ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.281 by root, Mon Mar 16 21:15:06 2009 UTC vs.
Revision 1.441 by root, Wed May 30 15:45:40 2012 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
51 53
52# if HAVE_CLOCK_SYSCALL 54# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL 55# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1 56# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME 57# ifndef EV_USE_REALTIME
57# endif 59# endif
58# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1 61# define EV_USE_MONOTONIC 1
60# endif 62# endif
61# endif 63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
62# endif 66# endif
63 67
64# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
65# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
66# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
75# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
77# endif 81# endif
78# endif 82# endif
79 83
84# if HAVE_NANOSLEEP
80# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
81# if HAVE_NANOSLEEP
82# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
83# else 88# else
89# undef EV_USE_NANOSLEEP
84# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
85# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
86# endif 100# endif
87 101
102# if HAVE_POLL && HAVE_POLL_H
88# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
89# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
90# define EV_USE_SELECT 1
91# else
92# define EV_USE_SELECT 0
93# endif 105# endif
94# endif
95
96# ifndef EV_USE_POLL
97# if HAVE_POLL && HAVE_POLL_H
98# define EV_USE_POLL 1
99# else 106# else
107# undef EV_USE_POLL
100# define EV_USE_POLL 0 108# define EV_USE_POLL 0
101# endif
102# endif 109# endif
103 110
104# ifndef EV_USE_EPOLL
105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
106# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
107# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
108# define EV_USE_EPOLL 0
109# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
110# endif 118# endif
111 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
112# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
113# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
114# define EV_USE_KQUEUE 1
115# else
116# define EV_USE_KQUEUE 0
117# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
118# endif 127# endif
119 128
120# ifndef EV_USE_PORT
121# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
122# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
123# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
124# define EV_USE_PORT 0
125# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
126# endif 136# endif
127 137
128# ifndef EV_USE_INOTIFY
129# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
130# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
131# else
132# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
133# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
134# endif 145# endif
135 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
136# ifndef EV_USE_EVENTFD 148# ifndef EV_USE_SIGNALFD
137# if HAVE_EVENTFD 149# define EV_USE_SIGNALFD EV_FEATURE_OS
138# define EV_USE_EVENTFD 1
139# else
140# define EV_USE_EVENTFD 0
141# endif 150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
142# endif 163# endif
143 164
144#endif 165#endif
145 166
146#include <math.h>
147#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
148#include <fcntl.h> 169#include <fcntl.h>
149#include <stddef.h> 170#include <stddef.h>
150 171
151#include <stdio.h> 172#include <stdio.h>
152 173
153#include <assert.h> 174#include <assert.h>
154#include <errno.h> 175#include <errno.h>
155#include <sys/types.h> 176#include <sys/types.h>
156#include <time.h> 177#include <time.h>
178#include <limits.h>
157 179
158#include <signal.h> 180#include <signal.h>
159 181
160#ifdef EV_H 182#ifdef EV_H
161# include EV_H 183# include EV_H
162#else 184#else
163# include "ev.h" 185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
164#endif 197#endif
165 198
166#ifndef _WIN32 199#ifndef _WIN32
167# include <sys/time.h> 200# include <sys/time.h>
168# include <sys/wait.h> 201# include <sys/wait.h>
169# include <unistd.h> 202# include <unistd.h>
170#else 203#else
171# include <io.h> 204# include <io.h>
172# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
173# include <windows.h> 207# include <windows.h>
174# ifndef EV_SELECT_IS_WINSOCKET 208# ifndef EV_SELECT_IS_WINSOCKET
175# define EV_SELECT_IS_WINSOCKET 1 209# define EV_SELECT_IS_WINSOCKET 1
176# endif 210# endif
211# undef EV_AVOID_STDIO
177#endif 212#endif
213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
178 221
179/* this block tries to deduce configuration from header-defined symbols and defaults */ 222/* this block tries to deduce configuration from header-defined symbols and defaults */
223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# error "unable to find value for NSIG, please report"
247/* to make it compile regardless, just remove the above line, */
248/* but consider reporting it, too! :) */
249# define EV_NSIG 65
250#endif
251
252#ifndef EV_USE_FLOOR
253# define EV_USE_FLOOR 0
254#endif
180 255
181#ifndef EV_USE_CLOCK_SYSCALL 256#ifndef EV_USE_CLOCK_SYSCALL
182# if __linux && __GLIBC__ >= 2 257# if __linux && __GLIBC__ >= 2
183# define EV_USE_CLOCK_SYSCALL 1 258# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
184# else 259# else
185# define EV_USE_CLOCK_SYSCALL 0 260# define EV_USE_CLOCK_SYSCALL 0
186# endif 261# endif
187#endif 262#endif
188 263
189#ifndef EV_USE_MONOTONIC 264#ifndef EV_USE_MONOTONIC
190# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0 265# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
191# define EV_USE_MONOTONIC 1 266# define EV_USE_MONOTONIC EV_FEATURE_OS
192# else 267# else
193# define EV_USE_MONOTONIC 0 268# define EV_USE_MONOTONIC 0
194# endif 269# endif
195#endif 270#endif
196 271
198# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL 273# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
199#endif 274#endif
200 275
201#ifndef EV_USE_NANOSLEEP 276#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L 277# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1 278# define EV_USE_NANOSLEEP EV_FEATURE_OS
204# else 279# else
205# define EV_USE_NANOSLEEP 0 280# define EV_USE_NANOSLEEP 0
206# endif 281# endif
207#endif 282#endif
208 283
209#ifndef EV_USE_SELECT 284#ifndef EV_USE_SELECT
210# define EV_USE_SELECT 1 285# define EV_USE_SELECT EV_FEATURE_BACKENDS
211#endif 286#endif
212 287
213#ifndef EV_USE_POLL 288#ifndef EV_USE_POLL
214# ifdef _WIN32 289# ifdef _WIN32
215# define EV_USE_POLL 0 290# define EV_USE_POLL 0
216# else 291# else
217# define EV_USE_POLL 1 292# define EV_USE_POLL EV_FEATURE_BACKENDS
218# endif 293# endif
219#endif 294#endif
220 295
221#ifndef EV_USE_EPOLL 296#ifndef EV_USE_EPOLL
222# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 297# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
223# define EV_USE_EPOLL 1 298# define EV_USE_EPOLL EV_FEATURE_BACKENDS
224# else 299# else
225# define EV_USE_EPOLL 0 300# define EV_USE_EPOLL 0
226# endif 301# endif
227#endif 302#endif
228 303
234# define EV_USE_PORT 0 309# define EV_USE_PORT 0
235#endif 310#endif
236 311
237#ifndef EV_USE_INOTIFY 312#ifndef EV_USE_INOTIFY
238# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 313# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
239# define EV_USE_INOTIFY 1 314# define EV_USE_INOTIFY EV_FEATURE_OS
240# else 315# else
241# define EV_USE_INOTIFY 0 316# define EV_USE_INOTIFY 0
242# endif 317# endif
243#endif 318#endif
244 319
245#ifndef EV_PID_HASHSIZE 320#ifndef EV_PID_HASHSIZE
246# if EV_MINIMAL 321# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
247# define EV_PID_HASHSIZE 1
248# else
249# define EV_PID_HASHSIZE 16
250# endif
251#endif 322#endif
252 323
253#ifndef EV_INOTIFY_HASHSIZE 324#ifndef EV_INOTIFY_HASHSIZE
254# if EV_MINIMAL 325# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
255# define EV_INOTIFY_HASHSIZE 1
256# else
257# define EV_INOTIFY_HASHSIZE 16
258# endif
259#endif 326#endif
260 327
261#ifndef EV_USE_EVENTFD 328#ifndef EV_USE_EVENTFD
262# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 329# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
263# define EV_USE_EVENTFD 1 330# define EV_USE_EVENTFD EV_FEATURE_OS
264# else 331# else
265# define EV_USE_EVENTFD 0 332# define EV_USE_EVENTFD 0
333# endif
334#endif
335
336#ifndef EV_USE_SIGNALFD
337# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
338# define EV_USE_SIGNALFD EV_FEATURE_OS
339# else
340# define EV_USE_SIGNALFD 0
266# endif 341# endif
267#endif 342#endif
268 343
269#if 0 /* debugging */ 344#if 0 /* debugging */
270# define EV_VERIFY 3 345# define EV_VERIFY 3
271# define EV_USE_4HEAP 1 346# define EV_USE_4HEAP 1
272# define EV_HEAP_CACHE_AT 1 347# define EV_HEAP_CACHE_AT 1
273#endif 348#endif
274 349
275#ifndef EV_VERIFY 350#ifndef EV_VERIFY
276# define EV_VERIFY !EV_MINIMAL 351# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
277#endif 352#endif
278 353
279#ifndef EV_USE_4HEAP 354#ifndef EV_USE_4HEAP
280# define EV_USE_4HEAP !EV_MINIMAL 355# define EV_USE_4HEAP EV_FEATURE_DATA
281#endif 356#endif
282 357
283#ifndef EV_HEAP_CACHE_AT 358#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL 359# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
360#endif
361
362/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
363/* which makes programs even slower. might work on other unices, too. */
364#if EV_USE_CLOCK_SYSCALL
365# include <sys/syscall.h>
366# ifdef SYS_clock_gettime
367# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
368# undef EV_USE_MONOTONIC
369# define EV_USE_MONOTONIC 1
370# else
371# undef EV_USE_CLOCK_SYSCALL
372# define EV_USE_CLOCK_SYSCALL 0
373# endif
285#endif 374#endif
286 375
287/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 376/* this block fixes any misconfiguration where we know we run into trouble otherwise */
377
378#ifdef _AIX
379/* AIX has a completely broken poll.h header */
380# undef EV_USE_POLL
381# define EV_USE_POLL 0
382#endif
288 383
289#ifndef CLOCK_MONOTONIC 384#ifndef CLOCK_MONOTONIC
290# undef EV_USE_MONOTONIC 385# undef EV_USE_MONOTONIC
291# define EV_USE_MONOTONIC 0 386# define EV_USE_MONOTONIC 0
292#endif 387#endif
300# undef EV_USE_INOTIFY 395# undef EV_USE_INOTIFY
301# define EV_USE_INOTIFY 0 396# define EV_USE_INOTIFY 0
302#endif 397#endif
303 398
304#if !EV_USE_NANOSLEEP 399#if !EV_USE_NANOSLEEP
305# ifndef _WIN32 400/* hp-ux has it in sys/time.h, which we unconditionally include above */
401# if !defined _WIN32 && !defined __hpux
306# include <sys/select.h> 402# include <sys/select.h>
307# endif 403# endif
308#endif 404#endif
309 405
310#if EV_USE_INOTIFY 406#if EV_USE_INOTIFY
311# include <sys/utsname.h>
312# include <sys/statfs.h> 407# include <sys/statfs.h>
313# include <sys/inotify.h> 408# include <sys/inotify.h>
314/* some very old inotify.h headers don't have IN_DONT_FOLLOW */ 409/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
315# ifndef IN_DONT_FOLLOW 410# ifndef IN_DONT_FOLLOW
316# undef EV_USE_INOTIFY 411# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0 412# define EV_USE_INOTIFY 0
318# endif 413# endif
319#endif 414#endif
320 415
321#if EV_SELECT_IS_WINSOCKET
322# include <winsock.h>
323#endif
324
325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
331# define EV_USE_MONOTONIC 1
332#endif
333
334#if EV_USE_EVENTFD 416#if EV_USE_EVENTFD
335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336# include <stdint.h> 418# include <stdint.h>
337# ifdef __cplusplus 419# ifndef EFD_NONBLOCK
338extern "C" { 420# define EFD_NONBLOCK O_NONBLOCK
339# endif 421# endif
340int eventfd (unsigned int initval, int flags); 422# ifndef EFD_CLOEXEC
341# ifdef __cplusplus 423# ifdef O_CLOEXEC
342} 424# define EFD_CLOEXEC O_CLOEXEC
425# else
426# define EFD_CLOEXEC 02000000
427# endif
343# endif 428# endif
429EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
430#endif
431
432#if EV_USE_SIGNALFD
433/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
434# include <stdint.h>
435# ifndef SFD_NONBLOCK
436# define SFD_NONBLOCK O_NONBLOCK
437# endif
438# ifndef SFD_CLOEXEC
439# ifdef O_CLOEXEC
440# define SFD_CLOEXEC O_CLOEXEC
441# else
442# define SFD_CLOEXEC 02000000
443# endif
444# endif
445EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
446
447struct signalfd_siginfo
448{
449 uint32_t ssi_signo;
450 char pad[128 - sizeof (uint32_t)];
451};
344#endif 452#endif
345 453
346/**/ 454/**/
347 455
348#if EV_VERIFY >= 3 456#if EV_VERIFY >= 3
349# define EV_FREQUENT_CHECK ev_loop_verify (EV_A) 457# define EV_FREQUENT_CHECK ev_verify (EV_A)
350#else 458#else
351# define EV_FREQUENT_CHECK do { } while (0) 459# define EV_FREQUENT_CHECK do { } while (0)
352#endif 460#endif
353 461
354/* 462/*
355 * This is used to avoid floating point rounding problems. 463 * This is used to work around floating point rounding problems.
356 * It is added to ev_rt_now when scheduling periodics
357 * to ensure progress, time-wise, even when rounding
358 * errors are against us.
359 * This value is good at least till the year 4000. 464 * This value is good at least till the year 4000.
360 * Better solutions welcome.
361 */ 465 */
362#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 466#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
467/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
363 468
364#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 469#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
365#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 470#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
366/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
367 471
472#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
473#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
474
475/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
476/* ECB.H BEGIN */
477/*
478 * libecb - http://software.schmorp.de/pkg/libecb
479 *
480 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
481 * Copyright (©) 2011 Emanuele Giaquinta
482 * All rights reserved.
483 *
484 * Redistribution and use in source and binary forms, with or without modifica-
485 * tion, are permitted provided that the following conditions are met:
486 *
487 * 1. Redistributions of source code must retain the above copyright notice,
488 * this list of conditions and the following disclaimer.
489 *
490 * 2. Redistributions in binary form must reproduce the above copyright
491 * notice, this list of conditions and the following disclaimer in the
492 * documentation and/or other materials provided with the distribution.
493 *
494 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
495 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
496 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
497 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
498 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
499 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
500 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
501 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
502 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
503 * OF THE POSSIBILITY OF SUCH DAMAGE.
504 */
505
506#ifndef ECB_H
507#define ECB_H
508
509/* 16 bits major, 16 bits minor */
510#define ECB_VERSION 0x00010001
511
512#ifdef _WIN32
513 typedef signed char int8_t;
514 typedef unsigned char uint8_t;
515 typedef signed short int16_t;
516 typedef unsigned short uint16_t;
517 typedef signed int int32_t;
518 typedef unsigned int uint32_t;
368#if __GNUC__ >= 4 519 #if __GNUC__
369# define expect(expr,value) __builtin_expect ((expr),(value)) 520 typedef signed long long int64_t;
370# define noinline __attribute__ ((noinline)) 521 typedef unsigned long long uint64_t;
522 #else /* _MSC_VER || __BORLANDC__ */
523 typedef signed __int64 int64_t;
524 typedef unsigned __int64 uint64_t;
525 #endif
526 #ifdef _WIN64
527 #define ECB_PTRSIZE 8
528 typedef uint64_t uintptr_t;
529 typedef int64_t intptr_t;
530 #else
531 #define ECB_PTRSIZE 4
532 typedef uint32_t uintptr_t;
533 typedef int32_t intptr_t;
534 #endif
535 typedef intptr_t ptrdiff_t;
371#else 536#else
372# define expect(expr,value) (expr) 537 #include <inttypes.h>
373# define noinline 538 #if UINTMAX_MAX > 0xffffffffU
374# if __STDC_VERSION__ < 199901L && __GNUC__ < 2 539 #define ECB_PTRSIZE 8
375# define inline 540 #else
541 #define ECB_PTRSIZE 4
542 #endif
376# endif 543#endif
544
545/* many compilers define _GNUC_ to some versions but then only implement
546 * what their idiot authors think are the "more important" extensions,
547 * causing enormous grief in return for some better fake benchmark numbers.
548 * or so.
549 * we try to detect these and simply assume they are not gcc - if they have
550 * an issue with that they should have done it right in the first place.
551 */
552#ifndef ECB_GCC_VERSION
553 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
554 #define ECB_GCC_VERSION(major,minor) 0
555 #else
556 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
377#endif 557 #endif
558#endif
378 559
560#define ECB_C (__STDC__+0) /* this assumes that __STDC__ is either empty or a number */
561#define ECB_C99 (__STDC_VERSION__ >= 199901L)
562#define ECB_C11 (__STDC_VERSION__ >= 201112L)
563#define ECB_CPP (__cplusplus+0)
564#define ECB_CPP98 (__cplusplus >= 199711L)
565#define ECB_CPP11 (__cplusplus >= 201103L)
566
567/*****************************************************************************/
568
569/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
570/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
571
572#if ECB_NO_THREADS
573 #define ECB_NO_SMP 1
574#endif
575
576#if ECB_NO_SMP
577 #define ECB_MEMORY_FENCE do { } while (0)
578#endif
579
580#ifndef ECB_MEMORY_FENCE
581 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
582 #if __i386 || __i386__
583 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
584 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
585 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
586 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
587 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
588 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
589 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
590 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
591 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
592 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
593 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
594 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
595 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
596 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
597 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
598 #elif __sparc || __sparc__
599 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
600 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
601 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
602 #elif defined __s390__ || defined __s390x__
603 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
604 #elif defined __mips__
605 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
606 #elif defined __alpha__
607 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
608 #elif defined __hppa__
609 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
610 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
611 #elif defined __ia64__
612 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
613 #endif
614 #endif
615#endif
616
617#ifndef ECB_MEMORY_FENCE
618 #if ECB_GCC_VERSION(4,7)
619 /* see comment below about the C11 memory model. in short - avoid */
620 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
621 #elif defined __clang && __has_feature (cxx_atomic)
622 /* see above */
623 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
624 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
625 #define ECB_MEMORY_FENCE __sync_synchronize ()
626 #elif _MSC_VER >= 1400 /* VC++ 2005 */
627 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
628 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
629 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
630 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
631 #elif defined _WIN32
632 #include <WinNT.h>
633 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
634 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
635 #include <mbarrier.h>
636 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
637 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
638 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
639 #elif __xlC__
640 #define ECB_MEMORY_FENCE __sync ()
641 #endif
642#endif
643
644#ifndef ECB_MEMORY_FENCE
645 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
646 /* we assume that these memory fences work on all variables/all memory accesses, */
647 /* not just C11 atomics and atomic accesses */
648 #include <stdatomic.h>
649 /* unfortunately, the C11 memory model seems to be very limited, and unable to express */
650 /* simple barrier semantics. That means we need to take out thor's hammer. */
651 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
652 #endif
653#endif
654
655#ifndef ECB_MEMORY_FENCE
656 #if !ECB_AVOID_PTHREADS
657 /*
658 * if you get undefined symbol references to pthread_mutex_lock,
659 * or failure to find pthread.h, then you should implement
660 * the ECB_MEMORY_FENCE operations for your cpu/compiler
661 * OR provide pthread.h and link against the posix thread library
662 * of your system.
663 */
664 #include <pthread.h>
665 #define ECB_NEEDS_PTHREADS 1
666 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
667
668 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
669 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
670 #endif
671#endif
672
673#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
674 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
675#endif
676
677#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
678 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
679#endif
680
681/*****************************************************************************/
682
683#if __cplusplus
684 #define ecb_inline static inline
685#elif ECB_GCC_VERSION(2,5)
686 #define ecb_inline static __inline__
687#elif ECB_C99
688 #define ecb_inline static inline
689#else
690 #define ecb_inline static
691#endif
692
693#if ECB_GCC_VERSION(3,3)
694 #define ecb_restrict __restrict__
695#elif ECB_C99
696 #define ecb_restrict restrict
697#else
698 #define ecb_restrict
699#endif
700
701typedef int ecb_bool;
702
703#define ECB_CONCAT_(a, b) a ## b
704#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
705#define ECB_STRINGIFY_(a) # a
706#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
707
708#define ecb_function_ ecb_inline
709
710#if ECB_GCC_VERSION(3,1)
711 #define ecb_attribute(attrlist) __attribute__(attrlist)
712 #define ecb_is_constant(expr) __builtin_constant_p (expr)
713 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
714 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
715#else
716 #define ecb_attribute(attrlist)
717 #define ecb_is_constant(expr) 0
718 #define ecb_expect(expr,value) (expr)
719 #define ecb_prefetch(addr,rw,locality)
720#endif
721
722/* no emulation for ecb_decltype */
723#if ECB_GCC_VERSION(4,5)
724 #define ecb_decltype(x) __decltype(x)
725#elif ECB_GCC_VERSION(3,0)
726 #define ecb_decltype(x) __typeof(x)
727#endif
728
729#define ecb_noinline ecb_attribute ((__noinline__))
730#define ecb_unused ecb_attribute ((__unused__))
731#define ecb_const ecb_attribute ((__const__))
732#define ecb_pure ecb_attribute ((__pure__))
733
734#if ECB_C11
735 #define ecb_noreturn _Noreturn
736#else
737 #define ecb_noreturn ecb_attribute ((__noreturn__))
738#endif
739
740#if ECB_GCC_VERSION(4,3)
741 #define ecb_artificial ecb_attribute ((__artificial__))
742 #define ecb_hot ecb_attribute ((__hot__))
743 #define ecb_cold ecb_attribute ((__cold__))
744#else
745 #define ecb_artificial
746 #define ecb_hot
747 #define ecb_cold
748#endif
749
750/* put around conditional expressions if you are very sure that the */
751/* expression is mostly true or mostly false. note that these return */
752/* booleans, not the expression. */
379#define expect_false(expr) expect ((expr) != 0, 0) 753#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
380#define expect_true(expr) expect ((expr) != 0, 1) 754#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
755/* for compatibility to the rest of the world */
756#define ecb_likely(expr) ecb_expect_true (expr)
757#define ecb_unlikely(expr) ecb_expect_false (expr)
758
759/* count trailing zero bits and count # of one bits */
760#if ECB_GCC_VERSION(3,4)
761 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
762 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
763 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
764 #define ecb_ctz32(x) __builtin_ctz (x)
765 #define ecb_ctz64(x) __builtin_ctzll (x)
766 #define ecb_popcount32(x) __builtin_popcount (x)
767 /* no popcountll */
768#else
769 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
770 ecb_function_ int
771 ecb_ctz32 (uint32_t x)
772 {
773 int r = 0;
774
775 x &= ~x + 1; /* this isolates the lowest bit */
776
777#if ECB_branchless_on_i386
778 r += !!(x & 0xaaaaaaaa) << 0;
779 r += !!(x & 0xcccccccc) << 1;
780 r += !!(x & 0xf0f0f0f0) << 2;
781 r += !!(x & 0xff00ff00) << 3;
782 r += !!(x & 0xffff0000) << 4;
783#else
784 if (x & 0xaaaaaaaa) r += 1;
785 if (x & 0xcccccccc) r += 2;
786 if (x & 0xf0f0f0f0) r += 4;
787 if (x & 0xff00ff00) r += 8;
788 if (x & 0xffff0000) r += 16;
789#endif
790
791 return r;
792 }
793
794 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
795 ecb_function_ int
796 ecb_ctz64 (uint64_t x)
797 {
798 int shift = x & 0xffffffffU ? 0 : 32;
799 return ecb_ctz32 (x >> shift) + shift;
800 }
801
802 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
803 ecb_function_ int
804 ecb_popcount32 (uint32_t x)
805 {
806 x -= (x >> 1) & 0x55555555;
807 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
808 x = ((x >> 4) + x) & 0x0f0f0f0f;
809 x *= 0x01010101;
810
811 return x >> 24;
812 }
813
814 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
815 ecb_function_ int ecb_ld32 (uint32_t x)
816 {
817 int r = 0;
818
819 if (x >> 16) { x >>= 16; r += 16; }
820 if (x >> 8) { x >>= 8; r += 8; }
821 if (x >> 4) { x >>= 4; r += 4; }
822 if (x >> 2) { x >>= 2; r += 2; }
823 if (x >> 1) { r += 1; }
824
825 return r;
826 }
827
828 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
829 ecb_function_ int ecb_ld64 (uint64_t x)
830 {
831 int r = 0;
832
833 if (x >> 32) { x >>= 32; r += 32; }
834
835 return r + ecb_ld32 (x);
836 }
837#endif
838
839ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
840ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
841ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
842ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
843
844ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
845ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
846{
847 return ( (x * 0x0802U & 0x22110U)
848 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
849}
850
851ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
852ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
853{
854 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
855 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
856 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
857 x = ( x >> 8 ) | ( x << 8);
858
859 return x;
860}
861
862ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
863ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
864{
865 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
866 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
867 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
868 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
869 x = ( x >> 16 ) | ( x << 16);
870
871 return x;
872}
873
874/* popcount64 is only available on 64 bit cpus as gcc builtin */
875/* so for this version we are lazy */
876ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
877ecb_function_ int
878ecb_popcount64 (uint64_t x)
879{
880 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
881}
882
883ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
884ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
885ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
886ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
887ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
888ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
889ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
890ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
891
892ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
893ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
894ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
895ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
896ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
897ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
898ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
899ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
900
901#if ECB_GCC_VERSION(4,3)
902 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
903 #define ecb_bswap32(x) __builtin_bswap32 (x)
904 #define ecb_bswap64(x) __builtin_bswap64 (x)
905#else
906 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
907 ecb_function_ uint16_t
908 ecb_bswap16 (uint16_t x)
909 {
910 return ecb_rotl16 (x, 8);
911 }
912
913 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
914 ecb_function_ uint32_t
915 ecb_bswap32 (uint32_t x)
916 {
917 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
918 }
919
920 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
921 ecb_function_ uint64_t
922 ecb_bswap64 (uint64_t x)
923 {
924 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
925 }
926#endif
927
928#if ECB_GCC_VERSION(4,5)
929 #define ecb_unreachable() __builtin_unreachable ()
930#else
931 /* this seems to work fine, but gcc always emits a warning for it :/ */
932 ecb_inline void ecb_unreachable (void) ecb_noreturn;
933 ecb_inline void ecb_unreachable (void) { }
934#endif
935
936/* try to tell the compiler that some condition is definitely true */
937#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
938
939ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
940ecb_inline unsigned char
941ecb_byteorder_helper (void)
942{
943 const uint32_t u = 0x11223344;
944 return *(unsigned char *)&u;
945}
946
947ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
948ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
949ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
950ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
951
952#if ECB_GCC_VERSION(3,0) || ECB_C99
953 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
954#else
955 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
956#endif
957
958#if __cplusplus
959 template<typename T>
960 static inline T ecb_div_rd (T val, T div)
961 {
962 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
963 }
964 template<typename T>
965 static inline T ecb_div_ru (T val, T div)
966 {
967 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
968 }
969#else
970 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
971 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
972#endif
973
974#if ecb_cplusplus_does_not_suck
975 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
976 template<typename T, int N>
977 static inline int ecb_array_length (const T (&arr)[N])
978 {
979 return N;
980 }
981#else
982 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
983#endif
984
985#endif
986
987/* ECB.H END */
988
989#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
990/* if your architecture doesn't need memory fences, e.g. because it is
991 * single-cpu/core, or if you use libev in a project that doesn't use libev
992 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
993 * libev, in which cases the memory fences become nops.
994 * alternatively, you can remove this #error and link against libpthread,
995 * which will then provide the memory fences.
996 */
997# error "memory fences not defined for your architecture, please report"
998#endif
999
1000#ifndef ECB_MEMORY_FENCE
1001# define ECB_MEMORY_FENCE do { } while (0)
1002# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1003# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1004#endif
1005
1006#define expect_false(cond) ecb_expect_false (cond)
1007#define expect_true(cond) ecb_expect_true (cond)
1008#define noinline ecb_noinline
1009
381#define inline_size static inline 1010#define inline_size ecb_inline
382 1011
383#if EV_MINIMAL 1012#if EV_FEATURE_CODE
1013# define inline_speed ecb_inline
1014#else
384# define inline_speed static noinline 1015# define inline_speed static noinline
1016#endif
1017
1018#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1019
1020#if EV_MINPRI == EV_MAXPRI
1021# define ABSPRI(w) (((W)w), 0)
385#else 1022#else
386# define inline_speed static inline
387#endif
388
389#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
390#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1023# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1024#endif
391 1025
392#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1026#define EMPTY /* required for microsofts broken pseudo-c compiler */
393#define EMPTY2(a,b) /* used to suppress some warnings */ 1027#define EMPTY2(a,b) /* used to suppress some warnings */
394 1028
395typedef ev_watcher *W; 1029typedef ev_watcher *W;
399#define ev_active(w) ((W)(w))->active 1033#define ev_active(w) ((W)(w))->active
400#define ev_at(w) ((WT)(w))->at 1034#define ev_at(w) ((WT)(w))->at
401 1035
402#if EV_USE_REALTIME 1036#if EV_USE_REALTIME
403/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 1037/* sig_atomic_t is used to avoid per-thread variables or locking but still */
404/* giving it a reasonably high chance of working on typical architetcures */ 1038/* giving it a reasonably high chance of working on typical architectures */
405static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */ 1039static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
406#endif 1040#endif
407 1041
408#if EV_USE_MONOTONIC 1042#if EV_USE_MONOTONIC
409static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1043static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
410#endif 1044#endif
411 1045
1046#ifndef EV_FD_TO_WIN32_HANDLE
1047# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1048#endif
1049#ifndef EV_WIN32_HANDLE_TO_FD
1050# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1051#endif
1052#ifndef EV_WIN32_CLOSE_FD
1053# define EV_WIN32_CLOSE_FD(fd) close (fd)
1054#endif
1055
412#ifdef _WIN32 1056#ifdef _WIN32
413# include "ev_win32.c" 1057# include "ev_win32.c"
414#endif 1058#endif
415 1059
416/*****************************************************************************/ 1060/*****************************************************************************/
417 1061
1062/* define a suitable floor function (only used by periodics atm) */
1063
1064#if EV_USE_FLOOR
1065# include <math.h>
1066# define ev_floor(v) floor (v)
1067#else
1068
1069#include <float.h>
1070
1071/* a floor() replacement function, should be independent of ev_tstamp type */
1072static ev_tstamp noinline
1073ev_floor (ev_tstamp v)
1074{
1075 /* the choice of shift factor is not terribly important */
1076#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1077 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1078#else
1079 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1080#endif
1081
1082 /* argument too large for an unsigned long? */
1083 if (expect_false (v >= shift))
1084 {
1085 ev_tstamp f;
1086
1087 if (v == v - 1.)
1088 return v; /* very large number */
1089
1090 f = shift * ev_floor (v * (1. / shift));
1091 return f + ev_floor (v - f);
1092 }
1093
1094 /* special treatment for negative args? */
1095 if (expect_false (v < 0.))
1096 {
1097 ev_tstamp f = -ev_floor (-v);
1098
1099 return f - (f == v ? 0 : 1);
1100 }
1101
1102 /* fits into an unsigned long */
1103 return (unsigned long)v;
1104}
1105
1106#endif
1107
1108/*****************************************************************************/
1109
1110#ifdef __linux
1111# include <sys/utsname.h>
1112#endif
1113
1114static unsigned int noinline ecb_cold
1115ev_linux_version (void)
1116{
1117#ifdef __linux
1118 unsigned int v = 0;
1119 struct utsname buf;
1120 int i;
1121 char *p = buf.release;
1122
1123 if (uname (&buf))
1124 return 0;
1125
1126 for (i = 3+1; --i; )
1127 {
1128 unsigned int c = 0;
1129
1130 for (;;)
1131 {
1132 if (*p >= '0' && *p <= '9')
1133 c = c * 10 + *p++ - '0';
1134 else
1135 {
1136 p += *p == '.';
1137 break;
1138 }
1139 }
1140
1141 v = (v << 8) | c;
1142 }
1143
1144 return v;
1145#else
1146 return 0;
1147#endif
1148}
1149
1150/*****************************************************************************/
1151
1152#if EV_AVOID_STDIO
1153static void noinline ecb_cold
1154ev_printerr (const char *msg)
1155{
1156 write (STDERR_FILENO, msg, strlen (msg));
1157}
1158#endif
1159
418static void (*syserr_cb)(const char *msg); 1160static void (*syserr_cb)(const char *msg) EV_THROW;
419 1161
420void 1162void ecb_cold
421ev_set_syserr_cb (void (*cb)(const char *msg)) 1163ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
422{ 1164{
423 syserr_cb = cb; 1165 syserr_cb = cb;
424} 1166}
425 1167
426static void noinline 1168static void noinline ecb_cold
427ev_syserr (const char *msg) 1169ev_syserr (const char *msg)
428{ 1170{
429 if (!msg) 1171 if (!msg)
430 msg = "(libev) system error"; 1172 msg = "(libev) system error";
431 1173
432 if (syserr_cb) 1174 if (syserr_cb)
433 syserr_cb (msg); 1175 syserr_cb (msg);
434 else 1176 else
435 { 1177 {
1178#if EV_AVOID_STDIO
1179 ev_printerr (msg);
1180 ev_printerr (": ");
1181 ev_printerr (strerror (errno));
1182 ev_printerr ("\n");
1183#else
436 perror (msg); 1184 perror (msg);
1185#endif
437 abort (); 1186 abort ();
438 } 1187 }
439} 1188}
440 1189
441static void * 1190static void *
442ev_realloc_emul (void *ptr, long size) 1191ev_realloc_emul (void *ptr, long size) EV_THROW
443{ 1192{
1193#if __GLIBC__
1194 return realloc (ptr, size);
1195#else
444 /* some systems, notably openbsd and darwin, fail to properly 1196 /* some systems, notably openbsd and darwin, fail to properly
445 * implement realloc (x, 0) (as required by both ansi c-98 and 1197 * implement realloc (x, 0) (as required by both ansi c-89 and
446 * the single unix specification, so work around them here. 1198 * the single unix specification, so work around them here.
447 */ 1199 */
448 1200
449 if (size) 1201 if (size)
450 return realloc (ptr, size); 1202 return realloc (ptr, size);
451 1203
452 free (ptr); 1204 free (ptr);
453 return 0; 1205 return 0;
1206#endif
454} 1207}
455 1208
456static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 1209static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
457 1210
458void 1211void ecb_cold
459ev_set_allocator (void *(*cb)(void *ptr, long size)) 1212ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
460{ 1213{
461 alloc = cb; 1214 alloc = cb;
462} 1215}
463 1216
464inline_speed void * 1217inline_speed void *
466{ 1219{
467 ptr = alloc (ptr, size); 1220 ptr = alloc (ptr, size);
468 1221
469 if (!ptr && size) 1222 if (!ptr && size)
470 { 1223 {
1224#if EV_AVOID_STDIO
1225 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1226#else
471 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1227 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1228#endif
472 abort (); 1229 abort ();
473 } 1230 }
474 1231
475 return ptr; 1232 return ptr;
476} 1233}
478#define ev_malloc(size) ev_realloc (0, (size)) 1235#define ev_malloc(size) ev_realloc (0, (size))
479#define ev_free(ptr) ev_realloc ((ptr), 0) 1236#define ev_free(ptr) ev_realloc ((ptr), 0)
480 1237
481/*****************************************************************************/ 1238/*****************************************************************************/
482 1239
1240/* set in reify when reification needed */
1241#define EV_ANFD_REIFY 1
1242
1243/* file descriptor info structure */
483typedef struct 1244typedef struct
484{ 1245{
485 WL head; 1246 WL head;
486 unsigned char events; 1247 unsigned char events; /* the events watched for */
487 unsigned char reify; 1248 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
488 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */ 1249 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
489 unsigned char unused; 1250 unsigned char unused;
490#if EV_USE_EPOLL 1251#if EV_USE_EPOLL
491 unsigned int egen; /* generation counter to counter epoll bugs */ 1252 unsigned int egen; /* generation counter to counter epoll bugs */
492#endif 1253#endif
493#if EV_SELECT_IS_WINSOCKET 1254#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
494 SOCKET handle; 1255 SOCKET handle;
495#endif 1256#endif
1257#if EV_USE_IOCP
1258 OVERLAPPED or, ow;
1259#endif
496} ANFD; 1260} ANFD;
497 1261
1262/* stores the pending event set for a given watcher */
498typedef struct 1263typedef struct
499{ 1264{
500 W w; 1265 W w;
501 int events; 1266 int events; /* the pending event set for the given watcher */
502} ANPENDING; 1267} ANPENDING;
503 1268
504#if EV_USE_INOTIFY 1269#if EV_USE_INOTIFY
505/* hash table entry per inotify-id */ 1270/* hash table entry per inotify-id */
506typedef struct 1271typedef struct
509} ANFS; 1274} ANFS;
510#endif 1275#endif
511 1276
512/* Heap Entry */ 1277/* Heap Entry */
513#if EV_HEAP_CACHE_AT 1278#if EV_HEAP_CACHE_AT
1279 /* a heap element */
514 typedef struct { 1280 typedef struct {
515 ev_tstamp at; 1281 ev_tstamp at;
516 WT w; 1282 WT w;
517 } ANHE; 1283 } ANHE;
518 1284
519 #define ANHE_w(he) (he).w /* access watcher, read-write */ 1285 #define ANHE_w(he) (he).w /* access watcher, read-write */
520 #define ANHE_at(he) (he).at /* access cached at, read-only */ 1286 #define ANHE_at(he) (he).at /* access cached at, read-only */
521 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 1287 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
522#else 1288#else
1289 /* a heap element */
523 typedef WT ANHE; 1290 typedef WT ANHE;
524 1291
525 #define ANHE_w(he) (he) 1292 #define ANHE_w(he) (he)
526 #define ANHE_at(he) (he)->at 1293 #define ANHE_at(he) (he)->at
527 #define ANHE_at_cache(he) 1294 #define ANHE_at_cache(he)
538 #undef VAR 1305 #undef VAR
539 }; 1306 };
540 #include "ev_wrap.h" 1307 #include "ev_wrap.h"
541 1308
542 static struct ev_loop default_loop_struct; 1309 static struct ev_loop default_loop_struct;
543 struct ev_loop *ev_default_loop_ptr; 1310 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
544 1311
545#else 1312#else
546 1313
547 ev_tstamp ev_rt_now; 1314 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
548 #define VAR(name,decl) static decl; 1315 #define VAR(name,decl) static decl;
549 #include "ev_vars.h" 1316 #include "ev_vars.h"
550 #undef VAR 1317 #undef VAR
551 1318
552 static int ev_default_loop_ptr; 1319 static int ev_default_loop_ptr;
553 1320
554#endif 1321#endif
555 1322
1323#if EV_FEATURE_API
1324# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1325# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1326# define EV_INVOKE_PENDING invoke_cb (EV_A)
1327#else
1328# define EV_RELEASE_CB (void)0
1329# define EV_ACQUIRE_CB (void)0
1330# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1331#endif
1332
1333#define EVBREAK_RECURSE 0x80
1334
556/*****************************************************************************/ 1335/*****************************************************************************/
557 1336
1337#ifndef EV_HAVE_EV_TIME
558ev_tstamp 1338ev_tstamp
559ev_time (void) 1339ev_time (void) EV_THROW
560{ 1340{
561#if EV_USE_REALTIME 1341#if EV_USE_REALTIME
562 if (expect_true (have_realtime)) 1342 if (expect_true (have_realtime))
563 { 1343 {
564 struct timespec ts; 1344 struct timespec ts;
569 1349
570 struct timeval tv; 1350 struct timeval tv;
571 gettimeofday (&tv, 0); 1351 gettimeofday (&tv, 0);
572 return tv.tv_sec + tv.tv_usec * 1e-6; 1352 return tv.tv_sec + tv.tv_usec * 1e-6;
573} 1353}
1354#endif
574 1355
575ev_tstamp inline_size 1356inline_size ev_tstamp
576get_clock (void) 1357get_clock (void)
577{ 1358{
578#if EV_USE_MONOTONIC 1359#if EV_USE_MONOTONIC
579 if (expect_true (have_monotonic)) 1360 if (expect_true (have_monotonic))
580 { 1361 {
587 return ev_time (); 1368 return ev_time ();
588} 1369}
589 1370
590#if EV_MULTIPLICITY 1371#if EV_MULTIPLICITY
591ev_tstamp 1372ev_tstamp
592ev_now (EV_P) 1373ev_now (EV_P) EV_THROW
593{ 1374{
594 return ev_rt_now; 1375 return ev_rt_now;
595} 1376}
596#endif 1377#endif
597 1378
598void 1379void
599ev_sleep (ev_tstamp delay) 1380ev_sleep (ev_tstamp delay) EV_THROW
600{ 1381{
601 if (delay > 0.) 1382 if (delay > 0.)
602 { 1383 {
603#if EV_USE_NANOSLEEP 1384#if EV_USE_NANOSLEEP
604 struct timespec ts; 1385 struct timespec ts;
605 1386
606 ts.tv_sec = (time_t)delay; 1387 EV_TS_SET (ts, delay);
607 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
608
609 nanosleep (&ts, 0); 1388 nanosleep (&ts, 0);
610#elif defined(_WIN32) 1389#elif defined _WIN32
611 Sleep ((unsigned long)(delay * 1e3)); 1390 Sleep ((unsigned long)(delay * 1e3));
612#else 1391#else
613 struct timeval tv; 1392 struct timeval tv;
614 1393
615 tv.tv_sec = (time_t)delay;
616 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
617
618 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */ 1394 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
619 /* somehting nto guaranteed by newer posix versions, but guaranteed */ 1395 /* something not guaranteed by newer posix versions, but guaranteed */
620 /* by older ones */ 1396 /* by older ones */
1397 EV_TV_SET (tv, delay);
621 select (0, 0, 0, 0, &tv); 1398 select (0, 0, 0, 0, &tv);
622#endif 1399#endif
623 } 1400 }
624} 1401}
625 1402
626/*****************************************************************************/ 1403/*****************************************************************************/
627 1404
628#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 1405#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
629 1406
630int inline_size 1407/* find a suitable new size for the given array, */
1408/* hopefully by rounding to a nice-to-malloc size */
1409inline_size int
631array_nextsize (int elem, int cur, int cnt) 1410array_nextsize (int elem, int cur, int cnt)
632{ 1411{
633 int ncur = cur + 1; 1412 int ncur = cur + 1;
634 1413
635 do 1414 do
636 ncur <<= 1; 1415 ncur <<= 1;
637 while (cnt > ncur); 1416 while (cnt > ncur);
638 1417
639 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */ 1418 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
640 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4) 1419 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
641 { 1420 {
642 ncur *= elem; 1421 ncur *= elem;
643 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1); 1422 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
644 ncur = ncur - sizeof (void *) * 4; 1423 ncur = ncur - sizeof (void *) * 4;
646 } 1425 }
647 1426
648 return ncur; 1427 return ncur;
649} 1428}
650 1429
651static noinline void * 1430static void * noinline ecb_cold
652array_realloc (int elem, void *base, int *cur, int cnt) 1431array_realloc (int elem, void *base, int *cur, int cnt)
653{ 1432{
654 *cur = array_nextsize (elem, *cur, cnt); 1433 *cur = array_nextsize (elem, *cur, cnt);
655 return ev_realloc (base, elem * *cur); 1434 return ev_realloc (base, elem * *cur);
656} 1435}
659 memset ((void *)(base), 0, sizeof (*(base)) * (count)) 1438 memset ((void *)(base), 0, sizeof (*(base)) * (count))
660 1439
661#define array_needsize(type,base,cur,cnt,init) \ 1440#define array_needsize(type,base,cur,cnt,init) \
662 if (expect_false ((cnt) > (cur))) \ 1441 if (expect_false ((cnt) > (cur))) \
663 { \ 1442 { \
664 int ocur_ = (cur); \ 1443 int ecb_unused ocur_ = (cur); \
665 (base) = (type *)array_realloc \ 1444 (base) = (type *)array_realloc \
666 (sizeof (type), (base), &(cur), (cnt)); \ 1445 (sizeof (type), (base), &(cur), (cnt)); \
667 init ((base) + (ocur_), (cur) - ocur_); \ 1446 init ((base) + (ocur_), (cur) - ocur_); \
668 } 1447 }
669 1448
680#define array_free(stem, idx) \ 1459#define array_free(stem, idx) \
681 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0 1460 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
682 1461
683/*****************************************************************************/ 1462/*****************************************************************************/
684 1463
1464/* dummy callback for pending events */
1465static void noinline
1466pendingcb (EV_P_ ev_prepare *w, int revents)
1467{
1468}
1469
685void noinline 1470void noinline
686ev_feed_event (EV_P_ void *w, int revents) 1471ev_feed_event (EV_P_ void *w, int revents) EV_THROW
687{ 1472{
688 W w_ = (W)w; 1473 W w_ = (W)w;
689 int pri = ABSPRI (w_); 1474 int pri = ABSPRI (w_);
690 1475
691 if (expect_false (w_->pending)) 1476 if (expect_false (w_->pending))
695 w_->pending = ++pendingcnt [pri]; 1480 w_->pending = ++pendingcnt [pri];
696 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 1481 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
697 pendings [pri][w_->pending - 1].w = w_; 1482 pendings [pri][w_->pending - 1].w = w_;
698 pendings [pri][w_->pending - 1].events = revents; 1483 pendings [pri][w_->pending - 1].events = revents;
699 } 1484 }
700}
701 1485
702void inline_speed 1486 pendingpri = NUMPRI - 1;
1487}
1488
1489inline_speed void
1490feed_reverse (EV_P_ W w)
1491{
1492 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1493 rfeeds [rfeedcnt++] = w;
1494}
1495
1496inline_size void
1497feed_reverse_done (EV_P_ int revents)
1498{
1499 do
1500 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1501 while (rfeedcnt);
1502}
1503
1504inline_speed void
703queue_events (EV_P_ W *events, int eventcnt, int type) 1505queue_events (EV_P_ W *events, int eventcnt, int type)
704{ 1506{
705 int i; 1507 int i;
706 1508
707 for (i = 0; i < eventcnt; ++i) 1509 for (i = 0; i < eventcnt; ++i)
708 ev_feed_event (EV_A_ events [i], type); 1510 ev_feed_event (EV_A_ events [i], type);
709} 1511}
710 1512
711/*****************************************************************************/ 1513/*****************************************************************************/
712 1514
713void inline_speed 1515inline_speed void
714fd_event (EV_P_ int fd, int revents) 1516fd_event_nocheck (EV_P_ int fd, int revents)
715{ 1517{
716 ANFD *anfd = anfds + fd; 1518 ANFD *anfd = anfds + fd;
717 ev_io *w; 1519 ev_io *w;
718 1520
719 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1521 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
723 if (ev) 1525 if (ev)
724 ev_feed_event (EV_A_ (W)w, ev); 1526 ev_feed_event (EV_A_ (W)w, ev);
725 } 1527 }
726} 1528}
727 1529
1530/* do not submit kernel events for fds that have reify set */
1531/* because that means they changed while we were polling for new events */
1532inline_speed void
1533fd_event (EV_P_ int fd, int revents)
1534{
1535 ANFD *anfd = anfds + fd;
1536
1537 if (expect_true (!anfd->reify))
1538 fd_event_nocheck (EV_A_ fd, revents);
1539}
1540
728void 1541void
729ev_feed_fd_event (EV_P_ int fd, int revents) 1542ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
730{ 1543{
731 if (fd >= 0 && fd < anfdmax) 1544 if (fd >= 0 && fd < anfdmax)
732 fd_event (EV_A_ fd, revents); 1545 fd_event_nocheck (EV_A_ fd, revents);
733} 1546}
734 1547
735void inline_size 1548/* make sure the external fd watch events are in-sync */
1549/* with the kernel/libev internal state */
1550inline_size void
736fd_reify (EV_P) 1551fd_reify (EV_P)
737{ 1552{
738 int i; 1553 int i;
1554
1555#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1556 for (i = 0; i < fdchangecnt; ++i)
1557 {
1558 int fd = fdchanges [i];
1559 ANFD *anfd = anfds + fd;
1560
1561 if (anfd->reify & EV__IOFDSET && anfd->head)
1562 {
1563 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1564
1565 if (handle != anfd->handle)
1566 {
1567 unsigned long arg;
1568
1569 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1570
1571 /* handle changed, but fd didn't - we need to do it in two steps */
1572 backend_modify (EV_A_ fd, anfd->events, 0);
1573 anfd->events = 0;
1574 anfd->handle = handle;
1575 }
1576 }
1577 }
1578#endif
739 1579
740 for (i = 0; i < fdchangecnt; ++i) 1580 for (i = 0; i < fdchangecnt; ++i)
741 { 1581 {
742 int fd = fdchanges [i]; 1582 int fd = fdchanges [i];
743 ANFD *anfd = anfds + fd; 1583 ANFD *anfd = anfds + fd;
744 ev_io *w; 1584 ev_io *w;
745 1585
746 unsigned char events = 0; 1586 unsigned char o_events = anfd->events;
1587 unsigned char o_reify = anfd->reify;
747 1588
748 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1589 anfd->reify = 0;
749 events |= (unsigned char)w->events;
750 1590
751#if EV_SELECT_IS_WINSOCKET 1591 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
752 if (events)
753 { 1592 {
754 unsigned long arg; 1593 anfd->events = 0;
755 #ifdef EV_FD_TO_WIN32_HANDLE 1594
756 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1595 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
757 #else 1596 anfd->events |= (unsigned char)w->events;
758 anfd->handle = _get_osfhandle (fd); 1597
759 #endif 1598 if (o_events != anfd->events)
760 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0)); 1599 o_reify = EV__IOFDSET; /* actually |= */
761 } 1600 }
762#endif
763 1601
764 { 1602 if (o_reify & EV__IOFDSET)
765 unsigned char o_events = anfd->events;
766 unsigned char o_reify = anfd->reify;
767
768 anfd->reify = 0;
769 anfd->events = events;
770
771 if (o_events != events || o_reify & EV__IOFDSET)
772 backend_modify (EV_A_ fd, o_events, events); 1603 backend_modify (EV_A_ fd, o_events, anfd->events);
773 }
774 } 1604 }
775 1605
776 fdchangecnt = 0; 1606 fdchangecnt = 0;
777} 1607}
778 1608
779void inline_size 1609/* something about the given fd changed */
1610inline_size void
780fd_change (EV_P_ int fd, int flags) 1611fd_change (EV_P_ int fd, int flags)
781{ 1612{
782 unsigned char reify = anfds [fd].reify; 1613 unsigned char reify = anfds [fd].reify;
783 anfds [fd].reify |= flags; 1614 anfds [fd].reify |= flags;
784 1615
788 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1619 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
789 fdchanges [fdchangecnt - 1] = fd; 1620 fdchanges [fdchangecnt - 1] = fd;
790 } 1621 }
791} 1622}
792 1623
793void inline_speed 1624/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1625inline_speed void ecb_cold
794fd_kill (EV_P_ int fd) 1626fd_kill (EV_P_ int fd)
795{ 1627{
796 ev_io *w; 1628 ev_io *w;
797 1629
798 while ((w = (ev_io *)anfds [fd].head)) 1630 while ((w = (ev_io *)anfds [fd].head))
800 ev_io_stop (EV_A_ w); 1632 ev_io_stop (EV_A_ w);
801 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1633 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
802 } 1634 }
803} 1635}
804 1636
805int inline_size 1637/* check whether the given fd is actually valid, for error recovery */
1638inline_size int ecb_cold
806fd_valid (int fd) 1639fd_valid (int fd)
807{ 1640{
808#ifdef _WIN32 1641#ifdef _WIN32
809 return _get_osfhandle (fd) != -1; 1642 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
810#else 1643#else
811 return fcntl (fd, F_GETFD) != -1; 1644 return fcntl (fd, F_GETFD) != -1;
812#endif 1645#endif
813} 1646}
814 1647
815/* called on EBADF to verify fds */ 1648/* called on EBADF to verify fds */
816static void noinline 1649static void noinline ecb_cold
817fd_ebadf (EV_P) 1650fd_ebadf (EV_P)
818{ 1651{
819 int fd; 1652 int fd;
820 1653
821 for (fd = 0; fd < anfdmax; ++fd) 1654 for (fd = 0; fd < anfdmax; ++fd)
823 if (!fd_valid (fd) && errno == EBADF) 1656 if (!fd_valid (fd) && errno == EBADF)
824 fd_kill (EV_A_ fd); 1657 fd_kill (EV_A_ fd);
825} 1658}
826 1659
827/* called on ENOMEM in select/poll to kill some fds and retry */ 1660/* called on ENOMEM in select/poll to kill some fds and retry */
828static void noinline 1661static void noinline ecb_cold
829fd_enomem (EV_P) 1662fd_enomem (EV_P)
830{ 1663{
831 int fd; 1664 int fd;
832 1665
833 for (fd = anfdmax; fd--; ) 1666 for (fd = anfdmax; fd--; )
834 if (anfds [fd].events) 1667 if (anfds [fd].events)
835 { 1668 {
836 fd_kill (EV_A_ fd); 1669 fd_kill (EV_A_ fd);
837 return; 1670 break;
838 } 1671 }
839} 1672}
840 1673
841/* usually called after fork if backend needs to re-arm all fds from scratch */ 1674/* usually called after fork if backend needs to re-arm all fds from scratch */
842static void noinline 1675static void noinline
847 for (fd = 0; fd < anfdmax; ++fd) 1680 for (fd = 0; fd < anfdmax; ++fd)
848 if (anfds [fd].events) 1681 if (anfds [fd].events)
849 { 1682 {
850 anfds [fd].events = 0; 1683 anfds [fd].events = 0;
851 anfds [fd].emask = 0; 1684 anfds [fd].emask = 0;
852 fd_change (EV_A_ fd, EV__IOFDSET | 1); 1685 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
853 } 1686 }
854} 1687}
855 1688
1689/* used to prepare libev internal fd's */
1690/* this is not fork-safe */
1691inline_speed void
1692fd_intern (int fd)
1693{
1694#ifdef _WIN32
1695 unsigned long arg = 1;
1696 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1697#else
1698 fcntl (fd, F_SETFD, FD_CLOEXEC);
1699 fcntl (fd, F_SETFL, O_NONBLOCK);
1700#endif
1701}
1702
856/*****************************************************************************/ 1703/*****************************************************************************/
857 1704
858/* 1705/*
859 * the heap functions want a real array index. array index 0 uis guaranteed to not 1706 * the heap functions want a real array index. array index 0 is guaranteed to not
860 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 1707 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
861 * the branching factor of the d-tree. 1708 * the branching factor of the d-tree.
862 */ 1709 */
863 1710
864/* 1711/*
873#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1720#define HEAP0 (DHEAP - 1) /* index of first element in heap */
874#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 1721#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
875#define UPHEAP_DONE(p,k) ((p) == (k)) 1722#define UPHEAP_DONE(p,k) ((p) == (k))
876 1723
877/* away from the root */ 1724/* away from the root */
878void inline_speed 1725inline_speed void
879downheap (ANHE *heap, int N, int k) 1726downheap (ANHE *heap, int N, int k)
880{ 1727{
881 ANHE he = heap [k]; 1728 ANHE he = heap [k];
882 ANHE *E = heap + N + HEAP0; 1729 ANHE *E = heap + N + HEAP0;
883 1730
923#define HEAP0 1 1770#define HEAP0 1
924#define HPARENT(k) ((k) >> 1) 1771#define HPARENT(k) ((k) >> 1)
925#define UPHEAP_DONE(p,k) (!(p)) 1772#define UPHEAP_DONE(p,k) (!(p))
926 1773
927/* away from the root */ 1774/* away from the root */
928void inline_speed 1775inline_speed void
929downheap (ANHE *heap, int N, int k) 1776downheap (ANHE *heap, int N, int k)
930{ 1777{
931 ANHE he = heap [k]; 1778 ANHE he = heap [k];
932 1779
933 for (;;) 1780 for (;;)
934 { 1781 {
935 int c = k << 1; 1782 int c = k << 1;
936 1783
937 if (c > N + HEAP0 - 1) 1784 if (c >= N + HEAP0)
938 break; 1785 break;
939 1786
940 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 1787 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
941 ? 1 : 0; 1788 ? 1 : 0;
942 1789
953 ev_active (ANHE_w (he)) = k; 1800 ev_active (ANHE_w (he)) = k;
954} 1801}
955#endif 1802#endif
956 1803
957/* towards the root */ 1804/* towards the root */
958void inline_speed 1805inline_speed void
959upheap (ANHE *heap, int k) 1806upheap (ANHE *heap, int k)
960{ 1807{
961 ANHE he = heap [k]; 1808 ANHE he = heap [k];
962 1809
963 for (;;) 1810 for (;;)
974 1821
975 heap [k] = he; 1822 heap [k] = he;
976 ev_active (ANHE_w (he)) = k; 1823 ev_active (ANHE_w (he)) = k;
977} 1824}
978 1825
979void inline_size 1826/* move an element suitably so it is in a correct place */
1827inline_size void
980adjustheap (ANHE *heap, int N, int k) 1828adjustheap (ANHE *heap, int N, int k)
981{ 1829{
982 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 1830 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
983 upheap (heap, k); 1831 upheap (heap, k);
984 else 1832 else
985 downheap (heap, N, k); 1833 downheap (heap, N, k);
986} 1834}
987 1835
988/* rebuild the heap: this function is used only once and executed rarely */ 1836/* rebuild the heap: this function is used only once and executed rarely */
989void inline_size 1837inline_size void
990reheap (ANHE *heap, int N) 1838reheap (ANHE *heap, int N)
991{ 1839{
992 int i; 1840 int i;
993 1841
994 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 1842 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
997 upheap (heap, i + HEAP0); 1845 upheap (heap, i + HEAP0);
998} 1846}
999 1847
1000/*****************************************************************************/ 1848/*****************************************************************************/
1001 1849
1850/* associate signal watchers to a signal signal */
1002typedef struct 1851typedef struct
1003{ 1852{
1853 EV_ATOMIC_T pending;
1854#if EV_MULTIPLICITY
1855 EV_P;
1856#endif
1004 WL head; 1857 WL head;
1005 EV_ATOMIC_T gotsig;
1006} ANSIG; 1858} ANSIG;
1007 1859
1008static ANSIG *signals; 1860static ANSIG signals [EV_NSIG - 1];
1009static int signalmax;
1010
1011static EV_ATOMIC_T gotsig;
1012 1861
1013/*****************************************************************************/ 1862/*****************************************************************************/
1014 1863
1015void inline_speed 1864#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1016fd_intern (int fd)
1017{
1018#ifdef _WIN32
1019 unsigned long arg = 1;
1020 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1021#else
1022 fcntl (fd, F_SETFD, FD_CLOEXEC);
1023 fcntl (fd, F_SETFL, O_NONBLOCK);
1024#endif
1025}
1026 1865
1027static void noinline 1866static void noinline ecb_cold
1028evpipe_init (EV_P) 1867evpipe_init (EV_P)
1029{ 1868{
1030 if (!ev_is_active (&pipeev)) 1869 if (!ev_is_active (&pipe_w))
1031 { 1870 {
1032#if EV_USE_EVENTFD 1871# if EV_USE_EVENTFD
1872 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1873 if (evfd < 0 && errno == EINVAL)
1033 if ((evfd = eventfd (0, 0)) >= 0) 1874 evfd = eventfd (0, 0);
1875
1876 if (evfd >= 0)
1034 { 1877 {
1035 evpipe [0] = -1; 1878 evpipe [0] = -1;
1036 fd_intern (evfd); 1879 fd_intern (evfd); /* doing it twice doesn't hurt */
1037 ev_io_set (&pipeev, evfd, EV_READ); 1880 ev_io_set (&pipe_w, evfd, EV_READ);
1038 } 1881 }
1039 else 1882 else
1040#endif 1883# endif
1041 { 1884 {
1042 while (pipe (evpipe)) 1885 while (pipe (evpipe))
1043 ev_syserr ("(libev) error creating signal/async pipe"); 1886 ev_syserr ("(libev) error creating signal/async pipe");
1044 1887
1045 fd_intern (evpipe [0]); 1888 fd_intern (evpipe [0]);
1046 fd_intern (evpipe [1]); 1889 fd_intern (evpipe [1]);
1047 ev_io_set (&pipeev, evpipe [0], EV_READ); 1890 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1048 } 1891 }
1049 1892
1050 ev_io_start (EV_A_ &pipeev); 1893 ev_io_start (EV_A_ &pipe_w);
1051 ev_unref (EV_A); /* watcher should not keep loop alive */ 1894 ev_unref (EV_A); /* watcher should not keep loop alive */
1052 } 1895 }
1053} 1896}
1054 1897
1055void inline_size 1898inline_speed void
1056evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1899evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1057{ 1900{
1058 if (!*flag) 1901 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
1902
1903 if (expect_true (*flag))
1904 return;
1905
1906 *flag = 1;
1907 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1908
1909 pipe_write_skipped = 1;
1910
1911 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1912
1913 if (pipe_write_wanted)
1059 { 1914 {
1915 int old_errno;
1916
1917 pipe_write_skipped = 0;
1918 ECB_MEMORY_FENCE_RELEASE;
1919
1060 int old_errno = errno; /* save errno because write might clobber it */ 1920 old_errno = errno; /* save errno because write will clobber it */
1061
1062 *flag = 1;
1063 1921
1064#if EV_USE_EVENTFD 1922#if EV_USE_EVENTFD
1065 if (evfd >= 0) 1923 if (evfd >= 0)
1066 { 1924 {
1067 uint64_t counter = 1; 1925 uint64_t counter = 1;
1068 write (evfd, &counter, sizeof (uint64_t)); 1926 write (evfd, &counter, sizeof (uint64_t));
1069 } 1927 }
1070 else 1928 else
1071#endif 1929#endif
1930 {
1931#ifdef _WIN32
1932 WSABUF buf;
1933 DWORD sent;
1934 buf.buf = &buf;
1935 buf.len = 1;
1936 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
1937#else
1072 write (evpipe [1], &old_errno, 1); 1938 write (evpipe [1], &(evpipe [1]), 1);
1939#endif
1940 }
1073 1941
1074 errno = old_errno; 1942 errno = old_errno;
1075 } 1943 }
1076} 1944}
1077 1945
1946/* called whenever the libev signal pipe */
1947/* got some events (signal, async) */
1078static void 1948static void
1079pipecb (EV_P_ ev_io *iow, int revents) 1949pipecb (EV_P_ ev_io *iow, int revents)
1080{ 1950{
1951 int i;
1952
1953 if (revents & EV_READ)
1954 {
1081#if EV_USE_EVENTFD 1955#if EV_USE_EVENTFD
1082 if (evfd >= 0) 1956 if (evfd >= 0)
1083 { 1957 {
1084 uint64_t counter; 1958 uint64_t counter;
1085 read (evfd, &counter, sizeof (uint64_t)); 1959 read (evfd, &counter, sizeof (uint64_t));
1086 } 1960 }
1087 else 1961 else
1088#endif 1962#endif
1089 { 1963 {
1090 char dummy; 1964 char dummy[4];
1965#ifdef _WIN32
1966 WSABUF buf;
1967 DWORD recvd;
1968 DWORD flags = 0;
1969 buf.buf = dummy;
1970 buf.len = sizeof (dummy);
1971 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
1972#else
1091 read (evpipe [0], &dummy, 1); 1973 read (evpipe [0], &dummy, sizeof (dummy));
1974#endif
1975 }
1976 }
1977
1978 pipe_write_skipped = 0;
1979
1980 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
1981
1982#if EV_SIGNAL_ENABLE
1983 if (sig_pending)
1092 } 1984 {
1985 sig_pending = 0;
1093 1986
1094 if (gotsig && ev_is_default_loop (EV_A)) 1987 ECB_MEMORY_FENCE;
1095 {
1096 int signum;
1097 gotsig = 0;
1098 1988
1099 for (signum = signalmax; signum--; ) 1989 for (i = EV_NSIG - 1; i--; )
1100 if (signals [signum].gotsig) 1990 if (expect_false (signals [i].pending))
1101 ev_feed_signal_event (EV_A_ signum + 1); 1991 ev_feed_signal_event (EV_A_ i + 1);
1102 } 1992 }
1993#endif
1103 1994
1104#if EV_ASYNC_ENABLE 1995#if EV_ASYNC_ENABLE
1105 if (gotasync) 1996 if (async_pending)
1106 { 1997 {
1107 int i; 1998 async_pending = 0;
1108 gotasync = 0; 1999
2000 ECB_MEMORY_FENCE;
1109 2001
1110 for (i = asynccnt; i--; ) 2002 for (i = asynccnt; i--; )
1111 if (asyncs [i]->sent) 2003 if (asyncs [i]->sent)
1112 { 2004 {
1113 asyncs [i]->sent = 0; 2005 asyncs [i]->sent = 0;
2006 ECB_MEMORY_FENCE_RELEASE;
1114 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); 2007 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1115 } 2008 }
1116 } 2009 }
1117#endif 2010#endif
1118} 2011}
1119 2012
1120/*****************************************************************************/ 2013/*****************************************************************************/
1121 2014
2015void
2016ev_feed_signal (int signum) EV_THROW
2017{
2018#if EV_MULTIPLICITY
2019 EV_P = signals [signum - 1].loop;
2020
2021 if (!EV_A)
2022 return;
2023#endif
2024
2025 if (!ev_active (&pipe_w))
2026 return;
2027
2028 signals [signum - 1].pending = 1;
2029 evpipe_write (EV_A_ &sig_pending);
2030}
2031
1122static void 2032static void
1123ev_sighandler (int signum) 2033ev_sighandler (int signum)
1124{ 2034{
2035#ifdef _WIN32
2036 signal (signum, ev_sighandler);
2037#endif
2038
2039 ev_feed_signal (signum);
2040}
2041
2042void noinline
2043ev_feed_signal_event (EV_P_ int signum) EV_THROW
2044{
2045 WL w;
2046
2047 if (expect_false (signum <= 0 || signum > EV_NSIG))
2048 return;
2049
2050 --signum;
2051
1125#if EV_MULTIPLICITY 2052#if EV_MULTIPLICITY
1126 struct ev_loop *loop = &default_loop_struct; 2053 /* it is permissible to try to feed a signal to the wrong loop */
1127#endif 2054 /* or, likely more useful, feeding a signal nobody is waiting for */
1128 2055
1129#if _WIN32 2056 if (expect_false (signals [signum].loop != EV_A))
1130 signal (signum, ev_sighandler);
1131#endif
1132
1133 signals [signum - 1].gotsig = 1;
1134 evpipe_write (EV_A_ &gotsig);
1135}
1136
1137void noinline
1138ev_feed_signal_event (EV_P_ int signum)
1139{
1140 WL w;
1141
1142#if EV_MULTIPLICITY
1143 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1144#endif
1145
1146 --signum;
1147
1148 if (signum < 0 || signum >= signalmax)
1149 return; 2057 return;
2058#endif
1150 2059
1151 signals [signum].gotsig = 0; 2060 signals [signum].pending = 0;
2061 ECB_MEMORY_FENCE_RELEASE;
1152 2062
1153 for (w = signals [signum].head; w; w = w->next) 2063 for (w = signals [signum].head; w; w = w->next)
1154 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2064 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1155} 2065}
1156 2066
2067#if EV_USE_SIGNALFD
2068static void
2069sigfdcb (EV_P_ ev_io *iow, int revents)
2070{
2071 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2072
2073 for (;;)
2074 {
2075 ssize_t res = read (sigfd, si, sizeof (si));
2076
2077 /* not ISO-C, as res might be -1, but works with SuS */
2078 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2079 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2080
2081 if (res < (ssize_t)sizeof (si))
2082 break;
2083 }
2084}
2085#endif
2086
2087#endif
2088
1157/*****************************************************************************/ 2089/*****************************************************************************/
1158 2090
2091#if EV_CHILD_ENABLE
1159static WL childs [EV_PID_HASHSIZE]; 2092static WL childs [EV_PID_HASHSIZE];
1160
1161#ifndef _WIN32
1162 2093
1163static ev_signal childev; 2094static ev_signal childev;
1164 2095
1165#ifndef WIFCONTINUED 2096#ifndef WIFCONTINUED
1166# define WIFCONTINUED(status) 0 2097# define WIFCONTINUED(status) 0
1167#endif 2098#endif
1168 2099
1169void inline_speed 2100/* handle a single child status event */
2101inline_speed void
1170child_reap (EV_P_ int chain, int pid, int status) 2102child_reap (EV_P_ int chain, int pid, int status)
1171{ 2103{
1172 ev_child *w; 2104 ev_child *w;
1173 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2105 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1174 2106
1175 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2107 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1176 { 2108 {
1177 if ((w->pid == pid || !w->pid) 2109 if ((w->pid == pid || !w->pid)
1178 && (!traced || (w->flags & 1))) 2110 && (!traced || (w->flags & 1)))
1179 { 2111 {
1180 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 2112 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1187 2119
1188#ifndef WCONTINUED 2120#ifndef WCONTINUED
1189# define WCONTINUED 0 2121# define WCONTINUED 0
1190#endif 2122#endif
1191 2123
2124/* called on sigchld etc., calls waitpid */
1192static void 2125static void
1193childcb (EV_P_ ev_signal *sw, int revents) 2126childcb (EV_P_ ev_signal *sw, int revents)
1194{ 2127{
1195 int pid, status; 2128 int pid, status;
1196 2129
1204 /* make sure we are called again until all children have been reaped */ 2137 /* make sure we are called again until all children have been reaped */
1205 /* we need to do it this way so that the callback gets called before we continue */ 2138 /* we need to do it this way so that the callback gets called before we continue */
1206 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2139 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1207 2140
1208 child_reap (EV_A_ pid, pid, status); 2141 child_reap (EV_A_ pid, pid, status);
1209 if (EV_PID_HASHSIZE > 1) 2142 if ((EV_PID_HASHSIZE) > 1)
1210 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2143 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1211} 2144}
1212 2145
1213#endif 2146#endif
1214 2147
1215/*****************************************************************************/ 2148/*****************************************************************************/
1216 2149
2150#if EV_USE_IOCP
2151# include "ev_iocp.c"
2152#endif
1217#if EV_USE_PORT 2153#if EV_USE_PORT
1218# include "ev_port.c" 2154# include "ev_port.c"
1219#endif 2155#endif
1220#if EV_USE_KQUEUE 2156#if EV_USE_KQUEUE
1221# include "ev_kqueue.c" 2157# include "ev_kqueue.c"
1228#endif 2164#endif
1229#if EV_USE_SELECT 2165#if EV_USE_SELECT
1230# include "ev_select.c" 2166# include "ev_select.c"
1231#endif 2167#endif
1232 2168
1233int 2169int ecb_cold
1234ev_version_major (void) 2170ev_version_major (void) EV_THROW
1235{ 2171{
1236 return EV_VERSION_MAJOR; 2172 return EV_VERSION_MAJOR;
1237} 2173}
1238 2174
1239int 2175int ecb_cold
1240ev_version_minor (void) 2176ev_version_minor (void) EV_THROW
1241{ 2177{
1242 return EV_VERSION_MINOR; 2178 return EV_VERSION_MINOR;
1243} 2179}
1244 2180
1245/* return true if we are running with elevated privileges and should ignore env variables */ 2181/* return true if we are running with elevated privileges and should ignore env variables */
1246int inline_size 2182int inline_size ecb_cold
1247enable_secure (void) 2183enable_secure (void)
1248{ 2184{
1249#ifdef _WIN32 2185#ifdef _WIN32
1250 return 0; 2186 return 0;
1251#else 2187#else
1252 return getuid () != geteuid () 2188 return getuid () != geteuid ()
1253 || getgid () != getegid (); 2189 || getgid () != getegid ();
1254#endif 2190#endif
1255} 2191}
1256 2192
1257unsigned int 2193unsigned int ecb_cold
1258ev_supported_backends (void) 2194ev_supported_backends (void) EV_THROW
1259{ 2195{
1260 unsigned int flags = 0; 2196 unsigned int flags = 0;
1261 2197
1262 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2198 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1263 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2199 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1266 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2202 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1267 2203
1268 return flags; 2204 return flags;
1269} 2205}
1270 2206
1271unsigned int 2207unsigned int ecb_cold
1272ev_recommended_backends (void) 2208ev_recommended_backends (void) EV_THROW
1273{ 2209{
1274 unsigned int flags = ev_supported_backends (); 2210 unsigned int flags = ev_supported_backends ();
1275 2211
1276#ifndef __NetBSD__ 2212#ifndef __NetBSD__
1277 /* kqueue is borked on everything but netbsd apparently */ 2213 /* kqueue is borked on everything but netbsd apparently */
1281#ifdef __APPLE__ 2217#ifdef __APPLE__
1282 /* only select works correctly on that "unix-certified" platform */ 2218 /* only select works correctly on that "unix-certified" platform */
1283 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */ 2219 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1284 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */ 2220 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1285#endif 2221#endif
2222#ifdef __FreeBSD__
2223 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2224#endif
1286 2225
1287 return flags; 2226 return flags;
1288} 2227}
1289 2228
2229unsigned int ecb_cold
2230ev_embeddable_backends (void) EV_THROW
2231{
2232 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2233
2234 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2235 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2236 flags &= ~EVBACKEND_EPOLL;
2237
2238 return flags;
2239}
2240
1290unsigned int 2241unsigned int
1291ev_embeddable_backends (void) 2242ev_backend (EV_P) EV_THROW
1292{ 2243{
1293 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2244 return backend;
1294
1295 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1296 /* please fix it and tell me how to detect the fix */
1297 flags &= ~EVBACKEND_EPOLL;
1298
1299 return flags;
1300} 2245}
1301 2246
2247#if EV_FEATURE_API
1302unsigned int 2248unsigned int
1303ev_backend (EV_P) 2249ev_iteration (EV_P) EV_THROW
1304{ 2250{
1305 return backend; 2251 return loop_count;
1306} 2252}
1307 2253
1308unsigned int 2254unsigned int
1309ev_loop_count (EV_P) 2255ev_depth (EV_P) EV_THROW
1310{ 2256{
1311 return loop_count; 2257 return loop_depth;
1312} 2258}
1313 2259
1314void 2260void
1315ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2261ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1316{ 2262{
1317 io_blocktime = interval; 2263 io_blocktime = interval;
1318} 2264}
1319 2265
1320void 2266void
1321ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2267ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1322{ 2268{
1323 timeout_blocktime = interval; 2269 timeout_blocktime = interval;
1324} 2270}
1325 2271
2272void
2273ev_set_userdata (EV_P_ void *data) EV_THROW
2274{
2275 userdata = data;
2276}
2277
2278void *
2279ev_userdata (EV_P) EV_THROW
2280{
2281 return userdata;
2282}
2283
2284void
2285ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2286{
2287 invoke_cb = invoke_pending_cb;
2288}
2289
2290void
2291ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2292{
2293 release_cb = release;
2294 acquire_cb = acquire;
2295}
2296#endif
2297
2298/* initialise a loop structure, must be zero-initialised */
1326static void noinline 2299static void noinline ecb_cold
1327loop_init (EV_P_ unsigned int flags) 2300loop_init (EV_P_ unsigned int flags) EV_THROW
1328{ 2301{
1329 if (!backend) 2302 if (!backend)
1330 { 2303 {
2304 origflags = flags;
2305
1331#if EV_USE_REALTIME 2306#if EV_USE_REALTIME
1332 if (!have_realtime) 2307 if (!have_realtime)
1333 { 2308 {
1334 struct timespec ts; 2309 struct timespec ts;
1335 2310
1346 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2321 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1347 have_monotonic = 1; 2322 have_monotonic = 1;
1348 } 2323 }
1349#endif 2324#endif
1350 2325
1351 ev_rt_now = ev_time ();
1352 mn_now = get_clock ();
1353 now_floor = mn_now;
1354 rtmn_diff = ev_rt_now - mn_now;
1355
1356 io_blocktime = 0.;
1357 timeout_blocktime = 0.;
1358 backend = 0;
1359 backend_fd = -1;
1360 gotasync = 0;
1361#if EV_USE_INOTIFY
1362 fs_fd = -2;
1363#endif
1364
1365 /* pid check not overridable via env */ 2326 /* pid check not overridable via env */
1366#ifndef _WIN32 2327#ifndef _WIN32
1367 if (flags & EVFLAG_FORKCHECK) 2328 if (flags & EVFLAG_FORKCHECK)
1368 curpid = getpid (); 2329 curpid = getpid ();
1369#endif 2330#endif
1371 if (!(flags & EVFLAG_NOENV) 2332 if (!(flags & EVFLAG_NOENV)
1372 && !enable_secure () 2333 && !enable_secure ()
1373 && getenv ("LIBEV_FLAGS")) 2334 && getenv ("LIBEV_FLAGS"))
1374 flags = atoi (getenv ("LIBEV_FLAGS")); 2335 flags = atoi (getenv ("LIBEV_FLAGS"));
1375 2336
1376 if (!(flags & 0x0000ffffU)) 2337 ev_rt_now = ev_time ();
2338 mn_now = get_clock ();
2339 now_floor = mn_now;
2340 rtmn_diff = ev_rt_now - mn_now;
2341#if EV_FEATURE_API
2342 invoke_cb = ev_invoke_pending;
2343#endif
2344
2345 io_blocktime = 0.;
2346 timeout_blocktime = 0.;
2347 backend = 0;
2348 backend_fd = -1;
2349 sig_pending = 0;
2350#if EV_ASYNC_ENABLE
2351 async_pending = 0;
2352#endif
2353 pipe_write_skipped = 0;
2354 pipe_write_wanted = 0;
2355#if EV_USE_INOTIFY
2356 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2357#endif
2358#if EV_USE_SIGNALFD
2359 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2360#endif
2361
2362 if (!(flags & EVBACKEND_MASK))
1377 flags |= ev_recommended_backends (); 2363 flags |= ev_recommended_backends ();
1378 2364
2365#if EV_USE_IOCP
2366 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2367#endif
1379#if EV_USE_PORT 2368#if EV_USE_PORT
1380 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2369 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1381#endif 2370#endif
1382#if EV_USE_KQUEUE 2371#if EV_USE_KQUEUE
1383 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2372 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1390#endif 2379#endif
1391#if EV_USE_SELECT 2380#if EV_USE_SELECT
1392 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2381 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1393#endif 2382#endif
1394 2383
2384 ev_prepare_init (&pending_w, pendingcb);
2385
2386#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1395 ev_init (&pipeev, pipecb); 2387 ev_init (&pipe_w, pipecb);
1396 ev_set_priority (&pipeev, EV_MAXPRI); 2388 ev_set_priority (&pipe_w, EV_MAXPRI);
2389#endif
1397 } 2390 }
1398} 2391}
1399 2392
1400static void noinline 2393/* free up a loop structure */
2394void ecb_cold
1401loop_destroy (EV_P) 2395ev_loop_destroy (EV_P)
1402{ 2396{
1403 int i; 2397 int i;
1404 2398
2399#if EV_MULTIPLICITY
2400 /* mimic free (0) */
2401 if (!EV_A)
2402 return;
2403#endif
2404
2405#if EV_CLEANUP_ENABLE
2406 /* queue cleanup watchers (and execute them) */
2407 if (expect_false (cleanupcnt))
2408 {
2409 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2410 EV_INVOKE_PENDING;
2411 }
2412#endif
2413
2414#if EV_CHILD_ENABLE
2415 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2416 {
2417 ev_ref (EV_A); /* child watcher */
2418 ev_signal_stop (EV_A_ &childev);
2419 }
2420#endif
2421
1405 if (ev_is_active (&pipeev)) 2422 if (ev_is_active (&pipe_w))
1406 { 2423 {
1407 ev_ref (EV_A); /* signal watcher */ 2424 /*ev_ref (EV_A);*/
1408 ev_io_stop (EV_A_ &pipeev); 2425 /*ev_io_stop (EV_A_ &pipe_w);*/
1409 2426
1410#if EV_USE_EVENTFD 2427#if EV_USE_EVENTFD
1411 if (evfd >= 0) 2428 if (evfd >= 0)
1412 close (evfd); 2429 close (evfd);
1413#endif 2430#endif
1414 2431
1415 if (evpipe [0] >= 0) 2432 if (evpipe [0] >= 0)
1416 { 2433 {
1417 close (evpipe [0]); 2434 EV_WIN32_CLOSE_FD (evpipe [0]);
1418 close (evpipe [1]); 2435 EV_WIN32_CLOSE_FD (evpipe [1]);
1419 } 2436 }
1420 } 2437 }
2438
2439#if EV_USE_SIGNALFD
2440 if (ev_is_active (&sigfd_w))
2441 close (sigfd);
2442#endif
1421 2443
1422#if EV_USE_INOTIFY 2444#if EV_USE_INOTIFY
1423 if (fs_fd >= 0) 2445 if (fs_fd >= 0)
1424 close (fs_fd); 2446 close (fs_fd);
1425#endif 2447#endif
1426 2448
1427 if (backend_fd >= 0) 2449 if (backend_fd >= 0)
1428 close (backend_fd); 2450 close (backend_fd);
1429 2451
2452#if EV_USE_IOCP
2453 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2454#endif
1430#if EV_USE_PORT 2455#if EV_USE_PORT
1431 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2456 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1432#endif 2457#endif
1433#if EV_USE_KQUEUE 2458#if EV_USE_KQUEUE
1434 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2459 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1449#if EV_IDLE_ENABLE 2474#if EV_IDLE_ENABLE
1450 array_free (idle, [i]); 2475 array_free (idle, [i]);
1451#endif 2476#endif
1452 } 2477 }
1453 2478
1454 ev_free (anfds); anfdmax = 0; 2479 ev_free (anfds); anfds = 0; anfdmax = 0;
1455 2480
1456 /* have to use the microsoft-never-gets-it-right macro */ 2481 /* have to use the microsoft-never-gets-it-right macro */
2482 array_free (rfeed, EMPTY);
1457 array_free (fdchange, EMPTY); 2483 array_free (fdchange, EMPTY);
1458 array_free (timer, EMPTY); 2484 array_free (timer, EMPTY);
1459#if EV_PERIODIC_ENABLE 2485#if EV_PERIODIC_ENABLE
1460 array_free (periodic, EMPTY); 2486 array_free (periodic, EMPTY);
1461#endif 2487#endif
1462#if EV_FORK_ENABLE 2488#if EV_FORK_ENABLE
1463 array_free (fork, EMPTY); 2489 array_free (fork, EMPTY);
1464#endif 2490#endif
2491#if EV_CLEANUP_ENABLE
2492 array_free (cleanup, EMPTY);
2493#endif
1465 array_free (prepare, EMPTY); 2494 array_free (prepare, EMPTY);
1466 array_free (check, EMPTY); 2495 array_free (check, EMPTY);
1467#if EV_ASYNC_ENABLE 2496#if EV_ASYNC_ENABLE
1468 array_free (async, EMPTY); 2497 array_free (async, EMPTY);
1469#endif 2498#endif
1470 2499
1471 backend = 0; 2500 backend = 0;
2501
2502#if EV_MULTIPLICITY
2503 if (ev_is_default_loop (EV_A))
2504#endif
2505 ev_default_loop_ptr = 0;
2506#if EV_MULTIPLICITY
2507 else
2508 ev_free (EV_A);
2509#endif
1472} 2510}
1473 2511
1474#if EV_USE_INOTIFY 2512#if EV_USE_INOTIFY
1475void inline_size infy_fork (EV_P); 2513inline_size void infy_fork (EV_P);
1476#endif 2514#endif
1477 2515
1478void inline_size 2516inline_size void
1479loop_fork (EV_P) 2517loop_fork (EV_P)
1480{ 2518{
1481#if EV_USE_PORT 2519#if EV_USE_PORT
1482 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2520 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1483#endif 2521#endif
1489#endif 2527#endif
1490#if EV_USE_INOTIFY 2528#if EV_USE_INOTIFY
1491 infy_fork (EV_A); 2529 infy_fork (EV_A);
1492#endif 2530#endif
1493 2531
1494 if (ev_is_active (&pipeev)) 2532 if (ev_is_active (&pipe_w))
1495 { 2533 {
1496 /* this "locks" the handlers against writing to the pipe */ 2534 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1497 /* while we modify the fd vars */
1498 gotsig = 1;
1499#if EV_ASYNC_ENABLE
1500 gotasync = 1;
1501#endif
1502 2535
1503 ev_ref (EV_A); 2536 ev_ref (EV_A);
1504 ev_io_stop (EV_A_ &pipeev); 2537 ev_io_stop (EV_A_ &pipe_w);
1505 2538
1506#if EV_USE_EVENTFD 2539#if EV_USE_EVENTFD
1507 if (evfd >= 0) 2540 if (evfd >= 0)
1508 close (evfd); 2541 close (evfd);
1509#endif 2542#endif
1510 2543
1511 if (evpipe [0] >= 0) 2544 if (evpipe [0] >= 0)
1512 { 2545 {
1513 close (evpipe [0]); 2546 EV_WIN32_CLOSE_FD (evpipe [0]);
1514 close (evpipe [1]); 2547 EV_WIN32_CLOSE_FD (evpipe [1]);
1515 } 2548 }
1516 2549
2550#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1517 evpipe_init (EV_A); 2551 evpipe_init (EV_A);
1518 /* now iterate over everything, in case we missed something */ 2552 /* now iterate over everything, in case we missed something */
1519 pipecb (EV_A_ &pipeev, EV_READ); 2553 pipecb (EV_A_ &pipe_w, EV_READ);
2554#endif
1520 } 2555 }
1521 2556
1522 postfork = 0; 2557 postfork = 0;
1523} 2558}
1524 2559
1525#if EV_MULTIPLICITY 2560#if EV_MULTIPLICITY
1526 2561
1527struct ev_loop * 2562struct ev_loop * ecb_cold
1528ev_loop_new (unsigned int flags) 2563ev_loop_new (unsigned int flags) EV_THROW
1529{ 2564{
1530 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2565 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1531 2566
1532 memset (loop, 0, sizeof (struct ev_loop)); 2567 memset (EV_A, 0, sizeof (struct ev_loop));
1533
1534 loop_init (EV_A_ flags); 2568 loop_init (EV_A_ flags);
1535 2569
1536 if (ev_backend (EV_A)) 2570 if (ev_backend (EV_A))
1537 return loop; 2571 return EV_A;
1538 2572
2573 ev_free (EV_A);
1539 return 0; 2574 return 0;
1540} 2575}
1541 2576
1542void 2577#endif /* multiplicity */
1543ev_loop_destroy (EV_P)
1544{
1545 loop_destroy (EV_A);
1546 ev_free (loop);
1547}
1548
1549void
1550ev_loop_fork (EV_P)
1551{
1552 postfork = 1; /* must be in line with ev_default_fork */
1553}
1554 2578
1555#if EV_VERIFY 2579#if EV_VERIFY
1556static void noinline 2580static void noinline ecb_cold
1557verify_watcher (EV_P_ W w) 2581verify_watcher (EV_P_ W w)
1558{ 2582{
1559 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI)); 2583 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1560 2584
1561 if (w->pending) 2585 if (w->pending)
1562 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w)); 2586 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1563} 2587}
1564 2588
1565static void noinline 2589static void noinline ecb_cold
1566verify_heap (EV_P_ ANHE *heap, int N) 2590verify_heap (EV_P_ ANHE *heap, int N)
1567{ 2591{
1568 int i; 2592 int i;
1569 2593
1570 for (i = HEAP0; i < N + HEAP0; ++i) 2594 for (i = HEAP0; i < N + HEAP0; ++i)
1575 2599
1576 verify_watcher (EV_A_ (W)ANHE_w (heap [i])); 2600 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1577 } 2601 }
1578} 2602}
1579 2603
1580static void noinline 2604static void noinline ecb_cold
1581array_verify (EV_P_ W *ws, int cnt) 2605array_verify (EV_P_ W *ws, int cnt)
1582{ 2606{
1583 while (cnt--) 2607 while (cnt--)
1584 { 2608 {
1585 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1)); 2609 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1586 verify_watcher (EV_A_ ws [cnt]); 2610 verify_watcher (EV_A_ ws [cnt]);
1587 } 2611 }
1588} 2612}
1589#endif 2613#endif
1590 2614
1591void 2615#if EV_FEATURE_API
1592ev_loop_verify (EV_P) 2616void ecb_cold
2617ev_verify (EV_P) EV_THROW
1593{ 2618{
1594#if EV_VERIFY 2619#if EV_VERIFY
1595 int i; 2620 int i;
1596 WL w; 2621 WL w, w2;
1597 2622
1598 assert (activecnt >= -1); 2623 assert (activecnt >= -1);
1599 2624
1600 assert (fdchangemax >= fdchangecnt); 2625 assert (fdchangemax >= fdchangecnt);
1601 for (i = 0; i < fdchangecnt; ++i) 2626 for (i = 0; i < fdchangecnt; ++i)
1602 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0)); 2627 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1603 2628
1604 assert (anfdmax >= 0); 2629 assert (anfdmax >= 0);
1605 for (i = 0; i < anfdmax; ++i) 2630 for (i = 0; i < anfdmax; ++i)
2631 {
2632 int j = 0;
2633
1606 for (w = anfds [i].head; w; w = w->next) 2634 for (w = w2 = anfds [i].head; w; w = w->next)
1607 { 2635 {
1608 verify_watcher (EV_A_ (W)w); 2636 verify_watcher (EV_A_ (W)w);
2637
2638 if (j++ & 1)
2639 {
2640 assert (("libev: io watcher list contains a loop", w != w2));
2641 w2 = w2->next;
2642 }
2643
1609 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1)); 2644 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1610 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i)); 2645 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1611 } 2646 }
2647 }
1612 2648
1613 assert (timermax >= timercnt); 2649 assert (timermax >= timercnt);
1614 verify_heap (EV_A_ timers, timercnt); 2650 verify_heap (EV_A_ timers, timercnt);
1615 2651
1616#if EV_PERIODIC_ENABLE 2652#if EV_PERIODIC_ENABLE
1631#if EV_FORK_ENABLE 2667#if EV_FORK_ENABLE
1632 assert (forkmax >= forkcnt); 2668 assert (forkmax >= forkcnt);
1633 array_verify (EV_A_ (W *)forks, forkcnt); 2669 array_verify (EV_A_ (W *)forks, forkcnt);
1634#endif 2670#endif
1635 2671
2672#if EV_CLEANUP_ENABLE
2673 assert (cleanupmax >= cleanupcnt);
2674 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2675#endif
2676
1636#if EV_ASYNC_ENABLE 2677#if EV_ASYNC_ENABLE
1637 assert (asyncmax >= asynccnt); 2678 assert (asyncmax >= asynccnt);
1638 array_verify (EV_A_ (W *)asyncs, asynccnt); 2679 array_verify (EV_A_ (W *)asyncs, asynccnt);
1639#endif 2680#endif
1640 2681
2682#if EV_PREPARE_ENABLE
1641 assert (preparemax >= preparecnt); 2683 assert (preparemax >= preparecnt);
1642 array_verify (EV_A_ (W *)prepares, preparecnt); 2684 array_verify (EV_A_ (W *)prepares, preparecnt);
2685#endif
1643 2686
2687#if EV_CHECK_ENABLE
1644 assert (checkmax >= checkcnt); 2688 assert (checkmax >= checkcnt);
1645 array_verify (EV_A_ (W *)checks, checkcnt); 2689 array_verify (EV_A_ (W *)checks, checkcnt);
2690#endif
1646 2691
1647# if 0 2692# if 0
2693#if EV_CHILD_ENABLE
1648 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2694 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1649 for (signum = signalmax; signum--; ) if (signals [signum].gotsig) 2695 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2696#endif
1650# endif 2697# endif
1651#endif 2698#endif
1652} 2699}
1653 2700#endif
1654#endif /* multiplicity */
1655 2701
1656#if EV_MULTIPLICITY 2702#if EV_MULTIPLICITY
1657struct ev_loop * 2703struct ev_loop * ecb_cold
1658ev_default_loop_init (unsigned int flags)
1659#else 2704#else
1660int 2705int
2706#endif
1661ev_default_loop (unsigned int flags) 2707ev_default_loop (unsigned int flags) EV_THROW
1662#endif
1663{ 2708{
1664 if (!ev_default_loop_ptr) 2709 if (!ev_default_loop_ptr)
1665 { 2710 {
1666#if EV_MULTIPLICITY 2711#if EV_MULTIPLICITY
1667 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2712 EV_P = ev_default_loop_ptr = &default_loop_struct;
1668#else 2713#else
1669 ev_default_loop_ptr = 1; 2714 ev_default_loop_ptr = 1;
1670#endif 2715#endif
1671 2716
1672 loop_init (EV_A_ flags); 2717 loop_init (EV_A_ flags);
1673 2718
1674 if (ev_backend (EV_A)) 2719 if (ev_backend (EV_A))
1675 { 2720 {
1676#ifndef _WIN32 2721#if EV_CHILD_ENABLE
1677 ev_signal_init (&childev, childcb, SIGCHLD); 2722 ev_signal_init (&childev, childcb, SIGCHLD);
1678 ev_set_priority (&childev, EV_MAXPRI); 2723 ev_set_priority (&childev, EV_MAXPRI);
1679 ev_signal_start (EV_A_ &childev); 2724 ev_signal_start (EV_A_ &childev);
1680 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2725 ev_unref (EV_A); /* child watcher should not keep loop alive */
1681#endif 2726#endif
1686 2731
1687 return ev_default_loop_ptr; 2732 return ev_default_loop_ptr;
1688} 2733}
1689 2734
1690void 2735void
1691ev_default_destroy (void) 2736ev_loop_fork (EV_P) EV_THROW
1692{ 2737{
1693#if EV_MULTIPLICITY 2738 postfork = 1;
1694 struct ev_loop *loop = ev_default_loop_ptr;
1695#endif
1696
1697 ev_default_loop_ptr = 0;
1698
1699#ifndef _WIN32
1700 ev_ref (EV_A); /* child watcher */
1701 ev_signal_stop (EV_A_ &childev);
1702#endif
1703
1704 loop_destroy (EV_A);
1705}
1706
1707void
1708ev_default_fork (void)
1709{
1710#if EV_MULTIPLICITY
1711 struct ev_loop *loop = ev_default_loop_ptr;
1712#endif
1713
1714 postfork = 1; /* must be in line with ev_loop_fork */
1715} 2739}
1716 2740
1717/*****************************************************************************/ 2741/*****************************************************************************/
1718 2742
1719void 2743void
1720ev_invoke (EV_P_ void *w, int revents) 2744ev_invoke (EV_P_ void *w, int revents)
1721{ 2745{
1722 EV_CB_INVOKE ((W)w, revents); 2746 EV_CB_INVOKE ((W)w, revents);
1723} 2747}
1724 2748
1725void inline_speed 2749unsigned int
1726call_pending (EV_P) 2750ev_pending_count (EV_P) EV_THROW
1727{ 2751{
1728 int pri; 2752 int pri;
2753 unsigned int count = 0;
1729 2754
1730 for (pri = NUMPRI; pri--; ) 2755 for (pri = NUMPRI; pri--; )
2756 count += pendingcnt [pri];
2757
2758 return count;
2759}
2760
2761void noinline
2762ev_invoke_pending (EV_P)
2763{
2764 for (pendingpri = NUMPRI; pendingpri--; ) /* pendingpri is modified during the loop */
1731 while (pendingcnt [pri]) 2765 while (pendingcnt [pendingpri])
1732 { 2766 {
1733 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2767 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1734 2768
1735 if (expect_true (p->w))
1736 {
1737 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1738
1739 p->w->pending = 0; 2769 p->w->pending = 0;
1740 EV_CB_INVOKE (p->w, p->events); 2770 EV_CB_INVOKE (p->w, p->events);
1741 EV_FREQUENT_CHECK; 2771 EV_FREQUENT_CHECK;
1742 }
1743 } 2772 }
1744} 2773}
1745 2774
1746#if EV_IDLE_ENABLE 2775#if EV_IDLE_ENABLE
1747void inline_size 2776/* make idle watchers pending. this handles the "call-idle */
2777/* only when higher priorities are idle" logic */
2778inline_size void
1748idle_reify (EV_P) 2779idle_reify (EV_P)
1749{ 2780{
1750 if (expect_false (idleall)) 2781 if (expect_false (idleall))
1751 { 2782 {
1752 int pri; 2783 int pri;
1764 } 2795 }
1765 } 2796 }
1766} 2797}
1767#endif 2798#endif
1768 2799
1769void inline_size 2800/* make timers pending */
2801inline_size void
1770timers_reify (EV_P) 2802timers_reify (EV_P)
1771{ 2803{
1772 EV_FREQUENT_CHECK; 2804 EV_FREQUENT_CHECK;
1773 2805
1774 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 2806 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1775 { 2807 {
1776 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 2808 do
1777
1778 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1779
1780 /* first reschedule or stop timer */
1781 if (w->repeat)
1782 { 2809 {
2810 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2811
2812 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2813
2814 /* first reschedule or stop timer */
2815 if (w->repeat)
2816 {
1783 ev_at (w) += w->repeat; 2817 ev_at (w) += w->repeat;
1784 if (ev_at (w) < mn_now) 2818 if (ev_at (w) < mn_now)
1785 ev_at (w) = mn_now; 2819 ev_at (w) = mn_now;
1786 2820
1787 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2821 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1788 2822
1789 ANHE_at_cache (timers [HEAP0]); 2823 ANHE_at_cache (timers [HEAP0]);
1790 downheap (timers, timercnt, HEAP0); 2824 downheap (timers, timercnt, HEAP0);
2825 }
2826 else
2827 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2828
2829 EV_FREQUENT_CHECK;
2830 feed_reverse (EV_A_ (W)w);
1791 } 2831 }
1792 else 2832 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1793 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1794 2833
1795 EV_FREQUENT_CHECK; 2834 feed_reverse_done (EV_A_ EV_TIMER);
1796 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1797 } 2835 }
1798} 2836}
1799 2837
1800#if EV_PERIODIC_ENABLE 2838#if EV_PERIODIC_ENABLE
1801void inline_size 2839
2840static void noinline
2841periodic_recalc (EV_P_ ev_periodic *w)
2842{
2843 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2844 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2845
2846 /* the above almost always errs on the low side */
2847 while (at <= ev_rt_now)
2848 {
2849 ev_tstamp nat = at + w->interval;
2850
2851 /* when resolution fails us, we use ev_rt_now */
2852 if (expect_false (nat == at))
2853 {
2854 at = ev_rt_now;
2855 break;
2856 }
2857
2858 at = nat;
2859 }
2860
2861 ev_at (w) = at;
2862}
2863
2864/* make periodics pending */
2865inline_size void
1802periodics_reify (EV_P) 2866periodics_reify (EV_P)
1803{ 2867{
1804 EV_FREQUENT_CHECK; 2868 EV_FREQUENT_CHECK;
1805 2869
1806 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 2870 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1807 { 2871 {
1808 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 2872 do
1809
1810 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1811
1812 /* first reschedule or stop timer */
1813 if (w->reschedule_cb)
1814 { 2873 {
2874 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2875
2876 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2877
2878 /* first reschedule or stop timer */
2879 if (w->reschedule_cb)
2880 {
1815 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2881 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1816 2882
1817 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 2883 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1818 2884
1819 ANHE_at_cache (periodics [HEAP0]); 2885 ANHE_at_cache (periodics [HEAP0]);
1820 downheap (periodics, periodiccnt, HEAP0); 2886 downheap (periodics, periodiccnt, HEAP0);
2887 }
2888 else if (w->interval)
2889 {
2890 periodic_recalc (EV_A_ w);
2891 ANHE_at_cache (periodics [HEAP0]);
2892 downheap (periodics, periodiccnt, HEAP0);
2893 }
2894 else
2895 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2896
2897 EV_FREQUENT_CHECK;
2898 feed_reverse (EV_A_ (W)w);
1821 } 2899 }
1822 else if (w->interval) 2900 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1823 {
1824 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1825 /* if next trigger time is not sufficiently in the future, put it there */
1826 /* this might happen because of floating point inexactness */
1827 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1828 {
1829 ev_at (w) += w->interval;
1830 2901
1831 /* if interval is unreasonably low we might still have a time in the past */
1832 /* so correct this. this will make the periodic very inexact, but the user */
1833 /* has effectively asked to get triggered more often than possible */
1834 if (ev_at (w) < ev_rt_now)
1835 ev_at (w) = ev_rt_now;
1836 }
1837
1838 ANHE_at_cache (periodics [HEAP0]);
1839 downheap (periodics, periodiccnt, HEAP0);
1840 }
1841 else
1842 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1843
1844 EV_FREQUENT_CHECK;
1845 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2902 feed_reverse_done (EV_A_ EV_PERIODIC);
1846 } 2903 }
1847} 2904}
1848 2905
2906/* simply recalculate all periodics */
2907/* TODO: maybe ensure that at least one event happens when jumping forward? */
1849static void noinline 2908static void noinline ecb_cold
1850periodics_reschedule (EV_P) 2909periodics_reschedule (EV_P)
1851{ 2910{
1852 int i; 2911 int i;
1853 2912
1854 /* adjust periodics after time jump */ 2913 /* adjust periodics after time jump */
1857 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]); 2916 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1858 2917
1859 if (w->reschedule_cb) 2918 if (w->reschedule_cb)
1860 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2919 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1861 else if (w->interval) 2920 else if (w->interval)
1862 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2921 periodic_recalc (EV_A_ w);
1863 2922
1864 ANHE_at_cache (periodics [i]); 2923 ANHE_at_cache (periodics [i]);
1865 } 2924 }
1866 2925
1867 reheap (periodics, periodiccnt); 2926 reheap (periodics, periodiccnt);
1868} 2927}
1869#endif 2928#endif
1870 2929
1871void inline_speed 2930/* adjust all timers by a given offset */
2931static void noinline ecb_cold
2932timers_reschedule (EV_P_ ev_tstamp adjust)
2933{
2934 int i;
2935
2936 for (i = 0; i < timercnt; ++i)
2937 {
2938 ANHE *he = timers + i + HEAP0;
2939 ANHE_w (*he)->at += adjust;
2940 ANHE_at_cache (*he);
2941 }
2942}
2943
2944/* fetch new monotonic and realtime times from the kernel */
2945/* also detect if there was a timejump, and act accordingly */
2946inline_speed void
1872time_update (EV_P_ ev_tstamp max_block) 2947time_update (EV_P_ ev_tstamp max_block)
1873{ 2948{
1874 int i;
1875
1876#if EV_USE_MONOTONIC 2949#if EV_USE_MONOTONIC
1877 if (expect_true (have_monotonic)) 2950 if (expect_true (have_monotonic))
1878 { 2951 {
2952 int i;
1879 ev_tstamp odiff = rtmn_diff; 2953 ev_tstamp odiff = rtmn_diff;
1880 2954
1881 mn_now = get_clock (); 2955 mn_now = get_clock ();
1882 2956
1883 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2957 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1899 * doesn't hurt either as we only do this on time-jumps or 2973 * doesn't hurt either as we only do this on time-jumps or
1900 * in the unlikely event of having been preempted here. 2974 * in the unlikely event of having been preempted here.
1901 */ 2975 */
1902 for (i = 4; --i; ) 2976 for (i = 4; --i; )
1903 { 2977 {
2978 ev_tstamp diff;
1904 rtmn_diff = ev_rt_now - mn_now; 2979 rtmn_diff = ev_rt_now - mn_now;
1905 2980
2981 diff = odiff - rtmn_diff;
2982
1906 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)) 2983 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1907 return; /* all is well */ 2984 return; /* all is well */
1908 2985
1909 ev_rt_now = ev_time (); 2986 ev_rt_now = ev_time ();
1910 mn_now = get_clock (); 2987 mn_now = get_clock ();
1911 now_floor = mn_now; 2988 now_floor = mn_now;
1912 } 2989 }
1913 2990
2991 /* no timer adjustment, as the monotonic clock doesn't jump */
2992 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1914# if EV_PERIODIC_ENABLE 2993# if EV_PERIODIC_ENABLE
1915 periodics_reschedule (EV_A); 2994 periodics_reschedule (EV_A);
1916# endif 2995# endif
1917 /* no timer adjustment, as the monotonic clock doesn't jump */
1918 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1919 } 2996 }
1920 else 2997 else
1921#endif 2998#endif
1922 { 2999 {
1923 ev_rt_now = ev_time (); 3000 ev_rt_now = ev_time ();
1924 3001
1925 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 3002 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1926 { 3003 {
3004 /* adjust timers. this is easy, as the offset is the same for all of them */
3005 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1927#if EV_PERIODIC_ENABLE 3006#if EV_PERIODIC_ENABLE
1928 periodics_reschedule (EV_A); 3007 periodics_reschedule (EV_A);
1929#endif 3008#endif
1930 /* adjust timers. this is easy, as the offset is the same for all of them */
1931 for (i = 0; i < timercnt; ++i)
1932 {
1933 ANHE *he = timers + i + HEAP0;
1934 ANHE_w (*he)->at += ev_rt_now - mn_now;
1935 ANHE_at_cache (*he);
1936 }
1937 } 3009 }
1938 3010
1939 mn_now = ev_rt_now; 3011 mn_now = ev_rt_now;
1940 } 3012 }
1941} 3013}
1942 3014
1943void 3015int
1944ev_ref (EV_P)
1945{
1946 ++activecnt;
1947}
1948
1949void
1950ev_unref (EV_P)
1951{
1952 --activecnt;
1953}
1954
1955void
1956ev_now_update (EV_P)
1957{
1958 time_update (EV_A_ 1e100);
1959}
1960
1961static int loop_done;
1962
1963void
1964ev_loop (EV_P_ int flags) 3016ev_run (EV_P_ int flags)
1965{ 3017{
3018#if EV_FEATURE_API
3019 ++loop_depth;
3020#endif
3021
3022 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3023
1966 loop_done = EVUNLOOP_CANCEL; 3024 loop_done = EVBREAK_CANCEL;
1967 3025
1968 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3026 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1969 3027
1970 do 3028 do
1971 { 3029 {
1972#if EV_VERIFY >= 2 3030#if EV_VERIFY >= 2
1973 ev_loop_verify (EV_A); 3031 ev_verify (EV_A);
1974#endif 3032#endif
1975 3033
1976#ifndef _WIN32 3034#ifndef _WIN32
1977 if (expect_false (curpid)) /* penalise the forking check even more */ 3035 if (expect_false (curpid)) /* penalise the forking check even more */
1978 if (expect_false (getpid () != curpid)) 3036 if (expect_false (getpid () != curpid))
1986 /* we might have forked, so queue fork handlers */ 3044 /* we might have forked, so queue fork handlers */
1987 if (expect_false (postfork)) 3045 if (expect_false (postfork))
1988 if (forkcnt) 3046 if (forkcnt)
1989 { 3047 {
1990 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3048 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1991 call_pending (EV_A); 3049 EV_INVOKE_PENDING;
1992 } 3050 }
1993#endif 3051#endif
1994 3052
3053#if EV_PREPARE_ENABLE
1995 /* queue prepare watchers (and execute them) */ 3054 /* queue prepare watchers (and execute them) */
1996 if (expect_false (preparecnt)) 3055 if (expect_false (preparecnt))
1997 { 3056 {
1998 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3057 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1999 call_pending (EV_A); 3058 EV_INVOKE_PENDING;
2000 } 3059 }
3060#endif
2001 3061
2002 if (expect_false (!activecnt)) 3062 if (expect_false (loop_done))
2003 break; 3063 break;
2004 3064
2005 /* we might have forked, so reify kernel state if necessary */ 3065 /* we might have forked, so reify kernel state if necessary */
2006 if (expect_false (postfork)) 3066 if (expect_false (postfork))
2007 loop_fork (EV_A); 3067 loop_fork (EV_A);
2012 /* calculate blocking time */ 3072 /* calculate blocking time */
2013 { 3073 {
2014 ev_tstamp waittime = 0.; 3074 ev_tstamp waittime = 0.;
2015 ev_tstamp sleeptime = 0.; 3075 ev_tstamp sleeptime = 0.;
2016 3076
3077 /* remember old timestamp for io_blocktime calculation */
3078 ev_tstamp prev_mn_now = mn_now;
3079
3080 /* update time to cancel out callback processing overhead */
3081 time_update (EV_A_ 1e100);
3082
3083 /* from now on, we want a pipe-wake-up */
3084 pipe_write_wanted = 1;
3085
3086 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3087
2017 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3088 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
2018 { 3089 {
2019 /* update time to cancel out callback processing overhead */
2020 time_update (EV_A_ 1e100);
2021
2022 waittime = MAX_BLOCKTIME; 3090 waittime = MAX_BLOCKTIME;
2023 3091
2024 if (timercnt) 3092 if (timercnt)
2025 { 3093 {
2026 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 3094 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
2027 if (waittime > to) waittime = to; 3095 if (waittime > to) waittime = to;
2028 } 3096 }
2029 3097
2030#if EV_PERIODIC_ENABLE 3098#if EV_PERIODIC_ENABLE
2031 if (periodiccnt) 3099 if (periodiccnt)
2032 { 3100 {
2033 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 3101 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
2034 if (waittime > to) waittime = to; 3102 if (waittime > to) waittime = to;
2035 } 3103 }
2036#endif 3104#endif
2037 3105
3106 /* don't let timeouts decrease the waittime below timeout_blocktime */
2038 if (expect_false (waittime < timeout_blocktime)) 3107 if (expect_false (waittime < timeout_blocktime))
2039 waittime = timeout_blocktime; 3108 waittime = timeout_blocktime;
2040 3109
2041 sleeptime = waittime - backend_fudge; 3110 /* at this point, we NEED to wait, so we have to ensure */
3111 /* to pass a minimum nonzero value to the backend */
3112 if (expect_false (waittime < backend_mintime))
3113 waittime = backend_mintime;
2042 3114
3115 /* extra check because io_blocktime is commonly 0 */
2043 if (expect_true (sleeptime > io_blocktime)) 3116 if (expect_false (io_blocktime))
2044 sleeptime = io_blocktime;
2045
2046 if (sleeptime)
2047 { 3117 {
3118 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3119
3120 if (sleeptime > waittime - backend_mintime)
3121 sleeptime = waittime - backend_mintime;
3122
3123 if (expect_true (sleeptime > 0.))
3124 {
2048 ev_sleep (sleeptime); 3125 ev_sleep (sleeptime);
2049 waittime -= sleeptime; 3126 waittime -= sleeptime;
3127 }
2050 } 3128 }
2051 } 3129 }
2052 3130
3131#if EV_FEATURE_API
2053 ++loop_count; 3132 ++loop_count;
3133#endif
3134 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2054 backend_poll (EV_A_ waittime); 3135 backend_poll (EV_A_ waittime);
3136 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3137
3138 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3139
3140 MEMORY_FENCE_ACQUIRE;
3141 if (pipe_write_skipped)
3142 {
3143 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3144 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3145 }
3146
2055 3147
2056 /* update ev_rt_now, do magic */ 3148 /* update ev_rt_now, do magic */
2057 time_update (EV_A_ waittime + sleeptime); 3149 time_update (EV_A_ waittime + sleeptime);
2058 } 3150 }
2059 3151
2066#if EV_IDLE_ENABLE 3158#if EV_IDLE_ENABLE
2067 /* queue idle watchers unless other events are pending */ 3159 /* queue idle watchers unless other events are pending */
2068 idle_reify (EV_A); 3160 idle_reify (EV_A);
2069#endif 3161#endif
2070 3162
3163#if EV_CHECK_ENABLE
2071 /* queue check watchers, to be executed first */ 3164 /* queue check watchers, to be executed first */
2072 if (expect_false (checkcnt)) 3165 if (expect_false (checkcnt))
2073 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3166 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3167#endif
2074 3168
2075 call_pending (EV_A); 3169 EV_INVOKE_PENDING;
2076 } 3170 }
2077 while (expect_true ( 3171 while (expect_true (
2078 activecnt 3172 activecnt
2079 && !loop_done 3173 && !loop_done
2080 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 3174 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2081 )); 3175 ));
2082 3176
2083 if (loop_done == EVUNLOOP_ONE) 3177 if (loop_done == EVBREAK_ONE)
2084 loop_done = EVUNLOOP_CANCEL; 3178 loop_done = EVBREAK_CANCEL;
3179
3180#if EV_FEATURE_API
3181 --loop_depth;
3182#endif
3183
3184 return activecnt;
2085} 3185}
2086 3186
2087void 3187void
2088ev_unloop (EV_P_ int how) 3188ev_break (EV_P_ int how) EV_THROW
2089{ 3189{
2090 loop_done = how; 3190 loop_done = how;
2091} 3191}
2092 3192
3193void
3194ev_ref (EV_P) EV_THROW
3195{
3196 ++activecnt;
3197}
3198
3199void
3200ev_unref (EV_P) EV_THROW
3201{
3202 --activecnt;
3203}
3204
3205void
3206ev_now_update (EV_P) EV_THROW
3207{
3208 time_update (EV_A_ 1e100);
3209}
3210
3211void
3212ev_suspend (EV_P) EV_THROW
3213{
3214 ev_now_update (EV_A);
3215}
3216
3217void
3218ev_resume (EV_P) EV_THROW
3219{
3220 ev_tstamp mn_prev = mn_now;
3221
3222 ev_now_update (EV_A);
3223 timers_reschedule (EV_A_ mn_now - mn_prev);
3224#if EV_PERIODIC_ENABLE
3225 /* TODO: really do this? */
3226 periodics_reschedule (EV_A);
3227#endif
3228}
3229
2093/*****************************************************************************/ 3230/*****************************************************************************/
3231/* singly-linked list management, used when the expected list length is short */
2094 3232
2095void inline_size 3233inline_size void
2096wlist_add (WL *head, WL elem) 3234wlist_add (WL *head, WL elem)
2097{ 3235{
2098 elem->next = *head; 3236 elem->next = *head;
2099 *head = elem; 3237 *head = elem;
2100} 3238}
2101 3239
2102void inline_size 3240inline_size void
2103wlist_del (WL *head, WL elem) 3241wlist_del (WL *head, WL elem)
2104{ 3242{
2105 while (*head) 3243 while (*head)
2106 { 3244 {
2107 if (*head == elem) 3245 if (expect_true (*head == elem))
2108 { 3246 {
2109 *head = elem->next; 3247 *head = elem->next;
2110 return; 3248 break;
2111 } 3249 }
2112 3250
2113 head = &(*head)->next; 3251 head = &(*head)->next;
2114 } 3252 }
2115} 3253}
2116 3254
2117void inline_speed 3255/* internal, faster, version of ev_clear_pending */
3256inline_speed void
2118clear_pending (EV_P_ W w) 3257clear_pending (EV_P_ W w)
2119{ 3258{
2120 if (w->pending) 3259 if (w->pending)
2121 { 3260 {
2122 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3261 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2123 w->pending = 0; 3262 w->pending = 0;
2124 } 3263 }
2125} 3264}
2126 3265
2127int 3266int
2128ev_clear_pending (EV_P_ void *w) 3267ev_clear_pending (EV_P_ void *w) EV_THROW
2129{ 3268{
2130 W w_ = (W)w; 3269 W w_ = (W)w;
2131 int pending = w_->pending; 3270 int pending = w_->pending;
2132 3271
2133 if (expect_true (pending)) 3272 if (expect_true (pending))
2134 { 3273 {
2135 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3274 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3275 p->w = (W)&pending_w;
2136 w_->pending = 0; 3276 w_->pending = 0;
2137 p->w = 0;
2138 return p->events; 3277 return p->events;
2139 } 3278 }
2140 else 3279 else
2141 return 0; 3280 return 0;
2142} 3281}
2143 3282
2144void inline_size 3283inline_size void
2145pri_adjust (EV_P_ W w) 3284pri_adjust (EV_P_ W w)
2146{ 3285{
2147 int pri = w->priority; 3286 int pri = ev_priority (w);
2148 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3287 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2149 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3288 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2150 w->priority = pri; 3289 ev_set_priority (w, pri);
2151} 3290}
2152 3291
2153void inline_speed 3292inline_speed void
2154ev_start (EV_P_ W w, int active) 3293ev_start (EV_P_ W w, int active)
2155{ 3294{
2156 pri_adjust (EV_A_ w); 3295 pri_adjust (EV_A_ w);
2157 w->active = active; 3296 w->active = active;
2158 ev_ref (EV_A); 3297 ev_ref (EV_A);
2159} 3298}
2160 3299
2161void inline_size 3300inline_size void
2162ev_stop (EV_P_ W w) 3301ev_stop (EV_P_ W w)
2163{ 3302{
2164 ev_unref (EV_A); 3303 ev_unref (EV_A);
2165 w->active = 0; 3304 w->active = 0;
2166} 3305}
2167 3306
2168/*****************************************************************************/ 3307/*****************************************************************************/
2169 3308
2170void noinline 3309void noinline
2171ev_io_start (EV_P_ ev_io *w) 3310ev_io_start (EV_P_ ev_io *w) EV_THROW
2172{ 3311{
2173 int fd = w->fd; 3312 int fd = w->fd;
2174 3313
2175 if (expect_false (ev_is_active (w))) 3314 if (expect_false (ev_is_active (w)))
2176 return; 3315 return;
2177 3316
2178 assert (("libev: ev_io_start called with negative fd", fd >= 0)); 3317 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2179 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE)))); 3318 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2180 3319
2181 EV_FREQUENT_CHECK; 3320 EV_FREQUENT_CHECK;
2182 3321
2183 ev_start (EV_A_ (W)w, 1); 3322 ev_start (EV_A_ (W)w, 1);
2184 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero); 3323 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2185 wlist_add (&anfds[fd].head, (WL)w); 3324 wlist_add (&anfds[fd].head, (WL)w);
2186 3325
3326 /* common bug, apparently */
3327 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3328
2187 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1); 3329 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2188 w->events &= ~EV__IOFDSET; 3330 w->events &= ~EV__IOFDSET;
2189 3331
2190 EV_FREQUENT_CHECK; 3332 EV_FREQUENT_CHECK;
2191} 3333}
2192 3334
2193void noinline 3335void noinline
2194ev_io_stop (EV_P_ ev_io *w) 3336ev_io_stop (EV_P_ ev_io *w) EV_THROW
2195{ 3337{
2196 clear_pending (EV_A_ (W)w); 3338 clear_pending (EV_A_ (W)w);
2197 if (expect_false (!ev_is_active (w))) 3339 if (expect_false (!ev_is_active (w)))
2198 return; 3340 return;
2199 3341
2202 EV_FREQUENT_CHECK; 3344 EV_FREQUENT_CHECK;
2203 3345
2204 wlist_del (&anfds[w->fd].head, (WL)w); 3346 wlist_del (&anfds[w->fd].head, (WL)w);
2205 ev_stop (EV_A_ (W)w); 3347 ev_stop (EV_A_ (W)w);
2206 3348
2207 fd_change (EV_A_ w->fd, 1); 3349 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2208 3350
2209 EV_FREQUENT_CHECK; 3351 EV_FREQUENT_CHECK;
2210} 3352}
2211 3353
2212void noinline 3354void noinline
2213ev_timer_start (EV_P_ ev_timer *w) 3355ev_timer_start (EV_P_ ev_timer *w) EV_THROW
2214{ 3356{
2215 if (expect_false (ev_is_active (w))) 3357 if (expect_false (ev_is_active (w)))
2216 return; 3358 return;
2217 3359
2218 ev_at (w) += mn_now; 3360 ev_at (w) += mn_now;
2232 3374
2233 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 3375 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2234} 3376}
2235 3377
2236void noinline 3378void noinline
2237ev_timer_stop (EV_P_ ev_timer *w) 3379ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
2238{ 3380{
2239 clear_pending (EV_A_ (W)w); 3381 clear_pending (EV_A_ (W)w);
2240 if (expect_false (!ev_is_active (w))) 3382 if (expect_false (!ev_is_active (w)))
2241 return; 3383 return;
2242 3384
2254 timers [active] = timers [timercnt + HEAP0]; 3396 timers [active] = timers [timercnt + HEAP0];
2255 adjustheap (timers, timercnt, active); 3397 adjustheap (timers, timercnt, active);
2256 } 3398 }
2257 } 3399 }
2258 3400
2259 EV_FREQUENT_CHECK;
2260
2261 ev_at (w) -= mn_now; 3401 ev_at (w) -= mn_now;
2262 3402
2263 ev_stop (EV_A_ (W)w); 3403 ev_stop (EV_A_ (W)w);
3404
3405 EV_FREQUENT_CHECK;
2264} 3406}
2265 3407
2266void noinline 3408void noinline
2267ev_timer_again (EV_P_ ev_timer *w) 3409ev_timer_again (EV_P_ ev_timer *w) EV_THROW
2268{ 3410{
2269 EV_FREQUENT_CHECK; 3411 EV_FREQUENT_CHECK;
3412
3413 clear_pending (EV_A_ (W)w);
2270 3414
2271 if (ev_is_active (w)) 3415 if (ev_is_active (w))
2272 { 3416 {
2273 if (w->repeat) 3417 if (w->repeat)
2274 { 3418 {
2286 } 3430 }
2287 3431
2288 EV_FREQUENT_CHECK; 3432 EV_FREQUENT_CHECK;
2289} 3433}
2290 3434
3435ev_tstamp
3436ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3437{
3438 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3439}
3440
2291#if EV_PERIODIC_ENABLE 3441#if EV_PERIODIC_ENABLE
2292void noinline 3442void noinline
2293ev_periodic_start (EV_P_ ev_periodic *w) 3443ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
2294{ 3444{
2295 if (expect_false (ev_is_active (w))) 3445 if (expect_false (ev_is_active (w)))
2296 return; 3446 return;
2297 3447
2298 if (w->reschedule_cb) 3448 if (w->reschedule_cb)
2299 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3449 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2300 else if (w->interval) 3450 else if (w->interval)
2301 { 3451 {
2302 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.)); 3452 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2303 /* this formula differs from the one in periodic_reify because we do not always round up */ 3453 periodic_recalc (EV_A_ w);
2304 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2305 } 3454 }
2306 else 3455 else
2307 ev_at (w) = w->offset; 3456 ev_at (w) = w->offset;
2308 3457
2309 EV_FREQUENT_CHECK; 3458 EV_FREQUENT_CHECK;
2319 3468
2320 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 3469 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2321} 3470}
2322 3471
2323void noinline 3472void noinline
2324ev_periodic_stop (EV_P_ ev_periodic *w) 3473ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
2325{ 3474{
2326 clear_pending (EV_A_ (W)w); 3475 clear_pending (EV_A_ (W)w);
2327 if (expect_false (!ev_is_active (w))) 3476 if (expect_false (!ev_is_active (w)))
2328 return; 3477 return;
2329 3478
2341 periodics [active] = periodics [periodiccnt + HEAP0]; 3490 periodics [active] = periodics [periodiccnt + HEAP0];
2342 adjustheap (periodics, periodiccnt, active); 3491 adjustheap (periodics, periodiccnt, active);
2343 } 3492 }
2344 } 3493 }
2345 3494
2346 EV_FREQUENT_CHECK;
2347
2348 ev_stop (EV_A_ (W)w); 3495 ev_stop (EV_A_ (W)w);
3496
3497 EV_FREQUENT_CHECK;
2349} 3498}
2350 3499
2351void noinline 3500void noinline
2352ev_periodic_again (EV_P_ ev_periodic *w) 3501ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
2353{ 3502{
2354 /* TODO: use adjustheap and recalculation */ 3503 /* TODO: use adjustheap and recalculation */
2355 ev_periodic_stop (EV_A_ w); 3504 ev_periodic_stop (EV_A_ w);
2356 ev_periodic_start (EV_A_ w); 3505 ev_periodic_start (EV_A_ w);
2357} 3506}
2359 3508
2360#ifndef SA_RESTART 3509#ifndef SA_RESTART
2361# define SA_RESTART 0 3510# define SA_RESTART 0
2362#endif 3511#endif
2363 3512
3513#if EV_SIGNAL_ENABLE
3514
2364void noinline 3515void noinline
2365ev_signal_start (EV_P_ ev_signal *w) 3516ev_signal_start (EV_P_ ev_signal *w) EV_THROW
2366{ 3517{
2367#if EV_MULTIPLICITY
2368 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2369#endif
2370 if (expect_false (ev_is_active (w))) 3518 if (expect_false (ev_is_active (w)))
2371 return; 3519 return;
2372 3520
2373 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0)); 3521 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2374 3522
2375 evpipe_init (EV_A); 3523#if EV_MULTIPLICITY
3524 assert (("libev: a signal must not be attached to two different loops",
3525 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2376 3526
2377 EV_FREQUENT_CHECK; 3527 signals [w->signum - 1].loop = EV_A;
3528#endif
2378 3529
3530 EV_FREQUENT_CHECK;
3531
3532#if EV_USE_SIGNALFD
3533 if (sigfd == -2)
2379 { 3534 {
2380#ifndef _WIN32 3535 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2381 sigset_t full, prev; 3536 if (sigfd < 0 && errno == EINVAL)
2382 sigfillset (&full); 3537 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2383 sigprocmask (SIG_SETMASK, &full, &prev);
2384#endif
2385 3538
2386 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero); 3539 if (sigfd >= 0)
3540 {
3541 fd_intern (sigfd); /* doing it twice will not hurt */
2387 3542
2388#ifndef _WIN32 3543 sigemptyset (&sigfd_set);
2389 sigprocmask (SIG_SETMASK, &prev, 0); 3544
2390#endif 3545 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3546 ev_set_priority (&sigfd_w, EV_MAXPRI);
3547 ev_io_start (EV_A_ &sigfd_w);
3548 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3549 }
2391 } 3550 }
3551
3552 if (sigfd >= 0)
3553 {
3554 /* TODO: check .head */
3555 sigaddset (&sigfd_set, w->signum);
3556 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3557
3558 signalfd (sigfd, &sigfd_set, 0);
3559 }
3560#endif
2392 3561
2393 ev_start (EV_A_ (W)w, 1); 3562 ev_start (EV_A_ (W)w, 1);
2394 wlist_add (&signals [w->signum - 1].head, (WL)w); 3563 wlist_add (&signals [w->signum - 1].head, (WL)w);
2395 3564
2396 if (!((WL)w)->next) 3565 if (!((WL)w)->next)
3566# if EV_USE_SIGNALFD
3567 if (sigfd < 0) /*TODO*/
3568# endif
2397 { 3569 {
2398#if _WIN32 3570# ifdef _WIN32
3571 evpipe_init (EV_A);
3572
2399 signal (w->signum, ev_sighandler); 3573 signal (w->signum, ev_sighandler);
2400#else 3574# else
2401 struct sigaction sa; 3575 struct sigaction sa;
3576
3577 evpipe_init (EV_A);
3578
2402 sa.sa_handler = ev_sighandler; 3579 sa.sa_handler = ev_sighandler;
2403 sigfillset (&sa.sa_mask); 3580 sigfillset (&sa.sa_mask);
2404 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3581 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2405 sigaction (w->signum, &sa, 0); 3582 sigaction (w->signum, &sa, 0);
3583
3584 if (origflags & EVFLAG_NOSIGMASK)
3585 {
3586 sigemptyset (&sa.sa_mask);
3587 sigaddset (&sa.sa_mask, w->signum);
3588 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3589 }
2406#endif 3590#endif
2407 } 3591 }
2408 3592
2409 EV_FREQUENT_CHECK; 3593 EV_FREQUENT_CHECK;
2410} 3594}
2411 3595
2412void noinline 3596void noinline
2413ev_signal_stop (EV_P_ ev_signal *w) 3597ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
2414{ 3598{
2415 clear_pending (EV_A_ (W)w); 3599 clear_pending (EV_A_ (W)w);
2416 if (expect_false (!ev_is_active (w))) 3600 if (expect_false (!ev_is_active (w)))
2417 return; 3601 return;
2418 3602
2420 3604
2421 wlist_del (&signals [w->signum - 1].head, (WL)w); 3605 wlist_del (&signals [w->signum - 1].head, (WL)w);
2422 ev_stop (EV_A_ (W)w); 3606 ev_stop (EV_A_ (W)w);
2423 3607
2424 if (!signals [w->signum - 1].head) 3608 if (!signals [w->signum - 1].head)
3609 {
3610#if EV_MULTIPLICITY
3611 signals [w->signum - 1].loop = 0; /* unattach from signal */
3612#endif
3613#if EV_USE_SIGNALFD
3614 if (sigfd >= 0)
3615 {
3616 sigset_t ss;
3617
3618 sigemptyset (&ss);
3619 sigaddset (&ss, w->signum);
3620 sigdelset (&sigfd_set, w->signum);
3621
3622 signalfd (sigfd, &sigfd_set, 0);
3623 sigprocmask (SIG_UNBLOCK, &ss, 0);
3624 }
3625 else
3626#endif
2425 signal (w->signum, SIG_DFL); 3627 signal (w->signum, SIG_DFL);
3628 }
2426 3629
2427 EV_FREQUENT_CHECK; 3630 EV_FREQUENT_CHECK;
2428} 3631}
3632
3633#endif
3634
3635#if EV_CHILD_ENABLE
2429 3636
2430void 3637void
2431ev_child_start (EV_P_ ev_child *w) 3638ev_child_start (EV_P_ ev_child *w) EV_THROW
2432{ 3639{
2433#if EV_MULTIPLICITY 3640#if EV_MULTIPLICITY
2434 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3641 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2435#endif 3642#endif
2436 if (expect_false (ev_is_active (w))) 3643 if (expect_false (ev_is_active (w)))
2437 return; 3644 return;
2438 3645
2439 EV_FREQUENT_CHECK; 3646 EV_FREQUENT_CHECK;
2440 3647
2441 ev_start (EV_A_ (W)w, 1); 3648 ev_start (EV_A_ (W)w, 1);
2442 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3649 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2443 3650
2444 EV_FREQUENT_CHECK; 3651 EV_FREQUENT_CHECK;
2445} 3652}
2446 3653
2447void 3654void
2448ev_child_stop (EV_P_ ev_child *w) 3655ev_child_stop (EV_P_ ev_child *w) EV_THROW
2449{ 3656{
2450 clear_pending (EV_A_ (W)w); 3657 clear_pending (EV_A_ (W)w);
2451 if (expect_false (!ev_is_active (w))) 3658 if (expect_false (!ev_is_active (w)))
2452 return; 3659 return;
2453 3660
2454 EV_FREQUENT_CHECK; 3661 EV_FREQUENT_CHECK;
2455 3662
2456 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3663 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2457 ev_stop (EV_A_ (W)w); 3664 ev_stop (EV_A_ (W)w);
2458 3665
2459 EV_FREQUENT_CHECK; 3666 EV_FREQUENT_CHECK;
2460} 3667}
3668
3669#endif
2461 3670
2462#if EV_STAT_ENABLE 3671#if EV_STAT_ENABLE
2463 3672
2464# ifdef _WIN32 3673# ifdef _WIN32
2465# undef lstat 3674# undef lstat
2471#define MIN_STAT_INTERVAL 0.1074891 3680#define MIN_STAT_INTERVAL 0.1074891
2472 3681
2473static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3682static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2474 3683
2475#if EV_USE_INOTIFY 3684#if EV_USE_INOTIFY
2476# define EV_INOTIFY_BUFSIZE 8192 3685
3686/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3687# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2477 3688
2478static void noinline 3689static void noinline
2479infy_add (EV_P_ ev_stat *w) 3690infy_add (EV_P_ ev_stat *w)
2480{ 3691{
2481 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3692 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2482 3693
2483 if (w->wd < 0) 3694 if (w->wd >= 0)
3695 {
3696 struct statfs sfs;
3697
3698 /* now local changes will be tracked by inotify, but remote changes won't */
3699 /* unless the filesystem is known to be local, we therefore still poll */
3700 /* also do poll on <2.6.25, but with normal frequency */
3701
3702 if (!fs_2625)
3703 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3704 else if (!statfs (w->path, &sfs)
3705 && (sfs.f_type == 0x1373 /* devfs */
3706 || sfs.f_type == 0xEF53 /* ext2/3 */
3707 || sfs.f_type == 0x3153464a /* jfs */
3708 || sfs.f_type == 0x52654973 /* reiser3 */
3709 || sfs.f_type == 0x01021994 /* tempfs */
3710 || sfs.f_type == 0x58465342 /* xfs */))
3711 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3712 else
3713 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2484 { 3714 }
3715 else
3716 {
3717 /* can't use inotify, continue to stat */
2485 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL; 3718 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2486 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2487 3719
2488 /* monitor some parent directory for speedup hints */ 3720 /* if path is not there, monitor some parent directory for speedup hints */
2489 /* note that exceeding the hardcoded path limit is not a correctness issue, */ 3721 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2490 /* but an efficiency issue only */ 3722 /* but an efficiency issue only */
2491 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3723 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2492 { 3724 {
2493 char path [4096]; 3725 char path [4096];
2503 if (!pend || pend == path) 3735 if (!pend || pend == path)
2504 break; 3736 break;
2505 3737
2506 *pend = 0; 3738 *pend = 0;
2507 w->wd = inotify_add_watch (fs_fd, path, mask); 3739 w->wd = inotify_add_watch (fs_fd, path, mask);
2508 } 3740 }
2509 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3741 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2510 } 3742 }
2511 } 3743 }
2512 3744
2513 if (w->wd >= 0) 3745 if (w->wd >= 0)
2514 {
2515 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3746 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2516 3747
2517 /* now local changes will be tracked by inotify, but remote changes won't */ 3748 /* now re-arm timer, if required */
2518 /* unless the filesystem it known to be local, we therefore still poll */ 3749 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2519 /* also do poll on <2.6.25, but with normal frequency */
2520 struct statfs sfs;
2521
2522 if (fs_2625 && !statfs (w->path, &sfs))
2523 if (sfs.f_type == 0x1373 /* devfs */
2524 || sfs.f_type == 0xEF53 /* ext2/3 */
2525 || sfs.f_type == 0x3153464a /* jfs */
2526 || sfs.f_type == 0x52654973 /* reiser3 */
2527 || sfs.f_type == 0x01021994 /* tempfs */
2528 || sfs.f_type == 0x58465342 /* xfs */)
2529 return;
2530
2531 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2532 ev_timer_again (EV_A_ &w->timer); 3750 ev_timer_again (EV_A_ &w->timer);
2533 } 3751 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2534} 3752}
2535 3753
2536static void noinline 3754static void noinline
2537infy_del (EV_P_ ev_stat *w) 3755infy_del (EV_P_ ev_stat *w)
2538{ 3756{
2541 3759
2542 if (wd < 0) 3760 if (wd < 0)
2543 return; 3761 return;
2544 3762
2545 w->wd = -2; 3763 w->wd = -2;
2546 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3764 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2547 wlist_del (&fs_hash [slot].head, (WL)w); 3765 wlist_del (&fs_hash [slot].head, (WL)w);
2548 3766
2549 /* remove this watcher, if others are watching it, they will rearm */ 3767 /* remove this watcher, if others are watching it, they will rearm */
2550 inotify_rm_watch (fs_fd, wd); 3768 inotify_rm_watch (fs_fd, wd);
2551} 3769}
2553static void noinline 3771static void noinline
2554infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3772infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2555{ 3773{
2556 if (slot < 0) 3774 if (slot < 0)
2557 /* overflow, need to check for all hash slots */ 3775 /* overflow, need to check for all hash slots */
2558 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3776 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2559 infy_wd (EV_A_ slot, wd, ev); 3777 infy_wd (EV_A_ slot, wd, ev);
2560 else 3778 else
2561 { 3779 {
2562 WL w_; 3780 WL w_;
2563 3781
2564 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3782 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2565 { 3783 {
2566 ev_stat *w = (ev_stat *)w_; 3784 ev_stat *w = (ev_stat *)w_;
2567 w_ = w_->next; /* lets us remove this watcher and all before it */ 3785 w_ = w_->next; /* lets us remove this watcher and all before it */
2568 3786
2569 if (w->wd == wd || wd == -1) 3787 if (w->wd == wd || wd == -1)
2570 { 3788 {
2571 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3789 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2572 { 3790 {
2573 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3791 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2574 w->wd = -1; 3792 w->wd = -1;
2575 infy_add (EV_A_ w); /* re-add, no matter what */ 3793 infy_add (EV_A_ w); /* re-add, no matter what */
2576 } 3794 }
2577 3795
2578 stat_timer_cb (EV_A_ &w->timer, 0); 3796 stat_timer_cb (EV_A_ &w->timer, 0);
2583 3801
2584static void 3802static void
2585infy_cb (EV_P_ ev_io *w, int revents) 3803infy_cb (EV_P_ ev_io *w, int revents)
2586{ 3804{
2587 char buf [EV_INOTIFY_BUFSIZE]; 3805 char buf [EV_INOTIFY_BUFSIZE];
2588 struct inotify_event *ev = (struct inotify_event *)buf;
2589 int ofs; 3806 int ofs;
2590 int len = read (fs_fd, buf, sizeof (buf)); 3807 int len = read (fs_fd, buf, sizeof (buf));
2591 3808
2592 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3809 for (ofs = 0; ofs < len; )
3810 {
3811 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2593 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3812 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3813 ofs += sizeof (struct inotify_event) + ev->len;
3814 }
2594} 3815}
2595 3816
2596void inline_size 3817inline_size void ecb_cold
2597check_2625 (EV_P) 3818ev_check_2625 (EV_P)
2598{ 3819{
2599 /* kernels < 2.6.25 are borked 3820 /* kernels < 2.6.25 are borked
2600 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html 3821 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2601 */ 3822 */
2602 struct utsname buf; 3823 if (ev_linux_version () < 0x020619)
2603 int major, minor, micro;
2604
2605 if (uname (&buf))
2606 return; 3824 return;
2607 3825
2608 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2609 return;
2610
2611 if (major < 2
2612 || (major == 2 && minor < 6)
2613 || (major == 2 && minor == 6 && micro < 25))
2614 return;
2615
2616 fs_2625 = 1; 3826 fs_2625 = 1;
2617} 3827}
2618 3828
2619void inline_size 3829inline_size int
3830infy_newfd (void)
3831{
3832#if defined IN_CLOEXEC && defined IN_NONBLOCK
3833 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3834 if (fd >= 0)
3835 return fd;
3836#endif
3837 return inotify_init ();
3838}
3839
3840inline_size void
2620infy_init (EV_P) 3841infy_init (EV_P)
2621{ 3842{
2622 if (fs_fd != -2) 3843 if (fs_fd != -2)
2623 return; 3844 return;
2624 3845
2625 fs_fd = -1; 3846 fs_fd = -1;
2626 3847
2627 check_2625 (EV_A); 3848 ev_check_2625 (EV_A);
2628 3849
2629 fs_fd = inotify_init (); 3850 fs_fd = infy_newfd ();
2630 3851
2631 if (fs_fd >= 0) 3852 if (fs_fd >= 0)
2632 { 3853 {
3854 fd_intern (fs_fd);
2633 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3855 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2634 ev_set_priority (&fs_w, EV_MAXPRI); 3856 ev_set_priority (&fs_w, EV_MAXPRI);
2635 ev_io_start (EV_A_ &fs_w); 3857 ev_io_start (EV_A_ &fs_w);
3858 ev_unref (EV_A);
2636 } 3859 }
2637} 3860}
2638 3861
2639void inline_size 3862inline_size void
2640infy_fork (EV_P) 3863infy_fork (EV_P)
2641{ 3864{
2642 int slot; 3865 int slot;
2643 3866
2644 if (fs_fd < 0) 3867 if (fs_fd < 0)
2645 return; 3868 return;
2646 3869
3870 ev_ref (EV_A);
3871 ev_io_stop (EV_A_ &fs_w);
2647 close (fs_fd); 3872 close (fs_fd);
2648 fs_fd = inotify_init (); 3873 fs_fd = infy_newfd ();
2649 3874
3875 if (fs_fd >= 0)
3876 {
3877 fd_intern (fs_fd);
3878 ev_io_set (&fs_w, fs_fd, EV_READ);
3879 ev_io_start (EV_A_ &fs_w);
3880 ev_unref (EV_A);
3881 }
3882
2650 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3883 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2651 { 3884 {
2652 WL w_ = fs_hash [slot].head; 3885 WL w_ = fs_hash [slot].head;
2653 fs_hash [slot].head = 0; 3886 fs_hash [slot].head = 0;
2654 3887
2655 while (w_) 3888 while (w_)
2660 w->wd = -1; 3893 w->wd = -1;
2661 3894
2662 if (fs_fd >= 0) 3895 if (fs_fd >= 0)
2663 infy_add (EV_A_ w); /* re-add, no matter what */ 3896 infy_add (EV_A_ w); /* re-add, no matter what */
2664 else 3897 else
3898 {
3899 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3900 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2665 ev_timer_again (EV_A_ &w->timer); 3901 ev_timer_again (EV_A_ &w->timer);
3902 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3903 }
2666 } 3904 }
2667 } 3905 }
2668} 3906}
2669 3907
2670#endif 3908#endif
2674#else 3912#else
2675# define EV_LSTAT(p,b) lstat (p, b) 3913# define EV_LSTAT(p,b) lstat (p, b)
2676#endif 3914#endif
2677 3915
2678void 3916void
2679ev_stat_stat (EV_P_ ev_stat *w) 3917ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
2680{ 3918{
2681 if (lstat (w->path, &w->attr) < 0) 3919 if (lstat (w->path, &w->attr) < 0)
2682 w->attr.st_nlink = 0; 3920 w->attr.st_nlink = 0;
2683 else if (!w->attr.st_nlink) 3921 else if (!w->attr.st_nlink)
2684 w->attr.st_nlink = 1; 3922 w->attr.st_nlink = 1;
2687static void noinline 3925static void noinline
2688stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3926stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2689{ 3927{
2690 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3928 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2691 3929
2692 /* we copy this here each the time so that */ 3930 ev_statdata prev = w->attr;
2693 /* prev has the old value when the callback gets invoked */
2694 w->prev = w->attr;
2695 ev_stat_stat (EV_A_ w); 3931 ev_stat_stat (EV_A_ w);
2696 3932
2697 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3933 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2698 if ( 3934 if (
2699 w->prev.st_dev != w->attr.st_dev 3935 prev.st_dev != w->attr.st_dev
2700 || w->prev.st_ino != w->attr.st_ino 3936 || prev.st_ino != w->attr.st_ino
2701 || w->prev.st_mode != w->attr.st_mode 3937 || prev.st_mode != w->attr.st_mode
2702 || w->prev.st_nlink != w->attr.st_nlink 3938 || prev.st_nlink != w->attr.st_nlink
2703 || w->prev.st_uid != w->attr.st_uid 3939 || prev.st_uid != w->attr.st_uid
2704 || w->prev.st_gid != w->attr.st_gid 3940 || prev.st_gid != w->attr.st_gid
2705 || w->prev.st_rdev != w->attr.st_rdev 3941 || prev.st_rdev != w->attr.st_rdev
2706 || w->prev.st_size != w->attr.st_size 3942 || prev.st_size != w->attr.st_size
2707 || w->prev.st_atime != w->attr.st_atime 3943 || prev.st_atime != w->attr.st_atime
2708 || w->prev.st_mtime != w->attr.st_mtime 3944 || prev.st_mtime != w->attr.st_mtime
2709 || w->prev.st_ctime != w->attr.st_ctime 3945 || prev.st_ctime != w->attr.st_ctime
2710 ) { 3946 ) {
3947 /* we only update w->prev on actual differences */
3948 /* in case we test more often than invoke the callback, */
3949 /* to ensure that prev is always different to attr */
3950 w->prev = prev;
3951
2711 #if EV_USE_INOTIFY 3952 #if EV_USE_INOTIFY
2712 if (fs_fd >= 0) 3953 if (fs_fd >= 0)
2713 { 3954 {
2714 infy_del (EV_A_ w); 3955 infy_del (EV_A_ w);
2715 infy_add (EV_A_ w); 3956 infy_add (EV_A_ w);
2720 ev_feed_event (EV_A_ w, EV_STAT); 3961 ev_feed_event (EV_A_ w, EV_STAT);
2721 } 3962 }
2722} 3963}
2723 3964
2724void 3965void
2725ev_stat_start (EV_P_ ev_stat *w) 3966ev_stat_start (EV_P_ ev_stat *w) EV_THROW
2726{ 3967{
2727 if (expect_false (ev_is_active (w))) 3968 if (expect_false (ev_is_active (w)))
2728 return; 3969 return;
2729 3970
2730 ev_stat_stat (EV_A_ w); 3971 ev_stat_stat (EV_A_ w);
2740 3981
2741 if (fs_fd >= 0) 3982 if (fs_fd >= 0)
2742 infy_add (EV_A_ w); 3983 infy_add (EV_A_ w);
2743 else 3984 else
2744#endif 3985#endif
3986 {
2745 ev_timer_again (EV_A_ &w->timer); 3987 ev_timer_again (EV_A_ &w->timer);
3988 ev_unref (EV_A);
3989 }
2746 3990
2747 ev_start (EV_A_ (W)w, 1); 3991 ev_start (EV_A_ (W)w, 1);
2748 3992
2749 EV_FREQUENT_CHECK; 3993 EV_FREQUENT_CHECK;
2750} 3994}
2751 3995
2752void 3996void
2753ev_stat_stop (EV_P_ ev_stat *w) 3997ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
2754{ 3998{
2755 clear_pending (EV_A_ (W)w); 3999 clear_pending (EV_A_ (W)w);
2756 if (expect_false (!ev_is_active (w))) 4000 if (expect_false (!ev_is_active (w)))
2757 return; 4001 return;
2758 4002
2759 EV_FREQUENT_CHECK; 4003 EV_FREQUENT_CHECK;
2760 4004
2761#if EV_USE_INOTIFY 4005#if EV_USE_INOTIFY
2762 infy_del (EV_A_ w); 4006 infy_del (EV_A_ w);
2763#endif 4007#endif
4008
4009 if (ev_is_active (&w->timer))
4010 {
4011 ev_ref (EV_A);
2764 ev_timer_stop (EV_A_ &w->timer); 4012 ev_timer_stop (EV_A_ &w->timer);
4013 }
2765 4014
2766 ev_stop (EV_A_ (W)w); 4015 ev_stop (EV_A_ (W)w);
2767 4016
2768 EV_FREQUENT_CHECK; 4017 EV_FREQUENT_CHECK;
2769} 4018}
2770#endif 4019#endif
2771 4020
2772#if EV_IDLE_ENABLE 4021#if EV_IDLE_ENABLE
2773void 4022void
2774ev_idle_start (EV_P_ ev_idle *w) 4023ev_idle_start (EV_P_ ev_idle *w) EV_THROW
2775{ 4024{
2776 if (expect_false (ev_is_active (w))) 4025 if (expect_false (ev_is_active (w)))
2777 return; 4026 return;
2778 4027
2779 pri_adjust (EV_A_ (W)w); 4028 pri_adjust (EV_A_ (W)w);
2792 4041
2793 EV_FREQUENT_CHECK; 4042 EV_FREQUENT_CHECK;
2794} 4043}
2795 4044
2796void 4045void
2797ev_idle_stop (EV_P_ ev_idle *w) 4046ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
2798{ 4047{
2799 clear_pending (EV_A_ (W)w); 4048 clear_pending (EV_A_ (W)w);
2800 if (expect_false (!ev_is_active (w))) 4049 if (expect_false (!ev_is_active (w)))
2801 return; 4050 return;
2802 4051
2814 4063
2815 EV_FREQUENT_CHECK; 4064 EV_FREQUENT_CHECK;
2816} 4065}
2817#endif 4066#endif
2818 4067
4068#if EV_PREPARE_ENABLE
2819void 4069void
2820ev_prepare_start (EV_P_ ev_prepare *w) 4070ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
2821{ 4071{
2822 if (expect_false (ev_is_active (w))) 4072 if (expect_false (ev_is_active (w)))
2823 return; 4073 return;
2824 4074
2825 EV_FREQUENT_CHECK; 4075 EV_FREQUENT_CHECK;
2830 4080
2831 EV_FREQUENT_CHECK; 4081 EV_FREQUENT_CHECK;
2832} 4082}
2833 4083
2834void 4084void
2835ev_prepare_stop (EV_P_ ev_prepare *w) 4085ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
2836{ 4086{
2837 clear_pending (EV_A_ (W)w); 4087 clear_pending (EV_A_ (W)w);
2838 if (expect_false (!ev_is_active (w))) 4088 if (expect_false (!ev_is_active (w)))
2839 return; 4089 return;
2840 4090
2849 4099
2850 ev_stop (EV_A_ (W)w); 4100 ev_stop (EV_A_ (W)w);
2851 4101
2852 EV_FREQUENT_CHECK; 4102 EV_FREQUENT_CHECK;
2853} 4103}
4104#endif
2854 4105
4106#if EV_CHECK_ENABLE
2855void 4107void
2856ev_check_start (EV_P_ ev_check *w) 4108ev_check_start (EV_P_ ev_check *w) EV_THROW
2857{ 4109{
2858 if (expect_false (ev_is_active (w))) 4110 if (expect_false (ev_is_active (w)))
2859 return; 4111 return;
2860 4112
2861 EV_FREQUENT_CHECK; 4113 EV_FREQUENT_CHECK;
2866 4118
2867 EV_FREQUENT_CHECK; 4119 EV_FREQUENT_CHECK;
2868} 4120}
2869 4121
2870void 4122void
2871ev_check_stop (EV_P_ ev_check *w) 4123ev_check_stop (EV_P_ ev_check *w) EV_THROW
2872{ 4124{
2873 clear_pending (EV_A_ (W)w); 4125 clear_pending (EV_A_ (W)w);
2874 if (expect_false (!ev_is_active (w))) 4126 if (expect_false (!ev_is_active (w)))
2875 return; 4127 return;
2876 4128
2885 4137
2886 ev_stop (EV_A_ (W)w); 4138 ev_stop (EV_A_ (W)w);
2887 4139
2888 EV_FREQUENT_CHECK; 4140 EV_FREQUENT_CHECK;
2889} 4141}
4142#endif
2890 4143
2891#if EV_EMBED_ENABLE 4144#if EV_EMBED_ENABLE
2892void noinline 4145void noinline
2893ev_embed_sweep (EV_P_ ev_embed *w) 4146ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
2894{ 4147{
2895 ev_loop (w->other, EVLOOP_NONBLOCK); 4148 ev_run (w->other, EVRUN_NOWAIT);
2896} 4149}
2897 4150
2898static void 4151static void
2899embed_io_cb (EV_P_ ev_io *io, int revents) 4152embed_io_cb (EV_P_ ev_io *io, int revents)
2900{ 4153{
2901 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4154 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2902 4155
2903 if (ev_cb (w)) 4156 if (ev_cb (w))
2904 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4157 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2905 else 4158 else
2906 ev_loop (w->other, EVLOOP_NONBLOCK); 4159 ev_run (w->other, EVRUN_NOWAIT);
2907} 4160}
2908 4161
2909static void 4162static void
2910embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4163embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2911{ 4164{
2912 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4165 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2913 4166
2914 { 4167 {
2915 struct ev_loop *loop = w->other; 4168 EV_P = w->other;
2916 4169
2917 while (fdchangecnt) 4170 while (fdchangecnt)
2918 { 4171 {
2919 fd_reify (EV_A); 4172 fd_reify (EV_A);
2920 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4173 ev_run (EV_A_ EVRUN_NOWAIT);
2921 } 4174 }
2922 } 4175 }
2923} 4176}
2924 4177
2925static void 4178static void
2928 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork)); 4181 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2929 4182
2930 ev_embed_stop (EV_A_ w); 4183 ev_embed_stop (EV_A_ w);
2931 4184
2932 { 4185 {
2933 struct ev_loop *loop = w->other; 4186 EV_P = w->other;
2934 4187
2935 ev_loop_fork (EV_A); 4188 ev_loop_fork (EV_A);
2936 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4189 ev_run (EV_A_ EVRUN_NOWAIT);
2937 } 4190 }
2938 4191
2939 ev_embed_start (EV_A_ w); 4192 ev_embed_start (EV_A_ w);
2940} 4193}
2941 4194
2946 ev_idle_stop (EV_A_ idle); 4199 ev_idle_stop (EV_A_ idle);
2947} 4200}
2948#endif 4201#endif
2949 4202
2950void 4203void
2951ev_embed_start (EV_P_ ev_embed *w) 4204ev_embed_start (EV_P_ ev_embed *w) EV_THROW
2952{ 4205{
2953 if (expect_false (ev_is_active (w))) 4206 if (expect_false (ev_is_active (w)))
2954 return; 4207 return;
2955 4208
2956 { 4209 {
2957 struct ev_loop *loop = w->other; 4210 EV_P = w->other;
2958 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4211 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2959 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4212 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2960 } 4213 }
2961 4214
2962 EV_FREQUENT_CHECK; 4215 EV_FREQUENT_CHECK;
2977 4230
2978 EV_FREQUENT_CHECK; 4231 EV_FREQUENT_CHECK;
2979} 4232}
2980 4233
2981void 4234void
2982ev_embed_stop (EV_P_ ev_embed *w) 4235ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
2983{ 4236{
2984 clear_pending (EV_A_ (W)w); 4237 clear_pending (EV_A_ (W)w);
2985 if (expect_false (!ev_is_active (w))) 4238 if (expect_false (!ev_is_active (w)))
2986 return; 4239 return;
2987 4240
2989 4242
2990 ev_io_stop (EV_A_ &w->io); 4243 ev_io_stop (EV_A_ &w->io);
2991 ev_prepare_stop (EV_A_ &w->prepare); 4244 ev_prepare_stop (EV_A_ &w->prepare);
2992 ev_fork_stop (EV_A_ &w->fork); 4245 ev_fork_stop (EV_A_ &w->fork);
2993 4246
4247 ev_stop (EV_A_ (W)w);
4248
2994 EV_FREQUENT_CHECK; 4249 EV_FREQUENT_CHECK;
2995} 4250}
2996#endif 4251#endif
2997 4252
2998#if EV_FORK_ENABLE 4253#if EV_FORK_ENABLE
2999void 4254void
3000ev_fork_start (EV_P_ ev_fork *w) 4255ev_fork_start (EV_P_ ev_fork *w) EV_THROW
3001{ 4256{
3002 if (expect_false (ev_is_active (w))) 4257 if (expect_false (ev_is_active (w)))
3003 return; 4258 return;
3004 4259
3005 EV_FREQUENT_CHECK; 4260 EV_FREQUENT_CHECK;
3010 4265
3011 EV_FREQUENT_CHECK; 4266 EV_FREQUENT_CHECK;
3012} 4267}
3013 4268
3014void 4269void
3015ev_fork_stop (EV_P_ ev_fork *w) 4270ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
3016{ 4271{
3017 clear_pending (EV_A_ (W)w); 4272 clear_pending (EV_A_ (W)w);
3018 if (expect_false (!ev_is_active (w))) 4273 if (expect_false (!ev_is_active (w)))
3019 return; 4274 return;
3020 4275
3031 4286
3032 EV_FREQUENT_CHECK; 4287 EV_FREQUENT_CHECK;
3033} 4288}
3034#endif 4289#endif
3035 4290
4291#if EV_CLEANUP_ENABLE
4292void
4293ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4294{
4295 if (expect_false (ev_is_active (w)))
4296 return;
4297
4298 EV_FREQUENT_CHECK;
4299
4300 ev_start (EV_A_ (W)w, ++cleanupcnt);
4301 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4302 cleanups [cleanupcnt - 1] = w;
4303
4304 /* cleanup watchers should never keep a refcount on the loop */
4305 ev_unref (EV_A);
4306 EV_FREQUENT_CHECK;
4307}
4308
4309void
4310ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4311{
4312 clear_pending (EV_A_ (W)w);
4313 if (expect_false (!ev_is_active (w)))
4314 return;
4315
4316 EV_FREQUENT_CHECK;
4317 ev_ref (EV_A);
4318
4319 {
4320 int active = ev_active (w);
4321
4322 cleanups [active - 1] = cleanups [--cleanupcnt];
4323 ev_active (cleanups [active - 1]) = active;
4324 }
4325
4326 ev_stop (EV_A_ (W)w);
4327
4328 EV_FREQUENT_CHECK;
4329}
4330#endif
4331
3036#if EV_ASYNC_ENABLE 4332#if EV_ASYNC_ENABLE
3037void 4333void
3038ev_async_start (EV_P_ ev_async *w) 4334ev_async_start (EV_P_ ev_async *w) EV_THROW
3039{ 4335{
3040 if (expect_false (ev_is_active (w))) 4336 if (expect_false (ev_is_active (w)))
3041 return; 4337 return;
4338
4339 w->sent = 0;
3042 4340
3043 evpipe_init (EV_A); 4341 evpipe_init (EV_A);
3044 4342
3045 EV_FREQUENT_CHECK; 4343 EV_FREQUENT_CHECK;
3046 4344
3050 4348
3051 EV_FREQUENT_CHECK; 4349 EV_FREQUENT_CHECK;
3052} 4350}
3053 4351
3054void 4352void
3055ev_async_stop (EV_P_ ev_async *w) 4353ev_async_stop (EV_P_ ev_async *w) EV_THROW
3056{ 4354{
3057 clear_pending (EV_A_ (W)w); 4355 clear_pending (EV_A_ (W)w);
3058 if (expect_false (!ev_is_active (w))) 4356 if (expect_false (!ev_is_active (w)))
3059 return; 4357 return;
3060 4358
3071 4369
3072 EV_FREQUENT_CHECK; 4370 EV_FREQUENT_CHECK;
3073} 4371}
3074 4372
3075void 4373void
3076ev_async_send (EV_P_ ev_async *w) 4374ev_async_send (EV_P_ ev_async *w) EV_THROW
3077{ 4375{
3078 w->sent = 1; 4376 w->sent = 1;
3079 evpipe_write (EV_A_ &gotasync); 4377 evpipe_write (EV_A_ &async_pending);
3080} 4378}
3081#endif 4379#endif
3082 4380
3083/*****************************************************************************/ 4381/*****************************************************************************/
3084 4382
3118 4416
3119 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io)); 4417 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3120} 4418}
3121 4419
3122void 4420void
3123ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4421ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
3124{ 4422{
3125 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4423 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3126 4424
3127 if (expect_false (!once)) 4425 if (expect_false (!once))
3128 { 4426 {
3129 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4427 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
3130 return; 4428 return;
3131 } 4429 }
3132 4430
3133 once->cb = cb; 4431 once->cb = cb;
3134 once->arg = arg; 4432 once->arg = arg;
3146 ev_timer_set (&once->to, timeout, 0.); 4444 ev_timer_set (&once->to, timeout, 0.);
3147 ev_timer_start (EV_A_ &once->to); 4445 ev_timer_start (EV_A_ &once->to);
3148 } 4446 }
3149} 4447}
3150 4448
4449/*****************************************************************************/
4450
4451#if EV_WALK_ENABLE
4452void ecb_cold
4453ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4454{
4455 int i, j;
4456 ev_watcher_list *wl, *wn;
4457
4458 if (types & (EV_IO | EV_EMBED))
4459 for (i = 0; i < anfdmax; ++i)
4460 for (wl = anfds [i].head; wl; )
4461 {
4462 wn = wl->next;
4463
4464#if EV_EMBED_ENABLE
4465 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4466 {
4467 if (types & EV_EMBED)
4468 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4469 }
4470 else
4471#endif
4472#if EV_USE_INOTIFY
4473 if (ev_cb ((ev_io *)wl) == infy_cb)
4474 ;
4475 else
4476#endif
4477 if ((ev_io *)wl != &pipe_w)
4478 if (types & EV_IO)
4479 cb (EV_A_ EV_IO, wl);
4480
4481 wl = wn;
4482 }
4483
4484 if (types & (EV_TIMER | EV_STAT))
4485 for (i = timercnt + HEAP0; i-- > HEAP0; )
4486#if EV_STAT_ENABLE
4487 /*TODO: timer is not always active*/
4488 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4489 {
4490 if (types & EV_STAT)
4491 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4492 }
4493 else
4494#endif
4495 if (types & EV_TIMER)
4496 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4497
4498#if EV_PERIODIC_ENABLE
4499 if (types & EV_PERIODIC)
4500 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4501 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4502#endif
4503
4504#if EV_IDLE_ENABLE
4505 if (types & EV_IDLE)
4506 for (j = NUMPRI; j--; )
4507 for (i = idlecnt [j]; i--; )
4508 cb (EV_A_ EV_IDLE, idles [j][i]);
4509#endif
4510
4511#if EV_FORK_ENABLE
4512 if (types & EV_FORK)
4513 for (i = forkcnt; i--; )
4514 if (ev_cb (forks [i]) != embed_fork_cb)
4515 cb (EV_A_ EV_FORK, forks [i]);
4516#endif
4517
4518#if EV_ASYNC_ENABLE
4519 if (types & EV_ASYNC)
4520 for (i = asynccnt; i--; )
4521 cb (EV_A_ EV_ASYNC, asyncs [i]);
4522#endif
4523
4524#if EV_PREPARE_ENABLE
4525 if (types & EV_PREPARE)
4526 for (i = preparecnt; i--; )
4527# if EV_EMBED_ENABLE
4528 if (ev_cb (prepares [i]) != embed_prepare_cb)
4529# endif
4530 cb (EV_A_ EV_PREPARE, prepares [i]);
4531#endif
4532
4533#if EV_CHECK_ENABLE
4534 if (types & EV_CHECK)
4535 for (i = checkcnt; i--; )
4536 cb (EV_A_ EV_CHECK, checks [i]);
4537#endif
4538
4539#if EV_SIGNAL_ENABLE
4540 if (types & EV_SIGNAL)
4541 for (i = 0; i < EV_NSIG - 1; ++i)
4542 for (wl = signals [i].head; wl; )
4543 {
4544 wn = wl->next;
4545 cb (EV_A_ EV_SIGNAL, wl);
4546 wl = wn;
4547 }
4548#endif
4549
4550#if EV_CHILD_ENABLE
4551 if (types & EV_CHILD)
4552 for (i = (EV_PID_HASHSIZE); i--; )
4553 for (wl = childs [i]; wl; )
4554 {
4555 wn = wl->next;
4556 cb (EV_A_ EV_CHILD, wl);
4557 wl = wn;
4558 }
4559#endif
4560/* EV_STAT 0x00001000 /* stat data changed */
4561/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4562}
4563#endif
4564
3151#if EV_MULTIPLICITY 4565#if EV_MULTIPLICITY
3152 #include "ev_wrap.h" 4566 #include "ev_wrap.h"
3153#endif 4567#endif
3154 4568
3155#ifdef __cplusplus
3156}
3157#endif
3158

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines