ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.173 by root, Sun Dec 9 19:42:57 2007 UTC vs.
Revision 1.448 by root, Tue Jul 24 16:28:08 2012 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 43# include EV_CONFIG_H
39# else 44# else
40# include "config.h" 45# include "config.h"
41# endif 46# endif
42 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
43# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
46# endif 71# endif
47# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
49# endif 74# endif
50# else 75# else
51# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
53# endif 78# endif
54# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
56# endif 81# endif
57# endif 82# endif
58 83
84# if HAVE_NANOSLEEP
59# ifndef EV_USE_SELECT 85# ifndef EV_USE_NANOSLEEP
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif 87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
65# endif 91# endif
66 92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
67# ifndef EV_USE_POLL 94# ifndef EV_USE_SELECT
68# if HAVE_POLL && HAVE_POLL_H 95# define EV_USE_SELECT EV_FEATURE_BACKENDS
69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
100# endif
101
102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
108# define EV_USE_POLL 0
73# endif 109# endif
74 110
75# ifndef EV_USE_EPOLL
76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
77# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
78# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
79# define EV_USE_EPOLL 0
80# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
81# endif 118# endif
82 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
83# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
89# endif 127# endif
90 128
91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
94# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
95# define EV_USE_PORT 0
96# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
97# endif 136# endif
98 137
99# ifndef EV_USE_INOTIFY
100# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
101# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
102# else
103# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
104# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
105# endif 145# endif
106 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
107#endif 154# endif
108 155
109#include <math.h> 156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
110#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
111#include <fcntl.h> 169#include <fcntl.h>
112#include <stddef.h> 170#include <stddef.h>
113 171
114#include <stdio.h> 172#include <stdio.h>
115 173
116#include <assert.h> 174#include <assert.h>
117#include <errno.h> 175#include <errno.h>
118#include <sys/types.h> 176#include <sys/types.h>
119#include <time.h> 177#include <time.h>
178#include <limits.h>
120 179
121#include <signal.h> 180#include <signal.h>
122 181
123#ifdef EV_H 182#ifdef EV_H
124# include EV_H 183# include EV_H
125#else 184#else
126# include "ev.h" 185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
127#endif 197#endif
128 198
129#ifndef _WIN32 199#ifndef _WIN32
130# include <sys/time.h> 200# include <sys/time.h>
131# include <sys/wait.h> 201# include <sys/wait.h>
132# include <unistd.h> 202# include <unistd.h>
133#else 203#else
204# include <io.h>
134# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
135# include <windows.h> 207# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 208# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 209# define EV_SELECT_IS_WINSOCKET 1
138# endif 210# endif
211# undef EV_AVOID_STDIO
212#endif
213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
221
222/* this block tries to deduce configuration from header-defined symbols and defaults */
223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# error "unable to find value for NSIG, please report"
247/* to make it compile regardless, just remove the above line, */
248/* but consider reporting it, too! :) */
249# define EV_NSIG 65
250#endif
251
252#ifndef EV_USE_FLOOR
253# define EV_USE_FLOOR 0
254#endif
255
256#ifndef EV_USE_CLOCK_SYSCALL
257# if __linux && __GLIBC__ >= 2
258# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
259# else
260# define EV_USE_CLOCK_SYSCALL 0
139#endif 261# endif
140 262#endif
141/**/
142 263
143#ifndef EV_USE_MONOTONIC 264#ifndef EV_USE_MONOTONIC
265# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
266# define EV_USE_MONOTONIC EV_FEATURE_OS
267# else
144# define EV_USE_MONOTONIC 0 268# define EV_USE_MONOTONIC 0
269# endif
145#endif 270#endif
146 271
147#ifndef EV_USE_REALTIME 272#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 273# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
274#endif
275
276#ifndef EV_USE_NANOSLEEP
277# if _POSIX_C_SOURCE >= 199309L
278# define EV_USE_NANOSLEEP EV_FEATURE_OS
279# else
280# define EV_USE_NANOSLEEP 0
281# endif
149#endif 282#endif
150 283
151#ifndef EV_USE_SELECT 284#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 285# define EV_USE_SELECT EV_FEATURE_BACKENDS
153#endif 286#endif
154 287
155#ifndef EV_USE_POLL 288#ifndef EV_USE_POLL
156# ifdef _WIN32 289# ifdef _WIN32
157# define EV_USE_POLL 0 290# define EV_USE_POLL 0
158# else 291# else
159# define EV_USE_POLL 1 292# define EV_USE_POLL EV_FEATURE_BACKENDS
160# endif 293# endif
161#endif 294#endif
162 295
163#ifndef EV_USE_EPOLL 296#ifndef EV_USE_EPOLL
297# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
298# define EV_USE_EPOLL EV_FEATURE_BACKENDS
299# else
164# define EV_USE_EPOLL 0 300# define EV_USE_EPOLL 0
301# endif
165#endif 302#endif
166 303
167#ifndef EV_USE_KQUEUE 304#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 305# define EV_USE_KQUEUE 0
169#endif 306#endif
171#ifndef EV_USE_PORT 308#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 309# define EV_USE_PORT 0
173#endif 310#endif
174 311
175#ifndef EV_USE_INOTIFY 312#ifndef EV_USE_INOTIFY
313# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
314# define EV_USE_INOTIFY EV_FEATURE_OS
315# else
176# define EV_USE_INOTIFY 0 316# define EV_USE_INOTIFY 0
317# endif
177#endif 318#endif
178 319
179#ifndef EV_PID_HASHSIZE 320#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 321# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
181# define EV_PID_HASHSIZE 1 322#endif
323
324#ifndef EV_INOTIFY_HASHSIZE
325# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
326#endif
327
328#ifndef EV_USE_EVENTFD
329# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
330# define EV_USE_EVENTFD EV_FEATURE_OS
182# else 331# else
183# define EV_PID_HASHSIZE 16 332# define EV_USE_EVENTFD 0
184# endif 333# endif
185#endif 334#endif
186 335
187#ifndef EV_INOTIFY_HASHSIZE 336#ifndef EV_USE_SIGNALFD
188# if EV_MINIMAL 337# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
189# define EV_INOTIFY_HASHSIZE 1 338# define EV_USE_SIGNALFD EV_FEATURE_OS
190# else 339# else
191# define EV_INOTIFY_HASHSIZE 16 340# define EV_USE_SIGNALFD 0
192# endif 341# endif
193#endif 342#endif
194 343
195/**/ 344#if 0 /* debugging */
345# define EV_VERIFY 3
346# define EV_USE_4HEAP 1
347# define EV_HEAP_CACHE_AT 1
348#endif
349
350#ifndef EV_VERIFY
351# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
352#endif
353
354#ifndef EV_USE_4HEAP
355# define EV_USE_4HEAP EV_FEATURE_DATA
356#endif
357
358#ifndef EV_HEAP_CACHE_AT
359# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
360#endif
361
362/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
363/* which makes programs even slower. might work on other unices, too. */
364#if EV_USE_CLOCK_SYSCALL
365# include <sys/syscall.h>
366# ifdef SYS_clock_gettime
367# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
368# undef EV_USE_MONOTONIC
369# define EV_USE_MONOTONIC 1
370# else
371# undef EV_USE_CLOCK_SYSCALL
372# define EV_USE_CLOCK_SYSCALL 0
373# endif
374#endif
375
376/* this block fixes any misconfiguration where we know we run into trouble otherwise */
377
378#ifdef _AIX
379/* AIX has a completely broken poll.h header */
380# undef EV_USE_POLL
381# define EV_USE_POLL 0
382#endif
196 383
197#ifndef CLOCK_MONOTONIC 384#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 385# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 386# define EV_USE_MONOTONIC 0
200#endif 387#endif
202#ifndef CLOCK_REALTIME 389#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 390# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 391# define EV_USE_REALTIME 0
205#endif 392#endif
206 393
207#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h>
209#endif
210
211#if !EV_STAT_ENABLE 394#if !EV_STAT_ENABLE
395# undef EV_USE_INOTIFY
212# define EV_USE_INOTIFY 0 396# define EV_USE_INOTIFY 0
213#endif 397#endif
214 398
399#if !EV_USE_NANOSLEEP
400/* hp-ux has it in sys/time.h, which we unconditionally include above */
401# if !defined _WIN32 && !defined __hpux
402# include <sys/select.h>
403# endif
404#endif
405
215#if EV_USE_INOTIFY 406#if EV_USE_INOTIFY
407# include <sys/statfs.h>
216# include <sys/inotify.h> 408# include <sys/inotify.h>
409/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
410# ifndef IN_DONT_FOLLOW
411# undef EV_USE_INOTIFY
412# define EV_USE_INOTIFY 0
413# endif
414#endif
415
416#if EV_USE_EVENTFD
417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
418# include <stdint.h>
419# ifndef EFD_NONBLOCK
420# define EFD_NONBLOCK O_NONBLOCK
421# endif
422# ifndef EFD_CLOEXEC
423# ifdef O_CLOEXEC
424# define EFD_CLOEXEC O_CLOEXEC
425# else
426# define EFD_CLOEXEC 02000000
427# endif
428# endif
429EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
430#endif
431
432#if EV_USE_SIGNALFD
433/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
434# include <stdint.h>
435# ifndef SFD_NONBLOCK
436# define SFD_NONBLOCK O_NONBLOCK
437# endif
438# ifndef SFD_CLOEXEC
439# ifdef O_CLOEXEC
440# define SFD_CLOEXEC O_CLOEXEC
441# else
442# define SFD_CLOEXEC 02000000
443# endif
444# endif
445EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
446
447struct signalfd_siginfo
448{
449 uint32_t ssi_signo;
450 char pad[128 - sizeof (uint32_t)];
451};
217#endif 452#endif
218 453
219/**/ 454/**/
455
456#if EV_VERIFY >= 3
457# define EV_FREQUENT_CHECK ev_verify (EV_A)
458#else
459# define EV_FREQUENT_CHECK do { } while (0)
460#endif
461
462/*
463 * This is used to work around floating point rounding problems.
464 * This value is good at least till the year 4000.
465 */
466#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
467/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
220 468
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 469#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 470#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
224 471
472#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
473#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
474
475/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
476/* ECB.H BEGIN */
477/*
478 * libecb - http://software.schmorp.de/pkg/libecb
479 *
480 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
481 * Copyright (©) 2011 Emanuele Giaquinta
482 * All rights reserved.
483 *
484 * Redistribution and use in source and binary forms, with or without modifica-
485 * tion, are permitted provided that the following conditions are met:
486 *
487 * 1. Redistributions of source code must retain the above copyright notice,
488 * this list of conditions and the following disclaimer.
489 *
490 * 2. Redistributions in binary form must reproduce the above copyright
491 * notice, this list of conditions and the following disclaimer in the
492 * documentation and/or other materials provided with the distribution.
493 *
494 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
495 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
496 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
497 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
498 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
499 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
500 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
501 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
502 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
503 * OF THE POSSIBILITY OF SUCH DAMAGE.
504 */
505
506#ifndef ECB_H
507#define ECB_H
508
509/* 16 bits major, 16 bits minor */
510#define ECB_VERSION 0x00010001
511
512#ifdef _WIN32
513 typedef signed char int8_t;
514 typedef unsigned char uint8_t;
515 typedef signed short int16_t;
516 typedef unsigned short uint16_t;
517 typedef signed int int32_t;
518 typedef unsigned int uint32_t;
225#if __GNUC__ >= 3 519 #if __GNUC__
226# define expect(expr,value) __builtin_expect ((expr),(value)) 520 typedef signed long long int64_t;
227# define noinline __attribute__ ((noinline)) 521 typedef unsigned long long uint64_t;
522 #else /* _MSC_VER || __BORLANDC__ */
523 typedef signed __int64 int64_t;
524 typedef unsigned __int64 uint64_t;
525 #endif
526 #ifdef _WIN64
527 #define ECB_PTRSIZE 8
528 typedef uint64_t uintptr_t;
529 typedef int64_t intptr_t;
530 #else
531 #define ECB_PTRSIZE 4
532 typedef uint32_t uintptr_t;
533 typedef int32_t intptr_t;
534 #endif
535 typedef intptr_t ptrdiff_t;
228#else 536#else
229# define expect(expr,value) (expr) 537 #include <inttypes.h>
230# define noinline 538 #if UINTMAX_MAX > 0xffffffffU
231# if __STDC_VERSION__ < 199901L 539 #define ECB_PTRSIZE 8
232# define inline 540 #else
541 #define ECB_PTRSIZE 4
542 #endif
233# endif 543#endif
544
545/* many compilers define _GNUC_ to some versions but then only implement
546 * what their idiot authors think are the "more important" extensions,
547 * causing enormous grief in return for some better fake benchmark numbers.
548 * or so.
549 * we try to detect these and simply assume they are not gcc - if they have
550 * an issue with that they should have done it right in the first place.
551 */
552#ifndef ECB_GCC_VERSION
553 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
554 #define ECB_GCC_VERSION(major,minor) 0
555 #else
556 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
234#endif 557 #endif
558#endif
235 559
560#define ECB_C (__STDC__+0) /* this assumes that __STDC__ is either empty or a number */
561#define ECB_C99 (__STDC_VERSION__ >= 199901L)
562#define ECB_C11 (__STDC_VERSION__ >= 201112L)
563#define ECB_CPP (__cplusplus+0)
564#define ECB_CPP11 (__cplusplus >= 201103L)
565
566/*****************************************************************************/
567
568/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
569/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
570
571#if ECB_NO_THREADS
572 #define ECB_NO_SMP 1
573#endif
574
575#if ECB_NO_SMP
576 #define ECB_MEMORY_FENCE do { } while (0)
577#endif
578
579#ifndef ECB_MEMORY_FENCE
580 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
581 #if __i386 || __i386__
582 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
583 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
584 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
585 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
586 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
587 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
588 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
589 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
590 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
591 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
592 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
593 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
594 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
595 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
596 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
597 #elif __sparc || __sparc__
598 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
599 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
600 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
601 #elif defined __s390__ || defined __s390x__
602 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
603 #elif defined __mips__
604 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
605 #elif defined __alpha__
606 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
607 #elif defined __hppa__
608 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
609 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
610 #elif defined __ia64__
611 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
612 #endif
613 #endif
614#endif
615
616#ifndef ECB_MEMORY_FENCE
617 #if ECB_GCC_VERSION(4,7)
618 /* see comment below (stdatomic.h) about the C11 memory model. */
619 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
620 #elif defined __clang && __has_feature (cxx_atomic)
621 /* see comment below (stdatomic.h) about the C11 memory model. */
622 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
623 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
624 #define ECB_MEMORY_FENCE __sync_synchronize ()
625 #elif _MSC_VER >= 1400 /* VC++ 2005 */
626 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
627 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
628 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
629 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
630 #elif defined _WIN32
631 #include <WinNT.h>
632 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
633 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
634 #include <mbarrier.h>
635 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
636 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
637 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
638 #elif __xlC__
639 #define ECB_MEMORY_FENCE __sync ()
640 #endif
641#endif
642
643#ifndef ECB_MEMORY_FENCE
644 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
645 /* we assume that these memory fences work on all variables/all memory accesses, */
646 /* not just C11 atomics and atomic accesses */
647 #include <stdatomic.h>
648 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
649 /* any fence other than seq_cst, which isn't very efficient for us. */
650 /* Why that is, we don't know - either the C11 memory model is quite useless */
651 /* for most usages, or gcc and clang have a bug */
652 /* I *currently* lean towards the latter, and inefficiently implement */
653 /* all three of ecb's fences as a seq_cst fence */
654 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
655 #endif
656#endif
657
658#ifndef ECB_MEMORY_FENCE
659 #if !ECB_AVOID_PTHREADS
660 /*
661 * if you get undefined symbol references to pthread_mutex_lock,
662 * or failure to find pthread.h, then you should implement
663 * the ECB_MEMORY_FENCE operations for your cpu/compiler
664 * OR provide pthread.h and link against the posix thread library
665 * of your system.
666 */
667 #include <pthread.h>
668 #define ECB_NEEDS_PTHREADS 1
669 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
670
671 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
672 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
673 #endif
674#endif
675
676#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
677 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
678#endif
679
680#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
681 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
682#endif
683
684/*****************************************************************************/
685
686#if __cplusplus
687 #define ecb_inline static inline
688#elif ECB_GCC_VERSION(2,5)
689 #define ecb_inline static __inline__
690#elif ECB_C99
691 #define ecb_inline static inline
692#else
693 #define ecb_inline static
694#endif
695
696#if ECB_GCC_VERSION(3,3)
697 #define ecb_restrict __restrict__
698#elif ECB_C99
699 #define ecb_restrict restrict
700#else
701 #define ecb_restrict
702#endif
703
704typedef int ecb_bool;
705
706#define ECB_CONCAT_(a, b) a ## b
707#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
708#define ECB_STRINGIFY_(a) # a
709#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
710
711#define ecb_function_ ecb_inline
712
713#if ECB_GCC_VERSION(3,1)
714 #define ecb_attribute(attrlist) __attribute__(attrlist)
715 #define ecb_is_constant(expr) __builtin_constant_p (expr)
716 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
717 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
718#else
719 #define ecb_attribute(attrlist)
720 #define ecb_is_constant(expr) 0
721 #define ecb_expect(expr,value) (expr)
722 #define ecb_prefetch(addr,rw,locality)
723#endif
724
725/* no emulation for ecb_decltype */
726#if ECB_GCC_VERSION(4,5)
727 #define ecb_decltype(x) __decltype(x)
728#elif ECB_GCC_VERSION(3,0)
729 #define ecb_decltype(x) __typeof(x)
730#endif
731
732#define ecb_noinline ecb_attribute ((__noinline__))
733#define ecb_unused ecb_attribute ((__unused__))
734#define ecb_const ecb_attribute ((__const__))
735#define ecb_pure ecb_attribute ((__pure__))
736
737#if ECB_C11
738 #define ecb_noreturn _Noreturn
739#else
740 #define ecb_noreturn ecb_attribute ((__noreturn__))
741#endif
742
743#if ECB_GCC_VERSION(4,3)
744 #define ecb_artificial ecb_attribute ((__artificial__))
745 #define ecb_hot ecb_attribute ((__hot__))
746 #define ecb_cold ecb_attribute ((__cold__))
747#else
748 #define ecb_artificial
749 #define ecb_hot
750 #define ecb_cold
751#endif
752
753/* put around conditional expressions if you are very sure that the */
754/* expression is mostly true or mostly false. note that these return */
755/* booleans, not the expression. */
236#define expect_false(expr) expect ((expr) != 0, 0) 756#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
237#define expect_true(expr) expect ((expr) != 0, 1) 757#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
758/* for compatibility to the rest of the world */
759#define ecb_likely(expr) ecb_expect_true (expr)
760#define ecb_unlikely(expr) ecb_expect_false (expr)
761
762/* count trailing zero bits and count # of one bits */
763#if ECB_GCC_VERSION(3,4)
764 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
765 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
766 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
767 #define ecb_ctz32(x) __builtin_ctz (x)
768 #define ecb_ctz64(x) __builtin_ctzll (x)
769 #define ecb_popcount32(x) __builtin_popcount (x)
770 /* no popcountll */
771#else
772 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
773 ecb_function_ int
774 ecb_ctz32 (uint32_t x)
775 {
776 int r = 0;
777
778 x &= ~x + 1; /* this isolates the lowest bit */
779
780#if ECB_branchless_on_i386
781 r += !!(x & 0xaaaaaaaa) << 0;
782 r += !!(x & 0xcccccccc) << 1;
783 r += !!(x & 0xf0f0f0f0) << 2;
784 r += !!(x & 0xff00ff00) << 3;
785 r += !!(x & 0xffff0000) << 4;
786#else
787 if (x & 0xaaaaaaaa) r += 1;
788 if (x & 0xcccccccc) r += 2;
789 if (x & 0xf0f0f0f0) r += 4;
790 if (x & 0xff00ff00) r += 8;
791 if (x & 0xffff0000) r += 16;
792#endif
793
794 return r;
795 }
796
797 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
798 ecb_function_ int
799 ecb_ctz64 (uint64_t x)
800 {
801 int shift = x & 0xffffffffU ? 0 : 32;
802 return ecb_ctz32 (x >> shift) + shift;
803 }
804
805 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
806 ecb_function_ int
807 ecb_popcount32 (uint32_t x)
808 {
809 x -= (x >> 1) & 0x55555555;
810 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
811 x = ((x >> 4) + x) & 0x0f0f0f0f;
812 x *= 0x01010101;
813
814 return x >> 24;
815 }
816
817 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
818 ecb_function_ int ecb_ld32 (uint32_t x)
819 {
820 int r = 0;
821
822 if (x >> 16) { x >>= 16; r += 16; }
823 if (x >> 8) { x >>= 8; r += 8; }
824 if (x >> 4) { x >>= 4; r += 4; }
825 if (x >> 2) { x >>= 2; r += 2; }
826 if (x >> 1) { r += 1; }
827
828 return r;
829 }
830
831 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
832 ecb_function_ int ecb_ld64 (uint64_t x)
833 {
834 int r = 0;
835
836 if (x >> 32) { x >>= 32; r += 32; }
837
838 return r + ecb_ld32 (x);
839 }
840#endif
841
842ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
843ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
844ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
845ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
846
847ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
848ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
849{
850 return ( (x * 0x0802U & 0x22110U)
851 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
852}
853
854ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
855ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
856{
857 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
858 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
859 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
860 x = ( x >> 8 ) | ( x << 8);
861
862 return x;
863}
864
865ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
866ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
867{
868 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
869 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
870 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
871 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
872 x = ( x >> 16 ) | ( x << 16);
873
874 return x;
875}
876
877/* popcount64 is only available on 64 bit cpus as gcc builtin */
878/* so for this version we are lazy */
879ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
880ecb_function_ int
881ecb_popcount64 (uint64_t x)
882{
883 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
884}
885
886ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
887ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
888ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
889ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
890ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
891ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
892ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
893ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
894
895ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
896ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
897ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
898ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
899ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
900ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
901ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
902ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
903
904#if ECB_GCC_VERSION(4,3)
905 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
906 #define ecb_bswap32(x) __builtin_bswap32 (x)
907 #define ecb_bswap64(x) __builtin_bswap64 (x)
908#else
909 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
910 ecb_function_ uint16_t
911 ecb_bswap16 (uint16_t x)
912 {
913 return ecb_rotl16 (x, 8);
914 }
915
916 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
917 ecb_function_ uint32_t
918 ecb_bswap32 (uint32_t x)
919 {
920 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
921 }
922
923 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
924 ecb_function_ uint64_t
925 ecb_bswap64 (uint64_t x)
926 {
927 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
928 }
929#endif
930
931#if ECB_GCC_VERSION(4,5)
932 #define ecb_unreachable() __builtin_unreachable ()
933#else
934 /* this seems to work fine, but gcc always emits a warning for it :/ */
935 ecb_inline void ecb_unreachable (void) ecb_noreturn;
936 ecb_inline void ecb_unreachable (void) { }
937#endif
938
939/* try to tell the compiler that some condition is definitely true */
940#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
941
942ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
943ecb_inline unsigned char
944ecb_byteorder_helper (void)
945{
946 const uint32_t u = 0x11223344;
947 return *(unsigned char *)&u;
948}
949
950ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
951ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
952ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
953ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
954
955#if ECB_GCC_VERSION(3,0) || ECB_C99
956 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
957#else
958 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
959#endif
960
961#if __cplusplus
962 template<typename T>
963 static inline T ecb_div_rd (T val, T div)
964 {
965 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
966 }
967 template<typename T>
968 static inline T ecb_div_ru (T val, T div)
969 {
970 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
971 }
972#else
973 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
974 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
975#endif
976
977#if ecb_cplusplus_does_not_suck
978 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
979 template<typename T, int N>
980 static inline int ecb_array_length (const T (&arr)[N])
981 {
982 return N;
983 }
984#else
985 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
986#endif
987
988#endif
989
990/* ECB.H END */
991
992#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
993/* if your architecture doesn't need memory fences, e.g. because it is
994 * single-cpu/core, or if you use libev in a project that doesn't use libev
995 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
996 * libev, in which cases the memory fences become nops.
997 * alternatively, you can remove this #error and link against libpthread,
998 * which will then provide the memory fences.
999 */
1000# error "memory fences not defined for your architecture, please report"
1001#endif
1002
1003#ifndef ECB_MEMORY_FENCE
1004# define ECB_MEMORY_FENCE do { } while (0)
1005# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1006# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1007#endif
1008
1009#define expect_false(cond) ecb_expect_false (cond)
1010#define expect_true(cond) ecb_expect_true (cond)
1011#define noinline ecb_noinline
1012
238#define inline_size static inline 1013#define inline_size ecb_inline
239 1014
240#if EV_MINIMAL 1015#if EV_FEATURE_CODE
1016# define inline_speed ecb_inline
1017#else
241# define inline_speed static noinline 1018# define inline_speed static noinline
1019#endif
1020
1021#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1022
1023#if EV_MINPRI == EV_MAXPRI
1024# define ABSPRI(w) (((W)w), 0)
242#else 1025#else
243# define inline_speed static inline
244#endif
245
246#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
247#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1026# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1027#endif
248 1028
249#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1029#define EMPTY /* required for microsofts broken pseudo-c compiler */
250#define EMPTY2(a,b) /* used to suppress some warnings */ 1030#define EMPTY2(a,b) /* used to suppress some warnings */
251 1031
252typedef ev_watcher *W; 1032typedef ev_watcher *W;
253typedef ev_watcher_list *WL; 1033typedef ev_watcher_list *WL;
254typedef ev_watcher_time *WT; 1034typedef ev_watcher_time *WT;
255 1035
1036#define ev_active(w) ((W)(w))->active
1037#define ev_at(w) ((WT)(w))->at
1038
1039#if EV_USE_REALTIME
1040/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1041/* giving it a reasonably high chance of working on typical architectures */
1042static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1043#endif
1044
1045#if EV_USE_MONOTONIC
256static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1046static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1047#endif
1048
1049#ifndef EV_FD_TO_WIN32_HANDLE
1050# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1051#endif
1052#ifndef EV_WIN32_HANDLE_TO_FD
1053# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1054#endif
1055#ifndef EV_WIN32_CLOSE_FD
1056# define EV_WIN32_CLOSE_FD(fd) close (fd)
1057#endif
257 1058
258#ifdef _WIN32 1059#ifdef _WIN32
259# include "ev_win32.c" 1060# include "ev_win32.c"
260#endif 1061#endif
261 1062
262/*****************************************************************************/ 1063/*****************************************************************************/
263 1064
1065/* define a suitable floor function (only used by periodics atm) */
1066
1067#if EV_USE_FLOOR
1068# include <math.h>
1069# define ev_floor(v) floor (v)
1070#else
1071
1072#include <float.h>
1073
1074/* a floor() replacement function, should be independent of ev_tstamp type */
1075static ev_tstamp noinline
1076ev_floor (ev_tstamp v)
1077{
1078 /* the choice of shift factor is not terribly important */
1079#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1080 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1081#else
1082 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1083#endif
1084
1085 /* argument too large for an unsigned long? */
1086 if (expect_false (v >= shift))
1087 {
1088 ev_tstamp f;
1089
1090 if (v == v - 1.)
1091 return v; /* very large number */
1092
1093 f = shift * ev_floor (v * (1. / shift));
1094 return f + ev_floor (v - f);
1095 }
1096
1097 /* special treatment for negative args? */
1098 if (expect_false (v < 0.))
1099 {
1100 ev_tstamp f = -ev_floor (-v);
1101
1102 return f - (f == v ? 0 : 1);
1103 }
1104
1105 /* fits into an unsigned long */
1106 return (unsigned long)v;
1107}
1108
1109#endif
1110
1111/*****************************************************************************/
1112
1113#ifdef __linux
1114# include <sys/utsname.h>
1115#endif
1116
1117static unsigned int noinline ecb_cold
1118ev_linux_version (void)
1119{
1120#ifdef __linux
1121 unsigned int v = 0;
1122 struct utsname buf;
1123 int i;
1124 char *p = buf.release;
1125
1126 if (uname (&buf))
1127 return 0;
1128
1129 for (i = 3+1; --i; )
1130 {
1131 unsigned int c = 0;
1132
1133 for (;;)
1134 {
1135 if (*p >= '0' && *p <= '9')
1136 c = c * 10 + *p++ - '0';
1137 else
1138 {
1139 p += *p == '.';
1140 break;
1141 }
1142 }
1143
1144 v = (v << 8) | c;
1145 }
1146
1147 return v;
1148#else
1149 return 0;
1150#endif
1151}
1152
1153/*****************************************************************************/
1154
1155#if EV_AVOID_STDIO
1156static void noinline ecb_cold
1157ev_printerr (const char *msg)
1158{
1159 write (STDERR_FILENO, msg, strlen (msg));
1160}
1161#endif
1162
264static void (*syserr_cb)(const char *msg); 1163static void (*syserr_cb)(const char *msg) EV_THROW;
265 1164
266void 1165void ecb_cold
267ev_set_syserr_cb (void (*cb)(const char *msg)) 1166ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
268{ 1167{
269 syserr_cb = cb; 1168 syserr_cb = cb;
270} 1169}
271 1170
272static void noinline 1171static void noinline ecb_cold
273syserr (const char *msg) 1172ev_syserr (const char *msg)
274{ 1173{
275 if (!msg) 1174 if (!msg)
276 msg = "(libev) system error"; 1175 msg = "(libev) system error";
277 1176
278 if (syserr_cb) 1177 if (syserr_cb)
279 syserr_cb (msg); 1178 syserr_cb (msg);
280 else 1179 else
281 { 1180 {
1181#if EV_AVOID_STDIO
1182 ev_printerr (msg);
1183 ev_printerr (": ");
1184 ev_printerr (strerror (errno));
1185 ev_printerr ("\n");
1186#else
282 perror (msg); 1187 perror (msg);
1188#endif
283 abort (); 1189 abort ();
284 } 1190 }
285} 1191}
286 1192
1193static void *
1194ev_realloc_emul (void *ptr, long size) EV_THROW
1195{
1196 /* some systems, notably openbsd and darwin, fail to properly
1197 * implement realloc (x, 0) (as required by both ansi c-89 and
1198 * the single unix specification, so work around them here.
1199 * recently, also (at least) fedora and debian started breaking it,
1200 * despite documenting it otherwise.
1201 */
1202
1203 if (size)
1204 return realloc (ptr, size);
1205
1206 free (ptr);
1207 return 0;
1208}
1209
287static void *(*alloc)(void *ptr, long size); 1210static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
288 1211
289void 1212void ecb_cold
290ev_set_allocator (void *(*cb)(void *ptr, long size)) 1213ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
291{ 1214{
292 alloc = cb; 1215 alloc = cb;
293} 1216}
294 1217
295inline_speed void * 1218inline_speed void *
296ev_realloc (void *ptr, long size) 1219ev_realloc (void *ptr, long size)
297{ 1220{
298 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1221 ptr = alloc (ptr, size);
299 1222
300 if (!ptr && size) 1223 if (!ptr && size)
301 { 1224 {
1225#if EV_AVOID_STDIO
1226 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1227#else
302 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1228 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1229#endif
303 abort (); 1230 abort ();
304 } 1231 }
305 1232
306 return ptr; 1233 return ptr;
307} 1234}
309#define ev_malloc(size) ev_realloc (0, (size)) 1236#define ev_malloc(size) ev_realloc (0, (size))
310#define ev_free(ptr) ev_realloc ((ptr), 0) 1237#define ev_free(ptr) ev_realloc ((ptr), 0)
311 1238
312/*****************************************************************************/ 1239/*****************************************************************************/
313 1240
1241/* set in reify when reification needed */
1242#define EV_ANFD_REIFY 1
1243
1244/* file descriptor info structure */
314typedef struct 1245typedef struct
315{ 1246{
316 WL head; 1247 WL head;
317 unsigned char events; 1248 unsigned char events; /* the events watched for */
1249 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1250 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
318 unsigned char reify; 1251 unsigned char unused;
1252#if EV_USE_EPOLL
1253 unsigned int egen; /* generation counter to counter epoll bugs */
1254#endif
319#if EV_SELECT_IS_WINSOCKET 1255#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
320 SOCKET handle; 1256 SOCKET handle;
321#endif 1257#endif
1258#if EV_USE_IOCP
1259 OVERLAPPED or, ow;
1260#endif
322} ANFD; 1261} ANFD;
323 1262
1263/* stores the pending event set for a given watcher */
324typedef struct 1264typedef struct
325{ 1265{
326 W w; 1266 W w;
327 int events; 1267 int events; /* the pending event set for the given watcher */
328} ANPENDING; 1268} ANPENDING;
329 1269
330#if EV_USE_INOTIFY 1270#if EV_USE_INOTIFY
1271/* hash table entry per inotify-id */
331typedef struct 1272typedef struct
332{ 1273{
333 WL head; 1274 WL head;
334} ANFS; 1275} ANFS;
1276#endif
1277
1278/* Heap Entry */
1279#if EV_HEAP_CACHE_AT
1280 /* a heap element */
1281 typedef struct {
1282 ev_tstamp at;
1283 WT w;
1284 } ANHE;
1285
1286 #define ANHE_w(he) (he).w /* access watcher, read-write */
1287 #define ANHE_at(he) (he).at /* access cached at, read-only */
1288 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1289#else
1290 /* a heap element */
1291 typedef WT ANHE;
1292
1293 #define ANHE_w(he) (he)
1294 #define ANHE_at(he) (he)->at
1295 #define ANHE_at_cache(he)
335#endif 1296#endif
336 1297
337#if EV_MULTIPLICITY 1298#if EV_MULTIPLICITY
338 1299
339 struct ev_loop 1300 struct ev_loop
345 #undef VAR 1306 #undef VAR
346 }; 1307 };
347 #include "ev_wrap.h" 1308 #include "ev_wrap.h"
348 1309
349 static struct ev_loop default_loop_struct; 1310 static struct ev_loop default_loop_struct;
350 struct ev_loop *ev_default_loop_ptr; 1311 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
351 1312
352#else 1313#else
353 1314
354 ev_tstamp ev_rt_now; 1315 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
355 #define VAR(name,decl) static decl; 1316 #define VAR(name,decl) static decl;
356 #include "ev_vars.h" 1317 #include "ev_vars.h"
357 #undef VAR 1318 #undef VAR
358 1319
359 static int ev_default_loop_ptr; 1320 static int ev_default_loop_ptr;
360 1321
361#endif 1322#endif
362 1323
1324#if EV_FEATURE_API
1325# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1326# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1327# define EV_INVOKE_PENDING invoke_cb (EV_A)
1328#else
1329# define EV_RELEASE_CB (void)0
1330# define EV_ACQUIRE_CB (void)0
1331# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1332#endif
1333
1334#define EVBREAK_RECURSE 0x80
1335
363/*****************************************************************************/ 1336/*****************************************************************************/
364 1337
1338#ifndef EV_HAVE_EV_TIME
365ev_tstamp 1339ev_tstamp
366ev_time (void) 1340ev_time (void) EV_THROW
367{ 1341{
368#if EV_USE_REALTIME 1342#if EV_USE_REALTIME
1343 if (expect_true (have_realtime))
1344 {
369 struct timespec ts; 1345 struct timespec ts;
370 clock_gettime (CLOCK_REALTIME, &ts); 1346 clock_gettime (CLOCK_REALTIME, &ts);
371 return ts.tv_sec + ts.tv_nsec * 1e-9; 1347 return ts.tv_sec + ts.tv_nsec * 1e-9;
372#else 1348 }
1349#endif
1350
373 struct timeval tv; 1351 struct timeval tv;
374 gettimeofday (&tv, 0); 1352 gettimeofday (&tv, 0);
375 return tv.tv_sec + tv.tv_usec * 1e-6; 1353 return tv.tv_sec + tv.tv_usec * 1e-6;
376#endif
377} 1354}
1355#endif
378 1356
379ev_tstamp inline_size 1357inline_size ev_tstamp
380get_clock (void) 1358get_clock (void)
381{ 1359{
382#if EV_USE_MONOTONIC 1360#if EV_USE_MONOTONIC
383 if (expect_true (have_monotonic)) 1361 if (expect_true (have_monotonic))
384 { 1362 {
391 return ev_time (); 1369 return ev_time ();
392} 1370}
393 1371
394#if EV_MULTIPLICITY 1372#if EV_MULTIPLICITY
395ev_tstamp 1373ev_tstamp
396ev_now (EV_P) 1374ev_now (EV_P) EV_THROW
397{ 1375{
398 return ev_rt_now; 1376 return ev_rt_now;
399} 1377}
400#endif 1378#endif
401 1379
402int inline_size 1380void
1381ev_sleep (ev_tstamp delay) EV_THROW
1382{
1383 if (delay > 0.)
1384 {
1385#if EV_USE_NANOSLEEP
1386 struct timespec ts;
1387
1388 EV_TS_SET (ts, delay);
1389 nanosleep (&ts, 0);
1390#elif defined _WIN32
1391 Sleep ((unsigned long)(delay * 1e3));
1392#else
1393 struct timeval tv;
1394
1395 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1396 /* something not guaranteed by newer posix versions, but guaranteed */
1397 /* by older ones */
1398 EV_TV_SET (tv, delay);
1399 select (0, 0, 0, 0, &tv);
1400#endif
1401 }
1402}
1403
1404/*****************************************************************************/
1405
1406#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1407
1408/* find a suitable new size for the given array, */
1409/* hopefully by rounding to a nice-to-malloc size */
1410inline_size int
403array_nextsize (int elem, int cur, int cnt) 1411array_nextsize (int elem, int cur, int cnt)
404{ 1412{
405 int ncur = cur + 1; 1413 int ncur = cur + 1;
406 1414
407 do 1415 do
408 ncur <<= 1; 1416 ncur <<= 1;
409 while (cnt > ncur); 1417 while (cnt > ncur);
410 1418
411 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 1419 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
412 if (elem * ncur > 4096) 1420 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
413 { 1421 {
414 ncur *= elem; 1422 ncur *= elem;
415 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 1423 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
416 ncur = ncur - sizeof (void *) * 4; 1424 ncur = ncur - sizeof (void *) * 4;
417 ncur /= elem; 1425 ncur /= elem;
418 } 1426 }
419 1427
420 return ncur; 1428 return ncur;
421} 1429}
422 1430
423static noinline void * 1431static void * noinline ecb_cold
424array_realloc (int elem, void *base, int *cur, int cnt) 1432array_realloc (int elem, void *base, int *cur, int cnt)
425{ 1433{
426 *cur = array_nextsize (elem, *cur, cnt); 1434 *cur = array_nextsize (elem, *cur, cnt);
427 return ev_realloc (base, elem * *cur); 1435 return ev_realloc (base, elem * *cur);
428} 1436}
1437
1438#define array_init_zero(base,count) \
1439 memset ((void *)(base), 0, sizeof (*(base)) * (count))
429 1440
430#define array_needsize(type,base,cur,cnt,init) \ 1441#define array_needsize(type,base,cur,cnt,init) \
431 if (expect_false ((cnt) > (cur))) \ 1442 if (expect_false ((cnt) > (cur))) \
432 { \ 1443 { \
433 int ocur_ = (cur); \ 1444 int ecb_unused ocur_ = (cur); \
434 (base) = (type *)array_realloc \ 1445 (base) = (type *)array_realloc \
435 (sizeof (type), (base), &(cur), (cnt)); \ 1446 (sizeof (type), (base), &(cur), (cnt)); \
436 init ((base) + (ocur_), (cur) - ocur_); \ 1447 init ((base) + (ocur_), (cur) - ocur_); \
437 } 1448 }
438 1449
445 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1456 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
446 } 1457 }
447#endif 1458#endif
448 1459
449#define array_free(stem, idx) \ 1460#define array_free(stem, idx) \
450 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1461 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
451 1462
452/*****************************************************************************/ 1463/*****************************************************************************/
453 1464
1465/* dummy callback for pending events */
1466static void noinline
1467pendingcb (EV_P_ ev_prepare *w, int revents)
1468{
1469}
1470
454void noinline 1471void noinline
455ev_feed_event (EV_P_ void *w, int revents) 1472ev_feed_event (EV_P_ void *w, int revents) EV_THROW
456{ 1473{
457 W w_ = (W)w; 1474 W w_ = (W)w;
458 int pri = ABSPRI (w_); 1475 int pri = ABSPRI (w_);
459 1476
460 if (expect_false (w_->pending)) 1477 if (expect_false (w_->pending))
464 w_->pending = ++pendingcnt [pri]; 1481 w_->pending = ++pendingcnt [pri];
465 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 1482 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
466 pendings [pri][w_->pending - 1].w = w_; 1483 pendings [pri][w_->pending - 1].w = w_;
467 pendings [pri][w_->pending - 1].events = revents; 1484 pendings [pri][w_->pending - 1].events = revents;
468 } 1485 }
469}
470 1486
471void inline_size 1487 pendingpri = NUMPRI - 1;
1488}
1489
1490inline_speed void
1491feed_reverse (EV_P_ W w)
1492{
1493 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1494 rfeeds [rfeedcnt++] = w;
1495}
1496
1497inline_size void
1498feed_reverse_done (EV_P_ int revents)
1499{
1500 do
1501 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1502 while (rfeedcnt);
1503}
1504
1505inline_speed void
472queue_events (EV_P_ W *events, int eventcnt, int type) 1506queue_events (EV_P_ W *events, int eventcnt, int type)
473{ 1507{
474 int i; 1508 int i;
475 1509
476 for (i = 0; i < eventcnt; ++i) 1510 for (i = 0; i < eventcnt; ++i)
477 ev_feed_event (EV_A_ events [i], type); 1511 ev_feed_event (EV_A_ events [i], type);
478} 1512}
479 1513
480/*****************************************************************************/ 1514/*****************************************************************************/
481 1515
482void inline_size 1516inline_speed void
483anfds_init (ANFD *base, int count)
484{
485 while (count--)
486 {
487 base->head = 0;
488 base->events = EV_NONE;
489 base->reify = 0;
490
491 ++base;
492 }
493}
494
495void inline_speed
496fd_event (EV_P_ int fd, int revents) 1517fd_event_nocheck (EV_P_ int fd, int revents)
497{ 1518{
498 ANFD *anfd = anfds + fd; 1519 ANFD *anfd = anfds + fd;
499 ev_io *w; 1520 ev_io *w;
500 1521
501 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1522 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
505 if (ev) 1526 if (ev)
506 ev_feed_event (EV_A_ (W)w, ev); 1527 ev_feed_event (EV_A_ (W)w, ev);
507 } 1528 }
508} 1529}
509 1530
1531/* do not submit kernel events for fds that have reify set */
1532/* because that means they changed while we were polling for new events */
1533inline_speed void
1534fd_event (EV_P_ int fd, int revents)
1535{
1536 ANFD *anfd = anfds + fd;
1537
1538 if (expect_true (!anfd->reify))
1539 fd_event_nocheck (EV_A_ fd, revents);
1540}
1541
510void 1542void
511ev_feed_fd_event (EV_P_ int fd, int revents) 1543ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
512{ 1544{
513 if (fd >= 0 && fd < anfdmax) 1545 if (fd >= 0 && fd < anfdmax)
514 fd_event (EV_A_ fd, revents); 1546 fd_event_nocheck (EV_A_ fd, revents);
515} 1547}
516 1548
517void inline_size 1549/* make sure the external fd watch events are in-sync */
1550/* with the kernel/libev internal state */
1551inline_size void
518fd_reify (EV_P) 1552fd_reify (EV_P)
519{ 1553{
520 int i; 1554 int i;
1555
1556#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1557 for (i = 0; i < fdchangecnt; ++i)
1558 {
1559 int fd = fdchanges [i];
1560 ANFD *anfd = anfds + fd;
1561
1562 if (anfd->reify & EV__IOFDSET && anfd->head)
1563 {
1564 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1565
1566 if (handle != anfd->handle)
1567 {
1568 unsigned long arg;
1569
1570 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1571
1572 /* handle changed, but fd didn't - we need to do it in two steps */
1573 backend_modify (EV_A_ fd, anfd->events, 0);
1574 anfd->events = 0;
1575 anfd->handle = handle;
1576 }
1577 }
1578 }
1579#endif
521 1580
522 for (i = 0; i < fdchangecnt; ++i) 1581 for (i = 0; i < fdchangecnt; ++i)
523 { 1582 {
524 int fd = fdchanges [i]; 1583 int fd = fdchanges [i];
525 ANFD *anfd = anfds + fd; 1584 ANFD *anfd = anfds + fd;
526 ev_io *w; 1585 ev_io *w;
527 1586
528 int events = 0; 1587 unsigned char o_events = anfd->events;
1588 unsigned char o_reify = anfd->reify;
529 1589
530 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1590 anfd->reify = 0;
531 events |= w->events;
532 1591
533#if EV_SELECT_IS_WINSOCKET 1592 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
534 if (events)
535 { 1593 {
536 unsigned long argp; 1594 anfd->events = 0;
537 anfd->handle = _get_osfhandle (fd); 1595
538 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1596 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1597 anfd->events |= (unsigned char)w->events;
1598
1599 if (o_events != anfd->events)
1600 o_reify = EV__IOFDSET; /* actually |= */
539 } 1601 }
540#endif
541 1602
542 anfd->reify = 0; 1603 if (o_reify & EV__IOFDSET)
543
544 backend_modify (EV_A_ fd, anfd->events, events); 1604 backend_modify (EV_A_ fd, o_events, anfd->events);
545 anfd->events = events;
546 } 1605 }
547 1606
548 fdchangecnt = 0; 1607 fdchangecnt = 0;
549} 1608}
550 1609
551void inline_size 1610/* something about the given fd changed */
1611inline_size void
552fd_change (EV_P_ int fd) 1612fd_change (EV_P_ int fd, int flags)
553{ 1613{
554 if (expect_false (anfds [fd].reify)) 1614 unsigned char reify = anfds [fd].reify;
555 return;
556
557 anfds [fd].reify = 1; 1615 anfds [fd].reify |= flags;
558 1616
1617 if (expect_true (!reify))
1618 {
559 ++fdchangecnt; 1619 ++fdchangecnt;
560 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1620 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
561 fdchanges [fdchangecnt - 1] = fd; 1621 fdchanges [fdchangecnt - 1] = fd;
1622 }
562} 1623}
563 1624
564void inline_speed 1625/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1626inline_speed void ecb_cold
565fd_kill (EV_P_ int fd) 1627fd_kill (EV_P_ int fd)
566{ 1628{
567 ev_io *w; 1629 ev_io *w;
568 1630
569 while ((w = (ev_io *)anfds [fd].head)) 1631 while ((w = (ev_io *)anfds [fd].head))
571 ev_io_stop (EV_A_ w); 1633 ev_io_stop (EV_A_ w);
572 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1634 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
573 } 1635 }
574} 1636}
575 1637
576int inline_size 1638/* check whether the given fd is actually valid, for error recovery */
1639inline_size int ecb_cold
577fd_valid (int fd) 1640fd_valid (int fd)
578{ 1641{
579#ifdef _WIN32 1642#ifdef _WIN32
580 return _get_osfhandle (fd) != -1; 1643 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
581#else 1644#else
582 return fcntl (fd, F_GETFD) != -1; 1645 return fcntl (fd, F_GETFD) != -1;
583#endif 1646#endif
584} 1647}
585 1648
586/* called on EBADF to verify fds */ 1649/* called on EBADF to verify fds */
587static void noinline 1650static void noinline ecb_cold
588fd_ebadf (EV_P) 1651fd_ebadf (EV_P)
589{ 1652{
590 int fd; 1653 int fd;
591 1654
592 for (fd = 0; fd < anfdmax; ++fd) 1655 for (fd = 0; fd < anfdmax; ++fd)
593 if (anfds [fd].events) 1656 if (anfds [fd].events)
594 if (!fd_valid (fd) == -1 && errno == EBADF) 1657 if (!fd_valid (fd) && errno == EBADF)
595 fd_kill (EV_A_ fd); 1658 fd_kill (EV_A_ fd);
596} 1659}
597 1660
598/* called on ENOMEM in select/poll to kill some fds and retry */ 1661/* called on ENOMEM in select/poll to kill some fds and retry */
599static void noinline 1662static void noinline ecb_cold
600fd_enomem (EV_P) 1663fd_enomem (EV_P)
601{ 1664{
602 int fd; 1665 int fd;
603 1666
604 for (fd = anfdmax; fd--; ) 1667 for (fd = anfdmax; fd--; )
605 if (anfds [fd].events) 1668 if (anfds [fd].events)
606 { 1669 {
607 fd_kill (EV_A_ fd); 1670 fd_kill (EV_A_ fd);
608 return; 1671 break;
609 } 1672 }
610} 1673}
611 1674
612/* usually called after fork if backend needs to re-arm all fds from scratch */ 1675/* usually called after fork if backend needs to re-arm all fds from scratch */
613static void noinline 1676static void noinline
617 1680
618 for (fd = 0; fd < anfdmax; ++fd) 1681 for (fd = 0; fd < anfdmax; ++fd)
619 if (anfds [fd].events) 1682 if (anfds [fd].events)
620 { 1683 {
621 anfds [fd].events = 0; 1684 anfds [fd].events = 0;
622 fd_change (EV_A_ fd); 1685 anfds [fd].emask = 0;
1686 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
623 } 1687 }
624} 1688}
625 1689
626/*****************************************************************************/ 1690/* used to prepare libev internal fd's */
627 1691/* this is not fork-safe */
628void inline_speed 1692inline_speed void
629upheap (WT *heap, int k)
630{
631 WT w = heap [k];
632
633 while (k && heap [k >> 1]->at > w->at)
634 {
635 heap [k] = heap [k >> 1];
636 ((W)heap [k])->active = k + 1;
637 k >>= 1;
638 }
639
640 heap [k] = w;
641 ((W)heap [k])->active = k + 1;
642
643}
644
645void inline_speed
646downheap (WT *heap, int N, int k)
647{
648 WT w = heap [k];
649
650 while (k < (N >> 1))
651 {
652 int j = k << 1;
653
654 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
655 ++j;
656
657 if (w->at <= heap [j]->at)
658 break;
659
660 heap [k] = heap [j];
661 ((W)heap [k])->active = k + 1;
662 k = j;
663 }
664
665 heap [k] = w;
666 ((W)heap [k])->active = k + 1;
667}
668
669void inline_size
670adjustheap (WT *heap, int N, int k)
671{
672 upheap (heap, k);
673 downheap (heap, N, k);
674}
675
676/*****************************************************************************/
677
678typedef struct
679{
680 WL head;
681 sig_atomic_t volatile gotsig;
682} ANSIG;
683
684static ANSIG *signals;
685static int signalmax;
686
687static int sigpipe [2];
688static sig_atomic_t volatile gotsig;
689static ev_io sigev;
690
691void inline_size
692signals_init (ANSIG *base, int count)
693{
694 while (count--)
695 {
696 base->head = 0;
697 base->gotsig = 0;
698
699 ++base;
700 }
701}
702
703static void
704sighandler (int signum)
705{
706#if _WIN32
707 signal (signum, sighandler);
708#endif
709
710 signals [signum - 1].gotsig = 1;
711
712 if (!gotsig)
713 {
714 int old_errno = errno;
715 gotsig = 1;
716 write (sigpipe [1], &signum, 1);
717 errno = old_errno;
718 }
719}
720
721void noinline
722ev_feed_signal_event (EV_P_ int signum)
723{
724 WL w;
725
726#if EV_MULTIPLICITY
727 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
728#endif
729
730 --signum;
731
732 if (signum < 0 || signum >= signalmax)
733 return;
734
735 signals [signum].gotsig = 0;
736
737 for (w = signals [signum].head; w; w = w->next)
738 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
739}
740
741static void
742sigcb (EV_P_ ev_io *iow, int revents)
743{
744 int signum;
745
746 read (sigpipe [0], &revents, 1);
747 gotsig = 0;
748
749 for (signum = signalmax; signum--; )
750 if (signals [signum].gotsig)
751 ev_feed_signal_event (EV_A_ signum + 1);
752}
753
754void inline_speed
755fd_intern (int fd) 1693fd_intern (int fd)
756{ 1694{
757#ifdef _WIN32 1695#ifdef _WIN32
758 int arg = 1; 1696 unsigned long arg = 1;
759 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1697 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
760#else 1698#else
761 fcntl (fd, F_SETFD, FD_CLOEXEC); 1699 fcntl (fd, F_SETFD, FD_CLOEXEC);
762 fcntl (fd, F_SETFL, O_NONBLOCK); 1700 fcntl (fd, F_SETFL, O_NONBLOCK);
763#endif 1701#endif
764} 1702}
765 1703
766static void noinline
767siginit (EV_P)
768{
769 fd_intern (sigpipe [0]);
770 fd_intern (sigpipe [1]);
771
772 ev_io_set (&sigev, sigpipe [0], EV_READ);
773 ev_io_start (EV_A_ &sigev);
774 ev_unref (EV_A); /* child watcher should not keep loop alive */
775}
776
777/*****************************************************************************/ 1704/*****************************************************************************/
778 1705
779static ev_child *childs [EV_PID_HASHSIZE]; 1706/*
1707 * the heap functions want a real array index. array index 0 is guaranteed to not
1708 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1709 * the branching factor of the d-tree.
1710 */
780 1711
1712/*
1713 * at the moment we allow libev the luxury of two heaps,
1714 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1715 * which is more cache-efficient.
1716 * the difference is about 5% with 50000+ watchers.
1717 */
1718#if EV_USE_4HEAP
1719
1720#define DHEAP 4
1721#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1722#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1723#define UPHEAP_DONE(p,k) ((p) == (k))
1724
1725/* away from the root */
1726inline_speed void
1727downheap (ANHE *heap, int N, int k)
1728{
1729 ANHE he = heap [k];
1730 ANHE *E = heap + N + HEAP0;
1731
1732 for (;;)
1733 {
1734 ev_tstamp minat;
1735 ANHE *minpos;
1736 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1737
1738 /* find minimum child */
1739 if (expect_true (pos + DHEAP - 1 < E))
1740 {
1741 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1742 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1743 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1744 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1745 }
1746 else if (pos < E)
1747 {
1748 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1749 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1750 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1751 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1752 }
1753 else
1754 break;
1755
1756 if (ANHE_at (he) <= minat)
1757 break;
1758
1759 heap [k] = *minpos;
1760 ev_active (ANHE_w (*minpos)) = k;
1761
1762 k = minpos - heap;
1763 }
1764
1765 heap [k] = he;
1766 ev_active (ANHE_w (he)) = k;
1767}
1768
1769#else /* 4HEAP */
1770
1771#define HEAP0 1
1772#define HPARENT(k) ((k) >> 1)
1773#define UPHEAP_DONE(p,k) (!(p))
1774
1775/* away from the root */
1776inline_speed void
1777downheap (ANHE *heap, int N, int k)
1778{
1779 ANHE he = heap [k];
1780
1781 for (;;)
1782 {
1783 int c = k << 1;
1784
1785 if (c >= N + HEAP0)
1786 break;
1787
1788 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1789 ? 1 : 0;
1790
1791 if (ANHE_at (he) <= ANHE_at (heap [c]))
1792 break;
1793
1794 heap [k] = heap [c];
1795 ev_active (ANHE_w (heap [k])) = k;
1796
1797 k = c;
1798 }
1799
1800 heap [k] = he;
1801 ev_active (ANHE_w (he)) = k;
1802}
1803#endif
1804
1805/* towards the root */
1806inline_speed void
1807upheap (ANHE *heap, int k)
1808{
1809 ANHE he = heap [k];
1810
1811 for (;;)
1812 {
1813 int p = HPARENT (k);
1814
1815 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1816 break;
1817
1818 heap [k] = heap [p];
1819 ev_active (ANHE_w (heap [k])) = k;
1820 k = p;
1821 }
1822
1823 heap [k] = he;
1824 ev_active (ANHE_w (he)) = k;
1825}
1826
1827/* move an element suitably so it is in a correct place */
1828inline_size void
1829adjustheap (ANHE *heap, int N, int k)
1830{
1831 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1832 upheap (heap, k);
1833 else
1834 downheap (heap, N, k);
1835}
1836
1837/* rebuild the heap: this function is used only once and executed rarely */
1838inline_size void
1839reheap (ANHE *heap, int N)
1840{
1841 int i;
1842
1843 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1844 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1845 for (i = 0; i < N; ++i)
1846 upheap (heap, i + HEAP0);
1847}
1848
1849/*****************************************************************************/
1850
1851/* associate signal watchers to a signal signal */
1852typedef struct
1853{
1854 EV_ATOMIC_T pending;
1855#if EV_MULTIPLICITY
1856 EV_P;
1857#endif
1858 WL head;
1859} ANSIG;
1860
1861static ANSIG signals [EV_NSIG - 1];
1862
1863/*****************************************************************************/
1864
1865#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1866
1867static void noinline ecb_cold
1868evpipe_init (EV_P)
1869{
1870 if (!ev_is_active (&pipe_w))
1871 {
1872 int fds [2];
1873
1874# if EV_USE_EVENTFD
1875 fds [0] = -1;
1876 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1877 if (fds [1] < 0 && errno == EINVAL)
1878 fds [1] = eventfd (0, 0);
1879
1880 if (fds [1] < 0)
1881# endif
1882 {
1883 while (pipe (fds))
1884 ev_syserr ("(libev) error creating signal/async pipe");
1885
1886 fd_intern (fds [0]);
1887 }
1888
1889 fd_intern (fds [1]);
1890
1891 evpipe [0] = fds [0];
1892
1893 if (evpipe [1] < 0)
1894 evpipe [1] = fds [1]; /* first call, set write fd */
1895 else
1896 {
1897 /* on subsequent calls, do not change evpipe [1] */
1898 /* so that evpipe_write can always rely on its value. */
1899 /* this branch does not do anything sensible on windows, */
1900 /* so must not be executed on windows */
1901
1902 dup2 (fds [1], evpipe [1]);
1903 close (fds [1]);
1904 }
1905
1906 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
1907 ev_io_start (EV_A_ &pipe_w);
1908 ev_unref (EV_A); /* watcher should not keep loop alive */
1909 }
1910}
1911
1912inline_speed void
1913evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1914{
1915 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
1916
1917 if (expect_true (*flag))
1918 return;
1919
1920 *flag = 1;
1921 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1922
1923 pipe_write_skipped = 1;
1924
1925 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1926
1927 if (pipe_write_wanted)
1928 {
1929 int old_errno;
1930
1931 pipe_write_skipped = 0;
1932 ECB_MEMORY_FENCE_RELEASE;
1933
1934 old_errno = errno; /* save errno because write will clobber it */
1935
1936#if EV_USE_EVENTFD
1937 if (evpipe [0] < 0)
1938 {
1939 uint64_t counter = 1;
1940 write (evpipe [1], &counter, sizeof (uint64_t));
1941 }
1942 else
1943#endif
1944 {
781#ifndef _WIN32 1945#ifdef _WIN32
1946 WSABUF buf;
1947 DWORD sent;
1948 buf.buf = &buf;
1949 buf.len = 1;
1950 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
1951#else
1952 write (evpipe [1], &(evpipe [1]), 1);
1953#endif
1954 }
1955
1956 errno = old_errno;
1957 }
1958}
1959
1960/* called whenever the libev signal pipe */
1961/* got some events (signal, async) */
1962static void
1963pipecb (EV_P_ ev_io *iow, int revents)
1964{
1965 int i;
1966
1967 if (revents & EV_READ)
1968 {
1969#if EV_USE_EVENTFD
1970 if (evpipe [0] < 0)
1971 {
1972 uint64_t counter;
1973 read (evpipe [1], &counter, sizeof (uint64_t));
1974 }
1975 else
1976#endif
1977 {
1978 char dummy[4];
1979#ifdef _WIN32
1980 WSABUF buf;
1981 DWORD recvd;
1982 DWORD flags = 0;
1983 buf.buf = dummy;
1984 buf.len = sizeof (dummy);
1985 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
1986#else
1987 read (evpipe [0], &dummy, sizeof (dummy));
1988#endif
1989 }
1990 }
1991
1992 pipe_write_skipped = 0;
1993
1994 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
1995
1996#if EV_SIGNAL_ENABLE
1997 if (sig_pending)
1998 {
1999 sig_pending = 0;
2000
2001 ECB_MEMORY_FENCE;
2002
2003 for (i = EV_NSIG - 1; i--; )
2004 if (expect_false (signals [i].pending))
2005 ev_feed_signal_event (EV_A_ i + 1);
2006 }
2007#endif
2008
2009#if EV_ASYNC_ENABLE
2010 if (async_pending)
2011 {
2012 async_pending = 0;
2013
2014 ECB_MEMORY_FENCE;
2015
2016 for (i = asynccnt; i--; )
2017 if (asyncs [i]->sent)
2018 {
2019 asyncs [i]->sent = 0;
2020 ECB_MEMORY_FENCE_RELEASE;
2021 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2022 }
2023 }
2024#endif
2025}
2026
2027/*****************************************************************************/
2028
2029void
2030ev_feed_signal (int signum) EV_THROW
2031{
2032#if EV_MULTIPLICITY
2033 EV_P = signals [signum - 1].loop;
2034
2035 if (!EV_A)
2036 return;
2037#endif
2038
2039 signals [signum - 1].pending = 1;
2040 evpipe_write (EV_A_ &sig_pending);
2041}
2042
2043static void
2044ev_sighandler (int signum)
2045{
2046#ifdef _WIN32
2047 signal (signum, ev_sighandler);
2048#endif
2049
2050 ev_feed_signal (signum);
2051}
2052
2053void noinline
2054ev_feed_signal_event (EV_P_ int signum) EV_THROW
2055{
2056 WL w;
2057
2058 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2059 return;
2060
2061 --signum;
2062
2063#if EV_MULTIPLICITY
2064 /* it is permissible to try to feed a signal to the wrong loop */
2065 /* or, likely more useful, feeding a signal nobody is waiting for */
2066
2067 if (expect_false (signals [signum].loop != EV_A))
2068 return;
2069#endif
2070
2071 signals [signum].pending = 0;
2072 ECB_MEMORY_FENCE_RELEASE;
2073
2074 for (w = signals [signum].head; w; w = w->next)
2075 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2076}
2077
2078#if EV_USE_SIGNALFD
2079static void
2080sigfdcb (EV_P_ ev_io *iow, int revents)
2081{
2082 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2083
2084 for (;;)
2085 {
2086 ssize_t res = read (sigfd, si, sizeof (si));
2087
2088 /* not ISO-C, as res might be -1, but works with SuS */
2089 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2090 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2091
2092 if (res < (ssize_t)sizeof (si))
2093 break;
2094 }
2095}
2096#endif
2097
2098#endif
2099
2100/*****************************************************************************/
2101
2102#if EV_CHILD_ENABLE
2103static WL childs [EV_PID_HASHSIZE];
782 2104
783static ev_signal childev; 2105static ev_signal childev;
784 2106
785void inline_speed 2107#ifndef WIFCONTINUED
2108# define WIFCONTINUED(status) 0
2109#endif
2110
2111/* handle a single child status event */
2112inline_speed void
786child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 2113child_reap (EV_P_ int chain, int pid, int status)
787{ 2114{
788 ev_child *w; 2115 ev_child *w;
2116 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
789 2117
790 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2118 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2119 {
791 if (w->pid == pid || !w->pid) 2120 if ((w->pid == pid || !w->pid)
2121 && (!traced || (w->flags & 1)))
792 { 2122 {
793 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 2123 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
794 w->rpid = pid; 2124 w->rpid = pid;
795 w->rstatus = status; 2125 w->rstatus = status;
796 ev_feed_event (EV_A_ (W)w, EV_CHILD); 2126 ev_feed_event (EV_A_ (W)w, EV_CHILD);
797 } 2127 }
2128 }
798} 2129}
799 2130
800#ifndef WCONTINUED 2131#ifndef WCONTINUED
801# define WCONTINUED 0 2132# define WCONTINUED 0
802#endif 2133#endif
803 2134
2135/* called on sigchld etc., calls waitpid */
804static void 2136static void
805childcb (EV_P_ ev_signal *sw, int revents) 2137childcb (EV_P_ ev_signal *sw, int revents)
806{ 2138{
807 int pid, status; 2139 int pid, status;
808 2140
811 if (!WCONTINUED 2143 if (!WCONTINUED
812 || errno != EINVAL 2144 || errno != EINVAL
813 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 2145 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
814 return; 2146 return;
815 2147
816 /* make sure we are called again until all childs have been reaped */ 2148 /* make sure we are called again until all children have been reaped */
817 /* we need to do it this way so that the callback gets called before we continue */ 2149 /* we need to do it this way so that the callback gets called before we continue */
818 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2150 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
819 2151
820 child_reap (EV_A_ sw, pid, pid, status); 2152 child_reap (EV_A_ pid, pid, status);
821 if (EV_PID_HASHSIZE > 1) 2153 if ((EV_PID_HASHSIZE) > 1)
822 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2154 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
823} 2155}
824 2156
825#endif 2157#endif
826 2158
827/*****************************************************************************/ 2159/*****************************************************************************/
828 2160
2161#if EV_USE_IOCP
2162# include "ev_iocp.c"
2163#endif
829#if EV_USE_PORT 2164#if EV_USE_PORT
830# include "ev_port.c" 2165# include "ev_port.c"
831#endif 2166#endif
832#if EV_USE_KQUEUE 2167#if EV_USE_KQUEUE
833# include "ev_kqueue.c" 2168# include "ev_kqueue.c"
840#endif 2175#endif
841#if EV_USE_SELECT 2176#if EV_USE_SELECT
842# include "ev_select.c" 2177# include "ev_select.c"
843#endif 2178#endif
844 2179
845int 2180int ecb_cold
846ev_version_major (void) 2181ev_version_major (void) EV_THROW
847{ 2182{
848 return EV_VERSION_MAJOR; 2183 return EV_VERSION_MAJOR;
849} 2184}
850 2185
851int 2186int ecb_cold
852ev_version_minor (void) 2187ev_version_minor (void) EV_THROW
853{ 2188{
854 return EV_VERSION_MINOR; 2189 return EV_VERSION_MINOR;
855} 2190}
856 2191
857/* return true if we are running with elevated privileges and should ignore env variables */ 2192/* return true if we are running with elevated privileges and should ignore env variables */
858int inline_size 2193int inline_size ecb_cold
859enable_secure (void) 2194enable_secure (void)
860{ 2195{
861#ifdef _WIN32 2196#ifdef _WIN32
862 return 0; 2197 return 0;
863#else 2198#else
864 return getuid () != geteuid () 2199 return getuid () != geteuid ()
865 || getgid () != getegid (); 2200 || getgid () != getegid ();
866#endif 2201#endif
867} 2202}
868 2203
869unsigned int 2204unsigned int ecb_cold
870ev_supported_backends (void) 2205ev_supported_backends (void) EV_THROW
871{ 2206{
872 unsigned int flags = 0; 2207 unsigned int flags = 0;
873 2208
874 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2209 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
875 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2210 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
878 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2213 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
879 2214
880 return flags; 2215 return flags;
881} 2216}
882 2217
883unsigned int 2218unsigned int ecb_cold
884ev_recommended_backends (void) 2219ev_recommended_backends (void) EV_THROW
885{ 2220{
886 unsigned int flags = ev_supported_backends (); 2221 unsigned int flags = ev_supported_backends ();
887 2222
888#ifndef __NetBSD__ 2223#ifndef __NetBSD__
889 /* kqueue is borked on everything but netbsd apparently */ 2224 /* kqueue is borked on everything but netbsd apparently */
890 /* it usually doesn't work correctly on anything but sockets and pipes */ 2225 /* it usually doesn't work correctly on anything but sockets and pipes */
891 flags &= ~EVBACKEND_KQUEUE; 2226 flags &= ~EVBACKEND_KQUEUE;
892#endif 2227#endif
893#ifdef __APPLE__ 2228#ifdef __APPLE__
894 // flags &= ~EVBACKEND_KQUEUE; for documentation 2229 /* only select works correctly on that "unix-certified" platform */
895 flags &= ~EVBACKEND_POLL; 2230 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2231 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2232#endif
2233#ifdef __FreeBSD__
2234 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
896#endif 2235#endif
897 2236
898 return flags; 2237 return flags;
899} 2238}
900 2239
2240unsigned int ecb_cold
2241ev_embeddable_backends (void) EV_THROW
2242{
2243 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2244
2245 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2246 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2247 flags &= ~EVBACKEND_EPOLL;
2248
2249 return flags;
2250}
2251
901unsigned int 2252unsigned int
902ev_embeddable_backends (void) 2253ev_backend (EV_P) EV_THROW
903{ 2254{
904 return EVBACKEND_EPOLL 2255 return backend;
905 | EVBACKEND_KQUEUE
906 | EVBACKEND_PORT;
907} 2256}
908 2257
2258#if EV_FEATURE_API
909unsigned int 2259unsigned int
910ev_backend (EV_P) 2260ev_iteration (EV_P) EV_THROW
911{ 2261{
912 return backend; 2262 return loop_count;
913} 2263}
914 2264
915unsigned int 2265unsigned int
916ev_loop_count (EV_P) 2266ev_depth (EV_P) EV_THROW
917{ 2267{
918 return loop_count; 2268 return loop_depth;
919} 2269}
920 2270
2271void
2272ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2273{
2274 io_blocktime = interval;
2275}
2276
2277void
2278ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2279{
2280 timeout_blocktime = interval;
2281}
2282
2283void
2284ev_set_userdata (EV_P_ void *data) EV_THROW
2285{
2286 userdata = data;
2287}
2288
2289void *
2290ev_userdata (EV_P) EV_THROW
2291{
2292 return userdata;
2293}
2294
2295void
2296ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2297{
2298 invoke_cb = invoke_pending_cb;
2299}
2300
2301void
2302ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2303{
2304 release_cb = release;
2305 acquire_cb = acquire;
2306}
2307#endif
2308
2309/* initialise a loop structure, must be zero-initialised */
921static void noinline 2310static void noinline ecb_cold
922loop_init (EV_P_ unsigned int flags) 2311loop_init (EV_P_ unsigned int flags) EV_THROW
923{ 2312{
924 if (!backend) 2313 if (!backend)
925 { 2314 {
2315 origflags = flags;
2316
2317#if EV_USE_REALTIME
2318 if (!have_realtime)
2319 {
2320 struct timespec ts;
2321
2322 if (!clock_gettime (CLOCK_REALTIME, &ts))
2323 have_realtime = 1;
2324 }
2325#endif
2326
926#if EV_USE_MONOTONIC 2327#if EV_USE_MONOTONIC
2328 if (!have_monotonic)
927 { 2329 {
928 struct timespec ts; 2330 struct timespec ts;
2331
929 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2332 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
930 have_monotonic = 1; 2333 have_monotonic = 1;
931 } 2334 }
932#endif 2335#endif
933
934 ev_rt_now = ev_time ();
935 mn_now = get_clock ();
936 now_floor = mn_now;
937 rtmn_diff = ev_rt_now - mn_now;
938 2336
939 /* pid check not overridable via env */ 2337 /* pid check not overridable via env */
940#ifndef _WIN32 2338#ifndef _WIN32
941 if (flags & EVFLAG_FORKCHECK) 2339 if (flags & EVFLAG_FORKCHECK)
942 curpid = getpid (); 2340 curpid = getpid ();
945 if (!(flags & EVFLAG_NOENV) 2343 if (!(flags & EVFLAG_NOENV)
946 && !enable_secure () 2344 && !enable_secure ()
947 && getenv ("LIBEV_FLAGS")) 2345 && getenv ("LIBEV_FLAGS"))
948 flags = atoi (getenv ("LIBEV_FLAGS")); 2346 flags = atoi (getenv ("LIBEV_FLAGS"));
949 2347
950 if (!(flags & 0x0000ffffUL)) 2348 ev_rt_now = ev_time ();
2349 mn_now = get_clock ();
2350 now_floor = mn_now;
2351 rtmn_diff = ev_rt_now - mn_now;
2352#if EV_FEATURE_API
2353 invoke_cb = ev_invoke_pending;
2354#endif
2355
2356 io_blocktime = 0.;
2357 timeout_blocktime = 0.;
2358 backend = 0;
2359 backend_fd = -1;
2360 sig_pending = 0;
2361#if EV_ASYNC_ENABLE
2362 async_pending = 0;
2363#endif
2364 pipe_write_skipped = 0;
2365 pipe_write_wanted = 0;
2366 evpipe [0] = -1;
2367 evpipe [1] = -1;
2368#if EV_USE_INOTIFY
2369 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2370#endif
2371#if EV_USE_SIGNALFD
2372 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2373#endif
2374
2375 if (!(flags & EVBACKEND_MASK))
951 flags |= ev_recommended_backends (); 2376 flags |= ev_recommended_backends ();
952 2377
953 backend = 0;
954 backend_fd = -1;
955#if EV_USE_INOTIFY 2378#if EV_USE_IOCP
956 fs_fd = -2; 2379 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
957#endif 2380#endif
958
959#if EV_USE_PORT 2381#if EV_USE_PORT
960 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2382 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
961#endif 2383#endif
962#if EV_USE_KQUEUE 2384#if EV_USE_KQUEUE
963 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2385 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
970#endif 2392#endif
971#if EV_USE_SELECT 2393#if EV_USE_SELECT
972 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2394 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
973#endif 2395#endif
974 2396
2397 ev_prepare_init (&pending_w, pendingcb);
2398
2399#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
975 ev_init (&sigev, sigcb); 2400 ev_init (&pipe_w, pipecb);
976 ev_set_priority (&sigev, EV_MAXPRI); 2401 ev_set_priority (&pipe_w, EV_MAXPRI);
2402#endif
977 } 2403 }
978} 2404}
979 2405
980static void noinline 2406/* free up a loop structure */
2407void ecb_cold
981loop_destroy (EV_P) 2408ev_loop_destroy (EV_P)
982{ 2409{
983 int i; 2410 int i;
2411
2412#if EV_MULTIPLICITY
2413 /* mimic free (0) */
2414 if (!EV_A)
2415 return;
2416#endif
2417
2418#if EV_CLEANUP_ENABLE
2419 /* queue cleanup watchers (and execute them) */
2420 if (expect_false (cleanupcnt))
2421 {
2422 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2423 EV_INVOKE_PENDING;
2424 }
2425#endif
2426
2427#if EV_CHILD_ENABLE
2428 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2429 {
2430 ev_ref (EV_A); /* child watcher */
2431 ev_signal_stop (EV_A_ &childev);
2432 }
2433#endif
2434
2435 if (ev_is_active (&pipe_w))
2436 {
2437 /*ev_ref (EV_A);*/
2438 /*ev_io_stop (EV_A_ &pipe_w);*/
2439
2440 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2441 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2442 }
2443
2444#if EV_USE_SIGNALFD
2445 if (ev_is_active (&sigfd_w))
2446 close (sigfd);
2447#endif
984 2448
985#if EV_USE_INOTIFY 2449#if EV_USE_INOTIFY
986 if (fs_fd >= 0) 2450 if (fs_fd >= 0)
987 close (fs_fd); 2451 close (fs_fd);
988#endif 2452#endif
989 2453
990 if (backend_fd >= 0) 2454 if (backend_fd >= 0)
991 close (backend_fd); 2455 close (backend_fd);
992 2456
2457#if EV_USE_IOCP
2458 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2459#endif
993#if EV_USE_PORT 2460#if EV_USE_PORT
994 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2461 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
995#endif 2462#endif
996#if EV_USE_KQUEUE 2463#if EV_USE_KQUEUE
997 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2464 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1012#if EV_IDLE_ENABLE 2479#if EV_IDLE_ENABLE
1013 array_free (idle, [i]); 2480 array_free (idle, [i]);
1014#endif 2481#endif
1015 } 2482 }
1016 2483
2484 ev_free (anfds); anfds = 0; anfdmax = 0;
2485
1017 /* have to use the microsoft-never-gets-it-right macro */ 2486 /* have to use the microsoft-never-gets-it-right macro */
2487 array_free (rfeed, EMPTY);
1018 array_free (fdchange, EMPTY); 2488 array_free (fdchange, EMPTY);
1019 array_free (timer, EMPTY); 2489 array_free (timer, EMPTY);
1020#if EV_PERIODIC_ENABLE 2490#if EV_PERIODIC_ENABLE
1021 array_free (periodic, EMPTY); 2491 array_free (periodic, EMPTY);
1022#endif 2492#endif
2493#if EV_FORK_ENABLE
2494 array_free (fork, EMPTY);
2495#endif
2496#if EV_CLEANUP_ENABLE
2497 array_free (cleanup, EMPTY);
2498#endif
1023 array_free (prepare, EMPTY); 2499 array_free (prepare, EMPTY);
1024 array_free (check, EMPTY); 2500 array_free (check, EMPTY);
2501#if EV_ASYNC_ENABLE
2502 array_free (async, EMPTY);
2503#endif
1025 2504
1026 backend = 0; 2505 backend = 0;
1027}
1028 2506
2507#if EV_MULTIPLICITY
2508 if (ev_is_default_loop (EV_A))
2509#endif
2510 ev_default_loop_ptr = 0;
2511#if EV_MULTIPLICITY
2512 else
2513 ev_free (EV_A);
2514#endif
2515}
2516
2517#if EV_USE_INOTIFY
1029void inline_size infy_fork (EV_P); 2518inline_size void infy_fork (EV_P);
2519#endif
1030 2520
1031void inline_size 2521inline_size void
1032loop_fork (EV_P) 2522loop_fork (EV_P)
1033{ 2523{
1034#if EV_USE_PORT 2524#if EV_USE_PORT
1035 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2525 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1036#endif 2526#endif
1042#endif 2532#endif
1043#if EV_USE_INOTIFY 2533#if EV_USE_INOTIFY
1044 infy_fork (EV_A); 2534 infy_fork (EV_A);
1045#endif 2535#endif
1046 2536
2537#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1047 if (ev_is_active (&sigev)) 2538 if (ev_is_active (&pipe_w))
1048 { 2539 {
1049 /* default loop */ 2540 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1050 2541
1051 ev_ref (EV_A); 2542 ev_ref (EV_A);
1052 ev_io_stop (EV_A_ &sigev); 2543 ev_io_stop (EV_A_ &pipe_w);
1053 close (sigpipe [0]);
1054 close (sigpipe [1]);
1055 2544
1056 while (pipe (sigpipe)) 2545 if (evpipe [0] >= 0)
1057 syserr ("(libev) error creating pipe"); 2546 EV_WIN32_CLOSE_FD (evpipe [0]);
1058 2547
1059 siginit (EV_A); 2548 evpipe_init (EV_A);
2549 /* iterate over everything, in case we missed something before */
2550 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
1060 } 2551 }
2552#endif
1061 2553
1062 postfork = 0; 2554 postfork = 0;
1063} 2555}
1064 2556
1065#if EV_MULTIPLICITY 2557#if EV_MULTIPLICITY
2558
1066struct ev_loop * 2559struct ev_loop * ecb_cold
1067ev_loop_new (unsigned int flags) 2560ev_loop_new (unsigned int flags) EV_THROW
1068{ 2561{
1069 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2562 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1070 2563
1071 memset (loop, 0, sizeof (struct ev_loop)); 2564 memset (EV_A, 0, sizeof (struct ev_loop));
1072
1073 loop_init (EV_A_ flags); 2565 loop_init (EV_A_ flags);
1074 2566
1075 if (ev_backend (EV_A)) 2567 if (ev_backend (EV_A))
1076 return loop; 2568 return EV_A;
1077 2569
2570 ev_free (EV_A);
1078 return 0; 2571 return 0;
1079} 2572}
1080 2573
1081void 2574#endif /* multiplicity */
1082ev_loop_destroy (EV_P)
1083{
1084 loop_destroy (EV_A);
1085 ev_free (loop);
1086}
1087 2575
1088void 2576#if EV_VERIFY
1089ev_loop_fork (EV_P) 2577static void noinline ecb_cold
2578verify_watcher (EV_P_ W w)
1090{ 2579{
1091 postfork = 1; 2580 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1092}
1093 2581
2582 if (w->pending)
2583 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2584}
2585
2586static void noinline ecb_cold
2587verify_heap (EV_P_ ANHE *heap, int N)
2588{
2589 int i;
2590
2591 for (i = HEAP0; i < N + HEAP0; ++i)
2592 {
2593 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2594 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2595 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2596
2597 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2598 }
2599}
2600
2601static void noinline ecb_cold
2602array_verify (EV_P_ W *ws, int cnt)
2603{
2604 while (cnt--)
2605 {
2606 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2607 verify_watcher (EV_A_ ws [cnt]);
2608 }
2609}
2610#endif
2611
2612#if EV_FEATURE_API
2613void ecb_cold
2614ev_verify (EV_P) EV_THROW
2615{
2616#if EV_VERIFY
2617 int i;
2618 WL w, w2;
2619
2620 assert (activecnt >= -1);
2621
2622 assert (fdchangemax >= fdchangecnt);
2623 for (i = 0; i < fdchangecnt; ++i)
2624 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2625
2626 assert (anfdmax >= 0);
2627 for (i = 0; i < anfdmax; ++i)
2628 {
2629 int j = 0;
2630
2631 for (w = w2 = anfds [i].head; w; w = w->next)
2632 {
2633 verify_watcher (EV_A_ (W)w);
2634
2635 if (j++ & 1)
2636 {
2637 assert (("libev: io watcher list contains a loop", w != w2));
2638 w2 = w2->next;
2639 }
2640
2641 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2642 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2643 }
2644 }
2645
2646 assert (timermax >= timercnt);
2647 verify_heap (EV_A_ timers, timercnt);
2648
2649#if EV_PERIODIC_ENABLE
2650 assert (periodicmax >= periodiccnt);
2651 verify_heap (EV_A_ periodics, periodiccnt);
2652#endif
2653
2654 for (i = NUMPRI; i--; )
2655 {
2656 assert (pendingmax [i] >= pendingcnt [i]);
2657#if EV_IDLE_ENABLE
2658 assert (idleall >= 0);
2659 assert (idlemax [i] >= idlecnt [i]);
2660 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2661#endif
2662 }
2663
2664#if EV_FORK_ENABLE
2665 assert (forkmax >= forkcnt);
2666 array_verify (EV_A_ (W *)forks, forkcnt);
2667#endif
2668
2669#if EV_CLEANUP_ENABLE
2670 assert (cleanupmax >= cleanupcnt);
2671 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2672#endif
2673
2674#if EV_ASYNC_ENABLE
2675 assert (asyncmax >= asynccnt);
2676 array_verify (EV_A_ (W *)asyncs, asynccnt);
2677#endif
2678
2679#if EV_PREPARE_ENABLE
2680 assert (preparemax >= preparecnt);
2681 array_verify (EV_A_ (W *)prepares, preparecnt);
2682#endif
2683
2684#if EV_CHECK_ENABLE
2685 assert (checkmax >= checkcnt);
2686 array_verify (EV_A_ (W *)checks, checkcnt);
2687#endif
2688
2689# if 0
2690#if EV_CHILD_ENABLE
2691 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2692 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2693#endif
2694# endif
2695#endif
2696}
1094#endif 2697#endif
1095 2698
1096#if EV_MULTIPLICITY 2699#if EV_MULTIPLICITY
1097struct ev_loop * 2700struct ev_loop * ecb_cold
1098ev_default_loop_init (unsigned int flags)
1099#else 2701#else
1100int 2702int
2703#endif
1101ev_default_loop (unsigned int flags) 2704ev_default_loop (unsigned int flags) EV_THROW
1102#endif
1103{ 2705{
1104 if (sigpipe [0] == sigpipe [1])
1105 if (pipe (sigpipe))
1106 return 0;
1107
1108 if (!ev_default_loop_ptr) 2706 if (!ev_default_loop_ptr)
1109 { 2707 {
1110#if EV_MULTIPLICITY 2708#if EV_MULTIPLICITY
1111 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2709 EV_P = ev_default_loop_ptr = &default_loop_struct;
1112#else 2710#else
1113 ev_default_loop_ptr = 1; 2711 ev_default_loop_ptr = 1;
1114#endif 2712#endif
1115 2713
1116 loop_init (EV_A_ flags); 2714 loop_init (EV_A_ flags);
1117 2715
1118 if (ev_backend (EV_A)) 2716 if (ev_backend (EV_A))
1119 { 2717 {
1120 siginit (EV_A); 2718#if EV_CHILD_ENABLE
1121
1122#ifndef _WIN32
1123 ev_signal_init (&childev, childcb, SIGCHLD); 2719 ev_signal_init (&childev, childcb, SIGCHLD);
1124 ev_set_priority (&childev, EV_MAXPRI); 2720 ev_set_priority (&childev, EV_MAXPRI);
1125 ev_signal_start (EV_A_ &childev); 2721 ev_signal_start (EV_A_ &childev);
1126 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2722 ev_unref (EV_A); /* child watcher should not keep loop alive */
1127#endif 2723#endif
1132 2728
1133 return ev_default_loop_ptr; 2729 return ev_default_loop_ptr;
1134} 2730}
1135 2731
1136void 2732void
1137ev_default_destroy (void) 2733ev_loop_fork (EV_P) EV_THROW
1138{ 2734{
1139#if EV_MULTIPLICITY
1140 struct ev_loop *loop = ev_default_loop_ptr;
1141#endif
1142
1143#ifndef _WIN32
1144 ev_ref (EV_A); /* child watcher */
1145 ev_signal_stop (EV_A_ &childev);
1146#endif
1147
1148 ev_ref (EV_A); /* signal watcher */
1149 ev_io_stop (EV_A_ &sigev);
1150
1151 close (sigpipe [0]); sigpipe [0] = 0;
1152 close (sigpipe [1]); sigpipe [1] = 0;
1153
1154 loop_destroy (EV_A);
1155}
1156
1157void
1158ev_default_fork (void)
1159{
1160#if EV_MULTIPLICITY
1161 struct ev_loop *loop = ev_default_loop_ptr;
1162#endif
1163
1164 if (backend)
1165 postfork = 1; 2735 postfork = 1;
1166} 2736}
1167 2737
1168/*****************************************************************************/ 2738/*****************************************************************************/
1169 2739
1170void 2740void
1171ev_invoke (EV_P_ void *w, int revents) 2741ev_invoke (EV_P_ void *w, int revents)
1172{ 2742{
1173 EV_CB_INVOKE ((W)w, revents); 2743 EV_CB_INVOKE ((W)w, revents);
1174} 2744}
1175 2745
1176void inline_speed 2746unsigned int
1177call_pending (EV_P) 2747ev_pending_count (EV_P) EV_THROW
1178{ 2748{
1179 int pri; 2749 int pri;
2750 unsigned int count = 0;
1180 2751
1181 for (pri = NUMPRI; pri--; ) 2752 for (pri = NUMPRI; pri--; )
2753 count += pendingcnt [pri];
2754
2755 return count;
2756}
2757
2758void noinline
2759ev_invoke_pending (EV_P)
2760{
2761 pendingpri = NUMPRI;
2762
2763 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
2764 {
2765 --pendingpri;
2766
1182 while (pendingcnt [pri]) 2767 while (pendingcnt [pendingpri])
1183 {
1184 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1185
1186 if (expect_true (p->w))
1187 {
1188 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1189
1190 p->w->pending = 0;
1191 EV_CB_INVOKE (p->w, p->events);
1192 }
1193 }
1194}
1195
1196void inline_size
1197timers_reify (EV_P)
1198{
1199 while (timercnt && ((WT)timers [0])->at <= mn_now)
1200 {
1201 ev_timer *w = timers [0];
1202
1203 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1204
1205 /* first reschedule or stop timer */
1206 if (w->repeat)
1207 { 2768 {
1208 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2769 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1209 2770
1210 ((WT)w)->at += w->repeat; 2771 p->w->pending = 0;
1211 if (((WT)w)->at < mn_now) 2772 EV_CB_INVOKE (p->w, p->events);
1212 ((WT)w)->at = mn_now; 2773 EV_FREQUENT_CHECK;
1213
1214 downheap ((WT *)timers, timercnt, 0);
1215 } 2774 }
1216 else
1217 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1218
1219 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1220 }
1221}
1222
1223#if EV_PERIODIC_ENABLE
1224void inline_size
1225periodics_reify (EV_P)
1226{
1227 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1228 { 2775 }
1229 ev_periodic *w = periodics [0];
1230
1231 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1232
1233 /* first reschedule or stop timer */
1234 if (w->reschedule_cb)
1235 {
1236 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1237 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1238 downheap ((WT *)periodics, periodiccnt, 0);
1239 }
1240 else if (w->interval)
1241 {
1242 ((WT)w)->at = w->offset + floor ((ev_rt_now - w->offset) / w->interval + 1.) * w->interval;
1243 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1244 downheap ((WT *)periodics, periodiccnt, 0);
1245 }
1246 else
1247 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1248
1249 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1250 }
1251} 2776}
1252
1253static void noinline
1254periodics_reschedule (EV_P)
1255{
1256 int i;
1257
1258 /* adjust periodics after time jump */
1259 for (i = 0; i < periodiccnt; ++i)
1260 {
1261 ev_periodic *w = periodics [i];
1262
1263 if (w->reschedule_cb)
1264 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1265 else if (w->interval)
1266 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1267 }
1268
1269 /* now rebuild the heap */
1270 for (i = periodiccnt >> 1; i--; )
1271 downheap ((WT *)periodics, periodiccnt, i);
1272}
1273#endif
1274 2777
1275#if EV_IDLE_ENABLE 2778#if EV_IDLE_ENABLE
1276void inline_size 2779/* make idle watchers pending. this handles the "call-idle */
2780/* only when higher priorities are idle" logic */
2781inline_size void
1277idle_reify (EV_P) 2782idle_reify (EV_P)
1278{ 2783{
1279 if (expect_false (idleall)) 2784 if (expect_false (idleall))
1280 { 2785 {
1281 int pri; 2786 int pri;
1293 } 2798 }
1294 } 2799 }
1295} 2800}
1296#endif 2801#endif
1297 2802
1298int inline_size 2803/* make timers pending */
1299time_update_monotonic (EV_P) 2804inline_size void
2805timers_reify (EV_P)
1300{ 2806{
2807 EV_FREQUENT_CHECK;
2808
2809 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2810 {
2811 do
2812 {
2813 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2814
2815 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2816
2817 /* first reschedule or stop timer */
2818 if (w->repeat)
2819 {
2820 ev_at (w) += w->repeat;
2821 if (ev_at (w) < mn_now)
2822 ev_at (w) = mn_now;
2823
2824 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2825
2826 ANHE_at_cache (timers [HEAP0]);
2827 downheap (timers, timercnt, HEAP0);
2828 }
2829 else
2830 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2831
2832 EV_FREQUENT_CHECK;
2833 feed_reverse (EV_A_ (W)w);
2834 }
2835 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2836
2837 feed_reverse_done (EV_A_ EV_TIMER);
2838 }
2839}
2840
2841#if EV_PERIODIC_ENABLE
2842
2843static void noinline
2844periodic_recalc (EV_P_ ev_periodic *w)
2845{
2846 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2847 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2848
2849 /* the above almost always errs on the low side */
2850 while (at <= ev_rt_now)
2851 {
2852 ev_tstamp nat = at + w->interval;
2853
2854 /* when resolution fails us, we use ev_rt_now */
2855 if (expect_false (nat == at))
2856 {
2857 at = ev_rt_now;
2858 break;
2859 }
2860
2861 at = nat;
2862 }
2863
2864 ev_at (w) = at;
2865}
2866
2867/* make periodics pending */
2868inline_size void
2869periodics_reify (EV_P)
2870{
2871 EV_FREQUENT_CHECK;
2872
2873 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2874 {
2875 do
2876 {
2877 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2878
2879 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2880
2881 /* first reschedule or stop timer */
2882 if (w->reschedule_cb)
2883 {
2884 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2885
2886 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2887
2888 ANHE_at_cache (periodics [HEAP0]);
2889 downheap (periodics, periodiccnt, HEAP0);
2890 }
2891 else if (w->interval)
2892 {
2893 periodic_recalc (EV_A_ w);
2894 ANHE_at_cache (periodics [HEAP0]);
2895 downheap (periodics, periodiccnt, HEAP0);
2896 }
2897 else
2898 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2899
2900 EV_FREQUENT_CHECK;
2901 feed_reverse (EV_A_ (W)w);
2902 }
2903 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2904
2905 feed_reverse_done (EV_A_ EV_PERIODIC);
2906 }
2907}
2908
2909/* simply recalculate all periodics */
2910/* TODO: maybe ensure that at least one event happens when jumping forward? */
2911static void noinline ecb_cold
2912periodics_reschedule (EV_P)
2913{
2914 int i;
2915
2916 /* adjust periodics after time jump */
2917 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2918 {
2919 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2920
2921 if (w->reschedule_cb)
2922 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2923 else if (w->interval)
2924 periodic_recalc (EV_A_ w);
2925
2926 ANHE_at_cache (periodics [i]);
2927 }
2928
2929 reheap (periodics, periodiccnt);
2930}
2931#endif
2932
2933/* adjust all timers by a given offset */
2934static void noinline ecb_cold
2935timers_reschedule (EV_P_ ev_tstamp adjust)
2936{
2937 int i;
2938
2939 for (i = 0; i < timercnt; ++i)
2940 {
2941 ANHE *he = timers + i + HEAP0;
2942 ANHE_w (*he)->at += adjust;
2943 ANHE_at_cache (*he);
2944 }
2945}
2946
2947/* fetch new monotonic and realtime times from the kernel */
2948/* also detect if there was a timejump, and act accordingly */
2949inline_speed void
2950time_update (EV_P_ ev_tstamp max_block)
2951{
2952#if EV_USE_MONOTONIC
2953 if (expect_true (have_monotonic))
2954 {
2955 int i;
2956 ev_tstamp odiff = rtmn_diff;
2957
1301 mn_now = get_clock (); 2958 mn_now = get_clock ();
1302 2959
2960 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2961 /* interpolate in the meantime */
1303 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 2962 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1304 { 2963 {
1305 ev_rt_now = rtmn_diff + mn_now; 2964 ev_rt_now = rtmn_diff + mn_now;
1306 return 0; 2965 return;
1307 } 2966 }
1308 else 2967
1309 {
1310 now_floor = mn_now; 2968 now_floor = mn_now;
1311 ev_rt_now = ev_time (); 2969 ev_rt_now = ev_time ();
1312 return 1;
1313 }
1314}
1315 2970
1316void inline_size 2971 /* loop a few times, before making important decisions.
1317time_update (EV_P) 2972 * on the choice of "4": one iteration isn't enough,
1318{ 2973 * in case we get preempted during the calls to
1319 int i; 2974 * ev_time and get_clock. a second call is almost guaranteed
1320 2975 * to succeed in that case, though. and looping a few more times
1321#if EV_USE_MONOTONIC 2976 * doesn't hurt either as we only do this on time-jumps or
1322 if (expect_true (have_monotonic)) 2977 * in the unlikely event of having been preempted here.
1323 { 2978 */
1324 if (time_update_monotonic (EV_A)) 2979 for (i = 4; --i; )
1325 { 2980 {
1326 ev_tstamp odiff = rtmn_diff; 2981 ev_tstamp diff;
1327
1328 /* loop a few times, before making important decisions.
1329 * on the choice of "4": one iteration isn't enough,
1330 * in case we get preempted during the calls to
1331 * ev_time and get_clock. a second call is almost guaranteed
1332 * to succeed in that case, though. and looping a few more times
1333 * doesn't hurt either as we only do this on time-jumps or
1334 * in the unlikely event of having been preempted here.
1335 */
1336 for (i = 4; --i; )
1337 {
1338 rtmn_diff = ev_rt_now - mn_now; 2982 rtmn_diff = ev_rt_now - mn_now;
1339 2983
1340 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2984 diff = odiff - rtmn_diff;
2985
2986 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1341 return; /* all is well */ 2987 return; /* all is well */
1342 2988
1343 ev_rt_now = ev_time (); 2989 ev_rt_now = ev_time ();
1344 mn_now = get_clock (); 2990 mn_now = get_clock ();
1345 now_floor = mn_now; 2991 now_floor = mn_now;
1346 } 2992 }
1347 2993
2994 /* no timer adjustment, as the monotonic clock doesn't jump */
2995 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1348# if EV_PERIODIC_ENABLE 2996# if EV_PERIODIC_ENABLE
1349 periodics_reschedule (EV_A); 2997 periodics_reschedule (EV_A);
1350# endif 2998# endif
1351 /* no timer adjustment, as the monotonic clock doesn't jump */
1352 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1353 }
1354 } 2999 }
1355 else 3000 else
1356#endif 3001#endif
1357 { 3002 {
1358 ev_rt_now = ev_time (); 3003 ev_rt_now = ev_time ();
1359 3004
1360 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 3005 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1361 { 3006 {
3007 /* adjust timers. this is easy, as the offset is the same for all of them */
3008 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1362#if EV_PERIODIC_ENABLE 3009#if EV_PERIODIC_ENABLE
1363 periodics_reschedule (EV_A); 3010 periodics_reschedule (EV_A);
1364#endif 3011#endif
1365
1366 /* adjust timers. this is easy, as the offset is the same for all of them */
1367 for (i = 0; i < timercnt; ++i)
1368 ((WT)timers [i])->at += ev_rt_now - mn_now;
1369 } 3012 }
1370 3013
1371 mn_now = ev_rt_now; 3014 mn_now = ev_rt_now;
1372 } 3015 }
1373} 3016}
1374 3017
1375void 3018int
1376ev_ref (EV_P)
1377{
1378 ++activecnt;
1379}
1380
1381void
1382ev_unref (EV_P)
1383{
1384 --activecnt;
1385}
1386
1387static int loop_done;
1388
1389void
1390ev_loop (EV_P_ int flags) 3019ev_run (EV_P_ int flags)
1391{ 3020{
1392 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 3021#if EV_FEATURE_API
1393 ? EVUNLOOP_ONE 3022 ++loop_depth;
1394 : EVUNLOOP_CANCEL; 3023#endif
1395 3024
3025 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3026
3027 loop_done = EVBREAK_CANCEL;
3028
1396 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3029 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1397 3030
1398 do 3031 do
1399 { 3032 {
3033#if EV_VERIFY >= 2
3034 ev_verify (EV_A);
3035#endif
3036
1400#ifndef _WIN32 3037#ifndef _WIN32
1401 if (expect_false (curpid)) /* penalise the forking check even more */ 3038 if (expect_false (curpid)) /* penalise the forking check even more */
1402 if (expect_false (getpid () != curpid)) 3039 if (expect_false (getpid () != curpid))
1403 { 3040 {
1404 curpid = getpid (); 3041 curpid = getpid ();
1410 /* we might have forked, so queue fork handlers */ 3047 /* we might have forked, so queue fork handlers */
1411 if (expect_false (postfork)) 3048 if (expect_false (postfork))
1412 if (forkcnt) 3049 if (forkcnt)
1413 { 3050 {
1414 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3051 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1415 call_pending (EV_A); 3052 EV_INVOKE_PENDING;
1416 } 3053 }
1417#endif 3054#endif
1418 3055
3056#if EV_PREPARE_ENABLE
1419 /* queue prepare watchers (and execute them) */ 3057 /* queue prepare watchers (and execute them) */
1420 if (expect_false (preparecnt)) 3058 if (expect_false (preparecnt))
1421 { 3059 {
1422 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3060 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1423 call_pending (EV_A); 3061 EV_INVOKE_PENDING;
1424 } 3062 }
3063#endif
1425 3064
1426 if (expect_false (!activecnt)) 3065 if (expect_false (loop_done))
1427 break; 3066 break;
1428 3067
1429 /* we might have forked, so reify kernel state if necessary */ 3068 /* we might have forked, so reify kernel state if necessary */
1430 if (expect_false (postfork)) 3069 if (expect_false (postfork))
1431 loop_fork (EV_A); 3070 loop_fork (EV_A);
1433 /* update fd-related kernel structures */ 3072 /* update fd-related kernel structures */
1434 fd_reify (EV_A); 3073 fd_reify (EV_A);
1435 3074
1436 /* calculate blocking time */ 3075 /* calculate blocking time */
1437 { 3076 {
1438 ev_tstamp block; 3077 ev_tstamp waittime = 0.;
3078 ev_tstamp sleeptime = 0.;
1439 3079
1440 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 3080 /* remember old timestamp for io_blocktime calculation */
1441 block = 0.; /* do not block at all */ 3081 ev_tstamp prev_mn_now = mn_now;
1442 else 3082
3083 /* update time to cancel out callback processing overhead */
3084 time_update (EV_A_ 1e100);
3085
3086 /* from now on, we want a pipe-wake-up */
3087 pipe_write_wanted = 1;
3088
3089 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3090
3091 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1443 { 3092 {
1444 /* update time to cancel out callback processing overhead */
1445#if EV_USE_MONOTONIC
1446 if (expect_true (have_monotonic))
1447 time_update_monotonic (EV_A);
1448 else
1449#endif
1450 {
1451 ev_rt_now = ev_time ();
1452 mn_now = ev_rt_now;
1453 }
1454
1455 block = MAX_BLOCKTIME; 3093 waittime = MAX_BLOCKTIME;
1456 3094
1457 if (timercnt) 3095 if (timercnt)
1458 { 3096 {
1459 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 3097 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1460 if (block > to) block = to; 3098 if (waittime > to) waittime = to;
1461 } 3099 }
1462 3100
1463#if EV_PERIODIC_ENABLE 3101#if EV_PERIODIC_ENABLE
1464 if (periodiccnt) 3102 if (periodiccnt)
1465 { 3103 {
1466 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 3104 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1467 if (block > to) block = to; 3105 if (waittime > to) waittime = to;
1468 } 3106 }
1469#endif 3107#endif
1470 3108
3109 /* don't let timeouts decrease the waittime below timeout_blocktime */
3110 if (expect_false (waittime < timeout_blocktime))
3111 waittime = timeout_blocktime;
3112
3113 /* at this point, we NEED to wait, so we have to ensure */
3114 /* to pass a minimum nonzero value to the backend */
3115 if (expect_false (waittime < backend_mintime))
3116 waittime = backend_mintime;
3117
3118 /* extra check because io_blocktime is commonly 0 */
1471 if (expect_false (block < 0.)) block = 0.; 3119 if (expect_false (io_blocktime))
3120 {
3121 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3122
3123 if (sleeptime > waittime - backend_mintime)
3124 sleeptime = waittime - backend_mintime;
3125
3126 if (expect_true (sleeptime > 0.))
3127 {
3128 ev_sleep (sleeptime);
3129 waittime -= sleeptime;
3130 }
3131 }
1472 } 3132 }
1473 3133
3134#if EV_FEATURE_API
1474 ++loop_count; 3135 ++loop_count;
3136#endif
3137 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1475 backend_poll (EV_A_ block); 3138 backend_poll (EV_A_ waittime);
3139 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3140
3141 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3142
3143 ECB_MEMORY_FENCE_ACQUIRE;
3144 if (pipe_write_skipped)
3145 {
3146 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3147 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3148 }
3149
3150
3151 /* update ev_rt_now, do magic */
3152 time_update (EV_A_ waittime + sleeptime);
1476 } 3153 }
1477
1478 /* update ev_rt_now, do magic */
1479 time_update (EV_A);
1480 3154
1481 /* queue pending timers and reschedule them */ 3155 /* queue pending timers and reschedule them */
1482 timers_reify (EV_A); /* relative timers called last */ 3156 timers_reify (EV_A); /* relative timers called last */
1483#if EV_PERIODIC_ENABLE 3157#if EV_PERIODIC_ENABLE
1484 periodics_reify (EV_A); /* absolute timers called first */ 3158 periodics_reify (EV_A); /* absolute timers called first */
1487#if EV_IDLE_ENABLE 3161#if EV_IDLE_ENABLE
1488 /* queue idle watchers unless other events are pending */ 3162 /* queue idle watchers unless other events are pending */
1489 idle_reify (EV_A); 3163 idle_reify (EV_A);
1490#endif 3164#endif
1491 3165
3166#if EV_CHECK_ENABLE
1492 /* queue check watchers, to be executed first */ 3167 /* queue check watchers, to be executed first */
1493 if (expect_false (checkcnt)) 3168 if (expect_false (checkcnt))
1494 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3169 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3170#endif
1495 3171
1496 call_pending (EV_A); 3172 EV_INVOKE_PENDING;
1497
1498 } 3173 }
1499 while (expect_true (activecnt && !loop_done)); 3174 while (expect_true (
3175 activecnt
3176 && !loop_done
3177 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3178 ));
1500 3179
1501 if (loop_done == EVUNLOOP_ONE) 3180 if (loop_done == EVBREAK_ONE)
1502 loop_done = EVUNLOOP_CANCEL; 3181 loop_done = EVBREAK_CANCEL;
3182
3183#if EV_FEATURE_API
3184 --loop_depth;
3185#endif
3186
3187 return activecnt;
1503} 3188}
1504 3189
1505void 3190void
1506ev_unloop (EV_P_ int how) 3191ev_break (EV_P_ int how) EV_THROW
1507{ 3192{
1508 loop_done = how; 3193 loop_done = how;
1509} 3194}
1510 3195
3196void
3197ev_ref (EV_P) EV_THROW
3198{
3199 ++activecnt;
3200}
3201
3202void
3203ev_unref (EV_P) EV_THROW
3204{
3205 --activecnt;
3206}
3207
3208void
3209ev_now_update (EV_P) EV_THROW
3210{
3211 time_update (EV_A_ 1e100);
3212}
3213
3214void
3215ev_suspend (EV_P) EV_THROW
3216{
3217 ev_now_update (EV_A);
3218}
3219
3220void
3221ev_resume (EV_P) EV_THROW
3222{
3223 ev_tstamp mn_prev = mn_now;
3224
3225 ev_now_update (EV_A);
3226 timers_reschedule (EV_A_ mn_now - mn_prev);
3227#if EV_PERIODIC_ENABLE
3228 /* TODO: really do this? */
3229 periodics_reschedule (EV_A);
3230#endif
3231}
3232
1511/*****************************************************************************/ 3233/*****************************************************************************/
3234/* singly-linked list management, used when the expected list length is short */
1512 3235
1513void inline_size 3236inline_size void
1514wlist_add (WL *head, WL elem) 3237wlist_add (WL *head, WL elem)
1515{ 3238{
1516 elem->next = *head; 3239 elem->next = *head;
1517 *head = elem; 3240 *head = elem;
1518} 3241}
1519 3242
1520void inline_size 3243inline_size void
1521wlist_del (WL *head, WL elem) 3244wlist_del (WL *head, WL elem)
1522{ 3245{
1523 while (*head) 3246 while (*head)
1524 { 3247 {
1525 if (*head == elem) 3248 if (expect_true (*head == elem))
1526 { 3249 {
1527 *head = elem->next; 3250 *head = elem->next;
1528 return; 3251 break;
1529 } 3252 }
1530 3253
1531 head = &(*head)->next; 3254 head = &(*head)->next;
1532 } 3255 }
1533} 3256}
1534 3257
1535void inline_speed 3258/* internal, faster, version of ev_clear_pending */
3259inline_speed void
1536clear_pending (EV_P_ W w) 3260clear_pending (EV_P_ W w)
1537{ 3261{
1538 if (w->pending) 3262 if (w->pending)
1539 { 3263 {
1540 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3264 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1541 w->pending = 0; 3265 w->pending = 0;
1542 } 3266 }
1543} 3267}
1544 3268
1545int 3269int
1546ev_clear_pending (EV_P_ void *w) 3270ev_clear_pending (EV_P_ void *w) EV_THROW
1547{ 3271{
1548 W w_ = (W)w; 3272 W w_ = (W)w;
1549 int pending = w_->pending; 3273 int pending = w_->pending;
1550 3274
1551 if (expect_true (pending)) 3275 if (expect_true (pending))
1552 { 3276 {
1553 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3277 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3278 p->w = (W)&pending_w;
1554 w_->pending = 0; 3279 w_->pending = 0;
1555 p->w = 0;
1556 return p->events; 3280 return p->events;
1557 } 3281 }
1558 else 3282 else
1559 return 0; 3283 return 0;
1560} 3284}
1561 3285
1562void inline_size 3286inline_size void
1563pri_adjust (EV_P_ W w) 3287pri_adjust (EV_P_ W w)
1564{ 3288{
1565 int pri = w->priority; 3289 int pri = ev_priority (w);
1566 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3290 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1567 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3291 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1568 w->priority = pri; 3292 ev_set_priority (w, pri);
1569} 3293}
1570 3294
1571void inline_speed 3295inline_speed void
1572ev_start (EV_P_ W w, int active) 3296ev_start (EV_P_ W w, int active)
1573{ 3297{
1574 pri_adjust (EV_A_ w); 3298 pri_adjust (EV_A_ w);
1575 w->active = active; 3299 w->active = active;
1576 ev_ref (EV_A); 3300 ev_ref (EV_A);
1577} 3301}
1578 3302
1579void inline_size 3303inline_size void
1580ev_stop (EV_P_ W w) 3304ev_stop (EV_P_ W w)
1581{ 3305{
1582 ev_unref (EV_A); 3306 ev_unref (EV_A);
1583 w->active = 0; 3307 w->active = 0;
1584} 3308}
1585 3309
1586/*****************************************************************************/ 3310/*****************************************************************************/
1587 3311
1588void noinline 3312void noinline
1589ev_io_start (EV_P_ ev_io *w) 3313ev_io_start (EV_P_ ev_io *w) EV_THROW
1590{ 3314{
1591 int fd = w->fd; 3315 int fd = w->fd;
1592 3316
1593 if (expect_false (ev_is_active (w))) 3317 if (expect_false (ev_is_active (w)))
1594 return; 3318 return;
1595 3319
1596 assert (("ev_io_start called with negative fd", fd >= 0)); 3320 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3321 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3322
3323 EV_FREQUENT_CHECK;
1597 3324
1598 ev_start (EV_A_ (W)w, 1); 3325 ev_start (EV_A_ (W)w, 1);
1599 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3326 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1600 wlist_add ((WL *)&anfds[fd].head, (WL)w); 3327 wlist_add (&anfds[fd].head, (WL)w);
1601 3328
1602 fd_change (EV_A_ fd); 3329 /* common bug, apparently */
3330 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3331
3332 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3333 w->events &= ~EV__IOFDSET;
3334
3335 EV_FREQUENT_CHECK;
1603} 3336}
1604 3337
1605void noinline 3338void noinline
1606ev_io_stop (EV_P_ ev_io *w) 3339ev_io_stop (EV_P_ ev_io *w) EV_THROW
1607{ 3340{
1608 clear_pending (EV_A_ (W)w); 3341 clear_pending (EV_A_ (W)w);
1609 if (expect_false (!ev_is_active (w))) 3342 if (expect_false (!ev_is_active (w)))
1610 return; 3343 return;
1611 3344
1612 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3345 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1613 3346
3347 EV_FREQUENT_CHECK;
3348
1614 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 3349 wlist_del (&anfds[w->fd].head, (WL)w);
1615 ev_stop (EV_A_ (W)w); 3350 ev_stop (EV_A_ (W)w);
1616 3351
1617 fd_change (EV_A_ w->fd); 3352 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3353
3354 EV_FREQUENT_CHECK;
1618} 3355}
1619 3356
1620void noinline 3357void noinline
1621ev_timer_start (EV_P_ ev_timer *w) 3358ev_timer_start (EV_P_ ev_timer *w) EV_THROW
1622{ 3359{
1623 if (expect_false (ev_is_active (w))) 3360 if (expect_false (ev_is_active (w)))
1624 return; 3361 return;
1625 3362
1626 ((WT)w)->at += mn_now; 3363 ev_at (w) += mn_now;
1627 3364
1628 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3365 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1629 3366
3367 EV_FREQUENT_CHECK;
3368
3369 ++timercnt;
1630 ev_start (EV_A_ (W)w, ++timercnt); 3370 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1631 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 3371 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1632 timers [timercnt - 1] = w; 3372 ANHE_w (timers [ev_active (w)]) = (WT)w;
1633 upheap ((WT *)timers, timercnt - 1); 3373 ANHE_at_cache (timers [ev_active (w)]);
3374 upheap (timers, ev_active (w));
1634 3375
3376 EV_FREQUENT_CHECK;
3377
1635 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 3378 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1636} 3379}
1637 3380
1638void noinline 3381void noinline
1639ev_timer_stop (EV_P_ ev_timer *w) 3382ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
1640{ 3383{
1641 clear_pending (EV_A_ (W)w); 3384 clear_pending (EV_A_ (W)w);
1642 if (expect_false (!ev_is_active (w))) 3385 if (expect_false (!ev_is_active (w)))
1643 return; 3386 return;
1644 3387
1645 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3388 EV_FREQUENT_CHECK;
1646 3389
1647 { 3390 {
1648 int active = ((W)w)->active; 3391 int active = ev_active (w);
1649 3392
3393 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3394
3395 --timercnt;
3396
1650 if (expect_true (--active < --timercnt)) 3397 if (expect_true (active < timercnt + HEAP0))
1651 { 3398 {
1652 timers [active] = timers [timercnt]; 3399 timers [active] = timers [timercnt + HEAP0];
1653 adjustheap ((WT *)timers, timercnt, active); 3400 adjustheap (timers, timercnt, active);
1654 } 3401 }
1655 } 3402 }
1656 3403
1657 ((WT)w)->at -= mn_now; 3404 ev_at (w) -= mn_now;
1658 3405
1659 ev_stop (EV_A_ (W)w); 3406 ev_stop (EV_A_ (W)w);
3407
3408 EV_FREQUENT_CHECK;
1660} 3409}
1661 3410
1662void noinline 3411void noinline
1663ev_timer_again (EV_P_ ev_timer *w) 3412ev_timer_again (EV_P_ ev_timer *w) EV_THROW
1664{ 3413{
3414 EV_FREQUENT_CHECK;
3415
3416 clear_pending (EV_A_ (W)w);
3417
1665 if (ev_is_active (w)) 3418 if (ev_is_active (w))
1666 { 3419 {
1667 if (w->repeat) 3420 if (w->repeat)
1668 { 3421 {
1669 ((WT)w)->at = mn_now + w->repeat; 3422 ev_at (w) = mn_now + w->repeat;
3423 ANHE_at_cache (timers [ev_active (w)]);
1670 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 3424 adjustheap (timers, timercnt, ev_active (w));
1671 } 3425 }
1672 else 3426 else
1673 ev_timer_stop (EV_A_ w); 3427 ev_timer_stop (EV_A_ w);
1674 } 3428 }
1675 else if (w->repeat) 3429 else if (w->repeat)
1676 { 3430 {
1677 w->at = w->repeat; 3431 ev_at (w) = w->repeat;
1678 ev_timer_start (EV_A_ w); 3432 ev_timer_start (EV_A_ w);
1679 } 3433 }
3434
3435 EV_FREQUENT_CHECK;
3436}
3437
3438ev_tstamp
3439ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3440{
3441 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1680} 3442}
1681 3443
1682#if EV_PERIODIC_ENABLE 3444#if EV_PERIODIC_ENABLE
1683void noinline 3445void noinline
1684ev_periodic_start (EV_P_ ev_periodic *w) 3446ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
1685{ 3447{
1686 if (expect_false (ev_is_active (w))) 3448 if (expect_false (ev_is_active (w)))
1687 return; 3449 return;
1688 3450
1689 if (w->reschedule_cb) 3451 if (w->reschedule_cb)
1690 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 3452 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1691 else if (w->interval) 3453 else if (w->interval)
1692 { 3454 {
1693 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3455 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1694 /* this formula differs from the one in periodic_reify because we do not always round up */ 3456 periodic_recalc (EV_A_ w);
1695 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1696 } 3457 }
1697 else 3458 else
1698 ((WT)w)->at = w->offset; 3459 ev_at (w) = w->offset;
1699 3460
3461 EV_FREQUENT_CHECK;
3462
3463 ++periodiccnt;
1700 ev_start (EV_A_ (W)w, ++periodiccnt); 3464 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1701 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 3465 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1702 periodics [periodiccnt - 1] = w; 3466 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1703 upheap ((WT *)periodics, periodiccnt - 1); 3467 ANHE_at_cache (periodics [ev_active (w)]);
3468 upheap (periodics, ev_active (w));
1704 3469
3470 EV_FREQUENT_CHECK;
3471
1705 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 3472 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1706} 3473}
1707 3474
1708void noinline 3475void noinline
1709ev_periodic_stop (EV_P_ ev_periodic *w) 3476ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
1710{ 3477{
1711 clear_pending (EV_A_ (W)w); 3478 clear_pending (EV_A_ (W)w);
1712 if (expect_false (!ev_is_active (w))) 3479 if (expect_false (!ev_is_active (w)))
1713 return; 3480 return;
1714 3481
1715 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3482 EV_FREQUENT_CHECK;
1716 3483
1717 { 3484 {
1718 int active = ((W)w)->active; 3485 int active = ev_active (w);
1719 3486
3487 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3488
3489 --periodiccnt;
3490
1720 if (expect_true (--active < --periodiccnt)) 3491 if (expect_true (active < periodiccnt + HEAP0))
1721 { 3492 {
1722 periodics [active] = periodics [periodiccnt]; 3493 periodics [active] = periodics [periodiccnt + HEAP0];
1723 adjustheap ((WT *)periodics, periodiccnt, active); 3494 adjustheap (periodics, periodiccnt, active);
1724 } 3495 }
1725 } 3496 }
1726 3497
1727 ev_stop (EV_A_ (W)w); 3498 ev_stop (EV_A_ (W)w);
3499
3500 EV_FREQUENT_CHECK;
1728} 3501}
1729 3502
1730void noinline 3503void noinline
1731ev_periodic_again (EV_P_ ev_periodic *w) 3504ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
1732{ 3505{
1733 /* TODO: use adjustheap and recalculation */ 3506 /* TODO: use adjustheap and recalculation */
1734 ev_periodic_stop (EV_A_ w); 3507 ev_periodic_stop (EV_A_ w);
1735 ev_periodic_start (EV_A_ w); 3508 ev_periodic_start (EV_A_ w);
1736} 3509}
1738 3511
1739#ifndef SA_RESTART 3512#ifndef SA_RESTART
1740# define SA_RESTART 0 3513# define SA_RESTART 0
1741#endif 3514#endif
1742 3515
3516#if EV_SIGNAL_ENABLE
3517
1743void noinline 3518void noinline
1744ev_signal_start (EV_P_ ev_signal *w) 3519ev_signal_start (EV_P_ ev_signal *w) EV_THROW
1745{ 3520{
1746#if EV_MULTIPLICITY
1747 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1748#endif
1749 if (expect_false (ev_is_active (w))) 3521 if (expect_false (ev_is_active (w)))
1750 return; 3522 return;
1751 3523
1752 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3524 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3525
3526#if EV_MULTIPLICITY
3527 assert (("libev: a signal must not be attached to two different loops",
3528 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3529
3530 signals [w->signum - 1].loop = EV_A;
3531#endif
3532
3533 EV_FREQUENT_CHECK;
3534
3535#if EV_USE_SIGNALFD
3536 if (sigfd == -2)
3537 {
3538 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3539 if (sigfd < 0 && errno == EINVAL)
3540 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3541
3542 if (sigfd >= 0)
3543 {
3544 fd_intern (sigfd); /* doing it twice will not hurt */
3545
3546 sigemptyset (&sigfd_set);
3547
3548 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3549 ev_set_priority (&sigfd_w, EV_MAXPRI);
3550 ev_io_start (EV_A_ &sigfd_w);
3551 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3552 }
3553 }
3554
3555 if (sigfd >= 0)
3556 {
3557 /* TODO: check .head */
3558 sigaddset (&sigfd_set, w->signum);
3559 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3560
3561 signalfd (sigfd, &sigfd_set, 0);
3562 }
3563#endif
1753 3564
1754 ev_start (EV_A_ (W)w, 1); 3565 ev_start (EV_A_ (W)w, 1);
1755 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1756 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 3566 wlist_add (&signals [w->signum - 1].head, (WL)w);
1757 3567
1758 if (!((WL)w)->next) 3568 if (!((WL)w)->next)
3569# if EV_USE_SIGNALFD
3570 if (sigfd < 0) /*TODO*/
3571# endif
1759 { 3572 {
1760#if _WIN32 3573# ifdef _WIN32
3574 evpipe_init (EV_A);
3575
1761 signal (w->signum, sighandler); 3576 signal (w->signum, ev_sighandler);
1762#else 3577# else
1763 struct sigaction sa; 3578 struct sigaction sa;
3579
3580 evpipe_init (EV_A);
3581
1764 sa.sa_handler = sighandler; 3582 sa.sa_handler = ev_sighandler;
1765 sigfillset (&sa.sa_mask); 3583 sigfillset (&sa.sa_mask);
1766 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3584 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1767 sigaction (w->signum, &sa, 0); 3585 sigaction (w->signum, &sa, 0);
3586
3587 if (origflags & EVFLAG_NOSIGMASK)
3588 {
3589 sigemptyset (&sa.sa_mask);
3590 sigaddset (&sa.sa_mask, w->signum);
3591 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3592 }
1768#endif 3593#endif
1769 } 3594 }
3595
3596 EV_FREQUENT_CHECK;
1770} 3597}
1771 3598
1772void noinline 3599void noinline
1773ev_signal_stop (EV_P_ ev_signal *w) 3600ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
1774{ 3601{
1775 clear_pending (EV_A_ (W)w); 3602 clear_pending (EV_A_ (W)w);
1776 if (expect_false (!ev_is_active (w))) 3603 if (expect_false (!ev_is_active (w)))
1777 return; 3604 return;
1778 3605
3606 EV_FREQUENT_CHECK;
3607
1779 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3608 wlist_del (&signals [w->signum - 1].head, (WL)w);
1780 ev_stop (EV_A_ (W)w); 3609 ev_stop (EV_A_ (W)w);
1781 3610
1782 if (!signals [w->signum - 1].head) 3611 if (!signals [w->signum - 1].head)
3612 {
3613#if EV_MULTIPLICITY
3614 signals [w->signum - 1].loop = 0; /* unattach from signal */
3615#endif
3616#if EV_USE_SIGNALFD
3617 if (sigfd >= 0)
3618 {
3619 sigset_t ss;
3620
3621 sigemptyset (&ss);
3622 sigaddset (&ss, w->signum);
3623 sigdelset (&sigfd_set, w->signum);
3624
3625 signalfd (sigfd, &sigfd_set, 0);
3626 sigprocmask (SIG_UNBLOCK, &ss, 0);
3627 }
3628 else
3629#endif
1783 signal (w->signum, SIG_DFL); 3630 signal (w->signum, SIG_DFL);
3631 }
3632
3633 EV_FREQUENT_CHECK;
1784} 3634}
3635
3636#endif
3637
3638#if EV_CHILD_ENABLE
1785 3639
1786void 3640void
1787ev_child_start (EV_P_ ev_child *w) 3641ev_child_start (EV_P_ ev_child *w) EV_THROW
1788{ 3642{
1789#if EV_MULTIPLICITY 3643#if EV_MULTIPLICITY
1790 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3644 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1791#endif 3645#endif
1792 if (expect_false (ev_is_active (w))) 3646 if (expect_false (ev_is_active (w)))
1793 return; 3647 return;
1794 3648
3649 EV_FREQUENT_CHECK;
3650
1795 ev_start (EV_A_ (W)w, 1); 3651 ev_start (EV_A_ (W)w, 1);
1796 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3652 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3653
3654 EV_FREQUENT_CHECK;
1797} 3655}
1798 3656
1799void 3657void
1800ev_child_stop (EV_P_ ev_child *w) 3658ev_child_stop (EV_P_ ev_child *w) EV_THROW
1801{ 3659{
1802 clear_pending (EV_A_ (W)w); 3660 clear_pending (EV_A_ (W)w);
1803 if (expect_false (!ev_is_active (w))) 3661 if (expect_false (!ev_is_active (w)))
1804 return; 3662 return;
1805 3663
3664 EV_FREQUENT_CHECK;
3665
1806 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3666 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1807 ev_stop (EV_A_ (W)w); 3667 ev_stop (EV_A_ (W)w);
3668
3669 EV_FREQUENT_CHECK;
1808} 3670}
3671
3672#endif
1809 3673
1810#if EV_STAT_ENABLE 3674#if EV_STAT_ENABLE
1811 3675
1812# ifdef _WIN32 3676# ifdef _WIN32
1813# undef lstat 3677# undef lstat
1814# define lstat(a,b) _stati64 (a,b) 3678# define lstat(a,b) _stati64 (a,b)
1815# endif 3679# endif
1816 3680
1817#define DEF_STAT_INTERVAL 5.0074891 3681#define DEF_STAT_INTERVAL 5.0074891
3682#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1818#define MIN_STAT_INTERVAL 0.1074891 3683#define MIN_STAT_INTERVAL 0.1074891
1819 3684
1820static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3685static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1821 3686
1822#if EV_USE_INOTIFY 3687#if EV_USE_INOTIFY
1823# define EV_INOTIFY_BUFSIZE 8192 3688
3689/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3690# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
1824 3691
1825static void noinline 3692static void noinline
1826infy_add (EV_P_ ev_stat *w) 3693infy_add (EV_P_ ev_stat *w)
1827{ 3694{
1828 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3695 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1829 3696
1830 if (w->wd < 0) 3697 if (w->wd >= 0)
3698 {
3699 struct statfs sfs;
3700
3701 /* now local changes will be tracked by inotify, but remote changes won't */
3702 /* unless the filesystem is known to be local, we therefore still poll */
3703 /* also do poll on <2.6.25, but with normal frequency */
3704
3705 if (!fs_2625)
3706 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3707 else if (!statfs (w->path, &sfs)
3708 && (sfs.f_type == 0x1373 /* devfs */
3709 || sfs.f_type == 0xEF53 /* ext2/3 */
3710 || sfs.f_type == 0x3153464a /* jfs */
3711 || sfs.f_type == 0x52654973 /* reiser3 */
3712 || sfs.f_type == 0x01021994 /* tempfs */
3713 || sfs.f_type == 0x58465342 /* xfs */))
3714 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3715 else
3716 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1831 { 3717 }
1832 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3718 else
3719 {
3720 /* can't use inotify, continue to stat */
3721 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1833 3722
1834 /* monitor some parent directory for speedup hints */ 3723 /* if path is not there, monitor some parent directory for speedup hints */
3724 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3725 /* but an efficiency issue only */
1835 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3726 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1836 { 3727 {
1837 char path [4096]; 3728 char path [4096];
1838 strcpy (path, w->path); 3729 strcpy (path, w->path);
1839 3730
1842 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3733 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1843 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3734 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1844 3735
1845 char *pend = strrchr (path, '/'); 3736 char *pend = strrchr (path, '/');
1846 3737
1847 if (!pend) 3738 if (!pend || pend == path)
1848 break; /* whoops, no '/', complain to your admin */ 3739 break;
1849 3740
1850 *pend = 0; 3741 *pend = 0;
1851 w->wd = inotify_add_watch (fs_fd, path, mask); 3742 w->wd = inotify_add_watch (fs_fd, path, mask);
1852 } 3743 }
1853 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3744 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1854 } 3745 }
1855 } 3746 }
1856 else
1857 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1858 3747
1859 if (w->wd >= 0) 3748 if (w->wd >= 0)
1860 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3749 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3750
3751 /* now re-arm timer, if required */
3752 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3753 ev_timer_again (EV_A_ &w->timer);
3754 if (ev_is_active (&w->timer)) ev_unref (EV_A);
1861} 3755}
1862 3756
1863static void noinline 3757static void noinline
1864infy_del (EV_P_ ev_stat *w) 3758infy_del (EV_P_ ev_stat *w)
1865{ 3759{
1868 3762
1869 if (wd < 0) 3763 if (wd < 0)
1870 return; 3764 return;
1871 3765
1872 w->wd = -2; 3766 w->wd = -2;
1873 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3767 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
1874 wlist_del (&fs_hash [slot].head, (WL)w); 3768 wlist_del (&fs_hash [slot].head, (WL)w);
1875 3769
1876 /* remove this watcher, if others are watching it, they will rearm */ 3770 /* remove this watcher, if others are watching it, they will rearm */
1877 inotify_rm_watch (fs_fd, wd); 3771 inotify_rm_watch (fs_fd, wd);
1878} 3772}
1879 3773
1880static void noinline 3774static void noinline
1881infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3775infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1882{ 3776{
1883 if (slot < 0) 3777 if (slot < 0)
1884 /* overflow, need to check for all hahs slots */ 3778 /* overflow, need to check for all hash slots */
1885 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3779 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1886 infy_wd (EV_A_ slot, wd, ev); 3780 infy_wd (EV_A_ slot, wd, ev);
1887 else 3781 else
1888 { 3782 {
1889 WL w_; 3783 WL w_;
1890 3784
1891 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3785 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
1892 { 3786 {
1893 ev_stat *w = (ev_stat *)w_; 3787 ev_stat *w = (ev_stat *)w_;
1894 w_ = w_->next; /* lets us remove this watcher and all before it */ 3788 w_ = w_->next; /* lets us remove this watcher and all before it */
1895 3789
1896 if (w->wd == wd || wd == -1) 3790 if (w->wd == wd || wd == -1)
1897 { 3791 {
1898 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3792 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1899 { 3793 {
3794 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
1900 w->wd = -1; 3795 w->wd = -1;
1901 infy_add (EV_A_ w); /* re-add, no matter what */ 3796 infy_add (EV_A_ w); /* re-add, no matter what */
1902 } 3797 }
1903 3798
1904 stat_timer_cb (EV_A_ &w->timer, 0); 3799 stat_timer_cb (EV_A_ &w->timer, 0);
1909 3804
1910static void 3805static void
1911infy_cb (EV_P_ ev_io *w, int revents) 3806infy_cb (EV_P_ ev_io *w, int revents)
1912{ 3807{
1913 char buf [EV_INOTIFY_BUFSIZE]; 3808 char buf [EV_INOTIFY_BUFSIZE];
1914 struct inotify_event *ev = (struct inotify_event *)buf;
1915 int ofs; 3809 int ofs;
1916 int len = read (fs_fd, buf, sizeof (buf)); 3810 int len = read (fs_fd, buf, sizeof (buf));
1917 3811
1918 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3812 for (ofs = 0; ofs < len; )
3813 {
3814 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
1919 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3815 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3816 ofs += sizeof (struct inotify_event) + ev->len;
3817 }
1920} 3818}
1921 3819
1922void inline_size 3820inline_size void ecb_cold
3821ev_check_2625 (EV_P)
3822{
3823 /* kernels < 2.6.25 are borked
3824 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3825 */
3826 if (ev_linux_version () < 0x020619)
3827 return;
3828
3829 fs_2625 = 1;
3830}
3831
3832inline_size int
3833infy_newfd (void)
3834{
3835#if defined IN_CLOEXEC && defined IN_NONBLOCK
3836 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3837 if (fd >= 0)
3838 return fd;
3839#endif
3840 return inotify_init ();
3841}
3842
3843inline_size void
1923infy_init (EV_P) 3844infy_init (EV_P)
1924{ 3845{
1925 if (fs_fd != -2) 3846 if (fs_fd != -2)
1926 return; 3847 return;
1927 3848
3849 fs_fd = -1;
3850
3851 ev_check_2625 (EV_A);
3852
1928 fs_fd = inotify_init (); 3853 fs_fd = infy_newfd ();
1929 3854
1930 if (fs_fd >= 0) 3855 if (fs_fd >= 0)
1931 { 3856 {
3857 fd_intern (fs_fd);
1932 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3858 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1933 ev_set_priority (&fs_w, EV_MAXPRI); 3859 ev_set_priority (&fs_w, EV_MAXPRI);
1934 ev_io_start (EV_A_ &fs_w); 3860 ev_io_start (EV_A_ &fs_w);
3861 ev_unref (EV_A);
1935 } 3862 }
1936} 3863}
1937 3864
1938void inline_size 3865inline_size void
1939infy_fork (EV_P) 3866infy_fork (EV_P)
1940{ 3867{
1941 int slot; 3868 int slot;
1942 3869
1943 if (fs_fd < 0) 3870 if (fs_fd < 0)
1944 return; 3871 return;
1945 3872
3873 ev_ref (EV_A);
3874 ev_io_stop (EV_A_ &fs_w);
1946 close (fs_fd); 3875 close (fs_fd);
1947 fs_fd = inotify_init (); 3876 fs_fd = infy_newfd ();
1948 3877
3878 if (fs_fd >= 0)
3879 {
3880 fd_intern (fs_fd);
3881 ev_io_set (&fs_w, fs_fd, EV_READ);
3882 ev_io_start (EV_A_ &fs_w);
3883 ev_unref (EV_A);
3884 }
3885
1949 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3886 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1950 { 3887 {
1951 WL w_ = fs_hash [slot].head; 3888 WL w_ = fs_hash [slot].head;
1952 fs_hash [slot].head = 0; 3889 fs_hash [slot].head = 0;
1953 3890
1954 while (w_) 3891 while (w_)
1959 w->wd = -1; 3896 w->wd = -1;
1960 3897
1961 if (fs_fd >= 0) 3898 if (fs_fd >= 0)
1962 infy_add (EV_A_ w); /* re-add, no matter what */ 3899 infy_add (EV_A_ w); /* re-add, no matter what */
1963 else 3900 else
3901 {
3902 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3903 if (ev_is_active (&w->timer)) ev_ref (EV_A);
1964 ev_timer_start (EV_A_ &w->timer); 3904 ev_timer_again (EV_A_ &w->timer);
3905 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3906 }
1965 } 3907 }
1966
1967 } 3908 }
1968} 3909}
1969 3910
3911#endif
3912
3913#ifdef _WIN32
3914# define EV_LSTAT(p,b) _stati64 (p, b)
3915#else
3916# define EV_LSTAT(p,b) lstat (p, b)
1970#endif 3917#endif
1971 3918
1972void 3919void
1973ev_stat_stat (EV_P_ ev_stat *w) 3920ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
1974{ 3921{
1975 if (lstat (w->path, &w->attr) < 0) 3922 if (lstat (w->path, &w->attr) < 0)
1976 w->attr.st_nlink = 0; 3923 w->attr.st_nlink = 0;
1977 else if (!w->attr.st_nlink) 3924 else if (!w->attr.st_nlink)
1978 w->attr.st_nlink = 1; 3925 w->attr.st_nlink = 1;
1981static void noinline 3928static void noinline
1982stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3929stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1983{ 3930{
1984 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3931 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1985 3932
1986 /* we copy this here each the time so that */ 3933 ev_statdata prev = w->attr;
1987 /* prev has the old value when the callback gets invoked */
1988 w->prev = w->attr;
1989 ev_stat_stat (EV_A_ w); 3934 ev_stat_stat (EV_A_ w);
1990 3935
1991 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3936 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
1992 if ( 3937 if (
1993 w->prev.st_dev != w->attr.st_dev 3938 prev.st_dev != w->attr.st_dev
1994 || w->prev.st_ino != w->attr.st_ino 3939 || prev.st_ino != w->attr.st_ino
1995 || w->prev.st_mode != w->attr.st_mode 3940 || prev.st_mode != w->attr.st_mode
1996 || w->prev.st_nlink != w->attr.st_nlink 3941 || prev.st_nlink != w->attr.st_nlink
1997 || w->prev.st_uid != w->attr.st_uid 3942 || prev.st_uid != w->attr.st_uid
1998 || w->prev.st_gid != w->attr.st_gid 3943 || prev.st_gid != w->attr.st_gid
1999 || w->prev.st_rdev != w->attr.st_rdev 3944 || prev.st_rdev != w->attr.st_rdev
2000 || w->prev.st_size != w->attr.st_size 3945 || prev.st_size != w->attr.st_size
2001 || w->prev.st_atime != w->attr.st_atime 3946 || prev.st_atime != w->attr.st_atime
2002 || w->prev.st_mtime != w->attr.st_mtime 3947 || prev.st_mtime != w->attr.st_mtime
2003 || w->prev.st_ctime != w->attr.st_ctime 3948 || prev.st_ctime != w->attr.st_ctime
2004 ) { 3949 ) {
3950 /* we only update w->prev on actual differences */
3951 /* in case we test more often than invoke the callback, */
3952 /* to ensure that prev is always different to attr */
3953 w->prev = prev;
3954
2005 #if EV_USE_INOTIFY 3955 #if EV_USE_INOTIFY
3956 if (fs_fd >= 0)
3957 {
2006 infy_del (EV_A_ w); 3958 infy_del (EV_A_ w);
2007 infy_add (EV_A_ w); 3959 infy_add (EV_A_ w);
2008 ev_stat_stat (EV_A_ w); /* avoid race... */ 3960 ev_stat_stat (EV_A_ w); /* avoid race... */
3961 }
2009 #endif 3962 #endif
2010 3963
2011 ev_feed_event (EV_A_ w, EV_STAT); 3964 ev_feed_event (EV_A_ w, EV_STAT);
2012 } 3965 }
2013} 3966}
2014 3967
2015void 3968void
2016ev_stat_start (EV_P_ ev_stat *w) 3969ev_stat_start (EV_P_ ev_stat *w) EV_THROW
2017{ 3970{
2018 if (expect_false (ev_is_active (w))) 3971 if (expect_false (ev_is_active (w)))
2019 return; 3972 return;
2020 3973
2021 /* since we use memcmp, we need to clear any padding data etc. */
2022 memset (&w->prev, 0, sizeof (ev_statdata));
2023 memset (&w->attr, 0, sizeof (ev_statdata));
2024
2025 ev_stat_stat (EV_A_ w); 3974 ev_stat_stat (EV_A_ w);
2026 3975
3976 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2027 if (w->interval < MIN_STAT_INTERVAL) 3977 w->interval = MIN_STAT_INTERVAL;
2028 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2029 3978
2030 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3979 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2031 ev_set_priority (&w->timer, ev_priority (w)); 3980 ev_set_priority (&w->timer, ev_priority (w));
2032 3981
2033#if EV_USE_INOTIFY 3982#if EV_USE_INOTIFY
2034 infy_init (EV_A); 3983 infy_init (EV_A);
2035 3984
2036 if (fs_fd >= 0) 3985 if (fs_fd >= 0)
2037 infy_add (EV_A_ w); 3986 infy_add (EV_A_ w);
2038 else 3987 else
2039#endif 3988#endif
3989 {
2040 ev_timer_start (EV_A_ &w->timer); 3990 ev_timer_again (EV_A_ &w->timer);
3991 ev_unref (EV_A);
3992 }
2041 3993
2042 ev_start (EV_A_ (W)w, 1); 3994 ev_start (EV_A_ (W)w, 1);
3995
3996 EV_FREQUENT_CHECK;
2043} 3997}
2044 3998
2045void 3999void
2046ev_stat_stop (EV_P_ ev_stat *w) 4000ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
2047{ 4001{
2048 clear_pending (EV_A_ (W)w); 4002 clear_pending (EV_A_ (W)w);
2049 if (expect_false (!ev_is_active (w))) 4003 if (expect_false (!ev_is_active (w)))
2050 return; 4004 return;
2051 4005
4006 EV_FREQUENT_CHECK;
4007
2052#if EV_USE_INOTIFY 4008#if EV_USE_INOTIFY
2053 infy_del (EV_A_ w); 4009 infy_del (EV_A_ w);
2054#endif 4010#endif
4011
4012 if (ev_is_active (&w->timer))
4013 {
4014 ev_ref (EV_A);
2055 ev_timer_stop (EV_A_ &w->timer); 4015 ev_timer_stop (EV_A_ &w->timer);
4016 }
2056 4017
2057 ev_stop (EV_A_ (W)w); 4018 ev_stop (EV_A_ (W)w);
4019
4020 EV_FREQUENT_CHECK;
2058} 4021}
2059#endif 4022#endif
2060 4023
2061#if EV_IDLE_ENABLE 4024#if EV_IDLE_ENABLE
2062void 4025void
2063ev_idle_start (EV_P_ ev_idle *w) 4026ev_idle_start (EV_P_ ev_idle *w) EV_THROW
2064{ 4027{
2065 if (expect_false (ev_is_active (w))) 4028 if (expect_false (ev_is_active (w)))
2066 return; 4029 return;
2067 4030
2068 pri_adjust (EV_A_ (W)w); 4031 pri_adjust (EV_A_ (W)w);
4032
4033 EV_FREQUENT_CHECK;
2069 4034
2070 { 4035 {
2071 int active = ++idlecnt [ABSPRI (w)]; 4036 int active = ++idlecnt [ABSPRI (w)];
2072 4037
2073 ++idleall; 4038 ++idleall;
2074 ev_start (EV_A_ (W)w, active); 4039 ev_start (EV_A_ (W)w, active);
2075 4040
2076 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 4041 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2077 idles [ABSPRI (w)][active - 1] = w; 4042 idles [ABSPRI (w)][active - 1] = w;
2078 } 4043 }
4044
4045 EV_FREQUENT_CHECK;
2079} 4046}
2080 4047
2081void 4048void
2082ev_idle_stop (EV_P_ ev_idle *w) 4049ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
2083{ 4050{
2084 clear_pending (EV_A_ (W)w); 4051 clear_pending (EV_A_ (W)w);
2085 if (expect_false (!ev_is_active (w))) 4052 if (expect_false (!ev_is_active (w)))
2086 return; 4053 return;
2087 4054
4055 EV_FREQUENT_CHECK;
4056
2088 { 4057 {
2089 int active = ((W)w)->active; 4058 int active = ev_active (w);
2090 4059
2091 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 4060 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2092 ((W)idles [ABSPRI (w)][active - 1])->active = active; 4061 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2093 4062
2094 ev_stop (EV_A_ (W)w); 4063 ev_stop (EV_A_ (W)w);
2095 --idleall; 4064 --idleall;
2096 } 4065 }
2097}
2098#endif
2099 4066
4067 EV_FREQUENT_CHECK;
4068}
4069#endif
4070
4071#if EV_PREPARE_ENABLE
2100void 4072void
2101ev_prepare_start (EV_P_ ev_prepare *w) 4073ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
2102{ 4074{
2103 if (expect_false (ev_is_active (w))) 4075 if (expect_false (ev_is_active (w)))
2104 return; 4076 return;
4077
4078 EV_FREQUENT_CHECK;
2105 4079
2106 ev_start (EV_A_ (W)w, ++preparecnt); 4080 ev_start (EV_A_ (W)w, ++preparecnt);
2107 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 4081 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2108 prepares [preparecnt - 1] = w; 4082 prepares [preparecnt - 1] = w;
4083
4084 EV_FREQUENT_CHECK;
2109} 4085}
2110 4086
2111void 4087void
2112ev_prepare_stop (EV_P_ ev_prepare *w) 4088ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
2113{ 4089{
2114 clear_pending (EV_A_ (W)w); 4090 clear_pending (EV_A_ (W)w);
2115 if (expect_false (!ev_is_active (w))) 4091 if (expect_false (!ev_is_active (w)))
2116 return; 4092 return;
2117 4093
4094 EV_FREQUENT_CHECK;
4095
2118 { 4096 {
2119 int active = ((W)w)->active; 4097 int active = ev_active (w);
4098
2120 prepares [active - 1] = prepares [--preparecnt]; 4099 prepares [active - 1] = prepares [--preparecnt];
2121 ((W)prepares [active - 1])->active = active; 4100 ev_active (prepares [active - 1]) = active;
2122 } 4101 }
2123 4102
2124 ev_stop (EV_A_ (W)w); 4103 ev_stop (EV_A_ (W)w);
2125}
2126 4104
4105 EV_FREQUENT_CHECK;
4106}
4107#endif
4108
4109#if EV_CHECK_ENABLE
2127void 4110void
2128ev_check_start (EV_P_ ev_check *w) 4111ev_check_start (EV_P_ ev_check *w) EV_THROW
2129{ 4112{
2130 if (expect_false (ev_is_active (w))) 4113 if (expect_false (ev_is_active (w)))
2131 return; 4114 return;
4115
4116 EV_FREQUENT_CHECK;
2132 4117
2133 ev_start (EV_A_ (W)w, ++checkcnt); 4118 ev_start (EV_A_ (W)w, ++checkcnt);
2134 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 4119 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2135 checks [checkcnt - 1] = w; 4120 checks [checkcnt - 1] = w;
4121
4122 EV_FREQUENT_CHECK;
2136} 4123}
2137 4124
2138void 4125void
2139ev_check_stop (EV_P_ ev_check *w) 4126ev_check_stop (EV_P_ ev_check *w) EV_THROW
2140{ 4127{
2141 clear_pending (EV_A_ (W)w); 4128 clear_pending (EV_A_ (W)w);
2142 if (expect_false (!ev_is_active (w))) 4129 if (expect_false (!ev_is_active (w)))
2143 return; 4130 return;
2144 4131
4132 EV_FREQUENT_CHECK;
4133
2145 { 4134 {
2146 int active = ((W)w)->active; 4135 int active = ev_active (w);
4136
2147 checks [active - 1] = checks [--checkcnt]; 4137 checks [active - 1] = checks [--checkcnt];
2148 ((W)checks [active - 1])->active = active; 4138 ev_active (checks [active - 1]) = active;
2149 } 4139 }
2150 4140
2151 ev_stop (EV_A_ (W)w); 4141 ev_stop (EV_A_ (W)w);
4142
4143 EV_FREQUENT_CHECK;
2152} 4144}
4145#endif
2153 4146
2154#if EV_EMBED_ENABLE 4147#if EV_EMBED_ENABLE
2155void noinline 4148void noinline
2156ev_embed_sweep (EV_P_ ev_embed *w) 4149ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
2157{ 4150{
2158 ev_loop (w->loop, EVLOOP_NONBLOCK); 4151 ev_run (w->other, EVRUN_NOWAIT);
2159} 4152}
2160 4153
2161static void 4154static void
2162embed_cb (EV_P_ ev_io *io, int revents) 4155embed_io_cb (EV_P_ ev_io *io, int revents)
2163{ 4156{
2164 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4157 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2165 4158
2166 if (ev_cb (w)) 4159 if (ev_cb (w))
2167 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4160 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2168 else 4161 else
2169 ev_embed_sweep (loop, w); 4162 ev_run (w->other, EVRUN_NOWAIT);
2170} 4163}
4164
4165static void
4166embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4167{
4168 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4169
4170 {
4171 EV_P = w->other;
4172
4173 while (fdchangecnt)
4174 {
4175 fd_reify (EV_A);
4176 ev_run (EV_A_ EVRUN_NOWAIT);
4177 }
4178 }
4179}
4180
4181static void
4182embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4183{
4184 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4185
4186 ev_embed_stop (EV_A_ w);
4187
4188 {
4189 EV_P = w->other;
4190
4191 ev_loop_fork (EV_A);
4192 ev_run (EV_A_ EVRUN_NOWAIT);
4193 }
4194
4195 ev_embed_start (EV_A_ w);
4196}
4197
4198#if 0
4199static void
4200embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4201{
4202 ev_idle_stop (EV_A_ idle);
4203}
4204#endif
2171 4205
2172void 4206void
2173ev_embed_start (EV_P_ ev_embed *w) 4207ev_embed_start (EV_P_ ev_embed *w) EV_THROW
2174{ 4208{
2175 if (expect_false (ev_is_active (w))) 4209 if (expect_false (ev_is_active (w)))
2176 return; 4210 return;
2177 4211
2178 { 4212 {
2179 struct ev_loop *loop = w->loop; 4213 EV_P = w->other;
2180 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4214 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2181 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 4215 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2182 } 4216 }
4217
4218 EV_FREQUENT_CHECK;
2183 4219
2184 ev_set_priority (&w->io, ev_priority (w)); 4220 ev_set_priority (&w->io, ev_priority (w));
2185 ev_io_start (EV_A_ &w->io); 4221 ev_io_start (EV_A_ &w->io);
2186 4222
4223 ev_prepare_init (&w->prepare, embed_prepare_cb);
4224 ev_set_priority (&w->prepare, EV_MINPRI);
4225 ev_prepare_start (EV_A_ &w->prepare);
4226
4227 ev_fork_init (&w->fork, embed_fork_cb);
4228 ev_fork_start (EV_A_ &w->fork);
4229
4230 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4231
2187 ev_start (EV_A_ (W)w, 1); 4232 ev_start (EV_A_ (W)w, 1);
4233
4234 EV_FREQUENT_CHECK;
2188} 4235}
2189 4236
2190void 4237void
2191ev_embed_stop (EV_P_ ev_embed *w) 4238ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
2192{ 4239{
2193 clear_pending (EV_A_ (W)w); 4240 clear_pending (EV_A_ (W)w);
2194 if (expect_false (!ev_is_active (w))) 4241 if (expect_false (!ev_is_active (w)))
2195 return; 4242 return;
2196 4243
4244 EV_FREQUENT_CHECK;
4245
2197 ev_io_stop (EV_A_ &w->io); 4246 ev_io_stop (EV_A_ &w->io);
4247 ev_prepare_stop (EV_A_ &w->prepare);
4248 ev_fork_stop (EV_A_ &w->fork);
2198 4249
2199 ev_stop (EV_A_ (W)w); 4250 ev_stop (EV_A_ (W)w);
4251
4252 EV_FREQUENT_CHECK;
2200} 4253}
2201#endif 4254#endif
2202 4255
2203#if EV_FORK_ENABLE 4256#if EV_FORK_ENABLE
2204void 4257void
2205ev_fork_start (EV_P_ ev_fork *w) 4258ev_fork_start (EV_P_ ev_fork *w) EV_THROW
2206{ 4259{
2207 if (expect_false (ev_is_active (w))) 4260 if (expect_false (ev_is_active (w)))
2208 return; 4261 return;
4262
4263 EV_FREQUENT_CHECK;
2209 4264
2210 ev_start (EV_A_ (W)w, ++forkcnt); 4265 ev_start (EV_A_ (W)w, ++forkcnt);
2211 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 4266 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2212 forks [forkcnt - 1] = w; 4267 forks [forkcnt - 1] = w;
4268
4269 EV_FREQUENT_CHECK;
2213} 4270}
2214 4271
2215void 4272void
2216ev_fork_stop (EV_P_ ev_fork *w) 4273ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
2217{ 4274{
2218 clear_pending (EV_A_ (W)w); 4275 clear_pending (EV_A_ (W)w);
2219 if (expect_false (!ev_is_active (w))) 4276 if (expect_false (!ev_is_active (w)))
2220 return; 4277 return;
2221 4278
4279 EV_FREQUENT_CHECK;
4280
2222 { 4281 {
2223 int active = ((W)w)->active; 4282 int active = ev_active (w);
4283
2224 forks [active - 1] = forks [--forkcnt]; 4284 forks [active - 1] = forks [--forkcnt];
2225 ((W)forks [active - 1])->active = active; 4285 ev_active (forks [active - 1]) = active;
2226 } 4286 }
2227 4287
2228 ev_stop (EV_A_ (W)w); 4288 ev_stop (EV_A_ (W)w);
4289
4290 EV_FREQUENT_CHECK;
4291}
4292#endif
4293
4294#if EV_CLEANUP_ENABLE
4295void
4296ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4297{
4298 if (expect_false (ev_is_active (w)))
4299 return;
4300
4301 EV_FREQUENT_CHECK;
4302
4303 ev_start (EV_A_ (W)w, ++cleanupcnt);
4304 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4305 cleanups [cleanupcnt - 1] = w;
4306
4307 /* cleanup watchers should never keep a refcount on the loop */
4308 ev_unref (EV_A);
4309 EV_FREQUENT_CHECK;
4310}
4311
4312void
4313ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4314{
4315 clear_pending (EV_A_ (W)w);
4316 if (expect_false (!ev_is_active (w)))
4317 return;
4318
4319 EV_FREQUENT_CHECK;
4320 ev_ref (EV_A);
4321
4322 {
4323 int active = ev_active (w);
4324
4325 cleanups [active - 1] = cleanups [--cleanupcnt];
4326 ev_active (cleanups [active - 1]) = active;
4327 }
4328
4329 ev_stop (EV_A_ (W)w);
4330
4331 EV_FREQUENT_CHECK;
4332}
4333#endif
4334
4335#if EV_ASYNC_ENABLE
4336void
4337ev_async_start (EV_P_ ev_async *w) EV_THROW
4338{
4339 if (expect_false (ev_is_active (w)))
4340 return;
4341
4342 w->sent = 0;
4343
4344 evpipe_init (EV_A);
4345
4346 EV_FREQUENT_CHECK;
4347
4348 ev_start (EV_A_ (W)w, ++asynccnt);
4349 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4350 asyncs [asynccnt - 1] = w;
4351
4352 EV_FREQUENT_CHECK;
4353}
4354
4355void
4356ev_async_stop (EV_P_ ev_async *w) EV_THROW
4357{
4358 clear_pending (EV_A_ (W)w);
4359 if (expect_false (!ev_is_active (w)))
4360 return;
4361
4362 EV_FREQUENT_CHECK;
4363
4364 {
4365 int active = ev_active (w);
4366
4367 asyncs [active - 1] = asyncs [--asynccnt];
4368 ev_active (asyncs [active - 1]) = active;
4369 }
4370
4371 ev_stop (EV_A_ (W)w);
4372
4373 EV_FREQUENT_CHECK;
4374}
4375
4376void
4377ev_async_send (EV_P_ ev_async *w) EV_THROW
4378{
4379 w->sent = 1;
4380 evpipe_write (EV_A_ &async_pending);
2229} 4381}
2230#endif 4382#endif
2231 4383
2232/*****************************************************************************/ 4384/*****************************************************************************/
2233 4385
2243once_cb (EV_P_ struct ev_once *once, int revents) 4395once_cb (EV_P_ struct ev_once *once, int revents)
2244{ 4396{
2245 void (*cb)(int revents, void *arg) = once->cb; 4397 void (*cb)(int revents, void *arg) = once->cb;
2246 void *arg = once->arg; 4398 void *arg = once->arg;
2247 4399
2248 ev_io_stop (EV_A_ &once->io); 4400 ev_io_stop (EV_A_ &once->io);
2249 ev_timer_stop (EV_A_ &once->to); 4401 ev_timer_stop (EV_A_ &once->to);
2250 ev_free (once); 4402 ev_free (once);
2251 4403
2252 cb (revents, arg); 4404 cb (revents, arg);
2253} 4405}
2254 4406
2255static void 4407static void
2256once_cb_io (EV_P_ ev_io *w, int revents) 4408once_cb_io (EV_P_ ev_io *w, int revents)
2257{ 4409{
2258 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4410 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4411
4412 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2259} 4413}
2260 4414
2261static void 4415static void
2262once_cb_to (EV_P_ ev_timer *w, int revents) 4416once_cb_to (EV_P_ ev_timer *w, int revents)
2263{ 4417{
2264 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4418 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4419
4420 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2265} 4421}
2266 4422
2267void 4423void
2268ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4424ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
2269{ 4425{
2270 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4426 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2271 4427
2272 if (expect_false (!once)) 4428 if (expect_false (!once))
2273 { 4429 {
2274 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4430 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2275 return; 4431 return;
2276 } 4432 }
2277 4433
2278 once->cb = cb; 4434 once->cb = cb;
2279 once->arg = arg; 4435 once->arg = arg;
2291 ev_timer_set (&once->to, timeout, 0.); 4447 ev_timer_set (&once->to, timeout, 0.);
2292 ev_timer_start (EV_A_ &once->to); 4448 ev_timer_start (EV_A_ &once->to);
2293 } 4449 }
2294} 4450}
2295 4451
2296#ifdef __cplusplus 4452/*****************************************************************************/
2297} 4453
4454#if EV_WALK_ENABLE
4455void ecb_cold
4456ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4457{
4458 int i, j;
4459 ev_watcher_list *wl, *wn;
4460
4461 if (types & (EV_IO | EV_EMBED))
4462 for (i = 0; i < anfdmax; ++i)
4463 for (wl = anfds [i].head; wl; )
4464 {
4465 wn = wl->next;
4466
4467#if EV_EMBED_ENABLE
4468 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4469 {
4470 if (types & EV_EMBED)
4471 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4472 }
4473 else
4474#endif
4475#if EV_USE_INOTIFY
4476 if (ev_cb ((ev_io *)wl) == infy_cb)
4477 ;
4478 else
4479#endif
4480 if ((ev_io *)wl != &pipe_w)
4481 if (types & EV_IO)
4482 cb (EV_A_ EV_IO, wl);
4483
4484 wl = wn;
4485 }
4486
4487 if (types & (EV_TIMER | EV_STAT))
4488 for (i = timercnt + HEAP0; i-- > HEAP0; )
4489#if EV_STAT_ENABLE
4490 /*TODO: timer is not always active*/
4491 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4492 {
4493 if (types & EV_STAT)
4494 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4495 }
4496 else
4497#endif
4498 if (types & EV_TIMER)
4499 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4500
4501#if EV_PERIODIC_ENABLE
4502 if (types & EV_PERIODIC)
4503 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4504 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4505#endif
4506
4507#if EV_IDLE_ENABLE
4508 if (types & EV_IDLE)
4509 for (j = NUMPRI; j--; )
4510 for (i = idlecnt [j]; i--; )
4511 cb (EV_A_ EV_IDLE, idles [j][i]);
4512#endif
4513
4514#if EV_FORK_ENABLE
4515 if (types & EV_FORK)
4516 for (i = forkcnt; i--; )
4517 if (ev_cb (forks [i]) != embed_fork_cb)
4518 cb (EV_A_ EV_FORK, forks [i]);
4519#endif
4520
4521#if EV_ASYNC_ENABLE
4522 if (types & EV_ASYNC)
4523 for (i = asynccnt; i--; )
4524 cb (EV_A_ EV_ASYNC, asyncs [i]);
4525#endif
4526
4527#if EV_PREPARE_ENABLE
4528 if (types & EV_PREPARE)
4529 for (i = preparecnt; i--; )
4530# if EV_EMBED_ENABLE
4531 if (ev_cb (prepares [i]) != embed_prepare_cb)
2298#endif 4532# endif
4533 cb (EV_A_ EV_PREPARE, prepares [i]);
4534#endif
2299 4535
4536#if EV_CHECK_ENABLE
4537 if (types & EV_CHECK)
4538 for (i = checkcnt; i--; )
4539 cb (EV_A_ EV_CHECK, checks [i]);
4540#endif
4541
4542#if EV_SIGNAL_ENABLE
4543 if (types & EV_SIGNAL)
4544 for (i = 0; i < EV_NSIG - 1; ++i)
4545 for (wl = signals [i].head; wl; )
4546 {
4547 wn = wl->next;
4548 cb (EV_A_ EV_SIGNAL, wl);
4549 wl = wn;
4550 }
4551#endif
4552
4553#if EV_CHILD_ENABLE
4554 if (types & EV_CHILD)
4555 for (i = (EV_PID_HASHSIZE); i--; )
4556 for (wl = childs [i]; wl; )
4557 {
4558 wn = wl->next;
4559 cb (EV_A_ EV_CHILD, wl);
4560 wl = wn;
4561 }
4562#endif
4563/* EV_STAT 0x00001000 /* stat data changed */
4564/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4565}
4566#endif
4567
4568#if EV_MULTIPLICITY
4569 #include "ev_wrap.h"
4570#endif
4571

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines