ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.99 by root, Sun Nov 11 02:26:47 2007 UTC vs.
Revision 1.445 by root, Sat Jun 2 11:15:29 2012 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
37# include "config.h" 45# include "config.h"
46# endif
47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
38 67
39# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
42# endif 71# endif
43# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
74# endif
75# else
76# ifndef EV_USE_MONOTONIC
77# define EV_USE_MONOTONIC 0
78# endif
79# ifndef EV_USE_REALTIME
80# define EV_USE_REALTIME 0
45# endif 81# endif
46# endif 82# endif
47 83
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 84# if HAVE_NANOSLEEP
49# define EV_USE_SELECT 1 85# ifndef EV_USE_NANOSLEEP
86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
50# endif 91# endif
51 92
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
96# endif
97# else
98# undef EV_USE_SELECT
53# define EV_USE_POLL 1 99# define EV_USE_SELECT 0
54# endif 100# endif
55 101
56# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
57# define EV_USE_EPOLL 1 108# define EV_USE_POLL 0
58# endif 109# endif
59 110
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
61# define EV_USE_KQUEUE 1 112# ifndef EV_USE_EPOLL
113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
62# endif 118# endif
63 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121# ifndef EV_USE_KQUEUE
122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
64#endif 127# endif
128
129# if HAVE_PORT_H && HAVE_PORT_CREATE
130# ifndef EV_USE_PORT
131# define EV_USE_PORT EV_FEATURE_BACKENDS
132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
136# endif
65 137
66#include <math.h> 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139# ifndef EV_USE_INOTIFY
140# define EV_USE_INOTIFY EV_FEATURE_OS
141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
145# endif
146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
67#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
68#include <fcntl.h> 169#include <fcntl.h>
69#include <stddef.h> 170#include <stddef.h>
70 171
71#include <stdio.h> 172#include <stdio.h>
72 173
73#include <assert.h> 174#include <assert.h>
74#include <errno.h> 175#include <errno.h>
75#include <sys/types.h> 176#include <sys/types.h>
76#include <time.h> 177#include <time.h>
178#include <limits.h>
77 179
78#include <signal.h> 180#include <signal.h>
79
80#ifndef WIN32
81# include <unistd.h>
82# include <sys/time.h>
83# include <sys/wait.h>
84#endif
85/**/
86
87#ifndef EV_USE_MONOTONIC
88# define EV_USE_MONOTONIC 1
89#endif
90
91#ifndef EV_USE_SELECT
92# define EV_USE_SELECT 1
93#endif
94
95#ifndef EV_USE_POLL
96# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
97#endif
98
99#ifndef EV_USE_EPOLL
100# define EV_USE_EPOLL 0
101#endif
102
103#ifndef EV_USE_KQUEUE
104# define EV_USE_KQUEUE 0
105#endif
106
107#ifndef EV_USE_WIN32
108# ifdef WIN32
109# define EV_USE_WIN32 0 /* it does not exist, use select */
110# undef EV_USE_SELECT
111# define EV_USE_SELECT 1
112# else
113# define EV_USE_WIN32 0
114# endif
115#endif
116
117#ifndef EV_USE_REALTIME
118# define EV_USE_REALTIME 1
119#endif
120
121/**/
122
123#ifndef CLOCK_MONOTONIC
124# undef EV_USE_MONOTONIC
125# define EV_USE_MONOTONIC 0
126#endif
127
128#ifndef CLOCK_REALTIME
129# undef EV_USE_REALTIME
130# define EV_USE_REALTIME 0
131#endif
132
133/**/
134
135#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
136#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
137#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
138/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
139 181
140#ifdef EV_H 182#ifdef EV_H
141# include EV_H 183# include EV_H
142#else 184#else
143# include "ev.h" 185# include "ev.h"
144#endif 186#endif
145 187
146#if __GNUC__ >= 3 188#if EV_NO_THREADS
147# define expect(expr,value) __builtin_expect ((expr),(value)) 189# undef EV_NO_SMP
148# define inline inline 190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
197#endif
198
199#ifndef _WIN32
200# include <sys/time.h>
201# include <sys/wait.h>
202# include <unistd.h>
149#else 203#else
150# define expect(expr,value) (expr) 204# include <io.h>
151# define inline static 205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
207# include <windows.h>
208# ifndef EV_SELECT_IS_WINSOCKET
209# define EV_SELECT_IS_WINSOCKET 1
152#endif 210# endif
211# undef EV_AVOID_STDIO
212#endif
153 213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
221
222/* this block tries to deduce configuration from header-defined symbols and defaults */
223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# error "unable to find value for NSIG, please report"
247/* to make it compile regardless, just remove the above line, */
248/* but consider reporting it, too! :) */
249# define EV_NSIG 65
250#endif
251
252#ifndef EV_USE_FLOOR
253# define EV_USE_FLOOR 0
254#endif
255
256#ifndef EV_USE_CLOCK_SYSCALL
257# if __linux && __GLIBC__ >= 2
258# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
259# else
260# define EV_USE_CLOCK_SYSCALL 0
261# endif
262#endif
263
264#ifndef EV_USE_MONOTONIC
265# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
266# define EV_USE_MONOTONIC EV_FEATURE_OS
267# else
268# define EV_USE_MONOTONIC 0
269# endif
270#endif
271
272#ifndef EV_USE_REALTIME
273# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
274#endif
275
276#ifndef EV_USE_NANOSLEEP
277# if _POSIX_C_SOURCE >= 199309L
278# define EV_USE_NANOSLEEP EV_FEATURE_OS
279# else
280# define EV_USE_NANOSLEEP 0
281# endif
282#endif
283
284#ifndef EV_USE_SELECT
285# define EV_USE_SELECT EV_FEATURE_BACKENDS
286#endif
287
288#ifndef EV_USE_POLL
289# ifdef _WIN32
290# define EV_USE_POLL 0
291# else
292# define EV_USE_POLL EV_FEATURE_BACKENDS
293# endif
294#endif
295
296#ifndef EV_USE_EPOLL
297# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
298# define EV_USE_EPOLL EV_FEATURE_BACKENDS
299# else
300# define EV_USE_EPOLL 0
301# endif
302#endif
303
304#ifndef EV_USE_KQUEUE
305# define EV_USE_KQUEUE 0
306#endif
307
308#ifndef EV_USE_PORT
309# define EV_USE_PORT 0
310#endif
311
312#ifndef EV_USE_INOTIFY
313# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
314# define EV_USE_INOTIFY EV_FEATURE_OS
315# else
316# define EV_USE_INOTIFY 0
317# endif
318#endif
319
320#ifndef EV_PID_HASHSIZE
321# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
322#endif
323
324#ifndef EV_INOTIFY_HASHSIZE
325# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
326#endif
327
328#ifndef EV_USE_EVENTFD
329# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
330# define EV_USE_EVENTFD EV_FEATURE_OS
331# else
332# define EV_USE_EVENTFD 0
333# endif
334#endif
335
336#ifndef EV_USE_SIGNALFD
337# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
338# define EV_USE_SIGNALFD EV_FEATURE_OS
339# else
340# define EV_USE_SIGNALFD 0
341# endif
342#endif
343
344#if 0 /* debugging */
345# define EV_VERIFY 3
346# define EV_USE_4HEAP 1
347# define EV_HEAP_CACHE_AT 1
348#endif
349
350#ifndef EV_VERIFY
351# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
352#endif
353
354#ifndef EV_USE_4HEAP
355# define EV_USE_4HEAP EV_FEATURE_DATA
356#endif
357
358#ifndef EV_HEAP_CACHE_AT
359# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
360#endif
361
362/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
363/* which makes programs even slower. might work on other unices, too. */
364#if EV_USE_CLOCK_SYSCALL
365# include <sys/syscall.h>
366# ifdef SYS_clock_gettime
367# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
368# undef EV_USE_MONOTONIC
369# define EV_USE_MONOTONIC 1
370# else
371# undef EV_USE_CLOCK_SYSCALL
372# define EV_USE_CLOCK_SYSCALL 0
373# endif
374#endif
375
376/* this block fixes any misconfiguration where we know we run into trouble otherwise */
377
378#ifdef _AIX
379/* AIX has a completely broken poll.h header */
380# undef EV_USE_POLL
381# define EV_USE_POLL 0
382#endif
383
384#ifndef CLOCK_MONOTONIC
385# undef EV_USE_MONOTONIC
386# define EV_USE_MONOTONIC 0
387#endif
388
389#ifndef CLOCK_REALTIME
390# undef EV_USE_REALTIME
391# define EV_USE_REALTIME 0
392#endif
393
394#if !EV_STAT_ENABLE
395# undef EV_USE_INOTIFY
396# define EV_USE_INOTIFY 0
397#endif
398
399#if !EV_USE_NANOSLEEP
400/* hp-ux has it in sys/time.h, which we unconditionally include above */
401# if !defined _WIN32 && !defined __hpux
402# include <sys/select.h>
403# endif
404#endif
405
406#if EV_USE_INOTIFY
407# include <sys/statfs.h>
408# include <sys/inotify.h>
409/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
410# ifndef IN_DONT_FOLLOW
411# undef EV_USE_INOTIFY
412# define EV_USE_INOTIFY 0
413# endif
414#endif
415
416#if EV_USE_EVENTFD
417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
418# include <stdint.h>
419# ifndef EFD_NONBLOCK
420# define EFD_NONBLOCK O_NONBLOCK
421# endif
422# ifndef EFD_CLOEXEC
423# ifdef O_CLOEXEC
424# define EFD_CLOEXEC O_CLOEXEC
425# else
426# define EFD_CLOEXEC 02000000
427# endif
428# endif
429EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
430#endif
431
432#if EV_USE_SIGNALFD
433/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
434# include <stdint.h>
435# ifndef SFD_NONBLOCK
436# define SFD_NONBLOCK O_NONBLOCK
437# endif
438# ifndef SFD_CLOEXEC
439# ifdef O_CLOEXEC
440# define SFD_CLOEXEC O_CLOEXEC
441# else
442# define SFD_CLOEXEC 02000000
443# endif
444# endif
445EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
446
447struct signalfd_siginfo
448{
449 uint32_t ssi_signo;
450 char pad[128 - sizeof (uint32_t)];
451};
452#endif
453
454/**/
455
456#if EV_VERIFY >= 3
457# define EV_FREQUENT_CHECK ev_verify (EV_A)
458#else
459# define EV_FREQUENT_CHECK do { } while (0)
460#endif
461
462/*
463 * This is used to work around floating point rounding problems.
464 * This value is good at least till the year 4000.
465 */
466#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
467/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
468
469#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
470#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
471
472#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
473#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
474
475/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
476/* ECB.H BEGIN */
477/*
478 * libecb - http://software.schmorp.de/pkg/libecb
479 *
480 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
481 * Copyright (©) 2011 Emanuele Giaquinta
482 * All rights reserved.
483 *
484 * Redistribution and use in source and binary forms, with or without modifica-
485 * tion, are permitted provided that the following conditions are met:
486 *
487 * 1. Redistributions of source code must retain the above copyright notice,
488 * this list of conditions and the following disclaimer.
489 *
490 * 2. Redistributions in binary form must reproduce the above copyright
491 * notice, this list of conditions and the following disclaimer in the
492 * documentation and/or other materials provided with the distribution.
493 *
494 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
495 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
496 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
497 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
498 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
499 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
500 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
501 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
502 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
503 * OF THE POSSIBILITY OF SUCH DAMAGE.
504 */
505
506#ifndef ECB_H
507#define ECB_H
508
509/* 16 bits major, 16 bits minor */
510#define ECB_VERSION 0x00010001
511
512#ifdef _WIN32
513 typedef signed char int8_t;
514 typedef unsigned char uint8_t;
515 typedef signed short int16_t;
516 typedef unsigned short uint16_t;
517 typedef signed int int32_t;
518 typedef unsigned int uint32_t;
519 #if __GNUC__
520 typedef signed long long int64_t;
521 typedef unsigned long long uint64_t;
522 #else /* _MSC_VER || __BORLANDC__ */
523 typedef signed __int64 int64_t;
524 typedef unsigned __int64 uint64_t;
525 #endif
526 #ifdef _WIN64
527 #define ECB_PTRSIZE 8
528 typedef uint64_t uintptr_t;
529 typedef int64_t intptr_t;
530 #else
531 #define ECB_PTRSIZE 4
532 typedef uint32_t uintptr_t;
533 typedef int32_t intptr_t;
534 #endif
535 typedef intptr_t ptrdiff_t;
536#else
537 #include <inttypes.h>
538 #if UINTMAX_MAX > 0xffffffffU
539 #define ECB_PTRSIZE 8
540 #else
541 #define ECB_PTRSIZE 4
542 #endif
543#endif
544
545/* many compilers define _GNUC_ to some versions but then only implement
546 * what their idiot authors think are the "more important" extensions,
547 * causing enormous grief in return for some better fake benchmark numbers.
548 * or so.
549 * we try to detect these and simply assume they are not gcc - if they have
550 * an issue with that they should have done it right in the first place.
551 */
552#ifndef ECB_GCC_VERSION
553 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
554 #define ECB_GCC_VERSION(major,minor) 0
555 #else
556 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
557 #endif
558#endif
559
560#define ECB_C (__STDC__+0) /* this assumes that __STDC__ is either empty or a number */
561#define ECB_C99 (__STDC_VERSION__ >= 199901L)
562#define ECB_C11 (__STDC_VERSION__ >= 201112L)
563#define ECB_CPP (__cplusplus+0)
564#define ECB_CPP11 (__cplusplus >= 201103L)
565
566/*****************************************************************************/
567
568/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
569/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
570
571#if ECB_NO_THREADS
572 #define ECB_NO_SMP 1
573#endif
574
575#if ECB_NO_SMP
576 #define ECB_MEMORY_FENCE do { } while (0)
577#endif
578
579#ifndef ECB_MEMORY_FENCE
580 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
581 #if __i386 || __i386__
582 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
583 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
584 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
585 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
586 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
587 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
588 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
589 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
590 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
591 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
592 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
593 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
594 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
595 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
596 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
597 #elif __sparc || __sparc__
598 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
599 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
600 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
601 #elif defined __s390__ || defined __s390x__
602 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
603 #elif defined __mips__
604 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
605 #elif defined __alpha__
606 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
607 #elif defined __hppa__
608 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
609 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
610 #elif defined __ia64__
611 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
612 #endif
613 #endif
614#endif
615
616#ifndef ECB_MEMORY_FENCE
617 #if ECB_GCC_VERSION(4,7)
618 /* see comment below (stdatomic.h) about the C11 memory model. */
619 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
620 #elif defined __clang && __has_feature (cxx_atomic)
621 /* see comment below (stdatomic.h) about the C11 memory model. */
622 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
623 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
624 #define ECB_MEMORY_FENCE __sync_synchronize ()
625 #elif _MSC_VER >= 1400 /* VC++ 2005 */
626 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
627 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
628 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
629 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
630 #elif defined _WIN32
631 #include <WinNT.h>
632 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
633 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
634 #include <mbarrier.h>
635 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
636 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
637 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
638 #elif __xlC__
639 #define ECB_MEMORY_FENCE __sync ()
640 #endif
641#endif
642
643#ifndef ECB_MEMORY_FENCE
644 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
645 /* we assume that these memory fences work on all variables/all memory accesses, */
646 /* not just C11 atomics and atomic accesses */
647 #include <stdatomic.h>
648 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
649 /* any fence other than seq_cst, which isn't very efficient for us. */
650 /* Why that is, we don't know - either the C11 memory model is quite useless */
651 /* for most usages, or gcc and clang have a bug */
652 /* I *currently* lean towards the latter, and inefficiently implement */
653 /* all three of ecb's fences as a seq_cst fence */
654 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
655 #endif
656#endif
657
658#ifndef ECB_MEMORY_FENCE
659 #if !ECB_AVOID_PTHREADS
660 /*
661 * if you get undefined symbol references to pthread_mutex_lock,
662 * or failure to find pthread.h, then you should implement
663 * the ECB_MEMORY_FENCE operations for your cpu/compiler
664 * OR provide pthread.h and link against the posix thread library
665 * of your system.
666 */
667 #include <pthread.h>
668 #define ECB_NEEDS_PTHREADS 1
669 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
670
671 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
672 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
673 #endif
674#endif
675
676#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
677 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
678#endif
679
680#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
681 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
682#endif
683
684/*****************************************************************************/
685
686#if __cplusplus
687 #define ecb_inline static inline
688#elif ECB_GCC_VERSION(2,5)
689 #define ecb_inline static __inline__
690#elif ECB_C99
691 #define ecb_inline static inline
692#else
693 #define ecb_inline static
694#endif
695
696#if ECB_GCC_VERSION(3,3)
697 #define ecb_restrict __restrict__
698#elif ECB_C99
699 #define ecb_restrict restrict
700#else
701 #define ecb_restrict
702#endif
703
704typedef int ecb_bool;
705
706#define ECB_CONCAT_(a, b) a ## b
707#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
708#define ECB_STRINGIFY_(a) # a
709#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
710
711#define ecb_function_ ecb_inline
712
713#if ECB_GCC_VERSION(3,1)
714 #define ecb_attribute(attrlist) __attribute__(attrlist)
715 #define ecb_is_constant(expr) __builtin_constant_p (expr)
716 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
717 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
718#else
719 #define ecb_attribute(attrlist)
720 #define ecb_is_constant(expr) 0
721 #define ecb_expect(expr,value) (expr)
722 #define ecb_prefetch(addr,rw,locality)
723#endif
724
725/* no emulation for ecb_decltype */
726#if ECB_GCC_VERSION(4,5)
727 #define ecb_decltype(x) __decltype(x)
728#elif ECB_GCC_VERSION(3,0)
729 #define ecb_decltype(x) __typeof(x)
730#endif
731
732#define ecb_noinline ecb_attribute ((__noinline__))
733#define ecb_unused ecb_attribute ((__unused__))
734#define ecb_const ecb_attribute ((__const__))
735#define ecb_pure ecb_attribute ((__pure__))
736
737#if ECB_C11
738 #define ecb_noreturn _Noreturn
739#else
740 #define ecb_noreturn ecb_attribute ((__noreturn__))
741#endif
742
743#if ECB_GCC_VERSION(4,3)
744 #define ecb_artificial ecb_attribute ((__artificial__))
745 #define ecb_hot ecb_attribute ((__hot__))
746 #define ecb_cold ecb_attribute ((__cold__))
747#else
748 #define ecb_artificial
749 #define ecb_hot
750 #define ecb_cold
751#endif
752
753/* put around conditional expressions if you are very sure that the */
754/* expression is mostly true or mostly false. note that these return */
755/* booleans, not the expression. */
154#define expect_false(expr) expect ((expr) != 0, 0) 756#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
155#define expect_true(expr) expect ((expr) != 0, 1) 757#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
758/* for compatibility to the rest of the world */
759#define ecb_likely(expr) ecb_expect_true (expr)
760#define ecb_unlikely(expr) ecb_expect_false (expr)
156 761
762/* count trailing zero bits and count # of one bits */
763#if ECB_GCC_VERSION(3,4)
764 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
765 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
766 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
767 #define ecb_ctz32(x) __builtin_ctz (x)
768 #define ecb_ctz64(x) __builtin_ctzll (x)
769 #define ecb_popcount32(x) __builtin_popcount (x)
770 /* no popcountll */
771#else
772 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
773 ecb_function_ int
774 ecb_ctz32 (uint32_t x)
775 {
776 int r = 0;
777
778 x &= ~x + 1; /* this isolates the lowest bit */
779
780#if ECB_branchless_on_i386
781 r += !!(x & 0xaaaaaaaa) << 0;
782 r += !!(x & 0xcccccccc) << 1;
783 r += !!(x & 0xf0f0f0f0) << 2;
784 r += !!(x & 0xff00ff00) << 3;
785 r += !!(x & 0xffff0000) << 4;
786#else
787 if (x & 0xaaaaaaaa) r += 1;
788 if (x & 0xcccccccc) r += 2;
789 if (x & 0xf0f0f0f0) r += 4;
790 if (x & 0xff00ff00) r += 8;
791 if (x & 0xffff0000) r += 16;
792#endif
793
794 return r;
795 }
796
797 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
798 ecb_function_ int
799 ecb_ctz64 (uint64_t x)
800 {
801 int shift = x & 0xffffffffU ? 0 : 32;
802 return ecb_ctz32 (x >> shift) + shift;
803 }
804
805 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
806 ecb_function_ int
807 ecb_popcount32 (uint32_t x)
808 {
809 x -= (x >> 1) & 0x55555555;
810 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
811 x = ((x >> 4) + x) & 0x0f0f0f0f;
812 x *= 0x01010101;
813
814 return x >> 24;
815 }
816
817 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
818 ecb_function_ int ecb_ld32 (uint32_t x)
819 {
820 int r = 0;
821
822 if (x >> 16) { x >>= 16; r += 16; }
823 if (x >> 8) { x >>= 8; r += 8; }
824 if (x >> 4) { x >>= 4; r += 4; }
825 if (x >> 2) { x >>= 2; r += 2; }
826 if (x >> 1) { r += 1; }
827
828 return r;
829 }
830
831 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
832 ecb_function_ int ecb_ld64 (uint64_t x)
833 {
834 int r = 0;
835
836 if (x >> 32) { x >>= 32; r += 32; }
837
838 return r + ecb_ld32 (x);
839 }
840#endif
841
842ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
843ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
844ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
845ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
846
847ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
848ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
849{
850 return ( (x * 0x0802U & 0x22110U)
851 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
852}
853
854ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
855ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
856{
857 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
858 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
859 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
860 x = ( x >> 8 ) | ( x << 8);
861
862 return x;
863}
864
865ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
866ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
867{
868 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
869 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
870 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
871 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
872 x = ( x >> 16 ) | ( x << 16);
873
874 return x;
875}
876
877/* popcount64 is only available on 64 bit cpus as gcc builtin */
878/* so for this version we are lazy */
879ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
880ecb_function_ int
881ecb_popcount64 (uint64_t x)
882{
883 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
884}
885
886ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
887ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
888ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
889ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
890ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
891ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
892ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
893ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
894
895ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
896ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
897ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
898ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
899ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
900ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
901ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
902ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
903
904#if ECB_GCC_VERSION(4,3)
905 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
906 #define ecb_bswap32(x) __builtin_bswap32 (x)
907 #define ecb_bswap64(x) __builtin_bswap64 (x)
908#else
909 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
910 ecb_function_ uint16_t
911 ecb_bswap16 (uint16_t x)
912 {
913 return ecb_rotl16 (x, 8);
914 }
915
916 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
917 ecb_function_ uint32_t
918 ecb_bswap32 (uint32_t x)
919 {
920 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
921 }
922
923 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
924 ecb_function_ uint64_t
925 ecb_bswap64 (uint64_t x)
926 {
927 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
928 }
929#endif
930
931#if ECB_GCC_VERSION(4,5)
932 #define ecb_unreachable() __builtin_unreachable ()
933#else
934 /* this seems to work fine, but gcc always emits a warning for it :/ */
935 ecb_inline void ecb_unreachable (void) ecb_noreturn;
936 ecb_inline void ecb_unreachable (void) { }
937#endif
938
939/* try to tell the compiler that some condition is definitely true */
940#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
941
942ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
943ecb_inline unsigned char
944ecb_byteorder_helper (void)
945{
946 const uint32_t u = 0x11223344;
947 return *(unsigned char *)&u;
948}
949
950ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
951ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
952ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
953ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
954
955#if ECB_GCC_VERSION(3,0) || ECB_C99
956 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
957#else
958 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
959#endif
960
961#if __cplusplus
962 template<typename T>
963 static inline T ecb_div_rd (T val, T div)
964 {
965 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
966 }
967 template<typename T>
968 static inline T ecb_div_ru (T val, T div)
969 {
970 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
971 }
972#else
973 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
974 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
975#endif
976
977#if ecb_cplusplus_does_not_suck
978 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
979 template<typename T, int N>
980 static inline int ecb_array_length (const T (&arr)[N])
981 {
982 return N;
983 }
984#else
985 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
986#endif
987
988#endif
989
990/* ECB.H END */
991
992#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
993/* if your architecture doesn't need memory fences, e.g. because it is
994 * single-cpu/core, or if you use libev in a project that doesn't use libev
995 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
996 * libev, in which cases the memory fences become nops.
997 * alternatively, you can remove this #error and link against libpthread,
998 * which will then provide the memory fences.
999 */
1000# error "memory fences not defined for your architecture, please report"
1001#endif
1002
1003#ifndef ECB_MEMORY_FENCE
1004# define ECB_MEMORY_FENCE do { } while (0)
1005# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1006# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1007#endif
1008
1009#define expect_false(cond) ecb_expect_false (cond)
1010#define expect_true(cond) ecb_expect_true (cond)
1011#define noinline ecb_noinline
1012
1013#define inline_size ecb_inline
1014
1015#if EV_FEATURE_CODE
1016# define inline_speed ecb_inline
1017#else
1018# define inline_speed static noinline
1019#endif
1020
157#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 1021#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1022
1023#if EV_MINPRI == EV_MAXPRI
1024# define ABSPRI(w) (((W)w), 0)
1025#else
158#define ABSPRI(w) ((w)->priority - EV_MINPRI) 1026# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1027#endif
159 1028
1029#define EMPTY /* required for microsofts broken pseudo-c compiler */
1030#define EMPTY2(a,b) /* used to suppress some warnings */
1031
160typedef struct ev_watcher *W; 1032typedef ev_watcher *W;
161typedef struct ev_watcher_list *WL; 1033typedef ev_watcher_list *WL;
162typedef struct ev_watcher_time *WT; 1034typedef ev_watcher_time *WT;
163 1035
1036#define ev_active(w) ((W)(w))->active
1037#define ev_at(w) ((WT)(w))->at
1038
1039#if EV_USE_REALTIME
1040/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1041/* giving it a reasonably high chance of working on typical architectures */
1042static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1043#endif
1044
1045#if EV_USE_MONOTONIC
164static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1046static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1047#endif
165 1048
1049#ifndef EV_FD_TO_WIN32_HANDLE
1050# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1051#endif
1052#ifndef EV_WIN32_HANDLE_TO_FD
1053# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1054#endif
1055#ifndef EV_WIN32_CLOSE_FD
1056# define EV_WIN32_CLOSE_FD(fd) close (fd)
1057#endif
1058
166#ifdef WIN32 1059#ifdef _WIN32
167# include "ev_win32.c" 1060# include "ev_win32.c"
168#endif 1061#endif
169 1062
170/*****************************************************************************/ 1063/*****************************************************************************/
171 1064
1065/* define a suitable floor function (only used by periodics atm) */
1066
1067#if EV_USE_FLOOR
1068# include <math.h>
1069# define ev_floor(v) floor (v)
1070#else
1071
1072#include <float.h>
1073
1074/* a floor() replacement function, should be independent of ev_tstamp type */
1075static ev_tstamp noinline
1076ev_floor (ev_tstamp v)
1077{
1078 /* the choice of shift factor is not terribly important */
1079#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1080 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1081#else
1082 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1083#endif
1084
1085 /* argument too large for an unsigned long? */
1086 if (expect_false (v >= shift))
1087 {
1088 ev_tstamp f;
1089
1090 if (v == v - 1.)
1091 return v; /* very large number */
1092
1093 f = shift * ev_floor (v * (1. / shift));
1094 return f + ev_floor (v - f);
1095 }
1096
1097 /* special treatment for negative args? */
1098 if (expect_false (v < 0.))
1099 {
1100 ev_tstamp f = -ev_floor (-v);
1101
1102 return f - (f == v ? 0 : 1);
1103 }
1104
1105 /* fits into an unsigned long */
1106 return (unsigned long)v;
1107}
1108
1109#endif
1110
1111/*****************************************************************************/
1112
1113#ifdef __linux
1114# include <sys/utsname.h>
1115#endif
1116
1117static unsigned int noinline ecb_cold
1118ev_linux_version (void)
1119{
1120#ifdef __linux
1121 unsigned int v = 0;
1122 struct utsname buf;
1123 int i;
1124 char *p = buf.release;
1125
1126 if (uname (&buf))
1127 return 0;
1128
1129 for (i = 3+1; --i; )
1130 {
1131 unsigned int c = 0;
1132
1133 for (;;)
1134 {
1135 if (*p >= '0' && *p <= '9')
1136 c = c * 10 + *p++ - '0';
1137 else
1138 {
1139 p += *p == '.';
1140 break;
1141 }
1142 }
1143
1144 v = (v << 8) | c;
1145 }
1146
1147 return v;
1148#else
1149 return 0;
1150#endif
1151}
1152
1153/*****************************************************************************/
1154
1155#if EV_AVOID_STDIO
1156static void noinline ecb_cold
1157ev_printerr (const char *msg)
1158{
1159 write (STDERR_FILENO, msg, strlen (msg));
1160}
1161#endif
1162
172static void (*syserr_cb)(const char *msg); 1163static void (*syserr_cb)(const char *msg) EV_THROW;
173 1164
1165void ecb_cold
174void ev_set_syserr_cb (void (*cb)(const char *msg)) 1166ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
175{ 1167{
176 syserr_cb = cb; 1168 syserr_cb = cb;
177} 1169}
178 1170
179static void 1171static void noinline ecb_cold
180syserr (const char *msg) 1172ev_syserr (const char *msg)
181{ 1173{
182 if (!msg) 1174 if (!msg)
183 msg = "(libev) system error"; 1175 msg = "(libev) system error";
184 1176
185 if (syserr_cb) 1177 if (syserr_cb)
186 syserr_cb (msg); 1178 syserr_cb (msg);
187 else 1179 else
188 { 1180 {
1181#if EV_AVOID_STDIO
1182 ev_printerr (msg);
1183 ev_printerr (": ");
1184 ev_printerr (strerror (errno));
1185 ev_printerr ("\n");
1186#else
189 perror (msg); 1187 perror (msg);
1188#endif
190 abort (); 1189 abort ();
191 } 1190 }
192} 1191}
193 1192
1193static void *
1194ev_realloc_emul (void *ptr, long size) EV_THROW
1195{
1196#if __GLIBC__
1197 return realloc (ptr, size);
1198#else
1199 /* some systems, notably openbsd and darwin, fail to properly
1200 * implement realloc (x, 0) (as required by both ansi c-89 and
1201 * the single unix specification, so work around them here.
1202 */
1203
1204 if (size)
1205 return realloc (ptr, size);
1206
1207 free (ptr);
1208 return 0;
1209#endif
1210}
1211
194static void *(*alloc)(void *ptr, long size); 1212static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
195 1213
1214void ecb_cold
196void ev_set_allocator (void *(*cb)(void *ptr, long size)) 1215ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
197{ 1216{
198 alloc = cb; 1217 alloc = cb;
199} 1218}
200 1219
201static void * 1220inline_speed void *
202ev_realloc (void *ptr, long size) 1221ev_realloc (void *ptr, long size)
203{ 1222{
204 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1223 ptr = alloc (ptr, size);
205 1224
206 if (!ptr && size) 1225 if (!ptr && size)
207 { 1226 {
1227#if EV_AVOID_STDIO
1228 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1229#else
208 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1230 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1231#endif
209 abort (); 1232 abort ();
210 } 1233 }
211 1234
212 return ptr; 1235 return ptr;
213} 1236}
215#define ev_malloc(size) ev_realloc (0, (size)) 1238#define ev_malloc(size) ev_realloc (0, (size))
216#define ev_free(ptr) ev_realloc ((ptr), 0) 1239#define ev_free(ptr) ev_realloc ((ptr), 0)
217 1240
218/*****************************************************************************/ 1241/*****************************************************************************/
219 1242
1243/* set in reify when reification needed */
1244#define EV_ANFD_REIFY 1
1245
1246/* file descriptor info structure */
220typedef struct 1247typedef struct
221{ 1248{
222 WL head; 1249 WL head;
223 unsigned char events; 1250 unsigned char events; /* the events watched for */
1251 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1252 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
224 unsigned char reify; 1253 unsigned char unused;
1254#if EV_USE_EPOLL
1255 unsigned int egen; /* generation counter to counter epoll bugs */
1256#endif
1257#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1258 SOCKET handle;
1259#endif
1260#if EV_USE_IOCP
1261 OVERLAPPED or, ow;
1262#endif
225} ANFD; 1263} ANFD;
226 1264
1265/* stores the pending event set for a given watcher */
227typedef struct 1266typedef struct
228{ 1267{
229 W w; 1268 W w;
230 int events; 1269 int events; /* the pending event set for the given watcher */
231} ANPENDING; 1270} ANPENDING;
1271
1272#if EV_USE_INOTIFY
1273/* hash table entry per inotify-id */
1274typedef struct
1275{
1276 WL head;
1277} ANFS;
1278#endif
1279
1280/* Heap Entry */
1281#if EV_HEAP_CACHE_AT
1282 /* a heap element */
1283 typedef struct {
1284 ev_tstamp at;
1285 WT w;
1286 } ANHE;
1287
1288 #define ANHE_w(he) (he).w /* access watcher, read-write */
1289 #define ANHE_at(he) (he).at /* access cached at, read-only */
1290 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1291#else
1292 /* a heap element */
1293 typedef WT ANHE;
1294
1295 #define ANHE_w(he) (he)
1296 #define ANHE_at(he) (he)->at
1297 #define ANHE_at_cache(he)
1298#endif
232 1299
233#if EV_MULTIPLICITY 1300#if EV_MULTIPLICITY
234 1301
235 struct ev_loop 1302 struct ev_loop
236 { 1303 {
240 #include "ev_vars.h" 1307 #include "ev_vars.h"
241 #undef VAR 1308 #undef VAR
242 }; 1309 };
243 #include "ev_wrap.h" 1310 #include "ev_wrap.h"
244 1311
245 struct ev_loop default_loop_struct; 1312 static struct ev_loop default_loop_struct;
246 static struct ev_loop *default_loop; 1313 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
247 1314
248#else 1315#else
249 1316
250 ev_tstamp ev_rt_now; 1317 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
251 #define VAR(name,decl) static decl; 1318 #define VAR(name,decl) static decl;
252 #include "ev_vars.h" 1319 #include "ev_vars.h"
253 #undef VAR 1320 #undef VAR
254 1321
255 static int default_loop; 1322 static int ev_default_loop_ptr;
256 1323
257#endif 1324#endif
1325
1326#if EV_FEATURE_API
1327# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1328# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1329# define EV_INVOKE_PENDING invoke_cb (EV_A)
1330#else
1331# define EV_RELEASE_CB (void)0
1332# define EV_ACQUIRE_CB (void)0
1333# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1334#endif
1335
1336#define EVBREAK_RECURSE 0x80
258 1337
259/*****************************************************************************/ 1338/*****************************************************************************/
260 1339
1340#ifndef EV_HAVE_EV_TIME
261ev_tstamp 1341ev_tstamp
262ev_time (void) 1342ev_time (void) EV_THROW
263{ 1343{
264#if EV_USE_REALTIME 1344#if EV_USE_REALTIME
1345 if (expect_true (have_realtime))
1346 {
265 struct timespec ts; 1347 struct timespec ts;
266 clock_gettime (CLOCK_REALTIME, &ts); 1348 clock_gettime (CLOCK_REALTIME, &ts);
267 return ts.tv_sec + ts.tv_nsec * 1e-9; 1349 return ts.tv_sec + ts.tv_nsec * 1e-9;
268#else 1350 }
1351#endif
1352
269 struct timeval tv; 1353 struct timeval tv;
270 gettimeofday (&tv, 0); 1354 gettimeofday (&tv, 0);
271 return tv.tv_sec + tv.tv_usec * 1e-6; 1355 return tv.tv_sec + tv.tv_usec * 1e-6;
272#endif
273} 1356}
1357#endif
274 1358
275inline ev_tstamp 1359inline_size ev_tstamp
276get_clock (void) 1360get_clock (void)
277{ 1361{
278#if EV_USE_MONOTONIC 1362#if EV_USE_MONOTONIC
279 if (expect_true (have_monotonic)) 1363 if (expect_true (have_monotonic))
280 { 1364 {
287 return ev_time (); 1371 return ev_time ();
288} 1372}
289 1373
290#if EV_MULTIPLICITY 1374#if EV_MULTIPLICITY
291ev_tstamp 1375ev_tstamp
292ev_now (EV_P) 1376ev_now (EV_P) EV_THROW
293{ 1377{
294 return ev_rt_now; 1378 return ev_rt_now;
295} 1379}
296#endif 1380#endif
297 1381
298#define array_roundsize(type,n) ((n) | 4 & ~3) 1382void
1383ev_sleep (ev_tstamp delay) EV_THROW
1384{
1385 if (delay > 0.)
1386 {
1387#if EV_USE_NANOSLEEP
1388 struct timespec ts;
1389
1390 EV_TS_SET (ts, delay);
1391 nanosleep (&ts, 0);
1392#elif defined _WIN32
1393 Sleep ((unsigned long)(delay * 1e3));
1394#else
1395 struct timeval tv;
1396
1397 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1398 /* something not guaranteed by newer posix versions, but guaranteed */
1399 /* by older ones */
1400 EV_TV_SET (tv, delay);
1401 select (0, 0, 0, 0, &tv);
1402#endif
1403 }
1404}
1405
1406/*****************************************************************************/
1407
1408#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1409
1410/* find a suitable new size for the given array, */
1411/* hopefully by rounding to a nice-to-malloc size */
1412inline_size int
1413array_nextsize (int elem, int cur, int cnt)
1414{
1415 int ncur = cur + 1;
1416
1417 do
1418 ncur <<= 1;
1419 while (cnt > ncur);
1420
1421 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1422 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1423 {
1424 ncur *= elem;
1425 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1426 ncur = ncur - sizeof (void *) * 4;
1427 ncur /= elem;
1428 }
1429
1430 return ncur;
1431}
1432
1433static void * noinline ecb_cold
1434array_realloc (int elem, void *base, int *cur, int cnt)
1435{
1436 *cur = array_nextsize (elem, *cur, cnt);
1437 return ev_realloc (base, elem * *cur);
1438}
1439
1440#define array_init_zero(base,count) \
1441 memset ((void *)(base), 0, sizeof (*(base)) * (count))
299 1442
300#define array_needsize(type,base,cur,cnt,init) \ 1443#define array_needsize(type,base,cur,cnt,init) \
301 if (expect_false ((cnt) > cur)) \ 1444 if (expect_false ((cnt) > (cur))) \
302 { \ 1445 { \
303 int newcnt = cur; \ 1446 int ecb_unused ocur_ = (cur); \
304 do \ 1447 (base) = (type *)array_realloc \
305 { \ 1448 (sizeof (type), (base), &(cur), (cnt)); \
306 newcnt = array_roundsize (type, newcnt << 1); \ 1449 init ((base) + (ocur_), (cur) - ocur_); \
307 } \
308 while ((cnt) > newcnt); \
309 \
310 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
311 init (base + cur, newcnt - cur); \
312 cur = newcnt; \
313 } 1450 }
314 1451
1452#if 0
315#define array_slim(type,stem) \ 1453#define array_slim(type,stem) \
316 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 1454 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
317 { \ 1455 { \
318 stem ## max = array_roundsize (stem ## cnt >> 1); \ 1456 stem ## max = array_roundsize (stem ## cnt >> 1); \
319 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 1457 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
320 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1458 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
321 } 1459 }
322 1460#endif
323/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
324/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
325#define array_free_microshit(stem) \
326 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
327 1461
328#define array_free(stem, idx) \ 1462#define array_free(stem, idx) \
329 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1463 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
330 1464
331/*****************************************************************************/ 1465/*****************************************************************************/
332 1466
333static void 1467/* dummy callback for pending events */
334anfds_init (ANFD *base, int count) 1468static void noinline
1469pendingcb (EV_P_ ev_prepare *w, int revents)
335{ 1470{
336 while (count--)
337 {
338 base->head = 0;
339 base->events = EV_NONE;
340 base->reify = 0;
341
342 ++base;
343 }
344} 1471}
345 1472
346void 1473void noinline
347ev_feed_event (EV_P_ void *w, int revents) 1474ev_feed_event (EV_P_ void *w, int revents) EV_THROW
348{ 1475{
349 W w_ = (W)w; 1476 W w_ = (W)w;
1477 int pri = ABSPRI (w_);
350 1478
351 if (w_->pending) 1479 if (expect_false (w_->pending))
1480 pendings [pri][w_->pending - 1].events |= revents;
1481 else
352 { 1482 {
1483 w_->pending = ++pendingcnt [pri];
1484 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1485 pendings [pri][w_->pending - 1].w = w_;
353 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 1486 pendings [pri][w_->pending - 1].events = revents;
354 return;
355 } 1487 }
356 1488
357 w_->pending = ++pendingcnt [ABSPRI (w_)]; 1489 pendingpri = NUMPRI - 1;
358 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
359 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
360 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
361} 1490}
362 1491
363static void 1492inline_speed void
1493feed_reverse (EV_P_ W w)
1494{
1495 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1496 rfeeds [rfeedcnt++] = w;
1497}
1498
1499inline_size void
1500feed_reverse_done (EV_P_ int revents)
1501{
1502 do
1503 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1504 while (rfeedcnt);
1505}
1506
1507inline_speed void
364queue_events (EV_P_ W *events, int eventcnt, int type) 1508queue_events (EV_P_ W *events, int eventcnt, int type)
365{ 1509{
366 int i; 1510 int i;
367 1511
368 for (i = 0; i < eventcnt; ++i) 1512 for (i = 0; i < eventcnt; ++i)
369 ev_feed_event (EV_A_ events [i], type); 1513 ev_feed_event (EV_A_ events [i], type);
370} 1514}
371 1515
1516/*****************************************************************************/
1517
372inline void 1518inline_speed void
373fd_event (EV_P_ int fd, int revents) 1519fd_event_nocheck (EV_P_ int fd, int revents)
374{ 1520{
375 ANFD *anfd = anfds + fd; 1521 ANFD *anfd = anfds + fd;
376 struct ev_io *w; 1522 ev_io *w;
377 1523
378 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 1524 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
379 { 1525 {
380 int ev = w->events & revents; 1526 int ev = w->events & revents;
381 1527
382 if (ev) 1528 if (ev)
383 ev_feed_event (EV_A_ (W)w, ev); 1529 ev_feed_event (EV_A_ (W)w, ev);
384 } 1530 }
385} 1531}
386 1532
1533/* do not submit kernel events for fds that have reify set */
1534/* because that means they changed while we were polling for new events */
1535inline_speed void
1536fd_event (EV_P_ int fd, int revents)
1537{
1538 ANFD *anfd = anfds + fd;
1539
1540 if (expect_true (!anfd->reify))
1541 fd_event_nocheck (EV_A_ fd, revents);
1542}
1543
387void 1544void
388ev_feed_fd_event (EV_P_ int fd, int revents) 1545ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
389{ 1546{
1547 if (fd >= 0 && fd < anfdmax)
390 fd_event (EV_A_ fd, revents); 1548 fd_event_nocheck (EV_A_ fd, revents);
391} 1549}
392 1550
393/*****************************************************************************/ 1551/* make sure the external fd watch events are in-sync */
394 1552/* with the kernel/libev internal state */
395static void 1553inline_size void
396fd_reify (EV_P) 1554fd_reify (EV_P)
397{ 1555{
398 int i; 1556 int i;
399 1557
1558#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
400 for (i = 0; i < fdchangecnt; ++i) 1559 for (i = 0; i < fdchangecnt; ++i)
401 { 1560 {
402 int fd = fdchanges [i]; 1561 int fd = fdchanges [i];
403 ANFD *anfd = anfds + fd; 1562 ANFD *anfd = anfds + fd;
1563
1564 if (anfd->reify & EV__IOFDSET && anfd->head)
1565 {
1566 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1567
1568 if (handle != anfd->handle)
1569 {
1570 unsigned long arg;
1571
1572 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1573
1574 /* handle changed, but fd didn't - we need to do it in two steps */
1575 backend_modify (EV_A_ fd, anfd->events, 0);
1576 anfd->events = 0;
1577 anfd->handle = handle;
1578 }
1579 }
1580 }
1581#endif
1582
1583 for (i = 0; i < fdchangecnt; ++i)
1584 {
1585 int fd = fdchanges [i];
1586 ANFD *anfd = anfds + fd;
404 struct ev_io *w; 1587 ev_io *w;
405 1588
406 int events = 0; 1589 unsigned char o_events = anfd->events;
1590 unsigned char o_reify = anfd->reify;
407 1591
408 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
409 events |= w->events;
410
411 anfd->reify = 0; 1592 anfd->reify = 0;
412 1593
413 method_modify (EV_A_ fd, anfd->events, events); 1594 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1595 {
414 anfd->events = events; 1596 anfd->events = 0;
1597
1598 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1599 anfd->events |= (unsigned char)w->events;
1600
1601 if (o_events != anfd->events)
1602 o_reify = EV__IOFDSET; /* actually |= */
1603 }
1604
1605 if (o_reify & EV__IOFDSET)
1606 backend_modify (EV_A_ fd, o_events, anfd->events);
415 } 1607 }
416 1608
417 fdchangecnt = 0; 1609 fdchangecnt = 0;
418} 1610}
419 1611
420static void 1612/* something about the given fd changed */
1613inline_size void
421fd_change (EV_P_ int fd) 1614fd_change (EV_P_ int fd, int flags)
422{ 1615{
423 if (anfds [fd].reify) 1616 unsigned char reify = anfds [fd].reify;
424 return;
425
426 anfds [fd].reify = 1; 1617 anfds [fd].reify |= flags;
427 1618
1619 if (expect_true (!reify))
1620 {
428 ++fdchangecnt; 1621 ++fdchangecnt;
429 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 1622 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
430 fdchanges [fdchangecnt - 1] = fd; 1623 fdchanges [fdchangecnt - 1] = fd;
1624 }
431} 1625}
432 1626
433static void 1627/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1628inline_speed void ecb_cold
434fd_kill (EV_P_ int fd) 1629fd_kill (EV_P_ int fd)
435{ 1630{
436 struct ev_io *w; 1631 ev_io *w;
437 1632
438 while ((w = (struct ev_io *)anfds [fd].head)) 1633 while ((w = (ev_io *)anfds [fd].head))
439 { 1634 {
440 ev_io_stop (EV_A_ w); 1635 ev_io_stop (EV_A_ w);
441 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1636 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
442 } 1637 }
443} 1638}
444 1639
445static int 1640/* check whether the given fd is actually valid, for error recovery */
1641inline_size int ecb_cold
446fd_valid (int fd) 1642fd_valid (int fd)
447{ 1643{
448#ifdef WIN32 1644#ifdef _WIN32
449 return !!win32_get_osfhandle (fd); 1645 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
450#else 1646#else
451 return fcntl (fd, F_GETFD) != -1; 1647 return fcntl (fd, F_GETFD) != -1;
452#endif 1648#endif
453} 1649}
454 1650
455/* called on EBADF to verify fds */ 1651/* called on EBADF to verify fds */
456static void 1652static void noinline ecb_cold
457fd_ebadf (EV_P) 1653fd_ebadf (EV_P)
458{ 1654{
459 int fd; 1655 int fd;
460 1656
461 for (fd = 0; fd < anfdmax; ++fd) 1657 for (fd = 0; fd < anfdmax; ++fd)
462 if (anfds [fd].events) 1658 if (anfds [fd].events)
463 if (!fd_valid (fd) == -1 && errno == EBADF) 1659 if (!fd_valid (fd) && errno == EBADF)
464 fd_kill (EV_A_ fd); 1660 fd_kill (EV_A_ fd);
465} 1661}
466 1662
467/* called on ENOMEM in select/poll to kill some fds and retry */ 1663/* called on ENOMEM in select/poll to kill some fds and retry */
468static void 1664static void noinline ecb_cold
469fd_enomem (EV_P) 1665fd_enomem (EV_P)
470{ 1666{
471 int fd; 1667 int fd;
472 1668
473 for (fd = anfdmax; fd--; ) 1669 for (fd = anfdmax; fd--; )
474 if (anfds [fd].events) 1670 if (anfds [fd].events)
475 { 1671 {
476 fd_kill (EV_A_ fd); 1672 fd_kill (EV_A_ fd);
477 return; 1673 break;
478 } 1674 }
479} 1675}
480 1676
481/* usually called after fork if method needs to re-arm all fds from scratch */ 1677/* usually called after fork if backend needs to re-arm all fds from scratch */
482static void 1678static void noinline
483fd_rearm_all (EV_P) 1679fd_rearm_all (EV_P)
484{ 1680{
485 int fd; 1681 int fd;
486 1682
487 /* this should be highly optimised to not do anything but set a flag */
488 for (fd = 0; fd < anfdmax; ++fd) 1683 for (fd = 0; fd < anfdmax; ++fd)
489 if (anfds [fd].events) 1684 if (anfds [fd].events)
490 { 1685 {
491 anfds [fd].events = 0; 1686 anfds [fd].events = 0;
492 fd_change (EV_A_ fd); 1687 anfds [fd].emask = 0;
1688 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
493 } 1689 }
494} 1690}
495 1691
1692/* used to prepare libev internal fd's */
1693/* this is not fork-safe */
1694inline_speed void
1695fd_intern (int fd)
1696{
1697#ifdef _WIN32
1698 unsigned long arg = 1;
1699 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1700#else
1701 fcntl (fd, F_SETFD, FD_CLOEXEC);
1702 fcntl (fd, F_SETFL, O_NONBLOCK);
1703#endif
1704}
1705
496/*****************************************************************************/ 1706/*****************************************************************************/
497 1707
1708/*
1709 * the heap functions want a real array index. array index 0 is guaranteed to not
1710 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1711 * the branching factor of the d-tree.
1712 */
1713
1714/*
1715 * at the moment we allow libev the luxury of two heaps,
1716 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1717 * which is more cache-efficient.
1718 * the difference is about 5% with 50000+ watchers.
1719 */
1720#if EV_USE_4HEAP
1721
1722#define DHEAP 4
1723#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1724#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1725#define UPHEAP_DONE(p,k) ((p) == (k))
1726
1727/* away from the root */
1728inline_speed void
1729downheap (ANHE *heap, int N, int k)
1730{
1731 ANHE he = heap [k];
1732 ANHE *E = heap + N + HEAP0;
1733
1734 for (;;)
1735 {
1736 ev_tstamp minat;
1737 ANHE *minpos;
1738 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1739
1740 /* find minimum child */
1741 if (expect_true (pos + DHEAP - 1 < E))
1742 {
1743 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1744 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1745 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1746 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1747 }
1748 else if (pos < E)
1749 {
1750 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1751 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1752 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1753 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1754 }
1755 else
1756 break;
1757
1758 if (ANHE_at (he) <= minat)
1759 break;
1760
1761 heap [k] = *minpos;
1762 ev_active (ANHE_w (*minpos)) = k;
1763
1764 k = minpos - heap;
1765 }
1766
1767 heap [k] = he;
1768 ev_active (ANHE_w (he)) = k;
1769}
1770
1771#else /* 4HEAP */
1772
1773#define HEAP0 1
1774#define HPARENT(k) ((k) >> 1)
1775#define UPHEAP_DONE(p,k) (!(p))
1776
1777/* away from the root */
1778inline_speed void
1779downheap (ANHE *heap, int N, int k)
1780{
1781 ANHE he = heap [k];
1782
1783 for (;;)
1784 {
1785 int c = k << 1;
1786
1787 if (c >= N + HEAP0)
1788 break;
1789
1790 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1791 ? 1 : 0;
1792
1793 if (ANHE_at (he) <= ANHE_at (heap [c]))
1794 break;
1795
1796 heap [k] = heap [c];
1797 ev_active (ANHE_w (heap [k])) = k;
1798
1799 k = c;
1800 }
1801
1802 heap [k] = he;
1803 ev_active (ANHE_w (he)) = k;
1804}
1805#endif
1806
1807/* towards the root */
1808inline_speed void
1809upheap (ANHE *heap, int k)
1810{
1811 ANHE he = heap [k];
1812
1813 for (;;)
1814 {
1815 int p = HPARENT (k);
1816
1817 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1818 break;
1819
1820 heap [k] = heap [p];
1821 ev_active (ANHE_w (heap [k])) = k;
1822 k = p;
1823 }
1824
1825 heap [k] = he;
1826 ev_active (ANHE_w (he)) = k;
1827}
1828
1829/* move an element suitably so it is in a correct place */
1830inline_size void
1831adjustheap (ANHE *heap, int N, int k)
1832{
1833 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1834 upheap (heap, k);
1835 else
1836 downheap (heap, N, k);
1837}
1838
1839/* rebuild the heap: this function is used only once and executed rarely */
1840inline_size void
1841reheap (ANHE *heap, int N)
1842{
1843 int i;
1844
1845 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1846 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1847 for (i = 0; i < N; ++i)
1848 upheap (heap, i + HEAP0);
1849}
1850
1851/*****************************************************************************/
1852
1853/* associate signal watchers to a signal signal */
1854typedef struct
1855{
1856 EV_ATOMIC_T pending;
1857#if EV_MULTIPLICITY
1858 EV_P;
1859#endif
1860 WL head;
1861} ANSIG;
1862
1863static ANSIG signals [EV_NSIG - 1];
1864
1865/*****************************************************************************/
1866
1867#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1868
1869static void noinline ecb_cold
1870evpipe_init (EV_P)
1871{
1872 if (!ev_is_active (&pipe_w))
1873 {
1874# if EV_USE_EVENTFD
1875 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1876 if (evfd < 0 && errno == EINVAL)
1877 evfd = eventfd (0, 0);
1878
1879 if (evfd >= 0)
1880 {
1881 evpipe [0] = -1;
1882 fd_intern (evfd); /* doing it twice doesn't hurt */
1883 ev_io_set (&pipe_w, evfd, EV_READ);
1884 }
1885 else
1886# endif
1887 {
1888 while (pipe (evpipe))
1889 ev_syserr ("(libev) error creating signal/async pipe");
1890
1891 fd_intern (evpipe [0]);
1892 fd_intern (evpipe [1]);
1893 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1894 }
1895
1896 ev_io_start (EV_A_ &pipe_w);
1897 ev_unref (EV_A); /* watcher should not keep loop alive */
1898 }
1899}
1900
1901inline_speed void
1902evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1903{
1904 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
1905
1906 if (expect_true (*flag))
1907 return;
1908
1909 *flag = 1;
1910 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1911
1912 pipe_write_skipped = 1;
1913
1914 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1915
1916 if (pipe_write_wanted)
1917 {
1918 int old_errno;
1919
1920 pipe_write_skipped = 0;
1921 ECB_MEMORY_FENCE_RELEASE;
1922
1923 old_errno = errno; /* save errno because write will clobber it */
1924
1925#if EV_USE_EVENTFD
1926 if (evfd >= 0)
1927 {
1928 uint64_t counter = 1;
1929 write (evfd, &counter, sizeof (uint64_t));
1930 }
1931 else
1932#endif
1933 {
1934#ifdef _WIN32
1935 WSABUF buf;
1936 DWORD sent;
1937 buf.buf = &buf;
1938 buf.len = 1;
1939 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
1940#else
1941 write (evpipe [1], &(evpipe [1]), 1);
1942#endif
1943 }
1944
1945 errno = old_errno;
1946 }
1947}
1948
1949/* called whenever the libev signal pipe */
1950/* got some events (signal, async) */
498static void 1951static void
499upheap (WT *heap, int k) 1952pipecb (EV_P_ ev_io *iow, int revents)
500{ 1953{
501 WT w = heap [k]; 1954 int i;
502 1955
503 while (k && heap [k >> 1]->at > w->at) 1956 if (revents & EV_READ)
504 {
505 heap [k] = heap [k >> 1];
506 ((W)heap [k])->active = k + 1;
507 k >>= 1;
508 } 1957 {
1958#if EV_USE_EVENTFD
1959 if (evfd >= 0)
1960 {
1961 uint64_t counter;
1962 read (evfd, &counter, sizeof (uint64_t));
1963 }
1964 else
1965#endif
1966 {
1967 char dummy[4];
1968#ifdef _WIN32
1969 WSABUF buf;
1970 DWORD recvd;
1971 DWORD flags = 0;
1972 buf.buf = dummy;
1973 buf.len = sizeof (dummy);
1974 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
1975#else
1976 read (evpipe [0], &dummy, sizeof (dummy));
1977#endif
1978 }
1979 }
509 1980
510 heap [k] = w; 1981 pipe_write_skipped = 0;
511 ((W)heap [k])->active = k + 1;
512 1982
1983 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
1984
1985#if EV_SIGNAL_ENABLE
1986 if (sig_pending)
1987 {
1988 sig_pending = 0;
1989
1990 ECB_MEMORY_FENCE;
1991
1992 for (i = EV_NSIG - 1; i--; )
1993 if (expect_false (signals [i].pending))
1994 ev_feed_signal_event (EV_A_ i + 1);
1995 }
1996#endif
1997
1998#if EV_ASYNC_ENABLE
1999 if (async_pending)
2000 {
2001 async_pending = 0;
2002
2003 ECB_MEMORY_FENCE;
2004
2005 for (i = asynccnt; i--; )
2006 if (asyncs [i]->sent)
2007 {
2008 asyncs [i]->sent = 0;
2009 ECB_MEMORY_FENCE_RELEASE;
2010 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2011 }
2012 }
2013#endif
2014}
2015
2016/*****************************************************************************/
2017
2018void
2019ev_feed_signal (int signum) EV_THROW
2020{
2021#if EV_MULTIPLICITY
2022 EV_P = signals [signum - 1].loop;
2023
2024 if (!EV_A)
2025 return;
2026#endif
2027
2028 if (!ev_active (&pipe_w))
2029 return;
2030
2031 signals [signum - 1].pending = 1;
2032 evpipe_write (EV_A_ &sig_pending);
513} 2033}
514 2034
515static void 2035static void
516downheap (WT *heap, int N, int k)
517{
518 WT w = heap [k];
519
520 while (k < (N >> 1))
521 {
522 int j = k << 1;
523
524 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
525 ++j;
526
527 if (w->at <= heap [j]->at)
528 break;
529
530 heap [k] = heap [j];
531 ((W)heap [k])->active = k + 1;
532 k = j;
533 }
534
535 heap [k] = w;
536 ((W)heap [k])->active = k + 1;
537}
538
539inline void
540adjustheap (WT *heap, int N, int k)
541{
542 upheap (heap, k);
543 downheap (heap, N, k);
544}
545
546/*****************************************************************************/
547
548typedef struct
549{
550 WL head;
551 sig_atomic_t volatile gotsig;
552} ANSIG;
553
554static ANSIG *signals;
555static int signalmax;
556
557static int sigpipe [2];
558static sig_atomic_t volatile gotsig;
559static struct ev_io sigev;
560
561static void
562signals_init (ANSIG *base, int count)
563{
564 while (count--)
565 {
566 base->head = 0;
567 base->gotsig = 0;
568
569 ++base;
570 }
571}
572
573static void
574sighandler (int signum) 2036ev_sighandler (int signum)
575{ 2037{
576#if WIN32
577 signal (signum, sighandler);
578#endif
579
580 signals [signum - 1].gotsig = 1;
581
582 if (!gotsig)
583 {
584 int old_errno = errno;
585 gotsig = 1;
586#ifdef WIN32 2038#ifdef _WIN32
587 send (sigpipe [1], &signum, 1, MSG_DONTWAIT); 2039 signal (signum, ev_sighandler);
588#else
589 write (sigpipe [1], &signum, 1);
590#endif 2040#endif
591 errno = old_errno;
592 }
593}
594 2041
595void 2042 ev_feed_signal (signum);
2043}
2044
2045void noinline
596ev_feed_signal_event (EV_P_ int signum) 2046ev_feed_signal_event (EV_P_ int signum) EV_THROW
597{ 2047{
598 WL w; 2048 WL w;
599 2049
2050 if (expect_false (signum <= 0 || signum > EV_NSIG))
2051 return;
2052
2053 --signum;
2054
600#if EV_MULTIPLICITY 2055#if EV_MULTIPLICITY
601 assert (("feeding signal events is only supported in the default loop", loop == default_loop)); 2056 /* it is permissible to try to feed a signal to the wrong loop */
602#endif 2057 /* or, likely more useful, feeding a signal nobody is waiting for */
603 2058
604 --signum; 2059 if (expect_false (signals [signum].loop != EV_A))
605
606 if (signum < 0 || signum >= signalmax)
607 return; 2060 return;
2061#endif
608 2062
609 signals [signum].gotsig = 0; 2063 signals [signum].pending = 0;
2064 ECB_MEMORY_FENCE_RELEASE;
610 2065
611 for (w = signals [signum].head; w; w = w->next) 2066 for (w = signals [signum].head; w; w = w->next)
612 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2067 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
613} 2068}
614 2069
2070#if EV_USE_SIGNALFD
615static void 2071static void
616sigcb (EV_P_ struct ev_io *iow, int revents) 2072sigfdcb (EV_P_ ev_io *iow, int revents)
617{ 2073{
618 int signum; 2074 struct signalfd_siginfo si[2], *sip; /* these structs are big */
619 2075
620#ifdef WIN32 2076 for (;;)
621 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT); 2077 {
622#else 2078 ssize_t res = read (sigfd, si, sizeof (si));
623 read (sigpipe [0], &revents, 1);
624#endif
625 gotsig = 0;
626 2079
627 for (signum = signalmax; signum--; ) 2080 /* not ISO-C, as res might be -1, but works with SuS */
628 if (signals [signum].gotsig) 2081 for (sip = si; (char *)sip < (char *)si + res; ++sip)
629 ev_feed_signal_event (EV_A_ signum + 1); 2082 ev_feed_signal_event (EV_A_ sip->ssi_signo);
630}
631 2083
632static void 2084 if (res < (ssize_t)sizeof (si))
633siginit (EV_P) 2085 break;
634{ 2086 }
635#ifndef WIN32
636 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
637 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
638
639 /* rather than sort out wether we really need nb, set it */
640 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
641 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
642#endif
643
644 ev_io_set (&sigev, sigpipe [0], EV_READ);
645 ev_io_start (EV_A_ &sigev);
646 ev_unref (EV_A); /* child watcher should not keep loop alive */
647} 2087}
2088#endif
2089
2090#endif
648 2091
649/*****************************************************************************/ 2092/*****************************************************************************/
650 2093
651static struct ev_child *childs [PID_HASHSIZE]; 2094#if EV_CHILD_ENABLE
2095static WL childs [EV_PID_HASHSIZE];
652 2096
653#ifndef WIN32
654
655static struct ev_signal childev; 2097static ev_signal childev;
2098
2099#ifndef WIFCONTINUED
2100# define WIFCONTINUED(status) 0
2101#endif
2102
2103/* handle a single child status event */
2104inline_speed void
2105child_reap (EV_P_ int chain, int pid, int status)
2106{
2107 ev_child *w;
2108 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2109
2110 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2111 {
2112 if ((w->pid == pid || !w->pid)
2113 && (!traced || (w->flags & 1)))
2114 {
2115 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2116 w->rpid = pid;
2117 w->rstatus = status;
2118 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2119 }
2120 }
2121}
656 2122
657#ifndef WCONTINUED 2123#ifndef WCONTINUED
658# define WCONTINUED 0 2124# define WCONTINUED 0
659#endif 2125#endif
660 2126
2127/* called on sigchld etc., calls waitpid */
661static void 2128static void
662child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
663{
664 struct ev_child *w;
665
666 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
667 if (w->pid == pid || !w->pid)
668 {
669 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
670 w->rpid = pid;
671 w->rstatus = status;
672 ev_feed_event (EV_A_ (W)w, EV_CHILD);
673 }
674}
675
676static void
677childcb (EV_P_ struct ev_signal *sw, int revents) 2129childcb (EV_P_ ev_signal *sw, int revents)
678{ 2130{
679 int pid, status; 2131 int pid, status;
680 2132
2133 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
681 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 2134 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
682 { 2135 if (!WCONTINUED
2136 || errno != EINVAL
2137 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2138 return;
2139
683 /* make sure we are called again until all childs have been reaped */ 2140 /* make sure we are called again until all children have been reaped */
2141 /* we need to do it this way so that the callback gets called before we continue */
684 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2142 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
685 2143
686 child_reap (EV_A_ sw, pid, pid, status); 2144 child_reap (EV_A_ pid, pid, status);
2145 if ((EV_PID_HASHSIZE) > 1)
687 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 2146 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
688 }
689} 2147}
690 2148
691#endif 2149#endif
692 2150
693/*****************************************************************************/ 2151/*****************************************************************************/
694 2152
2153#if EV_USE_IOCP
2154# include "ev_iocp.c"
2155#endif
2156#if EV_USE_PORT
2157# include "ev_port.c"
2158#endif
695#if EV_USE_KQUEUE 2159#if EV_USE_KQUEUE
696# include "ev_kqueue.c" 2160# include "ev_kqueue.c"
697#endif 2161#endif
698#if EV_USE_EPOLL 2162#if EV_USE_EPOLL
699# include "ev_epoll.c" 2163# include "ev_epoll.c"
703#endif 2167#endif
704#if EV_USE_SELECT 2168#if EV_USE_SELECT
705# include "ev_select.c" 2169# include "ev_select.c"
706#endif 2170#endif
707 2171
708int 2172int ecb_cold
709ev_version_major (void) 2173ev_version_major (void) EV_THROW
710{ 2174{
711 return EV_VERSION_MAJOR; 2175 return EV_VERSION_MAJOR;
712} 2176}
713 2177
714int 2178int ecb_cold
715ev_version_minor (void) 2179ev_version_minor (void) EV_THROW
716{ 2180{
717 return EV_VERSION_MINOR; 2181 return EV_VERSION_MINOR;
718} 2182}
719 2183
720/* return true if we are running with elevated privileges and should ignore env variables */ 2184/* return true if we are running with elevated privileges and should ignore env variables */
721static int 2185int inline_size ecb_cold
722enable_secure (void) 2186enable_secure (void)
723{ 2187{
724#ifdef WIN32 2188#ifdef _WIN32
725 return 0; 2189 return 0;
726#else 2190#else
727 return getuid () != geteuid () 2191 return getuid () != geteuid ()
728 || getgid () != getegid (); 2192 || getgid () != getegid ();
729#endif 2193#endif
730} 2194}
731 2195
732int 2196unsigned int ecb_cold
733ev_method (EV_P) 2197ev_supported_backends (void) EV_THROW
734{ 2198{
735 return method; 2199 unsigned int flags = 0;
736}
737 2200
738static void 2201 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
739loop_init (EV_P_ int methods) 2202 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2203 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2204 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2205 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2206
2207 return flags;
2208}
2209
2210unsigned int ecb_cold
2211ev_recommended_backends (void) EV_THROW
740{ 2212{
741 if (!method) 2213 unsigned int flags = ev_supported_backends ();
2214
2215#ifndef __NetBSD__
2216 /* kqueue is borked on everything but netbsd apparently */
2217 /* it usually doesn't work correctly on anything but sockets and pipes */
2218 flags &= ~EVBACKEND_KQUEUE;
2219#endif
2220#ifdef __APPLE__
2221 /* only select works correctly on that "unix-certified" platform */
2222 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2223 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2224#endif
2225#ifdef __FreeBSD__
2226 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2227#endif
2228
2229 return flags;
2230}
2231
2232unsigned int ecb_cold
2233ev_embeddable_backends (void) EV_THROW
2234{
2235 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2236
2237 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2238 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2239 flags &= ~EVBACKEND_EPOLL;
2240
2241 return flags;
2242}
2243
2244unsigned int
2245ev_backend (EV_P) EV_THROW
2246{
2247 return backend;
2248}
2249
2250#if EV_FEATURE_API
2251unsigned int
2252ev_iteration (EV_P) EV_THROW
2253{
2254 return loop_count;
2255}
2256
2257unsigned int
2258ev_depth (EV_P) EV_THROW
2259{
2260 return loop_depth;
2261}
2262
2263void
2264ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2265{
2266 io_blocktime = interval;
2267}
2268
2269void
2270ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2271{
2272 timeout_blocktime = interval;
2273}
2274
2275void
2276ev_set_userdata (EV_P_ void *data) EV_THROW
2277{
2278 userdata = data;
2279}
2280
2281void *
2282ev_userdata (EV_P) EV_THROW
2283{
2284 return userdata;
2285}
2286
2287void
2288ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2289{
2290 invoke_cb = invoke_pending_cb;
2291}
2292
2293void
2294ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2295{
2296 release_cb = release;
2297 acquire_cb = acquire;
2298}
2299#endif
2300
2301/* initialise a loop structure, must be zero-initialised */
2302static void noinline ecb_cold
2303loop_init (EV_P_ unsigned int flags) EV_THROW
2304{
2305 if (!backend)
742 { 2306 {
2307 origflags = flags;
2308
2309#if EV_USE_REALTIME
2310 if (!have_realtime)
2311 {
2312 struct timespec ts;
2313
2314 if (!clock_gettime (CLOCK_REALTIME, &ts))
2315 have_realtime = 1;
2316 }
2317#endif
2318
743#if EV_USE_MONOTONIC 2319#if EV_USE_MONOTONIC
2320 if (!have_monotonic)
744 { 2321 {
745 struct timespec ts; 2322 struct timespec ts;
2323
746 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2324 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
747 have_monotonic = 1; 2325 have_monotonic = 1;
748 } 2326 }
749#endif 2327#endif
750 2328
2329 /* pid check not overridable via env */
2330#ifndef _WIN32
2331 if (flags & EVFLAG_FORKCHECK)
2332 curpid = getpid ();
2333#endif
2334
2335 if (!(flags & EVFLAG_NOENV)
2336 && !enable_secure ()
2337 && getenv ("LIBEV_FLAGS"))
2338 flags = atoi (getenv ("LIBEV_FLAGS"));
2339
751 ev_rt_now = ev_time (); 2340 ev_rt_now = ev_time ();
752 mn_now = get_clock (); 2341 mn_now = get_clock ();
753 now_floor = mn_now; 2342 now_floor = mn_now;
754 rtmn_diff = ev_rt_now - mn_now; 2343 rtmn_diff = ev_rt_now - mn_now;
2344#if EV_FEATURE_API
2345 invoke_cb = ev_invoke_pending;
2346#endif
755 2347
756 if (methods == EVMETHOD_AUTO) 2348 io_blocktime = 0.;
757 if (!enable_secure () && getenv ("LIBEV_METHODS")) 2349 timeout_blocktime = 0.;
758 methods = atoi (getenv ("LIBEV_METHODS")); 2350 backend = 0;
759 else 2351 backend_fd = -1;
760 methods = EVMETHOD_ANY; 2352 sig_pending = 0;
2353#if EV_ASYNC_ENABLE
2354 async_pending = 0;
2355#endif
2356 pipe_write_skipped = 0;
2357 pipe_write_wanted = 0;
2358#if EV_USE_INOTIFY
2359 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2360#endif
2361#if EV_USE_SIGNALFD
2362 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2363#endif
761 2364
762 method = 0; 2365 if (!(flags & EVBACKEND_MASK))
2366 flags |= ev_recommended_backends ();
2367
763#if EV_USE_WIN32 2368#if EV_USE_IOCP
764 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods); 2369 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2370#endif
2371#if EV_USE_PORT
2372 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
765#endif 2373#endif
766#if EV_USE_KQUEUE 2374#if EV_USE_KQUEUE
767 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 2375 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
768#endif 2376#endif
769#if EV_USE_EPOLL 2377#if EV_USE_EPOLL
770 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 2378 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
771#endif 2379#endif
772#if EV_USE_POLL 2380#if EV_USE_POLL
773 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 2381 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
774#endif 2382#endif
775#if EV_USE_SELECT 2383#if EV_USE_SELECT
776 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 2384 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
777#endif 2385#endif
778 2386
2387 ev_prepare_init (&pending_w, pendingcb);
2388
2389#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
779 ev_init (&sigev, sigcb); 2390 ev_init (&pipe_w, pipecb);
780 ev_set_priority (&sigev, EV_MAXPRI); 2391 ev_set_priority (&pipe_w, EV_MAXPRI);
2392#endif
781 } 2393 }
782} 2394}
783 2395
784void 2396/* free up a loop structure */
2397void ecb_cold
785loop_destroy (EV_P) 2398ev_loop_destroy (EV_P)
786{ 2399{
787 int i; 2400 int i;
788 2401
2402#if EV_MULTIPLICITY
2403 /* mimic free (0) */
2404 if (!EV_A)
2405 return;
2406#endif
2407
2408#if EV_CLEANUP_ENABLE
2409 /* queue cleanup watchers (and execute them) */
2410 if (expect_false (cleanupcnt))
2411 {
2412 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2413 EV_INVOKE_PENDING;
2414 }
2415#endif
2416
2417#if EV_CHILD_ENABLE
2418 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2419 {
2420 ev_ref (EV_A); /* child watcher */
2421 ev_signal_stop (EV_A_ &childev);
2422 }
2423#endif
2424
2425 if (ev_is_active (&pipe_w))
2426 {
2427 /*ev_ref (EV_A);*/
2428 /*ev_io_stop (EV_A_ &pipe_w);*/
2429
2430#if EV_USE_EVENTFD
2431 if (evfd >= 0)
2432 close (evfd);
2433#endif
2434
2435 if (evpipe [0] >= 0)
2436 {
2437 EV_WIN32_CLOSE_FD (evpipe [0]);
2438 EV_WIN32_CLOSE_FD (evpipe [1]);
2439 }
2440 }
2441
2442#if EV_USE_SIGNALFD
2443 if (ev_is_active (&sigfd_w))
2444 close (sigfd);
2445#endif
2446
2447#if EV_USE_INOTIFY
2448 if (fs_fd >= 0)
2449 close (fs_fd);
2450#endif
2451
2452 if (backend_fd >= 0)
2453 close (backend_fd);
2454
789#if EV_USE_WIN32 2455#if EV_USE_IOCP
790 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A); 2456 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2457#endif
2458#if EV_USE_PORT
2459 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
791#endif 2460#endif
792#if EV_USE_KQUEUE 2461#if EV_USE_KQUEUE
793 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 2462 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
794#endif 2463#endif
795#if EV_USE_EPOLL 2464#if EV_USE_EPOLL
796 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 2465 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
797#endif 2466#endif
798#if EV_USE_POLL 2467#if EV_USE_POLL
799 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 2468 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
800#endif 2469#endif
801#if EV_USE_SELECT 2470#if EV_USE_SELECT
802 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 2471 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
803#endif 2472#endif
804 2473
805 for (i = NUMPRI; i--; ) 2474 for (i = NUMPRI; i--; )
2475 {
806 array_free (pending, [i]); 2476 array_free (pending, [i]);
2477#if EV_IDLE_ENABLE
2478 array_free (idle, [i]);
2479#endif
2480 }
2481
2482 ev_free (anfds); anfds = 0; anfdmax = 0;
807 2483
808 /* have to use the microsoft-never-gets-it-right macro */ 2484 /* have to use the microsoft-never-gets-it-right macro */
809 array_free_microshit (fdchange); 2485 array_free (rfeed, EMPTY);
810 array_free_microshit (timer); 2486 array_free (fdchange, EMPTY);
2487 array_free (timer, EMPTY);
811#if EV_PERIODICS 2488#if EV_PERIODIC_ENABLE
812 array_free_microshit (periodic); 2489 array_free (periodic, EMPTY);
813#endif 2490#endif
814 array_free_microshit (idle); 2491#if EV_FORK_ENABLE
815 array_free_microshit (prepare); 2492 array_free (fork, EMPTY);
816 array_free_microshit (check); 2493#endif
2494#if EV_CLEANUP_ENABLE
2495 array_free (cleanup, EMPTY);
2496#endif
2497 array_free (prepare, EMPTY);
2498 array_free (check, EMPTY);
2499#if EV_ASYNC_ENABLE
2500 array_free (async, EMPTY);
2501#endif
817 2502
818 method = 0; 2503 backend = 0;
819}
820 2504
821static void 2505#if EV_MULTIPLICITY
2506 if (ev_is_default_loop (EV_A))
2507#endif
2508 ev_default_loop_ptr = 0;
2509#if EV_MULTIPLICITY
2510 else
2511 ev_free (EV_A);
2512#endif
2513}
2514
2515#if EV_USE_INOTIFY
2516inline_size void infy_fork (EV_P);
2517#endif
2518
2519inline_size void
822loop_fork (EV_P) 2520loop_fork (EV_P)
823{ 2521{
2522#if EV_USE_PORT
2523 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
2524#endif
2525#if EV_USE_KQUEUE
2526 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2527#endif
824#if EV_USE_EPOLL 2528#if EV_USE_EPOLL
825 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 2529 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
826#endif 2530#endif
827#if EV_USE_KQUEUE 2531#if EV_USE_INOTIFY
828 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 2532 infy_fork (EV_A);
829#endif 2533#endif
830 2534
831 if (ev_is_active (&sigev)) 2535 if (ev_is_active (&pipe_w))
832 { 2536 {
833 /* default loop */ 2537 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
834 2538
835 ev_ref (EV_A); 2539 ev_ref (EV_A);
836 ev_io_stop (EV_A_ &sigev); 2540 ev_io_stop (EV_A_ &pipe_w);
837 close (sigpipe [0]);
838 close (sigpipe [1]);
839 2541
840 while (pipe (sigpipe)) 2542#if EV_USE_EVENTFD
841 syserr ("(libev) error creating pipe"); 2543 if (evfd >= 0)
2544 close (evfd);
2545#endif
842 2546
2547 if (evpipe [0] >= 0)
2548 {
2549 EV_WIN32_CLOSE_FD (evpipe [0]);
2550 EV_WIN32_CLOSE_FD (evpipe [1]);
2551 }
2552
2553#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
843 siginit (EV_A); 2554 evpipe_init (EV_A);
2555 /* iterate over everything, in case we missed something before */
2556 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
2557#endif
844 } 2558 }
845 2559
846 postfork = 0; 2560 postfork = 0;
847} 2561}
848 2562
849#if EV_MULTIPLICITY 2563#if EV_MULTIPLICITY
2564
850struct ev_loop * 2565struct ev_loop * ecb_cold
851ev_loop_new (int methods) 2566ev_loop_new (unsigned int flags) EV_THROW
852{ 2567{
853 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2568 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
854 2569
855 memset (loop, 0, sizeof (struct ev_loop)); 2570 memset (EV_A, 0, sizeof (struct ev_loop));
856
857 loop_init (EV_A_ methods); 2571 loop_init (EV_A_ flags);
858 2572
859 if (ev_method (EV_A)) 2573 if (ev_backend (EV_A))
860 return loop; 2574 return EV_A;
861 2575
2576 ev_free (EV_A);
862 return 0; 2577 return 0;
863} 2578}
864 2579
865void 2580#endif /* multiplicity */
866ev_loop_destroy (EV_P)
867{
868 loop_destroy (EV_A);
869 ev_free (loop);
870}
871 2581
872void 2582#if EV_VERIFY
873ev_loop_fork (EV_P) 2583static void noinline ecb_cold
2584verify_watcher (EV_P_ W w)
874{ 2585{
875 postfork = 1; 2586 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
876}
877 2587
2588 if (w->pending)
2589 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2590}
2591
2592static void noinline ecb_cold
2593verify_heap (EV_P_ ANHE *heap, int N)
2594{
2595 int i;
2596
2597 for (i = HEAP0; i < N + HEAP0; ++i)
2598 {
2599 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2600 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2601 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2602
2603 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2604 }
2605}
2606
2607static void noinline ecb_cold
2608array_verify (EV_P_ W *ws, int cnt)
2609{
2610 while (cnt--)
2611 {
2612 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2613 verify_watcher (EV_A_ ws [cnt]);
2614 }
2615}
2616#endif
2617
2618#if EV_FEATURE_API
2619void ecb_cold
2620ev_verify (EV_P) EV_THROW
2621{
2622#if EV_VERIFY
2623 int i;
2624 WL w, w2;
2625
2626 assert (activecnt >= -1);
2627
2628 assert (fdchangemax >= fdchangecnt);
2629 for (i = 0; i < fdchangecnt; ++i)
2630 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2631
2632 assert (anfdmax >= 0);
2633 for (i = 0; i < anfdmax; ++i)
2634 {
2635 int j = 0;
2636
2637 for (w = w2 = anfds [i].head; w; w = w->next)
2638 {
2639 verify_watcher (EV_A_ (W)w);
2640
2641 if (j++ & 1)
2642 {
2643 assert (("libev: io watcher list contains a loop", w != w2));
2644 w2 = w2->next;
2645 }
2646
2647 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2648 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2649 }
2650 }
2651
2652 assert (timermax >= timercnt);
2653 verify_heap (EV_A_ timers, timercnt);
2654
2655#if EV_PERIODIC_ENABLE
2656 assert (periodicmax >= periodiccnt);
2657 verify_heap (EV_A_ periodics, periodiccnt);
2658#endif
2659
2660 for (i = NUMPRI; i--; )
2661 {
2662 assert (pendingmax [i] >= pendingcnt [i]);
2663#if EV_IDLE_ENABLE
2664 assert (idleall >= 0);
2665 assert (idlemax [i] >= idlecnt [i]);
2666 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2667#endif
2668 }
2669
2670#if EV_FORK_ENABLE
2671 assert (forkmax >= forkcnt);
2672 array_verify (EV_A_ (W *)forks, forkcnt);
2673#endif
2674
2675#if EV_CLEANUP_ENABLE
2676 assert (cleanupmax >= cleanupcnt);
2677 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2678#endif
2679
2680#if EV_ASYNC_ENABLE
2681 assert (asyncmax >= asynccnt);
2682 array_verify (EV_A_ (W *)asyncs, asynccnt);
2683#endif
2684
2685#if EV_PREPARE_ENABLE
2686 assert (preparemax >= preparecnt);
2687 array_verify (EV_A_ (W *)prepares, preparecnt);
2688#endif
2689
2690#if EV_CHECK_ENABLE
2691 assert (checkmax >= checkcnt);
2692 array_verify (EV_A_ (W *)checks, checkcnt);
2693#endif
2694
2695# if 0
2696#if EV_CHILD_ENABLE
2697 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2698 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2699#endif
2700# endif
2701#endif
2702}
878#endif 2703#endif
879 2704
880#if EV_MULTIPLICITY 2705#if EV_MULTIPLICITY
881struct ev_loop * 2706struct ev_loop * ecb_cold
882#else 2707#else
883int 2708int
884#endif 2709#endif
885ev_default_loop (int methods) 2710ev_default_loop (unsigned int flags) EV_THROW
886{ 2711{
887 if (sigpipe [0] == sigpipe [1])
888 if (pipe (sigpipe))
889 return 0;
890
891 if (!default_loop) 2712 if (!ev_default_loop_ptr)
892 { 2713 {
893#if EV_MULTIPLICITY 2714#if EV_MULTIPLICITY
894 struct ev_loop *loop = default_loop = &default_loop_struct; 2715 EV_P = ev_default_loop_ptr = &default_loop_struct;
895#else 2716#else
896 default_loop = 1; 2717 ev_default_loop_ptr = 1;
897#endif 2718#endif
898 2719
899 loop_init (EV_A_ methods); 2720 loop_init (EV_A_ flags);
900 2721
901 if (ev_method (EV_A)) 2722 if (ev_backend (EV_A))
902 { 2723 {
903 siginit (EV_A); 2724#if EV_CHILD_ENABLE
904
905#ifndef WIN32
906 ev_signal_init (&childev, childcb, SIGCHLD); 2725 ev_signal_init (&childev, childcb, SIGCHLD);
907 ev_set_priority (&childev, EV_MAXPRI); 2726 ev_set_priority (&childev, EV_MAXPRI);
908 ev_signal_start (EV_A_ &childev); 2727 ev_signal_start (EV_A_ &childev);
909 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2728 ev_unref (EV_A); /* child watcher should not keep loop alive */
910#endif 2729#endif
911 } 2730 }
912 else 2731 else
913 default_loop = 0; 2732 ev_default_loop_ptr = 0;
914 } 2733 }
915 2734
916 return default_loop; 2735 return ev_default_loop_ptr;
917} 2736}
918 2737
919void 2738void
920ev_default_destroy (void) 2739ev_loop_fork (EV_P) EV_THROW
921{ 2740{
922#if EV_MULTIPLICITY 2741 postfork = 1;
923 struct ev_loop *loop = default_loop;
924#endif
925
926#ifndef WIN32
927 ev_ref (EV_A); /* child watcher */
928 ev_signal_stop (EV_A_ &childev);
929#endif
930
931 ev_ref (EV_A); /* signal watcher */
932 ev_io_stop (EV_A_ &sigev);
933
934 close (sigpipe [0]); sigpipe [0] = 0;
935 close (sigpipe [1]); sigpipe [1] = 0;
936
937 loop_destroy (EV_A);
938} 2742}
2743
2744/*****************************************************************************/
939 2745
940void 2746void
941ev_default_fork (void) 2747ev_invoke (EV_P_ void *w, int revents)
942{ 2748{
943#if EV_MULTIPLICITY 2749 EV_CB_INVOKE ((W)w, revents);
944 struct ev_loop *loop = default_loop;
945#endif
946
947 if (method)
948 postfork = 1;
949} 2750}
950 2751
951/*****************************************************************************/ 2752unsigned int
952 2753ev_pending_count (EV_P) EV_THROW
953static int
954any_pending (EV_P)
955{ 2754{
956 int pri; 2755 int pri;
2756 unsigned int count = 0;
957 2757
958 for (pri = NUMPRI; pri--; ) 2758 for (pri = NUMPRI; pri--; )
959 if (pendingcnt [pri]) 2759 count += pendingcnt [pri];
960 return 1;
961 2760
962 return 0; 2761 return count;
963} 2762}
964 2763
965static void 2764void noinline
966call_pending (EV_P) 2765ev_invoke_pending (EV_P)
967{ 2766{
968 int pri; 2767 pendingpri = NUMPRI;
969 2768
970 for (pri = NUMPRI; pri--; ) 2769 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
2770 {
2771 --pendingpri;
2772
971 while (pendingcnt [pri]) 2773 while (pendingcnt [pendingpri])
972 {
973 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
974
975 if (p->w)
976 { 2774 {
2775 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
2776
977 p->w->pending = 0; 2777 p->w->pending = 0;
978 EV_CB_INVOKE (p->w, p->events); 2778 EV_CB_INVOKE (p->w, p->events);
2779 EV_FREQUENT_CHECK;
2780 }
2781 }
2782}
2783
2784#if EV_IDLE_ENABLE
2785/* make idle watchers pending. this handles the "call-idle */
2786/* only when higher priorities are idle" logic */
2787inline_size void
2788idle_reify (EV_P)
2789{
2790 if (expect_false (idleall))
2791 {
2792 int pri;
2793
2794 for (pri = NUMPRI; pri--; )
2795 {
2796 if (pendingcnt [pri])
2797 break;
2798
2799 if (idlecnt [pri])
2800 {
2801 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2802 break;
979 } 2803 }
980 } 2804 }
2805 }
981} 2806}
2807#endif
982 2808
983static void 2809/* make timers pending */
2810inline_size void
984timers_reify (EV_P) 2811timers_reify (EV_P)
985{ 2812{
2813 EV_FREQUENT_CHECK;
2814
986 while (timercnt && ((WT)timers [0])->at <= mn_now) 2815 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
987 { 2816 {
988 struct ev_timer *w = timers [0]; 2817 do
989
990 assert (("inactive timer on timer heap detected", ev_is_active (w)));
991
992 /* first reschedule or stop timer */
993 if (w->repeat)
994 { 2818 {
2819 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2820
2821 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2822
2823 /* first reschedule or stop timer */
2824 if (w->repeat)
2825 {
2826 ev_at (w) += w->repeat;
2827 if (ev_at (w) < mn_now)
2828 ev_at (w) = mn_now;
2829
995 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2830 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
996 2831
997 ((WT)w)->at += w->repeat; 2832 ANHE_at_cache (timers [HEAP0]);
998 if (((WT)w)->at < mn_now)
999 ((WT)w)->at = mn_now;
1000
1001 downheap ((WT *)timers, timercnt, 0); 2833 downheap (timers, timercnt, HEAP0);
2834 }
2835 else
2836 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2837
2838 EV_FREQUENT_CHECK;
2839 feed_reverse (EV_A_ (W)w);
1002 } 2840 }
1003 else 2841 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1004 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1005 2842
1006 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2843 feed_reverse_done (EV_A_ EV_TIMER);
2844 }
2845}
2846
2847#if EV_PERIODIC_ENABLE
2848
2849static void noinline
2850periodic_recalc (EV_P_ ev_periodic *w)
2851{
2852 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2853 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2854
2855 /* the above almost always errs on the low side */
2856 while (at <= ev_rt_now)
1007 } 2857 {
1008} 2858 ev_tstamp nat = at + w->interval;
1009 2859
1010#if EV_PERIODICS 2860 /* when resolution fails us, we use ev_rt_now */
1011static void 2861 if (expect_false (nat == at))
2862 {
2863 at = ev_rt_now;
2864 break;
2865 }
2866
2867 at = nat;
2868 }
2869
2870 ev_at (w) = at;
2871}
2872
2873/* make periodics pending */
2874inline_size void
1012periodics_reify (EV_P) 2875periodics_reify (EV_P)
1013{ 2876{
2877 EV_FREQUENT_CHECK;
2878
1014 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2879 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1015 { 2880 {
1016 struct ev_periodic *w = periodics [0]; 2881 do
2882 {
2883 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1017 2884
1018 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 2885 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1019 2886
1020 /* first reschedule or stop timer */ 2887 /* first reschedule or stop timer */
2888 if (w->reschedule_cb)
2889 {
2890 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2891
2892 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2893
2894 ANHE_at_cache (periodics [HEAP0]);
2895 downheap (periodics, periodiccnt, HEAP0);
2896 }
2897 else if (w->interval)
2898 {
2899 periodic_recalc (EV_A_ w);
2900 ANHE_at_cache (periodics [HEAP0]);
2901 downheap (periodics, periodiccnt, HEAP0);
2902 }
2903 else
2904 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2905
2906 EV_FREQUENT_CHECK;
2907 feed_reverse (EV_A_ (W)w);
2908 }
2909 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2910
2911 feed_reverse_done (EV_A_ EV_PERIODIC);
2912 }
2913}
2914
2915/* simply recalculate all periodics */
2916/* TODO: maybe ensure that at least one event happens when jumping forward? */
2917static void noinline ecb_cold
2918periodics_reschedule (EV_P)
2919{
2920 int i;
2921
2922 /* adjust periodics after time jump */
2923 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2924 {
2925 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2926
1021 if (w->reschedule_cb) 2927 if (w->reschedule_cb)
2928 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2929 else if (w->interval)
2930 periodic_recalc (EV_A_ w);
2931
2932 ANHE_at_cache (periodics [i]);
2933 }
2934
2935 reheap (periodics, periodiccnt);
2936}
2937#endif
2938
2939/* adjust all timers by a given offset */
2940static void noinline ecb_cold
2941timers_reschedule (EV_P_ ev_tstamp adjust)
2942{
2943 int i;
2944
2945 for (i = 0; i < timercnt; ++i)
2946 {
2947 ANHE *he = timers + i + HEAP0;
2948 ANHE_w (*he)->at += adjust;
2949 ANHE_at_cache (*he);
2950 }
2951}
2952
2953/* fetch new monotonic and realtime times from the kernel */
2954/* also detect if there was a timejump, and act accordingly */
2955inline_speed void
2956time_update (EV_P_ ev_tstamp max_block)
2957{
2958#if EV_USE_MONOTONIC
2959 if (expect_true (have_monotonic))
2960 {
2961 int i;
2962 ev_tstamp odiff = rtmn_diff;
2963
2964 mn_now = get_clock ();
2965
2966 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2967 /* interpolate in the meantime */
2968 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1022 { 2969 {
1023 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2970 ev_rt_now = rtmn_diff + mn_now;
1024 2971 return;
1025 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1026 downheap ((WT *)periodics, periodiccnt, 0);
1027 } 2972 }
1028 else if (w->interval)
1029 {
1030 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1031 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1032 downheap ((WT *)periodics, periodiccnt, 0);
1033 }
1034 else
1035 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1036 2973
1037 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1038 }
1039}
1040
1041static void
1042periodics_reschedule (EV_P)
1043{
1044 int i;
1045
1046 /* adjust periodics after time jump */
1047 for (i = 0; i < periodiccnt; ++i)
1048 {
1049 struct ev_periodic *w = periodics [i];
1050
1051 if (w->reschedule_cb)
1052 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1053 else if (w->interval)
1054 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1055 }
1056
1057 /* now rebuild the heap */
1058 for (i = periodiccnt >> 1; i--; )
1059 downheap ((WT *)periodics, periodiccnt, i);
1060}
1061#endif
1062
1063inline int
1064time_update_monotonic (EV_P)
1065{
1066 mn_now = get_clock ();
1067
1068 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1069 {
1070 ev_rt_now = rtmn_diff + mn_now;
1071 return 0;
1072 }
1073 else
1074 {
1075 now_floor = mn_now; 2974 now_floor = mn_now;
1076 ev_rt_now = ev_time (); 2975 ev_rt_now = ev_time ();
1077 return 1;
1078 }
1079}
1080 2976
1081static void 2977 /* loop a few times, before making important decisions.
1082time_update (EV_P) 2978 * on the choice of "4": one iteration isn't enough,
1083{ 2979 * in case we get preempted during the calls to
1084 int i; 2980 * ev_time and get_clock. a second call is almost guaranteed
1085 2981 * to succeed in that case, though. and looping a few more times
1086#if EV_USE_MONOTONIC 2982 * doesn't hurt either as we only do this on time-jumps or
1087 if (expect_true (have_monotonic)) 2983 * in the unlikely event of having been preempted here.
1088 { 2984 */
1089 if (time_update_monotonic (EV_A)) 2985 for (i = 4; --i; )
1090 { 2986 {
1091 ev_tstamp odiff = rtmn_diff; 2987 ev_tstamp diff;
1092
1093 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1094 {
1095 rtmn_diff = ev_rt_now - mn_now; 2988 rtmn_diff = ev_rt_now - mn_now;
1096 2989
1097 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2990 diff = odiff - rtmn_diff;
2991
2992 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1098 return; /* all is well */ 2993 return; /* all is well */
1099 2994
1100 ev_rt_now = ev_time (); 2995 ev_rt_now = ev_time ();
1101 mn_now = get_clock (); 2996 mn_now = get_clock ();
1102 now_floor = mn_now; 2997 now_floor = mn_now;
1103 } 2998 }
1104 2999
3000 /* no timer adjustment, as the monotonic clock doesn't jump */
3001 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1105# if EV_PERIODICS 3002# if EV_PERIODIC_ENABLE
3003 periodics_reschedule (EV_A);
3004# endif
3005 }
3006 else
3007#endif
3008 {
3009 ev_rt_now = ev_time ();
3010
3011 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
3012 {
3013 /* adjust timers. this is easy, as the offset is the same for all of them */
3014 timers_reschedule (EV_A_ ev_rt_now - mn_now);
3015#if EV_PERIODIC_ENABLE
1106 periodics_reschedule (EV_A); 3016 periodics_reschedule (EV_A);
1107# endif 3017#endif
1108 /* no timer adjustment, as the monotonic clock doesn't jump */
1109 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1110 } 3018 }
1111 }
1112 else
1113#endif
1114 {
1115 ev_rt_now = ev_time ();
1116
1117 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1118 {
1119#if EV_PERIODICS
1120 periodics_reschedule (EV_A);
1121#endif
1122
1123 /* adjust timers. this is easy, as the offset is the same for all */
1124 for (i = 0; i < timercnt; ++i)
1125 ((WT)timers [i])->at += ev_rt_now - mn_now;
1126 }
1127 3019
1128 mn_now = ev_rt_now; 3020 mn_now = ev_rt_now;
1129 } 3021 }
1130} 3022}
1131 3023
1132void 3024int
1133ev_ref (EV_P)
1134{
1135 ++activecnt;
1136}
1137
1138void
1139ev_unref (EV_P)
1140{
1141 --activecnt;
1142}
1143
1144static int loop_done;
1145
1146void
1147ev_loop (EV_P_ int flags) 3025ev_run (EV_P_ int flags)
1148{ 3026{
1149 double block; 3027#if EV_FEATURE_API
1150 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 3028 ++loop_depth;
3029#endif
3030
3031 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3032
3033 loop_done = EVBREAK_CANCEL;
3034
3035 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1151 3036
1152 do 3037 do
1153 { 3038 {
3039#if EV_VERIFY >= 2
3040 ev_verify (EV_A);
3041#endif
3042
3043#ifndef _WIN32
3044 if (expect_false (curpid)) /* penalise the forking check even more */
3045 if (expect_false (getpid () != curpid))
3046 {
3047 curpid = getpid ();
3048 postfork = 1;
3049 }
3050#endif
3051
3052#if EV_FORK_ENABLE
3053 /* we might have forked, so queue fork handlers */
3054 if (expect_false (postfork))
3055 if (forkcnt)
3056 {
3057 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3058 EV_INVOKE_PENDING;
3059 }
3060#endif
3061
3062#if EV_PREPARE_ENABLE
1154 /* queue check watchers (and execute them) */ 3063 /* queue prepare watchers (and execute them) */
1155 if (expect_false (preparecnt)) 3064 if (expect_false (preparecnt))
1156 { 3065 {
1157 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3066 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1158 call_pending (EV_A); 3067 EV_INVOKE_PENDING;
1159 } 3068 }
3069#endif
3070
3071 if (expect_false (loop_done))
3072 break;
1160 3073
1161 /* we might have forked, so reify kernel state if necessary */ 3074 /* we might have forked, so reify kernel state if necessary */
1162 if (expect_false (postfork)) 3075 if (expect_false (postfork))
1163 loop_fork (EV_A); 3076 loop_fork (EV_A);
1164 3077
1165 /* update fd-related kernel structures */ 3078 /* update fd-related kernel structures */
1166 fd_reify (EV_A); 3079 fd_reify (EV_A);
1167 3080
1168 /* calculate blocking time */ 3081 /* calculate blocking time */
3082 {
3083 ev_tstamp waittime = 0.;
3084 ev_tstamp sleeptime = 0.;
1169 3085
1170 /* we only need this for !monotonic clock or timers, but as we basically 3086 /* remember old timestamp for io_blocktime calculation */
1171 always have timers, we just calculate it always */ 3087 ev_tstamp prev_mn_now = mn_now;
1172#if EV_USE_MONOTONIC 3088
1173 if (expect_true (have_monotonic)) 3089 /* update time to cancel out callback processing overhead */
1174 time_update_monotonic (EV_A); 3090 time_update (EV_A_ 1e100);
1175 else 3091
1176#endif 3092 /* from now on, we want a pipe-wake-up */
3093 pipe_write_wanted = 1;
3094
3095 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3096
3097 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1177 { 3098 {
1178 ev_rt_now = ev_time ();
1179 mn_now = ev_rt_now;
1180 }
1181
1182 if (flags & EVLOOP_NONBLOCK || idlecnt)
1183 block = 0.;
1184 else
1185 {
1186 block = MAX_BLOCKTIME; 3099 waittime = MAX_BLOCKTIME;
1187 3100
1188 if (timercnt) 3101 if (timercnt)
1189 { 3102 {
1190 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 3103 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1191 if (block > to) block = to; 3104 if (waittime > to) waittime = to;
1192 } 3105 }
1193 3106
1194#if EV_PERIODICS 3107#if EV_PERIODIC_ENABLE
1195 if (periodiccnt) 3108 if (periodiccnt)
1196 { 3109 {
1197 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 3110 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1198 if (block > to) block = to; 3111 if (waittime > to) waittime = to;
1199 } 3112 }
1200#endif 3113#endif
1201 3114
1202 if (block < 0.) block = 0.; 3115 /* don't let timeouts decrease the waittime below timeout_blocktime */
3116 if (expect_false (waittime < timeout_blocktime))
3117 waittime = timeout_blocktime;
3118
3119 /* at this point, we NEED to wait, so we have to ensure */
3120 /* to pass a minimum nonzero value to the backend */
3121 if (expect_false (waittime < backend_mintime))
3122 waittime = backend_mintime;
3123
3124 /* extra check because io_blocktime is commonly 0 */
3125 if (expect_false (io_blocktime))
3126 {
3127 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3128
3129 if (sleeptime > waittime - backend_mintime)
3130 sleeptime = waittime - backend_mintime;
3131
3132 if (expect_true (sleeptime > 0.))
3133 {
3134 ev_sleep (sleeptime);
3135 waittime -= sleeptime;
3136 }
3137 }
1203 } 3138 }
1204 3139
1205 method_poll (EV_A_ block); 3140#if EV_FEATURE_API
3141 ++loop_count;
3142#endif
3143 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3144 backend_poll (EV_A_ waittime);
3145 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1206 3146
3147 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3148
3149 ECB_MEMORY_FENCE_ACQUIRE;
3150 if (pipe_write_skipped)
3151 {
3152 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3153 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3154 }
3155
3156
1207 /* update ev_rt_now, do magic */ 3157 /* update ev_rt_now, do magic */
1208 time_update (EV_A); 3158 time_update (EV_A_ waittime + sleeptime);
3159 }
1209 3160
1210 /* queue pending timers and reschedule them */ 3161 /* queue pending timers and reschedule them */
1211 timers_reify (EV_A); /* relative timers called last */ 3162 timers_reify (EV_A); /* relative timers called last */
1212#if EV_PERIODICS 3163#if EV_PERIODIC_ENABLE
1213 periodics_reify (EV_A); /* absolute timers called first */ 3164 periodics_reify (EV_A); /* absolute timers called first */
1214#endif 3165#endif
1215 3166
3167#if EV_IDLE_ENABLE
1216 /* queue idle watchers unless io or timers are pending */ 3168 /* queue idle watchers unless other events are pending */
1217 if (idlecnt && !any_pending (EV_A)) 3169 idle_reify (EV_A);
1218 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 3170#endif
1219 3171
3172#if EV_CHECK_ENABLE
1220 /* queue check watchers, to be executed first */ 3173 /* queue check watchers, to be executed first */
1221 if (checkcnt) 3174 if (expect_false (checkcnt))
1222 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3175 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3176#endif
1223 3177
1224 call_pending (EV_A); 3178 EV_INVOKE_PENDING;
1225 } 3179 }
1226 while (activecnt && !loop_done); 3180 while (expect_true (
3181 activecnt
3182 && !loop_done
3183 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3184 ));
1227 3185
1228 if (loop_done != 2) 3186 if (loop_done == EVBREAK_ONE)
1229 loop_done = 0; 3187 loop_done = EVBREAK_CANCEL;
3188
3189#if EV_FEATURE_API
3190 --loop_depth;
3191#endif
3192
3193 return activecnt;
1230} 3194}
1231 3195
1232void 3196void
1233ev_unloop (EV_P_ int how) 3197ev_break (EV_P_ int how) EV_THROW
1234{ 3198{
1235 loop_done = how; 3199 loop_done = how;
1236} 3200}
1237 3201
3202void
3203ev_ref (EV_P) EV_THROW
3204{
3205 ++activecnt;
3206}
3207
3208void
3209ev_unref (EV_P) EV_THROW
3210{
3211 --activecnt;
3212}
3213
3214void
3215ev_now_update (EV_P) EV_THROW
3216{
3217 time_update (EV_A_ 1e100);
3218}
3219
3220void
3221ev_suspend (EV_P) EV_THROW
3222{
3223 ev_now_update (EV_A);
3224}
3225
3226void
3227ev_resume (EV_P) EV_THROW
3228{
3229 ev_tstamp mn_prev = mn_now;
3230
3231 ev_now_update (EV_A);
3232 timers_reschedule (EV_A_ mn_now - mn_prev);
3233#if EV_PERIODIC_ENABLE
3234 /* TODO: really do this? */
3235 periodics_reschedule (EV_A);
3236#endif
3237}
3238
1238/*****************************************************************************/ 3239/*****************************************************************************/
3240/* singly-linked list management, used when the expected list length is short */
1239 3241
1240inline void 3242inline_size void
1241wlist_add (WL *head, WL elem) 3243wlist_add (WL *head, WL elem)
1242{ 3244{
1243 elem->next = *head; 3245 elem->next = *head;
1244 *head = elem; 3246 *head = elem;
1245} 3247}
1246 3248
1247inline void 3249inline_size void
1248wlist_del (WL *head, WL elem) 3250wlist_del (WL *head, WL elem)
1249{ 3251{
1250 while (*head) 3252 while (*head)
1251 { 3253 {
1252 if (*head == elem) 3254 if (expect_true (*head == elem))
1253 { 3255 {
1254 *head = elem->next; 3256 *head = elem->next;
1255 return; 3257 break;
1256 } 3258 }
1257 3259
1258 head = &(*head)->next; 3260 head = &(*head)->next;
1259 } 3261 }
1260} 3262}
1261 3263
3264/* internal, faster, version of ev_clear_pending */
1262inline void 3265inline_speed void
1263ev_clear_pending (EV_P_ W w) 3266clear_pending (EV_P_ W w)
1264{ 3267{
1265 if (w->pending) 3268 if (w->pending)
1266 { 3269 {
1267 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3270 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1268 w->pending = 0; 3271 w->pending = 0;
1269 } 3272 }
1270} 3273}
1271 3274
3275int
3276ev_clear_pending (EV_P_ void *w) EV_THROW
3277{
3278 W w_ = (W)w;
3279 int pending = w_->pending;
3280
3281 if (expect_true (pending))
3282 {
3283 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3284 p->w = (W)&pending_w;
3285 w_->pending = 0;
3286 return p->events;
3287 }
3288 else
3289 return 0;
3290}
3291
1272inline void 3292inline_size void
3293pri_adjust (EV_P_ W w)
3294{
3295 int pri = ev_priority (w);
3296 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3297 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3298 ev_set_priority (w, pri);
3299}
3300
3301inline_speed void
1273ev_start (EV_P_ W w, int active) 3302ev_start (EV_P_ W w, int active)
1274{ 3303{
1275 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 3304 pri_adjust (EV_A_ w);
1276 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1277
1278 w->active = active; 3305 w->active = active;
1279 ev_ref (EV_A); 3306 ev_ref (EV_A);
1280} 3307}
1281 3308
1282inline void 3309inline_size void
1283ev_stop (EV_P_ W w) 3310ev_stop (EV_P_ W w)
1284{ 3311{
1285 ev_unref (EV_A); 3312 ev_unref (EV_A);
1286 w->active = 0; 3313 w->active = 0;
1287} 3314}
1288 3315
1289/*****************************************************************************/ 3316/*****************************************************************************/
1290 3317
1291void 3318void noinline
1292ev_io_start (EV_P_ struct ev_io *w) 3319ev_io_start (EV_P_ ev_io *w) EV_THROW
1293{ 3320{
1294 int fd = w->fd; 3321 int fd = w->fd;
1295 3322
1296 if (ev_is_active (w)) 3323 if (expect_false (ev_is_active (w)))
1297 return; 3324 return;
1298 3325
1299 assert (("ev_io_start called with negative fd", fd >= 0)); 3326 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3327 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3328
3329 EV_FREQUENT_CHECK;
1300 3330
1301 ev_start (EV_A_ (W)w, 1); 3331 ev_start (EV_A_ (W)w, 1);
1302 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3332 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1303 wlist_add ((WL *)&anfds[fd].head, (WL)w); 3333 wlist_add (&anfds[fd].head, (WL)w);
1304 3334
1305 fd_change (EV_A_ fd); 3335 /* common bug, apparently */
1306} 3336 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
1307 3337
1308void 3338 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3339 w->events &= ~EV__IOFDSET;
3340
3341 EV_FREQUENT_CHECK;
3342}
3343
3344void noinline
1309ev_io_stop (EV_P_ struct ev_io *w) 3345ev_io_stop (EV_P_ ev_io *w) EV_THROW
1310{ 3346{
1311 ev_clear_pending (EV_A_ (W)w); 3347 clear_pending (EV_A_ (W)w);
1312 if (!ev_is_active (w)) 3348 if (expect_false (!ev_is_active (w)))
1313 return; 3349 return;
1314 3350
1315 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3351 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1316 3352
3353 EV_FREQUENT_CHECK;
3354
1317 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 3355 wlist_del (&anfds[w->fd].head, (WL)w);
1318 ev_stop (EV_A_ (W)w); 3356 ev_stop (EV_A_ (W)w);
1319 3357
1320 fd_change (EV_A_ w->fd); 3358 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1321}
1322 3359
1323void 3360 EV_FREQUENT_CHECK;
3361}
3362
3363void noinline
1324ev_timer_start (EV_P_ struct ev_timer *w) 3364ev_timer_start (EV_P_ ev_timer *w) EV_THROW
1325{ 3365{
1326 if (ev_is_active (w)) 3366 if (expect_false (ev_is_active (w)))
1327 return; 3367 return;
1328 3368
1329 ((WT)w)->at += mn_now; 3369 ev_at (w) += mn_now;
1330 3370
1331 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3371 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1332 3372
3373 EV_FREQUENT_CHECK;
3374
3375 ++timercnt;
1333 ev_start (EV_A_ (W)w, ++timercnt); 3376 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1334 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void)); 3377 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1335 timers [timercnt - 1] = w; 3378 ANHE_w (timers [ev_active (w)]) = (WT)w;
1336 upheap ((WT *)timers, timercnt - 1); 3379 ANHE_at_cache (timers [ev_active (w)]);
3380 upheap (timers, ev_active (w));
1337 3381
3382 EV_FREQUENT_CHECK;
3383
1338 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3384 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1339} 3385}
1340 3386
1341void 3387void noinline
1342ev_timer_stop (EV_P_ struct ev_timer *w) 3388ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
1343{ 3389{
1344 ev_clear_pending (EV_A_ (W)w); 3390 clear_pending (EV_A_ (W)w);
1345 if (!ev_is_active (w)) 3391 if (expect_false (!ev_is_active (w)))
1346 return; 3392 return;
1347 3393
3394 EV_FREQUENT_CHECK;
3395
3396 {
3397 int active = ev_active (w);
3398
1348 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3399 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1349 3400
1350 if (((W)w)->active < timercnt--) 3401 --timercnt;
3402
3403 if (expect_true (active < timercnt + HEAP0))
1351 { 3404 {
1352 timers [((W)w)->active - 1] = timers [timercnt]; 3405 timers [active] = timers [timercnt + HEAP0];
1353 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 3406 adjustheap (timers, timercnt, active);
1354 } 3407 }
3408 }
1355 3409
1356 ((WT)w)->at -= mn_now; 3410 ev_at (w) -= mn_now;
1357 3411
1358 ev_stop (EV_A_ (W)w); 3412 ev_stop (EV_A_ (W)w);
1359}
1360 3413
1361void 3414 EV_FREQUENT_CHECK;
3415}
3416
3417void noinline
1362ev_timer_again (EV_P_ struct ev_timer *w) 3418ev_timer_again (EV_P_ ev_timer *w) EV_THROW
1363{ 3419{
3420 EV_FREQUENT_CHECK;
3421
3422 clear_pending (EV_A_ (W)w);
3423
1364 if (ev_is_active (w)) 3424 if (ev_is_active (w))
1365 { 3425 {
1366 if (w->repeat) 3426 if (w->repeat)
1367 { 3427 {
1368 ((WT)w)->at = mn_now + w->repeat; 3428 ev_at (w) = mn_now + w->repeat;
3429 ANHE_at_cache (timers [ev_active (w)]);
1369 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 3430 adjustheap (timers, timercnt, ev_active (w));
1370 } 3431 }
1371 else 3432 else
1372 ev_timer_stop (EV_A_ w); 3433 ev_timer_stop (EV_A_ w);
1373 } 3434 }
1374 else if (w->repeat) 3435 else if (w->repeat)
3436 {
3437 ev_at (w) = w->repeat;
1375 ev_timer_start (EV_A_ w); 3438 ev_timer_start (EV_A_ w);
1376} 3439 }
1377 3440
3441 EV_FREQUENT_CHECK;
3442}
3443
3444ev_tstamp
3445ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3446{
3447 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3448}
3449
1378#if EV_PERIODICS 3450#if EV_PERIODIC_ENABLE
1379void 3451void noinline
1380ev_periodic_start (EV_P_ struct ev_periodic *w) 3452ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
1381{ 3453{
1382 if (ev_is_active (w)) 3454 if (expect_false (ev_is_active (w)))
1383 return; 3455 return;
1384 3456
1385 if (w->reschedule_cb) 3457 if (w->reschedule_cb)
1386 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 3458 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1387 else if (w->interval) 3459 else if (w->interval)
1388 { 3460 {
1389 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3461 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1390 /* this formula differs from the one in periodic_reify because we do not always round up */ 3462 periodic_recalc (EV_A_ w);
1391 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1392 } 3463 }
3464 else
3465 ev_at (w) = w->offset;
1393 3466
3467 EV_FREQUENT_CHECK;
3468
3469 ++periodiccnt;
1394 ev_start (EV_A_ (W)w, ++periodiccnt); 3470 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1395 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 3471 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1396 periodics [periodiccnt - 1] = w; 3472 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1397 upheap ((WT *)periodics, periodiccnt - 1); 3473 ANHE_at_cache (periodics [ev_active (w)]);
3474 upheap (periodics, ev_active (w));
1398 3475
3476 EV_FREQUENT_CHECK;
3477
1399 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3478 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1400} 3479}
1401 3480
1402void 3481void noinline
1403ev_periodic_stop (EV_P_ struct ev_periodic *w) 3482ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
1404{ 3483{
1405 ev_clear_pending (EV_A_ (W)w); 3484 clear_pending (EV_A_ (W)w);
1406 if (!ev_is_active (w)) 3485 if (expect_false (!ev_is_active (w)))
1407 return; 3486 return;
1408 3487
3488 EV_FREQUENT_CHECK;
3489
3490 {
3491 int active = ev_active (w);
3492
1409 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3493 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1410 3494
1411 if (((W)w)->active < periodiccnt--) 3495 --periodiccnt;
3496
3497 if (expect_true (active < periodiccnt + HEAP0))
1412 { 3498 {
1413 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 3499 periodics [active] = periodics [periodiccnt + HEAP0];
1414 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 3500 adjustheap (periodics, periodiccnt, active);
1415 } 3501 }
3502 }
1416 3503
1417 ev_stop (EV_A_ (W)w); 3504 ev_stop (EV_A_ (W)w);
1418}
1419 3505
1420void 3506 EV_FREQUENT_CHECK;
3507}
3508
3509void noinline
1421ev_periodic_again (EV_P_ struct ev_periodic *w) 3510ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
1422{ 3511{
1423 /* TODO: use adjustheap and recalculation */ 3512 /* TODO: use adjustheap and recalculation */
1424 ev_periodic_stop (EV_A_ w); 3513 ev_periodic_stop (EV_A_ w);
1425 ev_periodic_start (EV_A_ w); 3514 ev_periodic_start (EV_A_ w);
1426} 3515}
1427#endif 3516#endif
1428 3517
1429void
1430ev_idle_start (EV_P_ struct ev_idle *w)
1431{
1432 if (ev_is_active (w))
1433 return;
1434
1435 ev_start (EV_A_ (W)w, ++idlecnt);
1436 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1437 idles [idlecnt - 1] = w;
1438}
1439
1440void
1441ev_idle_stop (EV_P_ struct ev_idle *w)
1442{
1443 ev_clear_pending (EV_A_ (W)w);
1444 if (ev_is_active (w))
1445 return;
1446
1447 idles [((W)w)->active - 1] = idles [--idlecnt];
1448 ev_stop (EV_A_ (W)w);
1449}
1450
1451void
1452ev_prepare_start (EV_P_ struct ev_prepare *w)
1453{
1454 if (ev_is_active (w))
1455 return;
1456
1457 ev_start (EV_A_ (W)w, ++preparecnt);
1458 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1459 prepares [preparecnt - 1] = w;
1460}
1461
1462void
1463ev_prepare_stop (EV_P_ struct ev_prepare *w)
1464{
1465 ev_clear_pending (EV_A_ (W)w);
1466 if (ev_is_active (w))
1467 return;
1468
1469 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1470 ev_stop (EV_A_ (W)w);
1471}
1472
1473void
1474ev_check_start (EV_P_ struct ev_check *w)
1475{
1476 if (ev_is_active (w))
1477 return;
1478
1479 ev_start (EV_A_ (W)w, ++checkcnt);
1480 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1481 checks [checkcnt - 1] = w;
1482}
1483
1484void
1485ev_check_stop (EV_P_ struct ev_check *w)
1486{
1487 ev_clear_pending (EV_A_ (W)w);
1488 if (!ev_is_active (w))
1489 return;
1490
1491 checks [((W)w)->active - 1] = checks [--checkcnt];
1492 ev_stop (EV_A_ (W)w);
1493}
1494
1495#ifndef SA_RESTART 3518#ifndef SA_RESTART
1496# define SA_RESTART 0 3519# define SA_RESTART 0
1497#endif 3520#endif
1498 3521
3522#if EV_SIGNAL_ENABLE
3523
3524void noinline
3525ev_signal_start (EV_P_ ev_signal *w) EV_THROW
3526{
3527 if (expect_false (ev_is_active (w)))
3528 return;
3529
3530 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3531
3532#if EV_MULTIPLICITY
3533 assert (("libev: a signal must not be attached to two different loops",
3534 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3535
3536 signals [w->signum - 1].loop = EV_A;
3537#endif
3538
3539 EV_FREQUENT_CHECK;
3540
3541#if EV_USE_SIGNALFD
3542 if (sigfd == -2)
3543 {
3544 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3545 if (sigfd < 0 && errno == EINVAL)
3546 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3547
3548 if (sigfd >= 0)
3549 {
3550 fd_intern (sigfd); /* doing it twice will not hurt */
3551
3552 sigemptyset (&sigfd_set);
3553
3554 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3555 ev_set_priority (&sigfd_w, EV_MAXPRI);
3556 ev_io_start (EV_A_ &sigfd_w);
3557 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3558 }
3559 }
3560
3561 if (sigfd >= 0)
3562 {
3563 /* TODO: check .head */
3564 sigaddset (&sigfd_set, w->signum);
3565 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3566
3567 signalfd (sigfd, &sigfd_set, 0);
3568 }
3569#endif
3570
3571 ev_start (EV_A_ (W)w, 1);
3572 wlist_add (&signals [w->signum - 1].head, (WL)w);
3573
3574 if (!((WL)w)->next)
3575# if EV_USE_SIGNALFD
3576 if (sigfd < 0) /*TODO*/
3577# endif
3578 {
3579# ifdef _WIN32
3580 evpipe_init (EV_A);
3581
3582 signal (w->signum, ev_sighandler);
3583# else
3584 struct sigaction sa;
3585
3586 evpipe_init (EV_A);
3587
3588 sa.sa_handler = ev_sighandler;
3589 sigfillset (&sa.sa_mask);
3590 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3591 sigaction (w->signum, &sa, 0);
3592
3593 if (origflags & EVFLAG_NOSIGMASK)
3594 {
3595 sigemptyset (&sa.sa_mask);
3596 sigaddset (&sa.sa_mask, w->signum);
3597 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3598 }
3599#endif
3600 }
3601
3602 EV_FREQUENT_CHECK;
3603}
3604
3605void noinline
3606ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
3607{
3608 clear_pending (EV_A_ (W)w);
3609 if (expect_false (!ev_is_active (w)))
3610 return;
3611
3612 EV_FREQUENT_CHECK;
3613
3614 wlist_del (&signals [w->signum - 1].head, (WL)w);
3615 ev_stop (EV_A_ (W)w);
3616
3617 if (!signals [w->signum - 1].head)
3618 {
3619#if EV_MULTIPLICITY
3620 signals [w->signum - 1].loop = 0; /* unattach from signal */
3621#endif
3622#if EV_USE_SIGNALFD
3623 if (sigfd >= 0)
3624 {
3625 sigset_t ss;
3626
3627 sigemptyset (&ss);
3628 sigaddset (&ss, w->signum);
3629 sigdelset (&sigfd_set, w->signum);
3630
3631 signalfd (sigfd, &sigfd_set, 0);
3632 sigprocmask (SIG_UNBLOCK, &ss, 0);
3633 }
3634 else
3635#endif
3636 signal (w->signum, SIG_DFL);
3637 }
3638
3639 EV_FREQUENT_CHECK;
3640}
3641
3642#endif
3643
3644#if EV_CHILD_ENABLE
3645
1499void 3646void
1500ev_signal_start (EV_P_ struct ev_signal *w) 3647ev_child_start (EV_P_ ev_child *w) EV_THROW
1501{ 3648{
1502#if EV_MULTIPLICITY 3649#if EV_MULTIPLICITY
1503 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 3650 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1504#endif 3651#endif
1505 if (ev_is_active (w)) 3652 if (expect_false (ev_is_active (w)))
1506 return; 3653 return;
1507 3654
1508 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3655 EV_FREQUENT_CHECK;
1509 3656
1510 ev_start (EV_A_ (W)w, 1); 3657 ev_start (EV_A_ (W)w, 1);
1511 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3658 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1512 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1513 3659
1514 if (!((WL)w)->next) 3660 EV_FREQUENT_CHECK;
3661}
3662
3663void
3664ev_child_stop (EV_P_ ev_child *w) EV_THROW
3665{
3666 clear_pending (EV_A_ (W)w);
3667 if (expect_false (!ev_is_active (w)))
3668 return;
3669
3670 EV_FREQUENT_CHECK;
3671
3672 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3673 ev_stop (EV_A_ (W)w);
3674
3675 EV_FREQUENT_CHECK;
3676}
3677
3678#endif
3679
3680#if EV_STAT_ENABLE
3681
3682# ifdef _WIN32
3683# undef lstat
3684# define lstat(a,b) _stati64 (a,b)
3685# endif
3686
3687#define DEF_STAT_INTERVAL 5.0074891
3688#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3689#define MIN_STAT_INTERVAL 0.1074891
3690
3691static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3692
3693#if EV_USE_INOTIFY
3694
3695/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3696# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3697
3698static void noinline
3699infy_add (EV_P_ ev_stat *w)
3700{
3701 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3702
3703 if (w->wd >= 0)
3704 {
3705 struct statfs sfs;
3706
3707 /* now local changes will be tracked by inotify, but remote changes won't */
3708 /* unless the filesystem is known to be local, we therefore still poll */
3709 /* also do poll on <2.6.25, but with normal frequency */
3710
3711 if (!fs_2625)
3712 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3713 else if (!statfs (w->path, &sfs)
3714 && (sfs.f_type == 0x1373 /* devfs */
3715 || sfs.f_type == 0xEF53 /* ext2/3 */
3716 || sfs.f_type == 0x3153464a /* jfs */
3717 || sfs.f_type == 0x52654973 /* reiser3 */
3718 || sfs.f_type == 0x01021994 /* tempfs */
3719 || sfs.f_type == 0x58465342 /* xfs */))
3720 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3721 else
3722 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1515 { 3723 }
1516#if WIN32 3724 else
1517 signal (w->signum, sighandler); 3725 {
3726 /* can't use inotify, continue to stat */
3727 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3728
3729 /* if path is not there, monitor some parent directory for speedup hints */
3730 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3731 /* but an efficiency issue only */
3732 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3733 {
3734 char path [4096];
3735 strcpy (path, w->path);
3736
3737 do
3738 {
3739 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3740 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3741
3742 char *pend = strrchr (path, '/');
3743
3744 if (!pend || pend == path)
3745 break;
3746
3747 *pend = 0;
3748 w->wd = inotify_add_watch (fs_fd, path, mask);
3749 }
3750 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3751 }
3752 }
3753
3754 if (w->wd >= 0)
3755 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3756
3757 /* now re-arm timer, if required */
3758 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3759 ev_timer_again (EV_A_ &w->timer);
3760 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3761}
3762
3763static void noinline
3764infy_del (EV_P_ ev_stat *w)
3765{
3766 int slot;
3767 int wd = w->wd;
3768
3769 if (wd < 0)
3770 return;
3771
3772 w->wd = -2;
3773 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3774 wlist_del (&fs_hash [slot].head, (WL)w);
3775
3776 /* remove this watcher, if others are watching it, they will rearm */
3777 inotify_rm_watch (fs_fd, wd);
3778}
3779
3780static void noinline
3781infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3782{
3783 if (slot < 0)
3784 /* overflow, need to check for all hash slots */
3785 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3786 infy_wd (EV_A_ slot, wd, ev);
3787 else
3788 {
3789 WL w_;
3790
3791 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3792 {
3793 ev_stat *w = (ev_stat *)w_;
3794 w_ = w_->next; /* lets us remove this watcher and all before it */
3795
3796 if (w->wd == wd || wd == -1)
3797 {
3798 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3799 {
3800 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3801 w->wd = -1;
3802 infy_add (EV_A_ w); /* re-add, no matter what */
3803 }
3804
3805 stat_timer_cb (EV_A_ &w->timer, 0);
3806 }
3807 }
3808 }
3809}
3810
3811static void
3812infy_cb (EV_P_ ev_io *w, int revents)
3813{
3814 char buf [EV_INOTIFY_BUFSIZE];
3815 int ofs;
3816 int len = read (fs_fd, buf, sizeof (buf));
3817
3818 for (ofs = 0; ofs < len; )
3819 {
3820 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3821 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3822 ofs += sizeof (struct inotify_event) + ev->len;
3823 }
3824}
3825
3826inline_size void ecb_cold
3827ev_check_2625 (EV_P)
3828{
3829 /* kernels < 2.6.25 are borked
3830 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3831 */
3832 if (ev_linux_version () < 0x020619)
3833 return;
3834
3835 fs_2625 = 1;
3836}
3837
3838inline_size int
3839infy_newfd (void)
3840{
3841#if defined IN_CLOEXEC && defined IN_NONBLOCK
3842 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3843 if (fd >= 0)
3844 return fd;
3845#endif
3846 return inotify_init ();
3847}
3848
3849inline_size void
3850infy_init (EV_P)
3851{
3852 if (fs_fd != -2)
3853 return;
3854
3855 fs_fd = -1;
3856
3857 ev_check_2625 (EV_A);
3858
3859 fs_fd = infy_newfd ();
3860
3861 if (fs_fd >= 0)
3862 {
3863 fd_intern (fs_fd);
3864 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3865 ev_set_priority (&fs_w, EV_MAXPRI);
3866 ev_io_start (EV_A_ &fs_w);
3867 ev_unref (EV_A);
3868 }
3869}
3870
3871inline_size void
3872infy_fork (EV_P)
3873{
3874 int slot;
3875
3876 if (fs_fd < 0)
3877 return;
3878
3879 ev_ref (EV_A);
3880 ev_io_stop (EV_A_ &fs_w);
3881 close (fs_fd);
3882 fs_fd = infy_newfd ();
3883
3884 if (fs_fd >= 0)
3885 {
3886 fd_intern (fs_fd);
3887 ev_io_set (&fs_w, fs_fd, EV_READ);
3888 ev_io_start (EV_A_ &fs_w);
3889 ev_unref (EV_A);
3890 }
3891
3892 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3893 {
3894 WL w_ = fs_hash [slot].head;
3895 fs_hash [slot].head = 0;
3896
3897 while (w_)
3898 {
3899 ev_stat *w = (ev_stat *)w_;
3900 w_ = w_->next; /* lets us add this watcher */
3901
3902 w->wd = -1;
3903
3904 if (fs_fd >= 0)
3905 infy_add (EV_A_ w); /* re-add, no matter what */
3906 else
3907 {
3908 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3909 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3910 ev_timer_again (EV_A_ &w->timer);
3911 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3912 }
3913 }
3914 }
3915}
3916
3917#endif
3918
3919#ifdef _WIN32
3920# define EV_LSTAT(p,b) _stati64 (p, b)
1518#else 3921#else
1519 struct sigaction sa; 3922# define EV_LSTAT(p,b) lstat (p, b)
1520 sa.sa_handler = sighandler;
1521 sigfillset (&sa.sa_mask);
1522 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1523 sigaction (w->signum, &sa, 0);
1524#endif 3923#endif
1525 }
1526}
1527 3924
1528void 3925void
1529ev_signal_stop (EV_P_ struct ev_signal *w) 3926ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
1530{ 3927{
1531 ev_clear_pending (EV_A_ (W)w); 3928 if (lstat (w->path, &w->attr) < 0)
1532 if (!ev_is_active (w)) 3929 w->attr.st_nlink = 0;
3930 else if (!w->attr.st_nlink)
3931 w->attr.st_nlink = 1;
3932}
3933
3934static void noinline
3935stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3936{
3937 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3938
3939 ev_statdata prev = w->attr;
3940 ev_stat_stat (EV_A_ w);
3941
3942 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3943 if (
3944 prev.st_dev != w->attr.st_dev
3945 || prev.st_ino != w->attr.st_ino
3946 || prev.st_mode != w->attr.st_mode
3947 || prev.st_nlink != w->attr.st_nlink
3948 || prev.st_uid != w->attr.st_uid
3949 || prev.st_gid != w->attr.st_gid
3950 || prev.st_rdev != w->attr.st_rdev
3951 || prev.st_size != w->attr.st_size
3952 || prev.st_atime != w->attr.st_atime
3953 || prev.st_mtime != w->attr.st_mtime
3954 || prev.st_ctime != w->attr.st_ctime
3955 ) {
3956 /* we only update w->prev on actual differences */
3957 /* in case we test more often than invoke the callback, */
3958 /* to ensure that prev is always different to attr */
3959 w->prev = prev;
3960
3961 #if EV_USE_INOTIFY
3962 if (fs_fd >= 0)
3963 {
3964 infy_del (EV_A_ w);
3965 infy_add (EV_A_ w);
3966 ev_stat_stat (EV_A_ w); /* avoid race... */
3967 }
3968 #endif
3969
3970 ev_feed_event (EV_A_ w, EV_STAT);
3971 }
3972}
3973
3974void
3975ev_stat_start (EV_P_ ev_stat *w) EV_THROW
3976{
3977 if (expect_false (ev_is_active (w)))
1533 return; 3978 return;
1534 3979
1535 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3980 ev_stat_stat (EV_A_ w);
3981
3982 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3983 w->interval = MIN_STAT_INTERVAL;
3984
3985 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3986 ev_set_priority (&w->timer, ev_priority (w));
3987
3988#if EV_USE_INOTIFY
3989 infy_init (EV_A);
3990
3991 if (fs_fd >= 0)
3992 infy_add (EV_A_ w);
3993 else
3994#endif
3995 {
3996 ev_timer_again (EV_A_ &w->timer);
3997 ev_unref (EV_A);
3998 }
3999
4000 ev_start (EV_A_ (W)w, 1);
4001
4002 EV_FREQUENT_CHECK;
4003}
4004
4005void
4006ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
4007{
4008 clear_pending (EV_A_ (W)w);
4009 if (expect_false (!ev_is_active (w)))
4010 return;
4011
4012 EV_FREQUENT_CHECK;
4013
4014#if EV_USE_INOTIFY
4015 infy_del (EV_A_ w);
4016#endif
4017
4018 if (ev_is_active (&w->timer))
4019 {
4020 ev_ref (EV_A);
4021 ev_timer_stop (EV_A_ &w->timer);
4022 }
4023
1536 ev_stop (EV_A_ (W)w); 4024 ev_stop (EV_A_ (W)w);
1537 4025
1538 if (!signals [w->signum - 1].head) 4026 EV_FREQUENT_CHECK;
1539 signal (w->signum, SIG_DFL);
1540} 4027}
4028#endif
1541 4029
4030#if EV_IDLE_ENABLE
1542void 4031void
1543ev_child_start (EV_P_ struct ev_child *w) 4032ev_idle_start (EV_P_ ev_idle *w) EV_THROW
1544{ 4033{
1545#if EV_MULTIPLICITY
1546 assert (("child watchers are only supported in the default loop", loop == default_loop));
1547#endif
1548 if (ev_is_active (w)) 4034 if (expect_false (ev_is_active (w)))
1549 return; 4035 return;
1550 4036
4037 pri_adjust (EV_A_ (W)w);
4038
4039 EV_FREQUENT_CHECK;
4040
4041 {
4042 int active = ++idlecnt [ABSPRI (w)];
4043
4044 ++idleall;
4045 ev_start (EV_A_ (W)w, active);
4046
4047 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
4048 idles [ABSPRI (w)][active - 1] = w;
4049 }
4050
4051 EV_FREQUENT_CHECK;
4052}
4053
4054void
4055ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
4056{
4057 clear_pending (EV_A_ (W)w);
4058 if (expect_false (!ev_is_active (w)))
4059 return;
4060
4061 EV_FREQUENT_CHECK;
4062
4063 {
4064 int active = ev_active (w);
4065
4066 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4067 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4068
4069 ev_stop (EV_A_ (W)w);
4070 --idleall;
4071 }
4072
4073 EV_FREQUENT_CHECK;
4074}
4075#endif
4076
4077#if EV_PREPARE_ENABLE
4078void
4079ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
4080{
4081 if (expect_false (ev_is_active (w)))
4082 return;
4083
4084 EV_FREQUENT_CHECK;
4085
4086 ev_start (EV_A_ (W)w, ++preparecnt);
4087 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
4088 prepares [preparecnt - 1] = w;
4089
4090 EV_FREQUENT_CHECK;
4091}
4092
4093void
4094ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
4095{
4096 clear_pending (EV_A_ (W)w);
4097 if (expect_false (!ev_is_active (w)))
4098 return;
4099
4100 EV_FREQUENT_CHECK;
4101
4102 {
4103 int active = ev_active (w);
4104
4105 prepares [active - 1] = prepares [--preparecnt];
4106 ev_active (prepares [active - 1]) = active;
4107 }
4108
4109 ev_stop (EV_A_ (W)w);
4110
4111 EV_FREQUENT_CHECK;
4112}
4113#endif
4114
4115#if EV_CHECK_ENABLE
4116void
4117ev_check_start (EV_P_ ev_check *w) EV_THROW
4118{
4119 if (expect_false (ev_is_active (w)))
4120 return;
4121
4122 EV_FREQUENT_CHECK;
4123
4124 ev_start (EV_A_ (W)w, ++checkcnt);
4125 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4126 checks [checkcnt - 1] = w;
4127
4128 EV_FREQUENT_CHECK;
4129}
4130
4131void
4132ev_check_stop (EV_P_ ev_check *w) EV_THROW
4133{
4134 clear_pending (EV_A_ (W)w);
4135 if (expect_false (!ev_is_active (w)))
4136 return;
4137
4138 EV_FREQUENT_CHECK;
4139
4140 {
4141 int active = ev_active (w);
4142
4143 checks [active - 1] = checks [--checkcnt];
4144 ev_active (checks [active - 1]) = active;
4145 }
4146
4147 ev_stop (EV_A_ (W)w);
4148
4149 EV_FREQUENT_CHECK;
4150}
4151#endif
4152
4153#if EV_EMBED_ENABLE
4154void noinline
4155ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
4156{
4157 ev_run (w->other, EVRUN_NOWAIT);
4158}
4159
4160static void
4161embed_io_cb (EV_P_ ev_io *io, int revents)
4162{
4163 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4164
4165 if (ev_cb (w))
4166 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4167 else
4168 ev_run (w->other, EVRUN_NOWAIT);
4169}
4170
4171static void
4172embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4173{
4174 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4175
4176 {
4177 EV_P = w->other;
4178
4179 while (fdchangecnt)
4180 {
4181 fd_reify (EV_A);
4182 ev_run (EV_A_ EVRUN_NOWAIT);
4183 }
4184 }
4185}
4186
4187static void
4188embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4189{
4190 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4191
4192 ev_embed_stop (EV_A_ w);
4193
4194 {
4195 EV_P = w->other;
4196
4197 ev_loop_fork (EV_A);
4198 ev_run (EV_A_ EVRUN_NOWAIT);
4199 }
4200
4201 ev_embed_start (EV_A_ w);
4202}
4203
4204#if 0
4205static void
4206embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4207{
4208 ev_idle_stop (EV_A_ idle);
4209}
4210#endif
4211
4212void
4213ev_embed_start (EV_P_ ev_embed *w) EV_THROW
4214{
4215 if (expect_false (ev_is_active (w)))
4216 return;
4217
4218 {
4219 EV_P = w->other;
4220 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4221 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4222 }
4223
4224 EV_FREQUENT_CHECK;
4225
4226 ev_set_priority (&w->io, ev_priority (w));
4227 ev_io_start (EV_A_ &w->io);
4228
4229 ev_prepare_init (&w->prepare, embed_prepare_cb);
4230 ev_set_priority (&w->prepare, EV_MINPRI);
4231 ev_prepare_start (EV_A_ &w->prepare);
4232
4233 ev_fork_init (&w->fork, embed_fork_cb);
4234 ev_fork_start (EV_A_ &w->fork);
4235
4236 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4237
1551 ev_start (EV_A_ (W)w, 1); 4238 ev_start (EV_A_ (W)w, 1);
1552 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 4239
4240 EV_FREQUENT_CHECK;
1553} 4241}
1554 4242
1555void 4243void
1556ev_child_stop (EV_P_ struct ev_child *w) 4244ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
1557{ 4245{
1558 ev_clear_pending (EV_A_ (W)w); 4246 clear_pending (EV_A_ (W)w);
1559 if (!ev_is_active (w)) 4247 if (expect_false (!ev_is_active (w)))
1560 return; 4248 return;
1561 4249
1562 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 4250 EV_FREQUENT_CHECK;
4251
4252 ev_io_stop (EV_A_ &w->io);
4253 ev_prepare_stop (EV_A_ &w->prepare);
4254 ev_fork_stop (EV_A_ &w->fork);
4255
1563 ev_stop (EV_A_ (W)w); 4256 ev_stop (EV_A_ (W)w);
4257
4258 EV_FREQUENT_CHECK;
1564} 4259}
4260#endif
4261
4262#if EV_FORK_ENABLE
4263void
4264ev_fork_start (EV_P_ ev_fork *w) EV_THROW
4265{
4266 if (expect_false (ev_is_active (w)))
4267 return;
4268
4269 EV_FREQUENT_CHECK;
4270
4271 ev_start (EV_A_ (W)w, ++forkcnt);
4272 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4273 forks [forkcnt - 1] = w;
4274
4275 EV_FREQUENT_CHECK;
4276}
4277
4278void
4279ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
4280{
4281 clear_pending (EV_A_ (W)w);
4282 if (expect_false (!ev_is_active (w)))
4283 return;
4284
4285 EV_FREQUENT_CHECK;
4286
4287 {
4288 int active = ev_active (w);
4289
4290 forks [active - 1] = forks [--forkcnt];
4291 ev_active (forks [active - 1]) = active;
4292 }
4293
4294 ev_stop (EV_A_ (W)w);
4295
4296 EV_FREQUENT_CHECK;
4297}
4298#endif
4299
4300#if EV_CLEANUP_ENABLE
4301void
4302ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4303{
4304 if (expect_false (ev_is_active (w)))
4305 return;
4306
4307 EV_FREQUENT_CHECK;
4308
4309 ev_start (EV_A_ (W)w, ++cleanupcnt);
4310 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4311 cleanups [cleanupcnt - 1] = w;
4312
4313 /* cleanup watchers should never keep a refcount on the loop */
4314 ev_unref (EV_A);
4315 EV_FREQUENT_CHECK;
4316}
4317
4318void
4319ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4320{
4321 clear_pending (EV_A_ (W)w);
4322 if (expect_false (!ev_is_active (w)))
4323 return;
4324
4325 EV_FREQUENT_CHECK;
4326 ev_ref (EV_A);
4327
4328 {
4329 int active = ev_active (w);
4330
4331 cleanups [active - 1] = cleanups [--cleanupcnt];
4332 ev_active (cleanups [active - 1]) = active;
4333 }
4334
4335 ev_stop (EV_A_ (W)w);
4336
4337 EV_FREQUENT_CHECK;
4338}
4339#endif
4340
4341#if EV_ASYNC_ENABLE
4342void
4343ev_async_start (EV_P_ ev_async *w) EV_THROW
4344{
4345 if (expect_false (ev_is_active (w)))
4346 return;
4347
4348 w->sent = 0;
4349
4350 evpipe_init (EV_A);
4351
4352 EV_FREQUENT_CHECK;
4353
4354 ev_start (EV_A_ (W)w, ++asynccnt);
4355 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4356 asyncs [asynccnt - 1] = w;
4357
4358 EV_FREQUENT_CHECK;
4359}
4360
4361void
4362ev_async_stop (EV_P_ ev_async *w) EV_THROW
4363{
4364 clear_pending (EV_A_ (W)w);
4365 if (expect_false (!ev_is_active (w)))
4366 return;
4367
4368 EV_FREQUENT_CHECK;
4369
4370 {
4371 int active = ev_active (w);
4372
4373 asyncs [active - 1] = asyncs [--asynccnt];
4374 ev_active (asyncs [active - 1]) = active;
4375 }
4376
4377 ev_stop (EV_A_ (W)w);
4378
4379 EV_FREQUENT_CHECK;
4380}
4381
4382void
4383ev_async_send (EV_P_ ev_async *w) EV_THROW
4384{
4385 w->sent = 1;
4386 evpipe_write (EV_A_ &async_pending);
4387}
4388#endif
1565 4389
1566/*****************************************************************************/ 4390/*****************************************************************************/
1567 4391
1568struct ev_once 4392struct ev_once
1569{ 4393{
1570 struct ev_io io; 4394 ev_io io;
1571 struct ev_timer to; 4395 ev_timer to;
1572 void (*cb)(int revents, void *arg); 4396 void (*cb)(int revents, void *arg);
1573 void *arg; 4397 void *arg;
1574}; 4398};
1575 4399
1576static void 4400static void
1577once_cb (EV_P_ struct ev_once *once, int revents) 4401once_cb (EV_P_ struct ev_once *once, int revents)
1578{ 4402{
1579 void (*cb)(int revents, void *arg) = once->cb; 4403 void (*cb)(int revents, void *arg) = once->cb;
1580 void *arg = once->arg; 4404 void *arg = once->arg;
1581 4405
1582 ev_io_stop (EV_A_ &once->io); 4406 ev_io_stop (EV_A_ &once->io);
1583 ev_timer_stop (EV_A_ &once->to); 4407 ev_timer_stop (EV_A_ &once->to);
1584 ev_free (once); 4408 ev_free (once);
1585 4409
1586 cb (revents, arg); 4410 cb (revents, arg);
1587} 4411}
1588 4412
1589static void 4413static void
1590once_cb_io (EV_P_ struct ev_io *w, int revents) 4414once_cb_io (EV_P_ ev_io *w, int revents)
1591{ 4415{
1592 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4416 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4417
4418 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1593} 4419}
1594 4420
1595static void 4421static void
1596once_cb_to (EV_P_ struct ev_timer *w, int revents) 4422once_cb_to (EV_P_ ev_timer *w, int revents)
1597{ 4423{
1598 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4424 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4425
4426 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1599} 4427}
1600 4428
1601void 4429void
1602ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4430ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
1603{ 4431{
1604 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4432 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1605 4433
1606 if (!once) 4434 if (expect_false (!once))
4435 {
1607 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4436 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1608 else 4437 return;
1609 { 4438 }
4439
1610 once->cb = cb; 4440 once->cb = cb;
1611 once->arg = arg; 4441 once->arg = arg;
1612 4442
1613 ev_init (&once->io, once_cb_io); 4443 ev_init (&once->io, once_cb_io);
1614 if (fd >= 0) 4444 if (fd >= 0)
4445 {
4446 ev_io_set (&once->io, fd, events);
4447 ev_io_start (EV_A_ &once->io);
4448 }
4449
4450 ev_init (&once->to, once_cb_to);
4451 if (timeout >= 0.)
4452 {
4453 ev_timer_set (&once->to, timeout, 0.);
4454 ev_timer_start (EV_A_ &once->to);
4455 }
4456}
4457
4458/*****************************************************************************/
4459
4460#if EV_WALK_ENABLE
4461void ecb_cold
4462ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4463{
4464 int i, j;
4465 ev_watcher_list *wl, *wn;
4466
4467 if (types & (EV_IO | EV_EMBED))
4468 for (i = 0; i < anfdmax; ++i)
4469 for (wl = anfds [i].head; wl; )
1615 { 4470 {
1616 ev_io_set (&once->io, fd, events); 4471 wn = wl->next;
1617 ev_io_start (EV_A_ &once->io); 4472
4473#if EV_EMBED_ENABLE
4474 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4475 {
4476 if (types & EV_EMBED)
4477 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4478 }
4479 else
4480#endif
4481#if EV_USE_INOTIFY
4482 if (ev_cb ((ev_io *)wl) == infy_cb)
4483 ;
4484 else
4485#endif
4486 if ((ev_io *)wl != &pipe_w)
4487 if (types & EV_IO)
4488 cb (EV_A_ EV_IO, wl);
4489
4490 wl = wn;
1618 } 4491 }
1619 4492
1620 ev_init (&once->to, once_cb_to); 4493 if (types & (EV_TIMER | EV_STAT))
1621 if (timeout >= 0.) 4494 for (i = timercnt + HEAP0; i-- > HEAP0; )
4495#if EV_STAT_ENABLE
4496 /*TODO: timer is not always active*/
4497 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1622 { 4498 {
1623 ev_timer_set (&once->to, timeout, 0.); 4499 if (types & EV_STAT)
1624 ev_timer_start (EV_A_ &once->to); 4500 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1625 } 4501 }
1626 } 4502 else
1627} 4503#endif
4504 if (types & EV_TIMER)
4505 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1628 4506
1629#ifdef __cplusplus 4507#if EV_PERIODIC_ENABLE
1630} 4508 if (types & EV_PERIODIC)
4509 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4510 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4511#endif
4512
4513#if EV_IDLE_ENABLE
4514 if (types & EV_IDLE)
4515 for (j = NUMPRI; j--; )
4516 for (i = idlecnt [j]; i--; )
4517 cb (EV_A_ EV_IDLE, idles [j][i]);
4518#endif
4519
4520#if EV_FORK_ENABLE
4521 if (types & EV_FORK)
4522 for (i = forkcnt; i--; )
4523 if (ev_cb (forks [i]) != embed_fork_cb)
4524 cb (EV_A_ EV_FORK, forks [i]);
4525#endif
4526
4527#if EV_ASYNC_ENABLE
4528 if (types & EV_ASYNC)
4529 for (i = asynccnt; i--; )
4530 cb (EV_A_ EV_ASYNC, asyncs [i]);
4531#endif
4532
4533#if EV_PREPARE_ENABLE
4534 if (types & EV_PREPARE)
4535 for (i = preparecnt; i--; )
4536# if EV_EMBED_ENABLE
4537 if (ev_cb (prepares [i]) != embed_prepare_cb)
1631#endif 4538# endif
4539 cb (EV_A_ EV_PREPARE, prepares [i]);
4540#endif
1632 4541
4542#if EV_CHECK_ENABLE
4543 if (types & EV_CHECK)
4544 for (i = checkcnt; i--; )
4545 cb (EV_A_ EV_CHECK, checks [i]);
4546#endif
4547
4548#if EV_SIGNAL_ENABLE
4549 if (types & EV_SIGNAL)
4550 for (i = 0; i < EV_NSIG - 1; ++i)
4551 for (wl = signals [i].head; wl; )
4552 {
4553 wn = wl->next;
4554 cb (EV_A_ EV_SIGNAL, wl);
4555 wl = wn;
4556 }
4557#endif
4558
4559#if EV_CHILD_ENABLE
4560 if (types & EV_CHILD)
4561 for (i = (EV_PID_HASHSIZE); i--; )
4562 for (wl = childs [i]; wl; )
4563 {
4564 wn = wl->next;
4565 cb (EV_A_ EV_CHILD, wl);
4566 wl = wn;
4567 }
4568#endif
4569/* EV_STAT 0x00001000 /* stat data changed */
4570/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4571}
4572#endif
4573
4574#if EV_MULTIPLICITY
4575 #include "ev_wrap.h"
4576#endif
4577

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines