ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.228 by root, Fri May 2 08:07:37 2008 UTC vs.
Revision 1.445 by root, Sat Jun 2 11:15:29 2012 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
52# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
55# endif 71# endif
56# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
58# endif 74# endif
59# else 75# else
60# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
62# endif 78# endif
63# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
65# endif 81# endif
66# endif 82# endif
67 83
84# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
71# else 88# else
89# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
74# endif 100# endif
75 101
102# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 105# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 106# else
107# undef EV_USE_POLL
88# define EV_USE_POLL 0 108# define EV_USE_POLL 0
89# endif
90# endif 109# endif
91 110
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
95# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
98# endif 118# endif
99 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
106# endif 127# endif
107 128
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
111# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
114# endif 136# endif
115 137
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
122# endif 145# endif
123 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 148# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 149# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
130# endif 154# endif
131 155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
132#endif 163# endif
164
165#endif
133 166
134#include <math.h>
135#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
136#include <fcntl.h> 169#include <fcntl.h>
137#include <stddef.h> 170#include <stddef.h>
138 171
139#include <stdio.h> 172#include <stdio.h>
140 173
141#include <assert.h> 174#include <assert.h>
142#include <errno.h> 175#include <errno.h>
143#include <sys/types.h> 176#include <sys/types.h>
144#include <time.h> 177#include <time.h>
178#include <limits.h>
145 179
146#include <signal.h> 180#include <signal.h>
147 181
148#ifdef EV_H 182#ifdef EV_H
149# include EV_H 183# include EV_H
150#else 184#else
151# include "ev.h" 185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
152#endif 197#endif
153 198
154#ifndef _WIN32 199#ifndef _WIN32
155# include <sys/time.h> 200# include <sys/time.h>
156# include <sys/wait.h> 201# include <sys/wait.h>
157# include <unistd.h> 202# include <unistd.h>
158#else 203#else
204# include <io.h>
159# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
160# include <windows.h> 207# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 208# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 209# define EV_SELECT_IS_WINSOCKET 1
163# endif 210# endif
211# undef EV_AVOID_STDIO
164#endif 212#endif
213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
165 221
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 222/* this block tries to deduce configuration from header-defined symbols and defaults */
167 223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# error "unable to find value for NSIG, please report"
247/* to make it compile regardless, just remove the above line, */
248/* but consider reporting it, too! :) */
249# define EV_NSIG 65
250#endif
251
252#ifndef EV_USE_FLOOR
253# define EV_USE_FLOOR 0
254#endif
255
256#ifndef EV_USE_CLOCK_SYSCALL
257# if __linux && __GLIBC__ >= 2
258# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
259# else
260# define EV_USE_CLOCK_SYSCALL 0
261# endif
262#endif
263
168#ifndef EV_USE_MONOTONIC 264#ifndef EV_USE_MONOTONIC
265# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
266# define EV_USE_MONOTONIC EV_FEATURE_OS
267# else
169# define EV_USE_MONOTONIC 0 268# define EV_USE_MONOTONIC 0
269# endif
170#endif 270#endif
171 271
172#ifndef EV_USE_REALTIME 272#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 273# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 274#endif
175 275
176#ifndef EV_USE_NANOSLEEP 276#ifndef EV_USE_NANOSLEEP
277# if _POSIX_C_SOURCE >= 199309L
278# define EV_USE_NANOSLEEP EV_FEATURE_OS
279# else
177# define EV_USE_NANOSLEEP 0 280# define EV_USE_NANOSLEEP 0
281# endif
178#endif 282#endif
179 283
180#ifndef EV_USE_SELECT 284#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 285# define EV_USE_SELECT EV_FEATURE_BACKENDS
182#endif 286#endif
183 287
184#ifndef EV_USE_POLL 288#ifndef EV_USE_POLL
185# ifdef _WIN32 289# ifdef _WIN32
186# define EV_USE_POLL 0 290# define EV_USE_POLL 0
187# else 291# else
188# define EV_USE_POLL 1 292# define EV_USE_POLL EV_FEATURE_BACKENDS
189# endif 293# endif
190#endif 294#endif
191 295
192#ifndef EV_USE_EPOLL 296#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 297# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1 298# define EV_USE_EPOLL EV_FEATURE_BACKENDS
195# else 299# else
196# define EV_USE_EPOLL 0 300# define EV_USE_EPOLL 0
197# endif 301# endif
198#endif 302#endif
199 303
205# define EV_USE_PORT 0 309# define EV_USE_PORT 0
206#endif 310#endif
207 311
208#ifndef EV_USE_INOTIFY 312#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 313# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1 314# define EV_USE_INOTIFY EV_FEATURE_OS
211# else 315# else
212# define EV_USE_INOTIFY 0 316# define EV_USE_INOTIFY 0
213# endif 317# endif
214#endif 318#endif
215 319
216#ifndef EV_PID_HASHSIZE 320#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL 321# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif 322#endif
223 323
224#ifndef EV_INOTIFY_HASHSIZE 324#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL 325# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif 326#endif
231 327
232#ifndef EV_USE_EVENTFD 328#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 329# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 330# define EV_USE_EVENTFD EV_FEATURE_OS
235# else 331# else
236# define EV_USE_EVENTFD 0 332# define EV_USE_EVENTFD 0
237# endif 333# endif
238#endif 334#endif
239 335
336#ifndef EV_USE_SIGNALFD
337# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
338# define EV_USE_SIGNALFD EV_FEATURE_OS
339# else
340# define EV_USE_SIGNALFD 0
341# endif
342#endif
343
344#if 0 /* debugging */
345# define EV_VERIFY 3
346# define EV_USE_4HEAP 1
347# define EV_HEAP_CACHE_AT 1
348#endif
349
350#ifndef EV_VERIFY
351# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
352#endif
353
354#ifndef EV_USE_4HEAP
355# define EV_USE_4HEAP EV_FEATURE_DATA
356#endif
357
358#ifndef EV_HEAP_CACHE_AT
359# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
360#endif
361
362/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
363/* which makes programs even slower. might work on other unices, too. */
364#if EV_USE_CLOCK_SYSCALL
365# include <sys/syscall.h>
366# ifdef SYS_clock_gettime
367# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
368# undef EV_USE_MONOTONIC
369# define EV_USE_MONOTONIC 1
370# else
371# undef EV_USE_CLOCK_SYSCALL
372# define EV_USE_CLOCK_SYSCALL 0
373# endif
374#endif
375
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 376/* this block fixes any misconfiguration where we know we run into trouble otherwise */
377
378#ifdef _AIX
379/* AIX has a completely broken poll.h header */
380# undef EV_USE_POLL
381# define EV_USE_POLL 0
382#endif
241 383
242#ifndef CLOCK_MONOTONIC 384#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 385# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 386# define EV_USE_MONOTONIC 0
245#endif 387#endif
253# undef EV_USE_INOTIFY 395# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0 396# define EV_USE_INOTIFY 0
255#endif 397#endif
256 398
257#if !EV_USE_NANOSLEEP 399#if !EV_USE_NANOSLEEP
258# ifndef _WIN32 400/* hp-ux has it in sys/time.h, which we unconditionally include above */
401# if !defined _WIN32 && !defined __hpux
259# include <sys/select.h> 402# include <sys/select.h>
260# endif 403# endif
261#endif 404#endif
262 405
263#if EV_USE_INOTIFY 406#if EV_USE_INOTIFY
407# include <sys/statfs.h>
264# include <sys/inotify.h> 408# include <sys/inotify.h>
409/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
410# ifndef IN_DONT_FOLLOW
411# undef EV_USE_INOTIFY
412# define EV_USE_INOTIFY 0
265#endif 413# endif
266
267#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h>
269#endif 414#endif
270 415
271#if EV_USE_EVENTFD 416#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h> 418# include <stdint.h>
274# ifdef __cplusplus 419# ifndef EFD_NONBLOCK
275extern "C" { 420# define EFD_NONBLOCK O_NONBLOCK
276# endif 421# endif
277int eventfd (unsigned int initval, int flags); 422# ifndef EFD_CLOEXEC
278# ifdef __cplusplus 423# ifdef O_CLOEXEC
279} 424# define EFD_CLOEXEC O_CLOEXEC
425# else
426# define EFD_CLOEXEC 02000000
427# endif
280# endif 428# endif
429EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
430#endif
431
432#if EV_USE_SIGNALFD
433/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
434# include <stdint.h>
435# ifndef SFD_NONBLOCK
436# define SFD_NONBLOCK O_NONBLOCK
437# endif
438# ifndef SFD_CLOEXEC
439# ifdef O_CLOEXEC
440# define SFD_CLOEXEC O_CLOEXEC
441# else
442# define SFD_CLOEXEC 02000000
443# endif
444# endif
445EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
446
447struct signalfd_siginfo
448{
449 uint32_t ssi_signo;
450 char pad[128 - sizeof (uint32_t)];
451};
281#endif 452#endif
282 453
283/**/ 454/**/
284 455
456#if EV_VERIFY >= 3
457# define EV_FREQUENT_CHECK ev_verify (EV_A)
458#else
459# define EV_FREQUENT_CHECK do { } while (0)
460#endif
461
285/* 462/*
286 * This is used to avoid floating point rounding problems. 463 * This is used to work around floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding
289 * errors are against us.
290 * This value is good at least till the year 4000. 464 * This value is good at least till the year 4000.
291 * Better solutions welcome.
292 */ 465 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 466#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
467/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
294 468
295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 469#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 470#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
298 471
472#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
473#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
474
475/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
476/* ECB.H BEGIN */
477/*
478 * libecb - http://software.schmorp.de/pkg/libecb
479 *
480 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
481 * Copyright (©) 2011 Emanuele Giaquinta
482 * All rights reserved.
483 *
484 * Redistribution and use in source and binary forms, with or without modifica-
485 * tion, are permitted provided that the following conditions are met:
486 *
487 * 1. Redistributions of source code must retain the above copyright notice,
488 * this list of conditions and the following disclaimer.
489 *
490 * 2. Redistributions in binary form must reproduce the above copyright
491 * notice, this list of conditions and the following disclaimer in the
492 * documentation and/or other materials provided with the distribution.
493 *
494 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
495 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
496 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
497 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
498 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
499 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
500 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
501 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
502 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
503 * OF THE POSSIBILITY OF SUCH DAMAGE.
504 */
505
506#ifndef ECB_H
507#define ECB_H
508
509/* 16 bits major, 16 bits minor */
510#define ECB_VERSION 0x00010001
511
512#ifdef _WIN32
513 typedef signed char int8_t;
514 typedef unsigned char uint8_t;
515 typedef signed short int16_t;
516 typedef unsigned short uint16_t;
517 typedef signed int int32_t;
518 typedef unsigned int uint32_t;
299#if __GNUC__ >= 4 519 #if __GNUC__
300# define expect(expr,value) __builtin_expect ((expr),(value)) 520 typedef signed long long int64_t;
301# define noinline __attribute__ ((noinline)) 521 typedef unsigned long long uint64_t;
522 #else /* _MSC_VER || __BORLANDC__ */
523 typedef signed __int64 int64_t;
524 typedef unsigned __int64 uint64_t;
525 #endif
526 #ifdef _WIN64
527 #define ECB_PTRSIZE 8
528 typedef uint64_t uintptr_t;
529 typedef int64_t intptr_t;
530 #else
531 #define ECB_PTRSIZE 4
532 typedef uint32_t uintptr_t;
533 typedef int32_t intptr_t;
534 #endif
535 typedef intptr_t ptrdiff_t;
302#else 536#else
303# define expect(expr,value) (expr) 537 #include <inttypes.h>
304# define noinline 538 #if UINTMAX_MAX > 0xffffffffU
305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2 539 #define ECB_PTRSIZE 8
306# define inline 540 #else
541 #define ECB_PTRSIZE 4
542 #endif
307# endif 543#endif
544
545/* many compilers define _GNUC_ to some versions but then only implement
546 * what their idiot authors think are the "more important" extensions,
547 * causing enormous grief in return for some better fake benchmark numbers.
548 * or so.
549 * we try to detect these and simply assume they are not gcc - if they have
550 * an issue with that they should have done it right in the first place.
551 */
552#ifndef ECB_GCC_VERSION
553 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
554 #define ECB_GCC_VERSION(major,minor) 0
555 #else
556 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
308#endif 557 #endif
558#endif
309 559
560#define ECB_C (__STDC__+0) /* this assumes that __STDC__ is either empty or a number */
561#define ECB_C99 (__STDC_VERSION__ >= 199901L)
562#define ECB_C11 (__STDC_VERSION__ >= 201112L)
563#define ECB_CPP (__cplusplus+0)
564#define ECB_CPP11 (__cplusplus >= 201103L)
565
566/*****************************************************************************/
567
568/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
569/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
570
571#if ECB_NO_THREADS
572 #define ECB_NO_SMP 1
573#endif
574
575#if ECB_NO_SMP
576 #define ECB_MEMORY_FENCE do { } while (0)
577#endif
578
579#ifndef ECB_MEMORY_FENCE
580 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
581 #if __i386 || __i386__
582 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
583 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
584 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
585 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
586 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
587 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
588 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
589 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
590 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
591 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
592 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
593 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
594 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
595 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
596 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
597 #elif __sparc || __sparc__
598 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
599 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
600 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
601 #elif defined __s390__ || defined __s390x__
602 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
603 #elif defined __mips__
604 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
605 #elif defined __alpha__
606 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
607 #elif defined __hppa__
608 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
609 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
610 #elif defined __ia64__
611 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
612 #endif
613 #endif
614#endif
615
616#ifndef ECB_MEMORY_FENCE
617 #if ECB_GCC_VERSION(4,7)
618 /* see comment below (stdatomic.h) about the C11 memory model. */
619 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
620 #elif defined __clang && __has_feature (cxx_atomic)
621 /* see comment below (stdatomic.h) about the C11 memory model. */
622 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
623 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
624 #define ECB_MEMORY_FENCE __sync_synchronize ()
625 #elif _MSC_VER >= 1400 /* VC++ 2005 */
626 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
627 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
628 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
629 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
630 #elif defined _WIN32
631 #include <WinNT.h>
632 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
633 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
634 #include <mbarrier.h>
635 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
636 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
637 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
638 #elif __xlC__
639 #define ECB_MEMORY_FENCE __sync ()
640 #endif
641#endif
642
643#ifndef ECB_MEMORY_FENCE
644 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
645 /* we assume that these memory fences work on all variables/all memory accesses, */
646 /* not just C11 atomics and atomic accesses */
647 #include <stdatomic.h>
648 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
649 /* any fence other than seq_cst, which isn't very efficient for us. */
650 /* Why that is, we don't know - either the C11 memory model is quite useless */
651 /* for most usages, or gcc and clang have a bug */
652 /* I *currently* lean towards the latter, and inefficiently implement */
653 /* all three of ecb's fences as a seq_cst fence */
654 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
655 #endif
656#endif
657
658#ifndef ECB_MEMORY_FENCE
659 #if !ECB_AVOID_PTHREADS
660 /*
661 * if you get undefined symbol references to pthread_mutex_lock,
662 * or failure to find pthread.h, then you should implement
663 * the ECB_MEMORY_FENCE operations for your cpu/compiler
664 * OR provide pthread.h and link against the posix thread library
665 * of your system.
666 */
667 #include <pthread.h>
668 #define ECB_NEEDS_PTHREADS 1
669 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
670
671 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
672 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
673 #endif
674#endif
675
676#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
677 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
678#endif
679
680#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
681 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
682#endif
683
684/*****************************************************************************/
685
686#if __cplusplus
687 #define ecb_inline static inline
688#elif ECB_GCC_VERSION(2,5)
689 #define ecb_inline static __inline__
690#elif ECB_C99
691 #define ecb_inline static inline
692#else
693 #define ecb_inline static
694#endif
695
696#if ECB_GCC_VERSION(3,3)
697 #define ecb_restrict __restrict__
698#elif ECB_C99
699 #define ecb_restrict restrict
700#else
701 #define ecb_restrict
702#endif
703
704typedef int ecb_bool;
705
706#define ECB_CONCAT_(a, b) a ## b
707#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
708#define ECB_STRINGIFY_(a) # a
709#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
710
711#define ecb_function_ ecb_inline
712
713#if ECB_GCC_VERSION(3,1)
714 #define ecb_attribute(attrlist) __attribute__(attrlist)
715 #define ecb_is_constant(expr) __builtin_constant_p (expr)
716 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
717 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
718#else
719 #define ecb_attribute(attrlist)
720 #define ecb_is_constant(expr) 0
721 #define ecb_expect(expr,value) (expr)
722 #define ecb_prefetch(addr,rw,locality)
723#endif
724
725/* no emulation for ecb_decltype */
726#if ECB_GCC_VERSION(4,5)
727 #define ecb_decltype(x) __decltype(x)
728#elif ECB_GCC_VERSION(3,0)
729 #define ecb_decltype(x) __typeof(x)
730#endif
731
732#define ecb_noinline ecb_attribute ((__noinline__))
733#define ecb_unused ecb_attribute ((__unused__))
734#define ecb_const ecb_attribute ((__const__))
735#define ecb_pure ecb_attribute ((__pure__))
736
737#if ECB_C11
738 #define ecb_noreturn _Noreturn
739#else
740 #define ecb_noreturn ecb_attribute ((__noreturn__))
741#endif
742
743#if ECB_GCC_VERSION(4,3)
744 #define ecb_artificial ecb_attribute ((__artificial__))
745 #define ecb_hot ecb_attribute ((__hot__))
746 #define ecb_cold ecb_attribute ((__cold__))
747#else
748 #define ecb_artificial
749 #define ecb_hot
750 #define ecb_cold
751#endif
752
753/* put around conditional expressions if you are very sure that the */
754/* expression is mostly true or mostly false. note that these return */
755/* booleans, not the expression. */
310#define expect_false(expr) expect ((expr) != 0, 0) 756#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
311#define expect_true(expr) expect ((expr) != 0, 1) 757#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
758/* for compatibility to the rest of the world */
759#define ecb_likely(expr) ecb_expect_true (expr)
760#define ecb_unlikely(expr) ecb_expect_false (expr)
761
762/* count trailing zero bits and count # of one bits */
763#if ECB_GCC_VERSION(3,4)
764 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
765 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
766 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
767 #define ecb_ctz32(x) __builtin_ctz (x)
768 #define ecb_ctz64(x) __builtin_ctzll (x)
769 #define ecb_popcount32(x) __builtin_popcount (x)
770 /* no popcountll */
771#else
772 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
773 ecb_function_ int
774 ecb_ctz32 (uint32_t x)
775 {
776 int r = 0;
777
778 x &= ~x + 1; /* this isolates the lowest bit */
779
780#if ECB_branchless_on_i386
781 r += !!(x & 0xaaaaaaaa) << 0;
782 r += !!(x & 0xcccccccc) << 1;
783 r += !!(x & 0xf0f0f0f0) << 2;
784 r += !!(x & 0xff00ff00) << 3;
785 r += !!(x & 0xffff0000) << 4;
786#else
787 if (x & 0xaaaaaaaa) r += 1;
788 if (x & 0xcccccccc) r += 2;
789 if (x & 0xf0f0f0f0) r += 4;
790 if (x & 0xff00ff00) r += 8;
791 if (x & 0xffff0000) r += 16;
792#endif
793
794 return r;
795 }
796
797 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
798 ecb_function_ int
799 ecb_ctz64 (uint64_t x)
800 {
801 int shift = x & 0xffffffffU ? 0 : 32;
802 return ecb_ctz32 (x >> shift) + shift;
803 }
804
805 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
806 ecb_function_ int
807 ecb_popcount32 (uint32_t x)
808 {
809 x -= (x >> 1) & 0x55555555;
810 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
811 x = ((x >> 4) + x) & 0x0f0f0f0f;
812 x *= 0x01010101;
813
814 return x >> 24;
815 }
816
817 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
818 ecb_function_ int ecb_ld32 (uint32_t x)
819 {
820 int r = 0;
821
822 if (x >> 16) { x >>= 16; r += 16; }
823 if (x >> 8) { x >>= 8; r += 8; }
824 if (x >> 4) { x >>= 4; r += 4; }
825 if (x >> 2) { x >>= 2; r += 2; }
826 if (x >> 1) { r += 1; }
827
828 return r;
829 }
830
831 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
832 ecb_function_ int ecb_ld64 (uint64_t x)
833 {
834 int r = 0;
835
836 if (x >> 32) { x >>= 32; r += 32; }
837
838 return r + ecb_ld32 (x);
839 }
840#endif
841
842ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
843ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
844ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
845ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
846
847ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
848ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
849{
850 return ( (x * 0x0802U & 0x22110U)
851 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
852}
853
854ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
855ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
856{
857 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
858 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
859 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
860 x = ( x >> 8 ) | ( x << 8);
861
862 return x;
863}
864
865ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
866ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
867{
868 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
869 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
870 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
871 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
872 x = ( x >> 16 ) | ( x << 16);
873
874 return x;
875}
876
877/* popcount64 is only available on 64 bit cpus as gcc builtin */
878/* so for this version we are lazy */
879ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
880ecb_function_ int
881ecb_popcount64 (uint64_t x)
882{
883 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
884}
885
886ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
887ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
888ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
889ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
890ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
891ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
892ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
893ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
894
895ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
896ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
897ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
898ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
899ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
900ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
901ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
902ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
903
904#if ECB_GCC_VERSION(4,3)
905 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
906 #define ecb_bswap32(x) __builtin_bswap32 (x)
907 #define ecb_bswap64(x) __builtin_bswap64 (x)
908#else
909 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
910 ecb_function_ uint16_t
911 ecb_bswap16 (uint16_t x)
912 {
913 return ecb_rotl16 (x, 8);
914 }
915
916 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
917 ecb_function_ uint32_t
918 ecb_bswap32 (uint32_t x)
919 {
920 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
921 }
922
923 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
924 ecb_function_ uint64_t
925 ecb_bswap64 (uint64_t x)
926 {
927 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
928 }
929#endif
930
931#if ECB_GCC_VERSION(4,5)
932 #define ecb_unreachable() __builtin_unreachable ()
933#else
934 /* this seems to work fine, but gcc always emits a warning for it :/ */
935 ecb_inline void ecb_unreachable (void) ecb_noreturn;
936 ecb_inline void ecb_unreachable (void) { }
937#endif
938
939/* try to tell the compiler that some condition is definitely true */
940#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
941
942ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
943ecb_inline unsigned char
944ecb_byteorder_helper (void)
945{
946 const uint32_t u = 0x11223344;
947 return *(unsigned char *)&u;
948}
949
950ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
951ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
952ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
953ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
954
955#if ECB_GCC_VERSION(3,0) || ECB_C99
956 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
957#else
958 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
959#endif
960
961#if __cplusplus
962 template<typename T>
963 static inline T ecb_div_rd (T val, T div)
964 {
965 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
966 }
967 template<typename T>
968 static inline T ecb_div_ru (T val, T div)
969 {
970 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
971 }
972#else
973 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
974 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
975#endif
976
977#if ecb_cplusplus_does_not_suck
978 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
979 template<typename T, int N>
980 static inline int ecb_array_length (const T (&arr)[N])
981 {
982 return N;
983 }
984#else
985 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
986#endif
987
988#endif
989
990/* ECB.H END */
991
992#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
993/* if your architecture doesn't need memory fences, e.g. because it is
994 * single-cpu/core, or if you use libev in a project that doesn't use libev
995 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
996 * libev, in which cases the memory fences become nops.
997 * alternatively, you can remove this #error and link against libpthread,
998 * which will then provide the memory fences.
999 */
1000# error "memory fences not defined for your architecture, please report"
1001#endif
1002
1003#ifndef ECB_MEMORY_FENCE
1004# define ECB_MEMORY_FENCE do { } while (0)
1005# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1006# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1007#endif
1008
1009#define expect_false(cond) ecb_expect_false (cond)
1010#define expect_true(cond) ecb_expect_true (cond)
1011#define noinline ecb_noinline
1012
312#define inline_size static inline 1013#define inline_size ecb_inline
313 1014
314#if EV_MINIMAL 1015#if EV_FEATURE_CODE
1016# define inline_speed ecb_inline
1017#else
315# define inline_speed static noinline 1018# define inline_speed static noinline
1019#endif
1020
1021#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1022
1023#if EV_MINPRI == EV_MAXPRI
1024# define ABSPRI(w) (((W)w), 0)
316#else 1025#else
317# define inline_speed static inline
318#endif
319
320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1026# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1027#endif
322 1028
323#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1029#define EMPTY /* required for microsofts broken pseudo-c compiler */
324#define EMPTY2(a,b) /* used to suppress some warnings */ 1030#define EMPTY2(a,b) /* used to suppress some warnings */
325 1031
326typedef ev_watcher *W; 1032typedef ev_watcher *W;
327typedef ev_watcher_list *WL; 1033typedef ev_watcher_list *WL;
328typedef ev_watcher_time *WT; 1034typedef ev_watcher_time *WT;
329 1035
1036#define ev_active(w) ((W)(w))->active
330#define ev_at(w) ((WT)(w))->at 1037#define ev_at(w) ((WT)(w))->at
331 1038
1039#if EV_USE_REALTIME
1040/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1041/* giving it a reasonably high chance of working on typical architectures */
1042static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1043#endif
1044
332#if EV_USE_MONOTONIC 1045#if EV_USE_MONOTONIC
333/* sig_atomic_t is used to avoid per-thread variables or locking but still */
334/* giving it a reasonably high chance of working on typical architetcures */
335static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1046static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1047#endif
1048
1049#ifndef EV_FD_TO_WIN32_HANDLE
1050# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1051#endif
1052#ifndef EV_WIN32_HANDLE_TO_FD
1053# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1054#endif
1055#ifndef EV_WIN32_CLOSE_FD
1056# define EV_WIN32_CLOSE_FD(fd) close (fd)
336#endif 1057#endif
337 1058
338#ifdef _WIN32 1059#ifdef _WIN32
339# include "ev_win32.c" 1060# include "ev_win32.c"
340#endif 1061#endif
341 1062
342/*****************************************************************************/ 1063/*****************************************************************************/
343 1064
1065/* define a suitable floor function (only used by periodics atm) */
1066
1067#if EV_USE_FLOOR
1068# include <math.h>
1069# define ev_floor(v) floor (v)
1070#else
1071
1072#include <float.h>
1073
1074/* a floor() replacement function, should be independent of ev_tstamp type */
1075static ev_tstamp noinline
1076ev_floor (ev_tstamp v)
1077{
1078 /* the choice of shift factor is not terribly important */
1079#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1080 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1081#else
1082 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1083#endif
1084
1085 /* argument too large for an unsigned long? */
1086 if (expect_false (v >= shift))
1087 {
1088 ev_tstamp f;
1089
1090 if (v == v - 1.)
1091 return v; /* very large number */
1092
1093 f = shift * ev_floor (v * (1. / shift));
1094 return f + ev_floor (v - f);
1095 }
1096
1097 /* special treatment for negative args? */
1098 if (expect_false (v < 0.))
1099 {
1100 ev_tstamp f = -ev_floor (-v);
1101
1102 return f - (f == v ? 0 : 1);
1103 }
1104
1105 /* fits into an unsigned long */
1106 return (unsigned long)v;
1107}
1108
1109#endif
1110
1111/*****************************************************************************/
1112
1113#ifdef __linux
1114# include <sys/utsname.h>
1115#endif
1116
1117static unsigned int noinline ecb_cold
1118ev_linux_version (void)
1119{
1120#ifdef __linux
1121 unsigned int v = 0;
1122 struct utsname buf;
1123 int i;
1124 char *p = buf.release;
1125
1126 if (uname (&buf))
1127 return 0;
1128
1129 for (i = 3+1; --i; )
1130 {
1131 unsigned int c = 0;
1132
1133 for (;;)
1134 {
1135 if (*p >= '0' && *p <= '9')
1136 c = c * 10 + *p++ - '0';
1137 else
1138 {
1139 p += *p == '.';
1140 break;
1141 }
1142 }
1143
1144 v = (v << 8) | c;
1145 }
1146
1147 return v;
1148#else
1149 return 0;
1150#endif
1151}
1152
1153/*****************************************************************************/
1154
1155#if EV_AVOID_STDIO
1156static void noinline ecb_cold
1157ev_printerr (const char *msg)
1158{
1159 write (STDERR_FILENO, msg, strlen (msg));
1160}
1161#endif
1162
344static void (*syserr_cb)(const char *msg); 1163static void (*syserr_cb)(const char *msg) EV_THROW;
345 1164
346void 1165void ecb_cold
347ev_set_syserr_cb (void (*cb)(const char *msg)) 1166ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
348{ 1167{
349 syserr_cb = cb; 1168 syserr_cb = cb;
350} 1169}
351 1170
352static void noinline 1171static void noinline ecb_cold
353syserr (const char *msg) 1172ev_syserr (const char *msg)
354{ 1173{
355 if (!msg) 1174 if (!msg)
356 msg = "(libev) system error"; 1175 msg = "(libev) system error";
357 1176
358 if (syserr_cb) 1177 if (syserr_cb)
359 syserr_cb (msg); 1178 syserr_cb (msg);
360 else 1179 else
361 { 1180 {
1181#if EV_AVOID_STDIO
1182 ev_printerr (msg);
1183 ev_printerr (": ");
1184 ev_printerr (strerror (errno));
1185 ev_printerr ("\n");
1186#else
362 perror (msg); 1187 perror (msg);
1188#endif
363 abort (); 1189 abort ();
364 } 1190 }
365} 1191}
366 1192
367static void * 1193static void *
368ev_realloc_emul (void *ptr, long size) 1194ev_realloc_emul (void *ptr, long size) EV_THROW
369{ 1195{
1196#if __GLIBC__
1197 return realloc (ptr, size);
1198#else
370 /* some systems, notably openbsd and darwin, fail to properly 1199 /* some systems, notably openbsd and darwin, fail to properly
371 * implement realloc (x, 0) (as required by both ansi c-98 and 1200 * implement realloc (x, 0) (as required by both ansi c-89 and
372 * the single unix specification, so work around them here. 1201 * the single unix specification, so work around them here.
373 */ 1202 */
374 1203
375 if (size) 1204 if (size)
376 return realloc (ptr, size); 1205 return realloc (ptr, size);
377 1206
378 free (ptr); 1207 free (ptr);
379 return 0; 1208 return 0;
1209#endif
380} 1210}
381 1211
382static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 1212static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
383 1213
384void 1214void ecb_cold
385ev_set_allocator (void *(*cb)(void *ptr, long size)) 1215ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
386{ 1216{
387 alloc = cb; 1217 alloc = cb;
388} 1218}
389 1219
390inline_speed void * 1220inline_speed void *
392{ 1222{
393 ptr = alloc (ptr, size); 1223 ptr = alloc (ptr, size);
394 1224
395 if (!ptr && size) 1225 if (!ptr && size)
396 { 1226 {
1227#if EV_AVOID_STDIO
1228 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1229#else
397 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1230 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1231#endif
398 abort (); 1232 abort ();
399 } 1233 }
400 1234
401 return ptr; 1235 return ptr;
402} 1236}
404#define ev_malloc(size) ev_realloc (0, (size)) 1238#define ev_malloc(size) ev_realloc (0, (size))
405#define ev_free(ptr) ev_realloc ((ptr), 0) 1239#define ev_free(ptr) ev_realloc ((ptr), 0)
406 1240
407/*****************************************************************************/ 1241/*****************************************************************************/
408 1242
1243/* set in reify when reification needed */
1244#define EV_ANFD_REIFY 1
1245
1246/* file descriptor info structure */
409typedef struct 1247typedef struct
410{ 1248{
411 WL head; 1249 WL head;
412 unsigned char events; 1250 unsigned char events; /* the events watched for */
1251 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1252 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
413 unsigned char reify; 1253 unsigned char unused;
1254#if EV_USE_EPOLL
1255 unsigned int egen; /* generation counter to counter epoll bugs */
1256#endif
414#if EV_SELECT_IS_WINSOCKET 1257#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
415 SOCKET handle; 1258 SOCKET handle;
416#endif 1259#endif
1260#if EV_USE_IOCP
1261 OVERLAPPED or, ow;
1262#endif
417} ANFD; 1263} ANFD;
418 1264
1265/* stores the pending event set for a given watcher */
419typedef struct 1266typedef struct
420{ 1267{
421 W w; 1268 W w;
422 int events; 1269 int events; /* the pending event set for the given watcher */
423} ANPENDING; 1270} ANPENDING;
424 1271
425#if EV_USE_INOTIFY 1272#if EV_USE_INOTIFY
1273/* hash table entry per inotify-id */
426typedef struct 1274typedef struct
427{ 1275{
428 WL head; 1276 WL head;
429} ANFS; 1277} ANFS;
1278#endif
1279
1280/* Heap Entry */
1281#if EV_HEAP_CACHE_AT
1282 /* a heap element */
1283 typedef struct {
1284 ev_tstamp at;
1285 WT w;
1286 } ANHE;
1287
1288 #define ANHE_w(he) (he).w /* access watcher, read-write */
1289 #define ANHE_at(he) (he).at /* access cached at, read-only */
1290 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1291#else
1292 /* a heap element */
1293 typedef WT ANHE;
1294
1295 #define ANHE_w(he) (he)
1296 #define ANHE_at(he) (he)->at
1297 #define ANHE_at_cache(he)
430#endif 1298#endif
431 1299
432#if EV_MULTIPLICITY 1300#if EV_MULTIPLICITY
433 1301
434 struct ev_loop 1302 struct ev_loop
440 #undef VAR 1308 #undef VAR
441 }; 1309 };
442 #include "ev_wrap.h" 1310 #include "ev_wrap.h"
443 1311
444 static struct ev_loop default_loop_struct; 1312 static struct ev_loop default_loop_struct;
445 struct ev_loop *ev_default_loop_ptr; 1313 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
446 1314
447#else 1315#else
448 1316
449 ev_tstamp ev_rt_now; 1317 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
450 #define VAR(name,decl) static decl; 1318 #define VAR(name,decl) static decl;
451 #include "ev_vars.h" 1319 #include "ev_vars.h"
452 #undef VAR 1320 #undef VAR
453 1321
454 static int ev_default_loop_ptr; 1322 static int ev_default_loop_ptr;
455 1323
456#endif 1324#endif
457 1325
1326#if EV_FEATURE_API
1327# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1328# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1329# define EV_INVOKE_PENDING invoke_cb (EV_A)
1330#else
1331# define EV_RELEASE_CB (void)0
1332# define EV_ACQUIRE_CB (void)0
1333# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1334#endif
1335
1336#define EVBREAK_RECURSE 0x80
1337
458/*****************************************************************************/ 1338/*****************************************************************************/
459 1339
1340#ifndef EV_HAVE_EV_TIME
460ev_tstamp 1341ev_tstamp
461ev_time (void) 1342ev_time (void) EV_THROW
462{ 1343{
463#if EV_USE_REALTIME 1344#if EV_USE_REALTIME
1345 if (expect_true (have_realtime))
1346 {
464 struct timespec ts; 1347 struct timespec ts;
465 clock_gettime (CLOCK_REALTIME, &ts); 1348 clock_gettime (CLOCK_REALTIME, &ts);
466 return ts.tv_sec + ts.tv_nsec * 1e-9; 1349 return ts.tv_sec + ts.tv_nsec * 1e-9;
467#else 1350 }
1351#endif
1352
468 struct timeval tv; 1353 struct timeval tv;
469 gettimeofday (&tv, 0); 1354 gettimeofday (&tv, 0);
470 return tv.tv_sec + tv.tv_usec * 1e-6; 1355 return tv.tv_sec + tv.tv_usec * 1e-6;
471#endif
472} 1356}
1357#endif
473 1358
474ev_tstamp inline_size 1359inline_size ev_tstamp
475get_clock (void) 1360get_clock (void)
476{ 1361{
477#if EV_USE_MONOTONIC 1362#if EV_USE_MONOTONIC
478 if (expect_true (have_monotonic)) 1363 if (expect_true (have_monotonic))
479 { 1364 {
486 return ev_time (); 1371 return ev_time ();
487} 1372}
488 1373
489#if EV_MULTIPLICITY 1374#if EV_MULTIPLICITY
490ev_tstamp 1375ev_tstamp
491ev_now (EV_P) 1376ev_now (EV_P) EV_THROW
492{ 1377{
493 return ev_rt_now; 1378 return ev_rt_now;
494} 1379}
495#endif 1380#endif
496 1381
497void 1382void
498ev_sleep (ev_tstamp delay) 1383ev_sleep (ev_tstamp delay) EV_THROW
499{ 1384{
500 if (delay > 0.) 1385 if (delay > 0.)
501 { 1386 {
502#if EV_USE_NANOSLEEP 1387#if EV_USE_NANOSLEEP
503 struct timespec ts; 1388 struct timespec ts;
504 1389
505 ts.tv_sec = (time_t)delay; 1390 EV_TS_SET (ts, delay);
506 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
507
508 nanosleep (&ts, 0); 1391 nanosleep (&ts, 0);
509#elif defined(_WIN32) 1392#elif defined _WIN32
510 Sleep ((unsigned long)(delay * 1e3)); 1393 Sleep ((unsigned long)(delay * 1e3));
511#else 1394#else
512 struct timeval tv; 1395 struct timeval tv;
513 1396
514 tv.tv_sec = (time_t)delay; 1397 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
515 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 1398 /* something not guaranteed by newer posix versions, but guaranteed */
516 1399 /* by older ones */
1400 EV_TV_SET (tv, delay);
517 select (0, 0, 0, 0, &tv); 1401 select (0, 0, 0, 0, &tv);
518#endif 1402#endif
519 } 1403 }
520} 1404}
521 1405
522/*****************************************************************************/ 1406/*****************************************************************************/
523 1407
524int inline_size 1408#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1409
1410/* find a suitable new size for the given array, */
1411/* hopefully by rounding to a nice-to-malloc size */
1412inline_size int
525array_nextsize (int elem, int cur, int cnt) 1413array_nextsize (int elem, int cur, int cnt)
526{ 1414{
527 int ncur = cur + 1; 1415 int ncur = cur + 1;
528 1416
529 do 1417 do
530 ncur <<= 1; 1418 ncur <<= 1;
531 while (cnt > ncur); 1419 while (cnt > ncur);
532 1420
533 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 1421 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
534 if (elem * ncur > 4096) 1422 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
535 { 1423 {
536 ncur *= elem; 1424 ncur *= elem;
537 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 1425 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
538 ncur = ncur - sizeof (void *) * 4; 1426 ncur = ncur - sizeof (void *) * 4;
539 ncur /= elem; 1427 ncur /= elem;
540 } 1428 }
541 1429
542 return ncur; 1430 return ncur;
543} 1431}
544 1432
545static noinline void * 1433static void * noinline ecb_cold
546array_realloc (int elem, void *base, int *cur, int cnt) 1434array_realloc (int elem, void *base, int *cur, int cnt)
547{ 1435{
548 *cur = array_nextsize (elem, *cur, cnt); 1436 *cur = array_nextsize (elem, *cur, cnt);
549 return ev_realloc (base, elem * *cur); 1437 return ev_realloc (base, elem * *cur);
550} 1438}
1439
1440#define array_init_zero(base,count) \
1441 memset ((void *)(base), 0, sizeof (*(base)) * (count))
551 1442
552#define array_needsize(type,base,cur,cnt,init) \ 1443#define array_needsize(type,base,cur,cnt,init) \
553 if (expect_false ((cnt) > (cur))) \ 1444 if (expect_false ((cnt) > (cur))) \
554 { \ 1445 { \
555 int ocur_ = (cur); \ 1446 int ecb_unused ocur_ = (cur); \
556 (base) = (type *)array_realloc \ 1447 (base) = (type *)array_realloc \
557 (sizeof (type), (base), &(cur), (cnt)); \ 1448 (sizeof (type), (base), &(cur), (cnt)); \
558 init ((base) + (ocur_), (cur) - ocur_); \ 1449 init ((base) + (ocur_), (cur) - ocur_); \
559 } 1450 }
560 1451
567 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1458 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
568 } 1459 }
569#endif 1460#endif
570 1461
571#define array_free(stem, idx) \ 1462#define array_free(stem, idx) \
572 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1463 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
573 1464
574/*****************************************************************************/ 1465/*****************************************************************************/
575 1466
1467/* dummy callback for pending events */
1468static void noinline
1469pendingcb (EV_P_ ev_prepare *w, int revents)
1470{
1471}
1472
576void noinline 1473void noinline
577ev_feed_event (EV_P_ void *w, int revents) 1474ev_feed_event (EV_P_ void *w, int revents) EV_THROW
578{ 1475{
579 W w_ = (W)w; 1476 W w_ = (W)w;
580 int pri = ABSPRI (w_); 1477 int pri = ABSPRI (w_);
581 1478
582 if (expect_false (w_->pending)) 1479 if (expect_false (w_->pending))
586 w_->pending = ++pendingcnt [pri]; 1483 w_->pending = ++pendingcnt [pri];
587 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 1484 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
588 pendings [pri][w_->pending - 1].w = w_; 1485 pendings [pri][w_->pending - 1].w = w_;
589 pendings [pri][w_->pending - 1].events = revents; 1486 pendings [pri][w_->pending - 1].events = revents;
590 } 1487 }
591}
592 1488
593void inline_speed 1489 pendingpri = NUMPRI - 1;
1490}
1491
1492inline_speed void
1493feed_reverse (EV_P_ W w)
1494{
1495 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1496 rfeeds [rfeedcnt++] = w;
1497}
1498
1499inline_size void
1500feed_reverse_done (EV_P_ int revents)
1501{
1502 do
1503 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1504 while (rfeedcnt);
1505}
1506
1507inline_speed void
594queue_events (EV_P_ W *events, int eventcnt, int type) 1508queue_events (EV_P_ W *events, int eventcnt, int type)
595{ 1509{
596 int i; 1510 int i;
597 1511
598 for (i = 0; i < eventcnt; ++i) 1512 for (i = 0; i < eventcnt; ++i)
599 ev_feed_event (EV_A_ events [i], type); 1513 ev_feed_event (EV_A_ events [i], type);
600} 1514}
601 1515
602/*****************************************************************************/ 1516/*****************************************************************************/
603 1517
604void inline_size 1518inline_speed void
605anfds_init (ANFD *base, int count)
606{
607 while (count--)
608 {
609 base->head = 0;
610 base->events = EV_NONE;
611 base->reify = 0;
612
613 ++base;
614 }
615}
616
617void inline_speed
618fd_event (EV_P_ int fd, int revents) 1519fd_event_nocheck (EV_P_ int fd, int revents)
619{ 1520{
620 ANFD *anfd = anfds + fd; 1521 ANFD *anfd = anfds + fd;
621 ev_io *w; 1522 ev_io *w;
622 1523
623 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1524 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
627 if (ev) 1528 if (ev)
628 ev_feed_event (EV_A_ (W)w, ev); 1529 ev_feed_event (EV_A_ (W)w, ev);
629 } 1530 }
630} 1531}
631 1532
1533/* do not submit kernel events for fds that have reify set */
1534/* because that means they changed while we were polling for new events */
1535inline_speed void
1536fd_event (EV_P_ int fd, int revents)
1537{
1538 ANFD *anfd = anfds + fd;
1539
1540 if (expect_true (!anfd->reify))
1541 fd_event_nocheck (EV_A_ fd, revents);
1542}
1543
632void 1544void
633ev_feed_fd_event (EV_P_ int fd, int revents) 1545ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
634{ 1546{
635 if (fd >= 0 && fd < anfdmax) 1547 if (fd >= 0 && fd < anfdmax)
636 fd_event (EV_A_ fd, revents); 1548 fd_event_nocheck (EV_A_ fd, revents);
637} 1549}
638 1550
639void inline_size 1551/* make sure the external fd watch events are in-sync */
1552/* with the kernel/libev internal state */
1553inline_size void
640fd_reify (EV_P) 1554fd_reify (EV_P)
641{ 1555{
642 int i; 1556 int i;
1557
1558#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1559 for (i = 0; i < fdchangecnt; ++i)
1560 {
1561 int fd = fdchanges [i];
1562 ANFD *anfd = anfds + fd;
1563
1564 if (anfd->reify & EV__IOFDSET && anfd->head)
1565 {
1566 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1567
1568 if (handle != anfd->handle)
1569 {
1570 unsigned long arg;
1571
1572 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1573
1574 /* handle changed, but fd didn't - we need to do it in two steps */
1575 backend_modify (EV_A_ fd, anfd->events, 0);
1576 anfd->events = 0;
1577 anfd->handle = handle;
1578 }
1579 }
1580 }
1581#endif
643 1582
644 for (i = 0; i < fdchangecnt; ++i) 1583 for (i = 0; i < fdchangecnt; ++i)
645 { 1584 {
646 int fd = fdchanges [i]; 1585 int fd = fdchanges [i];
647 ANFD *anfd = anfds + fd; 1586 ANFD *anfd = anfds + fd;
648 ev_io *w; 1587 ev_io *w;
649 1588
650 unsigned char events = 0; 1589 unsigned char o_events = anfd->events;
1590 unsigned char o_reify = anfd->reify;
651 1591
652 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1592 anfd->reify = 0;
653 events |= (unsigned char)w->events;
654 1593
655#if EV_SELECT_IS_WINSOCKET 1594 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
656 if (events)
657 { 1595 {
658 unsigned long argp; 1596 anfd->events = 0;
659 #ifdef EV_FD_TO_WIN32_HANDLE 1597
660 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1598 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
661 #else 1599 anfd->events |= (unsigned char)w->events;
662 anfd->handle = _get_osfhandle (fd); 1600
663 #endif 1601 if (o_events != anfd->events)
664 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1602 o_reify = EV__IOFDSET; /* actually |= */
665 } 1603 }
666#endif
667 1604
668 { 1605 if (o_reify & EV__IOFDSET)
669 unsigned char o_events = anfd->events;
670 unsigned char o_reify = anfd->reify;
671
672 anfd->reify = 0;
673 anfd->events = events;
674
675 if (o_events != events || o_reify & EV_IOFDSET)
676 backend_modify (EV_A_ fd, o_events, events); 1606 backend_modify (EV_A_ fd, o_events, anfd->events);
677 }
678 } 1607 }
679 1608
680 fdchangecnt = 0; 1609 fdchangecnt = 0;
681} 1610}
682 1611
683void inline_size 1612/* something about the given fd changed */
1613inline_size void
684fd_change (EV_P_ int fd, int flags) 1614fd_change (EV_P_ int fd, int flags)
685{ 1615{
686 unsigned char reify = anfds [fd].reify; 1616 unsigned char reify = anfds [fd].reify;
687 anfds [fd].reify |= flags; 1617 anfds [fd].reify |= flags;
688 1618
692 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1622 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
693 fdchanges [fdchangecnt - 1] = fd; 1623 fdchanges [fdchangecnt - 1] = fd;
694 } 1624 }
695} 1625}
696 1626
697void inline_speed 1627/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1628inline_speed void ecb_cold
698fd_kill (EV_P_ int fd) 1629fd_kill (EV_P_ int fd)
699{ 1630{
700 ev_io *w; 1631 ev_io *w;
701 1632
702 while ((w = (ev_io *)anfds [fd].head)) 1633 while ((w = (ev_io *)anfds [fd].head))
704 ev_io_stop (EV_A_ w); 1635 ev_io_stop (EV_A_ w);
705 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1636 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
706 } 1637 }
707} 1638}
708 1639
709int inline_size 1640/* check whether the given fd is actually valid, for error recovery */
1641inline_size int ecb_cold
710fd_valid (int fd) 1642fd_valid (int fd)
711{ 1643{
712#ifdef _WIN32 1644#ifdef _WIN32
713 return _get_osfhandle (fd) != -1; 1645 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
714#else 1646#else
715 return fcntl (fd, F_GETFD) != -1; 1647 return fcntl (fd, F_GETFD) != -1;
716#endif 1648#endif
717} 1649}
718 1650
719/* called on EBADF to verify fds */ 1651/* called on EBADF to verify fds */
720static void noinline 1652static void noinline ecb_cold
721fd_ebadf (EV_P) 1653fd_ebadf (EV_P)
722{ 1654{
723 int fd; 1655 int fd;
724 1656
725 for (fd = 0; fd < anfdmax; ++fd) 1657 for (fd = 0; fd < anfdmax; ++fd)
726 if (anfds [fd].events) 1658 if (anfds [fd].events)
727 if (!fd_valid (fd) == -1 && errno == EBADF) 1659 if (!fd_valid (fd) && errno == EBADF)
728 fd_kill (EV_A_ fd); 1660 fd_kill (EV_A_ fd);
729} 1661}
730 1662
731/* called on ENOMEM in select/poll to kill some fds and retry */ 1663/* called on ENOMEM in select/poll to kill some fds and retry */
732static void noinline 1664static void noinline ecb_cold
733fd_enomem (EV_P) 1665fd_enomem (EV_P)
734{ 1666{
735 int fd; 1667 int fd;
736 1668
737 for (fd = anfdmax; fd--; ) 1669 for (fd = anfdmax; fd--; )
738 if (anfds [fd].events) 1670 if (anfds [fd].events)
739 { 1671 {
740 fd_kill (EV_A_ fd); 1672 fd_kill (EV_A_ fd);
741 return; 1673 break;
742 } 1674 }
743} 1675}
744 1676
745/* usually called after fork if backend needs to re-arm all fds from scratch */ 1677/* usually called after fork if backend needs to re-arm all fds from scratch */
746static void noinline 1678static void noinline
750 1682
751 for (fd = 0; fd < anfdmax; ++fd) 1683 for (fd = 0; fd < anfdmax; ++fd)
752 if (anfds [fd].events) 1684 if (anfds [fd].events)
753 { 1685 {
754 anfds [fd].events = 0; 1686 anfds [fd].events = 0;
1687 anfds [fd].emask = 0;
755 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1688 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
756 } 1689 }
757} 1690}
758 1691
759/*****************************************************************************/ 1692/* used to prepare libev internal fd's */
760 1693/* this is not fork-safe */
761/* towards the root */ 1694inline_speed void
762void inline_speed
763upheap (WT *heap, int k)
764{
765 WT w = heap [k];
766
767 for (;;)
768 {
769 int p = k >> 1;
770
771 /* maybe we could use a dummy element at heap [0]? */
772 if (!p || heap [p]->at <= w->at)
773 break;
774
775 heap [k] = heap [p];
776 ((W)heap [k])->active = k;
777 k = p;
778 }
779
780 heap [k] = w;
781 ((W)heap [k])->active = k;
782}
783
784/* away from the root */
785void inline_speed
786downheap (WT *heap, int N, int k)
787{
788 WT w = heap [k];
789
790 for (;;)
791 {
792 int c = k << 1;
793
794 if (c > N)
795 break;
796
797 c += c < N && heap [c]->at > heap [c + 1]->at
798 ? 1 : 0;
799
800 if (w->at <= heap [c]->at)
801 break;
802
803 heap [k] = heap [c];
804 ((W)heap [k])->active = k;
805
806 k = c;
807 }
808
809 heap [k] = w;
810 ((W)heap [k])->active = k;
811}
812
813void inline_size
814adjustheap (WT *heap, int N, int k)
815{
816 upheap (heap, k);
817 downheap (heap, N, k);
818}
819
820/*****************************************************************************/
821
822typedef struct
823{
824 WL head;
825 EV_ATOMIC_T gotsig;
826} ANSIG;
827
828static ANSIG *signals;
829static int signalmax;
830
831static EV_ATOMIC_T gotsig;
832
833void inline_size
834signals_init (ANSIG *base, int count)
835{
836 while (count--)
837 {
838 base->head = 0;
839 base->gotsig = 0;
840
841 ++base;
842 }
843}
844
845/*****************************************************************************/
846
847void inline_speed
848fd_intern (int fd) 1695fd_intern (int fd)
849{ 1696{
850#ifdef _WIN32 1697#ifdef _WIN32
851 int arg = 1; 1698 unsigned long arg = 1;
852 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1699 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
853#else 1700#else
854 fcntl (fd, F_SETFD, FD_CLOEXEC); 1701 fcntl (fd, F_SETFD, FD_CLOEXEC);
855 fcntl (fd, F_SETFL, O_NONBLOCK); 1702 fcntl (fd, F_SETFL, O_NONBLOCK);
856#endif 1703#endif
857} 1704}
858 1705
1706/*****************************************************************************/
1707
1708/*
1709 * the heap functions want a real array index. array index 0 is guaranteed to not
1710 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1711 * the branching factor of the d-tree.
1712 */
1713
1714/*
1715 * at the moment we allow libev the luxury of two heaps,
1716 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1717 * which is more cache-efficient.
1718 * the difference is about 5% with 50000+ watchers.
1719 */
1720#if EV_USE_4HEAP
1721
1722#define DHEAP 4
1723#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1724#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1725#define UPHEAP_DONE(p,k) ((p) == (k))
1726
1727/* away from the root */
1728inline_speed void
1729downheap (ANHE *heap, int N, int k)
1730{
1731 ANHE he = heap [k];
1732 ANHE *E = heap + N + HEAP0;
1733
1734 for (;;)
1735 {
1736 ev_tstamp minat;
1737 ANHE *minpos;
1738 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1739
1740 /* find minimum child */
1741 if (expect_true (pos + DHEAP - 1 < E))
1742 {
1743 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1744 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1745 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1746 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1747 }
1748 else if (pos < E)
1749 {
1750 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1751 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1752 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1753 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1754 }
1755 else
1756 break;
1757
1758 if (ANHE_at (he) <= minat)
1759 break;
1760
1761 heap [k] = *minpos;
1762 ev_active (ANHE_w (*minpos)) = k;
1763
1764 k = minpos - heap;
1765 }
1766
1767 heap [k] = he;
1768 ev_active (ANHE_w (he)) = k;
1769}
1770
1771#else /* 4HEAP */
1772
1773#define HEAP0 1
1774#define HPARENT(k) ((k) >> 1)
1775#define UPHEAP_DONE(p,k) (!(p))
1776
1777/* away from the root */
1778inline_speed void
1779downheap (ANHE *heap, int N, int k)
1780{
1781 ANHE he = heap [k];
1782
1783 for (;;)
1784 {
1785 int c = k << 1;
1786
1787 if (c >= N + HEAP0)
1788 break;
1789
1790 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1791 ? 1 : 0;
1792
1793 if (ANHE_at (he) <= ANHE_at (heap [c]))
1794 break;
1795
1796 heap [k] = heap [c];
1797 ev_active (ANHE_w (heap [k])) = k;
1798
1799 k = c;
1800 }
1801
1802 heap [k] = he;
1803 ev_active (ANHE_w (he)) = k;
1804}
1805#endif
1806
1807/* towards the root */
1808inline_speed void
1809upheap (ANHE *heap, int k)
1810{
1811 ANHE he = heap [k];
1812
1813 for (;;)
1814 {
1815 int p = HPARENT (k);
1816
1817 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1818 break;
1819
1820 heap [k] = heap [p];
1821 ev_active (ANHE_w (heap [k])) = k;
1822 k = p;
1823 }
1824
1825 heap [k] = he;
1826 ev_active (ANHE_w (he)) = k;
1827}
1828
1829/* move an element suitably so it is in a correct place */
1830inline_size void
1831adjustheap (ANHE *heap, int N, int k)
1832{
1833 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1834 upheap (heap, k);
1835 else
1836 downheap (heap, N, k);
1837}
1838
1839/* rebuild the heap: this function is used only once and executed rarely */
1840inline_size void
1841reheap (ANHE *heap, int N)
1842{
1843 int i;
1844
1845 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1846 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1847 for (i = 0; i < N; ++i)
1848 upheap (heap, i + HEAP0);
1849}
1850
1851/*****************************************************************************/
1852
1853/* associate signal watchers to a signal signal */
1854typedef struct
1855{
1856 EV_ATOMIC_T pending;
1857#if EV_MULTIPLICITY
1858 EV_P;
1859#endif
1860 WL head;
1861} ANSIG;
1862
1863static ANSIG signals [EV_NSIG - 1];
1864
1865/*****************************************************************************/
1866
1867#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1868
859static void noinline 1869static void noinline ecb_cold
860evpipe_init (EV_P) 1870evpipe_init (EV_P)
861{ 1871{
862 if (!ev_is_active (&pipeev)) 1872 if (!ev_is_active (&pipe_w))
863 { 1873 {
864#if EV_USE_EVENTFD 1874# if EV_USE_EVENTFD
1875 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1876 if (evfd < 0 && errno == EINVAL)
865 if ((evfd = eventfd (0, 0)) >= 0) 1877 evfd = eventfd (0, 0);
1878
1879 if (evfd >= 0)
866 { 1880 {
867 evpipe [0] = -1; 1881 evpipe [0] = -1;
868 fd_intern (evfd); 1882 fd_intern (evfd); /* doing it twice doesn't hurt */
869 ev_io_set (&pipeev, evfd, EV_READ); 1883 ev_io_set (&pipe_w, evfd, EV_READ);
870 } 1884 }
871 else 1885 else
872#endif 1886# endif
873 { 1887 {
874 while (pipe (evpipe)) 1888 while (pipe (evpipe))
875 syserr ("(libev) error creating signal/async pipe"); 1889 ev_syserr ("(libev) error creating signal/async pipe");
876 1890
877 fd_intern (evpipe [0]); 1891 fd_intern (evpipe [0]);
878 fd_intern (evpipe [1]); 1892 fd_intern (evpipe [1]);
879 ev_io_set (&pipeev, evpipe [0], EV_READ); 1893 ev_io_set (&pipe_w, evpipe [0], EV_READ);
880 } 1894 }
881 1895
882 ev_io_start (EV_A_ &pipeev); 1896 ev_io_start (EV_A_ &pipe_w);
883 ev_unref (EV_A); /* watcher should not keep loop alive */ 1897 ev_unref (EV_A); /* watcher should not keep loop alive */
884 } 1898 }
885} 1899}
886 1900
887void inline_size 1901inline_speed void
888evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1902evpipe_write (EV_P_ EV_ATOMIC_T *flag)
889{ 1903{
890 if (!*flag) 1904 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
1905
1906 if (expect_true (*flag))
1907 return;
1908
1909 *flag = 1;
1910 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1911
1912 pipe_write_skipped = 1;
1913
1914 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1915
1916 if (pipe_write_wanted)
891 { 1917 {
1918 int old_errno;
1919
1920 pipe_write_skipped = 0;
1921 ECB_MEMORY_FENCE_RELEASE;
1922
892 int old_errno = errno; /* save errno because write might clobber it */ 1923 old_errno = errno; /* save errno because write will clobber it */
893
894 *flag = 1;
895 1924
896#if EV_USE_EVENTFD 1925#if EV_USE_EVENTFD
897 if (evfd >= 0) 1926 if (evfd >= 0)
898 { 1927 {
899 uint64_t counter = 1; 1928 uint64_t counter = 1;
900 write (evfd, &counter, sizeof (uint64_t)); 1929 write (evfd, &counter, sizeof (uint64_t));
901 } 1930 }
902 else 1931 else
903#endif 1932#endif
1933 {
1934#ifdef _WIN32
1935 WSABUF buf;
1936 DWORD sent;
1937 buf.buf = &buf;
1938 buf.len = 1;
1939 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
1940#else
904 write (evpipe [1], &old_errno, 1); 1941 write (evpipe [1], &(evpipe [1]), 1);
1942#endif
1943 }
905 1944
906 errno = old_errno; 1945 errno = old_errno;
907 } 1946 }
908} 1947}
909 1948
1949/* called whenever the libev signal pipe */
1950/* got some events (signal, async) */
910static void 1951static void
911pipecb (EV_P_ ev_io *iow, int revents) 1952pipecb (EV_P_ ev_io *iow, int revents)
912{ 1953{
1954 int i;
1955
1956 if (revents & EV_READ)
1957 {
913#if EV_USE_EVENTFD 1958#if EV_USE_EVENTFD
914 if (evfd >= 0) 1959 if (evfd >= 0)
915 { 1960 {
916 uint64_t counter = 1; 1961 uint64_t counter;
917 read (evfd, &counter, sizeof (uint64_t)); 1962 read (evfd, &counter, sizeof (uint64_t));
918 } 1963 }
919 else 1964 else
920#endif 1965#endif
921 { 1966 {
922 char dummy; 1967 char dummy[4];
1968#ifdef _WIN32
1969 WSABUF buf;
1970 DWORD recvd;
1971 DWORD flags = 0;
1972 buf.buf = dummy;
1973 buf.len = sizeof (dummy);
1974 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
1975#else
923 read (evpipe [0], &dummy, 1); 1976 read (evpipe [0], &dummy, sizeof (dummy));
1977#endif
1978 }
1979 }
1980
1981 pipe_write_skipped = 0;
1982
1983 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
1984
1985#if EV_SIGNAL_ENABLE
1986 if (sig_pending)
924 } 1987 {
1988 sig_pending = 0;
925 1989
926 if (gotsig && ev_is_default_loop (EV_A)) 1990 ECB_MEMORY_FENCE;
927 {
928 int signum;
929 gotsig = 0;
930 1991
931 for (signum = signalmax; signum--; ) 1992 for (i = EV_NSIG - 1; i--; )
932 if (signals [signum].gotsig) 1993 if (expect_false (signals [i].pending))
933 ev_feed_signal_event (EV_A_ signum + 1); 1994 ev_feed_signal_event (EV_A_ i + 1);
934 } 1995 }
1996#endif
935 1997
936#if EV_ASYNC_ENABLE 1998#if EV_ASYNC_ENABLE
937 if (gotasync) 1999 if (async_pending)
938 { 2000 {
939 int i; 2001 async_pending = 0;
940 gotasync = 0; 2002
2003 ECB_MEMORY_FENCE;
941 2004
942 for (i = asynccnt; i--; ) 2005 for (i = asynccnt; i--; )
943 if (asyncs [i]->sent) 2006 if (asyncs [i]->sent)
944 { 2007 {
945 asyncs [i]->sent = 0; 2008 asyncs [i]->sent = 0;
2009 ECB_MEMORY_FENCE_RELEASE;
946 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); 2010 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
947 } 2011 }
948 } 2012 }
949#endif 2013#endif
950} 2014}
951 2015
952/*****************************************************************************/ 2016/*****************************************************************************/
953 2017
2018void
2019ev_feed_signal (int signum) EV_THROW
2020{
2021#if EV_MULTIPLICITY
2022 EV_P = signals [signum - 1].loop;
2023
2024 if (!EV_A)
2025 return;
2026#endif
2027
2028 if (!ev_active (&pipe_w))
2029 return;
2030
2031 signals [signum - 1].pending = 1;
2032 evpipe_write (EV_A_ &sig_pending);
2033}
2034
954static void 2035static void
955ev_sighandler (int signum) 2036ev_sighandler (int signum)
956{ 2037{
2038#ifdef _WIN32
2039 signal (signum, ev_sighandler);
2040#endif
2041
2042 ev_feed_signal (signum);
2043}
2044
2045void noinline
2046ev_feed_signal_event (EV_P_ int signum) EV_THROW
2047{
2048 WL w;
2049
2050 if (expect_false (signum <= 0 || signum > EV_NSIG))
2051 return;
2052
2053 --signum;
2054
957#if EV_MULTIPLICITY 2055#if EV_MULTIPLICITY
958 struct ev_loop *loop = &default_loop_struct; 2056 /* it is permissible to try to feed a signal to the wrong loop */
959#endif 2057 /* or, likely more useful, feeding a signal nobody is waiting for */
960 2058
961#if _WIN32 2059 if (expect_false (signals [signum].loop != EV_A))
962 signal (signum, ev_sighandler);
963#endif
964
965 signals [signum - 1].gotsig = 1;
966 evpipe_write (EV_A_ &gotsig);
967}
968
969void noinline
970ev_feed_signal_event (EV_P_ int signum)
971{
972 WL w;
973
974#if EV_MULTIPLICITY
975 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
976#endif
977
978 --signum;
979
980 if (signum < 0 || signum >= signalmax)
981 return; 2060 return;
2061#endif
982 2062
983 signals [signum].gotsig = 0; 2063 signals [signum].pending = 0;
2064 ECB_MEMORY_FENCE_RELEASE;
984 2065
985 for (w = signals [signum].head; w; w = w->next) 2066 for (w = signals [signum].head; w; w = w->next)
986 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2067 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
987} 2068}
988 2069
2070#if EV_USE_SIGNALFD
2071static void
2072sigfdcb (EV_P_ ev_io *iow, int revents)
2073{
2074 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2075
2076 for (;;)
2077 {
2078 ssize_t res = read (sigfd, si, sizeof (si));
2079
2080 /* not ISO-C, as res might be -1, but works with SuS */
2081 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2082 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2083
2084 if (res < (ssize_t)sizeof (si))
2085 break;
2086 }
2087}
2088#endif
2089
2090#endif
2091
989/*****************************************************************************/ 2092/*****************************************************************************/
990 2093
2094#if EV_CHILD_ENABLE
991static WL childs [EV_PID_HASHSIZE]; 2095static WL childs [EV_PID_HASHSIZE];
992
993#ifndef _WIN32
994 2096
995static ev_signal childev; 2097static ev_signal childev;
996 2098
997#ifndef WIFCONTINUED 2099#ifndef WIFCONTINUED
998# define WIFCONTINUED(status) 0 2100# define WIFCONTINUED(status) 0
999#endif 2101#endif
1000 2102
1001void inline_speed 2103/* handle a single child status event */
2104inline_speed void
1002child_reap (EV_P_ int chain, int pid, int status) 2105child_reap (EV_P_ int chain, int pid, int status)
1003{ 2106{
1004 ev_child *w; 2107 ev_child *w;
1005 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2108 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1006 2109
1007 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2110 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1008 { 2111 {
1009 if ((w->pid == pid || !w->pid) 2112 if ((w->pid == pid || !w->pid)
1010 && (!traced || (w->flags & 1))) 2113 && (!traced || (w->flags & 1)))
1011 { 2114 {
1012 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 2115 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1019 2122
1020#ifndef WCONTINUED 2123#ifndef WCONTINUED
1021# define WCONTINUED 0 2124# define WCONTINUED 0
1022#endif 2125#endif
1023 2126
2127/* called on sigchld etc., calls waitpid */
1024static void 2128static void
1025childcb (EV_P_ ev_signal *sw, int revents) 2129childcb (EV_P_ ev_signal *sw, int revents)
1026{ 2130{
1027 int pid, status; 2131 int pid, status;
1028 2132
1036 /* make sure we are called again until all children have been reaped */ 2140 /* make sure we are called again until all children have been reaped */
1037 /* we need to do it this way so that the callback gets called before we continue */ 2141 /* we need to do it this way so that the callback gets called before we continue */
1038 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2142 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1039 2143
1040 child_reap (EV_A_ pid, pid, status); 2144 child_reap (EV_A_ pid, pid, status);
1041 if (EV_PID_HASHSIZE > 1) 2145 if ((EV_PID_HASHSIZE) > 1)
1042 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2146 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1043} 2147}
1044 2148
1045#endif 2149#endif
1046 2150
1047/*****************************************************************************/ 2151/*****************************************************************************/
1048 2152
2153#if EV_USE_IOCP
2154# include "ev_iocp.c"
2155#endif
1049#if EV_USE_PORT 2156#if EV_USE_PORT
1050# include "ev_port.c" 2157# include "ev_port.c"
1051#endif 2158#endif
1052#if EV_USE_KQUEUE 2159#if EV_USE_KQUEUE
1053# include "ev_kqueue.c" 2160# include "ev_kqueue.c"
1060#endif 2167#endif
1061#if EV_USE_SELECT 2168#if EV_USE_SELECT
1062# include "ev_select.c" 2169# include "ev_select.c"
1063#endif 2170#endif
1064 2171
1065int 2172int ecb_cold
1066ev_version_major (void) 2173ev_version_major (void) EV_THROW
1067{ 2174{
1068 return EV_VERSION_MAJOR; 2175 return EV_VERSION_MAJOR;
1069} 2176}
1070 2177
1071int 2178int ecb_cold
1072ev_version_minor (void) 2179ev_version_minor (void) EV_THROW
1073{ 2180{
1074 return EV_VERSION_MINOR; 2181 return EV_VERSION_MINOR;
1075} 2182}
1076 2183
1077/* return true if we are running with elevated privileges and should ignore env variables */ 2184/* return true if we are running with elevated privileges and should ignore env variables */
1078int inline_size 2185int inline_size ecb_cold
1079enable_secure (void) 2186enable_secure (void)
1080{ 2187{
1081#ifdef _WIN32 2188#ifdef _WIN32
1082 return 0; 2189 return 0;
1083#else 2190#else
1084 return getuid () != geteuid () 2191 return getuid () != geteuid ()
1085 || getgid () != getegid (); 2192 || getgid () != getegid ();
1086#endif 2193#endif
1087} 2194}
1088 2195
1089unsigned int 2196unsigned int ecb_cold
1090ev_supported_backends (void) 2197ev_supported_backends (void) EV_THROW
1091{ 2198{
1092 unsigned int flags = 0; 2199 unsigned int flags = 0;
1093 2200
1094 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2201 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1095 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2202 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1098 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2205 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1099 2206
1100 return flags; 2207 return flags;
1101} 2208}
1102 2209
1103unsigned int 2210unsigned int ecb_cold
1104ev_recommended_backends (void) 2211ev_recommended_backends (void) EV_THROW
1105{ 2212{
1106 unsigned int flags = ev_supported_backends (); 2213 unsigned int flags = ev_supported_backends ();
1107 2214
1108#ifndef __NetBSD__ 2215#ifndef __NetBSD__
1109 /* kqueue is borked on everything but netbsd apparently */ 2216 /* kqueue is borked on everything but netbsd apparently */
1110 /* it usually doesn't work correctly on anything but sockets and pipes */ 2217 /* it usually doesn't work correctly on anything but sockets and pipes */
1111 flags &= ~EVBACKEND_KQUEUE; 2218 flags &= ~EVBACKEND_KQUEUE;
1112#endif 2219#endif
1113#ifdef __APPLE__ 2220#ifdef __APPLE__
1114 // flags &= ~EVBACKEND_KQUEUE; for documentation 2221 /* only select works correctly on that "unix-certified" platform */
1115 flags &= ~EVBACKEND_POLL; 2222 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2223 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2224#endif
2225#ifdef __FreeBSD__
2226 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1116#endif 2227#endif
1117 2228
1118 return flags; 2229 return flags;
1119} 2230}
1120 2231
2232unsigned int ecb_cold
2233ev_embeddable_backends (void) EV_THROW
2234{
2235 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2236
2237 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2238 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2239 flags &= ~EVBACKEND_EPOLL;
2240
2241 return flags;
2242}
2243
1121unsigned int 2244unsigned int
1122ev_embeddable_backends (void) 2245ev_backend (EV_P) EV_THROW
1123{ 2246{
1124 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2247 return backend;
1125
1126 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1127 /* please fix it and tell me how to detect the fix */
1128 flags &= ~EVBACKEND_EPOLL;
1129
1130 return flags;
1131} 2248}
1132 2249
2250#if EV_FEATURE_API
1133unsigned int 2251unsigned int
1134ev_backend (EV_P) 2252ev_iteration (EV_P) EV_THROW
1135{ 2253{
1136 return backend; 2254 return loop_count;
1137} 2255}
1138 2256
1139unsigned int 2257unsigned int
1140ev_loop_count (EV_P) 2258ev_depth (EV_P) EV_THROW
1141{ 2259{
1142 return loop_count; 2260 return loop_depth;
1143} 2261}
1144 2262
1145void 2263void
1146ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2264ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1147{ 2265{
1148 io_blocktime = interval; 2266 io_blocktime = interval;
1149} 2267}
1150 2268
1151void 2269void
1152ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2270ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1153{ 2271{
1154 timeout_blocktime = interval; 2272 timeout_blocktime = interval;
1155} 2273}
1156 2274
2275void
2276ev_set_userdata (EV_P_ void *data) EV_THROW
2277{
2278 userdata = data;
2279}
2280
2281void *
2282ev_userdata (EV_P) EV_THROW
2283{
2284 return userdata;
2285}
2286
2287void
2288ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2289{
2290 invoke_cb = invoke_pending_cb;
2291}
2292
2293void
2294ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2295{
2296 release_cb = release;
2297 acquire_cb = acquire;
2298}
2299#endif
2300
2301/* initialise a loop structure, must be zero-initialised */
1157static void noinline 2302static void noinline ecb_cold
1158loop_init (EV_P_ unsigned int flags) 2303loop_init (EV_P_ unsigned int flags) EV_THROW
1159{ 2304{
1160 if (!backend) 2305 if (!backend)
1161 { 2306 {
2307 origflags = flags;
2308
2309#if EV_USE_REALTIME
2310 if (!have_realtime)
2311 {
2312 struct timespec ts;
2313
2314 if (!clock_gettime (CLOCK_REALTIME, &ts))
2315 have_realtime = 1;
2316 }
2317#endif
2318
1162#if EV_USE_MONOTONIC 2319#if EV_USE_MONOTONIC
2320 if (!have_monotonic)
1163 { 2321 {
1164 struct timespec ts; 2322 struct timespec ts;
2323
1165 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2324 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1166 have_monotonic = 1; 2325 have_monotonic = 1;
1167 } 2326 }
1168#endif
1169
1170 ev_rt_now = ev_time ();
1171 mn_now = get_clock ();
1172 now_floor = mn_now;
1173 rtmn_diff = ev_rt_now - mn_now;
1174
1175 io_blocktime = 0.;
1176 timeout_blocktime = 0.;
1177 backend = 0;
1178 backend_fd = -1;
1179 gotasync = 0;
1180#if EV_USE_INOTIFY
1181 fs_fd = -2;
1182#endif 2327#endif
1183 2328
1184 /* pid check not overridable via env */ 2329 /* pid check not overridable via env */
1185#ifndef _WIN32 2330#ifndef _WIN32
1186 if (flags & EVFLAG_FORKCHECK) 2331 if (flags & EVFLAG_FORKCHECK)
1190 if (!(flags & EVFLAG_NOENV) 2335 if (!(flags & EVFLAG_NOENV)
1191 && !enable_secure () 2336 && !enable_secure ()
1192 && getenv ("LIBEV_FLAGS")) 2337 && getenv ("LIBEV_FLAGS"))
1193 flags = atoi (getenv ("LIBEV_FLAGS")); 2338 flags = atoi (getenv ("LIBEV_FLAGS"));
1194 2339
1195 if (!(flags & 0x0000ffffU)) 2340 ev_rt_now = ev_time ();
2341 mn_now = get_clock ();
2342 now_floor = mn_now;
2343 rtmn_diff = ev_rt_now - mn_now;
2344#if EV_FEATURE_API
2345 invoke_cb = ev_invoke_pending;
2346#endif
2347
2348 io_blocktime = 0.;
2349 timeout_blocktime = 0.;
2350 backend = 0;
2351 backend_fd = -1;
2352 sig_pending = 0;
2353#if EV_ASYNC_ENABLE
2354 async_pending = 0;
2355#endif
2356 pipe_write_skipped = 0;
2357 pipe_write_wanted = 0;
2358#if EV_USE_INOTIFY
2359 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2360#endif
2361#if EV_USE_SIGNALFD
2362 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2363#endif
2364
2365 if (!(flags & EVBACKEND_MASK))
1196 flags |= ev_recommended_backends (); 2366 flags |= ev_recommended_backends ();
1197 2367
2368#if EV_USE_IOCP
2369 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2370#endif
1198#if EV_USE_PORT 2371#if EV_USE_PORT
1199 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2372 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1200#endif 2373#endif
1201#if EV_USE_KQUEUE 2374#if EV_USE_KQUEUE
1202 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2375 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1209#endif 2382#endif
1210#if EV_USE_SELECT 2383#if EV_USE_SELECT
1211 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2384 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1212#endif 2385#endif
1213 2386
2387 ev_prepare_init (&pending_w, pendingcb);
2388
2389#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1214 ev_init (&pipeev, pipecb); 2390 ev_init (&pipe_w, pipecb);
1215 ev_set_priority (&pipeev, EV_MAXPRI); 2391 ev_set_priority (&pipe_w, EV_MAXPRI);
2392#endif
1216 } 2393 }
1217} 2394}
1218 2395
1219static void noinline 2396/* free up a loop structure */
2397void ecb_cold
1220loop_destroy (EV_P) 2398ev_loop_destroy (EV_P)
1221{ 2399{
1222 int i; 2400 int i;
1223 2401
2402#if EV_MULTIPLICITY
2403 /* mimic free (0) */
2404 if (!EV_A)
2405 return;
2406#endif
2407
2408#if EV_CLEANUP_ENABLE
2409 /* queue cleanup watchers (and execute them) */
2410 if (expect_false (cleanupcnt))
2411 {
2412 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2413 EV_INVOKE_PENDING;
2414 }
2415#endif
2416
2417#if EV_CHILD_ENABLE
2418 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2419 {
2420 ev_ref (EV_A); /* child watcher */
2421 ev_signal_stop (EV_A_ &childev);
2422 }
2423#endif
2424
1224 if (ev_is_active (&pipeev)) 2425 if (ev_is_active (&pipe_w))
1225 { 2426 {
1226 ev_ref (EV_A); /* signal watcher */ 2427 /*ev_ref (EV_A);*/
1227 ev_io_stop (EV_A_ &pipeev); 2428 /*ev_io_stop (EV_A_ &pipe_w);*/
1228 2429
1229#if EV_USE_EVENTFD 2430#if EV_USE_EVENTFD
1230 if (evfd >= 0) 2431 if (evfd >= 0)
1231 close (evfd); 2432 close (evfd);
1232#endif 2433#endif
1233 2434
1234 if (evpipe [0] >= 0) 2435 if (evpipe [0] >= 0)
1235 { 2436 {
1236 close (evpipe [0]); 2437 EV_WIN32_CLOSE_FD (evpipe [0]);
1237 close (evpipe [1]); 2438 EV_WIN32_CLOSE_FD (evpipe [1]);
1238 } 2439 }
1239 } 2440 }
2441
2442#if EV_USE_SIGNALFD
2443 if (ev_is_active (&sigfd_w))
2444 close (sigfd);
2445#endif
1240 2446
1241#if EV_USE_INOTIFY 2447#if EV_USE_INOTIFY
1242 if (fs_fd >= 0) 2448 if (fs_fd >= 0)
1243 close (fs_fd); 2449 close (fs_fd);
1244#endif 2450#endif
1245 2451
1246 if (backend_fd >= 0) 2452 if (backend_fd >= 0)
1247 close (backend_fd); 2453 close (backend_fd);
1248 2454
2455#if EV_USE_IOCP
2456 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2457#endif
1249#if EV_USE_PORT 2458#if EV_USE_PORT
1250 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2459 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1251#endif 2460#endif
1252#if EV_USE_KQUEUE 2461#if EV_USE_KQUEUE
1253 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2462 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1268#if EV_IDLE_ENABLE 2477#if EV_IDLE_ENABLE
1269 array_free (idle, [i]); 2478 array_free (idle, [i]);
1270#endif 2479#endif
1271 } 2480 }
1272 2481
1273 ev_free (anfds); anfdmax = 0; 2482 ev_free (anfds); anfds = 0; anfdmax = 0;
1274 2483
1275 /* have to use the microsoft-never-gets-it-right macro */ 2484 /* have to use the microsoft-never-gets-it-right macro */
2485 array_free (rfeed, EMPTY);
1276 array_free (fdchange, EMPTY); 2486 array_free (fdchange, EMPTY);
1277 array_free (timer, EMPTY); 2487 array_free (timer, EMPTY);
1278#if EV_PERIODIC_ENABLE 2488#if EV_PERIODIC_ENABLE
1279 array_free (periodic, EMPTY); 2489 array_free (periodic, EMPTY);
1280#endif 2490#endif
1281#if EV_FORK_ENABLE 2491#if EV_FORK_ENABLE
1282 array_free (fork, EMPTY); 2492 array_free (fork, EMPTY);
1283#endif 2493#endif
2494#if EV_CLEANUP_ENABLE
2495 array_free (cleanup, EMPTY);
2496#endif
1284 array_free (prepare, EMPTY); 2497 array_free (prepare, EMPTY);
1285 array_free (check, EMPTY); 2498 array_free (check, EMPTY);
1286#if EV_ASYNC_ENABLE 2499#if EV_ASYNC_ENABLE
1287 array_free (async, EMPTY); 2500 array_free (async, EMPTY);
1288#endif 2501#endif
1289 2502
1290 backend = 0; 2503 backend = 0;
2504
2505#if EV_MULTIPLICITY
2506 if (ev_is_default_loop (EV_A))
2507#endif
2508 ev_default_loop_ptr = 0;
2509#if EV_MULTIPLICITY
2510 else
2511 ev_free (EV_A);
2512#endif
1291} 2513}
1292 2514
1293#if EV_USE_INOTIFY 2515#if EV_USE_INOTIFY
1294void inline_size infy_fork (EV_P); 2516inline_size void infy_fork (EV_P);
1295#endif 2517#endif
1296 2518
1297void inline_size 2519inline_size void
1298loop_fork (EV_P) 2520loop_fork (EV_P)
1299{ 2521{
1300#if EV_USE_PORT 2522#if EV_USE_PORT
1301 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2523 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1302#endif 2524#endif
1308#endif 2530#endif
1309#if EV_USE_INOTIFY 2531#if EV_USE_INOTIFY
1310 infy_fork (EV_A); 2532 infy_fork (EV_A);
1311#endif 2533#endif
1312 2534
1313 if (ev_is_active (&pipeev)) 2535 if (ev_is_active (&pipe_w))
1314 { 2536 {
1315 /* this "locks" the handlers against writing to the pipe */ 2537 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1316 /* while we modify the fd vars */
1317 gotsig = 1;
1318#if EV_ASYNC_ENABLE
1319 gotasync = 1;
1320#endif
1321 2538
1322 ev_ref (EV_A); 2539 ev_ref (EV_A);
1323 ev_io_stop (EV_A_ &pipeev); 2540 ev_io_stop (EV_A_ &pipe_w);
1324 2541
1325#if EV_USE_EVENTFD 2542#if EV_USE_EVENTFD
1326 if (evfd >= 0) 2543 if (evfd >= 0)
1327 close (evfd); 2544 close (evfd);
1328#endif 2545#endif
1329 2546
1330 if (evpipe [0] >= 0) 2547 if (evpipe [0] >= 0)
1331 { 2548 {
1332 close (evpipe [0]); 2549 EV_WIN32_CLOSE_FD (evpipe [0]);
1333 close (evpipe [1]); 2550 EV_WIN32_CLOSE_FD (evpipe [1]);
1334 } 2551 }
1335 2552
2553#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1336 evpipe_init (EV_A); 2554 evpipe_init (EV_A);
1337 /* now iterate over everything, in case we missed something */ 2555 /* iterate over everything, in case we missed something before */
1338 pipecb (EV_A_ &pipeev, EV_READ); 2556 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
2557#endif
1339 } 2558 }
1340 2559
1341 postfork = 0; 2560 postfork = 0;
1342} 2561}
1343 2562
1344#if EV_MULTIPLICITY 2563#if EV_MULTIPLICITY
2564
1345struct ev_loop * 2565struct ev_loop * ecb_cold
1346ev_loop_new (unsigned int flags) 2566ev_loop_new (unsigned int flags) EV_THROW
1347{ 2567{
1348 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2568 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1349 2569
1350 memset (loop, 0, sizeof (struct ev_loop)); 2570 memset (EV_A, 0, sizeof (struct ev_loop));
1351
1352 loop_init (EV_A_ flags); 2571 loop_init (EV_A_ flags);
1353 2572
1354 if (ev_backend (EV_A)) 2573 if (ev_backend (EV_A))
1355 return loop; 2574 return EV_A;
1356 2575
2576 ev_free (EV_A);
1357 return 0; 2577 return 0;
1358} 2578}
1359 2579
1360void 2580#endif /* multiplicity */
1361ev_loop_destroy (EV_P)
1362{
1363 loop_destroy (EV_A);
1364 ev_free (loop);
1365}
1366 2581
1367void 2582#if EV_VERIFY
1368ev_loop_fork (EV_P) 2583static void noinline ecb_cold
2584verify_watcher (EV_P_ W w)
1369{ 2585{
1370 postfork = 1; /* must be in line with ev_default_fork */ 2586 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1371}
1372 2587
2588 if (w->pending)
2589 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2590}
2591
2592static void noinline ecb_cold
2593verify_heap (EV_P_ ANHE *heap, int N)
2594{
2595 int i;
2596
2597 for (i = HEAP0; i < N + HEAP0; ++i)
2598 {
2599 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2600 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2601 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2602
2603 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2604 }
2605}
2606
2607static void noinline ecb_cold
2608array_verify (EV_P_ W *ws, int cnt)
2609{
2610 while (cnt--)
2611 {
2612 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2613 verify_watcher (EV_A_ ws [cnt]);
2614 }
2615}
2616#endif
2617
2618#if EV_FEATURE_API
2619void ecb_cold
2620ev_verify (EV_P) EV_THROW
2621{
2622#if EV_VERIFY
2623 int i;
2624 WL w, w2;
2625
2626 assert (activecnt >= -1);
2627
2628 assert (fdchangemax >= fdchangecnt);
2629 for (i = 0; i < fdchangecnt; ++i)
2630 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2631
2632 assert (anfdmax >= 0);
2633 for (i = 0; i < anfdmax; ++i)
2634 {
2635 int j = 0;
2636
2637 for (w = w2 = anfds [i].head; w; w = w->next)
2638 {
2639 verify_watcher (EV_A_ (W)w);
2640
2641 if (j++ & 1)
2642 {
2643 assert (("libev: io watcher list contains a loop", w != w2));
2644 w2 = w2->next;
2645 }
2646
2647 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2648 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2649 }
2650 }
2651
2652 assert (timermax >= timercnt);
2653 verify_heap (EV_A_ timers, timercnt);
2654
2655#if EV_PERIODIC_ENABLE
2656 assert (periodicmax >= periodiccnt);
2657 verify_heap (EV_A_ periodics, periodiccnt);
2658#endif
2659
2660 for (i = NUMPRI; i--; )
2661 {
2662 assert (pendingmax [i] >= pendingcnt [i]);
2663#if EV_IDLE_ENABLE
2664 assert (idleall >= 0);
2665 assert (idlemax [i] >= idlecnt [i]);
2666 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2667#endif
2668 }
2669
2670#if EV_FORK_ENABLE
2671 assert (forkmax >= forkcnt);
2672 array_verify (EV_A_ (W *)forks, forkcnt);
2673#endif
2674
2675#if EV_CLEANUP_ENABLE
2676 assert (cleanupmax >= cleanupcnt);
2677 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2678#endif
2679
2680#if EV_ASYNC_ENABLE
2681 assert (asyncmax >= asynccnt);
2682 array_verify (EV_A_ (W *)asyncs, asynccnt);
2683#endif
2684
2685#if EV_PREPARE_ENABLE
2686 assert (preparemax >= preparecnt);
2687 array_verify (EV_A_ (W *)prepares, preparecnt);
2688#endif
2689
2690#if EV_CHECK_ENABLE
2691 assert (checkmax >= checkcnt);
2692 array_verify (EV_A_ (W *)checks, checkcnt);
2693#endif
2694
2695# if 0
2696#if EV_CHILD_ENABLE
2697 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2698 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2699#endif
2700# endif
2701#endif
2702}
1373#endif 2703#endif
1374 2704
1375#if EV_MULTIPLICITY 2705#if EV_MULTIPLICITY
1376struct ev_loop * 2706struct ev_loop * ecb_cold
1377ev_default_loop_init (unsigned int flags)
1378#else 2707#else
1379int 2708int
2709#endif
1380ev_default_loop (unsigned int flags) 2710ev_default_loop (unsigned int flags) EV_THROW
1381#endif
1382{ 2711{
1383 if (!ev_default_loop_ptr) 2712 if (!ev_default_loop_ptr)
1384 { 2713 {
1385#if EV_MULTIPLICITY 2714#if EV_MULTIPLICITY
1386 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2715 EV_P = ev_default_loop_ptr = &default_loop_struct;
1387#else 2716#else
1388 ev_default_loop_ptr = 1; 2717 ev_default_loop_ptr = 1;
1389#endif 2718#endif
1390 2719
1391 loop_init (EV_A_ flags); 2720 loop_init (EV_A_ flags);
1392 2721
1393 if (ev_backend (EV_A)) 2722 if (ev_backend (EV_A))
1394 { 2723 {
1395#ifndef _WIN32 2724#if EV_CHILD_ENABLE
1396 ev_signal_init (&childev, childcb, SIGCHLD); 2725 ev_signal_init (&childev, childcb, SIGCHLD);
1397 ev_set_priority (&childev, EV_MAXPRI); 2726 ev_set_priority (&childev, EV_MAXPRI);
1398 ev_signal_start (EV_A_ &childev); 2727 ev_signal_start (EV_A_ &childev);
1399 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2728 ev_unref (EV_A); /* child watcher should not keep loop alive */
1400#endif 2729#endif
1405 2734
1406 return ev_default_loop_ptr; 2735 return ev_default_loop_ptr;
1407} 2736}
1408 2737
1409void 2738void
1410ev_default_destroy (void) 2739ev_loop_fork (EV_P) EV_THROW
1411{ 2740{
1412#if EV_MULTIPLICITY 2741 postfork = 1;
1413 struct ev_loop *loop = ev_default_loop_ptr;
1414#endif
1415
1416#ifndef _WIN32
1417 ev_ref (EV_A); /* child watcher */
1418 ev_signal_stop (EV_A_ &childev);
1419#endif
1420
1421 loop_destroy (EV_A);
1422}
1423
1424void
1425ev_default_fork (void)
1426{
1427#if EV_MULTIPLICITY
1428 struct ev_loop *loop = ev_default_loop_ptr;
1429#endif
1430
1431 if (backend)
1432 postfork = 1; /* must be in line with ev_loop_fork */
1433} 2742}
1434 2743
1435/*****************************************************************************/ 2744/*****************************************************************************/
1436 2745
1437void 2746void
1438ev_invoke (EV_P_ void *w, int revents) 2747ev_invoke (EV_P_ void *w, int revents)
1439{ 2748{
1440 EV_CB_INVOKE ((W)w, revents); 2749 EV_CB_INVOKE ((W)w, revents);
1441} 2750}
1442 2751
1443void inline_speed 2752unsigned int
1444call_pending (EV_P) 2753ev_pending_count (EV_P) EV_THROW
1445{ 2754{
1446 int pri; 2755 int pri;
2756 unsigned int count = 0;
1447 2757
1448 for (pri = NUMPRI; pri--; ) 2758 for (pri = NUMPRI; pri--; )
2759 count += pendingcnt [pri];
2760
2761 return count;
2762}
2763
2764void noinline
2765ev_invoke_pending (EV_P)
2766{
2767 pendingpri = NUMPRI;
2768
2769 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
2770 {
2771 --pendingpri;
2772
1449 while (pendingcnt [pri]) 2773 while (pendingcnt [pendingpri])
1450 {
1451 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1452
1453 if (expect_true (p->w))
1454 {
1455 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1456
1457 p->w->pending = 0;
1458 EV_CB_INVOKE (p->w, p->events);
1459 }
1460 }
1461}
1462
1463void inline_size
1464timers_reify (EV_P)
1465{
1466 while (timercnt && ev_at (timers [1]) <= mn_now)
1467 {
1468 ev_timer *w = (ev_timer *)timers [1];
1469
1470 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1471
1472 /* first reschedule or stop timer */
1473 if (w->repeat)
1474 { 2774 {
1475 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2775 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1476 2776
1477 ev_at (w) += w->repeat; 2777 p->w->pending = 0;
1478 if (ev_at (w) < mn_now) 2778 EV_CB_INVOKE (p->w, p->events);
1479 ev_at (w) = mn_now; 2779 EV_FREQUENT_CHECK;
1480
1481 downheap (timers, timercnt, 1);
1482 } 2780 }
1483 else
1484 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1485
1486 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1487 }
1488}
1489
1490#if EV_PERIODIC_ENABLE
1491void inline_size
1492periodics_reify (EV_P)
1493{
1494 while (periodiccnt && ev_at (periodics [1]) <= ev_rt_now)
1495 { 2781 }
1496 ev_periodic *w = (ev_periodic *)periodics [1];
1497
1498 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1499
1500 /* first reschedule or stop timer */
1501 if (w->reschedule_cb)
1502 {
1503 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1504 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1505 downheap (periodics, periodiccnt, 1);
1506 }
1507 else if (w->interval)
1508 {
1509 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1510 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1511 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1512 downheap (periodics, periodiccnt, 1);
1513 }
1514 else
1515 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1516
1517 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1518 }
1519} 2782}
1520
1521static void noinline
1522periodics_reschedule (EV_P)
1523{
1524 int i;
1525
1526 /* adjust periodics after time jump */
1527 for (i = 0; i < periodiccnt; ++i)
1528 {
1529 ev_periodic *w = (ev_periodic *)periodics [i];
1530
1531 if (w->reschedule_cb)
1532 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1533 else if (w->interval)
1534 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1535 }
1536
1537 /* now rebuild the heap */
1538 for (i = periodiccnt >> 1; i--; )
1539 downheap (periodics, periodiccnt, i);
1540}
1541#endif
1542 2783
1543#if EV_IDLE_ENABLE 2784#if EV_IDLE_ENABLE
1544void inline_size 2785/* make idle watchers pending. this handles the "call-idle */
2786/* only when higher priorities are idle" logic */
2787inline_size void
1545idle_reify (EV_P) 2788idle_reify (EV_P)
1546{ 2789{
1547 if (expect_false (idleall)) 2790 if (expect_false (idleall))
1548 { 2791 {
1549 int pri; 2792 int pri;
1561 } 2804 }
1562 } 2805 }
1563} 2806}
1564#endif 2807#endif
1565 2808
1566void inline_speed 2809/* make timers pending */
2810inline_size void
2811timers_reify (EV_P)
2812{
2813 EV_FREQUENT_CHECK;
2814
2815 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2816 {
2817 do
2818 {
2819 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2820
2821 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2822
2823 /* first reschedule or stop timer */
2824 if (w->repeat)
2825 {
2826 ev_at (w) += w->repeat;
2827 if (ev_at (w) < mn_now)
2828 ev_at (w) = mn_now;
2829
2830 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2831
2832 ANHE_at_cache (timers [HEAP0]);
2833 downheap (timers, timercnt, HEAP0);
2834 }
2835 else
2836 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2837
2838 EV_FREQUENT_CHECK;
2839 feed_reverse (EV_A_ (W)w);
2840 }
2841 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2842
2843 feed_reverse_done (EV_A_ EV_TIMER);
2844 }
2845}
2846
2847#if EV_PERIODIC_ENABLE
2848
2849static void noinline
2850periodic_recalc (EV_P_ ev_periodic *w)
2851{
2852 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2853 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2854
2855 /* the above almost always errs on the low side */
2856 while (at <= ev_rt_now)
2857 {
2858 ev_tstamp nat = at + w->interval;
2859
2860 /* when resolution fails us, we use ev_rt_now */
2861 if (expect_false (nat == at))
2862 {
2863 at = ev_rt_now;
2864 break;
2865 }
2866
2867 at = nat;
2868 }
2869
2870 ev_at (w) = at;
2871}
2872
2873/* make periodics pending */
2874inline_size void
2875periodics_reify (EV_P)
2876{
2877 EV_FREQUENT_CHECK;
2878
2879 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2880 {
2881 do
2882 {
2883 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2884
2885 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2886
2887 /* first reschedule or stop timer */
2888 if (w->reschedule_cb)
2889 {
2890 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2891
2892 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2893
2894 ANHE_at_cache (periodics [HEAP0]);
2895 downheap (periodics, periodiccnt, HEAP0);
2896 }
2897 else if (w->interval)
2898 {
2899 periodic_recalc (EV_A_ w);
2900 ANHE_at_cache (periodics [HEAP0]);
2901 downheap (periodics, periodiccnt, HEAP0);
2902 }
2903 else
2904 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2905
2906 EV_FREQUENT_CHECK;
2907 feed_reverse (EV_A_ (W)w);
2908 }
2909 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2910
2911 feed_reverse_done (EV_A_ EV_PERIODIC);
2912 }
2913}
2914
2915/* simply recalculate all periodics */
2916/* TODO: maybe ensure that at least one event happens when jumping forward? */
2917static void noinline ecb_cold
2918periodics_reschedule (EV_P)
2919{
2920 int i;
2921
2922 /* adjust periodics after time jump */
2923 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2924 {
2925 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2926
2927 if (w->reschedule_cb)
2928 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2929 else if (w->interval)
2930 periodic_recalc (EV_A_ w);
2931
2932 ANHE_at_cache (periodics [i]);
2933 }
2934
2935 reheap (periodics, periodiccnt);
2936}
2937#endif
2938
2939/* adjust all timers by a given offset */
2940static void noinline ecb_cold
2941timers_reschedule (EV_P_ ev_tstamp adjust)
2942{
2943 int i;
2944
2945 for (i = 0; i < timercnt; ++i)
2946 {
2947 ANHE *he = timers + i + HEAP0;
2948 ANHE_w (*he)->at += adjust;
2949 ANHE_at_cache (*he);
2950 }
2951}
2952
2953/* fetch new monotonic and realtime times from the kernel */
2954/* also detect if there was a timejump, and act accordingly */
2955inline_speed void
1567time_update (EV_P_ ev_tstamp max_block) 2956time_update (EV_P_ ev_tstamp max_block)
1568{ 2957{
1569 int i;
1570
1571#if EV_USE_MONOTONIC 2958#if EV_USE_MONOTONIC
1572 if (expect_true (have_monotonic)) 2959 if (expect_true (have_monotonic))
1573 { 2960 {
2961 int i;
1574 ev_tstamp odiff = rtmn_diff; 2962 ev_tstamp odiff = rtmn_diff;
1575 2963
1576 mn_now = get_clock (); 2964 mn_now = get_clock ();
1577 2965
1578 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2966 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1594 * doesn't hurt either as we only do this on time-jumps or 2982 * doesn't hurt either as we only do this on time-jumps or
1595 * in the unlikely event of having been preempted here. 2983 * in the unlikely event of having been preempted here.
1596 */ 2984 */
1597 for (i = 4; --i; ) 2985 for (i = 4; --i; )
1598 { 2986 {
2987 ev_tstamp diff;
1599 rtmn_diff = ev_rt_now - mn_now; 2988 rtmn_diff = ev_rt_now - mn_now;
1600 2989
1601 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2990 diff = odiff - rtmn_diff;
2991
2992 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1602 return; /* all is well */ 2993 return; /* all is well */
1603 2994
1604 ev_rt_now = ev_time (); 2995 ev_rt_now = ev_time ();
1605 mn_now = get_clock (); 2996 mn_now = get_clock ();
1606 now_floor = mn_now; 2997 now_floor = mn_now;
1607 } 2998 }
1608 2999
3000 /* no timer adjustment, as the monotonic clock doesn't jump */
3001 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1609# if EV_PERIODIC_ENABLE 3002# if EV_PERIODIC_ENABLE
1610 periodics_reschedule (EV_A); 3003 periodics_reschedule (EV_A);
1611# endif 3004# endif
1612 /* no timer adjustment, as the monotonic clock doesn't jump */
1613 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1614 } 3005 }
1615 else 3006 else
1616#endif 3007#endif
1617 { 3008 {
1618 ev_rt_now = ev_time (); 3009 ev_rt_now = ev_time ();
1619 3010
1620 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 3011 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1621 { 3012 {
3013 /* adjust timers. this is easy, as the offset is the same for all of them */
3014 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1622#if EV_PERIODIC_ENABLE 3015#if EV_PERIODIC_ENABLE
1623 periodics_reschedule (EV_A); 3016 periodics_reschedule (EV_A);
1624#endif 3017#endif
1625 /* adjust timers. this is easy, as the offset is the same for all of them */
1626 for (i = 1; i <= timercnt; ++i)
1627 ev_at (timers [i]) += ev_rt_now - mn_now;
1628 } 3018 }
1629 3019
1630 mn_now = ev_rt_now; 3020 mn_now = ev_rt_now;
1631 } 3021 }
1632} 3022}
1633 3023
1634void 3024int
1635ev_ref (EV_P)
1636{
1637 ++activecnt;
1638}
1639
1640void
1641ev_unref (EV_P)
1642{
1643 --activecnt;
1644}
1645
1646static int loop_done;
1647
1648void
1649ev_loop (EV_P_ int flags) 3025ev_run (EV_P_ int flags)
1650{ 3026{
3027#if EV_FEATURE_API
3028 ++loop_depth;
3029#endif
3030
3031 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3032
1651 loop_done = EVUNLOOP_CANCEL; 3033 loop_done = EVBREAK_CANCEL;
1652 3034
1653 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3035 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1654 3036
1655 do 3037 do
1656 { 3038 {
3039#if EV_VERIFY >= 2
3040 ev_verify (EV_A);
3041#endif
3042
1657#ifndef _WIN32 3043#ifndef _WIN32
1658 if (expect_false (curpid)) /* penalise the forking check even more */ 3044 if (expect_false (curpid)) /* penalise the forking check even more */
1659 if (expect_false (getpid () != curpid)) 3045 if (expect_false (getpid () != curpid))
1660 { 3046 {
1661 curpid = getpid (); 3047 curpid = getpid ();
1667 /* we might have forked, so queue fork handlers */ 3053 /* we might have forked, so queue fork handlers */
1668 if (expect_false (postfork)) 3054 if (expect_false (postfork))
1669 if (forkcnt) 3055 if (forkcnt)
1670 { 3056 {
1671 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3057 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1672 call_pending (EV_A); 3058 EV_INVOKE_PENDING;
1673 } 3059 }
1674#endif 3060#endif
1675 3061
3062#if EV_PREPARE_ENABLE
1676 /* queue prepare watchers (and execute them) */ 3063 /* queue prepare watchers (and execute them) */
1677 if (expect_false (preparecnt)) 3064 if (expect_false (preparecnt))
1678 { 3065 {
1679 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3066 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1680 call_pending (EV_A); 3067 EV_INVOKE_PENDING;
1681 } 3068 }
3069#endif
1682 3070
1683 if (expect_false (!activecnt)) 3071 if (expect_false (loop_done))
1684 break; 3072 break;
1685 3073
1686 /* we might have forked, so reify kernel state if necessary */ 3074 /* we might have forked, so reify kernel state if necessary */
1687 if (expect_false (postfork)) 3075 if (expect_false (postfork))
1688 loop_fork (EV_A); 3076 loop_fork (EV_A);
1693 /* calculate blocking time */ 3081 /* calculate blocking time */
1694 { 3082 {
1695 ev_tstamp waittime = 0.; 3083 ev_tstamp waittime = 0.;
1696 ev_tstamp sleeptime = 0.; 3084 ev_tstamp sleeptime = 0.;
1697 3085
3086 /* remember old timestamp for io_blocktime calculation */
3087 ev_tstamp prev_mn_now = mn_now;
3088
3089 /* update time to cancel out callback processing overhead */
3090 time_update (EV_A_ 1e100);
3091
3092 /* from now on, we want a pipe-wake-up */
3093 pipe_write_wanted = 1;
3094
3095 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3096
1698 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3097 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1699 { 3098 {
1700 /* update time to cancel out callback processing overhead */
1701 time_update (EV_A_ 1e100);
1702
1703 waittime = MAX_BLOCKTIME; 3099 waittime = MAX_BLOCKTIME;
1704 3100
1705 if (timercnt) 3101 if (timercnt)
1706 { 3102 {
1707 ev_tstamp to = ev_at (timers [1]) - mn_now + backend_fudge; 3103 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1708 if (waittime > to) waittime = to; 3104 if (waittime > to) waittime = to;
1709 } 3105 }
1710 3106
1711#if EV_PERIODIC_ENABLE 3107#if EV_PERIODIC_ENABLE
1712 if (periodiccnt) 3108 if (periodiccnt)
1713 { 3109 {
1714 ev_tstamp to = ev_at (periodics [1]) - ev_rt_now + backend_fudge; 3110 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1715 if (waittime > to) waittime = to; 3111 if (waittime > to) waittime = to;
1716 } 3112 }
1717#endif 3113#endif
1718 3114
3115 /* don't let timeouts decrease the waittime below timeout_blocktime */
1719 if (expect_false (waittime < timeout_blocktime)) 3116 if (expect_false (waittime < timeout_blocktime))
1720 waittime = timeout_blocktime; 3117 waittime = timeout_blocktime;
1721 3118
1722 sleeptime = waittime - backend_fudge; 3119 /* at this point, we NEED to wait, so we have to ensure */
3120 /* to pass a minimum nonzero value to the backend */
3121 if (expect_false (waittime < backend_mintime))
3122 waittime = backend_mintime;
1723 3123
3124 /* extra check because io_blocktime is commonly 0 */
1724 if (expect_true (sleeptime > io_blocktime)) 3125 if (expect_false (io_blocktime))
1725 sleeptime = io_blocktime;
1726
1727 if (sleeptime)
1728 { 3126 {
3127 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3128
3129 if (sleeptime > waittime - backend_mintime)
3130 sleeptime = waittime - backend_mintime;
3131
3132 if (expect_true (sleeptime > 0.))
3133 {
1729 ev_sleep (sleeptime); 3134 ev_sleep (sleeptime);
1730 waittime -= sleeptime; 3135 waittime -= sleeptime;
3136 }
1731 } 3137 }
1732 } 3138 }
1733 3139
3140#if EV_FEATURE_API
1734 ++loop_count; 3141 ++loop_count;
3142#endif
3143 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1735 backend_poll (EV_A_ waittime); 3144 backend_poll (EV_A_ waittime);
3145 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3146
3147 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3148
3149 ECB_MEMORY_FENCE_ACQUIRE;
3150 if (pipe_write_skipped)
3151 {
3152 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3153 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3154 }
3155
1736 3156
1737 /* update ev_rt_now, do magic */ 3157 /* update ev_rt_now, do magic */
1738 time_update (EV_A_ waittime + sleeptime); 3158 time_update (EV_A_ waittime + sleeptime);
1739 } 3159 }
1740 3160
1747#if EV_IDLE_ENABLE 3167#if EV_IDLE_ENABLE
1748 /* queue idle watchers unless other events are pending */ 3168 /* queue idle watchers unless other events are pending */
1749 idle_reify (EV_A); 3169 idle_reify (EV_A);
1750#endif 3170#endif
1751 3171
3172#if EV_CHECK_ENABLE
1752 /* queue check watchers, to be executed first */ 3173 /* queue check watchers, to be executed first */
1753 if (expect_false (checkcnt)) 3174 if (expect_false (checkcnt))
1754 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3175 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3176#endif
1755 3177
1756 call_pending (EV_A); 3178 EV_INVOKE_PENDING;
1757 } 3179 }
1758 while (expect_true ( 3180 while (expect_true (
1759 activecnt 3181 activecnt
1760 && !loop_done 3182 && !loop_done
1761 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 3183 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
1762 )); 3184 ));
1763 3185
1764 if (loop_done == EVUNLOOP_ONE) 3186 if (loop_done == EVBREAK_ONE)
1765 loop_done = EVUNLOOP_CANCEL; 3187 loop_done = EVBREAK_CANCEL;
3188
3189#if EV_FEATURE_API
3190 --loop_depth;
3191#endif
3192
3193 return activecnt;
1766} 3194}
1767 3195
1768void 3196void
1769ev_unloop (EV_P_ int how) 3197ev_break (EV_P_ int how) EV_THROW
1770{ 3198{
1771 loop_done = how; 3199 loop_done = how;
1772} 3200}
1773 3201
3202void
3203ev_ref (EV_P) EV_THROW
3204{
3205 ++activecnt;
3206}
3207
3208void
3209ev_unref (EV_P) EV_THROW
3210{
3211 --activecnt;
3212}
3213
3214void
3215ev_now_update (EV_P) EV_THROW
3216{
3217 time_update (EV_A_ 1e100);
3218}
3219
3220void
3221ev_suspend (EV_P) EV_THROW
3222{
3223 ev_now_update (EV_A);
3224}
3225
3226void
3227ev_resume (EV_P) EV_THROW
3228{
3229 ev_tstamp mn_prev = mn_now;
3230
3231 ev_now_update (EV_A);
3232 timers_reschedule (EV_A_ mn_now - mn_prev);
3233#if EV_PERIODIC_ENABLE
3234 /* TODO: really do this? */
3235 periodics_reschedule (EV_A);
3236#endif
3237}
3238
1774/*****************************************************************************/ 3239/*****************************************************************************/
3240/* singly-linked list management, used when the expected list length is short */
1775 3241
1776void inline_size 3242inline_size void
1777wlist_add (WL *head, WL elem) 3243wlist_add (WL *head, WL elem)
1778{ 3244{
1779 elem->next = *head; 3245 elem->next = *head;
1780 *head = elem; 3246 *head = elem;
1781} 3247}
1782 3248
1783void inline_size 3249inline_size void
1784wlist_del (WL *head, WL elem) 3250wlist_del (WL *head, WL elem)
1785{ 3251{
1786 while (*head) 3252 while (*head)
1787 { 3253 {
1788 if (*head == elem) 3254 if (expect_true (*head == elem))
1789 { 3255 {
1790 *head = elem->next; 3256 *head = elem->next;
1791 return; 3257 break;
1792 } 3258 }
1793 3259
1794 head = &(*head)->next; 3260 head = &(*head)->next;
1795 } 3261 }
1796} 3262}
1797 3263
1798void inline_speed 3264/* internal, faster, version of ev_clear_pending */
3265inline_speed void
1799clear_pending (EV_P_ W w) 3266clear_pending (EV_P_ W w)
1800{ 3267{
1801 if (w->pending) 3268 if (w->pending)
1802 { 3269 {
1803 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3270 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1804 w->pending = 0; 3271 w->pending = 0;
1805 } 3272 }
1806} 3273}
1807 3274
1808int 3275int
1809ev_clear_pending (EV_P_ void *w) 3276ev_clear_pending (EV_P_ void *w) EV_THROW
1810{ 3277{
1811 W w_ = (W)w; 3278 W w_ = (W)w;
1812 int pending = w_->pending; 3279 int pending = w_->pending;
1813 3280
1814 if (expect_true (pending)) 3281 if (expect_true (pending))
1815 { 3282 {
1816 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3283 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3284 p->w = (W)&pending_w;
1817 w_->pending = 0; 3285 w_->pending = 0;
1818 p->w = 0;
1819 return p->events; 3286 return p->events;
1820 } 3287 }
1821 else 3288 else
1822 return 0; 3289 return 0;
1823} 3290}
1824 3291
1825void inline_size 3292inline_size void
1826pri_adjust (EV_P_ W w) 3293pri_adjust (EV_P_ W w)
1827{ 3294{
1828 int pri = w->priority; 3295 int pri = ev_priority (w);
1829 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3296 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1830 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3297 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1831 w->priority = pri; 3298 ev_set_priority (w, pri);
1832} 3299}
1833 3300
1834void inline_speed 3301inline_speed void
1835ev_start (EV_P_ W w, int active) 3302ev_start (EV_P_ W w, int active)
1836{ 3303{
1837 pri_adjust (EV_A_ w); 3304 pri_adjust (EV_A_ w);
1838 w->active = active; 3305 w->active = active;
1839 ev_ref (EV_A); 3306 ev_ref (EV_A);
1840} 3307}
1841 3308
1842void inline_size 3309inline_size void
1843ev_stop (EV_P_ W w) 3310ev_stop (EV_P_ W w)
1844{ 3311{
1845 ev_unref (EV_A); 3312 ev_unref (EV_A);
1846 w->active = 0; 3313 w->active = 0;
1847} 3314}
1848 3315
1849/*****************************************************************************/ 3316/*****************************************************************************/
1850 3317
1851void noinline 3318void noinline
1852ev_io_start (EV_P_ ev_io *w) 3319ev_io_start (EV_P_ ev_io *w) EV_THROW
1853{ 3320{
1854 int fd = w->fd; 3321 int fd = w->fd;
1855 3322
1856 if (expect_false (ev_is_active (w))) 3323 if (expect_false (ev_is_active (w)))
1857 return; 3324 return;
1858 3325
1859 assert (("ev_io_start called with negative fd", fd >= 0)); 3326 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3327 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3328
3329 EV_FREQUENT_CHECK;
1860 3330
1861 ev_start (EV_A_ (W)w, 1); 3331 ev_start (EV_A_ (W)w, 1);
1862 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3332 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1863 wlist_add (&anfds[fd].head, (WL)w); 3333 wlist_add (&anfds[fd].head, (WL)w);
1864 3334
3335 /* common bug, apparently */
3336 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3337
1865 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3338 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1866 w->events &= ~EV_IOFDSET; 3339 w->events &= ~EV__IOFDSET;
3340
3341 EV_FREQUENT_CHECK;
1867} 3342}
1868 3343
1869void noinline 3344void noinline
1870ev_io_stop (EV_P_ ev_io *w) 3345ev_io_stop (EV_P_ ev_io *w) EV_THROW
1871{ 3346{
1872 clear_pending (EV_A_ (W)w); 3347 clear_pending (EV_A_ (W)w);
1873 if (expect_false (!ev_is_active (w))) 3348 if (expect_false (!ev_is_active (w)))
1874 return; 3349 return;
1875 3350
1876 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3351 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3352
3353 EV_FREQUENT_CHECK;
1877 3354
1878 wlist_del (&anfds[w->fd].head, (WL)w); 3355 wlist_del (&anfds[w->fd].head, (WL)w);
1879 ev_stop (EV_A_ (W)w); 3356 ev_stop (EV_A_ (W)w);
1880 3357
1881 fd_change (EV_A_ w->fd, 1); 3358 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3359
3360 EV_FREQUENT_CHECK;
1882} 3361}
1883 3362
1884void noinline 3363void noinline
1885ev_timer_start (EV_P_ ev_timer *w) 3364ev_timer_start (EV_P_ ev_timer *w) EV_THROW
1886{ 3365{
1887 if (expect_false (ev_is_active (w))) 3366 if (expect_false (ev_is_active (w)))
1888 return; 3367 return;
1889 3368
1890 ev_at (w) += mn_now; 3369 ev_at (w) += mn_now;
1891 3370
1892 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3371 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1893 3372
3373 EV_FREQUENT_CHECK;
3374
3375 ++timercnt;
1894 ev_start (EV_A_ (W)w, ++timercnt); 3376 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1895 array_needsize (WT, timers, timermax, timercnt + 1, EMPTY2); 3377 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1896 timers [timercnt] = (WT)w; 3378 ANHE_w (timers [ev_active (w)]) = (WT)w;
3379 ANHE_at_cache (timers [ev_active (w)]);
1897 upheap (timers, timercnt); 3380 upheap (timers, ev_active (w));
1898 3381
3382 EV_FREQUENT_CHECK;
3383
1899 /*assert (("internal timer heap corruption", timers [((W)w)->active] == w));*/ 3384 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1900} 3385}
1901 3386
1902void noinline 3387void noinline
1903ev_timer_stop (EV_P_ ev_timer *w) 3388ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
1904{ 3389{
1905 clear_pending (EV_A_ (W)w); 3390 clear_pending (EV_A_ (W)w);
1906 if (expect_false (!ev_is_active (w))) 3391 if (expect_false (!ev_is_active (w)))
1907 return; 3392 return;
1908 3393
1909 assert (("internal timer heap corruption", timers [((W)w)->active] == (WT)w)); 3394 EV_FREQUENT_CHECK;
1910 3395
1911 { 3396 {
1912 int active = ((W)w)->active; 3397 int active = ev_active (w);
1913 3398
3399 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3400
3401 --timercnt;
3402
1914 if (expect_true (active < timercnt)) 3403 if (expect_true (active < timercnt + HEAP0))
1915 { 3404 {
1916 timers [active] = timers [timercnt]; 3405 timers [active] = timers [timercnt + HEAP0];
1917 adjustheap (timers, timercnt, active); 3406 adjustheap (timers, timercnt, active);
1918 } 3407 }
1919
1920 --timercnt;
1921 } 3408 }
1922 3409
1923 ev_at (w) -= mn_now; 3410 ev_at (w) -= mn_now;
1924 3411
1925 ev_stop (EV_A_ (W)w); 3412 ev_stop (EV_A_ (W)w);
3413
3414 EV_FREQUENT_CHECK;
1926} 3415}
1927 3416
1928void noinline 3417void noinline
1929ev_timer_again (EV_P_ ev_timer *w) 3418ev_timer_again (EV_P_ ev_timer *w) EV_THROW
1930{ 3419{
3420 EV_FREQUENT_CHECK;
3421
3422 clear_pending (EV_A_ (W)w);
3423
1931 if (ev_is_active (w)) 3424 if (ev_is_active (w))
1932 { 3425 {
1933 if (w->repeat) 3426 if (w->repeat)
1934 { 3427 {
1935 ev_at (w) = mn_now + w->repeat; 3428 ev_at (w) = mn_now + w->repeat;
3429 ANHE_at_cache (timers [ev_active (w)]);
1936 adjustheap (timers, timercnt, ((W)w)->active); 3430 adjustheap (timers, timercnt, ev_active (w));
1937 } 3431 }
1938 else 3432 else
1939 ev_timer_stop (EV_A_ w); 3433 ev_timer_stop (EV_A_ w);
1940 } 3434 }
1941 else if (w->repeat) 3435 else if (w->repeat)
1942 { 3436 {
1943 w->at = w->repeat; 3437 ev_at (w) = w->repeat;
1944 ev_timer_start (EV_A_ w); 3438 ev_timer_start (EV_A_ w);
1945 } 3439 }
3440
3441 EV_FREQUENT_CHECK;
3442}
3443
3444ev_tstamp
3445ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3446{
3447 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1946} 3448}
1947 3449
1948#if EV_PERIODIC_ENABLE 3450#if EV_PERIODIC_ENABLE
1949void noinline 3451void noinline
1950ev_periodic_start (EV_P_ ev_periodic *w) 3452ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
1951{ 3453{
1952 if (expect_false (ev_is_active (w))) 3454 if (expect_false (ev_is_active (w)))
1953 return; 3455 return;
1954 3456
1955 if (w->reschedule_cb) 3457 if (w->reschedule_cb)
1956 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3458 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1957 else if (w->interval) 3459 else if (w->interval)
1958 { 3460 {
1959 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3461 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1960 /* this formula differs from the one in periodic_reify because we do not always round up */ 3462 periodic_recalc (EV_A_ w);
1961 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1962 } 3463 }
1963 else 3464 else
1964 ev_at (w) = w->offset; 3465 ev_at (w) = w->offset;
1965 3466
3467 EV_FREQUENT_CHECK;
3468
3469 ++periodiccnt;
1966 ev_start (EV_A_ (W)w, ++periodiccnt); 3470 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1967 array_needsize (WT, periodics, periodicmax, periodiccnt + 1, EMPTY2); 3471 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1968 periodics [periodiccnt] = (WT)w; 3472 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1969 upheap (periodics, periodiccnt); 3473 ANHE_at_cache (periodics [ev_active (w)]);
3474 upheap (periodics, ev_active (w));
1970 3475
3476 EV_FREQUENT_CHECK;
3477
1971 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 3478 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1972} 3479}
1973 3480
1974void noinline 3481void noinline
1975ev_periodic_stop (EV_P_ ev_periodic *w) 3482ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
1976{ 3483{
1977 clear_pending (EV_A_ (W)w); 3484 clear_pending (EV_A_ (W)w);
1978 if (expect_false (!ev_is_active (w))) 3485 if (expect_false (!ev_is_active (w)))
1979 return; 3486 return;
1980 3487
1981 assert (("internal periodic heap corruption", periodics [((W)w)->active] == (WT)w)); 3488 EV_FREQUENT_CHECK;
1982 3489
1983 { 3490 {
1984 int active = ((W)w)->active; 3491 int active = ev_active (w);
1985 3492
3493 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3494
3495 --periodiccnt;
3496
1986 if (expect_true (active < periodiccnt)) 3497 if (expect_true (active < periodiccnt + HEAP0))
1987 { 3498 {
1988 periodics [active] = periodics [periodiccnt]; 3499 periodics [active] = periodics [periodiccnt + HEAP0];
1989 adjustheap (periodics, periodiccnt, active); 3500 adjustheap (periodics, periodiccnt, active);
1990 } 3501 }
1991
1992 --periodiccnt;
1993 } 3502 }
1994 3503
1995 ev_stop (EV_A_ (W)w); 3504 ev_stop (EV_A_ (W)w);
3505
3506 EV_FREQUENT_CHECK;
1996} 3507}
1997 3508
1998void noinline 3509void noinline
1999ev_periodic_again (EV_P_ ev_periodic *w) 3510ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
2000{ 3511{
2001 /* TODO: use adjustheap and recalculation */ 3512 /* TODO: use adjustheap and recalculation */
2002 ev_periodic_stop (EV_A_ w); 3513 ev_periodic_stop (EV_A_ w);
2003 ev_periodic_start (EV_A_ w); 3514 ev_periodic_start (EV_A_ w);
2004} 3515}
2006 3517
2007#ifndef SA_RESTART 3518#ifndef SA_RESTART
2008# define SA_RESTART 0 3519# define SA_RESTART 0
2009#endif 3520#endif
2010 3521
3522#if EV_SIGNAL_ENABLE
3523
2011void noinline 3524void noinline
2012ev_signal_start (EV_P_ ev_signal *w) 3525ev_signal_start (EV_P_ ev_signal *w) EV_THROW
2013{ 3526{
2014#if EV_MULTIPLICITY
2015 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2016#endif
2017 if (expect_false (ev_is_active (w))) 3527 if (expect_false (ev_is_active (w)))
2018 return; 3528 return;
2019 3529
2020 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3530 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2021 3531
2022 evpipe_init (EV_A); 3532#if EV_MULTIPLICITY
3533 assert (("libev: a signal must not be attached to two different loops",
3534 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2023 3535
3536 signals [w->signum - 1].loop = EV_A;
3537#endif
3538
3539 EV_FREQUENT_CHECK;
3540
3541#if EV_USE_SIGNALFD
3542 if (sigfd == -2)
2024 { 3543 {
2025#ifndef _WIN32 3544 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2026 sigset_t full, prev; 3545 if (sigfd < 0 && errno == EINVAL)
2027 sigfillset (&full); 3546 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2028 sigprocmask (SIG_SETMASK, &full, &prev);
2029#endif
2030 3547
2031 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3548 if (sigfd >= 0)
3549 {
3550 fd_intern (sigfd); /* doing it twice will not hurt */
2032 3551
2033#ifndef _WIN32 3552 sigemptyset (&sigfd_set);
2034 sigprocmask (SIG_SETMASK, &prev, 0); 3553
2035#endif 3554 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3555 ev_set_priority (&sigfd_w, EV_MAXPRI);
3556 ev_io_start (EV_A_ &sigfd_w);
3557 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3558 }
2036 } 3559 }
3560
3561 if (sigfd >= 0)
3562 {
3563 /* TODO: check .head */
3564 sigaddset (&sigfd_set, w->signum);
3565 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3566
3567 signalfd (sigfd, &sigfd_set, 0);
3568 }
3569#endif
2037 3570
2038 ev_start (EV_A_ (W)w, 1); 3571 ev_start (EV_A_ (W)w, 1);
2039 wlist_add (&signals [w->signum - 1].head, (WL)w); 3572 wlist_add (&signals [w->signum - 1].head, (WL)w);
2040 3573
2041 if (!((WL)w)->next) 3574 if (!((WL)w)->next)
3575# if EV_USE_SIGNALFD
3576 if (sigfd < 0) /*TODO*/
3577# endif
2042 { 3578 {
2043#if _WIN32 3579# ifdef _WIN32
3580 evpipe_init (EV_A);
3581
2044 signal (w->signum, ev_sighandler); 3582 signal (w->signum, ev_sighandler);
2045#else 3583# else
2046 struct sigaction sa; 3584 struct sigaction sa;
3585
3586 evpipe_init (EV_A);
3587
2047 sa.sa_handler = ev_sighandler; 3588 sa.sa_handler = ev_sighandler;
2048 sigfillset (&sa.sa_mask); 3589 sigfillset (&sa.sa_mask);
2049 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3590 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2050 sigaction (w->signum, &sa, 0); 3591 sigaction (w->signum, &sa, 0);
3592
3593 if (origflags & EVFLAG_NOSIGMASK)
3594 {
3595 sigemptyset (&sa.sa_mask);
3596 sigaddset (&sa.sa_mask, w->signum);
3597 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3598 }
2051#endif 3599#endif
2052 } 3600 }
3601
3602 EV_FREQUENT_CHECK;
2053} 3603}
2054 3604
2055void noinline 3605void noinline
2056ev_signal_stop (EV_P_ ev_signal *w) 3606ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
2057{ 3607{
2058 clear_pending (EV_A_ (W)w); 3608 clear_pending (EV_A_ (W)w);
2059 if (expect_false (!ev_is_active (w))) 3609 if (expect_false (!ev_is_active (w)))
2060 return; 3610 return;
2061 3611
3612 EV_FREQUENT_CHECK;
3613
2062 wlist_del (&signals [w->signum - 1].head, (WL)w); 3614 wlist_del (&signals [w->signum - 1].head, (WL)w);
2063 ev_stop (EV_A_ (W)w); 3615 ev_stop (EV_A_ (W)w);
2064 3616
2065 if (!signals [w->signum - 1].head) 3617 if (!signals [w->signum - 1].head)
3618 {
3619#if EV_MULTIPLICITY
3620 signals [w->signum - 1].loop = 0; /* unattach from signal */
3621#endif
3622#if EV_USE_SIGNALFD
3623 if (sigfd >= 0)
3624 {
3625 sigset_t ss;
3626
3627 sigemptyset (&ss);
3628 sigaddset (&ss, w->signum);
3629 sigdelset (&sigfd_set, w->signum);
3630
3631 signalfd (sigfd, &sigfd_set, 0);
3632 sigprocmask (SIG_UNBLOCK, &ss, 0);
3633 }
3634 else
3635#endif
2066 signal (w->signum, SIG_DFL); 3636 signal (w->signum, SIG_DFL);
3637 }
3638
3639 EV_FREQUENT_CHECK;
2067} 3640}
3641
3642#endif
3643
3644#if EV_CHILD_ENABLE
2068 3645
2069void 3646void
2070ev_child_start (EV_P_ ev_child *w) 3647ev_child_start (EV_P_ ev_child *w) EV_THROW
2071{ 3648{
2072#if EV_MULTIPLICITY 3649#if EV_MULTIPLICITY
2073 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3650 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2074#endif 3651#endif
2075 if (expect_false (ev_is_active (w))) 3652 if (expect_false (ev_is_active (w)))
2076 return; 3653 return;
2077 3654
3655 EV_FREQUENT_CHECK;
3656
2078 ev_start (EV_A_ (W)w, 1); 3657 ev_start (EV_A_ (W)w, 1);
2079 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3658 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3659
3660 EV_FREQUENT_CHECK;
2080} 3661}
2081 3662
2082void 3663void
2083ev_child_stop (EV_P_ ev_child *w) 3664ev_child_stop (EV_P_ ev_child *w) EV_THROW
2084{ 3665{
2085 clear_pending (EV_A_ (W)w); 3666 clear_pending (EV_A_ (W)w);
2086 if (expect_false (!ev_is_active (w))) 3667 if (expect_false (!ev_is_active (w)))
2087 return; 3668 return;
2088 3669
3670 EV_FREQUENT_CHECK;
3671
2089 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3672 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2090 ev_stop (EV_A_ (W)w); 3673 ev_stop (EV_A_ (W)w);
3674
3675 EV_FREQUENT_CHECK;
2091} 3676}
3677
3678#endif
2092 3679
2093#if EV_STAT_ENABLE 3680#if EV_STAT_ENABLE
2094 3681
2095# ifdef _WIN32 3682# ifdef _WIN32
2096# undef lstat 3683# undef lstat
2097# define lstat(a,b) _stati64 (a,b) 3684# define lstat(a,b) _stati64 (a,b)
2098# endif 3685# endif
2099 3686
2100#define DEF_STAT_INTERVAL 5.0074891 3687#define DEF_STAT_INTERVAL 5.0074891
3688#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2101#define MIN_STAT_INTERVAL 0.1074891 3689#define MIN_STAT_INTERVAL 0.1074891
2102 3690
2103static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3691static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2104 3692
2105#if EV_USE_INOTIFY 3693#if EV_USE_INOTIFY
2106# define EV_INOTIFY_BUFSIZE 8192 3694
3695/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3696# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2107 3697
2108static void noinline 3698static void noinline
2109infy_add (EV_P_ ev_stat *w) 3699infy_add (EV_P_ ev_stat *w)
2110{ 3700{
2111 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3701 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2112 3702
2113 if (w->wd < 0) 3703 if (w->wd >= 0)
3704 {
3705 struct statfs sfs;
3706
3707 /* now local changes will be tracked by inotify, but remote changes won't */
3708 /* unless the filesystem is known to be local, we therefore still poll */
3709 /* also do poll on <2.6.25, but with normal frequency */
3710
3711 if (!fs_2625)
3712 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3713 else if (!statfs (w->path, &sfs)
3714 && (sfs.f_type == 0x1373 /* devfs */
3715 || sfs.f_type == 0xEF53 /* ext2/3 */
3716 || sfs.f_type == 0x3153464a /* jfs */
3717 || sfs.f_type == 0x52654973 /* reiser3 */
3718 || sfs.f_type == 0x01021994 /* tempfs */
3719 || sfs.f_type == 0x58465342 /* xfs */))
3720 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3721 else
3722 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2114 { 3723 }
2115 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3724 else
3725 {
3726 /* can't use inotify, continue to stat */
3727 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2116 3728
2117 /* monitor some parent directory for speedup hints */ 3729 /* if path is not there, monitor some parent directory for speedup hints */
3730 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3731 /* but an efficiency issue only */
2118 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3732 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2119 { 3733 {
2120 char path [4096]; 3734 char path [4096];
2121 strcpy (path, w->path); 3735 strcpy (path, w->path);
2122 3736
2125 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3739 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2126 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3740 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2127 3741
2128 char *pend = strrchr (path, '/'); 3742 char *pend = strrchr (path, '/');
2129 3743
2130 if (!pend) 3744 if (!pend || pend == path)
2131 break; /* whoops, no '/', complain to your admin */ 3745 break;
2132 3746
2133 *pend = 0; 3747 *pend = 0;
2134 w->wd = inotify_add_watch (fs_fd, path, mask); 3748 w->wd = inotify_add_watch (fs_fd, path, mask);
2135 } 3749 }
2136 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3750 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2137 } 3751 }
2138 } 3752 }
2139 else
2140 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2141 3753
2142 if (w->wd >= 0) 3754 if (w->wd >= 0)
2143 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3755 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3756
3757 /* now re-arm timer, if required */
3758 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3759 ev_timer_again (EV_A_ &w->timer);
3760 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2144} 3761}
2145 3762
2146static void noinline 3763static void noinline
2147infy_del (EV_P_ ev_stat *w) 3764infy_del (EV_P_ ev_stat *w)
2148{ 3765{
2151 3768
2152 if (wd < 0) 3769 if (wd < 0)
2153 return; 3770 return;
2154 3771
2155 w->wd = -2; 3772 w->wd = -2;
2156 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3773 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2157 wlist_del (&fs_hash [slot].head, (WL)w); 3774 wlist_del (&fs_hash [slot].head, (WL)w);
2158 3775
2159 /* remove this watcher, if others are watching it, they will rearm */ 3776 /* remove this watcher, if others are watching it, they will rearm */
2160 inotify_rm_watch (fs_fd, wd); 3777 inotify_rm_watch (fs_fd, wd);
2161} 3778}
2162 3779
2163static void noinline 3780static void noinline
2164infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3781infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2165{ 3782{
2166 if (slot < 0) 3783 if (slot < 0)
2167 /* overflow, need to check for all hahs slots */ 3784 /* overflow, need to check for all hash slots */
2168 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3785 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2169 infy_wd (EV_A_ slot, wd, ev); 3786 infy_wd (EV_A_ slot, wd, ev);
2170 else 3787 else
2171 { 3788 {
2172 WL w_; 3789 WL w_;
2173 3790
2174 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3791 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2175 { 3792 {
2176 ev_stat *w = (ev_stat *)w_; 3793 ev_stat *w = (ev_stat *)w_;
2177 w_ = w_->next; /* lets us remove this watcher and all before it */ 3794 w_ = w_->next; /* lets us remove this watcher and all before it */
2178 3795
2179 if (w->wd == wd || wd == -1) 3796 if (w->wd == wd || wd == -1)
2180 { 3797 {
2181 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3798 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2182 { 3799 {
3800 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2183 w->wd = -1; 3801 w->wd = -1;
2184 infy_add (EV_A_ w); /* re-add, no matter what */ 3802 infy_add (EV_A_ w); /* re-add, no matter what */
2185 } 3803 }
2186 3804
2187 stat_timer_cb (EV_A_ &w->timer, 0); 3805 stat_timer_cb (EV_A_ &w->timer, 0);
2192 3810
2193static void 3811static void
2194infy_cb (EV_P_ ev_io *w, int revents) 3812infy_cb (EV_P_ ev_io *w, int revents)
2195{ 3813{
2196 char buf [EV_INOTIFY_BUFSIZE]; 3814 char buf [EV_INOTIFY_BUFSIZE];
2197 struct inotify_event *ev = (struct inotify_event *)buf;
2198 int ofs; 3815 int ofs;
2199 int len = read (fs_fd, buf, sizeof (buf)); 3816 int len = read (fs_fd, buf, sizeof (buf));
2200 3817
2201 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3818 for (ofs = 0; ofs < len; )
3819 {
3820 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2202 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3821 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3822 ofs += sizeof (struct inotify_event) + ev->len;
3823 }
2203} 3824}
2204 3825
2205void inline_size 3826inline_size void ecb_cold
3827ev_check_2625 (EV_P)
3828{
3829 /* kernels < 2.6.25 are borked
3830 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3831 */
3832 if (ev_linux_version () < 0x020619)
3833 return;
3834
3835 fs_2625 = 1;
3836}
3837
3838inline_size int
3839infy_newfd (void)
3840{
3841#if defined IN_CLOEXEC && defined IN_NONBLOCK
3842 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3843 if (fd >= 0)
3844 return fd;
3845#endif
3846 return inotify_init ();
3847}
3848
3849inline_size void
2206infy_init (EV_P) 3850infy_init (EV_P)
2207{ 3851{
2208 if (fs_fd != -2) 3852 if (fs_fd != -2)
2209 return; 3853 return;
2210 3854
3855 fs_fd = -1;
3856
3857 ev_check_2625 (EV_A);
3858
2211 fs_fd = inotify_init (); 3859 fs_fd = infy_newfd ();
2212 3860
2213 if (fs_fd >= 0) 3861 if (fs_fd >= 0)
2214 { 3862 {
3863 fd_intern (fs_fd);
2215 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3864 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2216 ev_set_priority (&fs_w, EV_MAXPRI); 3865 ev_set_priority (&fs_w, EV_MAXPRI);
2217 ev_io_start (EV_A_ &fs_w); 3866 ev_io_start (EV_A_ &fs_w);
3867 ev_unref (EV_A);
2218 } 3868 }
2219} 3869}
2220 3870
2221void inline_size 3871inline_size void
2222infy_fork (EV_P) 3872infy_fork (EV_P)
2223{ 3873{
2224 int slot; 3874 int slot;
2225 3875
2226 if (fs_fd < 0) 3876 if (fs_fd < 0)
2227 return; 3877 return;
2228 3878
3879 ev_ref (EV_A);
3880 ev_io_stop (EV_A_ &fs_w);
2229 close (fs_fd); 3881 close (fs_fd);
2230 fs_fd = inotify_init (); 3882 fs_fd = infy_newfd ();
2231 3883
3884 if (fs_fd >= 0)
3885 {
3886 fd_intern (fs_fd);
3887 ev_io_set (&fs_w, fs_fd, EV_READ);
3888 ev_io_start (EV_A_ &fs_w);
3889 ev_unref (EV_A);
3890 }
3891
2232 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3892 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2233 { 3893 {
2234 WL w_ = fs_hash [slot].head; 3894 WL w_ = fs_hash [slot].head;
2235 fs_hash [slot].head = 0; 3895 fs_hash [slot].head = 0;
2236 3896
2237 while (w_) 3897 while (w_)
2242 w->wd = -1; 3902 w->wd = -1;
2243 3903
2244 if (fs_fd >= 0) 3904 if (fs_fd >= 0)
2245 infy_add (EV_A_ w); /* re-add, no matter what */ 3905 infy_add (EV_A_ w); /* re-add, no matter what */
2246 else 3906 else
3907 {
3908 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3909 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2247 ev_timer_start (EV_A_ &w->timer); 3910 ev_timer_again (EV_A_ &w->timer);
3911 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3912 }
2248 } 3913 }
2249
2250 } 3914 }
2251} 3915}
2252 3916
3917#endif
3918
3919#ifdef _WIN32
3920# define EV_LSTAT(p,b) _stati64 (p, b)
3921#else
3922# define EV_LSTAT(p,b) lstat (p, b)
2253#endif 3923#endif
2254 3924
2255void 3925void
2256ev_stat_stat (EV_P_ ev_stat *w) 3926ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
2257{ 3927{
2258 if (lstat (w->path, &w->attr) < 0) 3928 if (lstat (w->path, &w->attr) < 0)
2259 w->attr.st_nlink = 0; 3929 w->attr.st_nlink = 0;
2260 else if (!w->attr.st_nlink) 3930 else if (!w->attr.st_nlink)
2261 w->attr.st_nlink = 1; 3931 w->attr.st_nlink = 1;
2264static void noinline 3934static void noinline
2265stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3935stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2266{ 3936{
2267 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3937 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2268 3938
2269 /* we copy this here each the time so that */ 3939 ev_statdata prev = w->attr;
2270 /* prev has the old value when the callback gets invoked */
2271 w->prev = w->attr;
2272 ev_stat_stat (EV_A_ w); 3940 ev_stat_stat (EV_A_ w);
2273 3941
2274 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3942 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2275 if ( 3943 if (
2276 w->prev.st_dev != w->attr.st_dev 3944 prev.st_dev != w->attr.st_dev
2277 || w->prev.st_ino != w->attr.st_ino 3945 || prev.st_ino != w->attr.st_ino
2278 || w->prev.st_mode != w->attr.st_mode 3946 || prev.st_mode != w->attr.st_mode
2279 || w->prev.st_nlink != w->attr.st_nlink 3947 || prev.st_nlink != w->attr.st_nlink
2280 || w->prev.st_uid != w->attr.st_uid 3948 || prev.st_uid != w->attr.st_uid
2281 || w->prev.st_gid != w->attr.st_gid 3949 || prev.st_gid != w->attr.st_gid
2282 || w->prev.st_rdev != w->attr.st_rdev 3950 || prev.st_rdev != w->attr.st_rdev
2283 || w->prev.st_size != w->attr.st_size 3951 || prev.st_size != w->attr.st_size
2284 || w->prev.st_atime != w->attr.st_atime 3952 || prev.st_atime != w->attr.st_atime
2285 || w->prev.st_mtime != w->attr.st_mtime 3953 || prev.st_mtime != w->attr.st_mtime
2286 || w->prev.st_ctime != w->attr.st_ctime 3954 || prev.st_ctime != w->attr.st_ctime
2287 ) { 3955 ) {
3956 /* we only update w->prev on actual differences */
3957 /* in case we test more often than invoke the callback, */
3958 /* to ensure that prev is always different to attr */
3959 w->prev = prev;
3960
2288 #if EV_USE_INOTIFY 3961 #if EV_USE_INOTIFY
3962 if (fs_fd >= 0)
3963 {
2289 infy_del (EV_A_ w); 3964 infy_del (EV_A_ w);
2290 infy_add (EV_A_ w); 3965 infy_add (EV_A_ w);
2291 ev_stat_stat (EV_A_ w); /* avoid race... */ 3966 ev_stat_stat (EV_A_ w); /* avoid race... */
3967 }
2292 #endif 3968 #endif
2293 3969
2294 ev_feed_event (EV_A_ w, EV_STAT); 3970 ev_feed_event (EV_A_ w, EV_STAT);
2295 } 3971 }
2296} 3972}
2297 3973
2298void 3974void
2299ev_stat_start (EV_P_ ev_stat *w) 3975ev_stat_start (EV_P_ ev_stat *w) EV_THROW
2300{ 3976{
2301 if (expect_false (ev_is_active (w))) 3977 if (expect_false (ev_is_active (w)))
2302 return; 3978 return;
2303 3979
2304 /* since we use memcmp, we need to clear any padding data etc. */
2305 memset (&w->prev, 0, sizeof (ev_statdata));
2306 memset (&w->attr, 0, sizeof (ev_statdata));
2307
2308 ev_stat_stat (EV_A_ w); 3980 ev_stat_stat (EV_A_ w);
2309 3981
3982 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2310 if (w->interval < MIN_STAT_INTERVAL) 3983 w->interval = MIN_STAT_INTERVAL;
2311 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2312 3984
2313 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3985 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2314 ev_set_priority (&w->timer, ev_priority (w)); 3986 ev_set_priority (&w->timer, ev_priority (w));
2315 3987
2316#if EV_USE_INOTIFY 3988#if EV_USE_INOTIFY
2317 infy_init (EV_A); 3989 infy_init (EV_A);
2318 3990
2319 if (fs_fd >= 0) 3991 if (fs_fd >= 0)
2320 infy_add (EV_A_ w); 3992 infy_add (EV_A_ w);
2321 else 3993 else
2322#endif 3994#endif
3995 {
2323 ev_timer_start (EV_A_ &w->timer); 3996 ev_timer_again (EV_A_ &w->timer);
3997 ev_unref (EV_A);
3998 }
2324 3999
2325 ev_start (EV_A_ (W)w, 1); 4000 ev_start (EV_A_ (W)w, 1);
4001
4002 EV_FREQUENT_CHECK;
2326} 4003}
2327 4004
2328void 4005void
2329ev_stat_stop (EV_P_ ev_stat *w) 4006ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
2330{ 4007{
2331 clear_pending (EV_A_ (W)w); 4008 clear_pending (EV_A_ (W)w);
2332 if (expect_false (!ev_is_active (w))) 4009 if (expect_false (!ev_is_active (w)))
2333 return; 4010 return;
2334 4011
4012 EV_FREQUENT_CHECK;
4013
2335#if EV_USE_INOTIFY 4014#if EV_USE_INOTIFY
2336 infy_del (EV_A_ w); 4015 infy_del (EV_A_ w);
2337#endif 4016#endif
4017
4018 if (ev_is_active (&w->timer))
4019 {
4020 ev_ref (EV_A);
2338 ev_timer_stop (EV_A_ &w->timer); 4021 ev_timer_stop (EV_A_ &w->timer);
4022 }
2339 4023
2340 ev_stop (EV_A_ (W)w); 4024 ev_stop (EV_A_ (W)w);
4025
4026 EV_FREQUENT_CHECK;
2341} 4027}
2342#endif 4028#endif
2343 4029
2344#if EV_IDLE_ENABLE 4030#if EV_IDLE_ENABLE
2345void 4031void
2346ev_idle_start (EV_P_ ev_idle *w) 4032ev_idle_start (EV_P_ ev_idle *w) EV_THROW
2347{ 4033{
2348 if (expect_false (ev_is_active (w))) 4034 if (expect_false (ev_is_active (w)))
2349 return; 4035 return;
2350 4036
2351 pri_adjust (EV_A_ (W)w); 4037 pri_adjust (EV_A_ (W)w);
4038
4039 EV_FREQUENT_CHECK;
2352 4040
2353 { 4041 {
2354 int active = ++idlecnt [ABSPRI (w)]; 4042 int active = ++idlecnt [ABSPRI (w)];
2355 4043
2356 ++idleall; 4044 ++idleall;
2357 ev_start (EV_A_ (W)w, active); 4045 ev_start (EV_A_ (W)w, active);
2358 4046
2359 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 4047 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2360 idles [ABSPRI (w)][active - 1] = w; 4048 idles [ABSPRI (w)][active - 1] = w;
2361 } 4049 }
4050
4051 EV_FREQUENT_CHECK;
2362} 4052}
2363 4053
2364void 4054void
2365ev_idle_stop (EV_P_ ev_idle *w) 4055ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
2366{ 4056{
2367 clear_pending (EV_A_ (W)w); 4057 clear_pending (EV_A_ (W)w);
2368 if (expect_false (!ev_is_active (w))) 4058 if (expect_false (!ev_is_active (w)))
2369 return; 4059 return;
2370 4060
4061 EV_FREQUENT_CHECK;
4062
2371 { 4063 {
2372 int active = ((W)w)->active; 4064 int active = ev_active (w);
2373 4065
2374 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 4066 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2375 ((W)idles [ABSPRI (w)][active - 1])->active = active; 4067 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2376 4068
2377 ev_stop (EV_A_ (W)w); 4069 ev_stop (EV_A_ (W)w);
2378 --idleall; 4070 --idleall;
2379 } 4071 }
2380}
2381#endif
2382 4072
4073 EV_FREQUENT_CHECK;
4074}
4075#endif
4076
4077#if EV_PREPARE_ENABLE
2383void 4078void
2384ev_prepare_start (EV_P_ ev_prepare *w) 4079ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
2385{ 4080{
2386 if (expect_false (ev_is_active (w))) 4081 if (expect_false (ev_is_active (w)))
2387 return; 4082 return;
4083
4084 EV_FREQUENT_CHECK;
2388 4085
2389 ev_start (EV_A_ (W)w, ++preparecnt); 4086 ev_start (EV_A_ (W)w, ++preparecnt);
2390 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 4087 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2391 prepares [preparecnt - 1] = w; 4088 prepares [preparecnt - 1] = w;
4089
4090 EV_FREQUENT_CHECK;
2392} 4091}
2393 4092
2394void 4093void
2395ev_prepare_stop (EV_P_ ev_prepare *w) 4094ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
2396{ 4095{
2397 clear_pending (EV_A_ (W)w); 4096 clear_pending (EV_A_ (W)w);
2398 if (expect_false (!ev_is_active (w))) 4097 if (expect_false (!ev_is_active (w)))
2399 return; 4098 return;
2400 4099
4100 EV_FREQUENT_CHECK;
4101
2401 { 4102 {
2402 int active = ((W)w)->active; 4103 int active = ev_active (w);
4104
2403 prepares [active - 1] = prepares [--preparecnt]; 4105 prepares [active - 1] = prepares [--preparecnt];
2404 ((W)prepares [active - 1])->active = active; 4106 ev_active (prepares [active - 1]) = active;
2405 } 4107 }
2406 4108
2407 ev_stop (EV_A_ (W)w); 4109 ev_stop (EV_A_ (W)w);
2408}
2409 4110
4111 EV_FREQUENT_CHECK;
4112}
4113#endif
4114
4115#if EV_CHECK_ENABLE
2410void 4116void
2411ev_check_start (EV_P_ ev_check *w) 4117ev_check_start (EV_P_ ev_check *w) EV_THROW
2412{ 4118{
2413 if (expect_false (ev_is_active (w))) 4119 if (expect_false (ev_is_active (w)))
2414 return; 4120 return;
4121
4122 EV_FREQUENT_CHECK;
2415 4123
2416 ev_start (EV_A_ (W)w, ++checkcnt); 4124 ev_start (EV_A_ (W)w, ++checkcnt);
2417 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 4125 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2418 checks [checkcnt - 1] = w; 4126 checks [checkcnt - 1] = w;
4127
4128 EV_FREQUENT_CHECK;
2419} 4129}
2420 4130
2421void 4131void
2422ev_check_stop (EV_P_ ev_check *w) 4132ev_check_stop (EV_P_ ev_check *w) EV_THROW
2423{ 4133{
2424 clear_pending (EV_A_ (W)w); 4134 clear_pending (EV_A_ (W)w);
2425 if (expect_false (!ev_is_active (w))) 4135 if (expect_false (!ev_is_active (w)))
2426 return; 4136 return;
2427 4137
4138 EV_FREQUENT_CHECK;
4139
2428 { 4140 {
2429 int active = ((W)w)->active; 4141 int active = ev_active (w);
4142
2430 checks [active - 1] = checks [--checkcnt]; 4143 checks [active - 1] = checks [--checkcnt];
2431 ((W)checks [active - 1])->active = active; 4144 ev_active (checks [active - 1]) = active;
2432 } 4145 }
2433 4146
2434 ev_stop (EV_A_ (W)w); 4147 ev_stop (EV_A_ (W)w);
4148
4149 EV_FREQUENT_CHECK;
2435} 4150}
4151#endif
2436 4152
2437#if EV_EMBED_ENABLE 4153#if EV_EMBED_ENABLE
2438void noinline 4154void noinline
2439ev_embed_sweep (EV_P_ ev_embed *w) 4155ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
2440{ 4156{
2441 ev_loop (w->other, EVLOOP_NONBLOCK); 4157 ev_run (w->other, EVRUN_NOWAIT);
2442} 4158}
2443 4159
2444static void 4160static void
2445embed_io_cb (EV_P_ ev_io *io, int revents) 4161embed_io_cb (EV_P_ ev_io *io, int revents)
2446{ 4162{
2447 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4163 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2448 4164
2449 if (ev_cb (w)) 4165 if (ev_cb (w))
2450 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4166 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2451 else 4167 else
2452 ev_loop (w->other, EVLOOP_NONBLOCK); 4168 ev_run (w->other, EVRUN_NOWAIT);
2453} 4169}
2454 4170
2455static void 4171static void
2456embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4172embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2457{ 4173{
2458 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4174 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2459 4175
2460 { 4176 {
2461 struct ev_loop *loop = w->other; 4177 EV_P = w->other;
2462 4178
2463 while (fdchangecnt) 4179 while (fdchangecnt)
2464 { 4180 {
2465 fd_reify (EV_A); 4181 fd_reify (EV_A);
2466 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4182 ev_run (EV_A_ EVRUN_NOWAIT);
2467 } 4183 }
2468 } 4184 }
4185}
4186
4187static void
4188embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4189{
4190 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4191
4192 ev_embed_stop (EV_A_ w);
4193
4194 {
4195 EV_P = w->other;
4196
4197 ev_loop_fork (EV_A);
4198 ev_run (EV_A_ EVRUN_NOWAIT);
4199 }
4200
4201 ev_embed_start (EV_A_ w);
2469} 4202}
2470 4203
2471#if 0 4204#if 0
2472static void 4205static void
2473embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4206embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2475 ev_idle_stop (EV_A_ idle); 4208 ev_idle_stop (EV_A_ idle);
2476} 4209}
2477#endif 4210#endif
2478 4211
2479void 4212void
2480ev_embed_start (EV_P_ ev_embed *w) 4213ev_embed_start (EV_P_ ev_embed *w) EV_THROW
2481{ 4214{
2482 if (expect_false (ev_is_active (w))) 4215 if (expect_false (ev_is_active (w)))
2483 return; 4216 return;
2484 4217
2485 { 4218 {
2486 struct ev_loop *loop = w->other; 4219 EV_P = w->other;
2487 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4220 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2488 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4221 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2489 } 4222 }
4223
4224 EV_FREQUENT_CHECK;
2490 4225
2491 ev_set_priority (&w->io, ev_priority (w)); 4226 ev_set_priority (&w->io, ev_priority (w));
2492 ev_io_start (EV_A_ &w->io); 4227 ev_io_start (EV_A_ &w->io);
2493 4228
2494 ev_prepare_init (&w->prepare, embed_prepare_cb); 4229 ev_prepare_init (&w->prepare, embed_prepare_cb);
2495 ev_set_priority (&w->prepare, EV_MINPRI); 4230 ev_set_priority (&w->prepare, EV_MINPRI);
2496 ev_prepare_start (EV_A_ &w->prepare); 4231 ev_prepare_start (EV_A_ &w->prepare);
2497 4232
4233 ev_fork_init (&w->fork, embed_fork_cb);
4234 ev_fork_start (EV_A_ &w->fork);
4235
2498 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 4236 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2499 4237
2500 ev_start (EV_A_ (W)w, 1); 4238 ev_start (EV_A_ (W)w, 1);
4239
4240 EV_FREQUENT_CHECK;
2501} 4241}
2502 4242
2503void 4243void
2504ev_embed_stop (EV_P_ ev_embed *w) 4244ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
2505{ 4245{
2506 clear_pending (EV_A_ (W)w); 4246 clear_pending (EV_A_ (W)w);
2507 if (expect_false (!ev_is_active (w))) 4247 if (expect_false (!ev_is_active (w)))
2508 return; 4248 return;
2509 4249
4250 EV_FREQUENT_CHECK;
4251
2510 ev_io_stop (EV_A_ &w->io); 4252 ev_io_stop (EV_A_ &w->io);
2511 ev_prepare_stop (EV_A_ &w->prepare); 4253 ev_prepare_stop (EV_A_ &w->prepare);
4254 ev_fork_stop (EV_A_ &w->fork);
2512 4255
2513 ev_stop (EV_A_ (W)w); 4256 ev_stop (EV_A_ (W)w);
4257
4258 EV_FREQUENT_CHECK;
2514} 4259}
2515#endif 4260#endif
2516 4261
2517#if EV_FORK_ENABLE 4262#if EV_FORK_ENABLE
2518void 4263void
2519ev_fork_start (EV_P_ ev_fork *w) 4264ev_fork_start (EV_P_ ev_fork *w) EV_THROW
2520{ 4265{
2521 if (expect_false (ev_is_active (w))) 4266 if (expect_false (ev_is_active (w)))
2522 return; 4267 return;
4268
4269 EV_FREQUENT_CHECK;
2523 4270
2524 ev_start (EV_A_ (W)w, ++forkcnt); 4271 ev_start (EV_A_ (W)w, ++forkcnt);
2525 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 4272 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2526 forks [forkcnt - 1] = w; 4273 forks [forkcnt - 1] = w;
4274
4275 EV_FREQUENT_CHECK;
2527} 4276}
2528 4277
2529void 4278void
2530ev_fork_stop (EV_P_ ev_fork *w) 4279ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
2531{ 4280{
2532 clear_pending (EV_A_ (W)w); 4281 clear_pending (EV_A_ (W)w);
2533 if (expect_false (!ev_is_active (w))) 4282 if (expect_false (!ev_is_active (w)))
2534 return; 4283 return;
2535 4284
4285 EV_FREQUENT_CHECK;
4286
2536 { 4287 {
2537 int active = ((W)w)->active; 4288 int active = ev_active (w);
4289
2538 forks [active - 1] = forks [--forkcnt]; 4290 forks [active - 1] = forks [--forkcnt];
2539 ((W)forks [active - 1])->active = active; 4291 ev_active (forks [active - 1]) = active;
2540 } 4292 }
2541 4293
2542 ev_stop (EV_A_ (W)w); 4294 ev_stop (EV_A_ (W)w);
4295
4296 EV_FREQUENT_CHECK;
4297}
4298#endif
4299
4300#if EV_CLEANUP_ENABLE
4301void
4302ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4303{
4304 if (expect_false (ev_is_active (w)))
4305 return;
4306
4307 EV_FREQUENT_CHECK;
4308
4309 ev_start (EV_A_ (W)w, ++cleanupcnt);
4310 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4311 cleanups [cleanupcnt - 1] = w;
4312
4313 /* cleanup watchers should never keep a refcount on the loop */
4314 ev_unref (EV_A);
4315 EV_FREQUENT_CHECK;
4316}
4317
4318void
4319ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4320{
4321 clear_pending (EV_A_ (W)w);
4322 if (expect_false (!ev_is_active (w)))
4323 return;
4324
4325 EV_FREQUENT_CHECK;
4326 ev_ref (EV_A);
4327
4328 {
4329 int active = ev_active (w);
4330
4331 cleanups [active - 1] = cleanups [--cleanupcnt];
4332 ev_active (cleanups [active - 1]) = active;
4333 }
4334
4335 ev_stop (EV_A_ (W)w);
4336
4337 EV_FREQUENT_CHECK;
2543} 4338}
2544#endif 4339#endif
2545 4340
2546#if EV_ASYNC_ENABLE 4341#if EV_ASYNC_ENABLE
2547void 4342void
2548ev_async_start (EV_P_ ev_async *w) 4343ev_async_start (EV_P_ ev_async *w) EV_THROW
2549{ 4344{
2550 if (expect_false (ev_is_active (w))) 4345 if (expect_false (ev_is_active (w)))
2551 return; 4346 return;
2552 4347
4348 w->sent = 0;
4349
2553 evpipe_init (EV_A); 4350 evpipe_init (EV_A);
4351
4352 EV_FREQUENT_CHECK;
2554 4353
2555 ev_start (EV_A_ (W)w, ++asynccnt); 4354 ev_start (EV_A_ (W)w, ++asynccnt);
2556 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 4355 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2557 asyncs [asynccnt - 1] = w; 4356 asyncs [asynccnt - 1] = w;
4357
4358 EV_FREQUENT_CHECK;
2558} 4359}
2559 4360
2560void 4361void
2561ev_async_stop (EV_P_ ev_async *w) 4362ev_async_stop (EV_P_ ev_async *w) EV_THROW
2562{ 4363{
2563 clear_pending (EV_A_ (W)w); 4364 clear_pending (EV_A_ (W)w);
2564 if (expect_false (!ev_is_active (w))) 4365 if (expect_false (!ev_is_active (w)))
2565 return; 4366 return;
2566 4367
4368 EV_FREQUENT_CHECK;
4369
2567 { 4370 {
2568 int active = ((W)w)->active; 4371 int active = ev_active (w);
4372
2569 asyncs [active - 1] = asyncs [--asynccnt]; 4373 asyncs [active - 1] = asyncs [--asynccnt];
2570 ((W)asyncs [active - 1])->active = active; 4374 ev_active (asyncs [active - 1]) = active;
2571 } 4375 }
2572 4376
2573 ev_stop (EV_A_ (W)w); 4377 ev_stop (EV_A_ (W)w);
4378
4379 EV_FREQUENT_CHECK;
2574} 4380}
2575 4381
2576void 4382void
2577ev_async_send (EV_P_ ev_async *w) 4383ev_async_send (EV_P_ ev_async *w) EV_THROW
2578{ 4384{
2579 w->sent = 1; 4385 w->sent = 1;
2580 evpipe_write (EV_A_ &gotasync); 4386 evpipe_write (EV_A_ &async_pending);
2581} 4387}
2582#endif 4388#endif
2583 4389
2584/*****************************************************************************/ 4390/*****************************************************************************/
2585 4391
2595once_cb (EV_P_ struct ev_once *once, int revents) 4401once_cb (EV_P_ struct ev_once *once, int revents)
2596{ 4402{
2597 void (*cb)(int revents, void *arg) = once->cb; 4403 void (*cb)(int revents, void *arg) = once->cb;
2598 void *arg = once->arg; 4404 void *arg = once->arg;
2599 4405
2600 ev_io_stop (EV_A_ &once->io); 4406 ev_io_stop (EV_A_ &once->io);
2601 ev_timer_stop (EV_A_ &once->to); 4407 ev_timer_stop (EV_A_ &once->to);
2602 ev_free (once); 4408 ev_free (once);
2603 4409
2604 cb (revents, arg); 4410 cb (revents, arg);
2605} 4411}
2606 4412
2607static void 4413static void
2608once_cb_io (EV_P_ ev_io *w, int revents) 4414once_cb_io (EV_P_ ev_io *w, int revents)
2609{ 4415{
2610 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4416 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4417
4418 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2611} 4419}
2612 4420
2613static void 4421static void
2614once_cb_to (EV_P_ ev_timer *w, int revents) 4422once_cb_to (EV_P_ ev_timer *w, int revents)
2615{ 4423{
2616 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4424 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4425
4426 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2617} 4427}
2618 4428
2619void 4429void
2620ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4430ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
2621{ 4431{
2622 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4432 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2623 4433
2624 if (expect_false (!once)) 4434 if (expect_false (!once))
2625 { 4435 {
2626 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4436 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2627 return; 4437 return;
2628 } 4438 }
2629 4439
2630 once->cb = cb; 4440 once->cb = cb;
2631 once->arg = arg; 4441 once->arg = arg;
2643 ev_timer_set (&once->to, timeout, 0.); 4453 ev_timer_set (&once->to, timeout, 0.);
2644 ev_timer_start (EV_A_ &once->to); 4454 ev_timer_start (EV_A_ &once->to);
2645 } 4455 }
2646} 4456}
2647 4457
4458/*****************************************************************************/
4459
4460#if EV_WALK_ENABLE
4461void ecb_cold
4462ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4463{
4464 int i, j;
4465 ev_watcher_list *wl, *wn;
4466
4467 if (types & (EV_IO | EV_EMBED))
4468 for (i = 0; i < anfdmax; ++i)
4469 for (wl = anfds [i].head; wl; )
4470 {
4471 wn = wl->next;
4472
4473#if EV_EMBED_ENABLE
4474 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4475 {
4476 if (types & EV_EMBED)
4477 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4478 }
4479 else
4480#endif
4481#if EV_USE_INOTIFY
4482 if (ev_cb ((ev_io *)wl) == infy_cb)
4483 ;
4484 else
4485#endif
4486 if ((ev_io *)wl != &pipe_w)
4487 if (types & EV_IO)
4488 cb (EV_A_ EV_IO, wl);
4489
4490 wl = wn;
4491 }
4492
4493 if (types & (EV_TIMER | EV_STAT))
4494 for (i = timercnt + HEAP0; i-- > HEAP0; )
4495#if EV_STAT_ENABLE
4496 /*TODO: timer is not always active*/
4497 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4498 {
4499 if (types & EV_STAT)
4500 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4501 }
4502 else
4503#endif
4504 if (types & EV_TIMER)
4505 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4506
4507#if EV_PERIODIC_ENABLE
4508 if (types & EV_PERIODIC)
4509 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4510 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4511#endif
4512
4513#if EV_IDLE_ENABLE
4514 if (types & EV_IDLE)
4515 for (j = NUMPRI; j--; )
4516 for (i = idlecnt [j]; i--; )
4517 cb (EV_A_ EV_IDLE, idles [j][i]);
4518#endif
4519
4520#if EV_FORK_ENABLE
4521 if (types & EV_FORK)
4522 for (i = forkcnt; i--; )
4523 if (ev_cb (forks [i]) != embed_fork_cb)
4524 cb (EV_A_ EV_FORK, forks [i]);
4525#endif
4526
4527#if EV_ASYNC_ENABLE
4528 if (types & EV_ASYNC)
4529 for (i = asynccnt; i--; )
4530 cb (EV_A_ EV_ASYNC, asyncs [i]);
4531#endif
4532
4533#if EV_PREPARE_ENABLE
4534 if (types & EV_PREPARE)
4535 for (i = preparecnt; i--; )
4536# if EV_EMBED_ENABLE
4537 if (ev_cb (prepares [i]) != embed_prepare_cb)
4538# endif
4539 cb (EV_A_ EV_PREPARE, prepares [i]);
4540#endif
4541
4542#if EV_CHECK_ENABLE
4543 if (types & EV_CHECK)
4544 for (i = checkcnt; i--; )
4545 cb (EV_A_ EV_CHECK, checks [i]);
4546#endif
4547
4548#if EV_SIGNAL_ENABLE
4549 if (types & EV_SIGNAL)
4550 for (i = 0; i < EV_NSIG - 1; ++i)
4551 for (wl = signals [i].head; wl; )
4552 {
4553 wn = wl->next;
4554 cb (EV_A_ EV_SIGNAL, wl);
4555 wl = wn;
4556 }
4557#endif
4558
4559#if EV_CHILD_ENABLE
4560 if (types & EV_CHILD)
4561 for (i = (EV_PID_HASHSIZE); i--; )
4562 for (wl = childs [i]; wl; )
4563 {
4564 wn = wl->next;
4565 cb (EV_A_ EV_CHILD, wl);
4566 wl = wn;
4567 }
4568#endif
4569/* EV_STAT 0x00001000 /* stat data changed */
4570/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4571}
4572#endif
4573
2648#if EV_MULTIPLICITY 4574#if EV_MULTIPLICITY
2649 #include "ev_wrap.h" 4575 #include "ev_wrap.h"
2650#endif 4576#endif
2651 4577
2652#ifdef __cplusplus
2653}
2654#endif
2655

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines