ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.222 by root, Sun Apr 6 12:45:58 2008 UTC vs.
Revision 1.447 by root, Tue Jun 19 12:29:43 2012 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
52# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
55# endif 71# endif
56# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
58# endif 74# endif
59# else 75# else
60# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
62# endif 78# endif
63# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
65# endif 81# endif
66# endif 82# endif
67 83
84# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
71# else 88# else
89# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
74# endif 100# endif
75 101
102# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 105# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 106# else
107# undef EV_USE_POLL
88# define EV_USE_POLL 0 108# define EV_USE_POLL 0
89# endif
90# endif 109# endif
91 110
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
95# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
98# endif 118# endif
99 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
106# endif 127# endif
107 128
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
111# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
114# endif 136# endif
115 137
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
122# endif 145# endif
123 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 148# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 149# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
130# endif 154# endif
131 155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
132#endif 163# endif
164
165#endif
133 166
134#include <math.h>
135#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
136#include <fcntl.h> 169#include <fcntl.h>
137#include <stddef.h> 170#include <stddef.h>
138 171
139#include <stdio.h> 172#include <stdio.h>
140 173
141#include <assert.h> 174#include <assert.h>
142#include <errno.h> 175#include <errno.h>
143#include <sys/types.h> 176#include <sys/types.h>
144#include <time.h> 177#include <time.h>
178#include <limits.h>
145 179
146#include <signal.h> 180#include <signal.h>
147 181
148#ifdef EV_H 182#ifdef EV_H
149# include EV_H 183# include EV_H
150#else 184#else
151# include "ev.h" 185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
152#endif 197#endif
153 198
154#ifndef _WIN32 199#ifndef _WIN32
155# include <sys/time.h> 200# include <sys/time.h>
156# include <sys/wait.h> 201# include <sys/wait.h>
157# include <unistd.h> 202# include <unistd.h>
158#else 203#else
204# include <io.h>
159# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
160# include <windows.h> 207# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 208# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 209# define EV_SELECT_IS_WINSOCKET 1
163# endif 210# endif
211# undef EV_AVOID_STDIO
164#endif 212#endif
213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
165 221
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 222/* this block tries to deduce configuration from header-defined symbols and defaults */
167 223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# error "unable to find value for NSIG, please report"
247/* to make it compile regardless, just remove the above line, */
248/* but consider reporting it, too! :) */
249# define EV_NSIG 65
250#endif
251
252#ifndef EV_USE_FLOOR
253# define EV_USE_FLOOR 0
254#endif
255
256#ifndef EV_USE_CLOCK_SYSCALL
257# if __linux && __GLIBC__ >= 2
258# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
259# else
260# define EV_USE_CLOCK_SYSCALL 0
261# endif
262#endif
263
168#ifndef EV_USE_MONOTONIC 264#ifndef EV_USE_MONOTONIC
265# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
266# define EV_USE_MONOTONIC EV_FEATURE_OS
267# else
169# define EV_USE_MONOTONIC 0 268# define EV_USE_MONOTONIC 0
269# endif
170#endif 270#endif
171 271
172#ifndef EV_USE_REALTIME 272#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 273# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 274#endif
175 275
176#ifndef EV_USE_NANOSLEEP 276#ifndef EV_USE_NANOSLEEP
277# if _POSIX_C_SOURCE >= 199309L
278# define EV_USE_NANOSLEEP EV_FEATURE_OS
279# else
177# define EV_USE_NANOSLEEP 0 280# define EV_USE_NANOSLEEP 0
281# endif
178#endif 282#endif
179 283
180#ifndef EV_USE_SELECT 284#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 285# define EV_USE_SELECT EV_FEATURE_BACKENDS
182#endif 286#endif
183 287
184#ifndef EV_USE_POLL 288#ifndef EV_USE_POLL
185# ifdef _WIN32 289# ifdef _WIN32
186# define EV_USE_POLL 0 290# define EV_USE_POLL 0
187# else 291# else
188# define EV_USE_POLL 1 292# define EV_USE_POLL EV_FEATURE_BACKENDS
189# endif 293# endif
190#endif 294#endif
191 295
192#ifndef EV_USE_EPOLL 296#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 297# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1 298# define EV_USE_EPOLL EV_FEATURE_BACKENDS
195# else 299# else
196# define EV_USE_EPOLL 0 300# define EV_USE_EPOLL 0
197# endif 301# endif
198#endif 302#endif
199 303
205# define EV_USE_PORT 0 309# define EV_USE_PORT 0
206#endif 310#endif
207 311
208#ifndef EV_USE_INOTIFY 312#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 313# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1 314# define EV_USE_INOTIFY EV_FEATURE_OS
211# else 315# else
212# define EV_USE_INOTIFY 0 316# define EV_USE_INOTIFY 0
213# endif 317# endif
214#endif 318#endif
215 319
216#ifndef EV_PID_HASHSIZE 320#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL 321# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif 322#endif
223 323
224#ifndef EV_INOTIFY_HASHSIZE 324#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL 325# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif 326#endif
231 327
232#ifndef EV_USE_EVENTFD 328#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 329# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 330# define EV_USE_EVENTFD EV_FEATURE_OS
235# else 331# else
236# define EV_USE_EVENTFD 0 332# define EV_USE_EVENTFD 0
237# endif 333# endif
238#endif 334#endif
239 335
336#ifndef EV_USE_SIGNALFD
337# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
338# define EV_USE_SIGNALFD EV_FEATURE_OS
339# else
340# define EV_USE_SIGNALFD 0
341# endif
342#endif
343
344#if 0 /* debugging */
345# define EV_VERIFY 3
346# define EV_USE_4HEAP 1
347# define EV_HEAP_CACHE_AT 1
348#endif
349
350#ifndef EV_VERIFY
351# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
352#endif
353
354#ifndef EV_USE_4HEAP
355# define EV_USE_4HEAP EV_FEATURE_DATA
356#endif
357
358#ifndef EV_HEAP_CACHE_AT
359# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
360#endif
361
362/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
363/* which makes programs even slower. might work on other unices, too. */
364#if EV_USE_CLOCK_SYSCALL
365# include <sys/syscall.h>
366# ifdef SYS_clock_gettime
367# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
368# undef EV_USE_MONOTONIC
369# define EV_USE_MONOTONIC 1
370# else
371# undef EV_USE_CLOCK_SYSCALL
372# define EV_USE_CLOCK_SYSCALL 0
373# endif
374#endif
375
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 376/* this block fixes any misconfiguration where we know we run into trouble otherwise */
377
378#ifdef _AIX
379/* AIX has a completely broken poll.h header */
380# undef EV_USE_POLL
381# define EV_USE_POLL 0
382#endif
241 383
242#ifndef CLOCK_MONOTONIC 384#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 385# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 386# define EV_USE_MONOTONIC 0
245#endif 387#endif
253# undef EV_USE_INOTIFY 395# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0 396# define EV_USE_INOTIFY 0
255#endif 397#endif
256 398
257#if !EV_USE_NANOSLEEP 399#if !EV_USE_NANOSLEEP
258# ifndef _WIN32 400/* hp-ux has it in sys/time.h, which we unconditionally include above */
401# if !defined _WIN32 && !defined __hpux
259# include <sys/select.h> 402# include <sys/select.h>
260# endif 403# endif
261#endif 404#endif
262 405
263#if EV_USE_INOTIFY 406#if EV_USE_INOTIFY
407# include <sys/statfs.h>
264# include <sys/inotify.h> 408# include <sys/inotify.h>
409/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
410# ifndef IN_DONT_FOLLOW
411# undef EV_USE_INOTIFY
412# define EV_USE_INOTIFY 0
265#endif 413# endif
266
267#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h>
269#endif 414#endif
270 415
271#if EV_USE_EVENTFD 416#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h> 418# include <stdint.h>
274# ifdef __cplusplus 419# ifndef EFD_NONBLOCK
275extern "C" { 420# define EFD_NONBLOCK O_NONBLOCK
276# endif 421# endif
277int eventfd (unsigned int initval, int flags); 422# ifndef EFD_CLOEXEC
278# ifdef __cplusplus 423# ifdef O_CLOEXEC
279} 424# define EFD_CLOEXEC O_CLOEXEC
425# else
426# define EFD_CLOEXEC 02000000
427# endif
280# endif 428# endif
429EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
430#endif
431
432#if EV_USE_SIGNALFD
433/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
434# include <stdint.h>
435# ifndef SFD_NONBLOCK
436# define SFD_NONBLOCK O_NONBLOCK
437# endif
438# ifndef SFD_CLOEXEC
439# ifdef O_CLOEXEC
440# define SFD_CLOEXEC O_CLOEXEC
441# else
442# define SFD_CLOEXEC 02000000
443# endif
444# endif
445EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
446
447struct signalfd_siginfo
448{
449 uint32_t ssi_signo;
450 char pad[128 - sizeof (uint32_t)];
451};
281#endif 452#endif
282 453
283/**/ 454/**/
284 455
456#if EV_VERIFY >= 3
457# define EV_FREQUENT_CHECK ev_verify (EV_A)
458#else
459# define EV_FREQUENT_CHECK do { } while (0)
460#endif
461
285/* 462/*
286 * This is used to avoid floating point rounding problems. 463 * This is used to work around floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding
289 * errors are against us.
290 * This value is good at least till the year 4000. 464 * This value is good at least till the year 4000.
291 * Better solutions welcome.
292 */ 465 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 466#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
467/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
294 468
295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 469#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 470#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
298 471
472#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
473#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
474
475/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
476/* ECB.H BEGIN */
477/*
478 * libecb - http://software.schmorp.de/pkg/libecb
479 *
480 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
481 * Copyright (©) 2011 Emanuele Giaquinta
482 * All rights reserved.
483 *
484 * Redistribution and use in source and binary forms, with or without modifica-
485 * tion, are permitted provided that the following conditions are met:
486 *
487 * 1. Redistributions of source code must retain the above copyright notice,
488 * this list of conditions and the following disclaimer.
489 *
490 * 2. Redistributions in binary form must reproduce the above copyright
491 * notice, this list of conditions and the following disclaimer in the
492 * documentation and/or other materials provided with the distribution.
493 *
494 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
495 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
496 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
497 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
498 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
499 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
500 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
501 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
502 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
503 * OF THE POSSIBILITY OF SUCH DAMAGE.
504 */
505
506#ifndef ECB_H
507#define ECB_H
508
509/* 16 bits major, 16 bits minor */
510#define ECB_VERSION 0x00010001
511
512#ifdef _WIN32
513 typedef signed char int8_t;
514 typedef unsigned char uint8_t;
515 typedef signed short int16_t;
516 typedef unsigned short uint16_t;
517 typedef signed int int32_t;
518 typedef unsigned int uint32_t;
299#if __GNUC__ >= 4 519 #if __GNUC__
300# define expect(expr,value) __builtin_expect ((expr),(value)) 520 typedef signed long long int64_t;
301# define noinline __attribute__ ((noinline)) 521 typedef unsigned long long uint64_t;
522 #else /* _MSC_VER || __BORLANDC__ */
523 typedef signed __int64 int64_t;
524 typedef unsigned __int64 uint64_t;
525 #endif
526 #ifdef _WIN64
527 #define ECB_PTRSIZE 8
528 typedef uint64_t uintptr_t;
529 typedef int64_t intptr_t;
530 #else
531 #define ECB_PTRSIZE 4
532 typedef uint32_t uintptr_t;
533 typedef int32_t intptr_t;
534 #endif
535 typedef intptr_t ptrdiff_t;
302#else 536#else
303# define expect(expr,value) (expr) 537 #include <inttypes.h>
304# define noinline 538 #if UINTMAX_MAX > 0xffffffffU
305# if __STDC_VERSION__ < 199901L 539 #define ECB_PTRSIZE 8
306# define inline 540 #else
541 #define ECB_PTRSIZE 4
542 #endif
307# endif 543#endif
544
545/* many compilers define _GNUC_ to some versions but then only implement
546 * what their idiot authors think are the "more important" extensions,
547 * causing enormous grief in return for some better fake benchmark numbers.
548 * or so.
549 * we try to detect these and simply assume they are not gcc - if they have
550 * an issue with that they should have done it right in the first place.
551 */
552#ifndef ECB_GCC_VERSION
553 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
554 #define ECB_GCC_VERSION(major,minor) 0
555 #else
556 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
308#endif 557 #endif
558#endif
309 559
560#define ECB_C (__STDC__+0) /* this assumes that __STDC__ is either empty or a number */
561#define ECB_C99 (__STDC_VERSION__ >= 199901L)
562#define ECB_C11 (__STDC_VERSION__ >= 201112L)
563#define ECB_CPP (__cplusplus+0)
564#define ECB_CPP11 (__cplusplus >= 201103L)
565
566/*****************************************************************************/
567
568/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
569/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
570
571#if ECB_NO_THREADS
572 #define ECB_NO_SMP 1
573#endif
574
575#if ECB_NO_SMP
576 #define ECB_MEMORY_FENCE do { } while (0)
577#endif
578
579#ifndef ECB_MEMORY_FENCE
580 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
581 #if __i386 || __i386__
582 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
583 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
584 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
585 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
586 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
587 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
588 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
589 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
590 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
591 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
592 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
593 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
594 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
595 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
596 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
597 #elif __sparc || __sparc__
598 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
599 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
600 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
601 #elif defined __s390__ || defined __s390x__
602 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
603 #elif defined __mips__
604 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
605 #elif defined __alpha__
606 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
607 #elif defined __hppa__
608 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
609 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
610 #elif defined __ia64__
611 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
612 #endif
613 #endif
614#endif
615
616#ifndef ECB_MEMORY_FENCE
617 #if ECB_GCC_VERSION(4,7)
618 /* see comment below (stdatomic.h) about the C11 memory model. */
619 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
620 #elif defined __clang && __has_feature (cxx_atomic)
621 /* see comment below (stdatomic.h) about the C11 memory model. */
622 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
623 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
624 #define ECB_MEMORY_FENCE __sync_synchronize ()
625 #elif _MSC_VER >= 1400 /* VC++ 2005 */
626 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
627 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
628 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
629 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
630 #elif defined _WIN32
631 #include <WinNT.h>
632 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
633 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
634 #include <mbarrier.h>
635 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
636 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
637 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
638 #elif __xlC__
639 #define ECB_MEMORY_FENCE __sync ()
640 #endif
641#endif
642
643#ifndef ECB_MEMORY_FENCE
644 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
645 /* we assume that these memory fences work on all variables/all memory accesses, */
646 /* not just C11 atomics and atomic accesses */
647 #include <stdatomic.h>
648 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
649 /* any fence other than seq_cst, which isn't very efficient for us. */
650 /* Why that is, we don't know - either the C11 memory model is quite useless */
651 /* for most usages, or gcc and clang have a bug */
652 /* I *currently* lean towards the latter, and inefficiently implement */
653 /* all three of ecb's fences as a seq_cst fence */
654 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
655 #endif
656#endif
657
658#ifndef ECB_MEMORY_FENCE
659 #if !ECB_AVOID_PTHREADS
660 /*
661 * if you get undefined symbol references to pthread_mutex_lock,
662 * or failure to find pthread.h, then you should implement
663 * the ECB_MEMORY_FENCE operations for your cpu/compiler
664 * OR provide pthread.h and link against the posix thread library
665 * of your system.
666 */
667 #include <pthread.h>
668 #define ECB_NEEDS_PTHREADS 1
669 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
670
671 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
672 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
673 #endif
674#endif
675
676#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
677 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
678#endif
679
680#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
681 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
682#endif
683
684/*****************************************************************************/
685
686#if __cplusplus
687 #define ecb_inline static inline
688#elif ECB_GCC_VERSION(2,5)
689 #define ecb_inline static __inline__
690#elif ECB_C99
691 #define ecb_inline static inline
692#else
693 #define ecb_inline static
694#endif
695
696#if ECB_GCC_VERSION(3,3)
697 #define ecb_restrict __restrict__
698#elif ECB_C99
699 #define ecb_restrict restrict
700#else
701 #define ecb_restrict
702#endif
703
704typedef int ecb_bool;
705
706#define ECB_CONCAT_(a, b) a ## b
707#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
708#define ECB_STRINGIFY_(a) # a
709#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
710
711#define ecb_function_ ecb_inline
712
713#if ECB_GCC_VERSION(3,1)
714 #define ecb_attribute(attrlist) __attribute__(attrlist)
715 #define ecb_is_constant(expr) __builtin_constant_p (expr)
716 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
717 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
718#else
719 #define ecb_attribute(attrlist)
720 #define ecb_is_constant(expr) 0
721 #define ecb_expect(expr,value) (expr)
722 #define ecb_prefetch(addr,rw,locality)
723#endif
724
725/* no emulation for ecb_decltype */
726#if ECB_GCC_VERSION(4,5)
727 #define ecb_decltype(x) __decltype(x)
728#elif ECB_GCC_VERSION(3,0)
729 #define ecb_decltype(x) __typeof(x)
730#endif
731
732#define ecb_noinline ecb_attribute ((__noinline__))
733#define ecb_unused ecb_attribute ((__unused__))
734#define ecb_const ecb_attribute ((__const__))
735#define ecb_pure ecb_attribute ((__pure__))
736
737#if ECB_C11
738 #define ecb_noreturn _Noreturn
739#else
740 #define ecb_noreturn ecb_attribute ((__noreturn__))
741#endif
742
743#if ECB_GCC_VERSION(4,3)
744 #define ecb_artificial ecb_attribute ((__artificial__))
745 #define ecb_hot ecb_attribute ((__hot__))
746 #define ecb_cold ecb_attribute ((__cold__))
747#else
748 #define ecb_artificial
749 #define ecb_hot
750 #define ecb_cold
751#endif
752
753/* put around conditional expressions if you are very sure that the */
754/* expression is mostly true or mostly false. note that these return */
755/* booleans, not the expression. */
310#define expect_false(expr) expect ((expr) != 0, 0) 756#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
311#define expect_true(expr) expect ((expr) != 0, 1) 757#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
758/* for compatibility to the rest of the world */
759#define ecb_likely(expr) ecb_expect_true (expr)
760#define ecb_unlikely(expr) ecb_expect_false (expr)
761
762/* count trailing zero bits and count # of one bits */
763#if ECB_GCC_VERSION(3,4)
764 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
765 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
766 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
767 #define ecb_ctz32(x) __builtin_ctz (x)
768 #define ecb_ctz64(x) __builtin_ctzll (x)
769 #define ecb_popcount32(x) __builtin_popcount (x)
770 /* no popcountll */
771#else
772 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
773 ecb_function_ int
774 ecb_ctz32 (uint32_t x)
775 {
776 int r = 0;
777
778 x &= ~x + 1; /* this isolates the lowest bit */
779
780#if ECB_branchless_on_i386
781 r += !!(x & 0xaaaaaaaa) << 0;
782 r += !!(x & 0xcccccccc) << 1;
783 r += !!(x & 0xf0f0f0f0) << 2;
784 r += !!(x & 0xff00ff00) << 3;
785 r += !!(x & 0xffff0000) << 4;
786#else
787 if (x & 0xaaaaaaaa) r += 1;
788 if (x & 0xcccccccc) r += 2;
789 if (x & 0xf0f0f0f0) r += 4;
790 if (x & 0xff00ff00) r += 8;
791 if (x & 0xffff0000) r += 16;
792#endif
793
794 return r;
795 }
796
797 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
798 ecb_function_ int
799 ecb_ctz64 (uint64_t x)
800 {
801 int shift = x & 0xffffffffU ? 0 : 32;
802 return ecb_ctz32 (x >> shift) + shift;
803 }
804
805 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
806 ecb_function_ int
807 ecb_popcount32 (uint32_t x)
808 {
809 x -= (x >> 1) & 0x55555555;
810 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
811 x = ((x >> 4) + x) & 0x0f0f0f0f;
812 x *= 0x01010101;
813
814 return x >> 24;
815 }
816
817 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
818 ecb_function_ int ecb_ld32 (uint32_t x)
819 {
820 int r = 0;
821
822 if (x >> 16) { x >>= 16; r += 16; }
823 if (x >> 8) { x >>= 8; r += 8; }
824 if (x >> 4) { x >>= 4; r += 4; }
825 if (x >> 2) { x >>= 2; r += 2; }
826 if (x >> 1) { r += 1; }
827
828 return r;
829 }
830
831 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
832 ecb_function_ int ecb_ld64 (uint64_t x)
833 {
834 int r = 0;
835
836 if (x >> 32) { x >>= 32; r += 32; }
837
838 return r + ecb_ld32 (x);
839 }
840#endif
841
842ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
843ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
844ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
845ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
846
847ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
848ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
849{
850 return ( (x * 0x0802U & 0x22110U)
851 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
852}
853
854ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
855ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
856{
857 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
858 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
859 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
860 x = ( x >> 8 ) | ( x << 8);
861
862 return x;
863}
864
865ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
866ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
867{
868 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
869 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
870 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
871 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
872 x = ( x >> 16 ) | ( x << 16);
873
874 return x;
875}
876
877/* popcount64 is only available on 64 bit cpus as gcc builtin */
878/* so for this version we are lazy */
879ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
880ecb_function_ int
881ecb_popcount64 (uint64_t x)
882{
883 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
884}
885
886ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
887ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
888ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
889ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
890ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
891ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
892ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
893ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
894
895ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
896ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
897ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
898ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
899ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
900ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
901ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
902ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
903
904#if ECB_GCC_VERSION(4,3)
905 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
906 #define ecb_bswap32(x) __builtin_bswap32 (x)
907 #define ecb_bswap64(x) __builtin_bswap64 (x)
908#else
909 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
910 ecb_function_ uint16_t
911 ecb_bswap16 (uint16_t x)
912 {
913 return ecb_rotl16 (x, 8);
914 }
915
916 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
917 ecb_function_ uint32_t
918 ecb_bswap32 (uint32_t x)
919 {
920 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
921 }
922
923 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
924 ecb_function_ uint64_t
925 ecb_bswap64 (uint64_t x)
926 {
927 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
928 }
929#endif
930
931#if ECB_GCC_VERSION(4,5)
932 #define ecb_unreachable() __builtin_unreachable ()
933#else
934 /* this seems to work fine, but gcc always emits a warning for it :/ */
935 ecb_inline void ecb_unreachable (void) ecb_noreturn;
936 ecb_inline void ecb_unreachable (void) { }
937#endif
938
939/* try to tell the compiler that some condition is definitely true */
940#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
941
942ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
943ecb_inline unsigned char
944ecb_byteorder_helper (void)
945{
946 const uint32_t u = 0x11223344;
947 return *(unsigned char *)&u;
948}
949
950ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
951ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
952ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
953ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
954
955#if ECB_GCC_VERSION(3,0) || ECB_C99
956 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
957#else
958 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
959#endif
960
961#if __cplusplus
962 template<typename T>
963 static inline T ecb_div_rd (T val, T div)
964 {
965 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
966 }
967 template<typename T>
968 static inline T ecb_div_ru (T val, T div)
969 {
970 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
971 }
972#else
973 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
974 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
975#endif
976
977#if ecb_cplusplus_does_not_suck
978 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
979 template<typename T, int N>
980 static inline int ecb_array_length (const T (&arr)[N])
981 {
982 return N;
983 }
984#else
985 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
986#endif
987
988#endif
989
990/* ECB.H END */
991
992#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
993/* if your architecture doesn't need memory fences, e.g. because it is
994 * single-cpu/core, or if you use libev in a project that doesn't use libev
995 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
996 * libev, in which cases the memory fences become nops.
997 * alternatively, you can remove this #error and link against libpthread,
998 * which will then provide the memory fences.
999 */
1000# error "memory fences not defined for your architecture, please report"
1001#endif
1002
1003#ifndef ECB_MEMORY_FENCE
1004# define ECB_MEMORY_FENCE do { } while (0)
1005# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1006# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1007#endif
1008
1009#define expect_false(cond) ecb_expect_false (cond)
1010#define expect_true(cond) ecb_expect_true (cond)
1011#define noinline ecb_noinline
1012
312#define inline_size static inline 1013#define inline_size ecb_inline
313 1014
314#if EV_MINIMAL 1015#if EV_FEATURE_CODE
1016# define inline_speed ecb_inline
1017#else
315# define inline_speed static noinline 1018# define inline_speed static noinline
1019#endif
1020
1021#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1022
1023#if EV_MINPRI == EV_MAXPRI
1024# define ABSPRI(w) (((W)w), 0)
316#else 1025#else
317# define inline_speed static inline
318#endif
319
320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1026# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1027#endif
322 1028
323#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1029#define EMPTY /* required for microsofts broken pseudo-c compiler */
324#define EMPTY2(a,b) /* used to suppress some warnings */ 1030#define EMPTY2(a,b) /* used to suppress some warnings */
325 1031
326typedef ev_watcher *W; 1032typedef ev_watcher *W;
327typedef ev_watcher_list *WL; 1033typedef ev_watcher_list *WL;
328typedef ev_watcher_time *WT; 1034typedef ev_watcher_time *WT;
329 1035
1036#define ev_active(w) ((W)(w))->active
1037#define ev_at(w) ((WT)(w))->at
1038
1039#if EV_USE_REALTIME
1040/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1041/* giving it a reasonably high chance of working on typical architectures */
1042static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1043#endif
1044
330#if EV_USE_MONOTONIC 1045#if EV_USE_MONOTONIC
331/* sig_atomic_t is used to avoid per-thread variables or locking but still */
332/* giving it a reasonably high chance of working on typical architetcures */
333static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1046static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1047#endif
1048
1049#ifndef EV_FD_TO_WIN32_HANDLE
1050# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1051#endif
1052#ifndef EV_WIN32_HANDLE_TO_FD
1053# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1054#endif
1055#ifndef EV_WIN32_CLOSE_FD
1056# define EV_WIN32_CLOSE_FD(fd) close (fd)
334#endif 1057#endif
335 1058
336#ifdef _WIN32 1059#ifdef _WIN32
337# include "ev_win32.c" 1060# include "ev_win32.c"
338#endif 1061#endif
339 1062
340/*****************************************************************************/ 1063/*****************************************************************************/
341 1064
1065/* define a suitable floor function (only used by periodics atm) */
1066
1067#if EV_USE_FLOOR
1068# include <math.h>
1069# define ev_floor(v) floor (v)
1070#else
1071
1072#include <float.h>
1073
1074/* a floor() replacement function, should be independent of ev_tstamp type */
1075static ev_tstamp noinline
1076ev_floor (ev_tstamp v)
1077{
1078 /* the choice of shift factor is not terribly important */
1079#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1080 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1081#else
1082 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1083#endif
1084
1085 /* argument too large for an unsigned long? */
1086 if (expect_false (v >= shift))
1087 {
1088 ev_tstamp f;
1089
1090 if (v == v - 1.)
1091 return v; /* very large number */
1092
1093 f = shift * ev_floor (v * (1. / shift));
1094 return f + ev_floor (v - f);
1095 }
1096
1097 /* special treatment for negative args? */
1098 if (expect_false (v < 0.))
1099 {
1100 ev_tstamp f = -ev_floor (-v);
1101
1102 return f - (f == v ? 0 : 1);
1103 }
1104
1105 /* fits into an unsigned long */
1106 return (unsigned long)v;
1107}
1108
1109#endif
1110
1111/*****************************************************************************/
1112
1113#ifdef __linux
1114# include <sys/utsname.h>
1115#endif
1116
1117static unsigned int noinline ecb_cold
1118ev_linux_version (void)
1119{
1120#ifdef __linux
1121 unsigned int v = 0;
1122 struct utsname buf;
1123 int i;
1124 char *p = buf.release;
1125
1126 if (uname (&buf))
1127 return 0;
1128
1129 for (i = 3+1; --i; )
1130 {
1131 unsigned int c = 0;
1132
1133 for (;;)
1134 {
1135 if (*p >= '0' && *p <= '9')
1136 c = c * 10 + *p++ - '0';
1137 else
1138 {
1139 p += *p == '.';
1140 break;
1141 }
1142 }
1143
1144 v = (v << 8) | c;
1145 }
1146
1147 return v;
1148#else
1149 return 0;
1150#endif
1151}
1152
1153/*****************************************************************************/
1154
1155#if EV_AVOID_STDIO
1156static void noinline ecb_cold
1157ev_printerr (const char *msg)
1158{
1159 write (STDERR_FILENO, msg, strlen (msg));
1160}
1161#endif
1162
342static void (*syserr_cb)(const char *msg); 1163static void (*syserr_cb)(const char *msg) EV_THROW;
343 1164
344void 1165void ecb_cold
345ev_set_syserr_cb (void (*cb)(const char *msg)) 1166ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
346{ 1167{
347 syserr_cb = cb; 1168 syserr_cb = cb;
348} 1169}
349 1170
350static void noinline 1171static void noinline ecb_cold
351syserr (const char *msg) 1172ev_syserr (const char *msg)
352{ 1173{
353 if (!msg) 1174 if (!msg)
354 msg = "(libev) system error"; 1175 msg = "(libev) system error";
355 1176
356 if (syserr_cb) 1177 if (syserr_cb)
357 syserr_cb (msg); 1178 syserr_cb (msg);
358 else 1179 else
359 { 1180 {
1181#if EV_AVOID_STDIO
1182 ev_printerr (msg);
1183 ev_printerr (": ");
1184 ev_printerr (strerror (errno));
1185 ev_printerr ("\n");
1186#else
360 perror (msg); 1187 perror (msg);
1188#endif
361 abort (); 1189 abort ();
362 } 1190 }
363} 1191}
364 1192
1193static void *
1194ev_realloc_emul (void *ptr, long size) EV_THROW
1195{
1196 /* some systems, notably openbsd and darwin, fail to properly
1197 * implement realloc (x, 0) (as required by both ansi c-89 and
1198 * the single unix specification, so work around them here.
1199 * recently, also (at least) fedora and debian started breaking it,
1200 * despite documenting it otherwise.
1201 */
1202
1203 if (size)
1204 return realloc (ptr, size);
1205
1206 free (ptr);
1207 return 0;
1208}
1209
365static void *(*alloc)(void *ptr, long size); 1210static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
366 1211
367void 1212void ecb_cold
368ev_set_allocator (void *(*cb)(void *ptr, long size)) 1213ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
369{ 1214{
370 alloc = cb; 1215 alloc = cb;
371} 1216}
372 1217
373inline_speed void * 1218inline_speed void *
374ev_realloc (void *ptr, long size) 1219ev_realloc (void *ptr, long size)
375{ 1220{
376 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1221 ptr = alloc (ptr, size);
377 1222
378 if (!ptr && size) 1223 if (!ptr && size)
379 { 1224 {
1225#if EV_AVOID_STDIO
1226 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1227#else
380 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1228 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1229#endif
381 abort (); 1230 abort ();
382 } 1231 }
383 1232
384 return ptr; 1233 return ptr;
385} 1234}
387#define ev_malloc(size) ev_realloc (0, (size)) 1236#define ev_malloc(size) ev_realloc (0, (size))
388#define ev_free(ptr) ev_realloc ((ptr), 0) 1237#define ev_free(ptr) ev_realloc ((ptr), 0)
389 1238
390/*****************************************************************************/ 1239/*****************************************************************************/
391 1240
1241/* set in reify when reification needed */
1242#define EV_ANFD_REIFY 1
1243
1244/* file descriptor info structure */
392typedef struct 1245typedef struct
393{ 1246{
394 WL head; 1247 WL head;
395 unsigned char events; 1248 unsigned char events; /* the events watched for */
1249 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1250 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
396 unsigned char reify; 1251 unsigned char unused;
1252#if EV_USE_EPOLL
1253 unsigned int egen; /* generation counter to counter epoll bugs */
1254#endif
397#if EV_SELECT_IS_WINSOCKET 1255#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
398 SOCKET handle; 1256 SOCKET handle;
399#endif 1257#endif
1258#if EV_USE_IOCP
1259 OVERLAPPED or, ow;
1260#endif
400} ANFD; 1261} ANFD;
401 1262
1263/* stores the pending event set for a given watcher */
402typedef struct 1264typedef struct
403{ 1265{
404 W w; 1266 W w;
405 int events; 1267 int events; /* the pending event set for the given watcher */
406} ANPENDING; 1268} ANPENDING;
407 1269
408#if EV_USE_INOTIFY 1270#if EV_USE_INOTIFY
1271/* hash table entry per inotify-id */
409typedef struct 1272typedef struct
410{ 1273{
411 WL head; 1274 WL head;
412} ANFS; 1275} ANFS;
1276#endif
1277
1278/* Heap Entry */
1279#if EV_HEAP_CACHE_AT
1280 /* a heap element */
1281 typedef struct {
1282 ev_tstamp at;
1283 WT w;
1284 } ANHE;
1285
1286 #define ANHE_w(he) (he).w /* access watcher, read-write */
1287 #define ANHE_at(he) (he).at /* access cached at, read-only */
1288 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1289#else
1290 /* a heap element */
1291 typedef WT ANHE;
1292
1293 #define ANHE_w(he) (he)
1294 #define ANHE_at(he) (he)->at
1295 #define ANHE_at_cache(he)
413#endif 1296#endif
414 1297
415#if EV_MULTIPLICITY 1298#if EV_MULTIPLICITY
416 1299
417 struct ev_loop 1300 struct ev_loop
423 #undef VAR 1306 #undef VAR
424 }; 1307 };
425 #include "ev_wrap.h" 1308 #include "ev_wrap.h"
426 1309
427 static struct ev_loop default_loop_struct; 1310 static struct ev_loop default_loop_struct;
428 struct ev_loop *ev_default_loop_ptr; 1311 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
429 1312
430#else 1313#else
431 1314
432 ev_tstamp ev_rt_now; 1315 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
433 #define VAR(name,decl) static decl; 1316 #define VAR(name,decl) static decl;
434 #include "ev_vars.h" 1317 #include "ev_vars.h"
435 #undef VAR 1318 #undef VAR
436 1319
437 static int ev_default_loop_ptr; 1320 static int ev_default_loop_ptr;
438 1321
439#endif 1322#endif
440 1323
1324#if EV_FEATURE_API
1325# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1326# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1327# define EV_INVOKE_PENDING invoke_cb (EV_A)
1328#else
1329# define EV_RELEASE_CB (void)0
1330# define EV_ACQUIRE_CB (void)0
1331# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1332#endif
1333
1334#define EVBREAK_RECURSE 0x80
1335
441/*****************************************************************************/ 1336/*****************************************************************************/
442 1337
1338#ifndef EV_HAVE_EV_TIME
443ev_tstamp 1339ev_tstamp
444ev_time (void) 1340ev_time (void) EV_THROW
445{ 1341{
446#if EV_USE_REALTIME 1342#if EV_USE_REALTIME
1343 if (expect_true (have_realtime))
1344 {
447 struct timespec ts; 1345 struct timespec ts;
448 clock_gettime (CLOCK_REALTIME, &ts); 1346 clock_gettime (CLOCK_REALTIME, &ts);
449 return ts.tv_sec + ts.tv_nsec * 1e-9; 1347 return ts.tv_sec + ts.tv_nsec * 1e-9;
450#else 1348 }
1349#endif
1350
451 struct timeval tv; 1351 struct timeval tv;
452 gettimeofday (&tv, 0); 1352 gettimeofday (&tv, 0);
453 return tv.tv_sec + tv.tv_usec * 1e-6; 1353 return tv.tv_sec + tv.tv_usec * 1e-6;
454#endif
455} 1354}
1355#endif
456 1356
457ev_tstamp inline_size 1357inline_size ev_tstamp
458get_clock (void) 1358get_clock (void)
459{ 1359{
460#if EV_USE_MONOTONIC 1360#if EV_USE_MONOTONIC
461 if (expect_true (have_monotonic)) 1361 if (expect_true (have_monotonic))
462 { 1362 {
469 return ev_time (); 1369 return ev_time ();
470} 1370}
471 1371
472#if EV_MULTIPLICITY 1372#if EV_MULTIPLICITY
473ev_tstamp 1373ev_tstamp
474ev_now (EV_P) 1374ev_now (EV_P) EV_THROW
475{ 1375{
476 return ev_rt_now; 1376 return ev_rt_now;
477} 1377}
478#endif 1378#endif
479 1379
480void 1380void
481ev_sleep (ev_tstamp delay) 1381ev_sleep (ev_tstamp delay) EV_THROW
482{ 1382{
483 if (delay > 0.) 1383 if (delay > 0.)
484 { 1384 {
485#if EV_USE_NANOSLEEP 1385#if EV_USE_NANOSLEEP
486 struct timespec ts; 1386 struct timespec ts;
487 1387
488 ts.tv_sec = (time_t)delay; 1388 EV_TS_SET (ts, delay);
489 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
490
491 nanosleep (&ts, 0); 1389 nanosleep (&ts, 0);
492#elif defined(_WIN32) 1390#elif defined _WIN32
493 Sleep ((unsigned long)(delay * 1e3)); 1391 Sleep ((unsigned long)(delay * 1e3));
494#else 1392#else
495 struct timeval tv; 1393 struct timeval tv;
496 1394
497 tv.tv_sec = (time_t)delay; 1395 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
498 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 1396 /* something not guaranteed by newer posix versions, but guaranteed */
499 1397 /* by older ones */
1398 EV_TV_SET (tv, delay);
500 select (0, 0, 0, 0, &tv); 1399 select (0, 0, 0, 0, &tv);
501#endif 1400#endif
502 } 1401 }
503} 1402}
504 1403
505/*****************************************************************************/ 1404/*****************************************************************************/
506 1405
507int inline_size 1406#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1407
1408/* find a suitable new size for the given array, */
1409/* hopefully by rounding to a nice-to-malloc size */
1410inline_size int
508array_nextsize (int elem, int cur, int cnt) 1411array_nextsize (int elem, int cur, int cnt)
509{ 1412{
510 int ncur = cur + 1; 1413 int ncur = cur + 1;
511 1414
512 do 1415 do
513 ncur <<= 1; 1416 ncur <<= 1;
514 while (cnt > ncur); 1417 while (cnt > ncur);
515 1418
516 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 1419 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
517 if (elem * ncur > 4096) 1420 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
518 { 1421 {
519 ncur *= elem; 1422 ncur *= elem;
520 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 1423 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
521 ncur = ncur - sizeof (void *) * 4; 1424 ncur = ncur - sizeof (void *) * 4;
522 ncur /= elem; 1425 ncur /= elem;
523 } 1426 }
524 1427
525 return ncur; 1428 return ncur;
526} 1429}
527 1430
528static noinline void * 1431static void * noinline ecb_cold
529array_realloc (int elem, void *base, int *cur, int cnt) 1432array_realloc (int elem, void *base, int *cur, int cnt)
530{ 1433{
531 *cur = array_nextsize (elem, *cur, cnt); 1434 *cur = array_nextsize (elem, *cur, cnt);
532 return ev_realloc (base, elem * *cur); 1435 return ev_realloc (base, elem * *cur);
533} 1436}
1437
1438#define array_init_zero(base,count) \
1439 memset ((void *)(base), 0, sizeof (*(base)) * (count))
534 1440
535#define array_needsize(type,base,cur,cnt,init) \ 1441#define array_needsize(type,base,cur,cnt,init) \
536 if (expect_false ((cnt) > (cur))) \ 1442 if (expect_false ((cnt) > (cur))) \
537 { \ 1443 { \
538 int ocur_ = (cur); \ 1444 int ecb_unused ocur_ = (cur); \
539 (base) = (type *)array_realloc \ 1445 (base) = (type *)array_realloc \
540 (sizeof (type), (base), &(cur), (cnt)); \ 1446 (sizeof (type), (base), &(cur), (cnt)); \
541 init ((base) + (ocur_), (cur) - ocur_); \ 1447 init ((base) + (ocur_), (cur) - ocur_); \
542 } 1448 }
543 1449
550 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1456 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
551 } 1457 }
552#endif 1458#endif
553 1459
554#define array_free(stem, idx) \ 1460#define array_free(stem, idx) \
555 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1461 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
556 1462
557/*****************************************************************************/ 1463/*****************************************************************************/
558 1464
1465/* dummy callback for pending events */
1466static void noinline
1467pendingcb (EV_P_ ev_prepare *w, int revents)
1468{
1469}
1470
559void noinline 1471void noinline
560ev_feed_event (EV_P_ void *w, int revents) 1472ev_feed_event (EV_P_ void *w, int revents) EV_THROW
561{ 1473{
562 W w_ = (W)w; 1474 W w_ = (W)w;
563 int pri = ABSPRI (w_); 1475 int pri = ABSPRI (w_);
564 1476
565 if (expect_false (w_->pending)) 1477 if (expect_false (w_->pending))
569 w_->pending = ++pendingcnt [pri]; 1481 w_->pending = ++pendingcnt [pri];
570 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 1482 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
571 pendings [pri][w_->pending - 1].w = w_; 1483 pendings [pri][w_->pending - 1].w = w_;
572 pendings [pri][w_->pending - 1].events = revents; 1484 pendings [pri][w_->pending - 1].events = revents;
573 } 1485 }
574}
575 1486
576void inline_speed 1487 pendingpri = NUMPRI - 1;
1488}
1489
1490inline_speed void
1491feed_reverse (EV_P_ W w)
1492{
1493 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1494 rfeeds [rfeedcnt++] = w;
1495}
1496
1497inline_size void
1498feed_reverse_done (EV_P_ int revents)
1499{
1500 do
1501 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1502 while (rfeedcnt);
1503}
1504
1505inline_speed void
577queue_events (EV_P_ W *events, int eventcnt, int type) 1506queue_events (EV_P_ W *events, int eventcnt, int type)
578{ 1507{
579 int i; 1508 int i;
580 1509
581 for (i = 0; i < eventcnt; ++i) 1510 for (i = 0; i < eventcnt; ++i)
582 ev_feed_event (EV_A_ events [i], type); 1511 ev_feed_event (EV_A_ events [i], type);
583} 1512}
584 1513
585/*****************************************************************************/ 1514/*****************************************************************************/
586 1515
587void inline_size 1516inline_speed void
588anfds_init (ANFD *base, int count)
589{
590 while (count--)
591 {
592 base->head = 0;
593 base->events = EV_NONE;
594 base->reify = 0;
595
596 ++base;
597 }
598}
599
600void inline_speed
601fd_event (EV_P_ int fd, int revents) 1517fd_event_nocheck (EV_P_ int fd, int revents)
602{ 1518{
603 ANFD *anfd = anfds + fd; 1519 ANFD *anfd = anfds + fd;
604 ev_io *w; 1520 ev_io *w;
605 1521
606 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1522 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
610 if (ev) 1526 if (ev)
611 ev_feed_event (EV_A_ (W)w, ev); 1527 ev_feed_event (EV_A_ (W)w, ev);
612 } 1528 }
613} 1529}
614 1530
1531/* do not submit kernel events for fds that have reify set */
1532/* because that means they changed while we were polling for new events */
1533inline_speed void
1534fd_event (EV_P_ int fd, int revents)
1535{
1536 ANFD *anfd = anfds + fd;
1537
1538 if (expect_true (!anfd->reify))
1539 fd_event_nocheck (EV_A_ fd, revents);
1540}
1541
615void 1542void
616ev_feed_fd_event (EV_P_ int fd, int revents) 1543ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
617{ 1544{
618 if (fd >= 0 && fd < anfdmax) 1545 if (fd >= 0 && fd < anfdmax)
619 fd_event (EV_A_ fd, revents); 1546 fd_event_nocheck (EV_A_ fd, revents);
620} 1547}
621 1548
622void inline_size 1549/* make sure the external fd watch events are in-sync */
1550/* with the kernel/libev internal state */
1551inline_size void
623fd_reify (EV_P) 1552fd_reify (EV_P)
624{ 1553{
625 int i; 1554 int i;
1555
1556#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1557 for (i = 0; i < fdchangecnt; ++i)
1558 {
1559 int fd = fdchanges [i];
1560 ANFD *anfd = anfds + fd;
1561
1562 if (anfd->reify & EV__IOFDSET && anfd->head)
1563 {
1564 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1565
1566 if (handle != anfd->handle)
1567 {
1568 unsigned long arg;
1569
1570 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1571
1572 /* handle changed, but fd didn't - we need to do it in two steps */
1573 backend_modify (EV_A_ fd, anfd->events, 0);
1574 anfd->events = 0;
1575 anfd->handle = handle;
1576 }
1577 }
1578 }
1579#endif
626 1580
627 for (i = 0; i < fdchangecnt; ++i) 1581 for (i = 0; i < fdchangecnt; ++i)
628 { 1582 {
629 int fd = fdchanges [i]; 1583 int fd = fdchanges [i];
630 ANFD *anfd = anfds + fd; 1584 ANFD *anfd = anfds + fd;
631 ev_io *w; 1585 ev_io *w;
632 1586
633 unsigned char events = 0; 1587 unsigned char o_events = anfd->events;
1588 unsigned char o_reify = anfd->reify;
634 1589
635 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1590 anfd->reify = 0;
636 events |= (unsigned char)w->events;
637 1591
638#if EV_SELECT_IS_WINSOCKET 1592 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
639 if (events)
640 { 1593 {
641 unsigned long argp; 1594 anfd->events = 0;
642 #ifdef EV_FD_TO_WIN32_HANDLE 1595
643 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1596 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
644 #else 1597 anfd->events |= (unsigned char)w->events;
645 anfd->handle = _get_osfhandle (fd); 1598
646 #endif 1599 if (o_events != anfd->events)
647 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1600 o_reify = EV__IOFDSET; /* actually |= */
648 } 1601 }
649#endif
650 1602
651 { 1603 if (o_reify & EV__IOFDSET)
652 unsigned char o_events = anfd->events;
653 unsigned char o_reify = anfd->reify;
654
655 anfd->reify = 0;
656 anfd->events = events;
657
658 if (o_events != events || o_reify & EV_IOFDSET)
659 backend_modify (EV_A_ fd, o_events, events); 1604 backend_modify (EV_A_ fd, o_events, anfd->events);
660 }
661 } 1605 }
662 1606
663 fdchangecnt = 0; 1607 fdchangecnt = 0;
664} 1608}
665 1609
666void inline_size 1610/* something about the given fd changed */
1611inline_size void
667fd_change (EV_P_ int fd, int flags) 1612fd_change (EV_P_ int fd, int flags)
668{ 1613{
669 unsigned char reify = anfds [fd].reify; 1614 unsigned char reify = anfds [fd].reify;
670 anfds [fd].reify |= flags; 1615 anfds [fd].reify |= flags;
671 1616
675 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1620 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
676 fdchanges [fdchangecnt - 1] = fd; 1621 fdchanges [fdchangecnt - 1] = fd;
677 } 1622 }
678} 1623}
679 1624
680void inline_speed 1625/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1626inline_speed void ecb_cold
681fd_kill (EV_P_ int fd) 1627fd_kill (EV_P_ int fd)
682{ 1628{
683 ev_io *w; 1629 ev_io *w;
684 1630
685 while ((w = (ev_io *)anfds [fd].head)) 1631 while ((w = (ev_io *)anfds [fd].head))
687 ev_io_stop (EV_A_ w); 1633 ev_io_stop (EV_A_ w);
688 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1634 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
689 } 1635 }
690} 1636}
691 1637
692int inline_size 1638/* check whether the given fd is actually valid, for error recovery */
1639inline_size int ecb_cold
693fd_valid (int fd) 1640fd_valid (int fd)
694{ 1641{
695#ifdef _WIN32 1642#ifdef _WIN32
696 return _get_osfhandle (fd) != -1; 1643 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
697#else 1644#else
698 return fcntl (fd, F_GETFD) != -1; 1645 return fcntl (fd, F_GETFD) != -1;
699#endif 1646#endif
700} 1647}
701 1648
702/* called on EBADF to verify fds */ 1649/* called on EBADF to verify fds */
703static void noinline 1650static void noinline ecb_cold
704fd_ebadf (EV_P) 1651fd_ebadf (EV_P)
705{ 1652{
706 int fd; 1653 int fd;
707 1654
708 for (fd = 0; fd < anfdmax; ++fd) 1655 for (fd = 0; fd < anfdmax; ++fd)
709 if (anfds [fd].events) 1656 if (anfds [fd].events)
710 if (!fd_valid (fd) == -1 && errno == EBADF) 1657 if (!fd_valid (fd) && errno == EBADF)
711 fd_kill (EV_A_ fd); 1658 fd_kill (EV_A_ fd);
712} 1659}
713 1660
714/* called on ENOMEM in select/poll to kill some fds and retry */ 1661/* called on ENOMEM in select/poll to kill some fds and retry */
715static void noinline 1662static void noinline ecb_cold
716fd_enomem (EV_P) 1663fd_enomem (EV_P)
717{ 1664{
718 int fd; 1665 int fd;
719 1666
720 for (fd = anfdmax; fd--; ) 1667 for (fd = anfdmax; fd--; )
721 if (anfds [fd].events) 1668 if (anfds [fd].events)
722 { 1669 {
723 fd_kill (EV_A_ fd); 1670 fd_kill (EV_A_ fd);
724 return; 1671 break;
725 } 1672 }
726} 1673}
727 1674
728/* usually called after fork if backend needs to re-arm all fds from scratch */ 1675/* usually called after fork if backend needs to re-arm all fds from scratch */
729static void noinline 1676static void noinline
733 1680
734 for (fd = 0; fd < anfdmax; ++fd) 1681 for (fd = 0; fd < anfdmax; ++fd)
735 if (anfds [fd].events) 1682 if (anfds [fd].events)
736 { 1683 {
737 anfds [fd].events = 0; 1684 anfds [fd].events = 0;
1685 anfds [fd].emask = 0;
738 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1686 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
739 } 1687 }
740} 1688}
741 1689
742/*****************************************************************************/ 1690/* used to prepare libev internal fd's */
743 1691/* this is not fork-safe */
744void inline_speed 1692inline_speed void
745upheap (WT *heap, int k)
746{
747 WT w = heap [k];
748
749 while (k)
750 {
751 int p = (k - 1) >> 1;
752
753 if (heap [p]->at <= w->at)
754 break;
755
756 heap [k] = heap [p];
757 ((W)heap [k])->active = k + 1;
758 k = p;
759 }
760
761 heap [k] = w;
762 ((W)heap [k])->active = k + 1;
763}
764
765void inline_speed
766downheap (WT *heap, int N, int k)
767{
768 WT w = heap [k];
769
770 for (;;)
771 {
772 int c = (k << 1) + 1;
773
774 if (c >= N)
775 break;
776
777 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
778 ? 1 : 0;
779
780 if (w->at <= heap [c]->at)
781 break;
782
783 heap [k] = heap [c];
784 ((W)heap [k])->active = k + 1;
785
786 k = c;
787 }
788
789 heap [k] = w;
790 ((W)heap [k])->active = k + 1;
791}
792
793void inline_size
794adjustheap (WT *heap, int N, int k)
795{
796 upheap (heap, k);
797 downheap (heap, N, k);
798}
799
800/*****************************************************************************/
801
802typedef struct
803{
804 WL head;
805 EV_ATOMIC_T gotsig;
806} ANSIG;
807
808static ANSIG *signals;
809static int signalmax;
810
811static EV_ATOMIC_T gotsig;
812
813void inline_size
814signals_init (ANSIG *base, int count)
815{
816 while (count--)
817 {
818 base->head = 0;
819 base->gotsig = 0;
820
821 ++base;
822 }
823}
824
825/*****************************************************************************/
826
827void inline_speed
828fd_intern (int fd) 1693fd_intern (int fd)
829{ 1694{
830#ifdef _WIN32 1695#ifdef _WIN32
831 int arg = 1; 1696 unsigned long arg = 1;
832 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1697 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
833#else 1698#else
834 fcntl (fd, F_SETFD, FD_CLOEXEC); 1699 fcntl (fd, F_SETFD, FD_CLOEXEC);
835 fcntl (fd, F_SETFL, O_NONBLOCK); 1700 fcntl (fd, F_SETFL, O_NONBLOCK);
836#endif 1701#endif
837} 1702}
838 1703
1704/*****************************************************************************/
1705
1706/*
1707 * the heap functions want a real array index. array index 0 is guaranteed to not
1708 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1709 * the branching factor of the d-tree.
1710 */
1711
1712/*
1713 * at the moment we allow libev the luxury of two heaps,
1714 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1715 * which is more cache-efficient.
1716 * the difference is about 5% with 50000+ watchers.
1717 */
1718#if EV_USE_4HEAP
1719
1720#define DHEAP 4
1721#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1722#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1723#define UPHEAP_DONE(p,k) ((p) == (k))
1724
1725/* away from the root */
1726inline_speed void
1727downheap (ANHE *heap, int N, int k)
1728{
1729 ANHE he = heap [k];
1730 ANHE *E = heap + N + HEAP0;
1731
1732 for (;;)
1733 {
1734 ev_tstamp minat;
1735 ANHE *minpos;
1736 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1737
1738 /* find minimum child */
1739 if (expect_true (pos + DHEAP - 1 < E))
1740 {
1741 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1742 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1743 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1744 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1745 }
1746 else if (pos < E)
1747 {
1748 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1749 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1750 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1751 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1752 }
1753 else
1754 break;
1755
1756 if (ANHE_at (he) <= minat)
1757 break;
1758
1759 heap [k] = *minpos;
1760 ev_active (ANHE_w (*minpos)) = k;
1761
1762 k = minpos - heap;
1763 }
1764
1765 heap [k] = he;
1766 ev_active (ANHE_w (he)) = k;
1767}
1768
1769#else /* 4HEAP */
1770
1771#define HEAP0 1
1772#define HPARENT(k) ((k) >> 1)
1773#define UPHEAP_DONE(p,k) (!(p))
1774
1775/* away from the root */
1776inline_speed void
1777downheap (ANHE *heap, int N, int k)
1778{
1779 ANHE he = heap [k];
1780
1781 for (;;)
1782 {
1783 int c = k << 1;
1784
1785 if (c >= N + HEAP0)
1786 break;
1787
1788 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1789 ? 1 : 0;
1790
1791 if (ANHE_at (he) <= ANHE_at (heap [c]))
1792 break;
1793
1794 heap [k] = heap [c];
1795 ev_active (ANHE_w (heap [k])) = k;
1796
1797 k = c;
1798 }
1799
1800 heap [k] = he;
1801 ev_active (ANHE_w (he)) = k;
1802}
1803#endif
1804
1805/* towards the root */
1806inline_speed void
1807upheap (ANHE *heap, int k)
1808{
1809 ANHE he = heap [k];
1810
1811 for (;;)
1812 {
1813 int p = HPARENT (k);
1814
1815 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1816 break;
1817
1818 heap [k] = heap [p];
1819 ev_active (ANHE_w (heap [k])) = k;
1820 k = p;
1821 }
1822
1823 heap [k] = he;
1824 ev_active (ANHE_w (he)) = k;
1825}
1826
1827/* move an element suitably so it is in a correct place */
1828inline_size void
1829adjustheap (ANHE *heap, int N, int k)
1830{
1831 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1832 upheap (heap, k);
1833 else
1834 downheap (heap, N, k);
1835}
1836
1837/* rebuild the heap: this function is used only once and executed rarely */
1838inline_size void
1839reheap (ANHE *heap, int N)
1840{
1841 int i;
1842
1843 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1844 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1845 for (i = 0; i < N; ++i)
1846 upheap (heap, i + HEAP0);
1847}
1848
1849/*****************************************************************************/
1850
1851/* associate signal watchers to a signal signal */
1852typedef struct
1853{
1854 EV_ATOMIC_T pending;
1855#if EV_MULTIPLICITY
1856 EV_P;
1857#endif
1858 WL head;
1859} ANSIG;
1860
1861static ANSIG signals [EV_NSIG - 1];
1862
1863/*****************************************************************************/
1864
1865#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1866
839static void noinline 1867static void noinline ecb_cold
840evpipe_init (EV_P) 1868evpipe_init (EV_P)
841{ 1869{
842 if (!ev_is_active (&pipeev)) 1870 if (!ev_is_active (&pipe_w))
843 { 1871 {
844#if EV_USE_EVENTFD 1872# if EV_USE_EVENTFD
1873 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1874 if (evfd < 0 && errno == EINVAL)
845 if ((evfd = eventfd (0, 0)) >= 0) 1875 evfd = eventfd (0, 0);
1876
1877 if (evfd >= 0)
846 { 1878 {
847 evpipe [0] = -1; 1879 evpipe [0] = -1;
848 fd_intern (evfd); 1880 fd_intern (evfd); /* doing it twice doesn't hurt */
849 ev_io_set (&pipeev, evfd, EV_READ); 1881 ev_io_set (&pipe_w, evfd, EV_READ);
850 } 1882 }
851 else 1883 else
852#endif 1884# endif
853 { 1885 {
854 while (pipe (evpipe)) 1886 while (pipe (evpipe))
855 syserr ("(libev) error creating signal/async pipe"); 1887 ev_syserr ("(libev) error creating signal/async pipe");
856 1888
857 fd_intern (evpipe [0]); 1889 fd_intern (evpipe [0]);
858 fd_intern (evpipe [1]); 1890 fd_intern (evpipe [1]);
859 ev_io_set (&pipeev, evpipe [0], EV_READ); 1891 ev_io_set (&pipe_w, evpipe [0], EV_READ);
860 } 1892 }
861 1893
862 ev_io_start (EV_A_ &pipeev); 1894 ev_io_start (EV_A_ &pipe_w);
863 ev_unref (EV_A); /* watcher should not keep loop alive */ 1895 ev_unref (EV_A); /* watcher should not keep loop alive */
864 } 1896 }
865} 1897}
866 1898
867void inline_size 1899inline_speed void
868evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1900evpipe_write (EV_P_ EV_ATOMIC_T *flag)
869{ 1901{
870 if (!*flag) 1902 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
1903
1904 if (expect_true (*flag))
1905 return;
1906
1907 *flag = 1;
1908 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1909
1910 pipe_write_skipped = 1;
1911
1912 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1913
1914 if (pipe_write_wanted)
871 { 1915 {
1916 int old_errno;
1917
1918 pipe_write_skipped = 0;
1919 ECB_MEMORY_FENCE_RELEASE;
1920
872 int old_errno = errno; /* save errno because write might clobber it */ 1921 old_errno = errno; /* save errno because write will clobber it */
873
874 *flag = 1;
875 1922
876#if EV_USE_EVENTFD 1923#if EV_USE_EVENTFD
877 if (evfd >= 0) 1924 if (evfd >= 0)
878 { 1925 {
879 uint64_t counter = 1; 1926 uint64_t counter = 1;
880 write (evfd, &counter, sizeof (uint64_t)); 1927 write (evfd, &counter, sizeof (uint64_t));
881 } 1928 }
882 else 1929 else
883#endif 1930#endif
1931 {
1932#ifdef _WIN32
1933 WSABUF buf;
1934 DWORD sent;
1935 buf.buf = &buf;
1936 buf.len = 1;
1937 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
1938#else
884 write (evpipe [1], &old_errno, 1); 1939 write (evpipe [1], &(evpipe [1]), 1);
1940#endif
1941 }
885 1942
886 errno = old_errno; 1943 errno = old_errno;
887 } 1944 }
888} 1945}
889 1946
1947/* called whenever the libev signal pipe */
1948/* got some events (signal, async) */
890static void 1949static void
891pipecb (EV_P_ ev_io *iow, int revents) 1950pipecb (EV_P_ ev_io *iow, int revents)
892{ 1951{
1952 int i;
1953
1954 if (revents & EV_READ)
1955 {
893#if EV_USE_EVENTFD 1956#if EV_USE_EVENTFD
894 if (evfd >= 0) 1957 if (evfd >= 0)
895 { 1958 {
896 uint64_t counter = 1; 1959 uint64_t counter;
897 read (evfd, &counter, sizeof (uint64_t)); 1960 read (evfd, &counter, sizeof (uint64_t));
898 } 1961 }
899 else 1962 else
900#endif 1963#endif
901 { 1964 {
902 char dummy; 1965 char dummy[4];
1966#ifdef _WIN32
1967 WSABUF buf;
1968 DWORD recvd;
1969 DWORD flags = 0;
1970 buf.buf = dummy;
1971 buf.len = sizeof (dummy);
1972 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
1973#else
903 read (evpipe [0], &dummy, 1); 1974 read (evpipe [0], &dummy, sizeof (dummy));
1975#endif
1976 }
1977 }
1978
1979 pipe_write_skipped = 0;
1980
1981 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
1982
1983#if EV_SIGNAL_ENABLE
1984 if (sig_pending)
904 } 1985 {
1986 sig_pending = 0;
905 1987
906 if (gotsig && ev_is_default_loop (EV_A)) 1988 ECB_MEMORY_FENCE;
907 {
908 int signum;
909 gotsig = 0;
910 1989
911 for (signum = signalmax; signum--; ) 1990 for (i = EV_NSIG - 1; i--; )
912 if (signals [signum].gotsig) 1991 if (expect_false (signals [i].pending))
913 ev_feed_signal_event (EV_A_ signum + 1); 1992 ev_feed_signal_event (EV_A_ i + 1);
914 } 1993 }
1994#endif
915 1995
916#if EV_ASYNC_ENABLE 1996#if EV_ASYNC_ENABLE
917 if (gotasync) 1997 if (async_pending)
918 { 1998 {
919 int i; 1999 async_pending = 0;
920 gotasync = 0; 2000
2001 ECB_MEMORY_FENCE;
921 2002
922 for (i = asynccnt; i--; ) 2003 for (i = asynccnt; i--; )
923 if (asyncs [i]->sent) 2004 if (asyncs [i]->sent)
924 { 2005 {
925 asyncs [i]->sent = 0; 2006 asyncs [i]->sent = 0;
2007 ECB_MEMORY_FENCE_RELEASE;
926 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); 2008 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
927 } 2009 }
928 } 2010 }
929#endif 2011#endif
930} 2012}
931 2013
932/*****************************************************************************/ 2014/*****************************************************************************/
933 2015
2016void
2017ev_feed_signal (int signum) EV_THROW
2018{
2019#if EV_MULTIPLICITY
2020 EV_P = signals [signum - 1].loop;
2021
2022 if (!EV_A)
2023 return;
2024#endif
2025
2026 if (!ev_active (&pipe_w))
2027 return;
2028
2029 signals [signum - 1].pending = 1;
2030 evpipe_write (EV_A_ &sig_pending);
2031}
2032
934static void 2033static void
935ev_sighandler (int signum) 2034ev_sighandler (int signum)
936{ 2035{
2036#ifdef _WIN32
2037 signal (signum, ev_sighandler);
2038#endif
2039
2040 ev_feed_signal (signum);
2041}
2042
2043void noinline
2044ev_feed_signal_event (EV_P_ int signum) EV_THROW
2045{
2046 WL w;
2047
2048 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2049 return;
2050
2051 --signum;
2052
937#if EV_MULTIPLICITY 2053#if EV_MULTIPLICITY
938 struct ev_loop *loop = &default_loop_struct; 2054 /* it is permissible to try to feed a signal to the wrong loop */
939#endif 2055 /* or, likely more useful, feeding a signal nobody is waiting for */
940 2056
941#if _WIN32 2057 if (expect_false (signals [signum].loop != EV_A))
942 signal (signum, ev_sighandler);
943#endif
944
945 signals [signum - 1].gotsig = 1;
946 evpipe_write (EV_A_ &gotsig);
947}
948
949void noinline
950ev_feed_signal_event (EV_P_ int signum)
951{
952 WL w;
953
954#if EV_MULTIPLICITY
955 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
956#endif
957
958 --signum;
959
960 if (signum < 0 || signum >= signalmax)
961 return; 2058 return;
2059#endif
962 2060
963 signals [signum].gotsig = 0; 2061 signals [signum].pending = 0;
2062 ECB_MEMORY_FENCE_RELEASE;
964 2063
965 for (w = signals [signum].head; w; w = w->next) 2064 for (w = signals [signum].head; w; w = w->next)
966 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2065 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
967} 2066}
968 2067
2068#if EV_USE_SIGNALFD
2069static void
2070sigfdcb (EV_P_ ev_io *iow, int revents)
2071{
2072 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2073
2074 for (;;)
2075 {
2076 ssize_t res = read (sigfd, si, sizeof (si));
2077
2078 /* not ISO-C, as res might be -1, but works with SuS */
2079 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2080 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2081
2082 if (res < (ssize_t)sizeof (si))
2083 break;
2084 }
2085}
2086#endif
2087
2088#endif
2089
969/*****************************************************************************/ 2090/*****************************************************************************/
970 2091
2092#if EV_CHILD_ENABLE
971static WL childs [EV_PID_HASHSIZE]; 2093static WL childs [EV_PID_HASHSIZE];
972
973#ifndef _WIN32
974 2094
975static ev_signal childev; 2095static ev_signal childev;
976 2096
977#ifndef WIFCONTINUED 2097#ifndef WIFCONTINUED
978# define WIFCONTINUED(status) 0 2098# define WIFCONTINUED(status) 0
979#endif 2099#endif
980 2100
981void inline_speed 2101/* handle a single child status event */
2102inline_speed void
982child_reap (EV_P_ int chain, int pid, int status) 2103child_reap (EV_P_ int chain, int pid, int status)
983{ 2104{
984 ev_child *w; 2105 ev_child *w;
985 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2106 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
986 2107
987 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2108 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
988 { 2109 {
989 if ((w->pid == pid || !w->pid) 2110 if ((w->pid == pid || !w->pid)
990 && (!traced || (w->flags & 1))) 2111 && (!traced || (w->flags & 1)))
991 { 2112 {
992 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 2113 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
999 2120
1000#ifndef WCONTINUED 2121#ifndef WCONTINUED
1001# define WCONTINUED 0 2122# define WCONTINUED 0
1002#endif 2123#endif
1003 2124
2125/* called on sigchld etc., calls waitpid */
1004static void 2126static void
1005childcb (EV_P_ ev_signal *sw, int revents) 2127childcb (EV_P_ ev_signal *sw, int revents)
1006{ 2128{
1007 int pid, status; 2129 int pid, status;
1008 2130
1016 /* make sure we are called again until all children have been reaped */ 2138 /* make sure we are called again until all children have been reaped */
1017 /* we need to do it this way so that the callback gets called before we continue */ 2139 /* we need to do it this way so that the callback gets called before we continue */
1018 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2140 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1019 2141
1020 child_reap (EV_A_ pid, pid, status); 2142 child_reap (EV_A_ pid, pid, status);
1021 if (EV_PID_HASHSIZE > 1) 2143 if ((EV_PID_HASHSIZE) > 1)
1022 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2144 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1023} 2145}
1024 2146
1025#endif 2147#endif
1026 2148
1027/*****************************************************************************/ 2149/*****************************************************************************/
1028 2150
2151#if EV_USE_IOCP
2152# include "ev_iocp.c"
2153#endif
1029#if EV_USE_PORT 2154#if EV_USE_PORT
1030# include "ev_port.c" 2155# include "ev_port.c"
1031#endif 2156#endif
1032#if EV_USE_KQUEUE 2157#if EV_USE_KQUEUE
1033# include "ev_kqueue.c" 2158# include "ev_kqueue.c"
1040#endif 2165#endif
1041#if EV_USE_SELECT 2166#if EV_USE_SELECT
1042# include "ev_select.c" 2167# include "ev_select.c"
1043#endif 2168#endif
1044 2169
1045int 2170int ecb_cold
1046ev_version_major (void) 2171ev_version_major (void) EV_THROW
1047{ 2172{
1048 return EV_VERSION_MAJOR; 2173 return EV_VERSION_MAJOR;
1049} 2174}
1050 2175
1051int 2176int ecb_cold
1052ev_version_minor (void) 2177ev_version_minor (void) EV_THROW
1053{ 2178{
1054 return EV_VERSION_MINOR; 2179 return EV_VERSION_MINOR;
1055} 2180}
1056 2181
1057/* return true if we are running with elevated privileges and should ignore env variables */ 2182/* return true if we are running with elevated privileges and should ignore env variables */
1058int inline_size 2183int inline_size ecb_cold
1059enable_secure (void) 2184enable_secure (void)
1060{ 2185{
1061#ifdef _WIN32 2186#ifdef _WIN32
1062 return 0; 2187 return 0;
1063#else 2188#else
1064 return getuid () != geteuid () 2189 return getuid () != geteuid ()
1065 || getgid () != getegid (); 2190 || getgid () != getegid ();
1066#endif 2191#endif
1067} 2192}
1068 2193
1069unsigned int 2194unsigned int ecb_cold
1070ev_supported_backends (void) 2195ev_supported_backends (void) EV_THROW
1071{ 2196{
1072 unsigned int flags = 0; 2197 unsigned int flags = 0;
1073 2198
1074 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2199 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1075 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2200 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1078 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2203 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1079 2204
1080 return flags; 2205 return flags;
1081} 2206}
1082 2207
1083unsigned int 2208unsigned int ecb_cold
1084ev_recommended_backends (void) 2209ev_recommended_backends (void) EV_THROW
1085{ 2210{
1086 unsigned int flags = ev_supported_backends (); 2211 unsigned int flags = ev_supported_backends ();
1087 2212
1088#ifndef __NetBSD__ 2213#ifndef __NetBSD__
1089 /* kqueue is borked on everything but netbsd apparently */ 2214 /* kqueue is borked on everything but netbsd apparently */
1090 /* it usually doesn't work correctly on anything but sockets and pipes */ 2215 /* it usually doesn't work correctly on anything but sockets and pipes */
1091 flags &= ~EVBACKEND_KQUEUE; 2216 flags &= ~EVBACKEND_KQUEUE;
1092#endif 2217#endif
1093#ifdef __APPLE__ 2218#ifdef __APPLE__
1094 // flags &= ~EVBACKEND_KQUEUE; for documentation 2219 /* only select works correctly on that "unix-certified" platform */
1095 flags &= ~EVBACKEND_POLL; 2220 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2221 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2222#endif
2223#ifdef __FreeBSD__
2224 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1096#endif 2225#endif
1097 2226
1098 return flags; 2227 return flags;
1099} 2228}
1100 2229
2230unsigned int ecb_cold
2231ev_embeddable_backends (void) EV_THROW
2232{
2233 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2234
2235 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2236 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2237 flags &= ~EVBACKEND_EPOLL;
2238
2239 return flags;
2240}
2241
1101unsigned int 2242unsigned int
1102ev_embeddable_backends (void) 2243ev_backend (EV_P) EV_THROW
1103{ 2244{
1104 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2245 return backend;
1105
1106 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1107 /* please fix it and tell me how to detect the fix */
1108 flags &= ~EVBACKEND_EPOLL;
1109
1110 return flags;
1111} 2246}
1112 2247
2248#if EV_FEATURE_API
1113unsigned int 2249unsigned int
1114ev_backend (EV_P) 2250ev_iteration (EV_P) EV_THROW
1115{ 2251{
1116 return backend; 2252 return loop_count;
1117} 2253}
1118 2254
1119unsigned int 2255unsigned int
1120ev_loop_count (EV_P) 2256ev_depth (EV_P) EV_THROW
1121{ 2257{
1122 return loop_count; 2258 return loop_depth;
1123} 2259}
1124 2260
1125void 2261void
1126ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2262ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1127{ 2263{
1128 io_blocktime = interval; 2264 io_blocktime = interval;
1129} 2265}
1130 2266
1131void 2267void
1132ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2268ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1133{ 2269{
1134 timeout_blocktime = interval; 2270 timeout_blocktime = interval;
1135} 2271}
1136 2272
2273void
2274ev_set_userdata (EV_P_ void *data) EV_THROW
2275{
2276 userdata = data;
2277}
2278
2279void *
2280ev_userdata (EV_P) EV_THROW
2281{
2282 return userdata;
2283}
2284
2285void
2286ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2287{
2288 invoke_cb = invoke_pending_cb;
2289}
2290
2291void
2292ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2293{
2294 release_cb = release;
2295 acquire_cb = acquire;
2296}
2297#endif
2298
2299/* initialise a loop structure, must be zero-initialised */
1137static void noinline 2300static void noinline ecb_cold
1138loop_init (EV_P_ unsigned int flags) 2301loop_init (EV_P_ unsigned int flags) EV_THROW
1139{ 2302{
1140 if (!backend) 2303 if (!backend)
1141 { 2304 {
2305 origflags = flags;
2306
2307#if EV_USE_REALTIME
2308 if (!have_realtime)
2309 {
2310 struct timespec ts;
2311
2312 if (!clock_gettime (CLOCK_REALTIME, &ts))
2313 have_realtime = 1;
2314 }
2315#endif
2316
1142#if EV_USE_MONOTONIC 2317#if EV_USE_MONOTONIC
2318 if (!have_monotonic)
1143 { 2319 {
1144 struct timespec ts; 2320 struct timespec ts;
2321
1145 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2322 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1146 have_monotonic = 1; 2323 have_monotonic = 1;
1147 } 2324 }
1148#endif
1149
1150 ev_rt_now = ev_time ();
1151 mn_now = get_clock ();
1152 now_floor = mn_now;
1153 rtmn_diff = ev_rt_now - mn_now;
1154
1155 io_blocktime = 0.;
1156 timeout_blocktime = 0.;
1157 backend = 0;
1158 backend_fd = -1;
1159 gotasync = 0;
1160#if EV_USE_INOTIFY
1161 fs_fd = -2;
1162#endif 2325#endif
1163 2326
1164 /* pid check not overridable via env */ 2327 /* pid check not overridable via env */
1165#ifndef _WIN32 2328#ifndef _WIN32
1166 if (flags & EVFLAG_FORKCHECK) 2329 if (flags & EVFLAG_FORKCHECK)
1170 if (!(flags & EVFLAG_NOENV) 2333 if (!(flags & EVFLAG_NOENV)
1171 && !enable_secure () 2334 && !enable_secure ()
1172 && getenv ("LIBEV_FLAGS")) 2335 && getenv ("LIBEV_FLAGS"))
1173 flags = atoi (getenv ("LIBEV_FLAGS")); 2336 flags = atoi (getenv ("LIBEV_FLAGS"));
1174 2337
1175 if (!(flags & 0x0000ffffUL)) 2338 ev_rt_now = ev_time ();
2339 mn_now = get_clock ();
2340 now_floor = mn_now;
2341 rtmn_diff = ev_rt_now - mn_now;
2342#if EV_FEATURE_API
2343 invoke_cb = ev_invoke_pending;
2344#endif
2345
2346 io_blocktime = 0.;
2347 timeout_blocktime = 0.;
2348 backend = 0;
2349 backend_fd = -1;
2350 sig_pending = 0;
2351#if EV_ASYNC_ENABLE
2352 async_pending = 0;
2353#endif
2354 pipe_write_skipped = 0;
2355 pipe_write_wanted = 0;
2356#if EV_USE_INOTIFY
2357 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2358#endif
2359#if EV_USE_SIGNALFD
2360 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2361#endif
2362
2363 if (!(flags & EVBACKEND_MASK))
1176 flags |= ev_recommended_backends (); 2364 flags |= ev_recommended_backends ();
1177 2365
2366#if EV_USE_IOCP
2367 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2368#endif
1178#if EV_USE_PORT 2369#if EV_USE_PORT
1179 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2370 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1180#endif 2371#endif
1181#if EV_USE_KQUEUE 2372#if EV_USE_KQUEUE
1182 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2373 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1189#endif 2380#endif
1190#if EV_USE_SELECT 2381#if EV_USE_SELECT
1191 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2382 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1192#endif 2383#endif
1193 2384
2385 ev_prepare_init (&pending_w, pendingcb);
2386
2387#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1194 ev_init (&pipeev, pipecb); 2388 ev_init (&pipe_w, pipecb);
1195 ev_set_priority (&pipeev, EV_MAXPRI); 2389 ev_set_priority (&pipe_w, EV_MAXPRI);
2390#endif
1196 } 2391 }
1197} 2392}
1198 2393
1199static void noinline 2394/* free up a loop structure */
2395void ecb_cold
1200loop_destroy (EV_P) 2396ev_loop_destroy (EV_P)
1201{ 2397{
1202 int i; 2398 int i;
1203 2399
2400#if EV_MULTIPLICITY
2401 /* mimic free (0) */
2402 if (!EV_A)
2403 return;
2404#endif
2405
2406#if EV_CLEANUP_ENABLE
2407 /* queue cleanup watchers (and execute them) */
2408 if (expect_false (cleanupcnt))
2409 {
2410 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2411 EV_INVOKE_PENDING;
2412 }
2413#endif
2414
2415#if EV_CHILD_ENABLE
2416 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2417 {
2418 ev_ref (EV_A); /* child watcher */
2419 ev_signal_stop (EV_A_ &childev);
2420 }
2421#endif
2422
1204 if (ev_is_active (&pipeev)) 2423 if (ev_is_active (&pipe_w))
1205 { 2424 {
1206 ev_ref (EV_A); /* signal watcher */ 2425 /*ev_ref (EV_A);*/
1207 ev_io_stop (EV_A_ &pipeev); 2426 /*ev_io_stop (EV_A_ &pipe_w);*/
1208 2427
1209#if EV_USE_EVENTFD 2428#if EV_USE_EVENTFD
1210 if (evfd >= 0) 2429 if (evfd >= 0)
1211 close (evfd); 2430 close (evfd);
1212#endif 2431#endif
1213 2432
1214 if (evpipe [0] >= 0) 2433 if (evpipe [0] >= 0)
1215 { 2434 {
1216 close (evpipe [0]); 2435 EV_WIN32_CLOSE_FD (evpipe [0]);
1217 close (evpipe [1]); 2436 EV_WIN32_CLOSE_FD (evpipe [1]);
1218 } 2437 }
1219 } 2438 }
2439
2440#if EV_USE_SIGNALFD
2441 if (ev_is_active (&sigfd_w))
2442 close (sigfd);
2443#endif
1220 2444
1221#if EV_USE_INOTIFY 2445#if EV_USE_INOTIFY
1222 if (fs_fd >= 0) 2446 if (fs_fd >= 0)
1223 close (fs_fd); 2447 close (fs_fd);
1224#endif 2448#endif
1225 2449
1226 if (backend_fd >= 0) 2450 if (backend_fd >= 0)
1227 close (backend_fd); 2451 close (backend_fd);
1228 2452
2453#if EV_USE_IOCP
2454 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2455#endif
1229#if EV_USE_PORT 2456#if EV_USE_PORT
1230 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2457 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1231#endif 2458#endif
1232#if EV_USE_KQUEUE 2459#if EV_USE_KQUEUE
1233 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2460 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1248#if EV_IDLE_ENABLE 2475#if EV_IDLE_ENABLE
1249 array_free (idle, [i]); 2476 array_free (idle, [i]);
1250#endif 2477#endif
1251 } 2478 }
1252 2479
1253 ev_free (anfds); anfdmax = 0; 2480 ev_free (anfds); anfds = 0; anfdmax = 0;
1254 2481
1255 /* have to use the microsoft-never-gets-it-right macro */ 2482 /* have to use the microsoft-never-gets-it-right macro */
2483 array_free (rfeed, EMPTY);
1256 array_free (fdchange, EMPTY); 2484 array_free (fdchange, EMPTY);
1257 array_free (timer, EMPTY); 2485 array_free (timer, EMPTY);
1258#if EV_PERIODIC_ENABLE 2486#if EV_PERIODIC_ENABLE
1259 array_free (periodic, EMPTY); 2487 array_free (periodic, EMPTY);
1260#endif 2488#endif
1261#if EV_FORK_ENABLE 2489#if EV_FORK_ENABLE
1262 array_free (fork, EMPTY); 2490 array_free (fork, EMPTY);
1263#endif 2491#endif
2492#if EV_CLEANUP_ENABLE
2493 array_free (cleanup, EMPTY);
2494#endif
1264 array_free (prepare, EMPTY); 2495 array_free (prepare, EMPTY);
1265 array_free (check, EMPTY); 2496 array_free (check, EMPTY);
1266#if EV_ASYNC_ENABLE 2497#if EV_ASYNC_ENABLE
1267 array_free (async, EMPTY); 2498 array_free (async, EMPTY);
1268#endif 2499#endif
1269 2500
1270 backend = 0; 2501 backend = 0;
1271}
1272 2502
2503#if EV_MULTIPLICITY
2504 if (ev_is_default_loop (EV_A))
2505#endif
2506 ev_default_loop_ptr = 0;
2507#if EV_MULTIPLICITY
2508 else
2509 ev_free (EV_A);
2510#endif
2511}
2512
2513#if EV_USE_INOTIFY
1273void inline_size infy_fork (EV_P); 2514inline_size void infy_fork (EV_P);
2515#endif
1274 2516
1275void inline_size 2517inline_size void
1276loop_fork (EV_P) 2518loop_fork (EV_P)
1277{ 2519{
1278#if EV_USE_PORT 2520#if EV_USE_PORT
1279 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2521 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1280#endif 2522#endif
1286#endif 2528#endif
1287#if EV_USE_INOTIFY 2529#if EV_USE_INOTIFY
1288 infy_fork (EV_A); 2530 infy_fork (EV_A);
1289#endif 2531#endif
1290 2532
1291 if (ev_is_active (&pipeev)) 2533 if (ev_is_active (&pipe_w))
1292 { 2534 {
1293 /* this "locks" the handlers against writing to the pipe */ 2535 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1294 /* while we modify the fd vars */
1295 gotsig = 1;
1296#if EV_ASYNC_ENABLE
1297 gotasync = 1;
1298#endif
1299 2536
1300 ev_ref (EV_A); 2537 ev_ref (EV_A);
1301 ev_io_stop (EV_A_ &pipeev); 2538 ev_io_stop (EV_A_ &pipe_w);
1302 2539
1303#if EV_USE_EVENTFD 2540#if EV_USE_EVENTFD
1304 if (evfd >= 0) 2541 if (evfd >= 0)
1305 close (evfd); 2542 close (evfd);
1306#endif 2543#endif
1307 2544
1308 if (evpipe [0] >= 0) 2545 if (evpipe [0] >= 0)
1309 { 2546 {
1310 close (evpipe [0]); 2547 EV_WIN32_CLOSE_FD (evpipe [0]);
1311 close (evpipe [1]); 2548 EV_WIN32_CLOSE_FD (evpipe [1]);
1312 } 2549 }
1313 2550
2551#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1314 evpipe_init (EV_A); 2552 evpipe_init (EV_A);
1315 /* now iterate over everything, in case we missed something */ 2553 /* iterate over everything, in case we missed something before */
1316 pipecb (EV_A_ &pipeev, EV_READ); 2554 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
2555#endif
1317 } 2556 }
1318 2557
1319 postfork = 0; 2558 postfork = 0;
1320} 2559}
1321 2560
1322#if EV_MULTIPLICITY 2561#if EV_MULTIPLICITY
2562
1323struct ev_loop * 2563struct ev_loop * ecb_cold
1324ev_loop_new (unsigned int flags) 2564ev_loop_new (unsigned int flags) EV_THROW
1325{ 2565{
1326 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2566 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1327 2567
1328 memset (loop, 0, sizeof (struct ev_loop)); 2568 memset (EV_A, 0, sizeof (struct ev_loop));
1329
1330 loop_init (EV_A_ flags); 2569 loop_init (EV_A_ flags);
1331 2570
1332 if (ev_backend (EV_A)) 2571 if (ev_backend (EV_A))
1333 return loop; 2572 return EV_A;
1334 2573
2574 ev_free (EV_A);
1335 return 0; 2575 return 0;
1336} 2576}
1337 2577
1338void 2578#endif /* multiplicity */
1339ev_loop_destroy (EV_P)
1340{
1341 loop_destroy (EV_A);
1342 ev_free (loop);
1343}
1344 2579
1345void 2580#if EV_VERIFY
1346ev_loop_fork (EV_P) 2581static void noinline ecb_cold
2582verify_watcher (EV_P_ W w)
1347{ 2583{
1348 postfork = 1; /* must be in line with ev_default_fork */ 2584 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1349}
1350 2585
2586 if (w->pending)
2587 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2588}
2589
2590static void noinline ecb_cold
2591verify_heap (EV_P_ ANHE *heap, int N)
2592{
2593 int i;
2594
2595 for (i = HEAP0; i < N + HEAP0; ++i)
2596 {
2597 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2598 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2599 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2600
2601 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2602 }
2603}
2604
2605static void noinline ecb_cold
2606array_verify (EV_P_ W *ws, int cnt)
2607{
2608 while (cnt--)
2609 {
2610 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2611 verify_watcher (EV_A_ ws [cnt]);
2612 }
2613}
2614#endif
2615
2616#if EV_FEATURE_API
2617void ecb_cold
2618ev_verify (EV_P) EV_THROW
2619{
2620#if EV_VERIFY
2621 int i;
2622 WL w, w2;
2623
2624 assert (activecnt >= -1);
2625
2626 assert (fdchangemax >= fdchangecnt);
2627 for (i = 0; i < fdchangecnt; ++i)
2628 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2629
2630 assert (anfdmax >= 0);
2631 for (i = 0; i < anfdmax; ++i)
2632 {
2633 int j = 0;
2634
2635 for (w = w2 = anfds [i].head; w; w = w->next)
2636 {
2637 verify_watcher (EV_A_ (W)w);
2638
2639 if (j++ & 1)
2640 {
2641 assert (("libev: io watcher list contains a loop", w != w2));
2642 w2 = w2->next;
2643 }
2644
2645 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2646 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2647 }
2648 }
2649
2650 assert (timermax >= timercnt);
2651 verify_heap (EV_A_ timers, timercnt);
2652
2653#if EV_PERIODIC_ENABLE
2654 assert (periodicmax >= periodiccnt);
2655 verify_heap (EV_A_ periodics, periodiccnt);
2656#endif
2657
2658 for (i = NUMPRI; i--; )
2659 {
2660 assert (pendingmax [i] >= pendingcnt [i]);
2661#if EV_IDLE_ENABLE
2662 assert (idleall >= 0);
2663 assert (idlemax [i] >= idlecnt [i]);
2664 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2665#endif
2666 }
2667
2668#if EV_FORK_ENABLE
2669 assert (forkmax >= forkcnt);
2670 array_verify (EV_A_ (W *)forks, forkcnt);
2671#endif
2672
2673#if EV_CLEANUP_ENABLE
2674 assert (cleanupmax >= cleanupcnt);
2675 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2676#endif
2677
2678#if EV_ASYNC_ENABLE
2679 assert (asyncmax >= asynccnt);
2680 array_verify (EV_A_ (W *)asyncs, asynccnt);
2681#endif
2682
2683#if EV_PREPARE_ENABLE
2684 assert (preparemax >= preparecnt);
2685 array_verify (EV_A_ (W *)prepares, preparecnt);
2686#endif
2687
2688#if EV_CHECK_ENABLE
2689 assert (checkmax >= checkcnt);
2690 array_verify (EV_A_ (W *)checks, checkcnt);
2691#endif
2692
2693# if 0
2694#if EV_CHILD_ENABLE
2695 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2696 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2697#endif
2698# endif
2699#endif
2700}
1351#endif 2701#endif
1352 2702
1353#if EV_MULTIPLICITY 2703#if EV_MULTIPLICITY
1354struct ev_loop * 2704struct ev_loop * ecb_cold
1355ev_default_loop_init (unsigned int flags)
1356#else 2705#else
1357int 2706int
2707#endif
1358ev_default_loop (unsigned int flags) 2708ev_default_loop (unsigned int flags) EV_THROW
1359#endif
1360{ 2709{
1361 if (!ev_default_loop_ptr) 2710 if (!ev_default_loop_ptr)
1362 { 2711 {
1363#if EV_MULTIPLICITY 2712#if EV_MULTIPLICITY
1364 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2713 EV_P = ev_default_loop_ptr = &default_loop_struct;
1365#else 2714#else
1366 ev_default_loop_ptr = 1; 2715 ev_default_loop_ptr = 1;
1367#endif 2716#endif
1368 2717
1369 loop_init (EV_A_ flags); 2718 loop_init (EV_A_ flags);
1370 2719
1371 if (ev_backend (EV_A)) 2720 if (ev_backend (EV_A))
1372 { 2721 {
1373#ifndef _WIN32 2722#if EV_CHILD_ENABLE
1374 ev_signal_init (&childev, childcb, SIGCHLD); 2723 ev_signal_init (&childev, childcb, SIGCHLD);
1375 ev_set_priority (&childev, EV_MAXPRI); 2724 ev_set_priority (&childev, EV_MAXPRI);
1376 ev_signal_start (EV_A_ &childev); 2725 ev_signal_start (EV_A_ &childev);
1377 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2726 ev_unref (EV_A); /* child watcher should not keep loop alive */
1378#endif 2727#endif
1383 2732
1384 return ev_default_loop_ptr; 2733 return ev_default_loop_ptr;
1385} 2734}
1386 2735
1387void 2736void
1388ev_default_destroy (void) 2737ev_loop_fork (EV_P) EV_THROW
1389{ 2738{
1390#if EV_MULTIPLICITY 2739 postfork = 1;
1391 struct ev_loop *loop = ev_default_loop_ptr;
1392#endif
1393
1394#ifndef _WIN32
1395 ev_ref (EV_A); /* child watcher */
1396 ev_signal_stop (EV_A_ &childev);
1397#endif
1398
1399 loop_destroy (EV_A);
1400}
1401
1402void
1403ev_default_fork (void)
1404{
1405#if EV_MULTIPLICITY
1406 struct ev_loop *loop = ev_default_loop_ptr;
1407#endif
1408
1409 if (backend)
1410 postfork = 1; /* must be in line with ev_loop_fork */
1411} 2740}
1412 2741
1413/*****************************************************************************/ 2742/*****************************************************************************/
1414 2743
1415void 2744void
1416ev_invoke (EV_P_ void *w, int revents) 2745ev_invoke (EV_P_ void *w, int revents)
1417{ 2746{
1418 EV_CB_INVOKE ((W)w, revents); 2747 EV_CB_INVOKE ((W)w, revents);
1419} 2748}
1420 2749
1421void inline_speed 2750unsigned int
1422call_pending (EV_P) 2751ev_pending_count (EV_P) EV_THROW
1423{ 2752{
1424 int pri; 2753 int pri;
2754 unsigned int count = 0;
1425 2755
1426 for (pri = NUMPRI; pri--; ) 2756 for (pri = NUMPRI; pri--; )
2757 count += pendingcnt [pri];
2758
2759 return count;
2760}
2761
2762void noinline
2763ev_invoke_pending (EV_P)
2764{
2765 pendingpri = NUMPRI;
2766
2767 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
2768 {
2769 --pendingpri;
2770
1427 while (pendingcnt [pri]) 2771 while (pendingcnt [pendingpri])
1428 {
1429 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1430
1431 if (expect_true (p->w))
1432 {
1433 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1434
1435 p->w->pending = 0;
1436 EV_CB_INVOKE (p->w, p->events);
1437 }
1438 }
1439}
1440
1441void inline_size
1442timers_reify (EV_P)
1443{
1444 while (timercnt && ((WT)timers [0])->at <= mn_now)
1445 {
1446 ev_timer *w = (ev_timer *)timers [0];
1447
1448 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1449
1450 /* first reschedule or stop timer */
1451 if (w->repeat)
1452 { 2772 {
1453 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2773 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1454 2774
1455 ((WT)w)->at += w->repeat; 2775 p->w->pending = 0;
1456 if (((WT)w)->at < mn_now) 2776 EV_CB_INVOKE (p->w, p->events);
1457 ((WT)w)->at = mn_now; 2777 EV_FREQUENT_CHECK;
1458
1459 downheap (timers, timercnt, 0);
1460 } 2778 }
1461 else
1462 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1463
1464 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1465 }
1466}
1467
1468#if EV_PERIODIC_ENABLE
1469void inline_size
1470periodics_reify (EV_P)
1471{
1472 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1473 { 2779 }
1474 ev_periodic *w = (ev_periodic *)periodics [0];
1475
1476 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1477
1478 /* first reschedule or stop timer */
1479 if (w->reschedule_cb)
1480 {
1481 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1482 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1483 downheap (periodics, periodiccnt, 0);
1484 }
1485 else if (w->interval)
1486 {
1487 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1488 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1489 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1490 downheap (periodics, periodiccnt, 0);
1491 }
1492 else
1493 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1494
1495 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1496 }
1497} 2780}
1498
1499static void noinline
1500periodics_reschedule (EV_P)
1501{
1502 int i;
1503
1504 /* adjust periodics after time jump */
1505 for (i = 0; i < periodiccnt; ++i)
1506 {
1507 ev_periodic *w = (ev_periodic *)periodics [i];
1508
1509 if (w->reschedule_cb)
1510 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1511 else if (w->interval)
1512 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1513 }
1514
1515 /* now rebuild the heap */
1516 for (i = periodiccnt >> 1; i--; )
1517 downheap (periodics, periodiccnt, i);
1518}
1519#endif
1520 2781
1521#if EV_IDLE_ENABLE 2782#if EV_IDLE_ENABLE
1522void inline_size 2783/* make idle watchers pending. this handles the "call-idle */
2784/* only when higher priorities are idle" logic */
2785inline_size void
1523idle_reify (EV_P) 2786idle_reify (EV_P)
1524{ 2787{
1525 if (expect_false (idleall)) 2788 if (expect_false (idleall))
1526 { 2789 {
1527 int pri; 2790 int pri;
1539 } 2802 }
1540 } 2803 }
1541} 2804}
1542#endif 2805#endif
1543 2806
1544void inline_speed 2807/* make timers pending */
2808inline_size void
2809timers_reify (EV_P)
2810{
2811 EV_FREQUENT_CHECK;
2812
2813 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2814 {
2815 do
2816 {
2817 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2818
2819 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2820
2821 /* first reschedule or stop timer */
2822 if (w->repeat)
2823 {
2824 ev_at (w) += w->repeat;
2825 if (ev_at (w) < mn_now)
2826 ev_at (w) = mn_now;
2827
2828 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2829
2830 ANHE_at_cache (timers [HEAP0]);
2831 downheap (timers, timercnt, HEAP0);
2832 }
2833 else
2834 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2835
2836 EV_FREQUENT_CHECK;
2837 feed_reverse (EV_A_ (W)w);
2838 }
2839 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2840
2841 feed_reverse_done (EV_A_ EV_TIMER);
2842 }
2843}
2844
2845#if EV_PERIODIC_ENABLE
2846
2847static void noinline
2848periodic_recalc (EV_P_ ev_periodic *w)
2849{
2850 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2851 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2852
2853 /* the above almost always errs on the low side */
2854 while (at <= ev_rt_now)
2855 {
2856 ev_tstamp nat = at + w->interval;
2857
2858 /* when resolution fails us, we use ev_rt_now */
2859 if (expect_false (nat == at))
2860 {
2861 at = ev_rt_now;
2862 break;
2863 }
2864
2865 at = nat;
2866 }
2867
2868 ev_at (w) = at;
2869}
2870
2871/* make periodics pending */
2872inline_size void
2873periodics_reify (EV_P)
2874{
2875 EV_FREQUENT_CHECK;
2876
2877 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2878 {
2879 do
2880 {
2881 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2882
2883 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2884
2885 /* first reschedule or stop timer */
2886 if (w->reschedule_cb)
2887 {
2888 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2889
2890 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2891
2892 ANHE_at_cache (periodics [HEAP0]);
2893 downheap (periodics, periodiccnt, HEAP0);
2894 }
2895 else if (w->interval)
2896 {
2897 periodic_recalc (EV_A_ w);
2898 ANHE_at_cache (periodics [HEAP0]);
2899 downheap (periodics, periodiccnt, HEAP0);
2900 }
2901 else
2902 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2903
2904 EV_FREQUENT_CHECK;
2905 feed_reverse (EV_A_ (W)w);
2906 }
2907 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2908
2909 feed_reverse_done (EV_A_ EV_PERIODIC);
2910 }
2911}
2912
2913/* simply recalculate all periodics */
2914/* TODO: maybe ensure that at least one event happens when jumping forward? */
2915static void noinline ecb_cold
2916periodics_reschedule (EV_P)
2917{
2918 int i;
2919
2920 /* adjust periodics after time jump */
2921 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2922 {
2923 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2924
2925 if (w->reschedule_cb)
2926 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2927 else if (w->interval)
2928 periodic_recalc (EV_A_ w);
2929
2930 ANHE_at_cache (periodics [i]);
2931 }
2932
2933 reheap (periodics, periodiccnt);
2934}
2935#endif
2936
2937/* adjust all timers by a given offset */
2938static void noinline ecb_cold
2939timers_reschedule (EV_P_ ev_tstamp adjust)
2940{
2941 int i;
2942
2943 for (i = 0; i < timercnt; ++i)
2944 {
2945 ANHE *he = timers + i + HEAP0;
2946 ANHE_w (*he)->at += adjust;
2947 ANHE_at_cache (*he);
2948 }
2949}
2950
2951/* fetch new monotonic and realtime times from the kernel */
2952/* also detect if there was a timejump, and act accordingly */
2953inline_speed void
1545time_update (EV_P_ ev_tstamp max_block) 2954time_update (EV_P_ ev_tstamp max_block)
1546{ 2955{
1547 int i;
1548
1549#if EV_USE_MONOTONIC 2956#if EV_USE_MONOTONIC
1550 if (expect_true (have_monotonic)) 2957 if (expect_true (have_monotonic))
1551 { 2958 {
2959 int i;
1552 ev_tstamp odiff = rtmn_diff; 2960 ev_tstamp odiff = rtmn_diff;
1553 2961
1554 mn_now = get_clock (); 2962 mn_now = get_clock ();
1555 2963
1556 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2964 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1572 * doesn't hurt either as we only do this on time-jumps or 2980 * doesn't hurt either as we only do this on time-jumps or
1573 * in the unlikely event of having been preempted here. 2981 * in the unlikely event of having been preempted here.
1574 */ 2982 */
1575 for (i = 4; --i; ) 2983 for (i = 4; --i; )
1576 { 2984 {
2985 ev_tstamp diff;
1577 rtmn_diff = ev_rt_now - mn_now; 2986 rtmn_diff = ev_rt_now - mn_now;
1578 2987
1579 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2988 diff = odiff - rtmn_diff;
2989
2990 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1580 return; /* all is well */ 2991 return; /* all is well */
1581 2992
1582 ev_rt_now = ev_time (); 2993 ev_rt_now = ev_time ();
1583 mn_now = get_clock (); 2994 mn_now = get_clock ();
1584 now_floor = mn_now; 2995 now_floor = mn_now;
1585 } 2996 }
1586 2997
2998 /* no timer adjustment, as the monotonic clock doesn't jump */
2999 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1587# if EV_PERIODIC_ENABLE 3000# if EV_PERIODIC_ENABLE
1588 periodics_reschedule (EV_A); 3001 periodics_reschedule (EV_A);
1589# endif 3002# endif
1590 /* no timer adjustment, as the monotonic clock doesn't jump */
1591 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1592 } 3003 }
1593 else 3004 else
1594#endif 3005#endif
1595 { 3006 {
1596 ev_rt_now = ev_time (); 3007 ev_rt_now = ev_time ();
1597 3008
1598 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 3009 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1599 { 3010 {
3011 /* adjust timers. this is easy, as the offset is the same for all of them */
3012 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1600#if EV_PERIODIC_ENABLE 3013#if EV_PERIODIC_ENABLE
1601 periodics_reschedule (EV_A); 3014 periodics_reschedule (EV_A);
1602#endif 3015#endif
1603 /* adjust timers. this is easy, as the offset is the same for all of them */
1604 for (i = 0; i < timercnt; ++i)
1605 ((WT)timers [i])->at += ev_rt_now - mn_now;
1606 } 3016 }
1607 3017
1608 mn_now = ev_rt_now; 3018 mn_now = ev_rt_now;
1609 } 3019 }
1610} 3020}
1611 3021
1612void 3022int
1613ev_ref (EV_P)
1614{
1615 ++activecnt;
1616}
1617
1618void
1619ev_unref (EV_P)
1620{
1621 --activecnt;
1622}
1623
1624static int loop_done;
1625
1626void
1627ev_loop (EV_P_ int flags) 3023ev_run (EV_P_ int flags)
1628{ 3024{
3025#if EV_FEATURE_API
3026 ++loop_depth;
3027#endif
3028
3029 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3030
1629 loop_done = EVUNLOOP_CANCEL; 3031 loop_done = EVBREAK_CANCEL;
1630 3032
1631 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3033 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1632 3034
1633 do 3035 do
1634 { 3036 {
3037#if EV_VERIFY >= 2
3038 ev_verify (EV_A);
3039#endif
3040
1635#ifndef _WIN32 3041#ifndef _WIN32
1636 if (expect_false (curpid)) /* penalise the forking check even more */ 3042 if (expect_false (curpid)) /* penalise the forking check even more */
1637 if (expect_false (getpid () != curpid)) 3043 if (expect_false (getpid () != curpid))
1638 { 3044 {
1639 curpid = getpid (); 3045 curpid = getpid ();
1645 /* we might have forked, so queue fork handlers */ 3051 /* we might have forked, so queue fork handlers */
1646 if (expect_false (postfork)) 3052 if (expect_false (postfork))
1647 if (forkcnt) 3053 if (forkcnt)
1648 { 3054 {
1649 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3055 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1650 call_pending (EV_A); 3056 EV_INVOKE_PENDING;
1651 } 3057 }
1652#endif 3058#endif
1653 3059
3060#if EV_PREPARE_ENABLE
1654 /* queue prepare watchers (and execute them) */ 3061 /* queue prepare watchers (and execute them) */
1655 if (expect_false (preparecnt)) 3062 if (expect_false (preparecnt))
1656 { 3063 {
1657 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3064 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1658 call_pending (EV_A); 3065 EV_INVOKE_PENDING;
1659 } 3066 }
3067#endif
1660 3068
1661 if (expect_false (!activecnt)) 3069 if (expect_false (loop_done))
1662 break; 3070 break;
1663 3071
1664 /* we might have forked, so reify kernel state if necessary */ 3072 /* we might have forked, so reify kernel state if necessary */
1665 if (expect_false (postfork)) 3073 if (expect_false (postfork))
1666 loop_fork (EV_A); 3074 loop_fork (EV_A);
1671 /* calculate blocking time */ 3079 /* calculate blocking time */
1672 { 3080 {
1673 ev_tstamp waittime = 0.; 3081 ev_tstamp waittime = 0.;
1674 ev_tstamp sleeptime = 0.; 3082 ev_tstamp sleeptime = 0.;
1675 3083
3084 /* remember old timestamp for io_blocktime calculation */
3085 ev_tstamp prev_mn_now = mn_now;
3086
3087 /* update time to cancel out callback processing overhead */
3088 time_update (EV_A_ 1e100);
3089
3090 /* from now on, we want a pipe-wake-up */
3091 pipe_write_wanted = 1;
3092
3093 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3094
1676 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3095 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1677 { 3096 {
1678 /* update time to cancel out callback processing overhead */
1679 time_update (EV_A_ 1e100);
1680
1681 waittime = MAX_BLOCKTIME; 3097 waittime = MAX_BLOCKTIME;
1682 3098
1683 if (timercnt) 3099 if (timercnt)
1684 { 3100 {
1685 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 3101 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1686 if (waittime > to) waittime = to; 3102 if (waittime > to) waittime = to;
1687 } 3103 }
1688 3104
1689#if EV_PERIODIC_ENABLE 3105#if EV_PERIODIC_ENABLE
1690 if (periodiccnt) 3106 if (periodiccnt)
1691 { 3107 {
1692 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 3108 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1693 if (waittime > to) waittime = to; 3109 if (waittime > to) waittime = to;
1694 } 3110 }
1695#endif 3111#endif
1696 3112
3113 /* don't let timeouts decrease the waittime below timeout_blocktime */
1697 if (expect_false (waittime < timeout_blocktime)) 3114 if (expect_false (waittime < timeout_blocktime))
1698 waittime = timeout_blocktime; 3115 waittime = timeout_blocktime;
1699 3116
1700 sleeptime = waittime - backend_fudge; 3117 /* at this point, we NEED to wait, so we have to ensure */
3118 /* to pass a minimum nonzero value to the backend */
3119 if (expect_false (waittime < backend_mintime))
3120 waittime = backend_mintime;
1701 3121
3122 /* extra check because io_blocktime is commonly 0 */
1702 if (expect_true (sleeptime > io_blocktime)) 3123 if (expect_false (io_blocktime))
1703 sleeptime = io_blocktime;
1704
1705 if (sleeptime)
1706 { 3124 {
3125 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3126
3127 if (sleeptime > waittime - backend_mintime)
3128 sleeptime = waittime - backend_mintime;
3129
3130 if (expect_true (sleeptime > 0.))
3131 {
1707 ev_sleep (sleeptime); 3132 ev_sleep (sleeptime);
1708 waittime -= sleeptime; 3133 waittime -= sleeptime;
3134 }
1709 } 3135 }
1710 } 3136 }
1711 3137
3138#if EV_FEATURE_API
1712 ++loop_count; 3139 ++loop_count;
3140#endif
3141 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1713 backend_poll (EV_A_ waittime); 3142 backend_poll (EV_A_ waittime);
3143 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3144
3145 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3146
3147 ECB_MEMORY_FENCE_ACQUIRE;
3148 if (pipe_write_skipped)
3149 {
3150 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3151 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3152 }
3153
1714 3154
1715 /* update ev_rt_now, do magic */ 3155 /* update ev_rt_now, do magic */
1716 time_update (EV_A_ waittime + sleeptime); 3156 time_update (EV_A_ waittime + sleeptime);
1717 } 3157 }
1718 3158
1725#if EV_IDLE_ENABLE 3165#if EV_IDLE_ENABLE
1726 /* queue idle watchers unless other events are pending */ 3166 /* queue idle watchers unless other events are pending */
1727 idle_reify (EV_A); 3167 idle_reify (EV_A);
1728#endif 3168#endif
1729 3169
3170#if EV_CHECK_ENABLE
1730 /* queue check watchers, to be executed first */ 3171 /* queue check watchers, to be executed first */
1731 if (expect_false (checkcnt)) 3172 if (expect_false (checkcnt))
1732 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3173 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3174#endif
1733 3175
1734 call_pending (EV_A); 3176 EV_INVOKE_PENDING;
1735 } 3177 }
1736 while (expect_true ( 3178 while (expect_true (
1737 activecnt 3179 activecnt
1738 && !loop_done 3180 && !loop_done
1739 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 3181 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
1740 )); 3182 ));
1741 3183
1742 if (loop_done == EVUNLOOP_ONE) 3184 if (loop_done == EVBREAK_ONE)
1743 loop_done = EVUNLOOP_CANCEL; 3185 loop_done = EVBREAK_CANCEL;
3186
3187#if EV_FEATURE_API
3188 --loop_depth;
3189#endif
3190
3191 return activecnt;
1744} 3192}
1745 3193
1746void 3194void
1747ev_unloop (EV_P_ int how) 3195ev_break (EV_P_ int how) EV_THROW
1748{ 3196{
1749 loop_done = how; 3197 loop_done = how;
1750} 3198}
1751 3199
3200void
3201ev_ref (EV_P) EV_THROW
3202{
3203 ++activecnt;
3204}
3205
3206void
3207ev_unref (EV_P) EV_THROW
3208{
3209 --activecnt;
3210}
3211
3212void
3213ev_now_update (EV_P) EV_THROW
3214{
3215 time_update (EV_A_ 1e100);
3216}
3217
3218void
3219ev_suspend (EV_P) EV_THROW
3220{
3221 ev_now_update (EV_A);
3222}
3223
3224void
3225ev_resume (EV_P) EV_THROW
3226{
3227 ev_tstamp mn_prev = mn_now;
3228
3229 ev_now_update (EV_A);
3230 timers_reschedule (EV_A_ mn_now - mn_prev);
3231#if EV_PERIODIC_ENABLE
3232 /* TODO: really do this? */
3233 periodics_reschedule (EV_A);
3234#endif
3235}
3236
1752/*****************************************************************************/ 3237/*****************************************************************************/
3238/* singly-linked list management, used when the expected list length is short */
1753 3239
1754void inline_size 3240inline_size void
1755wlist_add (WL *head, WL elem) 3241wlist_add (WL *head, WL elem)
1756{ 3242{
1757 elem->next = *head; 3243 elem->next = *head;
1758 *head = elem; 3244 *head = elem;
1759} 3245}
1760 3246
1761void inline_size 3247inline_size void
1762wlist_del (WL *head, WL elem) 3248wlist_del (WL *head, WL elem)
1763{ 3249{
1764 while (*head) 3250 while (*head)
1765 { 3251 {
1766 if (*head == elem) 3252 if (expect_true (*head == elem))
1767 { 3253 {
1768 *head = elem->next; 3254 *head = elem->next;
1769 return; 3255 break;
1770 } 3256 }
1771 3257
1772 head = &(*head)->next; 3258 head = &(*head)->next;
1773 } 3259 }
1774} 3260}
1775 3261
1776void inline_speed 3262/* internal, faster, version of ev_clear_pending */
3263inline_speed void
1777clear_pending (EV_P_ W w) 3264clear_pending (EV_P_ W w)
1778{ 3265{
1779 if (w->pending) 3266 if (w->pending)
1780 { 3267 {
1781 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3268 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1782 w->pending = 0; 3269 w->pending = 0;
1783 } 3270 }
1784} 3271}
1785 3272
1786int 3273int
1787ev_clear_pending (EV_P_ void *w) 3274ev_clear_pending (EV_P_ void *w) EV_THROW
1788{ 3275{
1789 W w_ = (W)w; 3276 W w_ = (W)w;
1790 int pending = w_->pending; 3277 int pending = w_->pending;
1791 3278
1792 if (expect_true (pending)) 3279 if (expect_true (pending))
1793 { 3280 {
1794 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3281 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3282 p->w = (W)&pending_w;
1795 w_->pending = 0; 3283 w_->pending = 0;
1796 p->w = 0;
1797 return p->events; 3284 return p->events;
1798 } 3285 }
1799 else 3286 else
1800 return 0; 3287 return 0;
1801} 3288}
1802 3289
1803void inline_size 3290inline_size void
1804pri_adjust (EV_P_ W w) 3291pri_adjust (EV_P_ W w)
1805{ 3292{
1806 int pri = w->priority; 3293 int pri = ev_priority (w);
1807 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3294 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1808 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3295 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1809 w->priority = pri; 3296 ev_set_priority (w, pri);
1810} 3297}
1811 3298
1812void inline_speed 3299inline_speed void
1813ev_start (EV_P_ W w, int active) 3300ev_start (EV_P_ W w, int active)
1814{ 3301{
1815 pri_adjust (EV_A_ w); 3302 pri_adjust (EV_A_ w);
1816 w->active = active; 3303 w->active = active;
1817 ev_ref (EV_A); 3304 ev_ref (EV_A);
1818} 3305}
1819 3306
1820void inline_size 3307inline_size void
1821ev_stop (EV_P_ W w) 3308ev_stop (EV_P_ W w)
1822{ 3309{
1823 ev_unref (EV_A); 3310 ev_unref (EV_A);
1824 w->active = 0; 3311 w->active = 0;
1825} 3312}
1826 3313
1827/*****************************************************************************/ 3314/*****************************************************************************/
1828 3315
1829void noinline 3316void noinline
1830ev_io_start (EV_P_ ev_io *w) 3317ev_io_start (EV_P_ ev_io *w) EV_THROW
1831{ 3318{
1832 int fd = w->fd; 3319 int fd = w->fd;
1833 3320
1834 if (expect_false (ev_is_active (w))) 3321 if (expect_false (ev_is_active (w)))
1835 return; 3322 return;
1836 3323
1837 assert (("ev_io_start called with negative fd", fd >= 0)); 3324 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3325 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3326
3327 EV_FREQUENT_CHECK;
1838 3328
1839 ev_start (EV_A_ (W)w, 1); 3329 ev_start (EV_A_ (W)w, 1);
1840 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3330 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1841 wlist_add (&anfds[fd].head, (WL)w); 3331 wlist_add (&anfds[fd].head, (WL)w);
1842 3332
3333 /* common bug, apparently */
3334 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3335
1843 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3336 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1844 w->events &= ~EV_IOFDSET; 3337 w->events &= ~EV__IOFDSET;
3338
3339 EV_FREQUENT_CHECK;
1845} 3340}
1846 3341
1847void noinline 3342void noinline
1848ev_io_stop (EV_P_ ev_io *w) 3343ev_io_stop (EV_P_ ev_io *w) EV_THROW
1849{ 3344{
1850 clear_pending (EV_A_ (W)w); 3345 clear_pending (EV_A_ (W)w);
1851 if (expect_false (!ev_is_active (w))) 3346 if (expect_false (!ev_is_active (w)))
1852 return; 3347 return;
1853 3348
1854 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3349 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3350
3351 EV_FREQUENT_CHECK;
1855 3352
1856 wlist_del (&anfds[w->fd].head, (WL)w); 3353 wlist_del (&anfds[w->fd].head, (WL)w);
1857 ev_stop (EV_A_ (W)w); 3354 ev_stop (EV_A_ (W)w);
1858 3355
1859 fd_change (EV_A_ w->fd, 1); 3356 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3357
3358 EV_FREQUENT_CHECK;
1860} 3359}
1861 3360
1862void noinline 3361void noinline
1863ev_timer_start (EV_P_ ev_timer *w) 3362ev_timer_start (EV_P_ ev_timer *w) EV_THROW
1864{ 3363{
1865 if (expect_false (ev_is_active (w))) 3364 if (expect_false (ev_is_active (w)))
1866 return; 3365 return;
1867 3366
1868 ((WT)w)->at += mn_now; 3367 ev_at (w) += mn_now;
1869 3368
1870 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3369 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1871 3370
3371 EV_FREQUENT_CHECK;
3372
3373 ++timercnt;
1872 ev_start (EV_A_ (W)w, ++timercnt); 3374 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1873 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 3375 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1874 timers [timercnt - 1] = (WT)w; 3376 ANHE_w (timers [ev_active (w)]) = (WT)w;
1875 upheap (timers, timercnt - 1); 3377 ANHE_at_cache (timers [ev_active (w)]);
3378 upheap (timers, ev_active (w));
1876 3379
3380 EV_FREQUENT_CHECK;
3381
1877 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 3382 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1878} 3383}
1879 3384
1880void noinline 3385void noinline
1881ev_timer_stop (EV_P_ ev_timer *w) 3386ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
1882{ 3387{
1883 clear_pending (EV_A_ (W)w); 3388 clear_pending (EV_A_ (W)w);
1884 if (expect_false (!ev_is_active (w))) 3389 if (expect_false (!ev_is_active (w)))
1885 return; 3390 return;
1886 3391
1887 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 3392 EV_FREQUENT_CHECK;
1888 3393
1889 { 3394 {
1890 int active = ((W)w)->active; 3395 int active = ev_active (w);
1891 3396
3397 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3398
3399 --timercnt;
3400
1892 if (expect_true (--active < --timercnt)) 3401 if (expect_true (active < timercnt + HEAP0))
1893 { 3402 {
1894 timers [active] = timers [timercnt]; 3403 timers [active] = timers [timercnt + HEAP0];
1895 adjustheap (timers, timercnt, active); 3404 adjustheap (timers, timercnt, active);
1896 } 3405 }
1897 } 3406 }
1898 3407
1899 ((WT)w)->at -= mn_now; 3408 ev_at (w) -= mn_now;
1900 3409
1901 ev_stop (EV_A_ (W)w); 3410 ev_stop (EV_A_ (W)w);
3411
3412 EV_FREQUENT_CHECK;
1902} 3413}
1903 3414
1904void noinline 3415void noinline
1905ev_timer_again (EV_P_ ev_timer *w) 3416ev_timer_again (EV_P_ ev_timer *w) EV_THROW
1906{ 3417{
3418 EV_FREQUENT_CHECK;
3419
3420 clear_pending (EV_A_ (W)w);
3421
1907 if (ev_is_active (w)) 3422 if (ev_is_active (w))
1908 { 3423 {
1909 if (w->repeat) 3424 if (w->repeat)
1910 { 3425 {
1911 ((WT)w)->at = mn_now + w->repeat; 3426 ev_at (w) = mn_now + w->repeat;
3427 ANHE_at_cache (timers [ev_active (w)]);
1912 adjustheap (timers, timercnt, ((W)w)->active - 1); 3428 adjustheap (timers, timercnt, ev_active (w));
1913 } 3429 }
1914 else 3430 else
1915 ev_timer_stop (EV_A_ w); 3431 ev_timer_stop (EV_A_ w);
1916 } 3432 }
1917 else if (w->repeat) 3433 else if (w->repeat)
1918 { 3434 {
1919 w->at = w->repeat; 3435 ev_at (w) = w->repeat;
1920 ev_timer_start (EV_A_ w); 3436 ev_timer_start (EV_A_ w);
1921 } 3437 }
3438
3439 EV_FREQUENT_CHECK;
3440}
3441
3442ev_tstamp
3443ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3444{
3445 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1922} 3446}
1923 3447
1924#if EV_PERIODIC_ENABLE 3448#if EV_PERIODIC_ENABLE
1925void noinline 3449void noinline
1926ev_periodic_start (EV_P_ ev_periodic *w) 3450ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
1927{ 3451{
1928 if (expect_false (ev_is_active (w))) 3452 if (expect_false (ev_is_active (w)))
1929 return; 3453 return;
1930 3454
1931 if (w->reschedule_cb) 3455 if (w->reschedule_cb)
1932 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 3456 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1933 else if (w->interval) 3457 else if (w->interval)
1934 { 3458 {
1935 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3459 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1936 /* this formula differs from the one in periodic_reify because we do not always round up */ 3460 periodic_recalc (EV_A_ w);
1937 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1938 } 3461 }
1939 else 3462 else
1940 ((WT)w)->at = w->offset; 3463 ev_at (w) = w->offset;
1941 3464
3465 EV_FREQUENT_CHECK;
3466
3467 ++periodiccnt;
1942 ev_start (EV_A_ (W)w, ++periodiccnt); 3468 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1943 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 3469 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1944 periodics [periodiccnt - 1] = (WT)w; 3470 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1945 upheap (periodics, periodiccnt - 1); 3471 ANHE_at_cache (periodics [ev_active (w)]);
3472 upheap (periodics, ev_active (w));
1946 3473
3474 EV_FREQUENT_CHECK;
3475
1947 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 3476 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1948} 3477}
1949 3478
1950void noinline 3479void noinline
1951ev_periodic_stop (EV_P_ ev_periodic *w) 3480ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
1952{ 3481{
1953 clear_pending (EV_A_ (W)w); 3482 clear_pending (EV_A_ (W)w);
1954 if (expect_false (!ev_is_active (w))) 3483 if (expect_false (!ev_is_active (w)))
1955 return; 3484 return;
1956 3485
1957 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 3486 EV_FREQUENT_CHECK;
1958 3487
1959 { 3488 {
1960 int active = ((W)w)->active; 3489 int active = ev_active (w);
1961 3490
3491 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3492
3493 --periodiccnt;
3494
1962 if (expect_true (--active < --periodiccnt)) 3495 if (expect_true (active < periodiccnt + HEAP0))
1963 { 3496 {
1964 periodics [active] = periodics [periodiccnt]; 3497 periodics [active] = periodics [periodiccnt + HEAP0];
1965 adjustheap (periodics, periodiccnt, active); 3498 adjustheap (periodics, periodiccnt, active);
1966 } 3499 }
1967 } 3500 }
1968 3501
1969 ev_stop (EV_A_ (W)w); 3502 ev_stop (EV_A_ (W)w);
3503
3504 EV_FREQUENT_CHECK;
1970} 3505}
1971 3506
1972void noinline 3507void noinline
1973ev_periodic_again (EV_P_ ev_periodic *w) 3508ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
1974{ 3509{
1975 /* TODO: use adjustheap and recalculation */ 3510 /* TODO: use adjustheap and recalculation */
1976 ev_periodic_stop (EV_A_ w); 3511 ev_periodic_stop (EV_A_ w);
1977 ev_periodic_start (EV_A_ w); 3512 ev_periodic_start (EV_A_ w);
1978} 3513}
1980 3515
1981#ifndef SA_RESTART 3516#ifndef SA_RESTART
1982# define SA_RESTART 0 3517# define SA_RESTART 0
1983#endif 3518#endif
1984 3519
3520#if EV_SIGNAL_ENABLE
3521
1985void noinline 3522void noinline
1986ev_signal_start (EV_P_ ev_signal *w) 3523ev_signal_start (EV_P_ ev_signal *w) EV_THROW
1987{ 3524{
1988#if EV_MULTIPLICITY
1989 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1990#endif
1991 if (expect_false (ev_is_active (w))) 3525 if (expect_false (ev_is_active (w)))
1992 return; 3526 return;
1993 3527
1994 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3528 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
1995 3529
1996 evpipe_init (EV_A); 3530#if EV_MULTIPLICITY
3531 assert (("libev: a signal must not be attached to two different loops",
3532 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
1997 3533
3534 signals [w->signum - 1].loop = EV_A;
3535#endif
3536
3537 EV_FREQUENT_CHECK;
3538
3539#if EV_USE_SIGNALFD
3540 if (sigfd == -2)
1998 { 3541 {
1999#ifndef _WIN32 3542 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2000 sigset_t full, prev; 3543 if (sigfd < 0 && errno == EINVAL)
2001 sigfillset (&full); 3544 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2002 sigprocmask (SIG_SETMASK, &full, &prev);
2003#endif
2004 3545
2005 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3546 if (sigfd >= 0)
3547 {
3548 fd_intern (sigfd); /* doing it twice will not hurt */
2006 3549
2007#ifndef _WIN32 3550 sigemptyset (&sigfd_set);
2008 sigprocmask (SIG_SETMASK, &prev, 0); 3551
2009#endif 3552 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3553 ev_set_priority (&sigfd_w, EV_MAXPRI);
3554 ev_io_start (EV_A_ &sigfd_w);
3555 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3556 }
2010 } 3557 }
3558
3559 if (sigfd >= 0)
3560 {
3561 /* TODO: check .head */
3562 sigaddset (&sigfd_set, w->signum);
3563 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3564
3565 signalfd (sigfd, &sigfd_set, 0);
3566 }
3567#endif
2011 3568
2012 ev_start (EV_A_ (W)w, 1); 3569 ev_start (EV_A_ (W)w, 1);
2013 wlist_add (&signals [w->signum - 1].head, (WL)w); 3570 wlist_add (&signals [w->signum - 1].head, (WL)w);
2014 3571
2015 if (!((WL)w)->next) 3572 if (!((WL)w)->next)
3573# if EV_USE_SIGNALFD
3574 if (sigfd < 0) /*TODO*/
3575# endif
2016 { 3576 {
2017#if _WIN32 3577# ifdef _WIN32
3578 evpipe_init (EV_A);
3579
2018 signal (w->signum, ev_sighandler); 3580 signal (w->signum, ev_sighandler);
2019#else 3581# else
2020 struct sigaction sa; 3582 struct sigaction sa;
3583
3584 evpipe_init (EV_A);
3585
2021 sa.sa_handler = ev_sighandler; 3586 sa.sa_handler = ev_sighandler;
2022 sigfillset (&sa.sa_mask); 3587 sigfillset (&sa.sa_mask);
2023 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3588 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2024 sigaction (w->signum, &sa, 0); 3589 sigaction (w->signum, &sa, 0);
3590
3591 if (origflags & EVFLAG_NOSIGMASK)
3592 {
3593 sigemptyset (&sa.sa_mask);
3594 sigaddset (&sa.sa_mask, w->signum);
3595 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3596 }
2025#endif 3597#endif
2026 } 3598 }
3599
3600 EV_FREQUENT_CHECK;
2027} 3601}
2028 3602
2029void noinline 3603void noinline
2030ev_signal_stop (EV_P_ ev_signal *w) 3604ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
2031{ 3605{
2032 clear_pending (EV_A_ (W)w); 3606 clear_pending (EV_A_ (W)w);
2033 if (expect_false (!ev_is_active (w))) 3607 if (expect_false (!ev_is_active (w)))
2034 return; 3608 return;
2035 3609
3610 EV_FREQUENT_CHECK;
3611
2036 wlist_del (&signals [w->signum - 1].head, (WL)w); 3612 wlist_del (&signals [w->signum - 1].head, (WL)w);
2037 ev_stop (EV_A_ (W)w); 3613 ev_stop (EV_A_ (W)w);
2038 3614
2039 if (!signals [w->signum - 1].head) 3615 if (!signals [w->signum - 1].head)
3616 {
3617#if EV_MULTIPLICITY
3618 signals [w->signum - 1].loop = 0; /* unattach from signal */
3619#endif
3620#if EV_USE_SIGNALFD
3621 if (sigfd >= 0)
3622 {
3623 sigset_t ss;
3624
3625 sigemptyset (&ss);
3626 sigaddset (&ss, w->signum);
3627 sigdelset (&sigfd_set, w->signum);
3628
3629 signalfd (sigfd, &sigfd_set, 0);
3630 sigprocmask (SIG_UNBLOCK, &ss, 0);
3631 }
3632 else
3633#endif
2040 signal (w->signum, SIG_DFL); 3634 signal (w->signum, SIG_DFL);
3635 }
3636
3637 EV_FREQUENT_CHECK;
2041} 3638}
3639
3640#endif
3641
3642#if EV_CHILD_ENABLE
2042 3643
2043void 3644void
2044ev_child_start (EV_P_ ev_child *w) 3645ev_child_start (EV_P_ ev_child *w) EV_THROW
2045{ 3646{
2046#if EV_MULTIPLICITY 3647#if EV_MULTIPLICITY
2047 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3648 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2048#endif 3649#endif
2049 if (expect_false (ev_is_active (w))) 3650 if (expect_false (ev_is_active (w)))
2050 return; 3651 return;
2051 3652
3653 EV_FREQUENT_CHECK;
3654
2052 ev_start (EV_A_ (W)w, 1); 3655 ev_start (EV_A_ (W)w, 1);
2053 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3656 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3657
3658 EV_FREQUENT_CHECK;
2054} 3659}
2055 3660
2056void 3661void
2057ev_child_stop (EV_P_ ev_child *w) 3662ev_child_stop (EV_P_ ev_child *w) EV_THROW
2058{ 3663{
2059 clear_pending (EV_A_ (W)w); 3664 clear_pending (EV_A_ (W)w);
2060 if (expect_false (!ev_is_active (w))) 3665 if (expect_false (!ev_is_active (w)))
2061 return; 3666 return;
2062 3667
3668 EV_FREQUENT_CHECK;
3669
2063 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3670 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2064 ev_stop (EV_A_ (W)w); 3671 ev_stop (EV_A_ (W)w);
3672
3673 EV_FREQUENT_CHECK;
2065} 3674}
3675
3676#endif
2066 3677
2067#if EV_STAT_ENABLE 3678#if EV_STAT_ENABLE
2068 3679
2069# ifdef _WIN32 3680# ifdef _WIN32
2070# undef lstat 3681# undef lstat
2071# define lstat(a,b) _stati64 (a,b) 3682# define lstat(a,b) _stati64 (a,b)
2072# endif 3683# endif
2073 3684
2074#define DEF_STAT_INTERVAL 5.0074891 3685#define DEF_STAT_INTERVAL 5.0074891
3686#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2075#define MIN_STAT_INTERVAL 0.1074891 3687#define MIN_STAT_INTERVAL 0.1074891
2076 3688
2077static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3689static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2078 3690
2079#if EV_USE_INOTIFY 3691#if EV_USE_INOTIFY
2080# define EV_INOTIFY_BUFSIZE 8192 3692
3693/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3694# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2081 3695
2082static void noinline 3696static void noinline
2083infy_add (EV_P_ ev_stat *w) 3697infy_add (EV_P_ ev_stat *w)
2084{ 3698{
2085 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3699 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2086 3700
2087 if (w->wd < 0) 3701 if (w->wd >= 0)
3702 {
3703 struct statfs sfs;
3704
3705 /* now local changes will be tracked by inotify, but remote changes won't */
3706 /* unless the filesystem is known to be local, we therefore still poll */
3707 /* also do poll on <2.6.25, but with normal frequency */
3708
3709 if (!fs_2625)
3710 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3711 else if (!statfs (w->path, &sfs)
3712 && (sfs.f_type == 0x1373 /* devfs */
3713 || sfs.f_type == 0xEF53 /* ext2/3 */
3714 || sfs.f_type == 0x3153464a /* jfs */
3715 || sfs.f_type == 0x52654973 /* reiser3 */
3716 || sfs.f_type == 0x01021994 /* tempfs */
3717 || sfs.f_type == 0x58465342 /* xfs */))
3718 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3719 else
3720 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2088 { 3721 }
2089 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3722 else
3723 {
3724 /* can't use inotify, continue to stat */
3725 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2090 3726
2091 /* monitor some parent directory for speedup hints */ 3727 /* if path is not there, monitor some parent directory for speedup hints */
3728 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3729 /* but an efficiency issue only */
2092 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3730 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2093 { 3731 {
2094 char path [4096]; 3732 char path [4096];
2095 strcpy (path, w->path); 3733 strcpy (path, w->path);
2096 3734
2099 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3737 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2100 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3738 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2101 3739
2102 char *pend = strrchr (path, '/'); 3740 char *pend = strrchr (path, '/');
2103 3741
2104 if (!pend) 3742 if (!pend || pend == path)
2105 break; /* whoops, no '/', complain to your admin */ 3743 break;
2106 3744
2107 *pend = 0; 3745 *pend = 0;
2108 w->wd = inotify_add_watch (fs_fd, path, mask); 3746 w->wd = inotify_add_watch (fs_fd, path, mask);
2109 } 3747 }
2110 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3748 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2111 } 3749 }
2112 } 3750 }
2113 else
2114 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2115 3751
2116 if (w->wd >= 0) 3752 if (w->wd >= 0)
2117 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3753 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3754
3755 /* now re-arm timer, if required */
3756 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3757 ev_timer_again (EV_A_ &w->timer);
3758 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2118} 3759}
2119 3760
2120static void noinline 3761static void noinline
2121infy_del (EV_P_ ev_stat *w) 3762infy_del (EV_P_ ev_stat *w)
2122{ 3763{
2125 3766
2126 if (wd < 0) 3767 if (wd < 0)
2127 return; 3768 return;
2128 3769
2129 w->wd = -2; 3770 w->wd = -2;
2130 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3771 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2131 wlist_del (&fs_hash [slot].head, (WL)w); 3772 wlist_del (&fs_hash [slot].head, (WL)w);
2132 3773
2133 /* remove this watcher, if others are watching it, they will rearm */ 3774 /* remove this watcher, if others are watching it, they will rearm */
2134 inotify_rm_watch (fs_fd, wd); 3775 inotify_rm_watch (fs_fd, wd);
2135} 3776}
2136 3777
2137static void noinline 3778static void noinline
2138infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3779infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2139{ 3780{
2140 if (slot < 0) 3781 if (slot < 0)
2141 /* overflow, need to check for all hahs slots */ 3782 /* overflow, need to check for all hash slots */
2142 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3783 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2143 infy_wd (EV_A_ slot, wd, ev); 3784 infy_wd (EV_A_ slot, wd, ev);
2144 else 3785 else
2145 { 3786 {
2146 WL w_; 3787 WL w_;
2147 3788
2148 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3789 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2149 { 3790 {
2150 ev_stat *w = (ev_stat *)w_; 3791 ev_stat *w = (ev_stat *)w_;
2151 w_ = w_->next; /* lets us remove this watcher and all before it */ 3792 w_ = w_->next; /* lets us remove this watcher and all before it */
2152 3793
2153 if (w->wd == wd || wd == -1) 3794 if (w->wd == wd || wd == -1)
2154 { 3795 {
2155 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3796 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2156 { 3797 {
3798 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2157 w->wd = -1; 3799 w->wd = -1;
2158 infy_add (EV_A_ w); /* re-add, no matter what */ 3800 infy_add (EV_A_ w); /* re-add, no matter what */
2159 } 3801 }
2160 3802
2161 stat_timer_cb (EV_A_ &w->timer, 0); 3803 stat_timer_cb (EV_A_ &w->timer, 0);
2166 3808
2167static void 3809static void
2168infy_cb (EV_P_ ev_io *w, int revents) 3810infy_cb (EV_P_ ev_io *w, int revents)
2169{ 3811{
2170 char buf [EV_INOTIFY_BUFSIZE]; 3812 char buf [EV_INOTIFY_BUFSIZE];
2171 struct inotify_event *ev = (struct inotify_event *)buf;
2172 int ofs; 3813 int ofs;
2173 int len = read (fs_fd, buf, sizeof (buf)); 3814 int len = read (fs_fd, buf, sizeof (buf));
2174 3815
2175 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3816 for (ofs = 0; ofs < len; )
3817 {
3818 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2176 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3819 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3820 ofs += sizeof (struct inotify_event) + ev->len;
3821 }
2177} 3822}
2178 3823
2179void inline_size 3824inline_size void ecb_cold
3825ev_check_2625 (EV_P)
3826{
3827 /* kernels < 2.6.25 are borked
3828 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3829 */
3830 if (ev_linux_version () < 0x020619)
3831 return;
3832
3833 fs_2625 = 1;
3834}
3835
3836inline_size int
3837infy_newfd (void)
3838{
3839#if defined IN_CLOEXEC && defined IN_NONBLOCK
3840 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3841 if (fd >= 0)
3842 return fd;
3843#endif
3844 return inotify_init ();
3845}
3846
3847inline_size void
2180infy_init (EV_P) 3848infy_init (EV_P)
2181{ 3849{
2182 if (fs_fd != -2) 3850 if (fs_fd != -2)
2183 return; 3851 return;
2184 3852
3853 fs_fd = -1;
3854
3855 ev_check_2625 (EV_A);
3856
2185 fs_fd = inotify_init (); 3857 fs_fd = infy_newfd ();
2186 3858
2187 if (fs_fd >= 0) 3859 if (fs_fd >= 0)
2188 { 3860 {
3861 fd_intern (fs_fd);
2189 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3862 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2190 ev_set_priority (&fs_w, EV_MAXPRI); 3863 ev_set_priority (&fs_w, EV_MAXPRI);
2191 ev_io_start (EV_A_ &fs_w); 3864 ev_io_start (EV_A_ &fs_w);
3865 ev_unref (EV_A);
2192 } 3866 }
2193} 3867}
2194 3868
2195void inline_size 3869inline_size void
2196infy_fork (EV_P) 3870infy_fork (EV_P)
2197{ 3871{
2198 int slot; 3872 int slot;
2199 3873
2200 if (fs_fd < 0) 3874 if (fs_fd < 0)
2201 return; 3875 return;
2202 3876
3877 ev_ref (EV_A);
3878 ev_io_stop (EV_A_ &fs_w);
2203 close (fs_fd); 3879 close (fs_fd);
2204 fs_fd = inotify_init (); 3880 fs_fd = infy_newfd ();
2205 3881
3882 if (fs_fd >= 0)
3883 {
3884 fd_intern (fs_fd);
3885 ev_io_set (&fs_w, fs_fd, EV_READ);
3886 ev_io_start (EV_A_ &fs_w);
3887 ev_unref (EV_A);
3888 }
3889
2206 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3890 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2207 { 3891 {
2208 WL w_ = fs_hash [slot].head; 3892 WL w_ = fs_hash [slot].head;
2209 fs_hash [slot].head = 0; 3893 fs_hash [slot].head = 0;
2210 3894
2211 while (w_) 3895 while (w_)
2216 w->wd = -1; 3900 w->wd = -1;
2217 3901
2218 if (fs_fd >= 0) 3902 if (fs_fd >= 0)
2219 infy_add (EV_A_ w); /* re-add, no matter what */ 3903 infy_add (EV_A_ w); /* re-add, no matter what */
2220 else 3904 else
3905 {
3906 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3907 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2221 ev_timer_start (EV_A_ &w->timer); 3908 ev_timer_again (EV_A_ &w->timer);
3909 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3910 }
2222 } 3911 }
2223
2224 } 3912 }
2225} 3913}
2226 3914
3915#endif
3916
3917#ifdef _WIN32
3918# define EV_LSTAT(p,b) _stati64 (p, b)
3919#else
3920# define EV_LSTAT(p,b) lstat (p, b)
2227#endif 3921#endif
2228 3922
2229void 3923void
2230ev_stat_stat (EV_P_ ev_stat *w) 3924ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
2231{ 3925{
2232 if (lstat (w->path, &w->attr) < 0) 3926 if (lstat (w->path, &w->attr) < 0)
2233 w->attr.st_nlink = 0; 3927 w->attr.st_nlink = 0;
2234 else if (!w->attr.st_nlink) 3928 else if (!w->attr.st_nlink)
2235 w->attr.st_nlink = 1; 3929 w->attr.st_nlink = 1;
2238static void noinline 3932static void noinline
2239stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3933stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2240{ 3934{
2241 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3935 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2242 3936
2243 /* we copy this here each the time so that */ 3937 ev_statdata prev = w->attr;
2244 /* prev has the old value when the callback gets invoked */
2245 w->prev = w->attr;
2246 ev_stat_stat (EV_A_ w); 3938 ev_stat_stat (EV_A_ w);
2247 3939
2248 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3940 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2249 if ( 3941 if (
2250 w->prev.st_dev != w->attr.st_dev 3942 prev.st_dev != w->attr.st_dev
2251 || w->prev.st_ino != w->attr.st_ino 3943 || prev.st_ino != w->attr.st_ino
2252 || w->prev.st_mode != w->attr.st_mode 3944 || prev.st_mode != w->attr.st_mode
2253 || w->prev.st_nlink != w->attr.st_nlink 3945 || prev.st_nlink != w->attr.st_nlink
2254 || w->prev.st_uid != w->attr.st_uid 3946 || prev.st_uid != w->attr.st_uid
2255 || w->prev.st_gid != w->attr.st_gid 3947 || prev.st_gid != w->attr.st_gid
2256 || w->prev.st_rdev != w->attr.st_rdev 3948 || prev.st_rdev != w->attr.st_rdev
2257 || w->prev.st_size != w->attr.st_size 3949 || prev.st_size != w->attr.st_size
2258 || w->prev.st_atime != w->attr.st_atime 3950 || prev.st_atime != w->attr.st_atime
2259 || w->prev.st_mtime != w->attr.st_mtime 3951 || prev.st_mtime != w->attr.st_mtime
2260 || w->prev.st_ctime != w->attr.st_ctime 3952 || prev.st_ctime != w->attr.st_ctime
2261 ) { 3953 ) {
3954 /* we only update w->prev on actual differences */
3955 /* in case we test more often than invoke the callback, */
3956 /* to ensure that prev is always different to attr */
3957 w->prev = prev;
3958
2262 #if EV_USE_INOTIFY 3959 #if EV_USE_INOTIFY
3960 if (fs_fd >= 0)
3961 {
2263 infy_del (EV_A_ w); 3962 infy_del (EV_A_ w);
2264 infy_add (EV_A_ w); 3963 infy_add (EV_A_ w);
2265 ev_stat_stat (EV_A_ w); /* avoid race... */ 3964 ev_stat_stat (EV_A_ w); /* avoid race... */
3965 }
2266 #endif 3966 #endif
2267 3967
2268 ev_feed_event (EV_A_ w, EV_STAT); 3968 ev_feed_event (EV_A_ w, EV_STAT);
2269 } 3969 }
2270} 3970}
2271 3971
2272void 3972void
2273ev_stat_start (EV_P_ ev_stat *w) 3973ev_stat_start (EV_P_ ev_stat *w) EV_THROW
2274{ 3974{
2275 if (expect_false (ev_is_active (w))) 3975 if (expect_false (ev_is_active (w)))
2276 return; 3976 return;
2277 3977
2278 /* since we use memcmp, we need to clear any padding data etc. */
2279 memset (&w->prev, 0, sizeof (ev_statdata));
2280 memset (&w->attr, 0, sizeof (ev_statdata));
2281
2282 ev_stat_stat (EV_A_ w); 3978 ev_stat_stat (EV_A_ w);
2283 3979
3980 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2284 if (w->interval < MIN_STAT_INTERVAL) 3981 w->interval = MIN_STAT_INTERVAL;
2285 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2286 3982
2287 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3983 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2288 ev_set_priority (&w->timer, ev_priority (w)); 3984 ev_set_priority (&w->timer, ev_priority (w));
2289 3985
2290#if EV_USE_INOTIFY 3986#if EV_USE_INOTIFY
2291 infy_init (EV_A); 3987 infy_init (EV_A);
2292 3988
2293 if (fs_fd >= 0) 3989 if (fs_fd >= 0)
2294 infy_add (EV_A_ w); 3990 infy_add (EV_A_ w);
2295 else 3991 else
2296#endif 3992#endif
3993 {
2297 ev_timer_start (EV_A_ &w->timer); 3994 ev_timer_again (EV_A_ &w->timer);
3995 ev_unref (EV_A);
3996 }
2298 3997
2299 ev_start (EV_A_ (W)w, 1); 3998 ev_start (EV_A_ (W)w, 1);
3999
4000 EV_FREQUENT_CHECK;
2300} 4001}
2301 4002
2302void 4003void
2303ev_stat_stop (EV_P_ ev_stat *w) 4004ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
2304{ 4005{
2305 clear_pending (EV_A_ (W)w); 4006 clear_pending (EV_A_ (W)w);
2306 if (expect_false (!ev_is_active (w))) 4007 if (expect_false (!ev_is_active (w)))
2307 return; 4008 return;
2308 4009
4010 EV_FREQUENT_CHECK;
4011
2309#if EV_USE_INOTIFY 4012#if EV_USE_INOTIFY
2310 infy_del (EV_A_ w); 4013 infy_del (EV_A_ w);
2311#endif 4014#endif
4015
4016 if (ev_is_active (&w->timer))
4017 {
4018 ev_ref (EV_A);
2312 ev_timer_stop (EV_A_ &w->timer); 4019 ev_timer_stop (EV_A_ &w->timer);
4020 }
2313 4021
2314 ev_stop (EV_A_ (W)w); 4022 ev_stop (EV_A_ (W)w);
4023
4024 EV_FREQUENT_CHECK;
2315} 4025}
2316#endif 4026#endif
2317 4027
2318#if EV_IDLE_ENABLE 4028#if EV_IDLE_ENABLE
2319void 4029void
2320ev_idle_start (EV_P_ ev_idle *w) 4030ev_idle_start (EV_P_ ev_idle *w) EV_THROW
2321{ 4031{
2322 if (expect_false (ev_is_active (w))) 4032 if (expect_false (ev_is_active (w)))
2323 return; 4033 return;
2324 4034
2325 pri_adjust (EV_A_ (W)w); 4035 pri_adjust (EV_A_ (W)w);
4036
4037 EV_FREQUENT_CHECK;
2326 4038
2327 { 4039 {
2328 int active = ++idlecnt [ABSPRI (w)]; 4040 int active = ++idlecnt [ABSPRI (w)];
2329 4041
2330 ++idleall; 4042 ++idleall;
2331 ev_start (EV_A_ (W)w, active); 4043 ev_start (EV_A_ (W)w, active);
2332 4044
2333 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 4045 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2334 idles [ABSPRI (w)][active - 1] = w; 4046 idles [ABSPRI (w)][active - 1] = w;
2335 } 4047 }
4048
4049 EV_FREQUENT_CHECK;
2336} 4050}
2337 4051
2338void 4052void
2339ev_idle_stop (EV_P_ ev_idle *w) 4053ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
2340{ 4054{
2341 clear_pending (EV_A_ (W)w); 4055 clear_pending (EV_A_ (W)w);
2342 if (expect_false (!ev_is_active (w))) 4056 if (expect_false (!ev_is_active (w)))
2343 return; 4057 return;
2344 4058
4059 EV_FREQUENT_CHECK;
4060
2345 { 4061 {
2346 int active = ((W)w)->active; 4062 int active = ev_active (w);
2347 4063
2348 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 4064 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2349 ((W)idles [ABSPRI (w)][active - 1])->active = active; 4065 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2350 4066
2351 ev_stop (EV_A_ (W)w); 4067 ev_stop (EV_A_ (W)w);
2352 --idleall; 4068 --idleall;
2353 } 4069 }
2354}
2355#endif
2356 4070
4071 EV_FREQUENT_CHECK;
4072}
4073#endif
4074
4075#if EV_PREPARE_ENABLE
2357void 4076void
2358ev_prepare_start (EV_P_ ev_prepare *w) 4077ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
2359{ 4078{
2360 if (expect_false (ev_is_active (w))) 4079 if (expect_false (ev_is_active (w)))
2361 return; 4080 return;
4081
4082 EV_FREQUENT_CHECK;
2362 4083
2363 ev_start (EV_A_ (W)w, ++preparecnt); 4084 ev_start (EV_A_ (W)w, ++preparecnt);
2364 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 4085 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2365 prepares [preparecnt - 1] = w; 4086 prepares [preparecnt - 1] = w;
4087
4088 EV_FREQUENT_CHECK;
2366} 4089}
2367 4090
2368void 4091void
2369ev_prepare_stop (EV_P_ ev_prepare *w) 4092ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
2370{ 4093{
2371 clear_pending (EV_A_ (W)w); 4094 clear_pending (EV_A_ (W)w);
2372 if (expect_false (!ev_is_active (w))) 4095 if (expect_false (!ev_is_active (w)))
2373 return; 4096 return;
2374 4097
4098 EV_FREQUENT_CHECK;
4099
2375 { 4100 {
2376 int active = ((W)w)->active; 4101 int active = ev_active (w);
4102
2377 prepares [active - 1] = prepares [--preparecnt]; 4103 prepares [active - 1] = prepares [--preparecnt];
2378 ((W)prepares [active - 1])->active = active; 4104 ev_active (prepares [active - 1]) = active;
2379 } 4105 }
2380 4106
2381 ev_stop (EV_A_ (W)w); 4107 ev_stop (EV_A_ (W)w);
2382}
2383 4108
4109 EV_FREQUENT_CHECK;
4110}
4111#endif
4112
4113#if EV_CHECK_ENABLE
2384void 4114void
2385ev_check_start (EV_P_ ev_check *w) 4115ev_check_start (EV_P_ ev_check *w) EV_THROW
2386{ 4116{
2387 if (expect_false (ev_is_active (w))) 4117 if (expect_false (ev_is_active (w)))
2388 return; 4118 return;
4119
4120 EV_FREQUENT_CHECK;
2389 4121
2390 ev_start (EV_A_ (W)w, ++checkcnt); 4122 ev_start (EV_A_ (W)w, ++checkcnt);
2391 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 4123 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2392 checks [checkcnt - 1] = w; 4124 checks [checkcnt - 1] = w;
4125
4126 EV_FREQUENT_CHECK;
2393} 4127}
2394 4128
2395void 4129void
2396ev_check_stop (EV_P_ ev_check *w) 4130ev_check_stop (EV_P_ ev_check *w) EV_THROW
2397{ 4131{
2398 clear_pending (EV_A_ (W)w); 4132 clear_pending (EV_A_ (W)w);
2399 if (expect_false (!ev_is_active (w))) 4133 if (expect_false (!ev_is_active (w)))
2400 return; 4134 return;
2401 4135
4136 EV_FREQUENT_CHECK;
4137
2402 { 4138 {
2403 int active = ((W)w)->active; 4139 int active = ev_active (w);
4140
2404 checks [active - 1] = checks [--checkcnt]; 4141 checks [active - 1] = checks [--checkcnt];
2405 ((W)checks [active - 1])->active = active; 4142 ev_active (checks [active - 1]) = active;
2406 } 4143 }
2407 4144
2408 ev_stop (EV_A_ (W)w); 4145 ev_stop (EV_A_ (W)w);
4146
4147 EV_FREQUENT_CHECK;
2409} 4148}
4149#endif
2410 4150
2411#if EV_EMBED_ENABLE 4151#if EV_EMBED_ENABLE
2412void noinline 4152void noinline
2413ev_embed_sweep (EV_P_ ev_embed *w) 4153ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
2414{ 4154{
2415 ev_loop (w->other, EVLOOP_NONBLOCK); 4155 ev_run (w->other, EVRUN_NOWAIT);
2416} 4156}
2417 4157
2418static void 4158static void
2419embed_io_cb (EV_P_ ev_io *io, int revents) 4159embed_io_cb (EV_P_ ev_io *io, int revents)
2420{ 4160{
2421 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4161 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2422 4162
2423 if (ev_cb (w)) 4163 if (ev_cb (w))
2424 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4164 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2425 else 4165 else
2426 ev_loop (w->other, EVLOOP_NONBLOCK); 4166 ev_run (w->other, EVRUN_NOWAIT);
2427} 4167}
2428 4168
2429static void 4169static void
2430embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4170embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2431{ 4171{
2432 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4172 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2433 4173
2434 { 4174 {
2435 struct ev_loop *loop = w->other; 4175 EV_P = w->other;
2436 4176
2437 while (fdchangecnt) 4177 while (fdchangecnt)
2438 { 4178 {
2439 fd_reify (EV_A); 4179 fd_reify (EV_A);
2440 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4180 ev_run (EV_A_ EVRUN_NOWAIT);
2441 } 4181 }
2442 } 4182 }
4183}
4184
4185static void
4186embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4187{
4188 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4189
4190 ev_embed_stop (EV_A_ w);
4191
4192 {
4193 EV_P = w->other;
4194
4195 ev_loop_fork (EV_A);
4196 ev_run (EV_A_ EVRUN_NOWAIT);
4197 }
4198
4199 ev_embed_start (EV_A_ w);
2443} 4200}
2444 4201
2445#if 0 4202#if 0
2446static void 4203static void
2447embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4204embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2449 ev_idle_stop (EV_A_ idle); 4206 ev_idle_stop (EV_A_ idle);
2450} 4207}
2451#endif 4208#endif
2452 4209
2453void 4210void
2454ev_embed_start (EV_P_ ev_embed *w) 4211ev_embed_start (EV_P_ ev_embed *w) EV_THROW
2455{ 4212{
2456 if (expect_false (ev_is_active (w))) 4213 if (expect_false (ev_is_active (w)))
2457 return; 4214 return;
2458 4215
2459 { 4216 {
2460 struct ev_loop *loop = w->other; 4217 EV_P = w->other;
2461 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4218 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2462 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4219 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2463 } 4220 }
4221
4222 EV_FREQUENT_CHECK;
2464 4223
2465 ev_set_priority (&w->io, ev_priority (w)); 4224 ev_set_priority (&w->io, ev_priority (w));
2466 ev_io_start (EV_A_ &w->io); 4225 ev_io_start (EV_A_ &w->io);
2467 4226
2468 ev_prepare_init (&w->prepare, embed_prepare_cb); 4227 ev_prepare_init (&w->prepare, embed_prepare_cb);
2469 ev_set_priority (&w->prepare, EV_MINPRI); 4228 ev_set_priority (&w->prepare, EV_MINPRI);
2470 ev_prepare_start (EV_A_ &w->prepare); 4229 ev_prepare_start (EV_A_ &w->prepare);
2471 4230
4231 ev_fork_init (&w->fork, embed_fork_cb);
4232 ev_fork_start (EV_A_ &w->fork);
4233
2472 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 4234 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2473 4235
2474 ev_start (EV_A_ (W)w, 1); 4236 ev_start (EV_A_ (W)w, 1);
4237
4238 EV_FREQUENT_CHECK;
2475} 4239}
2476 4240
2477void 4241void
2478ev_embed_stop (EV_P_ ev_embed *w) 4242ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
2479{ 4243{
2480 clear_pending (EV_A_ (W)w); 4244 clear_pending (EV_A_ (W)w);
2481 if (expect_false (!ev_is_active (w))) 4245 if (expect_false (!ev_is_active (w)))
2482 return; 4246 return;
2483 4247
4248 EV_FREQUENT_CHECK;
4249
2484 ev_io_stop (EV_A_ &w->io); 4250 ev_io_stop (EV_A_ &w->io);
2485 ev_prepare_stop (EV_A_ &w->prepare); 4251 ev_prepare_stop (EV_A_ &w->prepare);
4252 ev_fork_stop (EV_A_ &w->fork);
2486 4253
2487 ev_stop (EV_A_ (W)w); 4254 ev_stop (EV_A_ (W)w);
4255
4256 EV_FREQUENT_CHECK;
2488} 4257}
2489#endif 4258#endif
2490 4259
2491#if EV_FORK_ENABLE 4260#if EV_FORK_ENABLE
2492void 4261void
2493ev_fork_start (EV_P_ ev_fork *w) 4262ev_fork_start (EV_P_ ev_fork *w) EV_THROW
2494{ 4263{
2495 if (expect_false (ev_is_active (w))) 4264 if (expect_false (ev_is_active (w)))
2496 return; 4265 return;
4266
4267 EV_FREQUENT_CHECK;
2497 4268
2498 ev_start (EV_A_ (W)w, ++forkcnt); 4269 ev_start (EV_A_ (W)w, ++forkcnt);
2499 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 4270 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2500 forks [forkcnt - 1] = w; 4271 forks [forkcnt - 1] = w;
4272
4273 EV_FREQUENT_CHECK;
2501} 4274}
2502 4275
2503void 4276void
2504ev_fork_stop (EV_P_ ev_fork *w) 4277ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
2505{ 4278{
2506 clear_pending (EV_A_ (W)w); 4279 clear_pending (EV_A_ (W)w);
2507 if (expect_false (!ev_is_active (w))) 4280 if (expect_false (!ev_is_active (w)))
2508 return; 4281 return;
2509 4282
4283 EV_FREQUENT_CHECK;
4284
2510 { 4285 {
2511 int active = ((W)w)->active; 4286 int active = ev_active (w);
4287
2512 forks [active - 1] = forks [--forkcnt]; 4288 forks [active - 1] = forks [--forkcnt];
2513 ((W)forks [active - 1])->active = active; 4289 ev_active (forks [active - 1]) = active;
2514 } 4290 }
2515 4291
2516 ev_stop (EV_A_ (W)w); 4292 ev_stop (EV_A_ (W)w);
4293
4294 EV_FREQUENT_CHECK;
4295}
4296#endif
4297
4298#if EV_CLEANUP_ENABLE
4299void
4300ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4301{
4302 if (expect_false (ev_is_active (w)))
4303 return;
4304
4305 EV_FREQUENT_CHECK;
4306
4307 ev_start (EV_A_ (W)w, ++cleanupcnt);
4308 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4309 cleanups [cleanupcnt - 1] = w;
4310
4311 /* cleanup watchers should never keep a refcount on the loop */
4312 ev_unref (EV_A);
4313 EV_FREQUENT_CHECK;
4314}
4315
4316void
4317ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4318{
4319 clear_pending (EV_A_ (W)w);
4320 if (expect_false (!ev_is_active (w)))
4321 return;
4322
4323 EV_FREQUENT_CHECK;
4324 ev_ref (EV_A);
4325
4326 {
4327 int active = ev_active (w);
4328
4329 cleanups [active - 1] = cleanups [--cleanupcnt];
4330 ev_active (cleanups [active - 1]) = active;
4331 }
4332
4333 ev_stop (EV_A_ (W)w);
4334
4335 EV_FREQUENT_CHECK;
2517} 4336}
2518#endif 4337#endif
2519 4338
2520#if EV_ASYNC_ENABLE 4339#if EV_ASYNC_ENABLE
2521void 4340void
2522ev_async_start (EV_P_ ev_async *w) 4341ev_async_start (EV_P_ ev_async *w) EV_THROW
2523{ 4342{
2524 if (expect_false (ev_is_active (w))) 4343 if (expect_false (ev_is_active (w)))
2525 return; 4344 return;
2526 4345
4346 w->sent = 0;
4347
2527 evpipe_init (EV_A); 4348 evpipe_init (EV_A);
4349
4350 EV_FREQUENT_CHECK;
2528 4351
2529 ev_start (EV_A_ (W)w, ++asynccnt); 4352 ev_start (EV_A_ (W)w, ++asynccnt);
2530 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 4353 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2531 asyncs [asynccnt - 1] = w; 4354 asyncs [asynccnt - 1] = w;
4355
4356 EV_FREQUENT_CHECK;
2532} 4357}
2533 4358
2534void 4359void
2535ev_async_stop (EV_P_ ev_async *w) 4360ev_async_stop (EV_P_ ev_async *w) EV_THROW
2536{ 4361{
2537 clear_pending (EV_A_ (W)w); 4362 clear_pending (EV_A_ (W)w);
2538 if (expect_false (!ev_is_active (w))) 4363 if (expect_false (!ev_is_active (w)))
2539 return; 4364 return;
2540 4365
4366 EV_FREQUENT_CHECK;
4367
2541 { 4368 {
2542 int active = ((W)w)->active; 4369 int active = ev_active (w);
4370
2543 asyncs [active - 1] = asyncs [--asynccnt]; 4371 asyncs [active - 1] = asyncs [--asynccnt];
2544 ((W)asyncs [active - 1])->active = active; 4372 ev_active (asyncs [active - 1]) = active;
2545 } 4373 }
2546 4374
2547 ev_stop (EV_A_ (W)w); 4375 ev_stop (EV_A_ (W)w);
4376
4377 EV_FREQUENT_CHECK;
2548} 4378}
2549 4379
2550void 4380void
2551ev_async_send (EV_P_ ev_async *w) 4381ev_async_send (EV_P_ ev_async *w) EV_THROW
2552{ 4382{
2553 w->sent = 1; 4383 w->sent = 1;
2554 evpipe_write (EV_A_ &gotasync); 4384 evpipe_write (EV_A_ &async_pending);
2555} 4385}
2556#endif 4386#endif
2557 4387
2558/*****************************************************************************/ 4388/*****************************************************************************/
2559 4389
2569once_cb (EV_P_ struct ev_once *once, int revents) 4399once_cb (EV_P_ struct ev_once *once, int revents)
2570{ 4400{
2571 void (*cb)(int revents, void *arg) = once->cb; 4401 void (*cb)(int revents, void *arg) = once->cb;
2572 void *arg = once->arg; 4402 void *arg = once->arg;
2573 4403
2574 ev_io_stop (EV_A_ &once->io); 4404 ev_io_stop (EV_A_ &once->io);
2575 ev_timer_stop (EV_A_ &once->to); 4405 ev_timer_stop (EV_A_ &once->to);
2576 ev_free (once); 4406 ev_free (once);
2577 4407
2578 cb (revents, arg); 4408 cb (revents, arg);
2579} 4409}
2580 4410
2581static void 4411static void
2582once_cb_io (EV_P_ ev_io *w, int revents) 4412once_cb_io (EV_P_ ev_io *w, int revents)
2583{ 4413{
2584 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4414 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4415
4416 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2585} 4417}
2586 4418
2587static void 4419static void
2588once_cb_to (EV_P_ ev_timer *w, int revents) 4420once_cb_to (EV_P_ ev_timer *w, int revents)
2589{ 4421{
2590 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4422 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4423
4424 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2591} 4425}
2592 4426
2593void 4427void
2594ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4428ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
2595{ 4429{
2596 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4430 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2597 4431
2598 if (expect_false (!once)) 4432 if (expect_false (!once))
2599 { 4433 {
2600 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4434 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2601 return; 4435 return;
2602 } 4436 }
2603 4437
2604 once->cb = cb; 4438 once->cb = cb;
2605 once->arg = arg; 4439 once->arg = arg;
2617 ev_timer_set (&once->to, timeout, 0.); 4451 ev_timer_set (&once->to, timeout, 0.);
2618 ev_timer_start (EV_A_ &once->to); 4452 ev_timer_start (EV_A_ &once->to);
2619 } 4453 }
2620} 4454}
2621 4455
4456/*****************************************************************************/
4457
4458#if EV_WALK_ENABLE
4459void ecb_cold
4460ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4461{
4462 int i, j;
4463 ev_watcher_list *wl, *wn;
4464
4465 if (types & (EV_IO | EV_EMBED))
4466 for (i = 0; i < anfdmax; ++i)
4467 for (wl = anfds [i].head; wl; )
4468 {
4469 wn = wl->next;
4470
4471#if EV_EMBED_ENABLE
4472 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4473 {
4474 if (types & EV_EMBED)
4475 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4476 }
4477 else
4478#endif
4479#if EV_USE_INOTIFY
4480 if (ev_cb ((ev_io *)wl) == infy_cb)
4481 ;
4482 else
4483#endif
4484 if ((ev_io *)wl != &pipe_w)
4485 if (types & EV_IO)
4486 cb (EV_A_ EV_IO, wl);
4487
4488 wl = wn;
4489 }
4490
4491 if (types & (EV_TIMER | EV_STAT))
4492 for (i = timercnt + HEAP0; i-- > HEAP0; )
4493#if EV_STAT_ENABLE
4494 /*TODO: timer is not always active*/
4495 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4496 {
4497 if (types & EV_STAT)
4498 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4499 }
4500 else
4501#endif
4502 if (types & EV_TIMER)
4503 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4504
4505#if EV_PERIODIC_ENABLE
4506 if (types & EV_PERIODIC)
4507 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4508 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4509#endif
4510
4511#if EV_IDLE_ENABLE
4512 if (types & EV_IDLE)
4513 for (j = NUMPRI; j--; )
4514 for (i = idlecnt [j]; i--; )
4515 cb (EV_A_ EV_IDLE, idles [j][i]);
4516#endif
4517
4518#if EV_FORK_ENABLE
4519 if (types & EV_FORK)
4520 for (i = forkcnt; i--; )
4521 if (ev_cb (forks [i]) != embed_fork_cb)
4522 cb (EV_A_ EV_FORK, forks [i]);
4523#endif
4524
4525#if EV_ASYNC_ENABLE
4526 if (types & EV_ASYNC)
4527 for (i = asynccnt; i--; )
4528 cb (EV_A_ EV_ASYNC, asyncs [i]);
4529#endif
4530
4531#if EV_PREPARE_ENABLE
4532 if (types & EV_PREPARE)
4533 for (i = preparecnt; i--; )
4534# if EV_EMBED_ENABLE
4535 if (ev_cb (prepares [i]) != embed_prepare_cb)
4536# endif
4537 cb (EV_A_ EV_PREPARE, prepares [i]);
4538#endif
4539
4540#if EV_CHECK_ENABLE
4541 if (types & EV_CHECK)
4542 for (i = checkcnt; i--; )
4543 cb (EV_A_ EV_CHECK, checks [i]);
4544#endif
4545
4546#if EV_SIGNAL_ENABLE
4547 if (types & EV_SIGNAL)
4548 for (i = 0; i < EV_NSIG - 1; ++i)
4549 for (wl = signals [i].head; wl; )
4550 {
4551 wn = wl->next;
4552 cb (EV_A_ EV_SIGNAL, wl);
4553 wl = wn;
4554 }
4555#endif
4556
4557#if EV_CHILD_ENABLE
4558 if (types & EV_CHILD)
4559 for (i = (EV_PID_HASHSIZE); i--; )
4560 for (wl = childs [i]; wl; )
4561 {
4562 wn = wl->next;
4563 cb (EV_A_ EV_CHILD, wl);
4564 wl = wn;
4565 }
4566#endif
4567/* EV_STAT 0x00001000 /* stat data changed */
4568/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4569}
4570#endif
4571
2622#if EV_MULTIPLICITY 4572#if EV_MULTIPLICITY
2623 #include "ev_wrap.h" 4573 #include "ev_wrap.h"
2624#endif 4574#endif
2625 4575
2626#ifdef __cplusplus
2627}
2628#endif
2629

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines