
2316 ev_timer_start (EV_A_ &w->timer); 3987 ev_timer_again (EV_A_ &w->timer);
3988 ev_unref (EV_A);
3989 }
2317 3990
2318 ev_start (EV_A_ (W)w, 1); 3991 ev_start (EV_A_ (W)w, 1);
3992
3993 EV_FREQUENT_CHECK;
2319} 3994}
2320 3995
2321void 3996void
2322ev_stat_stop (EV_P_ ev_stat *w) 3997ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
2323{ 3998{
2324 clear_pending (EV_A_ (W)w); 3999 clear_pending (EV_A_ (W)w);
2325 if (expect_false (!ev_is_active (w))) 4000 if (expect_false (!ev_is_active (w)))
2326 return; 4001 return;
2327 4002
4003 EV_FREQUENT_CHECK;
4004
2328#if EV_USE_INOTIFY 4005#if EV_USE_INOTIFY
2329 infy_del (EV_A_ w); 4006 infy_del (EV_A_ w);
2330#endif 4007#endif
4008
4009 if (ev_is_active (&w->timer))
4010 {
4011 ev_ref (EV_A);
2331 ev_timer_stop (EV_A_ &w->timer); 4012 ev_timer_stop (EV_A_ &w->timer);
4013 }
2332 4014
2333 ev_stop (EV_A_ (W)w); 4015 ev_stop (EV_A_ (W)w);
4016
4017 EV_FREQUENT_CHECK;
2334} 4018}
2335#endif 4019#endif
2336 4020
2337#if EV_IDLE_ENABLE 4021#if EV_IDLE_ENABLE
2338void 4022void
2339ev_idle_start (EV_P_ ev_idle *w) 4023ev_idle_start (EV_P_ ev_idle *w) EV_THROW
2340{ 4024{
2341 if (expect_false (ev_is_active (w))) 4025 if (expect_false (ev_is_active (w)))
2342 return; 4026 return;
2343 4027
2344 pri_adjust (EV_A_ (W)w); 4028 pri_adjust (EV_A_ (W)w);
4029
4030 EV_FREQUENT_CHECK;
2345 4031
2346 { 4032 {
2347 int active = ++idlecnt [ABSPRI (w)]; 4033 int active = ++idlecnt [ABSPRI (w)];
2348 4034
2349 ++idleall; 4035 ++idleall;
2350 ev_start (EV_A_ (W)w, active); 4036 ev_start (EV_A_ (W)w, active);
2351 4037
2352 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 4038 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2353 idles [ABSPRI (w)][active - 1] = w; 4039 idles [ABSPRI (w)][active - 1] = w;
2354 } 4040 }
4041
4042 EV_FREQUENT_CHECK;
2355} 4043}
2356 4044
2357void 4045void
2358ev_idle_stop (EV_P_ ev_idle *w) 4046ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
2359{ 4047{
2360 clear_pending (EV_A_ (W)w); 4048 clear_pending (EV_A_ (W)w);
2361 if (expect_false (!ev_is_active (w))) 4049 if (expect_false (!ev_is_active (w)))
2362 return; 4050 return;
2363 4051
4052 EV_FREQUENT_CHECK;
4053
2364 { 4054 {
2365 int active = ((W)w)->active; 4055 int active = ev_active (w);
2366 4056
2367 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 4057 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2368 ((W)idles [ABSPRI (w)][active - 1])->active = active; 4058 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2369 4059
2370 ev_stop (EV_A_ (W)w); 4060 ev_stop (EV_A_ (W)w);
2371 --idleall; 4061 --idleall;
2372 } 4062 }
2373}
2374#endif
2375 4063
4064 EV_FREQUENT_CHECK;
4065}
4066#endif
4067
4068#if EV_PREPARE_ENABLE
2376void 4069void
2377ev_prepare_start (EV_P_ ev_prepare *w) 4070ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
2378{ 4071{
2379 if (expect_false (ev_is_active (w))) 4072 if (expect_false (ev_is_active (w)))
2380 return; 4073 return;
4074
4075 EV_FREQUENT_CHECK;
2381 4076
2382 ev_start (EV_A_ (W)w, ++preparecnt); 4077 ev_start (EV_A_ (W)w, ++preparecnt);
2383 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 4078 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2384 prepares [preparecnt - 1] = w; 4079 prepares [preparecnt - 1] = w;
4080
4081 EV_FREQUENT_CHECK;
2385} 4082}
2386 4083
2387void 4084void
2388ev_prepare_stop (EV_P_ ev_prepare *w) 4085ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
2389{ 4086{
2390 clear_pending (EV_A_ (W)w); 4087 clear_pending (EV_A_ (W)w);
2391 if (expect_false (!ev_is_active (w))) 4088 if (expect_false (!ev_is_active (w)))
2392 return; 4089 return;
2393 4090
4091 EV_FREQUENT_CHECK;
4092
2394 { 4093 {
2395 int active = ((W)w)->active; 4094 int active = ev_active (w);
4095
2396 prepares [active - 1] = prepares [--preparecnt]; 4096 prepares [active - 1] = prepares [--preparecnt];
2397 ((W)prepares [active - 1])->active = active; 4097 ev_active (prepares [active - 1]) = active;
2398 } 4098 }
2399 4099
2400 ev_stop (EV_A_ (W)w); 4100 ev_stop (EV_A_ (W)w);
2401}
2402 4101
4102 EV_FREQUENT_CHECK;
4103}
4104#endif
4105
4106#if EV_CHECK_ENABLE
2403void 4107void
2404ev_check_start (EV_P_ ev_check *w) 4108ev_check_start (EV_P_ ev_check *w) EV_THROW
2405{ 4109{
2406 if (expect_false (ev_is_active (w))) 4110 if (expect_false (ev_is_active (w)))
2407 return; 4111 return;
4112
4113 EV_FREQUENT_CHECK;
2408 4114
2409 ev_start (EV_A_ (W)w, ++checkcnt); 4115 ev_start (EV_A_ (W)w, ++checkcnt);
2410 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 4116 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2411 checks [checkcnt - 1] = w; 4117 checks [checkcnt - 1] = w;
4118
4119 EV_FREQUENT_CHECK;
2412} 4120}
2413 4121
2414void 4122void
2415ev_check_stop (EV_P_ ev_check *w) 4123ev_check_stop (EV_P_ ev_check *w) EV_THROW
2416{ 4124{
2417 clear_pending (EV_A_ (W)w); 4125 clear_pending (EV_A_ (W)w);
2418 if (expect_false (!ev_is_active (w))) 4126 if (expect_false (!ev_is_active (w)))
2419 return; 4127 return;
2420 4128
4129 EV_FREQUENT_CHECK;
4130
2421 { 4131 {
2422 int active = ((W)w)->active; 4132 int active = ev_active (w);
4133
2423 checks [active - 1] = checks [--checkcnt]; 4134 checks [active - 1] = checks [--checkcnt];
2424 ((W)checks [active - 1])->active = active; 4135 ev_active (checks [active - 1]) = active;
2425 } 4136 }
2426 4137
2427 ev_stop (EV_A_ (W)w); 4138 ev_stop (EV_A_ (W)w);
4139
4140 EV_FREQUENT_CHECK;
2428} 4141}
4142#endif
2429 4143
2430#if EV_EMBED_ENABLE 4144#if EV_EMBED_ENABLE
2431void noinline 4145void noinline
2432ev_embed_sweep (EV_P_ ev_embed *w) 4146ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
2433{ 4147{
2434 ev_loop (w->other, EVLOOP_NONBLOCK); 4148 ev_run (w->other, EVRUN_NOWAIT);
2435} 4149}
2436 4150
2437static void 4151static void
2438embed_io_cb (EV_P_ ev_io *io, int revents) 4152embed_io_cb (EV_P_ ev_io *io, int revents)
2439{ 4153{
2440 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4154 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2441 4155
2442 if (ev_cb (w)) 4156 if (ev_cb (w))
2443 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4157 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2444 else 4158 else
2445 ev_loop (w->other, EVLOOP_NONBLOCK); 4159 ev_run (w->other, EVRUN_NOWAIT);
2446} 4160}
2447 4161
2448static void 4162static void
2449embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4163embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2450{ 4164{
2451 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4165 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2452 4166
2453 { 4167 {
2454 struct ev_loop *loop = w->other; 4168 EV_P = w->other;
2455 4169
2456 while (fdchangecnt) 4170 while (fdchangecnt)
2457 { 4171 {
2458 fd_reify (EV_A); 4172 fd_reify (EV_A);
2459 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4173 ev_run (EV_A_ EVRUN_NOWAIT);
2460 } 4174 }
2461 } 4175 }
4176}
4177
4178static void
4179embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4180{
4181 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4182
4183 ev_embed_stop (EV_A_ w);
4184
4185 {
4186 EV_P = w->other;
4187
4188 ev_loop_fork (EV_A);
4189 ev_run (EV_A_ EVRUN_NOWAIT);
4190 }
4191
4192 ev_embed_start (EV_A_ w);
2462} 4193}
2463 4194
2464#if 0 4195#if 0
2465static void 4196static void
2466embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4197embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2468 ev_idle_stop (EV_A_ idle); 4199 ev_idle_stop (EV_A_ idle);
2469} 4200}
2470#endif 4201#endif
2471 4202
2472void 4203void
2473ev_embed_start (EV_P_ ev_embed *w) 4204ev_embed_start (EV_P_ ev_embed *w) EV_THROW
2474{ 4205{
2475 if (expect_false (ev_is_active (w))) 4206 if (expect_false (ev_is_active (w)))
2476 return; 4207 return;
2477 4208
2478 { 4209 {
2479 struct ev_loop *loop = w->other; 4210 EV_P = w->other;
2480 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4211 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2481 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4212 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2482 } 4213 }
4214
4215 EV_FREQUENT_CHECK;
2483 4216
2484 ev_set_priority (&w->io, ev_priority (w)); 4217 ev_set_priority (&w->io, ev_priority (w));
2485 ev_io_start (EV_A_ &w->io); 4218 ev_io_start (EV_A_ &w->io);
2486 4219
2487 ev_prepare_init (&w->prepare, embed_prepare_cb); 4220 ev_prepare_init (&w->prepare, embed_prepare_cb);
2488 ev_set_priority (&w->prepare, EV_MINPRI); 4221 ev_set_priority (&w->prepare, EV_MINPRI);
2489 ev_prepare_start (EV_A_ &w->prepare); 4222 ev_prepare_start (EV_A_ &w->prepare);
2490 4223
4224 ev_fork_init (&w->fork, embed_fork_cb);
4225 ev_fork_start (EV_A_ &w->fork);
4226
2491 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 4227 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2492 4228
2493 ev_start (EV_A_ (W)w, 1); 4229 ev_start (EV_A_ (W)w, 1);
4230
4231 EV_FREQUENT_CHECK;
2494} 4232}
2495 4233
2496void 4234void
2497ev_embed_stop (EV_P_ ev_embed *w) 4235ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
2498{ 4236{
2499 clear_pending (EV_A_ (W)w); 4237 clear_pending (EV_A_ (W)w);
2500 if (expect_false (!ev_is_active (w))) 4238 if (expect_false (!ev_is_active (w)))
2501 return; 4239 return;
2502 4240
4241 EV_FREQUENT_CHECK;
4242
2503 ev_io_stop (EV_A_ &w->io); 4243 ev_io_stop (EV_A_ &w->io);
2504 ev_prepare_stop (EV_A_ &w->prepare); 4244 ev_prepare_stop (EV_A_ &w->prepare);
4245 ev_fork_stop (EV_A_ &w->fork);
2505 4246
2506 ev_stop (EV_A_ (W)w); 4247 ev_stop (EV_A_ (W)w);
4248
4249 EV_FREQUENT_CHECK;
2507} 4250}
2508#endif 4251#endif
2509 4252
2510#if EV_FORK_ENABLE 4253#if EV_FORK_ENABLE
2511void 4254void
2512ev_fork_start (EV_P_ ev_fork *w) 4255ev_fork_start (EV_P_ ev_fork *w) EV_THROW
2513{ 4256{
2514 if (expect_false (ev_is_active (w))) 4257 if (expect_false (ev_is_active (w)))
2515 return; 4258 return;
4259
4260 EV_FREQUENT_CHECK;
2516 4261
2517 ev_start (EV_A_ (W)w, ++forkcnt); 4262 ev_start (EV_A_ (W)w, ++forkcnt);
2518 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 4263 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2519 forks [forkcnt - 1] = w; 4264 forks [forkcnt - 1] = w;
4265
4266 EV_FREQUENT_CHECK;
2520} 4267}
2521 4268
2522void 4269void
2523ev_fork_stop (EV_P_ ev_fork *w) 4270ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
2524{ 4271{
2525 clear_pending (EV_A_ (W)w); 4272 clear_pending (EV_A_ (W)w);
2526 if (expect_false (!ev_is_active (w))) 4273 if (expect_false (!ev_is_active (w)))
2527 return; 4274 return;
2528 4275
4276 EV_FREQUENT_CHECK;
4277
2529 { 4278 {
2530 int active = ((W)w)->active; 4279 int active = ev_active (w);
4280
2531 forks [active - 1] = forks [--forkcnt]; 4281 forks [active - 1] = forks [--forkcnt];
2532 ((W)forks [active - 1])->active = active; 4282 ev_active (forks [active - 1]) = active;
2533 } 4283 }
2534 4284
2535 ev_stop (EV_A_ (W)w); 4285 ev_stop (EV_A_ (W)w);
4286
4287 EV_FREQUENT_CHECK;
4288}
4289#endif
4290
4291#if EV_CLEANUP_ENABLE
4292void
4293ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4294{
4295 if (expect_false (ev_is_active (w)))
4296 return;
4297
4298 EV_FREQUENT_CHECK;
4299
4300 ev_start (EV_A_ (W)w, ++cleanupcnt);
4301 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4302 cleanups [cleanupcnt - 1] = w;
4303
4304 /* cleanup watchers should never keep a refcount on the loop */
4305 ev_unref (EV_A);
4306 EV_FREQUENT_CHECK;
4307}
4308
4309void
4310ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4311{
4312 clear_pending (EV_A_ (W)w);
4313 if (expect_false (!ev_is_active (w)))
4314 return;
4315
4316 EV_FREQUENT_CHECK;
4317 ev_ref (EV_A);
4318
4319 {
4320 int active = ev_active (w);
4321
4322 cleanups [active - 1] = cleanups [--cleanupcnt];
4323 ev_active (cleanups [active - 1]) = active;
4324 }
4325
4326 ev_stop (EV_A_ (W)w);
4327
4328 EV_FREQUENT_CHECK;
2536} 4329}
2537#endif 4330#endif
2538 4331
2539#if EV_ASYNC_ENABLE 4332#if EV_ASYNC_ENABLE
2540void 4333void
2541ev_async_start (EV_P_ ev_async *w) 4334ev_async_start (EV_P_ ev_async *w) EV_THROW
2542{ 4335{
2543 if (expect_false (ev_is_active (w))) 4336 if (expect_false (ev_is_active (w)))
2544 return; 4337 return;
2545 4338
4339 w->sent = 0;
4340
2546 evpipe_init (EV_A); 4341 evpipe_init (EV_A);
4342
4343 EV_FREQUENT_CHECK;
2547 4344
2548 ev_start (EV_A_ (W)w, ++asynccnt); 4345 ev_start (EV_A_ (W)w, ++asynccnt);
2549 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 4346 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2550 asyncs [asynccnt - 1] = w; 4347 asyncs [asynccnt - 1] = w;
4348
4349 EV_FREQUENT_CHECK;
2551} 4350}
2552 4351
2553void 4352void
2554ev_async_stop (EV_P_ ev_async *w) 4353ev_async_stop (EV_P_ ev_async *w) EV_THROW
2555{ 4354{
2556 clear_pending (EV_A_ (W)w); 4355 clear_pending (EV_A_ (W)w);
2557 if (expect_false (!ev_is_active (w))) 4356 if (expect_false (!ev_is_active (w)))
2558 return; 4357 return;
2559 4358
4359 EV_FREQUENT_CHECK;
4360
2560 { 4361 {
2561 int active = ((W)w)->active; 4362 int active = ev_active (w);
4363
2562 asyncs [active - 1] = asyncs [--asynccnt]; 4364 asyncs [active - 1] = asyncs [--asynccnt];
2563 ((W)asyncs [active - 1])->active = active; 4365 ev_active (asyncs [active - 1]) = active;
2564 } 4366 }
2565 4367
2566 ev_stop (EV_A_ (W)w); 4368 ev_stop (EV_A_ (W)w);
4369
4370 EV_FREQUENT_CHECK;
2567} 4371}
2568 4372
2569void 4373void
2570ev_async_send (EV_P_ ev_async *w) 4374ev_async_send (EV_P_ ev_async *w) EV_THROW
2571{ 4375{
2572 w->sent = 1; 4376 w->sent = 1;
2573 evpipe_write (EV_A_ &gotasync); 4377 evpipe_write (EV_A_ &async_pending);
2574} 4378}
2575#endif 4379#endif
2576 4380
2577/*****************************************************************************/ 4381/*****************************************************************************/
2578 4382
2588once_cb (EV_P_ struct ev_once *once, int revents) 4392once_cb (EV_P_ struct ev_once *once, int revents)
2589{ 4393{
2590 void (*cb)(int revents, void *arg) = once->cb; 4394 void (*cb)(int revents, void *arg) = once->cb;
2591 void *arg = once->arg; 4395 void *arg = once->arg;
2592 4396
2593 ev_io_stop (EV_A_ &once->io); 4397 ev_io_stop (EV_A_ &once->io);
2594 ev_timer_stop (EV_A_ &once->to); 4398 ev_timer_stop (EV_A_ &once->to);
2595 ev_free (once); 4399 ev_free (once);
2596 4400
2597 cb (revents, arg); 4401 cb (revents, arg);
2598} 4402}
2599 4403
2600static void 4404static void
2601once_cb_io (EV_P_ ev_io *w, int revents) 4405once_cb_io (EV_P_ ev_io *w, int revents)
2602{ 4406{
2603 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4407 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4408
4409 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2604} 4410}
2605 4411
2606static void 4412static void
2607once_cb_to (EV_P_ ev_timer *w, int revents) 4413once_cb_to (EV_P_ ev_timer *w, int revents)
2608{ 4414{
2609 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4415 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4416
4417 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2610} 4418}
2611 4419
2612void 4420void
2613ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4421ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
2614{ 4422{
2615 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4423 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2616 4424
2617 if (expect_false (!once)) 4425 if (expect_false (!once))
2618 { 4426 {
2619 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4427 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2620 return; 4428 return;
2621 } 4429 }
2622 4430
2623 once->cb = cb; 4431 once->cb = cb;
2624 once->arg = arg; 4432 once->arg = arg;
2636 ev_timer_set (&once->to, timeout, 0.); 4444 ev_timer_set (&once->to, timeout, 0.);
2637 ev_timer_start (EV_A_ &once->to); 4445 ev_timer_start (EV_A_ &once->to);
2638 } 4446 }
2639} 4447}
2640 4448
4449/*****************************************************************************/
4450
4451#if EV_WALK_ENABLE
4452void ecb_cold
4453ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4454{
4455 int i, j;
4456 ev_watcher_list *wl, *wn;
4457
4458 if (types & (EV_IO | EV_EMBED))
4459 for (i = 0; i < anfdmax; ++i)
4460 for (wl = anfds [i].head; wl; )
4461 {
4462 wn = wl->next;
4463
4464#if EV_EMBED_ENABLE
4465 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4466 {
4467 if (types & EV_EMBED)
4468 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4469 }
4470 else
4471#endif
4472#if EV_USE_INOTIFY
4473 if (ev_cb ((ev_io *)wl) == infy_cb)
4474 ;
4475 else
4476#endif
4477 if ((ev_io *)wl != &pipe_w)
4478 if (types & EV_IO)
4479 cb (EV_A_ EV_IO, wl);
4480
4481 wl = wn;
4482 }
4483
4484 if (types & (EV_TIMER | EV_STAT))
4485 for (i = timercnt + HEAP0; i-- > HEAP0; )
4486#if EV_STAT_ENABLE
4487 /*TODO: timer is not always active*/
4488 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4489 {
4490 if (types & EV_STAT)
4491 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4492 }
4493 else
4494#endif
4495 if (types & EV_TIMER)
4496 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4497
4498#if EV_PERIODIC_ENABLE
4499 if (types & EV_PERIODIC)
4500 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4501 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4502#endif
4503
4504#if EV_IDLE_ENABLE
4505 if (types & EV_IDLE)
4506 for (j = NUMPRI; j--; )
4507 for (i = idlecnt [j]; i--; )
4508 cb (EV_A_ EV_IDLE, idles [j][i]);
4509#endif
4510
4511#if EV_FORK_ENABLE
4512 if (types & EV_FORK)
4513 for (i = forkcnt; i--; )
4514 if (ev_cb (forks [i]) != embed_fork_cb)
4515 cb (EV_A_ EV_FORK, forks [i]);
4516#endif
4517
4518#if EV_ASYNC_ENABLE
4519 if (types & EV_ASYNC)
4520 for (i = asynccnt; i--; )
4521 cb (EV_A_ EV_ASYNC, asyncs [i]);
4522#endif
4523
4524#if EV_PREPARE_ENABLE
4525 if (types & EV_PREPARE)
4526 for (i = preparecnt; i--; )
4527# if EV_EMBED_ENABLE
4528 if (ev_cb (prepares [i]) != embed_prepare_cb)
4529# endif
4530 cb (EV_A_ EV_PREPARE, prepares [i]);
4531#endif
4532
4533#if EV_CHECK_ENABLE
4534 if (types & EV_CHECK)
4535 for (i = checkcnt; i--; )
4536 cb (EV_A_ EV_CHECK, checks [i]);
4537#endif
4538
4539#if EV_SIGNAL_ENABLE
4540 if (types & EV_SIGNAL)
4541 for (i = 0; i < EV_NSIG - 1; ++i)
4542 for (wl = signals [i].head; wl; )
4543 {
4544 wn = wl->next;
4545 cb (EV_A_ EV_SIGNAL, wl);
4546 wl = wn;
4547 }
4548#endif
4549
4550#if EV_CHILD_ENABLE
4551 if (types & EV_CHILD)
4552 for (i = (EV_PID_HASHSIZE); i--; )
4553 for (wl = childs [i]; wl; )
4554 {
4555 wn = wl->next;
4556 cb (EV_A_ EV_CHILD, wl);
4557 wl = wn;
4558 }
4559#endif
4560/* EV_STAT 0x00001000 /* stat data changed */
4561/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4562}
4563#endif
4564
2641#if EV_MULTIPLICITY 4565#if EV_MULTIPLICITY
2642 #include "ev_wrap.h" 4566 #include "ev_wrap.h"
2643#endif 4567#endif
2644 4568
2645#ifdef __cplusplus
2646}
2647#endif
2648

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines