ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.256 by root, Thu Jun 19 06:53:49 2008 UTC vs.
Revision 1.441 by root, Wed May 30 15:45:40 2012 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
52# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
55# endif 71# endif
56# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
58# endif 74# endif
59# else 75# else
60# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
62# endif 78# endif
63# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
65# endif 81# endif
66# endif 82# endif
67 83
84# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
71# else 88# else
89# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
74# endif 100# endif
75 101
102# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 105# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 106# else
107# undef EV_USE_POLL
88# define EV_USE_POLL 0 108# define EV_USE_POLL 0
89# endif
90# endif 109# endif
91 110
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
95# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
98# endif 118# endif
99 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
106# endif 127# endif
107 128
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
111# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
114# endif 136# endif
115 137
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
122# endif 145# endif
123 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 148# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 149# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
130# endif 163# endif
131 164
132#endif 165#endif
133 166
134#include <math.h>
135#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
136#include <fcntl.h> 169#include <fcntl.h>
137#include <stddef.h> 170#include <stddef.h>
138 171
139#include <stdio.h> 172#include <stdio.h>
140 173
141#include <assert.h> 174#include <assert.h>
142#include <errno.h> 175#include <errno.h>
143#include <sys/types.h> 176#include <sys/types.h>
144#include <time.h> 177#include <time.h>
178#include <limits.h>
145 179
146#include <signal.h> 180#include <signal.h>
147 181
148#ifdef EV_H 182#ifdef EV_H
149# include EV_H 183# include EV_H
150#else 184#else
151# include "ev.h" 185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
152#endif 197#endif
153 198
154#ifndef _WIN32 199#ifndef _WIN32
155# include <sys/time.h> 200# include <sys/time.h>
156# include <sys/wait.h> 201# include <sys/wait.h>
157# include <unistd.h> 202# include <unistd.h>
158#else 203#else
159# include <io.h> 204# include <io.h>
160# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
161# include <windows.h> 207# include <windows.h>
162# ifndef EV_SELECT_IS_WINSOCKET 208# ifndef EV_SELECT_IS_WINSOCKET
163# define EV_SELECT_IS_WINSOCKET 1 209# define EV_SELECT_IS_WINSOCKET 1
164# endif 210# endif
211# undef EV_AVOID_STDIO
165#endif 212#endif
213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
166 221
167/* this block tries to deduce configuration from header-defined symbols and defaults */ 222/* this block tries to deduce configuration from header-defined symbols and defaults */
168 223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# error "unable to find value for NSIG, please report"
247/* to make it compile regardless, just remove the above line, */
248/* but consider reporting it, too! :) */
249# define EV_NSIG 65
250#endif
251
252#ifndef EV_USE_FLOOR
253# define EV_USE_FLOOR 0
254#endif
255
256#ifndef EV_USE_CLOCK_SYSCALL
257# if __linux && __GLIBC__ >= 2
258# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
259# else
260# define EV_USE_CLOCK_SYSCALL 0
261# endif
262#endif
263
169#ifndef EV_USE_MONOTONIC 264#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0 265# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1 266# define EV_USE_MONOTONIC EV_FEATURE_OS
172# else 267# else
173# define EV_USE_MONOTONIC 0 268# define EV_USE_MONOTONIC 0
174# endif 269# endif
175#endif 270#endif
176 271
177#ifndef EV_USE_REALTIME 272#ifndef EV_USE_REALTIME
178# define EV_USE_REALTIME 0 273# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
179#endif 274#endif
180 275
181#ifndef EV_USE_NANOSLEEP 276#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L 277# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1 278# define EV_USE_NANOSLEEP EV_FEATURE_OS
184# else 279# else
185# define EV_USE_NANOSLEEP 0 280# define EV_USE_NANOSLEEP 0
186# endif 281# endif
187#endif 282#endif
188 283
189#ifndef EV_USE_SELECT 284#ifndef EV_USE_SELECT
190# define EV_USE_SELECT 1 285# define EV_USE_SELECT EV_FEATURE_BACKENDS
191#endif 286#endif
192 287
193#ifndef EV_USE_POLL 288#ifndef EV_USE_POLL
194# ifdef _WIN32 289# ifdef _WIN32
195# define EV_USE_POLL 0 290# define EV_USE_POLL 0
196# else 291# else
197# define EV_USE_POLL 1 292# define EV_USE_POLL EV_FEATURE_BACKENDS
198# endif 293# endif
199#endif 294#endif
200 295
201#ifndef EV_USE_EPOLL 296#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 297# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1 298# define EV_USE_EPOLL EV_FEATURE_BACKENDS
204# else 299# else
205# define EV_USE_EPOLL 0 300# define EV_USE_EPOLL 0
206# endif 301# endif
207#endif 302#endif
208 303
214# define EV_USE_PORT 0 309# define EV_USE_PORT 0
215#endif 310#endif
216 311
217#ifndef EV_USE_INOTIFY 312#ifndef EV_USE_INOTIFY
218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 313# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
219# define EV_USE_INOTIFY 1 314# define EV_USE_INOTIFY EV_FEATURE_OS
220# else 315# else
221# define EV_USE_INOTIFY 0 316# define EV_USE_INOTIFY 0
222# endif 317# endif
223#endif 318#endif
224 319
225#ifndef EV_PID_HASHSIZE 320#ifndef EV_PID_HASHSIZE
226# if EV_MINIMAL 321# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
227# define EV_PID_HASHSIZE 1
228# else
229# define EV_PID_HASHSIZE 16
230# endif
231#endif 322#endif
232 323
233#ifndef EV_INOTIFY_HASHSIZE 324#ifndef EV_INOTIFY_HASHSIZE
234# if EV_MINIMAL 325# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
235# define EV_INOTIFY_HASHSIZE 1
236# else
237# define EV_INOTIFY_HASHSIZE 16
238# endif
239#endif 326#endif
240 327
241#ifndef EV_USE_EVENTFD 328#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 329# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1 330# define EV_USE_EVENTFD EV_FEATURE_OS
244# else 331# else
245# define EV_USE_EVENTFD 0 332# define EV_USE_EVENTFD 0
333# endif
334#endif
335
336#ifndef EV_USE_SIGNALFD
337# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
338# define EV_USE_SIGNALFD EV_FEATURE_OS
339# else
340# define EV_USE_SIGNALFD 0
246# endif 341# endif
247#endif 342#endif
248 343
249#if 0 /* debugging */ 344#if 0 /* debugging */
250# define EV_VERIFY 3 345# define EV_VERIFY 3
251# define EV_USE_4HEAP 1 346# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1 347# define EV_HEAP_CACHE_AT 1
253#endif 348#endif
254 349
255#ifndef EV_VERIFY 350#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL 351# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
257#endif 352#endif
258 353
259#ifndef EV_USE_4HEAP 354#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL 355# define EV_USE_4HEAP EV_FEATURE_DATA
261#endif 356#endif
262 357
263#ifndef EV_HEAP_CACHE_AT 358#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL 359# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
360#endif
361
362/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
363/* which makes programs even slower. might work on other unices, too. */
364#if EV_USE_CLOCK_SYSCALL
365# include <sys/syscall.h>
366# ifdef SYS_clock_gettime
367# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
368# undef EV_USE_MONOTONIC
369# define EV_USE_MONOTONIC 1
370# else
371# undef EV_USE_CLOCK_SYSCALL
372# define EV_USE_CLOCK_SYSCALL 0
373# endif
265#endif 374#endif
266 375
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 376/* this block fixes any misconfiguration where we know we run into trouble otherwise */
377
378#ifdef _AIX
379/* AIX has a completely broken poll.h header */
380# undef EV_USE_POLL
381# define EV_USE_POLL 0
382#endif
268 383
269#ifndef CLOCK_MONOTONIC 384#ifndef CLOCK_MONOTONIC
270# undef EV_USE_MONOTONIC 385# undef EV_USE_MONOTONIC
271# define EV_USE_MONOTONIC 0 386# define EV_USE_MONOTONIC 0
272#endif 387#endif
280# undef EV_USE_INOTIFY 395# undef EV_USE_INOTIFY
281# define EV_USE_INOTIFY 0 396# define EV_USE_INOTIFY 0
282#endif 397#endif
283 398
284#if !EV_USE_NANOSLEEP 399#if !EV_USE_NANOSLEEP
285# ifndef _WIN32 400/* hp-ux has it in sys/time.h, which we unconditionally include above */
401# if !defined _WIN32 && !defined __hpux
286# include <sys/select.h> 402# include <sys/select.h>
287# endif 403# endif
288#endif 404#endif
289 405
290#if EV_USE_INOTIFY 406#if EV_USE_INOTIFY
407# include <sys/statfs.h>
291# include <sys/inotify.h> 408# include <sys/inotify.h>
409/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
410# ifndef IN_DONT_FOLLOW
411# undef EV_USE_INOTIFY
412# define EV_USE_INOTIFY 0
292#endif 413# endif
293
294#if EV_SELECT_IS_WINSOCKET
295# include <winsock.h>
296#endif 414#endif
297 415
298#if EV_USE_EVENTFD 416#if EV_USE_EVENTFD
299/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
300# include <stdint.h> 418# include <stdint.h>
301# ifdef __cplusplus 419# ifndef EFD_NONBLOCK
302extern "C" { 420# define EFD_NONBLOCK O_NONBLOCK
303# endif 421# endif
304int eventfd (unsigned int initval, int flags); 422# ifndef EFD_CLOEXEC
305# ifdef __cplusplus 423# ifdef O_CLOEXEC
306} 424# define EFD_CLOEXEC O_CLOEXEC
425# else
426# define EFD_CLOEXEC 02000000
427# endif
307# endif 428# endif
429EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
430#endif
431
432#if EV_USE_SIGNALFD
433/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
434# include <stdint.h>
435# ifndef SFD_NONBLOCK
436# define SFD_NONBLOCK O_NONBLOCK
437# endif
438# ifndef SFD_CLOEXEC
439# ifdef O_CLOEXEC
440# define SFD_CLOEXEC O_CLOEXEC
441# else
442# define SFD_CLOEXEC 02000000
443# endif
444# endif
445EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
446
447struct signalfd_siginfo
448{
449 uint32_t ssi_signo;
450 char pad[128 - sizeof (uint32_t)];
451};
308#endif 452#endif
309 453
310/**/ 454/**/
311 455
312#if EV_VERIFY >= 3 456#if EV_VERIFY >= 3
313# define EV_FREQUENT_CHECK ev_loop_verify (EV_A) 457# define EV_FREQUENT_CHECK ev_verify (EV_A)
314#else 458#else
315# define EV_FREQUENT_CHECK do { } while (0) 459# define EV_FREQUENT_CHECK do { } while (0)
316#endif 460#endif
317 461
318/* 462/*
319 * This is used to avoid floating point rounding problems. 463 * This is used to work around floating point rounding problems.
320 * It is added to ev_rt_now when scheduling periodics
321 * to ensure progress, time-wise, even when rounding
322 * errors are against us.
323 * This value is good at least till the year 4000. 464 * This value is good at least till the year 4000.
324 * Better solutions welcome.
325 */ 465 */
326#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 466#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
467/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
327 468
328#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 469#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
329#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 470#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
330/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
331 471
472#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
473#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
474
475/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
476/* ECB.H BEGIN */
477/*
478 * libecb - http://software.schmorp.de/pkg/libecb
479 *
480 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
481 * Copyright (©) 2011 Emanuele Giaquinta
482 * All rights reserved.
483 *
484 * Redistribution and use in source and binary forms, with or without modifica-
485 * tion, are permitted provided that the following conditions are met:
486 *
487 * 1. Redistributions of source code must retain the above copyright notice,
488 * this list of conditions and the following disclaimer.
489 *
490 * 2. Redistributions in binary form must reproduce the above copyright
491 * notice, this list of conditions and the following disclaimer in the
492 * documentation and/or other materials provided with the distribution.
493 *
494 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
495 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
496 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
497 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
498 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
499 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
500 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
501 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
502 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
503 * OF THE POSSIBILITY OF SUCH DAMAGE.
504 */
505
506#ifndef ECB_H
507#define ECB_H
508
509/* 16 bits major, 16 bits minor */
510#define ECB_VERSION 0x00010001
511
512#ifdef _WIN32
513 typedef signed char int8_t;
514 typedef unsigned char uint8_t;
515 typedef signed short int16_t;
516 typedef unsigned short uint16_t;
517 typedef signed int int32_t;
518 typedef unsigned int uint32_t;
332#if __GNUC__ >= 4 519 #if __GNUC__
333# define expect(expr,value) __builtin_expect ((expr),(value)) 520 typedef signed long long int64_t;
334# define noinline __attribute__ ((noinline)) 521 typedef unsigned long long uint64_t;
522 #else /* _MSC_VER || __BORLANDC__ */
523 typedef signed __int64 int64_t;
524 typedef unsigned __int64 uint64_t;
525 #endif
526 #ifdef _WIN64
527 #define ECB_PTRSIZE 8
528 typedef uint64_t uintptr_t;
529 typedef int64_t intptr_t;
530 #else
531 #define ECB_PTRSIZE 4
532 typedef uint32_t uintptr_t;
533 typedef int32_t intptr_t;
534 #endif
535 typedef intptr_t ptrdiff_t;
335#else 536#else
336# define expect(expr,value) (expr) 537 #include <inttypes.h>
337# define noinline 538 #if UINTMAX_MAX > 0xffffffffU
338# if __STDC_VERSION__ < 199901L && __GNUC__ < 2 539 #define ECB_PTRSIZE 8
339# define inline 540 #else
541 #define ECB_PTRSIZE 4
542 #endif
340# endif 543#endif
544
545/* many compilers define _GNUC_ to some versions but then only implement
546 * what their idiot authors think are the "more important" extensions,
547 * causing enormous grief in return for some better fake benchmark numbers.
548 * or so.
549 * we try to detect these and simply assume they are not gcc - if they have
550 * an issue with that they should have done it right in the first place.
551 */
552#ifndef ECB_GCC_VERSION
553 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
554 #define ECB_GCC_VERSION(major,minor) 0
555 #else
556 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
341#endif 557 #endif
558#endif
342 559
560#define ECB_C (__STDC__+0) /* this assumes that __STDC__ is either empty or a number */
561#define ECB_C99 (__STDC_VERSION__ >= 199901L)
562#define ECB_C11 (__STDC_VERSION__ >= 201112L)
563#define ECB_CPP (__cplusplus+0)
564#define ECB_CPP98 (__cplusplus >= 199711L)
565#define ECB_CPP11 (__cplusplus >= 201103L)
566
567/*****************************************************************************/
568
569/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
570/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
571
572#if ECB_NO_THREADS
573 #define ECB_NO_SMP 1
574#endif
575
576#if ECB_NO_SMP
577 #define ECB_MEMORY_FENCE do { } while (0)
578#endif
579
580#ifndef ECB_MEMORY_FENCE
581 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
582 #if __i386 || __i386__
583 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
584 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
585 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
586 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
587 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
588 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
589 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
590 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
591 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
592 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
593 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
594 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
595 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
596 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
597 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
598 #elif __sparc || __sparc__
599 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
600 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
601 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
602 #elif defined __s390__ || defined __s390x__
603 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
604 #elif defined __mips__
605 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
606 #elif defined __alpha__
607 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
608 #elif defined __hppa__
609 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
610 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
611 #elif defined __ia64__
612 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
613 #endif
614 #endif
615#endif
616
617#ifndef ECB_MEMORY_FENCE
618 #if ECB_GCC_VERSION(4,7)
619 /* see comment below about the C11 memory model. in short - avoid */
620 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
621 #elif defined __clang && __has_feature (cxx_atomic)
622 /* see above */
623 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
624 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
625 #define ECB_MEMORY_FENCE __sync_synchronize ()
626 #elif _MSC_VER >= 1400 /* VC++ 2005 */
627 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
628 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
629 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
630 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
631 #elif defined _WIN32
632 #include <WinNT.h>
633 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
634 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
635 #include <mbarrier.h>
636 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
637 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
638 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
639 #elif __xlC__
640 #define ECB_MEMORY_FENCE __sync ()
641 #endif
642#endif
643
644#ifndef ECB_MEMORY_FENCE
645 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
646 /* we assume that these memory fences work on all variables/all memory accesses, */
647 /* not just C11 atomics and atomic accesses */
648 #include <stdatomic.h>
649 /* unfortunately, the C11 memory model seems to be very limited, and unable to express */
650 /* simple barrier semantics. That means we need to take out thor's hammer. */
651 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
652 #endif
653#endif
654
655#ifndef ECB_MEMORY_FENCE
656 #if !ECB_AVOID_PTHREADS
657 /*
658 * if you get undefined symbol references to pthread_mutex_lock,
659 * or failure to find pthread.h, then you should implement
660 * the ECB_MEMORY_FENCE operations for your cpu/compiler
661 * OR provide pthread.h and link against the posix thread library
662 * of your system.
663 */
664 #include <pthread.h>
665 #define ECB_NEEDS_PTHREADS 1
666 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
667
668 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
669 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
670 #endif
671#endif
672
673#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
674 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
675#endif
676
677#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
678 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
679#endif
680
681/*****************************************************************************/
682
683#if __cplusplus
684 #define ecb_inline static inline
685#elif ECB_GCC_VERSION(2,5)
686 #define ecb_inline static __inline__
687#elif ECB_C99
688 #define ecb_inline static inline
689#else
690 #define ecb_inline static
691#endif
692
693#if ECB_GCC_VERSION(3,3)
694 #define ecb_restrict __restrict__
695#elif ECB_C99
696 #define ecb_restrict restrict
697#else
698 #define ecb_restrict
699#endif
700
701typedef int ecb_bool;
702
703#define ECB_CONCAT_(a, b) a ## b
704#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
705#define ECB_STRINGIFY_(a) # a
706#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
707
708#define ecb_function_ ecb_inline
709
710#if ECB_GCC_VERSION(3,1)
711 #define ecb_attribute(attrlist) __attribute__(attrlist)
712 #define ecb_is_constant(expr) __builtin_constant_p (expr)
713 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
714 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
715#else
716 #define ecb_attribute(attrlist)
717 #define ecb_is_constant(expr) 0
718 #define ecb_expect(expr,value) (expr)
719 #define ecb_prefetch(addr,rw,locality)
720#endif
721
722/* no emulation for ecb_decltype */
723#if ECB_GCC_VERSION(4,5)
724 #define ecb_decltype(x) __decltype(x)
725#elif ECB_GCC_VERSION(3,0)
726 #define ecb_decltype(x) __typeof(x)
727#endif
728
729#define ecb_noinline ecb_attribute ((__noinline__))
730#define ecb_unused ecb_attribute ((__unused__))
731#define ecb_const ecb_attribute ((__const__))
732#define ecb_pure ecb_attribute ((__pure__))
733
734#if ECB_C11
735 #define ecb_noreturn _Noreturn
736#else
737 #define ecb_noreturn ecb_attribute ((__noreturn__))
738#endif
739
740#if ECB_GCC_VERSION(4,3)
741 #define ecb_artificial ecb_attribute ((__artificial__))
742 #define ecb_hot ecb_attribute ((__hot__))
743 #define ecb_cold ecb_attribute ((__cold__))
744#else
745 #define ecb_artificial
746 #define ecb_hot
747 #define ecb_cold
748#endif
749
750/* put around conditional expressions if you are very sure that the */
751/* expression is mostly true or mostly false. note that these return */
752/* booleans, not the expression. */
343#define expect_false(expr) expect ((expr) != 0, 0) 753#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
344#define expect_true(expr) expect ((expr) != 0, 1) 754#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
755/* for compatibility to the rest of the world */
756#define ecb_likely(expr) ecb_expect_true (expr)
757#define ecb_unlikely(expr) ecb_expect_false (expr)
758
759/* count trailing zero bits and count # of one bits */
760#if ECB_GCC_VERSION(3,4)
761 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
762 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
763 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
764 #define ecb_ctz32(x) __builtin_ctz (x)
765 #define ecb_ctz64(x) __builtin_ctzll (x)
766 #define ecb_popcount32(x) __builtin_popcount (x)
767 /* no popcountll */
768#else
769 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
770 ecb_function_ int
771 ecb_ctz32 (uint32_t x)
772 {
773 int r = 0;
774
775 x &= ~x + 1; /* this isolates the lowest bit */
776
777#if ECB_branchless_on_i386
778 r += !!(x & 0xaaaaaaaa) << 0;
779 r += !!(x & 0xcccccccc) << 1;
780 r += !!(x & 0xf0f0f0f0) << 2;
781 r += !!(x & 0xff00ff00) << 3;
782 r += !!(x & 0xffff0000) << 4;
783#else
784 if (x & 0xaaaaaaaa) r += 1;
785 if (x & 0xcccccccc) r += 2;
786 if (x & 0xf0f0f0f0) r += 4;
787 if (x & 0xff00ff00) r += 8;
788 if (x & 0xffff0000) r += 16;
789#endif
790
791 return r;
792 }
793
794 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
795 ecb_function_ int
796 ecb_ctz64 (uint64_t x)
797 {
798 int shift = x & 0xffffffffU ? 0 : 32;
799 return ecb_ctz32 (x >> shift) + shift;
800 }
801
802 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
803 ecb_function_ int
804 ecb_popcount32 (uint32_t x)
805 {
806 x -= (x >> 1) & 0x55555555;
807 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
808 x = ((x >> 4) + x) & 0x0f0f0f0f;
809 x *= 0x01010101;
810
811 return x >> 24;
812 }
813
814 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
815 ecb_function_ int ecb_ld32 (uint32_t x)
816 {
817 int r = 0;
818
819 if (x >> 16) { x >>= 16; r += 16; }
820 if (x >> 8) { x >>= 8; r += 8; }
821 if (x >> 4) { x >>= 4; r += 4; }
822 if (x >> 2) { x >>= 2; r += 2; }
823 if (x >> 1) { r += 1; }
824
825 return r;
826 }
827
828 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
829 ecb_function_ int ecb_ld64 (uint64_t x)
830 {
831 int r = 0;
832
833 if (x >> 32) { x >>= 32; r += 32; }
834
835 return r + ecb_ld32 (x);
836 }
837#endif
838
839ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
840ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
841ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
842ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
843
844ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
845ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
846{
847 return ( (x * 0x0802U & 0x22110U)
848 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
849}
850
851ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
852ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
853{
854 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
855 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
856 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
857 x = ( x >> 8 ) | ( x << 8);
858
859 return x;
860}
861
862ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
863ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
864{
865 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
866 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
867 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
868 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
869 x = ( x >> 16 ) | ( x << 16);
870
871 return x;
872}
873
874/* popcount64 is only available on 64 bit cpus as gcc builtin */
875/* so for this version we are lazy */
876ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
877ecb_function_ int
878ecb_popcount64 (uint64_t x)
879{
880 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
881}
882
883ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
884ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
885ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
886ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
887ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
888ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
889ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
890ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
891
892ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
893ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
894ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
895ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
896ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
897ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
898ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
899ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
900
901#if ECB_GCC_VERSION(4,3)
902 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
903 #define ecb_bswap32(x) __builtin_bswap32 (x)
904 #define ecb_bswap64(x) __builtin_bswap64 (x)
905#else
906 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
907 ecb_function_ uint16_t
908 ecb_bswap16 (uint16_t x)
909 {
910 return ecb_rotl16 (x, 8);
911 }
912
913 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
914 ecb_function_ uint32_t
915 ecb_bswap32 (uint32_t x)
916 {
917 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
918 }
919
920 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
921 ecb_function_ uint64_t
922 ecb_bswap64 (uint64_t x)
923 {
924 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
925 }
926#endif
927
928#if ECB_GCC_VERSION(4,5)
929 #define ecb_unreachable() __builtin_unreachable ()
930#else
931 /* this seems to work fine, but gcc always emits a warning for it :/ */
932 ecb_inline void ecb_unreachable (void) ecb_noreturn;
933 ecb_inline void ecb_unreachable (void) { }
934#endif
935
936/* try to tell the compiler that some condition is definitely true */
937#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
938
939ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
940ecb_inline unsigned char
941ecb_byteorder_helper (void)
942{
943 const uint32_t u = 0x11223344;
944 return *(unsigned char *)&u;
945}
946
947ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
948ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
949ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
950ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
951
952#if ECB_GCC_VERSION(3,0) || ECB_C99
953 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
954#else
955 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
956#endif
957
958#if __cplusplus
959 template<typename T>
960 static inline T ecb_div_rd (T val, T div)
961 {
962 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
963 }
964 template<typename T>
965 static inline T ecb_div_ru (T val, T div)
966 {
967 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
968 }
969#else
970 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
971 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
972#endif
973
974#if ecb_cplusplus_does_not_suck
975 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
976 template<typename T, int N>
977 static inline int ecb_array_length (const T (&arr)[N])
978 {
979 return N;
980 }
981#else
982 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
983#endif
984
985#endif
986
987/* ECB.H END */
988
989#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
990/* if your architecture doesn't need memory fences, e.g. because it is
991 * single-cpu/core, or if you use libev in a project that doesn't use libev
992 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
993 * libev, in which cases the memory fences become nops.
994 * alternatively, you can remove this #error and link against libpthread,
995 * which will then provide the memory fences.
996 */
997# error "memory fences not defined for your architecture, please report"
998#endif
999
1000#ifndef ECB_MEMORY_FENCE
1001# define ECB_MEMORY_FENCE do { } while (0)
1002# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1003# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1004#endif
1005
1006#define expect_false(cond) ecb_expect_false (cond)
1007#define expect_true(cond) ecb_expect_true (cond)
1008#define noinline ecb_noinline
1009
345#define inline_size static inline 1010#define inline_size ecb_inline
346 1011
347#if EV_MINIMAL 1012#if EV_FEATURE_CODE
1013# define inline_speed ecb_inline
1014#else
348# define inline_speed static noinline 1015# define inline_speed static noinline
1016#endif
1017
1018#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1019
1020#if EV_MINPRI == EV_MAXPRI
1021# define ABSPRI(w) (((W)w), 0)
349#else 1022#else
350# define inline_speed static inline
351#endif
352
353#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
354#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1023# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1024#endif
355 1025
356#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1026#define EMPTY /* required for microsofts broken pseudo-c compiler */
357#define EMPTY2(a,b) /* used to suppress some warnings */ 1027#define EMPTY2(a,b) /* used to suppress some warnings */
358 1028
359typedef ev_watcher *W; 1029typedef ev_watcher *W;
361typedef ev_watcher_time *WT; 1031typedef ev_watcher_time *WT;
362 1032
363#define ev_active(w) ((W)(w))->active 1033#define ev_active(w) ((W)(w))->active
364#define ev_at(w) ((WT)(w))->at 1034#define ev_at(w) ((WT)(w))->at
365 1035
1036#if EV_USE_REALTIME
1037/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1038/* giving it a reasonably high chance of working on typical architectures */
1039static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1040#endif
1041
366#if EV_USE_MONOTONIC 1042#if EV_USE_MONOTONIC
367/* sig_atomic_t is used to avoid per-thread variables or locking but still */
368/* giving it a reasonably high chance of working on typical architetcures */
369static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1043static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1044#endif
1045
1046#ifndef EV_FD_TO_WIN32_HANDLE
1047# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1048#endif
1049#ifndef EV_WIN32_HANDLE_TO_FD
1050# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1051#endif
1052#ifndef EV_WIN32_CLOSE_FD
1053# define EV_WIN32_CLOSE_FD(fd) close (fd)
370#endif 1054#endif
371 1055
372#ifdef _WIN32 1056#ifdef _WIN32
373# include "ev_win32.c" 1057# include "ev_win32.c"
374#endif 1058#endif
375 1059
376/*****************************************************************************/ 1060/*****************************************************************************/
377 1061
1062/* define a suitable floor function (only used by periodics atm) */
1063
1064#if EV_USE_FLOOR
1065# include <math.h>
1066# define ev_floor(v) floor (v)
1067#else
1068
1069#include <float.h>
1070
1071/* a floor() replacement function, should be independent of ev_tstamp type */
1072static ev_tstamp noinline
1073ev_floor (ev_tstamp v)
1074{
1075 /* the choice of shift factor is not terribly important */
1076#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1077 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1078#else
1079 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1080#endif
1081
1082 /* argument too large for an unsigned long? */
1083 if (expect_false (v >= shift))
1084 {
1085 ev_tstamp f;
1086
1087 if (v == v - 1.)
1088 return v; /* very large number */
1089
1090 f = shift * ev_floor (v * (1. / shift));
1091 return f + ev_floor (v - f);
1092 }
1093
1094 /* special treatment for negative args? */
1095 if (expect_false (v < 0.))
1096 {
1097 ev_tstamp f = -ev_floor (-v);
1098
1099 return f - (f == v ? 0 : 1);
1100 }
1101
1102 /* fits into an unsigned long */
1103 return (unsigned long)v;
1104}
1105
1106#endif
1107
1108/*****************************************************************************/
1109
1110#ifdef __linux
1111# include <sys/utsname.h>
1112#endif
1113
1114static unsigned int noinline ecb_cold
1115ev_linux_version (void)
1116{
1117#ifdef __linux
1118 unsigned int v = 0;
1119 struct utsname buf;
1120 int i;
1121 char *p = buf.release;
1122
1123 if (uname (&buf))
1124 return 0;
1125
1126 for (i = 3+1; --i; )
1127 {
1128 unsigned int c = 0;
1129
1130 for (;;)
1131 {
1132 if (*p >= '0' && *p <= '9')
1133 c = c * 10 + *p++ - '0';
1134 else
1135 {
1136 p += *p == '.';
1137 break;
1138 }
1139 }
1140
1141 v = (v << 8) | c;
1142 }
1143
1144 return v;
1145#else
1146 return 0;
1147#endif
1148}
1149
1150/*****************************************************************************/
1151
1152#if EV_AVOID_STDIO
1153static void noinline ecb_cold
1154ev_printerr (const char *msg)
1155{
1156 write (STDERR_FILENO, msg, strlen (msg));
1157}
1158#endif
1159
378static void (*syserr_cb)(const char *msg); 1160static void (*syserr_cb)(const char *msg) EV_THROW;
379 1161
380void 1162void ecb_cold
381ev_set_syserr_cb (void (*cb)(const char *msg)) 1163ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
382{ 1164{
383 syserr_cb = cb; 1165 syserr_cb = cb;
384} 1166}
385 1167
386static void noinline 1168static void noinline ecb_cold
387syserr (const char *msg) 1169ev_syserr (const char *msg)
388{ 1170{
389 if (!msg) 1171 if (!msg)
390 msg = "(libev) system error"; 1172 msg = "(libev) system error";
391 1173
392 if (syserr_cb) 1174 if (syserr_cb)
393 syserr_cb (msg); 1175 syserr_cb (msg);
394 else 1176 else
395 { 1177 {
1178#if EV_AVOID_STDIO
1179 ev_printerr (msg);
1180 ev_printerr (": ");
1181 ev_printerr (strerror (errno));
1182 ev_printerr ("\n");
1183#else
396 perror (msg); 1184 perror (msg);
1185#endif
397 abort (); 1186 abort ();
398 } 1187 }
399} 1188}
400 1189
401static void * 1190static void *
402ev_realloc_emul (void *ptr, long size) 1191ev_realloc_emul (void *ptr, long size) EV_THROW
403{ 1192{
1193#if __GLIBC__
1194 return realloc (ptr, size);
1195#else
404 /* some systems, notably openbsd and darwin, fail to properly 1196 /* some systems, notably openbsd and darwin, fail to properly
405 * implement realloc (x, 0) (as required by both ansi c-98 and 1197 * implement realloc (x, 0) (as required by both ansi c-89 and
406 * the single unix specification, so work around them here. 1198 * the single unix specification, so work around them here.
407 */ 1199 */
408 1200
409 if (size) 1201 if (size)
410 return realloc (ptr, size); 1202 return realloc (ptr, size);
411 1203
412 free (ptr); 1204 free (ptr);
413 return 0; 1205 return 0;
1206#endif
414} 1207}
415 1208
416static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 1209static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
417 1210
418void 1211void ecb_cold
419ev_set_allocator (void *(*cb)(void *ptr, long size)) 1212ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
420{ 1213{
421 alloc = cb; 1214 alloc = cb;
422} 1215}
423 1216
424inline_speed void * 1217inline_speed void *
426{ 1219{
427 ptr = alloc (ptr, size); 1220 ptr = alloc (ptr, size);
428 1221
429 if (!ptr && size) 1222 if (!ptr && size)
430 { 1223 {
1224#if EV_AVOID_STDIO
1225 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1226#else
431 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1227 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1228#endif
432 abort (); 1229 abort ();
433 } 1230 }
434 1231
435 return ptr; 1232 return ptr;
436} 1233}
438#define ev_malloc(size) ev_realloc (0, (size)) 1235#define ev_malloc(size) ev_realloc (0, (size))
439#define ev_free(ptr) ev_realloc ((ptr), 0) 1236#define ev_free(ptr) ev_realloc ((ptr), 0)
440 1237
441/*****************************************************************************/ 1238/*****************************************************************************/
442 1239
1240/* set in reify when reification needed */
1241#define EV_ANFD_REIFY 1
1242
1243/* file descriptor info structure */
443typedef struct 1244typedef struct
444{ 1245{
445 WL head; 1246 WL head;
446 unsigned char events; 1247 unsigned char events; /* the events watched for */
1248 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1249 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
447 unsigned char reify; 1250 unsigned char unused;
1251#if EV_USE_EPOLL
1252 unsigned int egen; /* generation counter to counter epoll bugs */
1253#endif
448#if EV_SELECT_IS_WINSOCKET 1254#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
449 SOCKET handle; 1255 SOCKET handle;
450#endif 1256#endif
1257#if EV_USE_IOCP
1258 OVERLAPPED or, ow;
1259#endif
451} ANFD; 1260} ANFD;
452 1261
1262/* stores the pending event set for a given watcher */
453typedef struct 1263typedef struct
454{ 1264{
455 W w; 1265 W w;
456 int events; 1266 int events; /* the pending event set for the given watcher */
457} ANPENDING; 1267} ANPENDING;
458 1268
459#if EV_USE_INOTIFY 1269#if EV_USE_INOTIFY
460/* hash table entry per inotify-id */ 1270/* hash table entry per inotify-id */
461typedef struct 1271typedef struct
464} ANFS; 1274} ANFS;
465#endif 1275#endif
466 1276
467/* Heap Entry */ 1277/* Heap Entry */
468#if EV_HEAP_CACHE_AT 1278#if EV_HEAP_CACHE_AT
1279 /* a heap element */
469 typedef struct { 1280 typedef struct {
470 ev_tstamp at; 1281 ev_tstamp at;
471 WT w; 1282 WT w;
472 } ANHE; 1283 } ANHE;
473 1284
474 #define ANHE_w(he) (he).w /* access watcher, read-write */ 1285 #define ANHE_w(he) (he).w /* access watcher, read-write */
475 #define ANHE_at(he) (he).at /* access cached at, read-only */ 1286 #define ANHE_at(he) (he).at /* access cached at, read-only */
476 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 1287 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
477#else 1288#else
1289 /* a heap element */
478 typedef WT ANHE; 1290 typedef WT ANHE;
479 1291
480 #define ANHE_w(he) (he) 1292 #define ANHE_w(he) (he)
481 #define ANHE_at(he) (he)->at 1293 #define ANHE_at(he) (he)->at
482 #define ANHE_at_cache(he) 1294 #define ANHE_at_cache(he)
493 #undef VAR 1305 #undef VAR
494 }; 1306 };
495 #include "ev_wrap.h" 1307 #include "ev_wrap.h"
496 1308
497 static struct ev_loop default_loop_struct; 1309 static struct ev_loop default_loop_struct;
498 struct ev_loop *ev_default_loop_ptr; 1310 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
499 1311
500#else 1312#else
501 1313
502 ev_tstamp ev_rt_now; 1314 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
503 #define VAR(name,decl) static decl; 1315 #define VAR(name,decl) static decl;
504 #include "ev_vars.h" 1316 #include "ev_vars.h"
505 #undef VAR 1317 #undef VAR
506 1318
507 static int ev_default_loop_ptr; 1319 static int ev_default_loop_ptr;
508 1320
509#endif 1321#endif
510 1322
1323#if EV_FEATURE_API
1324# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1325# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1326# define EV_INVOKE_PENDING invoke_cb (EV_A)
1327#else
1328# define EV_RELEASE_CB (void)0
1329# define EV_ACQUIRE_CB (void)0
1330# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1331#endif
1332
1333#define EVBREAK_RECURSE 0x80
1334
511/*****************************************************************************/ 1335/*****************************************************************************/
512 1336
1337#ifndef EV_HAVE_EV_TIME
513ev_tstamp 1338ev_tstamp
514ev_time (void) 1339ev_time (void) EV_THROW
515{ 1340{
516#if EV_USE_REALTIME 1341#if EV_USE_REALTIME
1342 if (expect_true (have_realtime))
1343 {
517 struct timespec ts; 1344 struct timespec ts;
518 clock_gettime (CLOCK_REALTIME, &ts); 1345 clock_gettime (CLOCK_REALTIME, &ts);
519 return ts.tv_sec + ts.tv_nsec * 1e-9; 1346 return ts.tv_sec + ts.tv_nsec * 1e-9;
520#else 1347 }
1348#endif
1349
521 struct timeval tv; 1350 struct timeval tv;
522 gettimeofday (&tv, 0); 1351 gettimeofday (&tv, 0);
523 return tv.tv_sec + tv.tv_usec * 1e-6; 1352 return tv.tv_sec + tv.tv_usec * 1e-6;
524#endif
525} 1353}
1354#endif
526 1355
527ev_tstamp inline_size 1356inline_size ev_tstamp
528get_clock (void) 1357get_clock (void)
529{ 1358{
530#if EV_USE_MONOTONIC 1359#if EV_USE_MONOTONIC
531 if (expect_true (have_monotonic)) 1360 if (expect_true (have_monotonic))
532 { 1361 {
539 return ev_time (); 1368 return ev_time ();
540} 1369}
541 1370
542#if EV_MULTIPLICITY 1371#if EV_MULTIPLICITY
543ev_tstamp 1372ev_tstamp
544ev_now (EV_P) 1373ev_now (EV_P) EV_THROW
545{ 1374{
546 return ev_rt_now; 1375 return ev_rt_now;
547} 1376}
548#endif 1377#endif
549 1378
550void 1379void
551ev_sleep (ev_tstamp delay) 1380ev_sleep (ev_tstamp delay) EV_THROW
552{ 1381{
553 if (delay > 0.) 1382 if (delay > 0.)
554 { 1383 {
555#if EV_USE_NANOSLEEP 1384#if EV_USE_NANOSLEEP
556 struct timespec ts; 1385 struct timespec ts;
557 1386
558 ts.tv_sec = (time_t)delay; 1387 EV_TS_SET (ts, delay);
559 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
560
561 nanosleep (&ts, 0); 1388 nanosleep (&ts, 0);
562#elif defined(_WIN32) 1389#elif defined _WIN32
563 Sleep ((unsigned long)(delay * 1e3)); 1390 Sleep ((unsigned long)(delay * 1e3));
564#else 1391#else
565 struct timeval tv; 1392 struct timeval tv;
566 1393
567 tv.tv_sec = (time_t)delay; 1394 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
568 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 1395 /* something not guaranteed by newer posix versions, but guaranteed */
569 1396 /* by older ones */
1397 EV_TV_SET (tv, delay);
570 select (0, 0, 0, 0, &tv); 1398 select (0, 0, 0, 0, &tv);
571#endif 1399#endif
572 } 1400 }
573} 1401}
574 1402
575/*****************************************************************************/ 1403/*****************************************************************************/
576 1404
577#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 1405#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
578 1406
579int inline_size 1407/* find a suitable new size for the given array, */
1408/* hopefully by rounding to a nice-to-malloc size */
1409inline_size int
580array_nextsize (int elem, int cur, int cnt) 1410array_nextsize (int elem, int cur, int cnt)
581{ 1411{
582 int ncur = cur + 1; 1412 int ncur = cur + 1;
583 1413
584 do 1414 do
585 ncur <<= 1; 1415 ncur <<= 1;
586 while (cnt > ncur); 1416 while (cnt > ncur);
587 1417
588 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */ 1418 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
589 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4) 1419 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
590 { 1420 {
591 ncur *= elem; 1421 ncur *= elem;
592 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1); 1422 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
593 ncur = ncur - sizeof (void *) * 4; 1423 ncur = ncur - sizeof (void *) * 4;
595 } 1425 }
596 1426
597 return ncur; 1427 return ncur;
598} 1428}
599 1429
600static noinline void * 1430static void * noinline ecb_cold
601array_realloc (int elem, void *base, int *cur, int cnt) 1431array_realloc (int elem, void *base, int *cur, int cnt)
602{ 1432{
603 *cur = array_nextsize (elem, *cur, cnt); 1433 *cur = array_nextsize (elem, *cur, cnt);
604 return ev_realloc (base, elem * *cur); 1434 return ev_realloc (base, elem * *cur);
605} 1435}
1436
1437#define array_init_zero(base,count) \
1438 memset ((void *)(base), 0, sizeof (*(base)) * (count))
606 1439
607#define array_needsize(type,base,cur,cnt,init) \ 1440#define array_needsize(type,base,cur,cnt,init) \
608 if (expect_false ((cnt) > (cur))) \ 1441 if (expect_false ((cnt) > (cur))) \
609 { \ 1442 { \
610 int ocur_ = (cur); \ 1443 int ecb_unused ocur_ = (cur); \
611 (base) = (type *)array_realloc \ 1444 (base) = (type *)array_realloc \
612 (sizeof (type), (base), &(cur), (cnt)); \ 1445 (sizeof (type), (base), &(cur), (cnt)); \
613 init ((base) + (ocur_), (cur) - ocur_); \ 1446 init ((base) + (ocur_), (cur) - ocur_); \
614 } 1447 }
615 1448
622 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1455 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
623 } 1456 }
624#endif 1457#endif
625 1458
626#define array_free(stem, idx) \ 1459#define array_free(stem, idx) \
627 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1460 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
628 1461
629/*****************************************************************************/ 1462/*****************************************************************************/
630 1463
1464/* dummy callback for pending events */
1465static void noinline
1466pendingcb (EV_P_ ev_prepare *w, int revents)
1467{
1468}
1469
631void noinline 1470void noinline
632ev_feed_event (EV_P_ void *w, int revents) 1471ev_feed_event (EV_P_ void *w, int revents) EV_THROW
633{ 1472{
634 W w_ = (W)w; 1473 W w_ = (W)w;
635 int pri = ABSPRI (w_); 1474 int pri = ABSPRI (w_);
636 1475
637 if (expect_false (w_->pending)) 1476 if (expect_false (w_->pending))
641 w_->pending = ++pendingcnt [pri]; 1480 w_->pending = ++pendingcnt [pri];
642 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 1481 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
643 pendings [pri][w_->pending - 1].w = w_; 1482 pendings [pri][w_->pending - 1].w = w_;
644 pendings [pri][w_->pending - 1].events = revents; 1483 pendings [pri][w_->pending - 1].events = revents;
645 } 1484 }
646}
647 1485
648void inline_speed 1486 pendingpri = NUMPRI - 1;
1487}
1488
1489inline_speed void
1490feed_reverse (EV_P_ W w)
1491{
1492 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1493 rfeeds [rfeedcnt++] = w;
1494}
1495
1496inline_size void
1497feed_reverse_done (EV_P_ int revents)
1498{
1499 do
1500 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1501 while (rfeedcnt);
1502}
1503
1504inline_speed void
649queue_events (EV_P_ W *events, int eventcnt, int type) 1505queue_events (EV_P_ W *events, int eventcnt, int type)
650{ 1506{
651 int i; 1507 int i;
652 1508
653 for (i = 0; i < eventcnt; ++i) 1509 for (i = 0; i < eventcnt; ++i)
654 ev_feed_event (EV_A_ events [i], type); 1510 ev_feed_event (EV_A_ events [i], type);
655} 1511}
656 1512
657/*****************************************************************************/ 1513/*****************************************************************************/
658 1514
659void inline_size 1515inline_speed void
660anfds_init (ANFD *base, int count)
661{
662 while (count--)
663 {
664 base->head = 0;
665 base->events = EV_NONE;
666 base->reify = 0;
667
668 ++base;
669 }
670}
671
672void inline_speed
673fd_event (EV_P_ int fd, int revents) 1516fd_event_nocheck (EV_P_ int fd, int revents)
674{ 1517{
675 ANFD *anfd = anfds + fd; 1518 ANFD *anfd = anfds + fd;
676 ev_io *w; 1519 ev_io *w;
677 1520
678 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1521 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
682 if (ev) 1525 if (ev)
683 ev_feed_event (EV_A_ (W)w, ev); 1526 ev_feed_event (EV_A_ (W)w, ev);
684 } 1527 }
685} 1528}
686 1529
1530/* do not submit kernel events for fds that have reify set */
1531/* because that means they changed while we were polling for new events */
1532inline_speed void
1533fd_event (EV_P_ int fd, int revents)
1534{
1535 ANFD *anfd = anfds + fd;
1536
1537 if (expect_true (!anfd->reify))
1538 fd_event_nocheck (EV_A_ fd, revents);
1539}
1540
687void 1541void
688ev_feed_fd_event (EV_P_ int fd, int revents) 1542ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
689{ 1543{
690 if (fd >= 0 && fd < anfdmax) 1544 if (fd >= 0 && fd < anfdmax)
691 fd_event (EV_A_ fd, revents); 1545 fd_event_nocheck (EV_A_ fd, revents);
692} 1546}
693 1547
694void inline_size 1548/* make sure the external fd watch events are in-sync */
1549/* with the kernel/libev internal state */
1550inline_size void
695fd_reify (EV_P) 1551fd_reify (EV_P)
696{ 1552{
697 int i; 1553 int i;
1554
1555#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1556 for (i = 0; i < fdchangecnt; ++i)
1557 {
1558 int fd = fdchanges [i];
1559 ANFD *anfd = anfds + fd;
1560
1561 if (anfd->reify & EV__IOFDSET && anfd->head)
1562 {
1563 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1564
1565 if (handle != anfd->handle)
1566 {
1567 unsigned long arg;
1568
1569 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1570
1571 /* handle changed, but fd didn't - we need to do it in two steps */
1572 backend_modify (EV_A_ fd, anfd->events, 0);
1573 anfd->events = 0;
1574 anfd->handle = handle;
1575 }
1576 }
1577 }
1578#endif
698 1579
699 for (i = 0; i < fdchangecnt; ++i) 1580 for (i = 0; i < fdchangecnt; ++i)
700 { 1581 {
701 int fd = fdchanges [i]; 1582 int fd = fdchanges [i];
702 ANFD *anfd = anfds + fd; 1583 ANFD *anfd = anfds + fd;
703 ev_io *w; 1584 ev_io *w;
704 1585
705 unsigned char events = 0; 1586 unsigned char o_events = anfd->events;
1587 unsigned char o_reify = anfd->reify;
706 1588
707 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1589 anfd->reify = 0;
708 events |= (unsigned char)w->events;
709 1590
710#if EV_SELECT_IS_WINSOCKET 1591 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
711 if (events)
712 { 1592 {
713 unsigned long arg; 1593 anfd->events = 0;
714 #ifdef EV_FD_TO_WIN32_HANDLE 1594
715 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1595 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
716 #else 1596 anfd->events |= (unsigned char)w->events;
717 anfd->handle = _get_osfhandle (fd); 1597
718 #endif 1598 if (o_events != anfd->events)
719 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0)); 1599 o_reify = EV__IOFDSET; /* actually |= */
720 } 1600 }
721#endif
722 1601
723 { 1602 if (o_reify & EV__IOFDSET)
724 unsigned char o_events = anfd->events;
725 unsigned char o_reify = anfd->reify;
726
727 anfd->reify = 0;
728 anfd->events = events;
729
730 if (o_events != events || o_reify & EV_IOFDSET)
731 backend_modify (EV_A_ fd, o_events, events); 1603 backend_modify (EV_A_ fd, o_events, anfd->events);
732 }
733 } 1604 }
734 1605
735 fdchangecnt = 0; 1606 fdchangecnt = 0;
736} 1607}
737 1608
738void inline_size 1609/* something about the given fd changed */
1610inline_size void
739fd_change (EV_P_ int fd, int flags) 1611fd_change (EV_P_ int fd, int flags)
740{ 1612{
741 unsigned char reify = anfds [fd].reify; 1613 unsigned char reify = anfds [fd].reify;
742 anfds [fd].reify |= flags; 1614 anfds [fd].reify |= flags;
743 1615
747 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1619 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
748 fdchanges [fdchangecnt - 1] = fd; 1620 fdchanges [fdchangecnt - 1] = fd;
749 } 1621 }
750} 1622}
751 1623
752void inline_speed 1624/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1625inline_speed void ecb_cold
753fd_kill (EV_P_ int fd) 1626fd_kill (EV_P_ int fd)
754{ 1627{
755 ev_io *w; 1628 ev_io *w;
756 1629
757 while ((w = (ev_io *)anfds [fd].head)) 1630 while ((w = (ev_io *)anfds [fd].head))
759 ev_io_stop (EV_A_ w); 1632 ev_io_stop (EV_A_ w);
760 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1633 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
761 } 1634 }
762} 1635}
763 1636
764int inline_size 1637/* check whether the given fd is actually valid, for error recovery */
1638inline_size int ecb_cold
765fd_valid (int fd) 1639fd_valid (int fd)
766{ 1640{
767#ifdef _WIN32 1641#ifdef _WIN32
768 return _get_osfhandle (fd) != -1; 1642 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
769#else 1643#else
770 return fcntl (fd, F_GETFD) != -1; 1644 return fcntl (fd, F_GETFD) != -1;
771#endif 1645#endif
772} 1646}
773 1647
774/* called on EBADF to verify fds */ 1648/* called on EBADF to verify fds */
775static void noinline 1649static void noinline ecb_cold
776fd_ebadf (EV_P) 1650fd_ebadf (EV_P)
777{ 1651{
778 int fd; 1652 int fd;
779 1653
780 for (fd = 0; fd < anfdmax; ++fd) 1654 for (fd = 0; fd < anfdmax; ++fd)
782 if (!fd_valid (fd) && errno == EBADF) 1656 if (!fd_valid (fd) && errno == EBADF)
783 fd_kill (EV_A_ fd); 1657 fd_kill (EV_A_ fd);
784} 1658}
785 1659
786/* called on ENOMEM in select/poll to kill some fds and retry */ 1660/* called on ENOMEM in select/poll to kill some fds and retry */
787static void noinline 1661static void noinline ecb_cold
788fd_enomem (EV_P) 1662fd_enomem (EV_P)
789{ 1663{
790 int fd; 1664 int fd;
791 1665
792 for (fd = anfdmax; fd--; ) 1666 for (fd = anfdmax; fd--; )
793 if (anfds [fd].events) 1667 if (anfds [fd].events)
794 { 1668 {
795 fd_kill (EV_A_ fd); 1669 fd_kill (EV_A_ fd);
796 return; 1670 break;
797 } 1671 }
798} 1672}
799 1673
800/* usually called after fork if backend needs to re-arm all fds from scratch */ 1674/* usually called after fork if backend needs to re-arm all fds from scratch */
801static void noinline 1675static void noinline
805 1679
806 for (fd = 0; fd < anfdmax; ++fd) 1680 for (fd = 0; fd < anfdmax; ++fd)
807 if (anfds [fd].events) 1681 if (anfds [fd].events)
808 { 1682 {
809 anfds [fd].events = 0; 1683 anfds [fd].events = 0;
1684 anfds [fd].emask = 0;
810 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1685 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
811 } 1686 }
812} 1687}
813 1688
1689/* used to prepare libev internal fd's */
1690/* this is not fork-safe */
1691inline_speed void
1692fd_intern (int fd)
1693{
1694#ifdef _WIN32
1695 unsigned long arg = 1;
1696 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1697#else
1698 fcntl (fd, F_SETFD, FD_CLOEXEC);
1699 fcntl (fd, F_SETFL, O_NONBLOCK);
1700#endif
1701}
1702
814/*****************************************************************************/ 1703/*****************************************************************************/
815 1704
816/* 1705/*
817 * the heap functions want a real array index. array index 0 uis guaranteed to not 1706 * the heap functions want a real array index. array index 0 is guaranteed to not
818 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 1707 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
819 * the branching factor of the d-tree. 1708 * the branching factor of the d-tree.
820 */ 1709 */
821 1710
822/* 1711/*
831#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1720#define HEAP0 (DHEAP - 1) /* index of first element in heap */
832#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 1721#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
833#define UPHEAP_DONE(p,k) ((p) == (k)) 1722#define UPHEAP_DONE(p,k) ((p) == (k))
834 1723
835/* away from the root */ 1724/* away from the root */
836void inline_speed 1725inline_speed void
837downheap (ANHE *heap, int N, int k) 1726downheap (ANHE *heap, int N, int k)
838{ 1727{
839 ANHE he = heap [k]; 1728 ANHE he = heap [k];
840 ANHE *E = heap + N + HEAP0; 1729 ANHE *E = heap + N + HEAP0;
841 1730
881#define HEAP0 1 1770#define HEAP0 1
882#define HPARENT(k) ((k) >> 1) 1771#define HPARENT(k) ((k) >> 1)
883#define UPHEAP_DONE(p,k) (!(p)) 1772#define UPHEAP_DONE(p,k) (!(p))
884 1773
885/* away from the root */ 1774/* away from the root */
886void inline_speed 1775inline_speed void
887downheap (ANHE *heap, int N, int k) 1776downheap (ANHE *heap, int N, int k)
888{ 1777{
889 ANHE he = heap [k]; 1778 ANHE he = heap [k];
890 1779
891 for (;;) 1780 for (;;)
892 { 1781 {
893 int c = k << 1; 1782 int c = k << 1;
894 1783
895 if (c > N + HEAP0 - 1) 1784 if (c >= N + HEAP0)
896 break; 1785 break;
897 1786
898 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 1787 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
899 ? 1 : 0; 1788 ? 1 : 0;
900 1789
911 ev_active (ANHE_w (he)) = k; 1800 ev_active (ANHE_w (he)) = k;
912} 1801}
913#endif 1802#endif
914 1803
915/* towards the root */ 1804/* towards the root */
916void inline_speed 1805inline_speed void
917upheap (ANHE *heap, int k) 1806upheap (ANHE *heap, int k)
918{ 1807{
919 ANHE he = heap [k]; 1808 ANHE he = heap [k];
920 1809
921 for (;;) 1810 for (;;)
932 1821
933 heap [k] = he; 1822 heap [k] = he;
934 ev_active (ANHE_w (he)) = k; 1823 ev_active (ANHE_w (he)) = k;
935} 1824}
936 1825
937void inline_size 1826/* move an element suitably so it is in a correct place */
1827inline_size void
938adjustheap (ANHE *heap, int N, int k) 1828adjustheap (ANHE *heap, int N, int k)
939{ 1829{
940 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 1830 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
941 upheap (heap, k); 1831 upheap (heap, k);
942 else 1832 else
943 downheap (heap, N, k); 1833 downheap (heap, N, k);
944} 1834}
945 1835
946/* rebuild the heap: this function is used only once and executed rarely */ 1836/* rebuild the heap: this function is used only once and executed rarely */
947void inline_size 1837inline_size void
948reheap (ANHE *heap, int N) 1838reheap (ANHE *heap, int N)
949{ 1839{
950 int i; 1840 int i;
951 1841
952 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 1842 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
955 upheap (heap, i + HEAP0); 1845 upheap (heap, i + HEAP0);
956} 1846}
957 1847
958/*****************************************************************************/ 1848/*****************************************************************************/
959 1849
1850/* associate signal watchers to a signal signal */
960typedef struct 1851typedef struct
961{ 1852{
1853 EV_ATOMIC_T pending;
1854#if EV_MULTIPLICITY
1855 EV_P;
1856#endif
962 WL head; 1857 WL head;
963 EV_ATOMIC_T gotsig;
964} ANSIG; 1858} ANSIG;
965 1859
966static ANSIG *signals; 1860static ANSIG signals [EV_NSIG - 1];
967static int signalmax;
968
969static EV_ATOMIC_T gotsig;
970
971void inline_size
972signals_init (ANSIG *base, int count)
973{
974 while (count--)
975 {
976 base->head = 0;
977 base->gotsig = 0;
978
979 ++base;
980 }
981}
982 1861
983/*****************************************************************************/ 1862/*****************************************************************************/
984 1863
985void inline_speed 1864#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
986fd_intern (int fd)
987{
988#ifdef _WIN32
989 unsigned long arg = 1;
990 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
991#else
992 fcntl (fd, F_SETFD, FD_CLOEXEC);
993 fcntl (fd, F_SETFL, O_NONBLOCK);
994#endif
995}
996 1865
997static void noinline 1866static void noinline ecb_cold
998evpipe_init (EV_P) 1867evpipe_init (EV_P)
999{ 1868{
1000 if (!ev_is_active (&pipeev)) 1869 if (!ev_is_active (&pipe_w))
1001 { 1870 {
1002#if EV_USE_EVENTFD 1871# if EV_USE_EVENTFD
1872 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1873 if (evfd < 0 && errno == EINVAL)
1003 if ((evfd = eventfd (0, 0)) >= 0) 1874 evfd = eventfd (0, 0);
1875
1876 if (evfd >= 0)
1004 { 1877 {
1005 evpipe [0] = -1; 1878 evpipe [0] = -1;
1006 fd_intern (evfd); 1879 fd_intern (evfd); /* doing it twice doesn't hurt */
1007 ev_io_set (&pipeev, evfd, EV_READ); 1880 ev_io_set (&pipe_w, evfd, EV_READ);
1008 } 1881 }
1009 else 1882 else
1010#endif 1883# endif
1011 { 1884 {
1012 while (pipe (evpipe)) 1885 while (pipe (evpipe))
1013 syserr ("(libev) error creating signal/async pipe"); 1886 ev_syserr ("(libev) error creating signal/async pipe");
1014 1887
1015 fd_intern (evpipe [0]); 1888 fd_intern (evpipe [0]);
1016 fd_intern (evpipe [1]); 1889 fd_intern (evpipe [1]);
1017 ev_io_set (&pipeev, evpipe [0], EV_READ); 1890 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1018 } 1891 }
1019 1892
1020 ev_io_start (EV_A_ &pipeev); 1893 ev_io_start (EV_A_ &pipe_w);
1021 ev_unref (EV_A); /* watcher should not keep loop alive */ 1894 ev_unref (EV_A); /* watcher should not keep loop alive */
1022 } 1895 }
1023} 1896}
1024 1897
1025void inline_size 1898inline_speed void
1026evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1899evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1027{ 1900{
1028 if (!*flag) 1901 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
1902
1903 if (expect_true (*flag))
1904 return;
1905
1906 *flag = 1;
1907 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1908
1909 pipe_write_skipped = 1;
1910
1911 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1912
1913 if (pipe_write_wanted)
1029 { 1914 {
1915 int old_errno;
1916
1917 pipe_write_skipped = 0;
1918 ECB_MEMORY_FENCE_RELEASE;
1919
1030 int old_errno = errno; /* save errno because write might clobber it */ 1920 old_errno = errno; /* save errno because write will clobber it */
1031
1032 *flag = 1;
1033 1921
1034#if EV_USE_EVENTFD 1922#if EV_USE_EVENTFD
1035 if (evfd >= 0) 1923 if (evfd >= 0)
1036 { 1924 {
1037 uint64_t counter = 1; 1925 uint64_t counter = 1;
1038 write (evfd, &counter, sizeof (uint64_t)); 1926 write (evfd, &counter, sizeof (uint64_t));
1039 } 1927 }
1040 else 1928 else
1041#endif 1929#endif
1930 {
1931#ifdef _WIN32
1932 WSABUF buf;
1933 DWORD sent;
1934 buf.buf = &buf;
1935 buf.len = 1;
1936 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
1937#else
1042 write (evpipe [1], &old_errno, 1); 1938 write (evpipe [1], &(evpipe [1]), 1);
1939#endif
1940 }
1043 1941
1044 errno = old_errno; 1942 errno = old_errno;
1045 } 1943 }
1046} 1944}
1047 1945
1946/* called whenever the libev signal pipe */
1947/* got some events (signal, async) */
1048static void 1948static void
1049pipecb (EV_P_ ev_io *iow, int revents) 1949pipecb (EV_P_ ev_io *iow, int revents)
1050{ 1950{
1951 int i;
1952
1953 if (revents & EV_READ)
1954 {
1051#if EV_USE_EVENTFD 1955#if EV_USE_EVENTFD
1052 if (evfd >= 0) 1956 if (evfd >= 0)
1053 { 1957 {
1054 uint64_t counter; 1958 uint64_t counter;
1055 read (evfd, &counter, sizeof (uint64_t)); 1959 read (evfd, &counter, sizeof (uint64_t));
1056 } 1960 }
1057 else 1961 else
1058#endif 1962#endif
1059 { 1963 {
1060 char dummy; 1964 char dummy[4];
1965#ifdef _WIN32
1966 WSABUF buf;
1967 DWORD recvd;
1968 DWORD flags = 0;
1969 buf.buf = dummy;
1970 buf.len = sizeof (dummy);
1971 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
1972#else
1061 read (evpipe [0], &dummy, 1); 1973 read (evpipe [0], &dummy, sizeof (dummy));
1974#endif
1975 }
1976 }
1977
1978 pipe_write_skipped = 0;
1979
1980 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
1981
1982#if EV_SIGNAL_ENABLE
1983 if (sig_pending)
1062 } 1984 {
1985 sig_pending = 0;
1063 1986
1064 if (gotsig && ev_is_default_loop (EV_A)) 1987 ECB_MEMORY_FENCE;
1065 {
1066 int signum;
1067 gotsig = 0;
1068 1988
1069 for (signum = signalmax; signum--; ) 1989 for (i = EV_NSIG - 1; i--; )
1070 if (signals [signum].gotsig) 1990 if (expect_false (signals [i].pending))
1071 ev_feed_signal_event (EV_A_ signum + 1); 1991 ev_feed_signal_event (EV_A_ i + 1);
1072 } 1992 }
1993#endif
1073 1994
1074#if EV_ASYNC_ENABLE 1995#if EV_ASYNC_ENABLE
1075 if (gotasync) 1996 if (async_pending)
1076 { 1997 {
1077 int i; 1998 async_pending = 0;
1078 gotasync = 0; 1999
2000 ECB_MEMORY_FENCE;
1079 2001
1080 for (i = asynccnt; i--; ) 2002 for (i = asynccnt; i--; )
1081 if (asyncs [i]->sent) 2003 if (asyncs [i]->sent)
1082 { 2004 {
1083 asyncs [i]->sent = 0; 2005 asyncs [i]->sent = 0;
2006 ECB_MEMORY_FENCE_RELEASE;
1084 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); 2007 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1085 } 2008 }
1086 } 2009 }
1087#endif 2010#endif
1088} 2011}
1089 2012
1090/*****************************************************************************/ 2013/*****************************************************************************/
1091 2014
2015void
2016ev_feed_signal (int signum) EV_THROW
2017{
2018#if EV_MULTIPLICITY
2019 EV_P = signals [signum - 1].loop;
2020
2021 if (!EV_A)
2022 return;
2023#endif
2024
2025 if (!ev_active (&pipe_w))
2026 return;
2027
2028 signals [signum - 1].pending = 1;
2029 evpipe_write (EV_A_ &sig_pending);
2030}
2031
1092static void 2032static void
1093ev_sighandler (int signum) 2033ev_sighandler (int signum)
1094{ 2034{
2035#ifdef _WIN32
2036 signal (signum, ev_sighandler);
2037#endif
2038
2039 ev_feed_signal (signum);
2040}
2041
2042void noinline
2043ev_feed_signal_event (EV_P_ int signum) EV_THROW
2044{
2045 WL w;
2046
2047 if (expect_false (signum <= 0 || signum > EV_NSIG))
2048 return;
2049
2050 --signum;
2051
1095#if EV_MULTIPLICITY 2052#if EV_MULTIPLICITY
1096 struct ev_loop *loop = &default_loop_struct; 2053 /* it is permissible to try to feed a signal to the wrong loop */
1097#endif 2054 /* or, likely more useful, feeding a signal nobody is waiting for */
1098 2055
1099#if _WIN32 2056 if (expect_false (signals [signum].loop != EV_A))
1100 signal (signum, ev_sighandler);
1101#endif
1102
1103 signals [signum - 1].gotsig = 1;
1104 evpipe_write (EV_A_ &gotsig);
1105}
1106
1107void noinline
1108ev_feed_signal_event (EV_P_ int signum)
1109{
1110 WL w;
1111
1112#if EV_MULTIPLICITY
1113 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1114#endif
1115
1116 --signum;
1117
1118 if (signum < 0 || signum >= signalmax)
1119 return; 2057 return;
2058#endif
1120 2059
1121 signals [signum].gotsig = 0; 2060 signals [signum].pending = 0;
2061 ECB_MEMORY_FENCE_RELEASE;
1122 2062
1123 for (w = signals [signum].head; w; w = w->next) 2063 for (w = signals [signum].head; w; w = w->next)
1124 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2064 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1125} 2065}
1126 2066
2067#if EV_USE_SIGNALFD
2068static void
2069sigfdcb (EV_P_ ev_io *iow, int revents)
2070{
2071 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2072
2073 for (;;)
2074 {
2075 ssize_t res = read (sigfd, si, sizeof (si));
2076
2077 /* not ISO-C, as res might be -1, but works with SuS */
2078 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2079 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2080
2081 if (res < (ssize_t)sizeof (si))
2082 break;
2083 }
2084}
2085#endif
2086
2087#endif
2088
1127/*****************************************************************************/ 2089/*****************************************************************************/
1128 2090
2091#if EV_CHILD_ENABLE
1129static WL childs [EV_PID_HASHSIZE]; 2092static WL childs [EV_PID_HASHSIZE];
1130
1131#ifndef _WIN32
1132 2093
1133static ev_signal childev; 2094static ev_signal childev;
1134 2095
1135#ifndef WIFCONTINUED 2096#ifndef WIFCONTINUED
1136# define WIFCONTINUED(status) 0 2097# define WIFCONTINUED(status) 0
1137#endif 2098#endif
1138 2099
1139void inline_speed 2100/* handle a single child status event */
2101inline_speed void
1140child_reap (EV_P_ int chain, int pid, int status) 2102child_reap (EV_P_ int chain, int pid, int status)
1141{ 2103{
1142 ev_child *w; 2104 ev_child *w;
1143 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2105 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1144 2106
1145 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2107 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1146 { 2108 {
1147 if ((w->pid == pid || !w->pid) 2109 if ((w->pid == pid || !w->pid)
1148 && (!traced || (w->flags & 1))) 2110 && (!traced || (w->flags & 1)))
1149 { 2111 {
1150 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 2112 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1157 2119
1158#ifndef WCONTINUED 2120#ifndef WCONTINUED
1159# define WCONTINUED 0 2121# define WCONTINUED 0
1160#endif 2122#endif
1161 2123
2124/* called on sigchld etc., calls waitpid */
1162static void 2125static void
1163childcb (EV_P_ ev_signal *sw, int revents) 2126childcb (EV_P_ ev_signal *sw, int revents)
1164{ 2127{
1165 int pid, status; 2128 int pid, status;
1166 2129
1174 /* make sure we are called again until all children have been reaped */ 2137 /* make sure we are called again until all children have been reaped */
1175 /* we need to do it this way so that the callback gets called before we continue */ 2138 /* we need to do it this way so that the callback gets called before we continue */
1176 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2139 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1177 2140
1178 child_reap (EV_A_ pid, pid, status); 2141 child_reap (EV_A_ pid, pid, status);
1179 if (EV_PID_HASHSIZE > 1) 2142 if ((EV_PID_HASHSIZE) > 1)
1180 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2143 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1181} 2144}
1182 2145
1183#endif 2146#endif
1184 2147
1185/*****************************************************************************/ 2148/*****************************************************************************/
1186 2149
2150#if EV_USE_IOCP
2151# include "ev_iocp.c"
2152#endif
1187#if EV_USE_PORT 2153#if EV_USE_PORT
1188# include "ev_port.c" 2154# include "ev_port.c"
1189#endif 2155#endif
1190#if EV_USE_KQUEUE 2156#if EV_USE_KQUEUE
1191# include "ev_kqueue.c" 2157# include "ev_kqueue.c"
1198#endif 2164#endif
1199#if EV_USE_SELECT 2165#if EV_USE_SELECT
1200# include "ev_select.c" 2166# include "ev_select.c"
1201#endif 2167#endif
1202 2168
1203int 2169int ecb_cold
1204ev_version_major (void) 2170ev_version_major (void) EV_THROW
1205{ 2171{
1206 return EV_VERSION_MAJOR; 2172 return EV_VERSION_MAJOR;
1207} 2173}
1208 2174
1209int 2175int ecb_cold
1210ev_version_minor (void) 2176ev_version_minor (void) EV_THROW
1211{ 2177{
1212 return EV_VERSION_MINOR; 2178 return EV_VERSION_MINOR;
1213} 2179}
1214 2180
1215/* return true if we are running with elevated privileges and should ignore env variables */ 2181/* return true if we are running with elevated privileges and should ignore env variables */
1216int inline_size 2182int inline_size ecb_cold
1217enable_secure (void) 2183enable_secure (void)
1218{ 2184{
1219#ifdef _WIN32 2185#ifdef _WIN32
1220 return 0; 2186 return 0;
1221#else 2187#else
1222 return getuid () != geteuid () 2188 return getuid () != geteuid ()
1223 || getgid () != getegid (); 2189 || getgid () != getegid ();
1224#endif 2190#endif
1225} 2191}
1226 2192
1227unsigned int 2193unsigned int ecb_cold
1228ev_supported_backends (void) 2194ev_supported_backends (void) EV_THROW
1229{ 2195{
1230 unsigned int flags = 0; 2196 unsigned int flags = 0;
1231 2197
1232 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2198 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1233 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2199 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1236 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2202 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1237 2203
1238 return flags; 2204 return flags;
1239} 2205}
1240 2206
1241unsigned int 2207unsigned int ecb_cold
1242ev_recommended_backends (void) 2208ev_recommended_backends (void) EV_THROW
1243{ 2209{
1244 unsigned int flags = ev_supported_backends (); 2210 unsigned int flags = ev_supported_backends ();
1245 2211
1246#ifndef __NetBSD__ 2212#ifndef __NetBSD__
1247 /* kqueue is borked on everything but netbsd apparently */ 2213 /* kqueue is borked on everything but netbsd apparently */
1248 /* it usually doesn't work correctly on anything but sockets and pipes */ 2214 /* it usually doesn't work correctly on anything but sockets and pipes */
1249 flags &= ~EVBACKEND_KQUEUE; 2215 flags &= ~EVBACKEND_KQUEUE;
1250#endif 2216#endif
1251#ifdef __APPLE__ 2217#ifdef __APPLE__
1252 // flags &= ~EVBACKEND_KQUEUE; for documentation 2218 /* only select works correctly on that "unix-certified" platform */
1253 flags &= ~EVBACKEND_POLL; 2219 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2220 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2221#endif
2222#ifdef __FreeBSD__
2223 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1254#endif 2224#endif
1255 2225
1256 return flags; 2226 return flags;
1257} 2227}
1258 2228
2229unsigned int ecb_cold
2230ev_embeddable_backends (void) EV_THROW
2231{
2232 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2233
2234 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2235 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2236 flags &= ~EVBACKEND_EPOLL;
2237
2238 return flags;
2239}
2240
1259unsigned int 2241unsigned int
1260ev_embeddable_backends (void) 2242ev_backend (EV_P) EV_THROW
1261{ 2243{
1262 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2244 return backend;
1263
1264 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1265 /* please fix it and tell me how to detect the fix */
1266 flags &= ~EVBACKEND_EPOLL;
1267
1268 return flags;
1269} 2245}
1270 2246
2247#if EV_FEATURE_API
1271unsigned int 2248unsigned int
1272ev_backend (EV_P) 2249ev_iteration (EV_P) EV_THROW
1273{ 2250{
1274 return backend; 2251 return loop_count;
1275} 2252}
1276 2253
1277unsigned int 2254unsigned int
1278ev_loop_count (EV_P) 2255ev_depth (EV_P) EV_THROW
1279{ 2256{
1280 return loop_count; 2257 return loop_depth;
1281} 2258}
1282 2259
1283void 2260void
1284ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2261ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1285{ 2262{
1286 io_blocktime = interval; 2263 io_blocktime = interval;
1287} 2264}
1288 2265
1289void 2266void
1290ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2267ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1291{ 2268{
1292 timeout_blocktime = interval; 2269 timeout_blocktime = interval;
1293} 2270}
1294 2271
2272void
2273ev_set_userdata (EV_P_ void *data) EV_THROW
2274{
2275 userdata = data;
2276}
2277
2278void *
2279ev_userdata (EV_P) EV_THROW
2280{
2281 return userdata;
2282}
2283
2284void
2285ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2286{
2287 invoke_cb = invoke_pending_cb;
2288}
2289
2290void
2291ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2292{
2293 release_cb = release;
2294 acquire_cb = acquire;
2295}
2296#endif
2297
2298/* initialise a loop structure, must be zero-initialised */
1295static void noinline 2299static void noinline ecb_cold
1296loop_init (EV_P_ unsigned int flags) 2300loop_init (EV_P_ unsigned int flags) EV_THROW
1297{ 2301{
1298 if (!backend) 2302 if (!backend)
1299 { 2303 {
2304 origflags = flags;
2305
2306#if EV_USE_REALTIME
2307 if (!have_realtime)
2308 {
2309 struct timespec ts;
2310
2311 if (!clock_gettime (CLOCK_REALTIME, &ts))
2312 have_realtime = 1;
2313 }
2314#endif
2315
1300#if EV_USE_MONOTONIC 2316#if EV_USE_MONOTONIC
2317 if (!have_monotonic)
1301 { 2318 {
1302 struct timespec ts; 2319 struct timespec ts;
2320
1303 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2321 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1304 have_monotonic = 1; 2322 have_monotonic = 1;
1305 } 2323 }
1306#endif
1307
1308 ev_rt_now = ev_time ();
1309 mn_now = get_clock ();
1310 now_floor = mn_now;
1311 rtmn_diff = ev_rt_now - mn_now;
1312
1313 io_blocktime = 0.;
1314 timeout_blocktime = 0.;
1315 backend = 0;
1316 backend_fd = -1;
1317 gotasync = 0;
1318#if EV_USE_INOTIFY
1319 fs_fd = -2;
1320#endif 2324#endif
1321 2325
1322 /* pid check not overridable via env */ 2326 /* pid check not overridable via env */
1323#ifndef _WIN32 2327#ifndef _WIN32
1324 if (flags & EVFLAG_FORKCHECK) 2328 if (flags & EVFLAG_FORKCHECK)
1328 if (!(flags & EVFLAG_NOENV) 2332 if (!(flags & EVFLAG_NOENV)
1329 && !enable_secure () 2333 && !enable_secure ()
1330 && getenv ("LIBEV_FLAGS")) 2334 && getenv ("LIBEV_FLAGS"))
1331 flags = atoi (getenv ("LIBEV_FLAGS")); 2335 flags = atoi (getenv ("LIBEV_FLAGS"));
1332 2336
1333 if (!(flags & 0x0000ffffU)) 2337 ev_rt_now = ev_time ();
2338 mn_now = get_clock ();
2339 now_floor = mn_now;
2340 rtmn_diff = ev_rt_now - mn_now;
2341#if EV_FEATURE_API
2342 invoke_cb = ev_invoke_pending;
2343#endif
2344
2345 io_blocktime = 0.;
2346 timeout_blocktime = 0.;
2347 backend = 0;
2348 backend_fd = -1;
2349 sig_pending = 0;
2350#if EV_ASYNC_ENABLE
2351 async_pending = 0;
2352#endif
2353 pipe_write_skipped = 0;
2354 pipe_write_wanted = 0;
2355#if EV_USE_INOTIFY
2356 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2357#endif
2358#if EV_USE_SIGNALFD
2359 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2360#endif
2361
2362 if (!(flags & EVBACKEND_MASK))
1334 flags |= ev_recommended_backends (); 2363 flags |= ev_recommended_backends ();
1335 2364
2365#if EV_USE_IOCP
2366 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2367#endif
1336#if EV_USE_PORT 2368#if EV_USE_PORT
1337 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2369 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1338#endif 2370#endif
1339#if EV_USE_KQUEUE 2371#if EV_USE_KQUEUE
1340 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2372 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1347#endif 2379#endif
1348#if EV_USE_SELECT 2380#if EV_USE_SELECT
1349 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2381 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1350#endif 2382#endif
1351 2383
2384 ev_prepare_init (&pending_w, pendingcb);
2385
2386#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1352 ev_init (&pipeev, pipecb); 2387 ev_init (&pipe_w, pipecb);
1353 ev_set_priority (&pipeev, EV_MAXPRI); 2388 ev_set_priority (&pipe_w, EV_MAXPRI);
2389#endif
1354 } 2390 }
1355} 2391}
1356 2392
1357static void noinline 2393/* free up a loop structure */
2394void ecb_cold
1358loop_destroy (EV_P) 2395ev_loop_destroy (EV_P)
1359{ 2396{
1360 int i; 2397 int i;
1361 2398
2399#if EV_MULTIPLICITY
2400 /* mimic free (0) */
2401 if (!EV_A)
2402 return;
2403#endif
2404
2405#if EV_CLEANUP_ENABLE
2406 /* queue cleanup watchers (and execute them) */
2407 if (expect_false (cleanupcnt))
2408 {
2409 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2410 EV_INVOKE_PENDING;
2411 }
2412#endif
2413
2414#if EV_CHILD_ENABLE
2415 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2416 {
2417 ev_ref (EV_A); /* child watcher */
2418 ev_signal_stop (EV_A_ &childev);
2419 }
2420#endif
2421
1362 if (ev_is_active (&pipeev)) 2422 if (ev_is_active (&pipe_w))
1363 { 2423 {
1364 ev_ref (EV_A); /* signal watcher */ 2424 /*ev_ref (EV_A);*/
1365 ev_io_stop (EV_A_ &pipeev); 2425 /*ev_io_stop (EV_A_ &pipe_w);*/
1366 2426
1367#if EV_USE_EVENTFD 2427#if EV_USE_EVENTFD
1368 if (evfd >= 0) 2428 if (evfd >= 0)
1369 close (evfd); 2429 close (evfd);
1370#endif 2430#endif
1371 2431
1372 if (evpipe [0] >= 0) 2432 if (evpipe [0] >= 0)
1373 { 2433 {
1374 close (evpipe [0]); 2434 EV_WIN32_CLOSE_FD (evpipe [0]);
1375 close (evpipe [1]); 2435 EV_WIN32_CLOSE_FD (evpipe [1]);
1376 } 2436 }
1377 } 2437 }
2438
2439#if EV_USE_SIGNALFD
2440 if (ev_is_active (&sigfd_w))
2441 close (sigfd);
2442#endif
1378 2443
1379#if EV_USE_INOTIFY 2444#if EV_USE_INOTIFY
1380 if (fs_fd >= 0) 2445 if (fs_fd >= 0)
1381 close (fs_fd); 2446 close (fs_fd);
1382#endif 2447#endif
1383 2448
1384 if (backend_fd >= 0) 2449 if (backend_fd >= 0)
1385 close (backend_fd); 2450 close (backend_fd);
1386 2451
2452#if EV_USE_IOCP
2453 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2454#endif
1387#if EV_USE_PORT 2455#if EV_USE_PORT
1388 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2456 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1389#endif 2457#endif
1390#if EV_USE_KQUEUE 2458#if EV_USE_KQUEUE
1391 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2459 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1406#if EV_IDLE_ENABLE 2474#if EV_IDLE_ENABLE
1407 array_free (idle, [i]); 2475 array_free (idle, [i]);
1408#endif 2476#endif
1409 } 2477 }
1410 2478
1411 ev_free (anfds); anfdmax = 0; 2479 ev_free (anfds); anfds = 0; anfdmax = 0;
1412 2480
1413 /* have to use the microsoft-never-gets-it-right macro */ 2481 /* have to use the microsoft-never-gets-it-right macro */
2482 array_free (rfeed, EMPTY);
1414 array_free (fdchange, EMPTY); 2483 array_free (fdchange, EMPTY);
1415 array_free (timer, EMPTY); 2484 array_free (timer, EMPTY);
1416#if EV_PERIODIC_ENABLE 2485#if EV_PERIODIC_ENABLE
1417 array_free (periodic, EMPTY); 2486 array_free (periodic, EMPTY);
1418#endif 2487#endif
1419#if EV_FORK_ENABLE 2488#if EV_FORK_ENABLE
1420 array_free (fork, EMPTY); 2489 array_free (fork, EMPTY);
1421#endif 2490#endif
2491#if EV_CLEANUP_ENABLE
2492 array_free (cleanup, EMPTY);
2493#endif
1422 array_free (prepare, EMPTY); 2494 array_free (prepare, EMPTY);
1423 array_free (check, EMPTY); 2495 array_free (check, EMPTY);
1424#if EV_ASYNC_ENABLE 2496#if EV_ASYNC_ENABLE
1425 array_free (async, EMPTY); 2497 array_free (async, EMPTY);
1426#endif 2498#endif
1427 2499
1428 backend = 0; 2500 backend = 0;
2501
2502#if EV_MULTIPLICITY
2503 if (ev_is_default_loop (EV_A))
2504#endif
2505 ev_default_loop_ptr = 0;
2506#if EV_MULTIPLICITY
2507 else
2508 ev_free (EV_A);
2509#endif
1429} 2510}
1430 2511
1431#if EV_USE_INOTIFY 2512#if EV_USE_INOTIFY
1432void inline_size infy_fork (EV_P); 2513inline_size void infy_fork (EV_P);
1433#endif 2514#endif
1434 2515
1435void inline_size 2516inline_size void
1436loop_fork (EV_P) 2517loop_fork (EV_P)
1437{ 2518{
1438#if EV_USE_PORT 2519#if EV_USE_PORT
1439 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2520 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1440#endif 2521#endif
1446#endif 2527#endif
1447#if EV_USE_INOTIFY 2528#if EV_USE_INOTIFY
1448 infy_fork (EV_A); 2529 infy_fork (EV_A);
1449#endif 2530#endif
1450 2531
1451 if (ev_is_active (&pipeev)) 2532 if (ev_is_active (&pipe_w))
1452 { 2533 {
1453 /* this "locks" the handlers against writing to the pipe */ 2534 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1454 /* while we modify the fd vars */
1455 gotsig = 1;
1456#if EV_ASYNC_ENABLE
1457 gotasync = 1;
1458#endif
1459 2535
1460 ev_ref (EV_A); 2536 ev_ref (EV_A);
1461 ev_io_stop (EV_A_ &pipeev); 2537 ev_io_stop (EV_A_ &pipe_w);
1462 2538
1463#if EV_USE_EVENTFD 2539#if EV_USE_EVENTFD
1464 if (evfd >= 0) 2540 if (evfd >= 0)
1465 close (evfd); 2541 close (evfd);
1466#endif 2542#endif
1467 2543
1468 if (evpipe [0] >= 0) 2544 if (evpipe [0] >= 0)
1469 { 2545 {
1470 close (evpipe [0]); 2546 EV_WIN32_CLOSE_FD (evpipe [0]);
1471 close (evpipe [1]); 2547 EV_WIN32_CLOSE_FD (evpipe [1]);
1472 } 2548 }
1473 2549
2550#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1474 evpipe_init (EV_A); 2551 evpipe_init (EV_A);
1475 /* now iterate over everything, in case we missed something */ 2552 /* now iterate over everything, in case we missed something */
1476 pipecb (EV_A_ &pipeev, EV_READ); 2553 pipecb (EV_A_ &pipe_w, EV_READ);
2554#endif
1477 } 2555 }
1478 2556
1479 postfork = 0; 2557 postfork = 0;
1480} 2558}
1481 2559
1482#if EV_MULTIPLICITY 2560#if EV_MULTIPLICITY
1483 2561
1484struct ev_loop * 2562struct ev_loop * ecb_cold
1485ev_loop_new (unsigned int flags) 2563ev_loop_new (unsigned int flags) EV_THROW
1486{ 2564{
1487 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2565 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1488 2566
1489 memset (loop, 0, sizeof (struct ev_loop)); 2567 memset (EV_A, 0, sizeof (struct ev_loop));
1490
1491 loop_init (EV_A_ flags); 2568 loop_init (EV_A_ flags);
1492 2569
1493 if (ev_backend (EV_A)) 2570 if (ev_backend (EV_A))
1494 return loop; 2571 return EV_A;
1495 2572
2573 ev_free (EV_A);
1496 return 0; 2574 return 0;
1497} 2575}
1498 2576
1499void 2577#endif /* multiplicity */
1500ev_loop_destroy (EV_P)
1501{
1502 loop_destroy (EV_A);
1503 ev_free (loop);
1504}
1505
1506void
1507ev_loop_fork (EV_P)
1508{
1509 postfork = 1; /* must be in line with ev_default_fork */
1510}
1511 2578
1512#if EV_VERIFY 2579#if EV_VERIFY
1513void noinline 2580static void noinline ecb_cold
1514verify_watcher (EV_P_ W w) 2581verify_watcher (EV_P_ W w)
1515{ 2582{
1516 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI)); 2583 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1517 2584
1518 if (w->pending) 2585 if (w->pending)
1519 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w)); 2586 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1520} 2587}
1521 2588
1522static void noinline 2589static void noinline ecb_cold
1523verify_heap (EV_P_ ANHE *heap, int N) 2590verify_heap (EV_P_ ANHE *heap, int N)
1524{ 2591{
1525 int i; 2592 int i;
1526 2593
1527 for (i = HEAP0; i < N + HEAP0; ++i) 2594 for (i = HEAP0; i < N + HEAP0; ++i)
1528 { 2595 {
1529 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i)); 2596 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1530 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i]))); 2597 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1531 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i])))); 2598 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1532 2599
1533 verify_watcher (EV_A_ (W)ANHE_w (heap [i])); 2600 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1534 } 2601 }
1535} 2602}
1536 2603
1537static void noinline 2604static void noinline ecb_cold
1538array_verify (EV_P_ W *ws, int cnt) 2605array_verify (EV_P_ W *ws, int cnt)
1539{ 2606{
1540 while (cnt--) 2607 while (cnt--)
1541 { 2608 {
1542 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1)); 2609 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1543 verify_watcher (EV_A_ ws [cnt]); 2610 verify_watcher (EV_A_ ws [cnt]);
1544 } 2611 }
1545} 2612}
1546#endif 2613#endif
1547 2614
1548void 2615#if EV_FEATURE_API
1549ev_loop_verify (EV_P) 2616void ecb_cold
2617ev_verify (EV_P) EV_THROW
1550{ 2618{
1551#if EV_VERIFY 2619#if EV_VERIFY
1552 int i; 2620 int i;
1553 WL w; 2621 WL w, w2;
1554 2622
1555 assert (activecnt >= -1); 2623 assert (activecnt >= -1);
1556 2624
1557 assert (fdchangemax >= fdchangecnt); 2625 assert (fdchangemax >= fdchangecnt);
1558 for (i = 0; i < fdchangecnt; ++i) 2626 for (i = 0; i < fdchangecnt; ++i)
1559 assert (("negative fd in fdchanges", fdchanges [i] >= 0)); 2627 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1560 2628
1561 assert (anfdmax >= 0); 2629 assert (anfdmax >= 0);
1562 for (i = 0; i < anfdmax; ++i) 2630 for (i = 0; i < anfdmax; ++i)
2631 {
2632 int j = 0;
2633
1563 for (w = anfds [i].head; w; w = w->next) 2634 for (w = w2 = anfds [i].head; w; w = w->next)
1564 { 2635 {
1565 verify_watcher (EV_A_ (W)w); 2636 verify_watcher (EV_A_ (W)w);
2637
2638 if (j++ & 1)
2639 {
2640 assert (("libev: io watcher list contains a loop", w != w2));
2641 w2 = w2->next;
2642 }
2643
1566 assert (("inactive fd watcher on anfd list", ev_active (w) == 1)); 2644 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1567 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i)); 2645 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1568 } 2646 }
2647 }
1569 2648
1570 assert (timermax >= timercnt); 2649 assert (timermax >= timercnt);
1571 verify_heap (EV_A_ timers, timercnt); 2650 verify_heap (EV_A_ timers, timercnt);
1572 2651
1573#if EV_PERIODIC_ENABLE 2652#if EV_PERIODIC_ENABLE
1588#if EV_FORK_ENABLE 2667#if EV_FORK_ENABLE
1589 assert (forkmax >= forkcnt); 2668 assert (forkmax >= forkcnt);
1590 array_verify (EV_A_ (W *)forks, forkcnt); 2669 array_verify (EV_A_ (W *)forks, forkcnt);
1591#endif 2670#endif
1592 2671
2672#if EV_CLEANUP_ENABLE
2673 assert (cleanupmax >= cleanupcnt);
2674 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2675#endif
2676
1593#if EV_ASYNC_ENABLE 2677#if EV_ASYNC_ENABLE
1594 assert (asyncmax >= asynccnt); 2678 assert (asyncmax >= asynccnt);
1595 array_verify (EV_A_ (W *)asyncs, asynccnt); 2679 array_verify (EV_A_ (W *)asyncs, asynccnt);
1596#endif 2680#endif
1597 2681
2682#if EV_PREPARE_ENABLE
1598 assert (preparemax >= preparecnt); 2683 assert (preparemax >= preparecnt);
1599 array_verify (EV_A_ (W *)prepares, preparecnt); 2684 array_verify (EV_A_ (W *)prepares, preparecnt);
2685#endif
1600 2686
2687#if EV_CHECK_ENABLE
1601 assert (checkmax >= checkcnt); 2688 assert (checkmax >= checkcnt);
1602 array_verify (EV_A_ (W *)checks, checkcnt); 2689 array_verify (EV_A_ (W *)checks, checkcnt);
2690#endif
1603 2691
1604# if 0 2692# if 0
2693#if EV_CHILD_ENABLE
1605 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2694 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1606 for (signum = signalmax; signum--; ) if (signals [signum].gotsig) 2695 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2696#endif
1607# endif 2697# endif
1608#endif 2698#endif
1609} 2699}
1610 2700#endif
1611#endif /* multiplicity */
1612 2701
1613#if EV_MULTIPLICITY 2702#if EV_MULTIPLICITY
1614struct ev_loop * 2703struct ev_loop * ecb_cold
1615ev_default_loop_init (unsigned int flags)
1616#else 2704#else
1617int 2705int
2706#endif
1618ev_default_loop (unsigned int flags) 2707ev_default_loop (unsigned int flags) EV_THROW
1619#endif
1620{ 2708{
1621 if (!ev_default_loop_ptr) 2709 if (!ev_default_loop_ptr)
1622 { 2710 {
1623#if EV_MULTIPLICITY 2711#if EV_MULTIPLICITY
1624 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2712 EV_P = ev_default_loop_ptr = &default_loop_struct;
1625#else 2713#else
1626 ev_default_loop_ptr = 1; 2714 ev_default_loop_ptr = 1;
1627#endif 2715#endif
1628 2716
1629 loop_init (EV_A_ flags); 2717 loop_init (EV_A_ flags);
1630 2718
1631 if (ev_backend (EV_A)) 2719 if (ev_backend (EV_A))
1632 { 2720 {
1633#ifndef _WIN32 2721#if EV_CHILD_ENABLE
1634 ev_signal_init (&childev, childcb, SIGCHLD); 2722 ev_signal_init (&childev, childcb, SIGCHLD);
1635 ev_set_priority (&childev, EV_MAXPRI); 2723 ev_set_priority (&childev, EV_MAXPRI);
1636 ev_signal_start (EV_A_ &childev); 2724 ev_signal_start (EV_A_ &childev);
1637 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2725 ev_unref (EV_A); /* child watcher should not keep loop alive */
1638#endif 2726#endif
1643 2731
1644 return ev_default_loop_ptr; 2732 return ev_default_loop_ptr;
1645} 2733}
1646 2734
1647void 2735void
1648ev_default_destroy (void) 2736ev_loop_fork (EV_P) EV_THROW
1649{ 2737{
1650#if EV_MULTIPLICITY 2738 postfork = 1;
1651 struct ev_loop *loop = ev_default_loop_ptr;
1652#endif
1653
1654#ifndef _WIN32
1655 ev_ref (EV_A); /* child watcher */
1656 ev_signal_stop (EV_A_ &childev);
1657#endif
1658
1659 loop_destroy (EV_A);
1660}
1661
1662void
1663ev_default_fork (void)
1664{
1665#if EV_MULTIPLICITY
1666 struct ev_loop *loop = ev_default_loop_ptr;
1667#endif
1668
1669 if (backend)
1670 postfork = 1; /* must be in line with ev_loop_fork */
1671} 2739}
1672 2740
1673/*****************************************************************************/ 2741/*****************************************************************************/
1674 2742
1675void 2743void
1676ev_invoke (EV_P_ void *w, int revents) 2744ev_invoke (EV_P_ void *w, int revents)
1677{ 2745{
1678 EV_CB_INVOKE ((W)w, revents); 2746 EV_CB_INVOKE ((W)w, revents);
1679} 2747}
1680 2748
1681void inline_speed 2749unsigned int
1682call_pending (EV_P) 2750ev_pending_count (EV_P) EV_THROW
1683{ 2751{
1684 int pri; 2752 int pri;
2753 unsigned int count = 0;
1685 2754
1686 for (pri = NUMPRI; pri--; ) 2755 for (pri = NUMPRI; pri--; )
2756 count += pendingcnt [pri];
2757
2758 return count;
2759}
2760
2761void noinline
2762ev_invoke_pending (EV_P)
2763{
2764 for (pendingpri = NUMPRI; pendingpri--; ) /* pendingpri is modified during the loop */
1687 while (pendingcnt [pri]) 2765 while (pendingcnt [pendingpri])
1688 { 2766 {
1689 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2767 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1690 2768
1691 if (expect_true (p->w))
1692 {
1693 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1694
1695 p->w->pending = 0; 2769 p->w->pending = 0;
1696 EV_CB_INVOKE (p->w, p->events); 2770 EV_CB_INVOKE (p->w, p->events);
1697 EV_FREQUENT_CHECK; 2771 EV_FREQUENT_CHECK;
1698 }
1699 } 2772 }
1700} 2773}
1701 2774
1702#if EV_IDLE_ENABLE 2775#if EV_IDLE_ENABLE
1703void inline_size 2776/* make idle watchers pending. this handles the "call-idle */
2777/* only when higher priorities are idle" logic */
2778inline_size void
1704idle_reify (EV_P) 2779idle_reify (EV_P)
1705{ 2780{
1706 if (expect_false (idleall)) 2781 if (expect_false (idleall))
1707 { 2782 {
1708 int pri; 2783 int pri;
1720 } 2795 }
1721 } 2796 }
1722} 2797}
1723#endif 2798#endif
1724 2799
1725void inline_size 2800/* make timers pending */
2801inline_size void
1726timers_reify (EV_P) 2802timers_reify (EV_P)
1727{ 2803{
1728 EV_FREQUENT_CHECK; 2804 EV_FREQUENT_CHECK;
1729 2805
1730 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 2806 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1731 { 2807 {
1732 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 2808 do
1733
1734 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1735
1736 /* first reschedule or stop timer */
1737 if (w->repeat)
1738 { 2809 {
2810 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2811
2812 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2813
2814 /* first reschedule or stop timer */
2815 if (w->repeat)
2816 {
1739 ev_at (w) += w->repeat; 2817 ev_at (w) += w->repeat;
1740 if (ev_at (w) < mn_now) 2818 if (ev_at (w) < mn_now)
1741 ev_at (w) = mn_now; 2819 ev_at (w) = mn_now;
1742 2820
1743 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2821 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1744 2822
1745 ANHE_at_cache (timers [HEAP0]); 2823 ANHE_at_cache (timers [HEAP0]);
1746 downheap (timers, timercnt, HEAP0); 2824 downheap (timers, timercnt, HEAP0);
2825 }
2826 else
2827 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2828
2829 EV_FREQUENT_CHECK;
2830 feed_reverse (EV_A_ (W)w);
1747 } 2831 }
1748 else 2832 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1749 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1750 2833
1751 EV_FREQUENT_CHECK; 2834 feed_reverse_done (EV_A_ EV_TIMER);
1752 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1753 } 2835 }
1754} 2836}
1755 2837
1756#if EV_PERIODIC_ENABLE 2838#if EV_PERIODIC_ENABLE
1757void inline_size 2839
2840static void noinline
2841periodic_recalc (EV_P_ ev_periodic *w)
2842{
2843 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2844 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2845
2846 /* the above almost always errs on the low side */
2847 while (at <= ev_rt_now)
2848 {
2849 ev_tstamp nat = at + w->interval;
2850
2851 /* when resolution fails us, we use ev_rt_now */
2852 if (expect_false (nat == at))
2853 {
2854 at = ev_rt_now;
2855 break;
2856 }
2857
2858 at = nat;
2859 }
2860
2861 ev_at (w) = at;
2862}
2863
2864/* make periodics pending */
2865inline_size void
1758periodics_reify (EV_P) 2866periodics_reify (EV_P)
1759{ 2867{
1760 EV_FREQUENT_CHECK; 2868 EV_FREQUENT_CHECK;
1761 2869
1762 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 2870 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1763 { 2871 {
1764 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 2872 do
1765
1766 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1767
1768 /* first reschedule or stop timer */
1769 if (w->reschedule_cb)
1770 { 2873 {
2874 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2875
2876 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2877
2878 /* first reschedule or stop timer */
2879 if (w->reschedule_cb)
2880 {
1771 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2881 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1772 2882
1773 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 2883 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1774 2884
1775 ANHE_at_cache (periodics [HEAP0]); 2885 ANHE_at_cache (periodics [HEAP0]);
1776 downheap (periodics, periodiccnt, HEAP0); 2886 downheap (periodics, periodiccnt, HEAP0);
2887 }
2888 else if (w->interval)
2889 {
2890 periodic_recalc (EV_A_ w);
2891 ANHE_at_cache (periodics [HEAP0]);
2892 downheap (periodics, periodiccnt, HEAP0);
2893 }
2894 else
2895 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2896
2897 EV_FREQUENT_CHECK;
2898 feed_reverse (EV_A_ (W)w);
1777 } 2899 }
1778 else if (w->interval) 2900 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1779 {
1780 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1781 /* if next trigger time is not sufficiently in the future, put it there */
1782 /* this might happen because of floating point inexactness */
1783 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1784 {
1785 ev_at (w) += w->interval;
1786 2901
1787 /* if interval is unreasonably low we might still have a time in the past */
1788 /* so correct this. this will make the periodic very inexact, but the user */
1789 /* has effectively asked to get triggered more often than possible */
1790 if (ev_at (w) < ev_rt_now)
1791 ev_at (w) = ev_rt_now;
1792 }
1793
1794 ANHE_at_cache (periodics [HEAP0]);
1795 downheap (periodics, periodiccnt, HEAP0);
1796 }
1797 else
1798 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1799
1800 EV_FREQUENT_CHECK;
1801 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2902 feed_reverse_done (EV_A_ EV_PERIODIC);
1802 } 2903 }
1803} 2904}
1804 2905
2906/* simply recalculate all periodics */
2907/* TODO: maybe ensure that at least one event happens when jumping forward? */
1805static void noinline 2908static void noinline ecb_cold
1806periodics_reschedule (EV_P) 2909periodics_reschedule (EV_P)
1807{ 2910{
1808 int i; 2911 int i;
1809 2912
1810 /* adjust periodics after time jump */ 2913 /* adjust periodics after time jump */
1813 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]); 2916 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1814 2917
1815 if (w->reschedule_cb) 2918 if (w->reschedule_cb)
1816 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2919 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1817 else if (w->interval) 2920 else if (w->interval)
1818 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2921 periodic_recalc (EV_A_ w);
1819 2922
1820 ANHE_at_cache (periodics [i]); 2923 ANHE_at_cache (periodics [i]);
1821 } 2924 }
1822 2925
1823 reheap (periodics, periodiccnt); 2926 reheap (periodics, periodiccnt);
1824} 2927}
1825#endif 2928#endif
1826 2929
1827void inline_speed 2930/* adjust all timers by a given offset */
2931static void noinline ecb_cold
2932timers_reschedule (EV_P_ ev_tstamp adjust)
2933{
2934 int i;
2935
2936 for (i = 0; i < timercnt; ++i)
2937 {
2938 ANHE *he = timers + i + HEAP0;
2939 ANHE_w (*he)->at += adjust;
2940 ANHE_at_cache (*he);
2941 }
2942}
2943
2944/* fetch new monotonic and realtime times from the kernel */
2945/* also detect if there was a timejump, and act accordingly */
2946inline_speed void
1828time_update (EV_P_ ev_tstamp max_block) 2947time_update (EV_P_ ev_tstamp max_block)
1829{ 2948{
1830 int i;
1831
1832#if EV_USE_MONOTONIC 2949#if EV_USE_MONOTONIC
1833 if (expect_true (have_monotonic)) 2950 if (expect_true (have_monotonic))
1834 { 2951 {
2952 int i;
1835 ev_tstamp odiff = rtmn_diff; 2953 ev_tstamp odiff = rtmn_diff;
1836 2954
1837 mn_now = get_clock (); 2955 mn_now = get_clock ();
1838 2956
1839 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2957 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1855 * doesn't hurt either as we only do this on time-jumps or 2973 * doesn't hurt either as we only do this on time-jumps or
1856 * in the unlikely event of having been preempted here. 2974 * in the unlikely event of having been preempted here.
1857 */ 2975 */
1858 for (i = 4; --i; ) 2976 for (i = 4; --i; )
1859 { 2977 {
2978 ev_tstamp diff;
1860 rtmn_diff = ev_rt_now - mn_now; 2979 rtmn_diff = ev_rt_now - mn_now;
1861 2980
2981 diff = odiff - rtmn_diff;
2982
1862 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)) 2983 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1863 return; /* all is well */ 2984 return; /* all is well */
1864 2985
1865 ev_rt_now = ev_time (); 2986 ev_rt_now = ev_time ();
1866 mn_now = get_clock (); 2987 mn_now = get_clock ();
1867 now_floor = mn_now; 2988 now_floor = mn_now;
1868 } 2989 }
1869 2990
2991 /* no timer adjustment, as the monotonic clock doesn't jump */
2992 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1870# if EV_PERIODIC_ENABLE 2993# if EV_PERIODIC_ENABLE
1871 periodics_reschedule (EV_A); 2994 periodics_reschedule (EV_A);
1872# endif 2995# endif
1873 /* no timer adjustment, as the monotonic clock doesn't jump */
1874 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1875 } 2996 }
1876 else 2997 else
1877#endif 2998#endif
1878 { 2999 {
1879 ev_rt_now = ev_time (); 3000 ev_rt_now = ev_time ();
1880 3001
1881 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 3002 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1882 { 3003 {
3004 /* adjust timers. this is easy, as the offset is the same for all of them */
3005 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1883#if EV_PERIODIC_ENABLE 3006#if EV_PERIODIC_ENABLE
1884 periodics_reschedule (EV_A); 3007 periodics_reschedule (EV_A);
1885#endif 3008#endif
1886 /* adjust timers. this is easy, as the offset is the same for all of them */
1887 for (i = 0; i < timercnt; ++i)
1888 {
1889 ANHE *he = timers + i + HEAP0;
1890 ANHE_w (*he)->at += ev_rt_now - mn_now;
1891 ANHE_at_cache (*he);
1892 }
1893 } 3009 }
1894 3010
1895 mn_now = ev_rt_now; 3011 mn_now = ev_rt_now;
1896 } 3012 }
1897} 3013}
1898 3014
1899void 3015int
1900ev_ref (EV_P)
1901{
1902 ++activecnt;
1903}
1904
1905void
1906ev_unref (EV_P)
1907{
1908 --activecnt;
1909}
1910
1911static int loop_done;
1912
1913void
1914ev_loop (EV_P_ int flags) 3016ev_run (EV_P_ int flags)
1915{ 3017{
3018#if EV_FEATURE_API
3019 ++loop_depth;
3020#endif
3021
3022 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3023
1916 loop_done = EVUNLOOP_CANCEL; 3024 loop_done = EVBREAK_CANCEL;
1917 3025
1918 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3026 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1919 3027
1920 do 3028 do
1921 { 3029 {
1922#if EV_VERIFY >= 2 3030#if EV_VERIFY >= 2
1923 ev_loop_verify (EV_A); 3031 ev_verify (EV_A);
1924#endif 3032#endif
1925 3033
1926#ifndef _WIN32 3034#ifndef _WIN32
1927 if (expect_false (curpid)) /* penalise the forking check even more */ 3035 if (expect_false (curpid)) /* penalise the forking check even more */
1928 if (expect_false (getpid () != curpid)) 3036 if (expect_false (getpid () != curpid))
1936 /* we might have forked, so queue fork handlers */ 3044 /* we might have forked, so queue fork handlers */
1937 if (expect_false (postfork)) 3045 if (expect_false (postfork))
1938 if (forkcnt) 3046 if (forkcnt)
1939 { 3047 {
1940 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3048 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1941 call_pending (EV_A); 3049 EV_INVOKE_PENDING;
1942 } 3050 }
1943#endif 3051#endif
1944 3052
3053#if EV_PREPARE_ENABLE
1945 /* queue prepare watchers (and execute them) */ 3054 /* queue prepare watchers (and execute them) */
1946 if (expect_false (preparecnt)) 3055 if (expect_false (preparecnt))
1947 { 3056 {
1948 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3057 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1949 call_pending (EV_A); 3058 EV_INVOKE_PENDING;
1950 } 3059 }
3060#endif
1951 3061
1952 if (expect_false (!activecnt)) 3062 if (expect_false (loop_done))
1953 break; 3063 break;
1954 3064
1955 /* we might have forked, so reify kernel state if necessary */ 3065 /* we might have forked, so reify kernel state if necessary */
1956 if (expect_false (postfork)) 3066 if (expect_false (postfork))
1957 loop_fork (EV_A); 3067 loop_fork (EV_A);
1962 /* calculate blocking time */ 3072 /* calculate blocking time */
1963 { 3073 {
1964 ev_tstamp waittime = 0.; 3074 ev_tstamp waittime = 0.;
1965 ev_tstamp sleeptime = 0.; 3075 ev_tstamp sleeptime = 0.;
1966 3076
3077 /* remember old timestamp for io_blocktime calculation */
3078 ev_tstamp prev_mn_now = mn_now;
3079
3080 /* update time to cancel out callback processing overhead */
3081 time_update (EV_A_ 1e100);
3082
3083 /* from now on, we want a pipe-wake-up */
3084 pipe_write_wanted = 1;
3085
3086 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3087
1967 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3088 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1968 { 3089 {
1969 /* update time to cancel out callback processing overhead */
1970 time_update (EV_A_ 1e100);
1971
1972 waittime = MAX_BLOCKTIME; 3090 waittime = MAX_BLOCKTIME;
1973 3091
1974 if (timercnt) 3092 if (timercnt)
1975 { 3093 {
1976 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 3094 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1977 if (waittime > to) waittime = to; 3095 if (waittime > to) waittime = to;
1978 } 3096 }
1979 3097
1980#if EV_PERIODIC_ENABLE 3098#if EV_PERIODIC_ENABLE
1981 if (periodiccnt) 3099 if (periodiccnt)
1982 { 3100 {
1983 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 3101 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1984 if (waittime > to) waittime = to; 3102 if (waittime > to) waittime = to;
1985 } 3103 }
1986#endif 3104#endif
1987 3105
3106 /* don't let timeouts decrease the waittime below timeout_blocktime */
1988 if (expect_false (waittime < timeout_blocktime)) 3107 if (expect_false (waittime < timeout_blocktime))
1989 waittime = timeout_blocktime; 3108 waittime = timeout_blocktime;
1990 3109
1991 sleeptime = waittime - backend_fudge; 3110 /* at this point, we NEED to wait, so we have to ensure */
3111 /* to pass a minimum nonzero value to the backend */
3112 if (expect_false (waittime < backend_mintime))
3113 waittime = backend_mintime;
1992 3114
3115 /* extra check because io_blocktime is commonly 0 */
1993 if (expect_true (sleeptime > io_blocktime)) 3116 if (expect_false (io_blocktime))
1994 sleeptime = io_blocktime;
1995
1996 if (sleeptime)
1997 { 3117 {
3118 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3119
3120 if (sleeptime > waittime - backend_mintime)
3121 sleeptime = waittime - backend_mintime;
3122
3123 if (expect_true (sleeptime > 0.))
3124 {
1998 ev_sleep (sleeptime); 3125 ev_sleep (sleeptime);
1999 waittime -= sleeptime; 3126 waittime -= sleeptime;
3127 }
2000 } 3128 }
2001 } 3129 }
2002 3130
3131#if EV_FEATURE_API
2003 ++loop_count; 3132 ++loop_count;
3133#endif
3134 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2004 backend_poll (EV_A_ waittime); 3135 backend_poll (EV_A_ waittime);
3136 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3137
3138 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3139
3140 MEMORY_FENCE_ACQUIRE;
3141 if (pipe_write_skipped)
3142 {
3143 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3144 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3145 }
3146
2005 3147
2006 /* update ev_rt_now, do magic */ 3148 /* update ev_rt_now, do magic */
2007 time_update (EV_A_ waittime + sleeptime); 3149 time_update (EV_A_ waittime + sleeptime);
2008 } 3150 }
2009 3151
2016#if EV_IDLE_ENABLE 3158#if EV_IDLE_ENABLE
2017 /* queue idle watchers unless other events are pending */ 3159 /* queue idle watchers unless other events are pending */
2018 idle_reify (EV_A); 3160 idle_reify (EV_A);
2019#endif 3161#endif
2020 3162
3163#if EV_CHECK_ENABLE
2021 /* queue check watchers, to be executed first */ 3164 /* queue check watchers, to be executed first */
2022 if (expect_false (checkcnt)) 3165 if (expect_false (checkcnt))
2023 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3166 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3167#endif
2024 3168
2025 call_pending (EV_A); 3169 EV_INVOKE_PENDING;
2026 } 3170 }
2027 while (expect_true ( 3171 while (expect_true (
2028 activecnt 3172 activecnt
2029 && !loop_done 3173 && !loop_done
2030 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 3174 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2031 )); 3175 ));
2032 3176
2033 if (loop_done == EVUNLOOP_ONE) 3177 if (loop_done == EVBREAK_ONE)
2034 loop_done = EVUNLOOP_CANCEL; 3178 loop_done = EVBREAK_CANCEL;
3179
3180#if EV_FEATURE_API
3181 --loop_depth;
3182#endif
3183
3184 return activecnt;
2035} 3185}
2036 3186
2037void 3187void
2038ev_unloop (EV_P_ int how) 3188ev_break (EV_P_ int how) EV_THROW
2039{ 3189{
2040 loop_done = how; 3190 loop_done = how;
2041} 3191}
2042 3192
3193void
3194ev_ref (EV_P) EV_THROW
3195{
3196 ++activecnt;
3197}
3198
3199void
3200ev_unref (EV_P) EV_THROW
3201{
3202 --activecnt;
3203}
3204
3205void
3206ev_now_update (EV_P) EV_THROW
3207{
3208 time_update (EV_A_ 1e100);
3209}
3210
3211void
3212ev_suspend (EV_P) EV_THROW
3213{
3214 ev_now_update (EV_A);
3215}
3216
3217void
3218ev_resume (EV_P) EV_THROW
3219{
3220 ev_tstamp mn_prev = mn_now;
3221
3222 ev_now_update (EV_A);
3223 timers_reschedule (EV_A_ mn_now - mn_prev);
3224#if EV_PERIODIC_ENABLE
3225 /* TODO: really do this? */
3226 periodics_reschedule (EV_A);
3227#endif
3228}
3229
2043/*****************************************************************************/ 3230/*****************************************************************************/
3231/* singly-linked list management, used when the expected list length is short */
2044 3232
2045void inline_size 3233inline_size void
2046wlist_add (WL *head, WL elem) 3234wlist_add (WL *head, WL elem)
2047{ 3235{
2048 elem->next = *head; 3236 elem->next = *head;
2049 *head = elem; 3237 *head = elem;
2050} 3238}
2051 3239
2052void inline_size 3240inline_size void
2053wlist_del (WL *head, WL elem) 3241wlist_del (WL *head, WL elem)
2054{ 3242{
2055 while (*head) 3243 while (*head)
2056 { 3244 {
2057 if (*head == elem) 3245 if (expect_true (*head == elem))
2058 { 3246 {
2059 *head = elem->next; 3247 *head = elem->next;
2060 return; 3248 break;
2061 } 3249 }
2062 3250
2063 head = &(*head)->next; 3251 head = &(*head)->next;
2064 } 3252 }
2065} 3253}
2066 3254
2067void inline_speed 3255/* internal, faster, version of ev_clear_pending */
3256inline_speed void
2068clear_pending (EV_P_ W w) 3257clear_pending (EV_P_ W w)
2069{ 3258{
2070 if (w->pending) 3259 if (w->pending)
2071 { 3260 {
2072 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3261 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2073 w->pending = 0; 3262 w->pending = 0;
2074 } 3263 }
2075} 3264}
2076 3265
2077int 3266int
2078ev_clear_pending (EV_P_ void *w) 3267ev_clear_pending (EV_P_ void *w) EV_THROW
2079{ 3268{
2080 W w_ = (W)w; 3269 W w_ = (W)w;
2081 int pending = w_->pending; 3270 int pending = w_->pending;
2082 3271
2083 if (expect_true (pending)) 3272 if (expect_true (pending))
2084 { 3273 {
2085 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3274 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3275 p->w = (W)&pending_w;
2086 w_->pending = 0; 3276 w_->pending = 0;
2087 p->w = 0;
2088 return p->events; 3277 return p->events;
2089 } 3278 }
2090 else 3279 else
2091 return 0; 3280 return 0;
2092} 3281}
2093 3282
2094void inline_size 3283inline_size void
2095pri_adjust (EV_P_ W w) 3284pri_adjust (EV_P_ W w)
2096{ 3285{
2097 int pri = w->priority; 3286 int pri = ev_priority (w);
2098 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3287 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2099 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3288 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2100 w->priority = pri; 3289 ev_set_priority (w, pri);
2101} 3290}
2102 3291
2103void inline_speed 3292inline_speed void
2104ev_start (EV_P_ W w, int active) 3293ev_start (EV_P_ W w, int active)
2105{ 3294{
2106 pri_adjust (EV_A_ w); 3295 pri_adjust (EV_A_ w);
2107 w->active = active; 3296 w->active = active;
2108 ev_ref (EV_A); 3297 ev_ref (EV_A);
2109} 3298}
2110 3299
2111void inline_size 3300inline_size void
2112ev_stop (EV_P_ W w) 3301ev_stop (EV_P_ W w)
2113{ 3302{
2114 ev_unref (EV_A); 3303 ev_unref (EV_A);
2115 w->active = 0; 3304 w->active = 0;
2116} 3305}
2117 3306
2118/*****************************************************************************/ 3307/*****************************************************************************/
2119 3308
2120void noinline 3309void noinline
2121ev_io_start (EV_P_ ev_io *w) 3310ev_io_start (EV_P_ ev_io *w) EV_THROW
2122{ 3311{
2123 int fd = w->fd; 3312 int fd = w->fd;
2124 3313
2125 if (expect_false (ev_is_active (w))) 3314 if (expect_false (ev_is_active (w)))
2126 return; 3315 return;
2127 3316
2128 assert (("ev_io_start called with negative fd", fd >= 0)); 3317 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3318 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2129 3319
2130 EV_FREQUENT_CHECK; 3320 EV_FREQUENT_CHECK;
2131 3321
2132 ev_start (EV_A_ (W)w, 1); 3322 ev_start (EV_A_ (W)w, 1);
2133 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3323 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2134 wlist_add (&anfds[fd].head, (WL)w); 3324 wlist_add (&anfds[fd].head, (WL)w);
2135 3325
3326 /* common bug, apparently */
3327 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3328
2136 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3329 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2137 w->events &= ~EV_IOFDSET; 3330 w->events &= ~EV__IOFDSET;
2138 3331
2139 EV_FREQUENT_CHECK; 3332 EV_FREQUENT_CHECK;
2140} 3333}
2141 3334
2142void noinline 3335void noinline
2143ev_io_stop (EV_P_ ev_io *w) 3336ev_io_stop (EV_P_ ev_io *w) EV_THROW
2144{ 3337{
2145 clear_pending (EV_A_ (W)w); 3338 clear_pending (EV_A_ (W)w);
2146 if (expect_false (!ev_is_active (w))) 3339 if (expect_false (!ev_is_active (w)))
2147 return; 3340 return;
2148 3341
2149 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3342 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2150 3343
2151 EV_FREQUENT_CHECK; 3344 EV_FREQUENT_CHECK;
2152 3345
2153 wlist_del (&anfds[w->fd].head, (WL)w); 3346 wlist_del (&anfds[w->fd].head, (WL)w);
2154 ev_stop (EV_A_ (W)w); 3347 ev_stop (EV_A_ (W)w);
2155 3348
2156 fd_change (EV_A_ w->fd, 1); 3349 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2157 3350
2158 EV_FREQUENT_CHECK; 3351 EV_FREQUENT_CHECK;
2159} 3352}
2160 3353
2161void noinline 3354void noinline
2162ev_timer_start (EV_P_ ev_timer *w) 3355ev_timer_start (EV_P_ ev_timer *w) EV_THROW
2163{ 3356{
2164 if (expect_false (ev_is_active (w))) 3357 if (expect_false (ev_is_active (w)))
2165 return; 3358 return;
2166 3359
2167 ev_at (w) += mn_now; 3360 ev_at (w) += mn_now;
2168 3361
2169 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3362 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2170 3363
2171 EV_FREQUENT_CHECK; 3364 EV_FREQUENT_CHECK;
2172 3365
2173 ++timercnt; 3366 ++timercnt;
2174 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1); 3367 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2177 ANHE_at_cache (timers [ev_active (w)]); 3370 ANHE_at_cache (timers [ev_active (w)]);
2178 upheap (timers, ev_active (w)); 3371 upheap (timers, ev_active (w));
2179 3372
2180 EV_FREQUENT_CHECK; 3373 EV_FREQUENT_CHECK;
2181 3374
2182 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 3375 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2183} 3376}
2184 3377
2185void noinline 3378void noinline
2186ev_timer_stop (EV_P_ ev_timer *w) 3379ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
2187{ 3380{
2188 clear_pending (EV_A_ (W)w); 3381 clear_pending (EV_A_ (W)w);
2189 if (expect_false (!ev_is_active (w))) 3382 if (expect_false (!ev_is_active (w)))
2190 return; 3383 return;
2191 3384
2192 EV_FREQUENT_CHECK; 3385 EV_FREQUENT_CHECK;
2193 3386
2194 { 3387 {
2195 int active = ev_active (w); 3388 int active = ev_active (w);
2196 3389
2197 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 3390 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2198 3391
2199 --timercnt; 3392 --timercnt;
2200 3393
2201 if (expect_true (active < timercnt + HEAP0)) 3394 if (expect_true (active < timercnt + HEAP0))
2202 { 3395 {
2203 timers [active] = timers [timercnt + HEAP0]; 3396 timers [active] = timers [timercnt + HEAP0];
2204 adjustheap (timers, timercnt, active); 3397 adjustheap (timers, timercnt, active);
2205 } 3398 }
2206 } 3399 }
2207 3400
2208 EV_FREQUENT_CHECK;
2209
2210 ev_at (w) -= mn_now; 3401 ev_at (w) -= mn_now;
2211 3402
2212 ev_stop (EV_A_ (W)w); 3403 ev_stop (EV_A_ (W)w);
3404
3405 EV_FREQUENT_CHECK;
2213} 3406}
2214 3407
2215void noinline 3408void noinline
2216ev_timer_again (EV_P_ ev_timer *w) 3409ev_timer_again (EV_P_ ev_timer *w) EV_THROW
2217{ 3410{
2218 EV_FREQUENT_CHECK; 3411 EV_FREQUENT_CHECK;
3412
3413 clear_pending (EV_A_ (W)w);
2219 3414
2220 if (ev_is_active (w)) 3415 if (ev_is_active (w))
2221 { 3416 {
2222 if (w->repeat) 3417 if (w->repeat)
2223 { 3418 {
2235 } 3430 }
2236 3431
2237 EV_FREQUENT_CHECK; 3432 EV_FREQUENT_CHECK;
2238} 3433}
2239 3434
3435ev_tstamp
3436ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3437{
3438 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3439}
3440
2240#if EV_PERIODIC_ENABLE 3441#if EV_PERIODIC_ENABLE
2241void noinline 3442void noinline
2242ev_periodic_start (EV_P_ ev_periodic *w) 3443ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
2243{ 3444{
2244 if (expect_false (ev_is_active (w))) 3445 if (expect_false (ev_is_active (w)))
2245 return; 3446 return;
2246 3447
2247 if (w->reschedule_cb) 3448 if (w->reschedule_cb)
2248 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3449 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2249 else if (w->interval) 3450 else if (w->interval)
2250 { 3451 {
2251 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3452 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2252 /* this formula differs from the one in periodic_reify because we do not always round up */ 3453 periodic_recalc (EV_A_ w);
2253 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2254 } 3454 }
2255 else 3455 else
2256 ev_at (w) = w->offset; 3456 ev_at (w) = w->offset;
2257 3457
2258 EV_FREQUENT_CHECK; 3458 EV_FREQUENT_CHECK;
2264 ANHE_at_cache (periodics [ev_active (w)]); 3464 ANHE_at_cache (periodics [ev_active (w)]);
2265 upheap (periodics, ev_active (w)); 3465 upheap (periodics, ev_active (w));
2266 3466
2267 EV_FREQUENT_CHECK; 3467 EV_FREQUENT_CHECK;
2268 3468
2269 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 3469 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2270} 3470}
2271 3471
2272void noinline 3472void noinline
2273ev_periodic_stop (EV_P_ ev_periodic *w) 3473ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
2274{ 3474{
2275 clear_pending (EV_A_ (W)w); 3475 clear_pending (EV_A_ (W)w);
2276 if (expect_false (!ev_is_active (w))) 3476 if (expect_false (!ev_is_active (w)))
2277 return; 3477 return;
2278 3478
2279 EV_FREQUENT_CHECK; 3479 EV_FREQUENT_CHECK;
2280 3480
2281 { 3481 {
2282 int active = ev_active (w); 3482 int active = ev_active (w);
2283 3483
2284 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 3484 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2285 3485
2286 --periodiccnt; 3486 --periodiccnt;
2287 3487
2288 if (expect_true (active < periodiccnt + HEAP0)) 3488 if (expect_true (active < periodiccnt + HEAP0))
2289 { 3489 {
2290 periodics [active] = periodics [periodiccnt + HEAP0]; 3490 periodics [active] = periodics [periodiccnt + HEAP0];
2291 adjustheap (periodics, periodiccnt, active); 3491 adjustheap (periodics, periodiccnt, active);
2292 } 3492 }
2293 } 3493 }
2294 3494
2295 EV_FREQUENT_CHECK;
2296
2297 ev_stop (EV_A_ (W)w); 3495 ev_stop (EV_A_ (W)w);
3496
3497 EV_FREQUENT_CHECK;
2298} 3498}
2299 3499
2300void noinline 3500void noinline
2301ev_periodic_again (EV_P_ ev_periodic *w) 3501ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
2302{ 3502{
2303 /* TODO: use adjustheap and recalculation */ 3503 /* TODO: use adjustheap and recalculation */
2304 ev_periodic_stop (EV_A_ w); 3504 ev_periodic_stop (EV_A_ w);
2305 ev_periodic_start (EV_A_ w); 3505 ev_periodic_start (EV_A_ w);
2306} 3506}
2308 3508
2309#ifndef SA_RESTART 3509#ifndef SA_RESTART
2310# define SA_RESTART 0 3510# define SA_RESTART 0
2311#endif 3511#endif
2312 3512
3513#if EV_SIGNAL_ENABLE
3514
2313void noinline 3515void noinline
2314ev_signal_start (EV_P_ ev_signal *w) 3516ev_signal_start (EV_P_ ev_signal *w) EV_THROW
2315{ 3517{
2316#if EV_MULTIPLICITY
2317 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2318#endif
2319 if (expect_false (ev_is_active (w))) 3518 if (expect_false (ev_is_active (w)))
2320 return; 3519 return;
2321 3520
2322 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3521 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2323 3522
2324 evpipe_init (EV_A); 3523#if EV_MULTIPLICITY
3524 assert (("libev: a signal must not be attached to two different loops",
3525 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2325 3526
2326 EV_FREQUENT_CHECK; 3527 signals [w->signum - 1].loop = EV_A;
3528#endif
2327 3529
3530 EV_FREQUENT_CHECK;
3531
3532#if EV_USE_SIGNALFD
3533 if (sigfd == -2)
2328 { 3534 {
2329#ifndef _WIN32 3535 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2330 sigset_t full, prev; 3536 if (sigfd < 0 && errno == EINVAL)
2331 sigfillset (&full); 3537 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2332 sigprocmask (SIG_SETMASK, &full, &prev);
2333#endif
2334 3538
2335 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3539 if (sigfd >= 0)
3540 {
3541 fd_intern (sigfd); /* doing it twice will not hurt */
2336 3542
2337#ifndef _WIN32 3543 sigemptyset (&sigfd_set);
2338 sigprocmask (SIG_SETMASK, &prev, 0); 3544
2339#endif 3545 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3546 ev_set_priority (&sigfd_w, EV_MAXPRI);
3547 ev_io_start (EV_A_ &sigfd_w);
3548 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3549 }
2340 } 3550 }
3551
3552 if (sigfd >= 0)
3553 {
3554 /* TODO: check .head */
3555 sigaddset (&sigfd_set, w->signum);
3556 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3557
3558 signalfd (sigfd, &sigfd_set, 0);
3559 }
3560#endif
2341 3561
2342 ev_start (EV_A_ (W)w, 1); 3562 ev_start (EV_A_ (W)w, 1);
2343 wlist_add (&signals [w->signum - 1].head, (WL)w); 3563 wlist_add (&signals [w->signum - 1].head, (WL)w);
2344 3564
2345 if (!((WL)w)->next) 3565 if (!((WL)w)->next)
3566# if EV_USE_SIGNALFD
3567 if (sigfd < 0) /*TODO*/
3568# endif
2346 { 3569 {
2347#if _WIN32 3570# ifdef _WIN32
3571 evpipe_init (EV_A);
3572
2348 signal (w->signum, ev_sighandler); 3573 signal (w->signum, ev_sighandler);
2349#else 3574# else
2350 struct sigaction sa; 3575 struct sigaction sa;
3576
3577 evpipe_init (EV_A);
3578
2351 sa.sa_handler = ev_sighandler; 3579 sa.sa_handler = ev_sighandler;
2352 sigfillset (&sa.sa_mask); 3580 sigfillset (&sa.sa_mask);
2353 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3581 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2354 sigaction (w->signum, &sa, 0); 3582 sigaction (w->signum, &sa, 0);
3583
3584 if (origflags & EVFLAG_NOSIGMASK)
3585 {
3586 sigemptyset (&sa.sa_mask);
3587 sigaddset (&sa.sa_mask, w->signum);
3588 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3589 }
2355#endif 3590#endif
2356 } 3591 }
2357 3592
2358 EV_FREQUENT_CHECK; 3593 EV_FREQUENT_CHECK;
2359} 3594}
2360 3595
2361void noinline 3596void noinline
2362ev_signal_stop (EV_P_ ev_signal *w) 3597ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
2363{ 3598{
2364 clear_pending (EV_A_ (W)w); 3599 clear_pending (EV_A_ (W)w);
2365 if (expect_false (!ev_is_active (w))) 3600 if (expect_false (!ev_is_active (w)))
2366 return; 3601 return;
2367 3602
2369 3604
2370 wlist_del (&signals [w->signum - 1].head, (WL)w); 3605 wlist_del (&signals [w->signum - 1].head, (WL)w);
2371 ev_stop (EV_A_ (W)w); 3606 ev_stop (EV_A_ (W)w);
2372 3607
2373 if (!signals [w->signum - 1].head) 3608 if (!signals [w->signum - 1].head)
3609 {
3610#if EV_MULTIPLICITY
3611 signals [w->signum - 1].loop = 0; /* unattach from signal */
3612#endif
3613#if EV_USE_SIGNALFD
3614 if (sigfd >= 0)
3615 {
3616 sigset_t ss;
3617
3618 sigemptyset (&ss);
3619 sigaddset (&ss, w->signum);
3620 sigdelset (&sigfd_set, w->signum);
3621
3622 signalfd (sigfd, &sigfd_set, 0);
3623 sigprocmask (SIG_UNBLOCK, &ss, 0);
3624 }
3625 else
3626#endif
2374 signal (w->signum, SIG_DFL); 3627 signal (w->signum, SIG_DFL);
3628 }
2375 3629
2376 EV_FREQUENT_CHECK; 3630 EV_FREQUENT_CHECK;
2377} 3631}
3632
3633#endif
3634
3635#if EV_CHILD_ENABLE
2378 3636
2379void 3637void
2380ev_child_start (EV_P_ ev_child *w) 3638ev_child_start (EV_P_ ev_child *w) EV_THROW
2381{ 3639{
2382#if EV_MULTIPLICITY 3640#if EV_MULTIPLICITY
2383 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3641 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2384#endif 3642#endif
2385 if (expect_false (ev_is_active (w))) 3643 if (expect_false (ev_is_active (w)))
2386 return; 3644 return;
2387 3645
2388 EV_FREQUENT_CHECK; 3646 EV_FREQUENT_CHECK;
2389 3647
2390 ev_start (EV_A_ (W)w, 1); 3648 ev_start (EV_A_ (W)w, 1);
2391 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3649 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2392 3650
2393 EV_FREQUENT_CHECK; 3651 EV_FREQUENT_CHECK;
2394} 3652}
2395 3653
2396void 3654void
2397ev_child_stop (EV_P_ ev_child *w) 3655ev_child_stop (EV_P_ ev_child *w) EV_THROW
2398{ 3656{
2399 clear_pending (EV_A_ (W)w); 3657 clear_pending (EV_A_ (W)w);
2400 if (expect_false (!ev_is_active (w))) 3658 if (expect_false (!ev_is_active (w)))
2401 return; 3659 return;
2402 3660
2403 EV_FREQUENT_CHECK; 3661 EV_FREQUENT_CHECK;
2404 3662
2405 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3663 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2406 ev_stop (EV_A_ (W)w); 3664 ev_stop (EV_A_ (W)w);
2407 3665
2408 EV_FREQUENT_CHECK; 3666 EV_FREQUENT_CHECK;
2409} 3667}
3668
3669#endif
2410 3670
2411#if EV_STAT_ENABLE 3671#if EV_STAT_ENABLE
2412 3672
2413# ifdef _WIN32 3673# ifdef _WIN32
2414# undef lstat 3674# undef lstat
2415# define lstat(a,b) _stati64 (a,b) 3675# define lstat(a,b) _stati64 (a,b)
2416# endif 3676# endif
2417 3677
2418#define DEF_STAT_INTERVAL 5.0074891 3678#define DEF_STAT_INTERVAL 5.0074891
3679#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2419#define MIN_STAT_INTERVAL 0.1074891 3680#define MIN_STAT_INTERVAL 0.1074891
2420 3681
2421static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3682static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2422 3683
2423#if EV_USE_INOTIFY 3684#if EV_USE_INOTIFY
2424# define EV_INOTIFY_BUFSIZE 8192 3685
3686/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3687# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2425 3688
2426static void noinline 3689static void noinline
2427infy_add (EV_P_ ev_stat *w) 3690infy_add (EV_P_ ev_stat *w)
2428{ 3691{
2429 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3692 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2430 3693
2431 if (w->wd < 0) 3694 if (w->wd >= 0)
3695 {
3696 struct statfs sfs;
3697
3698 /* now local changes will be tracked by inotify, but remote changes won't */
3699 /* unless the filesystem is known to be local, we therefore still poll */
3700 /* also do poll on <2.6.25, but with normal frequency */
3701
3702 if (!fs_2625)
3703 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3704 else if (!statfs (w->path, &sfs)
3705 && (sfs.f_type == 0x1373 /* devfs */
3706 || sfs.f_type == 0xEF53 /* ext2/3 */
3707 || sfs.f_type == 0x3153464a /* jfs */
3708 || sfs.f_type == 0x52654973 /* reiser3 */
3709 || sfs.f_type == 0x01021994 /* tempfs */
3710 || sfs.f_type == 0x58465342 /* xfs */))
3711 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3712 else
3713 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2432 { 3714 }
2433 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3715 else
3716 {
3717 /* can't use inotify, continue to stat */
3718 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2434 3719
2435 /* monitor some parent directory for speedup hints */ 3720 /* if path is not there, monitor some parent directory for speedup hints */
2436 /* note that exceeding the hardcoded limit is not a correctness issue, */ 3721 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2437 /* but an efficiency issue only */ 3722 /* but an efficiency issue only */
2438 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3723 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2439 { 3724 {
2440 char path [4096]; 3725 char path [4096];
2441 strcpy (path, w->path); 3726 strcpy (path, w->path);
2445 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3730 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2446 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3731 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2447 3732
2448 char *pend = strrchr (path, '/'); 3733 char *pend = strrchr (path, '/');
2449 3734
2450 if (!pend) 3735 if (!pend || pend == path)
2451 break; /* whoops, no '/', complain to your admin */ 3736 break;
2452 3737
2453 *pend = 0; 3738 *pend = 0;
2454 w->wd = inotify_add_watch (fs_fd, path, mask); 3739 w->wd = inotify_add_watch (fs_fd, path, mask);
2455 } 3740 }
2456 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3741 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2457 } 3742 }
2458 } 3743 }
2459 else
2460 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2461 3744
2462 if (w->wd >= 0) 3745 if (w->wd >= 0)
2463 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3746 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3747
3748 /* now re-arm timer, if required */
3749 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3750 ev_timer_again (EV_A_ &w->timer);
3751 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2464} 3752}
2465 3753
2466static void noinline 3754static void noinline
2467infy_del (EV_P_ ev_stat *w) 3755infy_del (EV_P_ ev_stat *w)
2468{ 3756{
2471 3759
2472 if (wd < 0) 3760 if (wd < 0)
2473 return; 3761 return;
2474 3762
2475 w->wd = -2; 3763 w->wd = -2;
2476 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3764 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2477 wlist_del (&fs_hash [slot].head, (WL)w); 3765 wlist_del (&fs_hash [slot].head, (WL)w);
2478 3766
2479 /* remove this watcher, if others are watching it, they will rearm */ 3767 /* remove this watcher, if others are watching it, they will rearm */
2480 inotify_rm_watch (fs_fd, wd); 3768 inotify_rm_watch (fs_fd, wd);
2481} 3769}
2482 3770
2483static void noinline 3771static void noinline
2484infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3772infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2485{ 3773{
2486 if (slot < 0) 3774 if (slot < 0)
2487 /* overflow, need to check for all hahs slots */ 3775 /* overflow, need to check for all hash slots */
2488 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3776 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2489 infy_wd (EV_A_ slot, wd, ev); 3777 infy_wd (EV_A_ slot, wd, ev);
2490 else 3778 else
2491 { 3779 {
2492 WL w_; 3780 WL w_;
2493 3781
2494 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3782 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2495 { 3783 {
2496 ev_stat *w = (ev_stat *)w_; 3784 ev_stat *w = (ev_stat *)w_;
2497 w_ = w_->next; /* lets us remove this watcher and all before it */ 3785 w_ = w_->next; /* lets us remove this watcher and all before it */
2498 3786
2499 if (w->wd == wd || wd == -1) 3787 if (w->wd == wd || wd == -1)
2500 { 3788 {
2501 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3789 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2502 { 3790 {
3791 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2503 w->wd = -1; 3792 w->wd = -1;
2504 infy_add (EV_A_ w); /* re-add, no matter what */ 3793 infy_add (EV_A_ w); /* re-add, no matter what */
2505 } 3794 }
2506 3795
2507 stat_timer_cb (EV_A_ &w->timer, 0); 3796 stat_timer_cb (EV_A_ &w->timer, 0);
2512 3801
2513static void 3802static void
2514infy_cb (EV_P_ ev_io *w, int revents) 3803infy_cb (EV_P_ ev_io *w, int revents)
2515{ 3804{
2516 char buf [EV_INOTIFY_BUFSIZE]; 3805 char buf [EV_INOTIFY_BUFSIZE];
2517 struct inotify_event *ev = (struct inotify_event *)buf;
2518 int ofs; 3806 int ofs;
2519 int len = read (fs_fd, buf, sizeof (buf)); 3807 int len = read (fs_fd, buf, sizeof (buf));
2520 3808
2521 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3809 for (ofs = 0; ofs < len; )
3810 {
3811 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2522 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3812 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3813 ofs += sizeof (struct inotify_event) + ev->len;
3814 }
2523} 3815}
2524 3816
2525void inline_size 3817inline_size void ecb_cold
3818ev_check_2625 (EV_P)
3819{
3820 /* kernels < 2.6.25 are borked
3821 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3822 */
3823 if (ev_linux_version () < 0x020619)
3824 return;
3825
3826 fs_2625 = 1;
3827}
3828
3829inline_size int
3830infy_newfd (void)
3831{
3832#if defined IN_CLOEXEC && defined IN_NONBLOCK
3833 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3834 if (fd >= 0)
3835 return fd;
3836#endif
3837 return inotify_init ();
3838}
3839
3840inline_size void
2526infy_init (EV_P) 3841infy_init (EV_P)
2527{ 3842{
2528 if (fs_fd != -2) 3843 if (fs_fd != -2)
2529 return; 3844 return;
2530 3845
3846 fs_fd = -1;
3847
3848 ev_check_2625 (EV_A);
3849
2531 fs_fd = inotify_init (); 3850 fs_fd = infy_newfd ();
2532 3851
2533 if (fs_fd >= 0) 3852 if (fs_fd >= 0)
2534 { 3853 {
3854 fd_intern (fs_fd);
2535 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3855 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2536 ev_set_priority (&fs_w, EV_MAXPRI); 3856 ev_set_priority (&fs_w, EV_MAXPRI);
2537 ev_io_start (EV_A_ &fs_w); 3857 ev_io_start (EV_A_ &fs_w);
3858 ev_unref (EV_A);
2538 } 3859 }
2539} 3860}
2540 3861
2541void inline_size 3862inline_size void
2542infy_fork (EV_P) 3863infy_fork (EV_P)
2543{ 3864{
2544 int slot; 3865 int slot;
2545 3866
2546 if (fs_fd < 0) 3867 if (fs_fd < 0)
2547 return; 3868 return;
2548 3869
3870 ev_ref (EV_A);
3871 ev_io_stop (EV_A_ &fs_w);
2549 close (fs_fd); 3872 close (fs_fd);
2550 fs_fd = inotify_init (); 3873 fs_fd = infy_newfd ();
2551 3874
3875 if (fs_fd >= 0)
3876 {
3877 fd_intern (fs_fd);
3878 ev_io_set (&fs_w, fs_fd, EV_READ);
3879 ev_io_start (EV_A_ &fs_w);
3880 ev_unref (EV_A);
3881 }
3882
2552 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3883 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2553 { 3884 {
2554 WL w_ = fs_hash [slot].head; 3885 WL w_ = fs_hash [slot].head;
2555 fs_hash [slot].head = 0; 3886 fs_hash [slot].head = 0;
2556 3887
2557 while (w_) 3888 while (w_)
2562 w->wd = -1; 3893 w->wd = -1;
2563 3894
2564 if (fs_fd >= 0) 3895 if (fs_fd >= 0)
2565 infy_add (EV_A_ w); /* re-add, no matter what */ 3896 infy_add (EV_A_ w); /* re-add, no matter what */
2566 else 3897 else
3898 {
3899 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3900 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2567 ev_timer_start (EV_A_ &w->timer); 3901 ev_timer_again (EV_A_ &w->timer);
3902 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3903 }
2568 } 3904 }
2569
2570 } 3905 }
2571} 3906}
2572 3907
2573#endif 3908#endif
2574 3909
2577#else 3912#else
2578# define EV_LSTAT(p,b) lstat (p, b) 3913# define EV_LSTAT(p,b) lstat (p, b)
2579#endif 3914#endif
2580 3915
2581void 3916void
2582ev_stat_stat (EV_P_ ev_stat *w) 3917ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
2583{ 3918{
2584 if (lstat (w->path, &w->attr) < 0) 3919 if (lstat (w->path, &w->attr) < 0)
2585 w->attr.st_nlink = 0; 3920 w->attr.st_nlink = 0;
2586 else if (!w->attr.st_nlink) 3921 else if (!w->attr.st_nlink)
2587 w->attr.st_nlink = 1; 3922 w->attr.st_nlink = 1;
2590static void noinline 3925static void noinline
2591stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3926stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2592{ 3927{
2593 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3928 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2594 3929
2595 /* we copy this here each the time so that */ 3930 ev_statdata prev = w->attr;
2596 /* prev has the old value when the callback gets invoked */
2597 w->prev = w->attr;
2598 ev_stat_stat (EV_A_ w); 3931 ev_stat_stat (EV_A_ w);
2599 3932
2600 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3933 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2601 if ( 3934 if (
2602 w->prev.st_dev != w->attr.st_dev 3935 prev.st_dev != w->attr.st_dev
2603 || w->prev.st_ino != w->attr.st_ino 3936 || prev.st_ino != w->attr.st_ino
2604 || w->prev.st_mode != w->attr.st_mode 3937 || prev.st_mode != w->attr.st_mode
2605 || w->prev.st_nlink != w->attr.st_nlink 3938 || prev.st_nlink != w->attr.st_nlink
2606 || w->prev.st_uid != w->attr.st_uid 3939 || prev.st_uid != w->attr.st_uid
2607 || w->prev.st_gid != w->attr.st_gid 3940 || prev.st_gid != w->attr.st_gid
2608 || w->prev.st_rdev != w->attr.st_rdev 3941 || prev.st_rdev != w->attr.st_rdev
2609 || w->prev.st_size != w->attr.st_size 3942 || prev.st_size != w->attr.st_size
2610 || w->prev.st_atime != w->attr.st_atime 3943 || prev.st_atime != w->attr.st_atime
2611 || w->prev.st_mtime != w->attr.st_mtime 3944 || prev.st_mtime != w->attr.st_mtime
2612 || w->prev.st_ctime != w->attr.st_ctime 3945 || prev.st_ctime != w->attr.st_ctime
2613 ) { 3946 ) {
3947 /* we only update w->prev on actual differences */
3948 /* in case we test more often than invoke the callback, */
3949 /* to ensure that prev is always different to attr */
3950 w->prev = prev;
3951
2614 #if EV_USE_INOTIFY 3952 #if EV_USE_INOTIFY
3953 if (fs_fd >= 0)
3954 {
2615 infy_del (EV_A_ w); 3955 infy_del (EV_A_ w);
2616 infy_add (EV_A_ w); 3956 infy_add (EV_A_ w);
2617 ev_stat_stat (EV_A_ w); /* avoid race... */ 3957 ev_stat_stat (EV_A_ w); /* avoid race... */
3958 }
2618 #endif 3959 #endif
2619 3960
2620 ev_feed_event (EV_A_ w, EV_STAT); 3961 ev_feed_event (EV_A_ w, EV_STAT);
2621 } 3962 }
2622} 3963}
2623 3964
2624void 3965void
2625ev_stat_start (EV_P_ ev_stat *w) 3966ev_stat_start (EV_P_ ev_stat *w) EV_THROW
2626{ 3967{
2627 if (expect_false (ev_is_active (w))) 3968 if (expect_false (ev_is_active (w)))
2628 return; 3969 return;
2629 3970
2630 /* since we use memcmp, we need to clear any padding data etc. */
2631 memset (&w->prev, 0, sizeof (ev_statdata));
2632 memset (&w->attr, 0, sizeof (ev_statdata));
2633
2634 ev_stat_stat (EV_A_ w); 3971 ev_stat_stat (EV_A_ w);
2635 3972
3973 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2636 if (w->interval < MIN_STAT_INTERVAL) 3974 w->interval = MIN_STAT_INTERVAL;
2637 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2638 3975
2639 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3976 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2640 ev_set_priority (&w->timer, ev_priority (w)); 3977 ev_set_priority (&w->timer, ev_priority (w));
2641 3978
2642#if EV_USE_INOTIFY 3979#if EV_USE_INOTIFY
2643 infy_init (EV_A); 3980 infy_init (EV_A);
2644 3981
2645 if (fs_fd >= 0) 3982 if (fs_fd >= 0)
2646 infy_add (EV_A_ w); 3983 infy_add (EV_A_ w);
2647 else 3984 else
2648#endif 3985#endif
3986 {
2649 ev_timer_start (EV_A_ &w->timer); 3987 ev_timer_again (EV_A_ &w->timer);
3988 ev_unref (EV_A);
3989 }
2650 3990
2651 ev_start (EV_A_ (W)w, 1); 3991 ev_start (EV_A_ (W)w, 1);
2652 3992
2653 EV_FREQUENT_CHECK; 3993 EV_FREQUENT_CHECK;
2654} 3994}
2655 3995
2656void 3996void
2657ev_stat_stop (EV_P_ ev_stat *w) 3997ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
2658{ 3998{
2659 clear_pending (EV_A_ (W)w); 3999 clear_pending (EV_A_ (W)w);
2660 if (expect_false (!ev_is_active (w))) 4000 if (expect_false (!ev_is_active (w)))
2661 return; 4001 return;
2662 4002
2663 EV_FREQUENT_CHECK; 4003 EV_FREQUENT_CHECK;
2664 4004
2665#if EV_USE_INOTIFY 4005#if EV_USE_INOTIFY
2666 infy_del (EV_A_ w); 4006 infy_del (EV_A_ w);
2667#endif 4007#endif
4008
4009 if (ev_is_active (&w->timer))
4010 {
4011 ev_ref (EV_A);
2668 ev_timer_stop (EV_A_ &w->timer); 4012 ev_timer_stop (EV_A_ &w->timer);
4013 }
2669 4014
2670 ev_stop (EV_A_ (W)w); 4015 ev_stop (EV_A_ (W)w);
2671 4016
2672 EV_FREQUENT_CHECK; 4017 EV_FREQUENT_CHECK;
2673} 4018}
2674#endif 4019#endif
2675 4020
2676#if EV_IDLE_ENABLE 4021#if EV_IDLE_ENABLE
2677void 4022void
2678ev_idle_start (EV_P_ ev_idle *w) 4023ev_idle_start (EV_P_ ev_idle *w) EV_THROW
2679{ 4024{
2680 if (expect_false (ev_is_active (w))) 4025 if (expect_false (ev_is_active (w)))
2681 return; 4026 return;
2682 4027
2683 pri_adjust (EV_A_ (W)w); 4028 pri_adjust (EV_A_ (W)w);
2696 4041
2697 EV_FREQUENT_CHECK; 4042 EV_FREQUENT_CHECK;
2698} 4043}
2699 4044
2700void 4045void
2701ev_idle_stop (EV_P_ ev_idle *w) 4046ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
2702{ 4047{
2703 clear_pending (EV_A_ (W)w); 4048 clear_pending (EV_A_ (W)w);
2704 if (expect_false (!ev_is_active (w))) 4049 if (expect_false (!ev_is_active (w)))
2705 return; 4050 return;
2706 4051
2718 4063
2719 EV_FREQUENT_CHECK; 4064 EV_FREQUENT_CHECK;
2720} 4065}
2721#endif 4066#endif
2722 4067
4068#if EV_PREPARE_ENABLE
2723void 4069void
2724ev_prepare_start (EV_P_ ev_prepare *w) 4070ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
2725{ 4071{
2726 if (expect_false (ev_is_active (w))) 4072 if (expect_false (ev_is_active (w)))
2727 return; 4073 return;
2728 4074
2729 EV_FREQUENT_CHECK; 4075 EV_FREQUENT_CHECK;
2734 4080
2735 EV_FREQUENT_CHECK; 4081 EV_FREQUENT_CHECK;
2736} 4082}
2737 4083
2738void 4084void
2739ev_prepare_stop (EV_P_ ev_prepare *w) 4085ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
2740{ 4086{
2741 clear_pending (EV_A_ (W)w); 4087 clear_pending (EV_A_ (W)w);
2742 if (expect_false (!ev_is_active (w))) 4088 if (expect_false (!ev_is_active (w)))
2743 return; 4089 return;
2744 4090
2753 4099
2754 ev_stop (EV_A_ (W)w); 4100 ev_stop (EV_A_ (W)w);
2755 4101
2756 EV_FREQUENT_CHECK; 4102 EV_FREQUENT_CHECK;
2757} 4103}
4104#endif
2758 4105
4106#if EV_CHECK_ENABLE
2759void 4107void
2760ev_check_start (EV_P_ ev_check *w) 4108ev_check_start (EV_P_ ev_check *w) EV_THROW
2761{ 4109{
2762 if (expect_false (ev_is_active (w))) 4110 if (expect_false (ev_is_active (w)))
2763 return; 4111 return;
2764 4112
2765 EV_FREQUENT_CHECK; 4113 EV_FREQUENT_CHECK;
2770 4118
2771 EV_FREQUENT_CHECK; 4119 EV_FREQUENT_CHECK;
2772} 4120}
2773 4121
2774void 4122void
2775ev_check_stop (EV_P_ ev_check *w) 4123ev_check_stop (EV_P_ ev_check *w) EV_THROW
2776{ 4124{
2777 clear_pending (EV_A_ (W)w); 4125 clear_pending (EV_A_ (W)w);
2778 if (expect_false (!ev_is_active (w))) 4126 if (expect_false (!ev_is_active (w)))
2779 return; 4127 return;
2780 4128
2789 4137
2790 ev_stop (EV_A_ (W)w); 4138 ev_stop (EV_A_ (W)w);
2791 4139
2792 EV_FREQUENT_CHECK; 4140 EV_FREQUENT_CHECK;
2793} 4141}
4142#endif
2794 4143
2795#if EV_EMBED_ENABLE 4144#if EV_EMBED_ENABLE
2796void noinline 4145void noinline
2797ev_embed_sweep (EV_P_ ev_embed *w) 4146ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
2798{ 4147{
2799 ev_loop (w->other, EVLOOP_NONBLOCK); 4148 ev_run (w->other, EVRUN_NOWAIT);
2800} 4149}
2801 4150
2802static void 4151static void
2803embed_io_cb (EV_P_ ev_io *io, int revents) 4152embed_io_cb (EV_P_ ev_io *io, int revents)
2804{ 4153{
2805 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4154 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2806 4155
2807 if (ev_cb (w)) 4156 if (ev_cb (w))
2808 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4157 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2809 else 4158 else
2810 ev_loop (w->other, EVLOOP_NONBLOCK); 4159 ev_run (w->other, EVRUN_NOWAIT);
2811} 4160}
2812 4161
2813static void 4162static void
2814embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4163embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2815{ 4164{
2816 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4165 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2817 4166
2818 { 4167 {
2819 struct ev_loop *loop = w->other; 4168 EV_P = w->other;
2820 4169
2821 while (fdchangecnt) 4170 while (fdchangecnt)
2822 { 4171 {
2823 fd_reify (EV_A); 4172 fd_reify (EV_A);
2824 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4173 ev_run (EV_A_ EVRUN_NOWAIT);
2825 } 4174 }
2826 } 4175 }
4176}
4177
4178static void
4179embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4180{
4181 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4182
4183 ev_embed_stop (EV_A_ w);
4184
4185 {
4186 EV_P = w->other;
4187
4188 ev_loop_fork (EV_A);
4189 ev_run (EV_A_ EVRUN_NOWAIT);
4190 }
4191
4192 ev_embed_start (EV_A_ w);
2827} 4193}
2828 4194
2829#if 0 4195#if 0
2830static void 4196static void
2831embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4197embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2833 ev_idle_stop (EV_A_ idle); 4199 ev_idle_stop (EV_A_ idle);
2834} 4200}
2835#endif 4201#endif
2836 4202
2837void 4203void
2838ev_embed_start (EV_P_ ev_embed *w) 4204ev_embed_start (EV_P_ ev_embed *w) EV_THROW
2839{ 4205{
2840 if (expect_false (ev_is_active (w))) 4206 if (expect_false (ev_is_active (w)))
2841 return; 4207 return;
2842 4208
2843 { 4209 {
2844 struct ev_loop *loop = w->other; 4210 EV_P = w->other;
2845 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4211 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2846 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4212 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2847 } 4213 }
2848 4214
2849 EV_FREQUENT_CHECK; 4215 EV_FREQUENT_CHECK;
2850 4216
2853 4219
2854 ev_prepare_init (&w->prepare, embed_prepare_cb); 4220 ev_prepare_init (&w->prepare, embed_prepare_cb);
2855 ev_set_priority (&w->prepare, EV_MINPRI); 4221 ev_set_priority (&w->prepare, EV_MINPRI);
2856 ev_prepare_start (EV_A_ &w->prepare); 4222 ev_prepare_start (EV_A_ &w->prepare);
2857 4223
4224 ev_fork_init (&w->fork, embed_fork_cb);
4225 ev_fork_start (EV_A_ &w->fork);
4226
2858 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 4227 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2859 4228
2860 ev_start (EV_A_ (W)w, 1); 4229 ev_start (EV_A_ (W)w, 1);
2861 4230
2862 EV_FREQUENT_CHECK; 4231 EV_FREQUENT_CHECK;
2863} 4232}
2864 4233
2865void 4234void
2866ev_embed_stop (EV_P_ ev_embed *w) 4235ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
2867{ 4236{
2868 clear_pending (EV_A_ (W)w); 4237 clear_pending (EV_A_ (W)w);
2869 if (expect_false (!ev_is_active (w))) 4238 if (expect_false (!ev_is_active (w)))
2870 return; 4239 return;
2871 4240
2872 EV_FREQUENT_CHECK; 4241 EV_FREQUENT_CHECK;
2873 4242
2874 ev_io_stop (EV_A_ &w->io); 4243 ev_io_stop (EV_A_ &w->io);
2875 ev_prepare_stop (EV_A_ &w->prepare); 4244 ev_prepare_stop (EV_A_ &w->prepare);
4245 ev_fork_stop (EV_A_ &w->fork);
2876 4246
2877 ev_stop (EV_A_ (W)w); 4247 ev_stop (EV_A_ (W)w);
2878 4248
2879 EV_FREQUENT_CHECK; 4249 EV_FREQUENT_CHECK;
2880} 4250}
2881#endif 4251#endif
2882 4252
2883#if EV_FORK_ENABLE 4253#if EV_FORK_ENABLE
2884void 4254void
2885ev_fork_start (EV_P_ ev_fork *w) 4255ev_fork_start (EV_P_ ev_fork *w) EV_THROW
2886{ 4256{
2887 if (expect_false (ev_is_active (w))) 4257 if (expect_false (ev_is_active (w)))
2888 return; 4258 return;
2889 4259
2890 EV_FREQUENT_CHECK; 4260 EV_FREQUENT_CHECK;
2895 4265
2896 EV_FREQUENT_CHECK; 4266 EV_FREQUENT_CHECK;
2897} 4267}
2898 4268
2899void 4269void
2900ev_fork_stop (EV_P_ ev_fork *w) 4270ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
2901{ 4271{
2902 clear_pending (EV_A_ (W)w); 4272 clear_pending (EV_A_ (W)w);
2903 if (expect_false (!ev_is_active (w))) 4273 if (expect_false (!ev_is_active (w)))
2904 return; 4274 return;
2905 4275
2916 4286
2917 EV_FREQUENT_CHECK; 4287 EV_FREQUENT_CHECK;
2918} 4288}
2919#endif 4289#endif
2920 4290
4291#if EV_CLEANUP_ENABLE
4292void
4293ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4294{
4295 if (expect_false (ev_is_active (w)))
4296 return;
4297
4298 EV_FREQUENT_CHECK;
4299
4300 ev_start (EV_A_ (W)w, ++cleanupcnt);
4301 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4302 cleanups [cleanupcnt - 1] = w;
4303
4304 /* cleanup watchers should never keep a refcount on the loop */
4305 ev_unref (EV_A);
4306 EV_FREQUENT_CHECK;
4307}
4308
4309void
4310ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4311{
4312 clear_pending (EV_A_ (W)w);
4313 if (expect_false (!ev_is_active (w)))
4314 return;
4315
4316 EV_FREQUENT_CHECK;
4317 ev_ref (EV_A);
4318
4319 {
4320 int active = ev_active (w);
4321
4322 cleanups [active - 1] = cleanups [--cleanupcnt];
4323 ev_active (cleanups [active - 1]) = active;
4324 }
4325
4326 ev_stop (EV_A_ (W)w);
4327
4328 EV_FREQUENT_CHECK;
4329}
4330#endif
4331
2921#if EV_ASYNC_ENABLE 4332#if EV_ASYNC_ENABLE
2922void 4333void
2923ev_async_start (EV_P_ ev_async *w) 4334ev_async_start (EV_P_ ev_async *w) EV_THROW
2924{ 4335{
2925 if (expect_false (ev_is_active (w))) 4336 if (expect_false (ev_is_active (w)))
2926 return; 4337 return;
4338
4339 w->sent = 0;
2927 4340
2928 evpipe_init (EV_A); 4341 evpipe_init (EV_A);
2929 4342
2930 EV_FREQUENT_CHECK; 4343 EV_FREQUENT_CHECK;
2931 4344
2935 4348
2936 EV_FREQUENT_CHECK; 4349 EV_FREQUENT_CHECK;
2937} 4350}
2938 4351
2939void 4352void
2940ev_async_stop (EV_P_ ev_async *w) 4353ev_async_stop (EV_P_ ev_async *w) EV_THROW
2941{ 4354{
2942 clear_pending (EV_A_ (W)w); 4355 clear_pending (EV_A_ (W)w);
2943 if (expect_false (!ev_is_active (w))) 4356 if (expect_false (!ev_is_active (w)))
2944 return; 4357 return;
2945 4358
2956 4369
2957 EV_FREQUENT_CHECK; 4370 EV_FREQUENT_CHECK;
2958} 4371}
2959 4372
2960void 4373void
2961ev_async_send (EV_P_ ev_async *w) 4374ev_async_send (EV_P_ ev_async *w) EV_THROW
2962{ 4375{
2963 w->sent = 1; 4376 w->sent = 1;
2964 evpipe_write (EV_A_ &gotasync); 4377 evpipe_write (EV_A_ &async_pending);
2965} 4378}
2966#endif 4379#endif
2967 4380
2968/*****************************************************************************/ 4381/*****************************************************************************/
2969 4382
2979once_cb (EV_P_ struct ev_once *once, int revents) 4392once_cb (EV_P_ struct ev_once *once, int revents)
2980{ 4393{
2981 void (*cb)(int revents, void *arg) = once->cb; 4394 void (*cb)(int revents, void *arg) = once->cb;
2982 void *arg = once->arg; 4395 void *arg = once->arg;
2983 4396
2984 ev_io_stop (EV_A_ &once->io); 4397 ev_io_stop (EV_A_ &once->io);
2985 ev_timer_stop (EV_A_ &once->to); 4398 ev_timer_stop (EV_A_ &once->to);
2986 ev_free (once); 4399 ev_free (once);
2987 4400
2988 cb (revents, arg); 4401 cb (revents, arg);
2989} 4402}
2990 4403
2991static void 4404static void
2992once_cb_io (EV_P_ ev_io *w, int revents) 4405once_cb_io (EV_P_ ev_io *w, int revents)
2993{ 4406{
2994 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4407 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4408
4409 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2995} 4410}
2996 4411
2997static void 4412static void
2998once_cb_to (EV_P_ ev_timer *w, int revents) 4413once_cb_to (EV_P_ ev_timer *w, int revents)
2999{ 4414{
3000 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4415 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4416
4417 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3001} 4418}
3002 4419
3003void 4420void
3004ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4421ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
3005{ 4422{
3006 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4423 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3007 4424
3008 if (expect_false (!once)) 4425 if (expect_false (!once))
3009 { 4426 {
3010 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4427 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
3011 return; 4428 return;
3012 } 4429 }
3013 4430
3014 once->cb = cb; 4431 once->cb = cb;
3015 once->arg = arg; 4432 once->arg = arg;
3027 ev_timer_set (&once->to, timeout, 0.); 4444 ev_timer_set (&once->to, timeout, 0.);
3028 ev_timer_start (EV_A_ &once->to); 4445 ev_timer_start (EV_A_ &once->to);
3029 } 4446 }
3030} 4447}
3031 4448
4449/*****************************************************************************/
4450
4451#if EV_WALK_ENABLE
4452void ecb_cold
4453ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4454{
4455 int i, j;
4456 ev_watcher_list *wl, *wn;
4457
4458 if (types & (EV_IO | EV_EMBED))
4459 for (i = 0; i < anfdmax; ++i)
4460 for (wl = anfds [i].head; wl; )
4461 {
4462 wn = wl->next;
4463
4464#if EV_EMBED_ENABLE
4465 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4466 {
4467 if (types & EV_EMBED)
4468 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4469 }
4470 else
4471#endif
4472#if EV_USE_INOTIFY
4473 if (ev_cb ((ev_io *)wl) == infy_cb)
4474 ;
4475 else
4476#endif
4477 if ((ev_io *)wl != &pipe_w)
4478 if (types & EV_IO)
4479 cb (EV_A_ EV_IO, wl);
4480
4481 wl = wn;
4482 }
4483
4484 if (types & (EV_TIMER | EV_STAT))
4485 for (i = timercnt + HEAP0; i-- > HEAP0; )
4486#if EV_STAT_ENABLE
4487 /*TODO: timer is not always active*/
4488 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4489 {
4490 if (types & EV_STAT)
4491 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4492 }
4493 else
4494#endif
4495 if (types & EV_TIMER)
4496 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4497
4498#if EV_PERIODIC_ENABLE
4499 if (types & EV_PERIODIC)
4500 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4501 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4502#endif
4503
4504#if EV_IDLE_ENABLE
4505 if (types & EV_IDLE)
4506 for (j = NUMPRI; j--; )
4507 for (i = idlecnt [j]; i--; )
4508 cb (EV_A_ EV_IDLE, idles [j][i]);
4509#endif
4510
4511#if EV_FORK_ENABLE
4512 if (types & EV_FORK)
4513 for (i = forkcnt; i--; )
4514 if (ev_cb (forks [i]) != embed_fork_cb)
4515 cb (EV_A_ EV_FORK, forks [i]);
4516#endif
4517
4518#if EV_ASYNC_ENABLE
4519 if (types & EV_ASYNC)
4520 for (i = asynccnt; i--; )
4521 cb (EV_A_ EV_ASYNC, asyncs [i]);
4522#endif
4523
4524#if EV_PREPARE_ENABLE
4525 if (types & EV_PREPARE)
4526 for (i = preparecnt; i--; )
4527# if EV_EMBED_ENABLE
4528 if (ev_cb (prepares [i]) != embed_prepare_cb)
4529# endif
4530 cb (EV_A_ EV_PREPARE, prepares [i]);
4531#endif
4532
4533#if EV_CHECK_ENABLE
4534 if (types & EV_CHECK)
4535 for (i = checkcnt; i--; )
4536 cb (EV_A_ EV_CHECK, checks [i]);
4537#endif
4538
4539#if EV_SIGNAL_ENABLE
4540 if (types & EV_SIGNAL)
4541 for (i = 0; i < EV_NSIG - 1; ++i)
4542 for (wl = signals [i].head; wl; )
4543 {
4544 wn = wl->next;
4545 cb (EV_A_ EV_SIGNAL, wl);
4546 wl = wn;
4547 }
4548#endif
4549
4550#if EV_CHILD_ENABLE
4551 if (types & EV_CHILD)
4552 for (i = (EV_PID_HASHSIZE); i--; )
4553 for (wl = childs [i]; wl; )
4554 {
4555 wn = wl->next;
4556 cb (EV_A_ EV_CHILD, wl);
4557 wl = wn;
4558 }
4559#endif
4560/* EV_STAT 0x00001000 /* stat data changed */
4561/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4562}
4563#endif
4564
3032#if EV_MULTIPLICITY 4565#if EV_MULTIPLICITY
3033 #include "ev_wrap.h" 4566 #include "ev_wrap.h"
3034#endif 4567#endif
3035 4568
3036#ifdef __cplusplus
3037}
3038#endif
3039

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines