ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.258 by root, Sun Sep 7 18:15:12 2008 UTC vs.
Revision 1.448 by root, Tue Jul 24 16:28:08 2012 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
52# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
55# endif 71# endif
56# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
58# endif 74# endif
59# else 75# else
60# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
62# endif 78# endif
63# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
65# endif 81# endif
66# endif 82# endif
67 83
84# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
71# else 88# else
89# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
74# endif 100# endif
75 101
102# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 105# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 106# else
107# undef EV_USE_POLL
88# define EV_USE_POLL 0 108# define EV_USE_POLL 0
89# endif
90# endif 109# endif
91 110
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
95# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
98# endif 118# endif
99 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
106# endif 127# endif
107 128
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
111# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
114# endif 136# endif
115 137
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
122# endif 145# endif
123 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 148# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 149# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
130# endif 163# endif
131 164
132#endif 165#endif
133 166
134#include <math.h>
135#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
136#include <fcntl.h> 169#include <fcntl.h>
137#include <stddef.h> 170#include <stddef.h>
138 171
139#include <stdio.h> 172#include <stdio.h>
140 173
141#include <assert.h> 174#include <assert.h>
142#include <errno.h> 175#include <errno.h>
143#include <sys/types.h> 176#include <sys/types.h>
144#include <time.h> 177#include <time.h>
178#include <limits.h>
145 179
146#include <signal.h> 180#include <signal.h>
147 181
148#ifdef EV_H 182#ifdef EV_H
149# include EV_H 183# include EV_H
150#else 184#else
151# include "ev.h" 185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
152#endif 197#endif
153 198
154#ifndef _WIN32 199#ifndef _WIN32
155# include <sys/time.h> 200# include <sys/time.h>
156# include <sys/wait.h> 201# include <sys/wait.h>
157# include <unistd.h> 202# include <unistd.h>
158#else 203#else
159# include <io.h> 204# include <io.h>
160# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
161# include <windows.h> 207# include <windows.h>
162# ifndef EV_SELECT_IS_WINSOCKET 208# ifndef EV_SELECT_IS_WINSOCKET
163# define EV_SELECT_IS_WINSOCKET 1 209# define EV_SELECT_IS_WINSOCKET 1
164# endif 210# endif
211# undef EV_AVOID_STDIO
165#endif 212#endif
213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
166 221
167/* this block tries to deduce configuration from header-defined symbols and defaults */ 222/* this block tries to deduce configuration from header-defined symbols and defaults */
168 223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# error "unable to find value for NSIG, please report"
247/* to make it compile regardless, just remove the above line, */
248/* but consider reporting it, too! :) */
249# define EV_NSIG 65
250#endif
251
252#ifndef EV_USE_FLOOR
253# define EV_USE_FLOOR 0
254#endif
255
256#ifndef EV_USE_CLOCK_SYSCALL
257# if __linux && __GLIBC__ >= 2
258# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
259# else
260# define EV_USE_CLOCK_SYSCALL 0
261# endif
262#endif
263
169#ifndef EV_USE_MONOTONIC 264#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0 265# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1 266# define EV_USE_MONOTONIC EV_FEATURE_OS
172# else 267# else
173# define EV_USE_MONOTONIC 0 268# define EV_USE_MONOTONIC 0
174# endif 269# endif
175#endif 270#endif
176 271
177#ifndef EV_USE_REALTIME 272#ifndef EV_USE_REALTIME
178# define EV_USE_REALTIME 0 273# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
179#endif 274#endif
180 275
181#ifndef EV_USE_NANOSLEEP 276#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L 277# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1 278# define EV_USE_NANOSLEEP EV_FEATURE_OS
184# else 279# else
185# define EV_USE_NANOSLEEP 0 280# define EV_USE_NANOSLEEP 0
186# endif 281# endif
187#endif 282#endif
188 283
189#ifndef EV_USE_SELECT 284#ifndef EV_USE_SELECT
190# define EV_USE_SELECT 1 285# define EV_USE_SELECT EV_FEATURE_BACKENDS
191#endif 286#endif
192 287
193#ifndef EV_USE_POLL 288#ifndef EV_USE_POLL
194# ifdef _WIN32 289# ifdef _WIN32
195# define EV_USE_POLL 0 290# define EV_USE_POLL 0
196# else 291# else
197# define EV_USE_POLL 1 292# define EV_USE_POLL EV_FEATURE_BACKENDS
198# endif 293# endif
199#endif 294#endif
200 295
201#ifndef EV_USE_EPOLL 296#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 297# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1 298# define EV_USE_EPOLL EV_FEATURE_BACKENDS
204# else 299# else
205# define EV_USE_EPOLL 0 300# define EV_USE_EPOLL 0
206# endif 301# endif
207#endif 302#endif
208 303
214# define EV_USE_PORT 0 309# define EV_USE_PORT 0
215#endif 310#endif
216 311
217#ifndef EV_USE_INOTIFY 312#ifndef EV_USE_INOTIFY
218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 313# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
219# define EV_USE_INOTIFY 1 314# define EV_USE_INOTIFY EV_FEATURE_OS
220# else 315# else
221# define EV_USE_INOTIFY 0 316# define EV_USE_INOTIFY 0
222# endif 317# endif
223#endif 318#endif
224 319
225#ifndef EV_PID_HASHSIZE 320#ifndef EV_PID_HASHSIZE
226# if EV_MINIMAL 321# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
227# define EV_PID_HASHSIZE 1
228# else
229# define EV_PID_HASHSIZE 16
230# endif
231#endif 322#endif
232 323
233#ifndef EV_INOTIFY_HASHSIZE 324#ifndef EV_INOTIFY_HASHSIZE
234# if EV_MINIMAL 325# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
235# define EV_INOTIFY_HASHSIZE 1
236# else
237# define EV_INOTIFY_HASHSIZE 16
238# endif
239#endif 326#endif
240 327
241#ifndef EV_USE_EVENTFD 328#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 329# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1 330# define EV_USE_EVENTFD EV_FEATURE_OS
244# else 331# else
245# define EV_USE_EVENTFD 0 332# define EV_USE_EVENTFD 0
333# endif
334#endif
335
336#ifndef EV_USE_SIGNALFD
337# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
338# define EV_USE_SIGNALFD EV_FEATURE_OS
339# else
340# define EV_USE_SIGNALFD 0
246# endif 341# endif
247#endif 342#endif
248 343
249#if 0 /* debugging */ 344#if 0 /* debugging */
250# define EV_VERIFY 3 345# define EV_VERIFY 3
251# define EV_USE_4HEAP 1 346# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1 347# define EV_HEAP_CACHE_AT 1
253#endif 348#endif
254 349
255#ifndef EV_VERIFY 350#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL 351# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
257#endif 352#endif
258 353
259#ifndef EV_USE_4HEAP 354#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL 355# define EV_USE_4HEAP EV_FEATURE_DATA
261#endif 356#endif
262 357
263#ifndef EV_HEAP_CACHE_AT 358#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL 359# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
360#endif
361
362/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
363/* which makes programs even slower. might work on other unices, too. */
364#if EV_USE_CLOCK_SYSCALL
365# include <sys/syscall.h>
366# ifdef SYS_clock_gettime
367# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
368# undef EV_USE_MONOTONIC
369# define EV_USE_MONOTONIC 1
370# else
371# undef EV_USE_CLOCK_SYSCALL
372# define EV_USE_CLOCK_SYSCALL 0
373# endif
265#endif 374#endif
266 375
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 376/* this block fixes any misconfiguration where we know we run into trouble otherwise */
377
378#ifdef _AIX
379/* AIX has a completely broken poll.h header */
380# undef EV_USE_POLL
381# define EV_USE_POLL 0
382#endif
268 383
269#ifndef CLOCK_MONOTONIC 384#ifndef CLOCK_MONOTONIC
270# undef EV_USE_MONOTONIC 385# undef EV_USE_MONOTONIC
271# define EV_USE_MONOTONIC 0 386# define EV_USE_MONOTONIC 0
272#endif 387#endif
280# undef EV_USE_INOTIFY 395# undef EV_USE_INOTIFY
281# define EV_USE_INOTIFY 0 396# define EV_USE_INOTIFY 0
282#endif 397#endif
283 398
284#if !EV_USE_NANOSLEEP 399#if !EV_USE_NANOSLEEP
285# ifndef _WIN32 400/* hp-ux has it in sys/time.h, which we unconditionally include above */
401# if !defined _WIN32 && !defined __hpux
286# include <sys/select.h> 402# include <sys/select.h>
287# endif 403# endif
288#endif 404#endif
289 405
290#if EV_USE_INOTIFY 406#if EV_USE_INOTIFY
407# include <sys/statfs.h>
291# include <sys/inotify.h> 408# include <sys/inotify.h>
409/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
410# ifndef IN_DONT_FOLLOW
411# undef EV_USE_INOTIFY
412# define EV_USE_INOTIFY 0
292#endif 413# endif
293
294#if EV_SELECT_IS_WINSOCKET
295# include <winsock.h>
296#endif 414#endif
297 415
298#if EV_USE_EVENTFD 416#if EV_USE_EVENTFD
299/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
300# include <stdint.h> 418# include <stdint.h>
301# ifdef __cplusplus 419# ifndef EFD_NONBLOCK
302extern "C" { 420# define EFD_NONBLOCK O_NONBLOCK
303# endif 421# endif
304int eventfd (unsigned int initval, int flags); 422# ifndef EFD_CLOEXEC
305# ifdef __cplusplus 423# ifdef O_CLOEXEC
306} 424# define EFD_CLOEXEC O_CLOEXEC
425# else
426# define EFD_CLOEXEC 02000000
427# endif
307# endif 428# endif
429EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
430#endif
431
432#if EV_USE_SIGNALFD
433/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
434# include <stdint.h>
435# ifndef SFD_NONBLOCK
436# define SFD_NONBLOCK O_NONBLOCK
437# endif
438# ifndef SFD_CLOEXEC
439# ifdef O_CLOEXEC
440# define SFD_CLOEXEC O_CLOEXEC
441# else
442# define SFD_CLOEXEC 02000000
443# endif
444# endif
445EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
446
447struct signalfd_siginfo
448{
449 uint32_t ssi_signo;
450 char pad[128 - sizeof (uint32_t)];
451};
308#endif 452#endif
309 453
310/**/ 454/**/
311 455
312#if EV_VERIFY >= 3 456#if EV_VERIFY >= 3
313# define EV_FREQUENT_CHECK ev_loop_verify (EV_A) 457# define EV_FREQUENT_CHECK ev_verify (EV_A)
314#else 458#else
315# define EV_FREQUENT_CHECK do { } while (0) 459# define EV_FREQUENT_CHECK do { } while (0)
316#endif 460#endif
317 461
318/* 462/*
319 * This is used to avoid floating point rounding problems. 463 * This is used to work around floating point rounding problems.
320 * It is added to ev_rt_now when scheduling periodics
321 * to ensure progress, time-wise, even when rounding
322 * errors are against us.
323 * This value is good at least till the year 4000. 464 * This value is good at least till the year 4000.
324 * Better solutions welcome.
325 */ 465 */
326#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 466#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
467/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
327 468
328#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 469#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
329#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 470#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
330/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
331 471
472#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
473#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
474
475/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
476/* ECB.H BEGIN */
477/*
478 * libecb - http://software.schmorp.de/pkg/libecb
479 *
480 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
481 * Copyright (©) 2011 Emanuele Giaquinta
482 * All rights reserved.
483 *
484 * Redistribution and use in source and binary forms, with or without modifica-
485 * tion, are permitted provided that the following conditions are met:
486 *
487 * 1. Redistributions of source code must retain the above copyright notice,
488 * this list of conditions and the following disclaimer.
489 *
490 * 2. Redistributions in binary form must reproduce the above copyright
491 * notice, this list of conditions and the following disclaimer in the
492 * documentation and/or other materials provided with the distribution.
493 *
494 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
495 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
496 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
497 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
498 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
499 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
500 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
501 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
502 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
503 * OF THE POSSIBILITY OF SUCH DAMAGE.
504 */
505
506#ifndef ECB_H
507#define ECB_H
508
509/* 16 bits major, 16 bits minor */
510#define ECB_VERSION 0x00010001
511
512#ifdef _WIN32
513 typedef signed char int8_t;
514 typedef unsigned char uint8_t;
515 typedef signed short int16_t;
516 typedef unsigned short uint16_t;
517 typedef signed int int32_t;
518 typedef unsigned int uint32_t;
332#if __GNUC__ >= 4 519 #if __GNUC__
333# define expect(expr,value) __builtin_expect ((expr),(value)) 520 typedef signed long long int64_t;
334# define noinline __attribute__ ((noinline)) 521 typedef unsigned long long uint64_t;
522 #else /* _MSC_VER || __BORLANDC__ */
523 typedef signed __int64 int64_t;
524 typedef unsigned __int64 uint64_t;
525 #endif
526 #ifdef _WIN64
527 #define ECB_PTRSIZE 8
528 typedef uint64_t uintptr_t;
529 typedef int64_t intptr_t;
530 #else
531 #define ECB_PTRSIZE 4
532 typedef uint32_t uintptr_t;
533 typedef int32_t intptr_t;
534 #endif
535 typedef intptr_t ptrdiff_t;
335#else 536#else
336# define expect(expr,value) (expr) 537 #include <inttypes.h>
337# define noinline 538 #if UINTMAX_MAX > 0xffffffffU
338# if __STDC_VERSION__ < 199901L && __GNUC__ < 2 539 #define ECB_PTRSIZE 8
339# define inline 540 #else
541 #define ECB_PTRSIZE 4
542 #endif
340# endif 543#endif
544
545/* many compilers define _GNUC_ to some versions but then only implement
546 * what their idiot authors think are the "more important" extensions,
547 * causing enormous grief in return for some better fake benchmark numbers.
548 * or so.
549 * we try to detect these and simply assume they are not gcc - if they have
550 * an issue with that they should have done it right in the first place.
551 */
552#ifndef ECB_GCC_VERSION
553 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
554 #define ECB_GCC_VERSION(major,minor) 0
555 #else
556 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
341#endif 557 #endif
558#endif
342 559
560#define ECB_C (__STDC__+0) /* this assumes that __STDC__ is either empty or a number */
561#define ECB_C99 (__STDC_VERSION__ >= 199901L)
562#define ECB_C11 (__STDC_VERSION__ >= 201112L)
563#define ECB_CPP (__cplusplus+0)
564#define ECB_CPP11 (__cplusplus >= 201103L)
565
566/*****************************************************************************/
567
568/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
569/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
570
571#if ECB_NO_THREADS
572 #define ECB_NO_SMP 1
573#endif
574
575#if ECB_NO_SMP
576 #define ECB_MEMORY_FENCE do { } while (0)
577#endif
578
579#ifndef ECB_MEMORY_FENCE
580 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
581 #if __i386 || __i386__
582 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
583 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
584 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
585 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
586 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
587 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
588 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
589 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
590 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
591 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
592 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
593 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
594 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
595 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
596 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
597 #elif __sparc || __sparc__
598 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
599 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
600 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
601 #elif defined __s390__ || defined __s390x__
602 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
603 #elif defined __mips__
604 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
605 #elif defined __alpha__
606 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
607 #elif defined __hppa__
608 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
609 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
610 #elif defined __ia64__
611 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
612 #endif
613 #endif
614#endif
615
616#ifndef ECB_MEMORY_FENCE
617 #if ECB_GCC_VERSION(4,7)
618 /* see comment below (stdatomic.h) about the C11 memory model. */
619 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
620 #elif defined __clang && __has_feature (cxx_atomic)
621 /* see comment below (stdatomic.h) about the C11 memory model. */
622 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
623 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
624 #define ECB_MEMORY_FENCE __sync_synchronize ()
625 #elif _MSC_VER >= 1400 /* VC++ 2005 */
626 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
627 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
628 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
629 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
630 #elif defined _WIN32
631 #include <WinNT.h>
632 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
633 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
634 #include <mbarrier.h>
635 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
636 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
637 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
638 #elif __xlC__
639 #define ECB_MEMORY_FENCE __sync ()
640 #endif
641#endif
642
643#ifndef ECB_MEMORY_FENCE
644 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
645 /* we assume that these memory fences work on all variables/all memory accesses, */
646 /* not just C11 atomics and atomic accesses */
647 #include <stdatomic.h>
648 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
649 /* any fence other than seq_cst, which isn't very efficient for us. */
650 /* Why that is, we don't know - either the C11 memory model is quite useless */
651 /* for most usages, or gcc and clang have a bug */
652 /* I *currently* lean towards the latter, and inefficiently implement */
653 /* all three of ecb's fences as a seq_cst fence */
654 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
655 #endif
656#endif
657
658#ifndef ECB_MEMORY_FENCE
659 #if !ECB_AVOID_PTHREADS
660 /*
661 * if you get undefined symbol references to pthread_mutex_lock,
662 * or failure to find pthread.h, then you should implement
663 * the ECB_MEMORY_FENCE operations for your cpu/compiler
664 * OR provide pthread.h and link against the posix thread library
665 * of your system.
666 */
667 #include <pthread.h>
668 #define ECB_NEEDS_PTHREADS 1
669 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
670
671 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
672 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
673 #endif
674#endif
675
676#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
677 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
678#endif
679
680#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
681 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
682#endif
683
684/*****************************************************************************/
685
686#if __cplusplus
687 #define ecb_inline static inline
688#elif ECB_GCC_VERSION(2,5)
689 #define ecb_inline static __inline__
690#elif ECB_C99
691 #define ecb_inline static inline
692#else
693 #define ecb_inline static
694#endif
695
696#if ECB_GCC_VERSION(3,3)
697 #define ecb_restrict __restrict__
698#elif ECB_C99
699 #define ecb_restrict restrict
700#else
701 #define ecb_restrict
702#endif
703
704typedef int ecb_bool;
705
706#define ECB_CONCAT_(a, b) a ## b
707#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
708#define ECB_STRINGIFY_(a) # a
709#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
710
711#define ecb_function_ ecb_inline
712
713#if ECB_GCC_VERSION(3,1)
714 #define ecb_attribute(attrlist) __attribute__(attrlist)
715 #define ecb_is_constant(expr) __builtin_constant_p (expr)
716 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
717 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
718#else
719 #define ecb_attribute(attrlist)
720 #define ecb_is_constant(expr) 0
721 #define ecb_expect(expr,value) (expr)
722 #define ecb_prefetch(addr,rw,locality)
723#endif
724
725/* no emulation for ecb_decltype */
726#if ECB_GCC_VERSION(4,5)
727 #define ecb_decltype(x) __decltype(x)
728#elif ECB_GCC_VERSION(3,0)
729 #define ecb_decltype(x) __typeof(x)
730#endif
731
732#define ecb_noinline ecb_attribute ((__noinline__))
733#define ecb_unused ecb_attribute ((__unused__))
734#define ecb_const ecb_attribute ((__const__))
735#define ecb_pure ecb_attribute ((__pure__))
736
737#if ECB_C11
738 #define ecb_noreturn _Noreturn
739#else
740 #define ecb_noreturn ecb_attribute ((__noreturn__))
741#endif
742
743#if ECB_GCC_VERSION(4,3)
744 #define ecb_artificial ecb_attribute ((__artificial__))
745 #define ecb_hot ecb_attribute ((__hot__))
746 #define ecb_cold ecb_attribute ((__cold__))
747#else
748 #define ecb_artificial
749 #define ecb_hot
750 #define ecb_cold
751#endif
752
753/* put around conditional expressions if you are very sure that the */
754/* expression is mostly true or mostly false. note that these return */
755/* booleans, not the expression. */
343#define expect_false(expr) expect ((expr) != 0, 0) 756#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
344#define expect_true(expr) expect ((expr) != 0, 1) 757#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
758/* for compatibility to the rest of the world */
759#define ecb_likely(expr) ecb_expect_true (expr)
760#define ecb_unlikely(expr) ecb_expect_false (expr)
761
762/* count trailing zero bits and count # of one bits */
763#if ECB_GCC_VERSION(3,4)
764 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
765 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
766 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
767 #define ecb_ctz32(x) __builtin_ctz (x)
768 #define ecb_ctz64(x) __builtin_ctzll (x)
769 #define ecb_popcount32(x) __builtin_popcount (x)
770 /* no popcountll */
771#else
772 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
773 ecb_function_ int
774 ecb_ctz32 (uint32_t x)
775 {
776 int r = 0;
777
778 x &= ~x + 1; /* this isolates the lowest bit */
779
780#if ECB_branchless_on_i386
781 r += !!(x & 0xaaaaaaaa) << 0;
782 r += !!(x & 0xcccccccc) << 1;
783 r += !!(x & 0xf0f0f0f0) << 2;
784 r += !!(x & 0xff00ff00) << 3;
785 r += !!(x & 0xffff0000) << 4;
786#else
787 if (x & 0xaaaaaaaa) r += 1;
788 if (x & 0xcccccccc) r += 2;
789 if (x & 0xf0f0f0f0) r += 4;
790 if (x & 0xff00ff00) r += 8;
791 if (x & 0xffff0000) r += 16;
792#endif
793
794 return r;
795 }
796
797 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
798 ecb_function_ int
799 ecb_ctz64 (uint64_t x)
800 {
801 int shift = x & 0xffffffffU ? 0 : 32;
802 return ecb_ctz32 (x >> shift) + shift;
803 }
804
805 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
806 ecb_function_ int
807 ecb_popcount32 (uint32_t x)
808 {
809 x -= (x >> 1) & 0x55555555;
810 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
811 x = ((x >> 4) + x) & 0x0f0f0f0f;
812 x *= 0x01010101;
813
814 return x >> 24;
815 }
816
817 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
818 ecb_function_ int ecb_ld32 (uint32_t x)
819 {
820 int r = 0;
821
822 if (x >> 16) { x >>= 16; r += 16; }
823 if (x >> 8) { x >>= 8; r += 8; }
824 if (x >> 4) { x >>= 4; r += 4; }
825 if (x >> 2) { x >>= 2; r += 2; }
826 if (x >> 1) { r += 1; }
827
828 return r;
829 }
830
831 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
832 ecb_function_ int ecb_ld64 (uint64_t x)
833 {
834 int r = 0;
835
836 if (x >> 32) { x >>= 32; r += 32; }
837
838 return r + ecb_ld32 (x);
839 }
840#endif
841
842ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
843ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
844ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
845ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
846
847ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
848ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
849{
850 return ( (x * 0x0802U & 0x22110U)
851 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
852}
853
854ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
855ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
856{
857 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
858 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
859 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
860 x = ( x >> 8 ) | ( x << 8);
861
862 return x;
863}
864
865ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
866ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
867{
868 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
869 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
870 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
871 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
872 x = ( x >> 16 ) | ( x << 16);
873
874 return x;
875}
876
877/* popcount64 is only available on 64 bit cpus as gcc builtin */
878/* so for this version we are lazy */
879ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
880ecb_function_ int
881ecb_popcount64 (uint64_t x)
882{
883 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
884}
885
886ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
887ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
888ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
889ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
890ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
891ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
892ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
893ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
894
895ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
896ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
897ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
898ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
899ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
900ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
901ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
902ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
903
904#if ECB_GCC_VERSION(4,3)
905 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
906 #define ecb_bswap32(x) __builtin_bswap32 (x)
907 #define ecb_bswap64(x) __builtin_bswap64 (x)
908#else
909 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
910 ecb_function_ uint16_t
911 ecb_bswap16 (uint16_t x)
912 {
913 return ecb_rotl16 (x, 8);
914 }
915
916 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
917 ecb_function_ uint32_t
918 ecb_bswap32 (uint32_t x)
919 {
920 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
921 }
922
923 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
924 ecb_function_ uint64_t
925 ecb_bswap64 (uint64_t x)
926 {
927 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
928 }
929#endif
930
931#if ECB_GCC_VERSION(4,5)
932 #define ecb_unreachable() __builtin_unreachable ()
933#else
934 /* this seems to work fine, but gcc always emits a warning for it :/ */
935 ecb_inline void ecb_unreachable (void) ecb_noreturn;
936 ecb_inline void ecb_unreachable (void) { }
937#endif
938
939/* try to tell the compiler that some condition is definitely true */
940#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
941
942ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
943ecb_inline unsigned char
944ecb_byteorder_helper (void)
945{
946 const uint32_t u = 0x11223344;
947 return *(unsigned char *)&u;
948}
949
950ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
951ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
952ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
953ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
954
955#if ECB_GCC_VERSION(3,0) || ECB_C99
956 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
957#else
958 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
959#endif
960
961#if __cplusplus
962 template<typename T>
963 static inline T ecb_div_rd (T val, T div)
964 {
965 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
966 }
967 template<typename T>
968 static inline T ecb_div_ru (T val, T div)
969 {
970 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
971 }
972#else
973 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
974 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
975#endif
976
977#if ecb_cplusplus_does_not_suck
978 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
979 template<typename T, int N>
980 static inline int ecb_array_length (const T (&arr)[N])
981 {
982 return N;
983 }
984#else
985 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
986#endif
987
988#endif
989
990/* ECB.H END */
991
992#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
993/* if your architecture doesn't need memory fences, e.g. because it is
994 * single-cpu/core, or if you use libev in a project that doesn't use libev
995 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
996 * libev, in which cases the memory fences become nops.
997 * alternatively, you can remove this #error and link against libpthread,
998 * which will then provide the memory fences.
999 */
1000# error "memory fences not defined for your architecture, please report"
1001#endif
1002
1003#ifndef ECB_MEMORY_FENCE
1004# define ECB_MEMORY_FENCE do { } while (0)
1005# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1006# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1007#endif
1008
1009#define expect_false(cond) ecb_expect_false (cond)
1010#define expect_true(cond) ecb_expect_true (cond)
1011#define noinline ecb_noinline
1012
345#define inline_size static inline 1013#define inline_size ecb_inline
346 1014
347#if EV_MINIMAL 1015#if EV_FEATURE_CODE
1016# define inline_speed ecb_inline
1017#else
348# define inline_speed static noinline 1018# define inline_speed static noinline
1019#endif
1020
1021#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1022
1023#if EV_MINPRI == EV_MAXPRI
1024# define ABSPRI(w) (((W)w), 0)
349#else 1025#else
350# define inline_speed static inline
351#endif
352
353#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
354#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1026# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1027#endif
355 1028
356#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1029#define EMPTY /* required for microsofts broken pseudo-c compiler */
357#define EMPTY2(a,b) /* used to suppress some warnings */ 1030#define EMPTY2(a,b) /* used to suppress some warnings */
358 1031
359typedef ev_watcher *W; 1032typedef ev_watcher *W;
361typedef ev_watcher_time *WT; 1034typedef ev_watcher_time *WT;
362 1035
363#define ev_active(w) ((W)(w))->active 1036#define ev_active(w) ((W)(w))->active
364#define ev_at(w) ((WT)(w))->at 1037#define ev_at(w) ((WT)(w))->at
365 1038
1039#if EV_USE_REALTIME
1040/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1041/* giving it a reasonably high chance of working on typical architectures */
1042static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1043#endif
1044
366#if EV_USE_MONOTONIC 1045#if EV_USE_MONOTONIC
367/* sig_atomic_t is used to avoid per-thread variables or locking but still */
368/* giving it a reasonably high chance of working on typical architetcures */
369static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1046static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1047#endif
1048
1049#ifndef EV_FD_TO_WIN32_HANDLE
1050# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1051#endif
1052#ifndef EV_WIN32_HANDLE_TO_FD
1053# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1054#endif
1055#ifndef EV_WIN32_CLOSE_FD
1056# define EV_WIN32_CLOSE_FD(fd) close (fd)
370#endif 1057#endif
371 1058
372#ifdef _WIN32 1059#ifdef _WIN32
373# include "ev_win32.c" 1060# include "ev_win32.c"
374#endif 1061#endif
375 1062
376/*****************************************************************************/ 1063/*****************************************************************************/
377 1064
1065/* define a suitable floor function (only used by periodics atm) */
1066
1067#if EV_USE_FLOOR
1068# include <math.h>
1069# define ev_floor(v) floor (v)
1070#else
1071
1072#include <float.h>
1073
1074/* a floor() replacement function, should be independent of ev_tstamp type */
1075static ev_tstamp noinline
1076ev_floor (ev_tstamp v)
1077{
1078 /* the choice of shift factor is not terribly important */
1079#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1080 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1081#else
1082 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1083#endif
1084
1085 /* argument too large for an unsigned long? */
1086 if (expect_false (v >= shift))
1087 {
1088 ev_tstamp f;
1089
1090 if (v == v - 1.)
1091 return v; /* very large number */
1092
1093 f = shift * ev_floor (v * (1. / shift));
1094 return f + ev_floor (v - f);
1095 }
1096
1097 /* special treatment for negative args? */
1098 if (expect_false (v < 0.))
1099 {
1100 ev_tstamp f = -ev_floor (-v);
1101
1102 return f - (f == v ? 0 : 1);
1103 }
1104
1105 /* fits into an unsigned long */
1106 return (unsigned long)v;
1107}
1108
1109#endif
1110
1111/*****************************************************************************/
1112
1113#ifdef __linux
1114# include <sys/utsname.h>
1115#endif
1116
1117static unsigned int noinline ecb_cold
1118ev_linux_version (void)
1119{
1120#ifdef __linux
1121 unsigned int v = 0;
1122 struct utsname buf;
1123 int i;
1124 char *p = buf.release;
1125
1126 if (uname (&buf))
1127 return 0;
1128
1129 for (i = 3+1; --i; )
1130 {
1131 unsigned int c = 0;
1132
1133 for (;;)
1134 {
1135 if (*p >= '0' && *p <= '9')
1136 c = c * 10 + *p++ - '0';
1137 else
1138 {
1139 p += *p == '.';
1140 break;
1141 }
1142 }
1143
1144 v = (v << 8) | c;
1145 }
1146
1147 return v;
1148#else
1149 return 0;
1150#endif
1151}
1152
1153/*****************************************************************************/
1154
1155#if EV_AVOID_STDIO
1156static void noinline ecb_cold
1157ev_printerr (const char *msg)
1158{
1159 write (STDERR_FILENO, msg, strlen (msg));
1160}
1161#endif
1162
378static void (*syserr_cb)(const char *msg); 1163static void (*syserr_cb)(const char *msg) EV_THROW;
379 1164
380void 1165void ecb_cold
381ev_set_syserr_cb (void (*cb)(const char *msg)) 1166ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
382{ 1167{
383 syserr_cb = cb; 1168 syserr_cb = cb;
384} 1169}
385 1170
386static void noinline 1171static void noinline ecb_cold
387syserr (const char *msg) 1172ev_syserr (const char *msg)
388{ 1173{
389 if (!msg) 1174 if (!msg)
390 msg = "(libev) system error"; 1175 msg = "(libev) system error";
391 1176
392 if (syserr_cb) 1177 if (syserr_cb)
393 syserr_cb (msg); 1178 syserr_cb (msg);
394 else 1179 else
395 { 1180 {
1181#if EV_AVOID_STDIO
1182 ev_printerr (msg);
1183 ev_printerr (": ");
1184 ev_printerr (strerror (errno));
1185 ev_printerr ("\n");
1186#else
396 perror (msg); 1187 perror (msg);
1188#endif
397 abort (); 1189 abort ();
398 } 1190 }
399} 1191}
400 1192
401static void * 1193static void *
402ev_realloc_emul (void *ptr, long size) 1194ev_realloc_emul (void *ptr, long size) EV_THROW
403{ 1195{
404 /* some systems, notably openbsd and darwin, fail to properly 1196 /* some systems, notably openbsd and darwin, fail to properly
405 * implement realloc (x, 0) (as required by both ansi c-98 and 1197 * implement realloc (x, 0) (as required by both ansi c-89 and
406 * the single unix specification, so work around them here. 1198 * the single unix specification, so work around them here.
1199 * recently, also (at least) fedora and debian started breaking it,
1200 * despite documenting it otherwise.
407 */ 1201 */
408 1202
409 if (size) 1203 if (size)
410 return realloc (ptr, size); 1204 return realloc (ptr, size);
411 1205
412 free (ptr); 1206 free (ptr);
413 return 0; 1207 return 0;
414} 1208}
415 1209
416static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 1210static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
417 1211
418void 1212void ecb_cold
419ev_set_allocator (void *(*cb)(void *ptr, long size)) 1213ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
420{ 1214{
421 alloc = cb; 1215 alloc = cb;
422} 1216}
423 1217
424inline_speed void * 1218inline_speed void *
426{ 1220{
427 ptr = alloc (ptr, size); 1221 ptr = alloc (ptr, size);
428 1222
429 if (!ptr && size) 1223 if (!ptr && size)
430 { 1224 {
1225#if EV_AVOID_STDIO
1226 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1227#else
431 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1228 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1229#endif
432 abort (); 1230 abort ();
433 } 1231 }
434 1232
435 return ptr; 1233 return ptr;
436} 1234}
438#define ev_malloc(size) ev_realloc (0, (size)) 1236#define ev_malloc(size) ev_realloc (0, (size))
439#define ev_free(ptr) ev_realloc ((ptr), 0) 1237#define ev_free(ptr) ev_realloc ((ptr), 0)
440 1238
441/*****************************************************************************/ 1239/*****************************************************************************/
442 1240
1241/* set in reify when reification needed */
1242#define EV_ANFD_REIFY 1
1243
1244/* file descriptor info structure */
443typedef struct 1245typedef struct
444{ 1246{
445 WL head; 1247 WL head;
446 unsigned char events; 1248 unsigned char events; /* the events watched for */
1249 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1250 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
447 unsigned char reify; 1251 unsigned char unused;
1252#if EV_USE_EPOLL
1253 unsigned int egen; /* generation counter to counter epoll bugs */
1254#endif
448#if EV_SELECT_IS_WINSOCKET 1255#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
449 SOCKET handle; 1256 SOCKET handle;
450#endif 1257#endif
1258#if EV_USE_IOCP
1259 OVERLAPPED or, ow;
1260#endif
451} ANFD; 1261} ANFD;
452 1262
1263/* stores the pending event set for a given watcher */
453typedef struct 1264typedef struct
454{ 1265{
455 W w; 1266 W w;
456 int events; 1267 int events; /* the pending event set for the given watcher */
457} ANPENDING; 1268} ANPENDING;
458 1269
459#if EV_USE_INOTIFY 1270#if EV_USE_INOTIFY
460/* hash table entry per inotify-id */ 1271/* hash table entry per inotify-id */
461typedef struct 1272typedef struct
464} ANFS; 1275} ANFS;
465#endif 1276#endif
466 1277
467/* Heap Entry */ 1278/* Heap Entry */
468#if EV_HEAP_CACHE_AT 1279#if EV_HEAP_CACHE_AT
1280 /* a heap element */
469 typedef struct { 1281 typedef struct {
470 ev_tstamp at; 1282 ev_tstamp at;
471 WT w; 1283 WT w;
472 } ANHE; 1284 } ANHE;
473 1285
474 #define ANHE_w(he) (he).w /* access watcher, read-write */ 1286 #define ANHE_w(he) (he).w /* access watcher, read-write */
475 #define ANHE_at(he) (he).at /* access cached at, read-only */ 1287 #define ANHE_at(he) (he).at /* access cached at, read-only */
476 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 1288 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
477#else 1289#else
1290 /* a heap element */
478 typedef WT ANHE; 1291 typedef WT ANHE;
479 1292
480 #define ANHE_w(he) (he) 1293 #define ANHE_w(he) (he)
481 #define ANHE_at(he) (he)->at 1294 #define ANHE_at(he) (he)->at
482 #define ANHE_at_cache(he) 1295 #define ANHE_at_cache(he)
493 #undef VAR 1306 #undef VAR
494 }; 1307 };
495 #include "ev_wrap.h" 1308 #include "ev_wrap.h"
496 1309
497 static struct ev_loop default_loop_struct; 1310 static struct ev_loop default_loop_struct;
498 struct ev_loop *ev_default_loop_ptr; 1311 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
499 1312
500#else 1313#else
501 1314
502 ev_tstamp ev_rt_now; 1315 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
503 #define VAR(name,decl) static decl; 1316 #define VAR(name,decl) static decl;
504 #include "ev_vars.h" 1317 #include "ev_vars.h"
505 #undef VAR 1318 #undef VAR
506 1319
507 static int ev_default_loop_ptr; 1320 static int ev_default_loop_ptr;
508 1321
509#endif 1322#endif
510 1323
1324#if EV_FEATURE_API
1325# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1326# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1327# define EV_INVOKE_PENDING invoke_cb (EV_A)
1328#else
1329# define EV_RELEASE_CB (void)0
1330# define EV_ACQUIRE_CB (void)0
1331# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1332#endif
1333
1334#define EVBREAK_RECURSE 0x80
1335
511/*****************************************************************************/ 1336/*****************************************************************************/
512 1337
1338#ifndef EV_HAVE_EV_TIME
513ev_tstamp 1339ev_tstamp
514ev_time (void) 1340ev_time (void) EV_THROW
515{ 1341{
516#if EV_USE_REALTIME 1342#if EV_USE_REALTIME
1343 if (expect_true (have_realtime))
1344 {
517 struct timespec ts; 1345 struct timespec ts;
518 clock_gettime (CLOCK_REALTIME, &ts); 1346 clock_gettime (CLOCK_REALTIME, &ts);
519 return ts.tv_sec + ts.tv_nsec * 1e-9; 1347 return ts.tv_sec + ts.tv_nsec * 1e-9;
520#else 1348 }
1349#endif
1350
521 struct timeval tv; 1351 struct timeval tv;
522 gettimeofday (&tv, 0); 1352 gettimeofday (&tv, 0);
523 return tv.tv_sec + tv.tv_usec * 1e-6; 1353 return tv.tv_sec + tv.tv_usec * 1e-6;
524#endif
525} 1354}
1355#endif
526 1356
527ev_tstamp inline_size 1357inline_size ev_tstamp
528get_clock (void) 1358get_clock (void)
529{ 1359{
530#if EV_USE_MONOTONIC 1360#if EV_USE_MONOTONIC
531 if (expect_true (have_monotonic)) 1361 if (expect_true (have_monotonic))
532 { 1362 {
539 return ev_time (); 1369 return ev_time ();
540} 1370}
541 1371
542#if EV_MULTIPLICITY 1372#if EV_MULTIPLICITY
543ev_tstamp 1373ev_tstamp
544ev_now (EV_P) 1374ev_now (EV_P) EV_THROW
545{ 1375{
546 return ev_rt_now; 1376 return ev_rt_now;
547} 1377}
548#endif 1378#endif
549 1379
550void 1380void
551ev_sleep (ev_tstamp delay) 1381ev_sleep (ev_tstamp delay) EV_THROW
552{ 1382{
553 if (delay > 0.) 1383 if (delay > 0.)
554 { 1384 {
555#if EV_USE_NANOSLEEP 1385#if EV_USE_NANOSLEEP
556 struct timespec ts; 1386 struct timespec ts;
557 1387
558 ts.tv_sec = (time_t)delay; 1388 EV_TS_SET (ts, delay);
559 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
560
561 nanosleep (&ts, 0); 1389 nanosleep (&ts, 0);
562#elif defined(_WIN32) 1390#elif defined _WIN32
563 Sleep ((unsigned long)(delay * 1e3)); 1391 Sleep ((unsigned long)(delay * 1e3));
564#else 1392#else
565 struct timeval tv; 1393 struct timeval tv;
566 1394
567 tv.tv_sec = (time_t)delay;
568 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
569
570 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */ 1395 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
571 /* somehting nto guaranteed by newer posix versions, but guaranteed */ 1396 /* something not guaranteed by newer posix versions, but guaranteed */
572 /* by older ones */ 1397 /* by older ones */
1398 EV_TV_SET (tv, delay);
573 select (0, 0, 0, 0, &tv); 1399 select (0, 0, 0, 0, &tv);
574#endif 1400#endif
575 } 1401 }
576} 1402}
577 1403
578/*****************************************************************************/ 1404/*****************************************************************************/
579 1405
580#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 1406#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
581 1407
582int inline_size 1408/* find a suitable new size for the given array, */
1409/* hopefully by rounding to a nice-to-malloc size */
1410inline_size int
583array_nextsize (int elem, int cur, int cnt) 1411array_nextsize (int elem, int cur, int cnt)
584{ 1412{
585 int ncur = cur + 1; 1413 int ncur = cur + 1;
586 1414
587 do 1415 do
588 ncur <<= 1; 1416 ncur <<= 1;
589 while (cnt > ncur); 1417 while (cnt > ncur);
590 1418
591 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */ 1419 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
592 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4) 1420 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
593 { 1421 {
594 ncur *= elem; 1422 ncur *= elem;
595 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1); 1423 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
596 ncur = ncur - sizeof (void *) * 4; 1424 ncur = ncur - sizeof (void *) * 4;
598 } 1426 }
599 1427
600 return ncur; 1428 return ncur;
601} 1429}
602 1430
603static noinline void * 1431static void * noinline ecb_cold
604array_realloc (int elem, void *base, int *cur, int cnt) 1432array_realloc (int elem, void *base, int *cur, int cnt)
605{ 1433{
606 *cur = array_nextsize (elem, *cur, cnt); 1434 *cur = array_nextsize (elem, *cur, cnt);
607 return ev_realloc (base, elem * *cur); 1435 return ev_realloc (base, elem * *cur);
608} 1436}
1437
1438#define array_init_zero(base,count) \
1439 memset ((void *)(base), 0, sizeof (*(base)) * (count))
609 1440
610#define array_needsize(type,base,cur,cnt,init) \ 1441#define array_needsize(type,base,cur,cnt,init) \
611 if (expect_false ((cnt) > (cur))) \ 1442 if (expect_false ((cnt) > (cur))) \
612 { \ 1443 { \
613 int ocur_ = (cur); \ 1444 int ecb_unused ocur_ = (cur); \
614 (base) = (type *)array_realloc \ 1445 (base) = (type *)array_realloc \
615 (sizeof (type), (base), &(cur), (cnt)); \ 1446 (sizeof (type), (base), &(cur), (cnt)); \
616 init ((base) + (ocur_), (cur) - ocur_); \ 1447 init ((base) + (ocur_), (cur) - ocur_); \
617 } 1448 }
618 1449
625 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1456 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
626 } 1457 }
627#endif 1458#endif
628 1459
629#define array_free(stem, idx) \ 1460#define array_free(stem, idx) \
630 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1461 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
631 1462
632/*****************************************************************************/ 1463/*****************************************************************************/
633 1464
1465/* dummy callback for pending events */
1466static void noinline
1467pendingcb (EV_P_ ev_prepare *w, int revents)
1468{
1469}
1470
634void noinline 1471void noinline
635ev_feed_event (EV_P_ void *w, int revents) 1472ev_feed_event (EV_P_ void *w, int revents) EV_THROW
636{ 1473{
637 W w_ = (W)w; 1474 W w_ = (W)w;
638 int pri = ABSPRI (w_); 1475 int pri = ABSPRI (w_);
639 1476
640 if (expect_false (w_->pending)) 1477 if (expect_false (w_->pending))
644 w_->pending = ++pendingcnt [pri]; 1481 w_->pending = ++pendingcnt [pri];
645 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 1482 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
646 pendings [pri][w_->pending - 1].w = w_; 1483 pendings [pri][w_->pending - 1].w = w_;
647 pendings [pri][w_->pending - 1].events = revents; 1484 pendings [pri][w_->pending - 1].events = revents;
648 } 1485 }
649}
650 1486
651void inline_speed 1487 pendingpri = NUMPRI - 1;
1488}
1489
1490inline_speed void
1491feed_reverse (EV_P_ W w)
1492{
1493 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1494 rfeeds [rfeedcnt++] = w;
1495}
1496
1497inline_size void
1498feed_reverse_done (EV_P_ int revents)
1499{
1500 do
1501 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1502 while (rfeedcnt);
1503}
1504
1505inline_speed void
652queue_events (EV_P_ W *events, int eventcnt, int type) 1506queue_events (EV_P_ W *events, int eventcnt, int type)
653{ 1507{
654 int i; 1508 int i;
655 1509
656 for (i = 0; i < eventcnt; ++i) 1510 for (i = 0; i < eventcnt; ++i)
657 ev_feed_event (EV_A_ events [i], type); 1511 ev_feed_event (EV_A_ events [i], type);
658} 1512}
659 1513
660/*****************************************************************************/ 1514/*****************************************************************************/
661 1515
662void inline_size 1516inline_speed void
663anfds_init (ANFD *base, int count)
664{
665 while (count--)
666 {
667 base->head = 0;
668 base->events = EV_NONE;
669 base->reify = 0;
670
671 ++base;
672 }
673}
674
675void inline_speed
676fd_event (EV_P_ int fd, int revents) 1517fd_event_nocheck (EV_P_ int fd, int revents)
677{ 1518{
678 ANFD *anfd = anfds + fd; 1519 ANFD *anfd = anfds + fd;
679 ev_io *w; 1520 ev_io *w;
680 1521
681 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1522 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
685 if (ev) 1526 if (ev)
686 ev_feed_event (EV_A_ (W)w, ev); 1527 ev_feed_event (EV_A_ (W)w, ev);
687 } 1528 }
688} 1529}
689 1530
1531/* do not submit kernel events for fds that have reify set */
1532/* because that means they changed while we were polling for new events */
1533inline_speed void
1534fd_event (EV_P_ int fd, int revents)
1535{
1536 ANFD *anfd = anfds + fd;
1537
1538 if (expect_true (!anfd->reify))
1539 fd_event_nocheck (EV_A_ fd, revents);
1540}
1541
690void 1542void
691ev_feed_fd_event (EV_P_ int fd, int revents) 1543ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
692{ 1544{
693 if (fd >= 0 && fd < anfdmax) 1545 if (fd >= 0 && fd < anfdmax)
694 fd_event (EV_A_ fd, revents); 1546 fd_event_nocheck (EV_A_ fd, revents);
695} 1547}
696 1548
697void inline_size 1549/* make sure the external fd watch events are in-sync */
1550/* with the kernel/libev internal state */
1551inline_size void
698fd_reify (EV_P) 1552fd_reify (EV_P)
699{ 1553{
700 int i; 1554 int i;
1555
1556#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1557 for (i = 0; i < fdchangecnt; ++i)
1558 {
1559 int fd = fdchanges [i];
1560 ANFD *anfd = anfds + fd;
1561
1562 if (anfd->reify & EV__IOFDSET && anfd->head)
1563 {
1564 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1565
1566 if (handle != anfd->handle)
1567 {
1568 unsigned long arg;
1569
1570 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1571
1572 /* handle changed, but fd didn't - we need to do it in two steps */
1573 backend_modify (EV_A_ fd, anfd->events, 0);
1574 anfd->events = 0;
1575 anfd->handle = handle;
1576 }
1577 }
1578 }
1579#endif
701 1580
702 for (i = 0; i < fdchangecnt; ++i) 1581 for (i = 0; i < fdchangecnt; ++i)
703 { 1582 {
704 int fd = fdchanges [i]; 1583 int fd = fdchanges [i];
705 ANFD *anfd = anfds + fd; 1584 ANFD *anfd = anfds + fd;
706 ev_io *w; 1585 ev_io *w;
707 1586
708 unsigned char events = 0; 1587 unsigned char o_events = anfd->events;
1588 unsigned char o_reify = anfd->reify;
709 1589
710 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1590 anfd->reify = 0;
711 events |= (unsigned char)w->events;
712 1591
713#if EV_SELECT_IS_WINSOCKET 1592 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
714 if (events)
715 { 1593 {
716 unsigned long arg; 1594 anfd->events = 0;
717 #ifdef EV_FD_TO_WIN32_HANDLE 1595
718 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1596 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
719 #else 1597 anfd->events |= (unsigned char)w->events;
720 anfd->handle = _get_osfhandle (fd); 1598
721 #endif 1599 if (o_events != anfd->events)
722 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0)); 1600 o_reify = EV__IOFDSET; /* actually |= */
723 } 1601 }
724#endif
725 1602
726 { 1603 if (o_reify & EV__IOFDSET)
727 unsigned char o_events = anfd->events;
728 unsigned char o_reify = anfd->reify;
729
730 anfd->reify = 0;
731 anfd->events = events;
732
733 if (o_events != events || o_reify & EV_IOFDSET)
734 backend_modify (EV_A_ fd, o_events, events); 1604 backend_modify (EV_A_ fd, o_events, anfd->events);
735 }
736 } 1605 }
737 1606
738 fdchangecnt = 0; 1607 fdchangecnt = 0;
739} 1608}
740 1609
741void inline_size 1610/* something about the given fd changed */
1611inline_size void
742fd_change (EV_P_ int fd, int flags) 1612fd_change (EV_P_ int fd, int flags)
743{ 1613{
744 unsigned char reify = anfds [fd].reify; 1614 unsigned char reify = anfds [fd].reify;
745 anfds [fd].reify |= flags; 1615 anfds [fd].reify |= flags;
746 1616
750 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1620 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
751 fdchanges [fdchangecnt - 1] = fd; 1621 fdchanges [fdchangecnt - 1] = fd;
752 } 1622 }
753} 1623}
754 1624
755void inline_speed 1625/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1626inline_speed void ecb_cold
756fd_kill (EV_P_ int fd) 1627fd_kill (EV_P_ int fd)
757{ 1628{
758 ev_io *w; 1629 ev_io *w;
759 1630
760 while ((w = (ev_io *)anfds [fd].head)) 1631 while ((w = (ev_io *)anfds [fd].head))
762 ev_io_stop (EV_A_ w); 1633 ev_io_stop (EV_A_ w);
763 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1634 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
764 } 1635 }
765} 1636}
766 1637
767int inline_size 1638/* check whether the given fd is actually valid, for error recovery */
1639inline_size int ecb_cold
768fd_valid (int fd) 1640fd_valid (int fd)
769{ 1641{
770#ifdef _WIN32 1642#ifdef _WIN32
771 return _get_osfhandle (fd) != -1; 1643 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
772#else 1644#else
773 return fcntl (fd, F_GETFD) != -1; 1645 return fcntl (fd, F_GETFD) != -1;
774#endif 1646#endif
775} 1647}
776 1648
777/* called on EBADF to verify fds */ 1649/* called on EBADF to verify fds */
778static void noinline 1650static void noinline ecb_cold
779fd_ebadf (EV_P) 1651fd_ebadf (EV_P)
780{ 1652{
781 int fd; 1653 int fd;
782 1654
783 for (fd = 0; fd < anfdmax; ++fd) 1655 for (fd = 0; fd < anfdmax; ++fd)
785 if (!fd_valid (fd) && errno == EBADF) 1657 if (!fd_valid (fd) && errno == EBADF)
786 fd_kill (EV_A_ fd); 1658 fd_kill (EV_A_ fd);
787} 1659}
788 1660
789/* called on ENOMEM in select/poll to kill some fds and retry */ 1661/* called on ENOMEM in select/poll to kill some fds and retry */
790static void noinline 1662static void noinline ecb_cold
791fd_enomem (EV_P) 1663fd_enomem (EV_P)
792{ 1664{
793 int fd; 1665 int fd;
794 1666
795 for (fd = anfdmax; fd--; ) 1667 for (fd = anfdmax; fd--; )
796 if (anfds [fd].events) 1668 if (anfds [fd].events)
797 { 1669 {
798 fd_kill (EV_A_ fd); 1670 fd_kill (EV_A_ fd);
799 return; 1671 break;
800 } 1672 }
801} 1673}
802 1674
803/* usually called after fork if backend needs to re-arm all fds from scratch */ 1675/* usually called after fork if backend needs to re-arm all fds from scratch */
804static void noinline 1676static void noinline
808 1680
809 for (fd = 0; fd < anfdmax; ++fd) 1681 for (fd = 0; fd < anfdmax; ++fd)
810 if (anfds [fd].events) 1682 if (anfds [fd].events)
811 { 1683 {
812 anfds [fd].events = 0; 1684 anfds [fd].events = 0;
1685 anfds [fd].emask = 0;
813 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1686 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
814 } 1687 }
815} 1688}
816 1689
1690/* used to prepare libev internal fd's */
1691/* this is not fork-safe */
1692inline_speed void
1693fd_intern (int fd)
1694{
1695#ifdef _WIN32
1696 unsigned long arg = 1;
1697 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1698#else
1699 fcntl (fd, F_SETFD, FD_CLOEXEC);
1700 fcntl (fd, F_SETFL, O_NONBLOCK);
1701#endif
1702}
1703
817/*****************************************************************************/ 1704/*****************************************************************************/
818 1705
819/* 1706/*
820 * the heap functions want a real array index. array index 0 uis guaranteed to not 1707 * the heap functions want a real array index. array index 0 is guaranteed to not
821 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 1708 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
822 * the branching factor of the d-tree. 1709 * the branching factor of the d-tree.
823 */ 1710 */
824 1711
825/* 1712/*
834#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1721#define HEAP0 (DHEAP - 1) /* index of first element in heap */
835#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 1722#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
836#define UPHEAP_DONE(p,k) ((p) == (k)) 1723#define UPHEAP_DONE(p,k) ((p) == (k))
837 1724
838/* away from the root */ 1725/* away from the root */
839void inline_speed 1726inline_speed void
840downheap (ANHE *heap, int N, int k) 1727downheap (ANHE *heap, int N, int k)
841{ 1728{
842 ANHE he = heap [k]; 1729 ANHE he = heap [k];
843 ANHE *E = heap + N + HEAP0; 1730 ANHE *E = heap + N + HEAP0;
844 1731
884#define HEAP0 1 1771#define HEAP0 1
885#define HPARENT(k) ((k) >> 1) 1772#define HPARENT(k) ((k) >> 1)
886#define UPHEAP_DONE(p,k) (!(p)) 1773#define UPHEAP_DONE(p,k) (!(p))
887 1774
888/* away from the root */ 1775/* away from the root */
889void inline_speed 1776inline_speed void
890downheap (ANHE *heap, int N, int k) 1777downheap (ANHE *heap, int N, int k)
891{ 1778{
892 ANHE he = heap [k]; 1779 ANHE he = heap [k];
893 1780
894 for (;;) 1781 for (;;)
895 { 1782 {
896 int c = k << 1; 1783 int c = k << 1;
897 1784
898 if (c > N + HEAP0 - 1) 1785 if (c >= N + HEAP0)
899 break; 1786 break;
900 1787
901 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 1788 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
902 ? 1 : 0; 1789 ? 1 : 0;
903 1790
914 ev_active (ANHE_w (he)) = k; 1801 ev_active (ANHE_w (he)) = k;
915} 1802}
916#endif 1803#endif
917 1804
918/* towards the root */ 1805/* towards the root */
919void inline_speed 1806inline_speed void
920upheap (ANHE *heap, int k) 1807upheap (ANHE *heap, int k)
921{ 1808{
922 ANHE he = heap [k]; 1809 ANHE he = heap [k];
923 1810
924 for (;;) 1811 for (;;)
935 1822
936 heap [k] = he; 1823 heap [k] = he;
937 ev_active (ANHE_w (he)) = k; 1824 ev_active (ANHE_w (he)) = k;
938} 1825}
939 1826
940void inline_size 1827/* move an element suitably so it is in a correct place */
1828inline_size void
941adjustheap (ANHE *heap, int N, int k) 1829adjustheap (ANHE *heap, int N, int k)
942{ 1830{
943 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 1831 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
944 upheap (heap, k); 1832 upheap (heap, k);
945 else 1833 else
946 downheap (heap, N, k); 1834 downheap (heap, N, k);
947} 1835}
948 1836
949/* rebuild the heap: this function is used only once and executed rarely */ 1837/* rebuild the heap: this function is used only once and executed rarely */
950void inline_size 1838inline_size void
951reheap (ANHE *heap, int N) 1839reheap (ANHE *heap, int N)
952{ 1840{
953 int i; 1841 int i;
954 1842
955 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 1843 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
958 upheap (heap, i + HEAP0); 1846 upheap (heap, i + HEAP0);
959} 1847}
960 1848
961/*****************************************************************************/ 1849/*****************************************************************************/
962 1850
1851/* associate signal watchers to a signal signal */
963typedef struct 1852typedef struct
964{ 1853{
1854 EV_ATOMIC_T pending;
1855#if EV_MULTIPLICITY
1856 EV_P;
1857#endif
965 WL head; 1858 WL head;
966 EV_ATOMIC_T gotsig;
967} ANSIG; 1859} ANSIG;
968 1860
969static ANSIG *signals; 1861static ANSIG signals [EV_NSIG - 1];
970static int signalmax;
971
972static EV_ATOMIC_T gotsig;
973
974void inline_size
975signals_init (ANSIG *base, int count)
976{
977 while (count--)
978 {
979 base->head = 0;
980 base->gotsig = 0;
981
982 ++base;
983 }
984}
985 1862
986/*****************************************************************************/ 1863/*****************************************************************************/
987 1864
988void inline_speed 1865#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
989fd_intern (int fd)
990{
991#ifdef _WIN32
992 unsigned long arg = 1;
993 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
994#else
995 fcntl (fd, F_SETFD, FD_CLOEXEC);
996 fcntl (fd, F_SETFL, O_NONBLOCK);
997#endif
998}
999 1866
1000static void noinline 1867static void noinline ecb_cold
1001evpipe_init (EV_P) 1868evpipe_init (EV_P)
1002{ 1869{
1003 if (!ev_is_active (&pipeev)) 1870 if (!ev_is_active (&pipe_w))
1871 {
1872 int fds [2];
1873
1874# if EV_USE_EVENTFD
1875 fds [0] = -1;
1876 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1877 if (fds [1] < 0 && errno == EINVAL)
1878 fds [1] = eventfd (0, 0);
1879
1880 if (fds [1] < 0)
1881# endif
1882 {
1883 while (pipe (fds))
1884 ev_syserr ("(libev) error creating signal/async pipe");
1885
1886 fd_intern (fds [0]);
1887 }
1888
1889 fd_intern (fds [1]);
1890
1891 evpipe [0] = fds [0];
1892
1893 if (evpipe [1] < 0)
1894 evpipe [1] = fds [1]; /* first call, set write fd */
1895 else
1896 {
1897 /* on subsequent calls, do not change evpipe [1] */
1898 /* so that evpipe_write can always rely on its value. */
1899 /* this branch does not do anything sensible on windows, */
1900 /* so must not be executed on windows */
1901
1902 dup2 (fds [1], evpipe [1]);
1903 close (fds [1]);
1904 }
1905
1906 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
1907 ev_io_start (EV_A_ &pipe_w);
1908 ev_unref (EV_A); /* watcher should not keep loop alive */
1004 { 1909 }
1910}
1911
1912inline_speed void
1913evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1914{
1915 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
1916
1917 if (expect_true (*flag))
1918 return;
1919
1920 *flag = 1;
1921 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1922
1923 pipe_write_skipped = 1;
1924
1925 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1926
1927 if (pipe_write_wanted)
1928 {
1929 int old_errno;
1930
1931 pipe_write_skipped = 0;
1932 ECB_MEMORY_FENCE_RELEASE;
1933
1934 old_errno = errno; /* save errno because write will clobber it */
1935
1005#if EV_USE_EVENTFD 1936#if EV_USE_EVENTFD
1006 if ((evfd = eventfd (0, 0)) >= 0) 1937 if (evpipe [0] < 0)
1007 { 1938 {
1008 evpipe [0] = -1; 1939 uint64_t counter = 1;
1009 fd_intern (evfd); 1940 write (evpipe [1], &counter, sizeof (uint64_t));
1010 ev_io_set (&pipeev, evfd, EV_READ);
1011 } 1941 }
1012 else 1942 else
1013#endif 1943#endif
1014 { 1944 {
1015 while (pipe (evpipe)) 1945#ifdef _WIN32
1016 syserr ("(libev) error creating signal/async pipe"); 1946 WSABUF buf;
1017 1947 DWORD sent;
1018 fd_intern (evpipe [0]); 1948 buf.buf = &buf;
1019 fd_intern (evpipe [1]); 1949 buf.len = 1;
1020 ev_io_set (&pipeev, evpipe [0], EV_READ); 1950 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
1951#else
1952 write (evpipe [1], &(evpipe [1]), 1);
1953#endif
1021 } 1954 }
1022 1955
1023 ev_io_start (EV_A_ &pipeev); 1956 errno = old_errno;
1024 ev_unref (EV_A); /* watcher should not keep loop alive */
1025 }
1026}
1027
1028void inline_size
1029evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1030{
1031 if (!*flag)
1032 { 1957 }
1033 int old_errno = errno; /* save errno because write might clobber it */ 1958}
1034 1959
1035 *flag = 1; 1960/* called whenever the libev signal pipe */
1961/* got some events (signal, async) */
1962static void
1963pipecb (EV_P_ ev_io *iow, int revents)
1964{
1965 int i;
1036 1966
1967 if (revents & EV_READ)
1968 {
1037#if EV_USE_EVENTFD 1969#if EV_USE_EVENTFD
1038 if (evfd >= 0) 1970 if (evpipe [0] < 0)
1039 { 1971 {
1040 uint64_t counter = 1; 1972 uint64_t counter;
1041 write (evfd, &counter, sizeof (uint64_t)); 1973 read (evpipe [1], &counter, sizeof (uint64_t));
1042 } 1974 }
1043 else 1975 else
1044#endif 1976#endif
1045 write (evpipe [1], &old_errno, 1); 1977 {
1046
1047 errno = old_errno;
1048 }
1049}
1050
1051static void
1052pipecb (EV_P_ ev_io *iow, int revents)
1053{
1054#if EV_USE_EVENTFD
1055 if (evfd >= 0)
1056 {
1057 uint64_t counter;
1058 read (evfd, &counter, sizeof (uint64_t));
1059 }
1060 else
1061#endif
1062 {
1063 char dummy; 1978 char dummy[4];
1979#ifdef _WIN32
1980 WSABUF buf;
1981 DWORD recvd;
1982 DWORD flags = 0;
1983 buf.buf = dummy;
1984 buf.len = sizeof (dummy);
1985 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
1986#else
1064 read (evpipe [0], &dummy, 1); 1987 read (evpipe [0], &dummy, sizeof (dummy));
1988#endif
1989 }
1990 }
1991
1992 pipe_write_skipped = 0;
1993
1994 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
1995
1996#if EV_SIGNAL_ENABLE
1997 if (sig_pending)
1065 } 1998 {
1999 sig_pending = 0;
1066 2000
1067 if (gotsig && ev_is_default_loop (EV_A)) 2001 ECB_MEMORY_FENCE;
1068 {
1069 int signum;
1070 gotsig = 0;
1071 2002
1072 for (signum = signalmax; signum--; ) 2003 for (i = EV_NSIG - 1; i--; )
1073 if (signals [signum].gotsig) 2004 if (expect_false (signals [i].pending))
1074 ev_feed_signal_event (EV_A_ signum + 1); 2005 ev_feed_signal_event (EV_A_ i + 1);
1075 } 2006 }
2007#endif
1076 2008
1077#if EV_ASYNC_ENABLE 2009#if EV_ASYNC_ENABLE
1078 if (gotasync) 2010 if (async_pending)
1079 { 2011 {
1080 int i; 2012 async_pending = 0;
1081 gotasync = 0; 2013
2014 ECB_MEMORY_FENCE;
1082 2015
1083 for (i = asynccnt; i--; ) 2016 for (i = asynccnt; i--; )
1084 if (asyncs [i]->sent) 2017 if (asyncs [i]->sent)
1085 { 2018 {
1086 asyncs [i]->sent = 0; 2019 asyncs [i]->sent = 0;
2020 ECB_MEMORY_FENCE_RELEASE;
1087 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); 2021 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1088 } 2022 }
1089 } 2023 }
1090#endif 2024#endif
1091} 2025}
1092 2026
1093/*****************************************************************************/ 2027/*****************************************************************************/
1094 2028
2029void
2030ev_feed_signal (int signum) EV_THROW
2031{
2032#if EV_MULTIPLICITY
2033 EV_P = signals [signum - 1].loop;
2034
2035 if (!EV_A)
2036 return;
2037#endif
2038
2039 signals [signum - 1].pending = 1;
2040 evpipe_write (EV_A_ &sig_pending);
2041}
2042
1095static void 2043static void
1096ev_sighandler (int signum) 2044ev_sighandler (int signum)
1097{ 2045{
2046#ifdef _WIN32
2047 signal (signum, ev_sighandler);
2048#endif
2049
2050 ev_feed_signal (signum);
2051}
2052
2053void noinline
2054ev_feed_signal_event (EV_P_ int signum) EV_THROW
2055{
2056 WL w;
2057
2058 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2059 return;
2060
2061 --signum;
2062
1098#if EV_MULTIPLICITY 2063#if EV_MULTIPLICITY
1099 struct ev_loop *loop = &default_loop_struct; 2064 /* it is permissible to try to feed a signal to the wrong loop */
1100#endif 2065 /* or, likely more useful, feeding a signal nobody is waiting for */
1101 2066
1102#if _WIN32 2067 if (expect_false (signals [signum].loop != EV_A))
1103 signal (signum, ev_sighandler);
1104#endif
1105
1106 signals [signum - 1].gotsig = 1;
1107 evpipe_write (EV_A_ &gotsig);
1108}
1109
1110void noinline
1111ev_feed_signal_event (EV_P_ int signum)
1112{
1113 WL w;
1114
1115#if EV_MULTIPLICITY
1116 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1117#endif
1118
1119 --signum;
1120
1121 if (signum < 0 || signum >= signalmax)
1122 return; 2068 return;
2069#endif
1123 2070
1124 signals [signum].gotsig = 0; 2071 signals [signum].pending = 0;
2072 ECB_MEMORY_FENCE_RELEASE;
1125 2073
1126 for (w = signals [signum].head; w; w = w->next) 2074 for (w = signals [signum].head; w; w = w->next)
1127 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2075 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1128} 2076}
1129 2077
2078#if EV_USE_SIGNALFD
2079static void
2080sigfdcb (EV_P_ ev_io *iow, int revents)
2081{
2082 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2083
2084 for (;;)
2085 {
2086 ssize_t res = read (sigfd, si, sizeof (si));
2087
2088 /* not ISO-C, as res might be -1, but works with SuS */
2089 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2090 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2091
2092 if (res < (ssize_t)sizeof (si))
2093 break;
2094 }
2095}
2096#endif
2097
2098#endif
2099
1130/*****************************************************************************/ 2100/*****************************************************************************/
1131 2101
2102#if EV_CHILD_ENABLE
1132static WL childs [EV_PID_HASHSIZE]; 2103static WL childs [EV_PID_HASHSIZE];
1133
1134#ifndef _WIN32
1135 2104
1136static ev_signal childev; 2105static ev_signal childev;
1137 2106
1138#ifndef WIFCONTINUED 2107#ifndef WIFCONTINUED
1139# define WIFCONTINUED(status) 0 2108# define WIFCONTINUED(status) 0
1140#endif 2109#endif
1141 2110
1142void inline_speed 2111/* handle a single child status event */
2112inline_speed void
1143child_reap (EV_P_ int chain, int pid, int status) 2113child_reap (EV_P_ int chain, int pid, int status)
1144{ 2114{
1145 ev_child *w; 2115 ev_child *w;
1146 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2116 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1147 2117
1148 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2118 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1149 { 2119 {
1150 if ((w->pid == pid || !w->pid) 2120 if ((w->pid == pid || !w->pid)
1151 && (!traced || (w->flags & 1))) 2121 && (!traced || (w->flags & 1)))
1152 { 2122 {
1153 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 2123 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1160 2130
1161#ifndef WCONTINUED 2131#ifndef WCONTINUED
1162# define WCONTINUED 0 2132# define WCONTINUED 0
1163#endif 2133#endif
1164 2134
2135/* called on sigchld etc., calls waitpid */
1165static void 2136static void
1166childcb (EV_P_ ev_signal *sw, int revents) 2137childcb (EV_P_ ev_signal *sw, int revents)
1167{ 2138{
1168 int pid, status; 2139 int pid, status;
1169 2140
1177 /* make sure we are called again until all children have been reaped */ 2148 /* make sure we are called again until all children have been reaped */
1178 /* we need to do it this way so that the callback gets called before we continue */ 2149 /* we need to do it this way so that the callback gets called before we continue */
1179 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2150 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1180 2151
1181 child_reap (EV_A_ pid, pid, status); 2152 child_reap (EV_A_ pid, pid, status);
1182 if (EV_PID_HASHSIZE > 1) 2153 if ((EV_PID_HASHSIZE) > 1)
1183 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2154 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1184} 2155}
1185 2156
1186#endif 2157#endif
1187 2158
1188/*****************************************************************************/ 2159/*****************************************************************************/
1189 2160
2161#if EV_USE_IOCP
2162# include "ev_iocp.c"
2163#endif
1190#if EV_USE_PORT 2164#if EV_USE_PORT
1191# include "ev_port.c" 2165# include "ev_port.c"
1192#endif 2166#endif
1193#if EV_USE_KQUEUE 2167#if EV_USE_KQUEUE
1194# include "ev_kqueue.c" 2168# include "ev_kqueue.c"
1201#endif 2175#endif
1202#if EV_USE_SELECT 2176#if EV_USE_SELECT
1203# include "ev_select.c" 2177# include "ev_select.c"
1204#endif 2178#endif
1205 2179
1206int 2180int ecb_cold
1207ev_version_major (void) 2181ev_version_major (void) EV_THROW
1208{ 2182{
1209 return EV_VERSION_MAJOR; 2183 return EV_VERSION_MAJOR;
1210} 2184}
1211 2185
1212int 2186int ecb_cold
1213ev_version_minor (void) 2187ev_version_minor (void) EV_THROW
1214{ 2188{
1215 return EV_VERSION_MINOR; 2189 return EV_VERSION_MINOR;
1216} 2190}
1217 2191
1218/* return true if we are running with elevated privileges and should ignore env variables */ 2192/* return true if we are running with elevated privileges and should ignore env variables */
1219int inline_size 2193int inline_size ecb_cold
1220enable_secure (void) 2194enable_secure (void)
1221{ 2195{
1222#ifdef _WIN32 2196#ifdef _WIN32
1223 return 0; 2197 return 0;
1224#else 2198#else
1225 return getuid () != geteuid () 2199 return getuid () != geteuid ()
1226 || getgid () != getegid (); 2200 || getgid () != getegid ();
1227#endif 2201#endif
1228} 2202}
1229 2203
1230unsigned int 2204unsigned int ecb_cold
1231ev_supported_backends (void) 2205ev_supported_backends (void) EV_THROW
1232{ 2206{
1233 unsigned int flags = 0; 2207 unsigned int flags = 0;
1234 2208
1235 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2209 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1236 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2210 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1239 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2213 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1240 2214
1241 return flags; 2215 return flags;
1242} 2216}
1243 2217
1244unsigned int 2218unsigned int ecb_cold
1245ev_recommended_backends (void) 2219ev_recommended_backends (void) EV_THROW
1246{ 2220{
1247 unsigned int flags = ev_supported_backends (); 2221 unsigned int flags = ev_supported_backends ();
1248 2222
1249#ifndef __NetBSD__ 2223#ifndef __NetBSD__
1250 /* kqueue is borked on everything but netbsd apparently */ 2224 /* kqueue is borked on everything but netbsd apparently */
1251 /* it usually doesn't work correctly on anything but sockets and pipes */ 2225 /* it usually doesn't work correctly on anything but sockets and pipes */
1252 flags &= ~EVBACKEND_KQUEUE; 2226 flags &= ~EVBACKEND_KQUEUE;
1253#endif 2227#endif
1254#ifdef __APPLE__ 2228#ifdef __APPLE__
1255 // flags &= ~EVBACKEND_KQUEUE; for documentation 2229 /* only select works correctly on that "unix-certified" platform */
1256 flags &= ~EVBACKEND_POLL; 2230 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2231 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2232#endif
2233#ifdef __FreeBSD__
2234 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1257#endif 2235#endif
1258 2236
1259 return flags; 2237 return flags;
1260} 2238}
1261 2239
2240unsigned int ecb_cold
2241ev_embeddable_backends (void) EV_THROW
2242{
2243 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2244
2245 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2246 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2247 flags &= ~EVBACKEND_EPOLL;
2248
2249 return flags;
2250}
2251
1262unsigned int 2252unsigned int
1263ev_embeddable_backends (void) 2253ev_backend (EV_P) EV_THROW
1264{ 2254{
1265 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2255 return backend;
1266
1267 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1268 /* please fix it and tell me how to detect the fix */
1269 flags &= ~EVBACKEND_EPOLL;
1270
1271 return flags;
1272} 2256}
1273 2257
2258#if EV_FEATURE_API
1274unsigned int 2259unsigned int
1275ev_backend (EV_P) 2260ev_iteration (EV_P) EV_THROW
1276{ 2261{
1277 return backend; 2262 return loop_count;
1278} 2263}
1279 2264
1280unsigned int 2265unsigned int
1281ev_loop_count (EV_P) 2266ev_depth (EV_P) EV_THROW
1282{ 2267{
1283 return loop_count; 2268 return loop_depth;
1284} 2269}
1285 2270
1286void 2271void
1287ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2272ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1288{ 2273{
1289 io_blocktime = interval; 2274 io_blocktime = interval;
1290} 2275}
1291 2276
1292void 2277void
1293ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2278ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1294{ 2279{
1295 timeout_blocktime = interval; 2280 timeout_blocktime = interval;
1296} 2281}
1297 2282
2283void
2284ev_set_userdata (EV_P_ void *data) EV_THROW
2285{
2286 userdata = data;
2287}
2288
2289void *
2290ev_userdata (EV_P) EV_THROW
2291{
2292 return userdata;
2293}
2294
2295void
2296ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2297{
2298 invoke_cb = invoke_pending_cb;
2299}
2300
2301void
2302ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2303{
2304 release_cb = release;
2305 acquire_cb = acquire;
2306}
2307#endif
2308
2309/* initialise a loop structure, must be zero-initialised */
1298static void noinline 2310static void noinline ecb_cold
1299loop_init (EV_P_ unsigned int flags) 2311loop_init (EV_P_ unsigned int flags) EV_THROW
1300{ 2312{
1301 if (!backend) 2313 if (!backend)
1302 { 2314 {
2315 origflags = flags;
2316
2317#if EV_USE_REALTIME
2318 if (!have_realtime)
2319 {
2320 struct timespec ts;
2321
2322 if (!clock_gettime (CLOCK_REALTIME, &ts))
2323 have_realtime = 1;
2324 }
2325#endif
2326
1303#if EV_USE_MONOTONIC 2327#if EV_USE_MONOTONIC
2328 if (!have_monotonic)
1304 { 2329 {
1305 struct timespec ts; 2330 struct timespec ts;
2331
1306 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2332 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1307 have_monotonic = 1; 2333 have_monotonic = 1;
1308 } 2334 }
1309#endif
1310
1311 ev_rt_now = ev_time ();
1312 mn_now = get_clock ();
1313 now_floor = mn_now;
1314 rtmn_diff = ev_rt_now - mn_now;
1315
1316 io_blocktime = 0.;
1317 timeout_blocktime = 0.;
1318 backend = 0;
1319 backend_fd = -1;
1320 gotasync = 0;
1321#if EV_USE_INOTIFY
1322 fs_fd = -2;
1323#endif 2335#endif
1324 2336
1325 /* pid check not overridable via env */ 2337 /* pid check not overridable via env */
1326#ifndef _WIN32 2338#ifndef _WIN32
1327 if (flags & EVFLAG_FORKCHECK) 2339 if (flags & EVFLAG_FORKCHECK)
1331 if (!(flags & EVFLAG_NOENV) 2343 if (!(flags & EVFLAG_NOENV)
1332 && !enable_secure () 2344 && !enable_secure ()
1333 && getenv ("LIBEV_FLAGS")) 2345 && getenv ("LIBEV_FLAGS"))
1334 flags = atoi (getenv ("LIBEV_FLAGS")); 2346 flags = atoi (getenv ("LIBEV_FLAGS"));
1335 2347
1336 if (!(flags & 0x0000ffffU)) 2348 ev_rt_now = ev_time ();
2349 mn_now = get_clock ();
2350 now_floor = mn_now;
2351 rtmn_diff = ev_rt_now - mn_now;
2352#if EV_FEATURE_API
2353 invoke_cb = ev_invoke_pending;
2354#endif
2355
2356 io_blocktime = 0.;
2357 timeout_blocktime = 0.;
2358 backend = 0;
2359 backend_fd = -1;
2360 sig_pending = 0;
2361#if EV_ASYNC_ENABLE
2362 async_pending = 0;
2363#endif
2364 pipe_write_skipped = 0;
2365 pipe_write_wanted = 0;
2366 evpipe [0] = -1;
2367 evpipe [1] = -1;
2368#if EV_USE_INOTIFY
2369 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2370#endif
2371#if EV_USE_SIGNALFD
2372 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2373#endif
2374
2375 if (!(flags & EVBACKEND_MASK))
1337 flags |= ev_recommended_backends (); 2376 flags |= ev_recommended_backends ();
1338 2377
2378#if EV_USE_IOCP
2379 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2380#endif
1339#if EV_USE_PORT 2381#if EV_USE_PORT
1340 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2382 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1341#endif 2383#endif
1342#if EV_USE_KQUEUE 2384#if EV_USE_KQUEUE
1343 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2385 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1350#endif 2392#endif
1351#if EV_USE_SELECT 2393#if EV_USE_SELECT
1352 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2394 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1353#endif 2395#endif
1354 2396
2397 ev_prepare_init (&pending_w, pendingcb);
2398
2399#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1355 ev_init (&pipeev, pipecb); 2400 ev_init (&pipe_w, pipecb);
1356 ev_set_priority (&pipeev, EV_MAXPRI); 2401 ev_set_priority (&pipe_w, EV_MAXPRI);
2402#endif
1357 } 2403 }
1358} 2404}
1359 2405
1360static void noinline 2406/* free up a loop structure */
2407void ecb_cold
1361loop_destroy (EV_P) 2408ev_loop_destroy (EV_P)
1362{ 2409{
1363 int i; 2410 int i;
1364 2411
2412#if EV_MULTIPLICITY
2413 /* mimic free (0) */
2414 if (!EV_A)
2415 return;
2416#endif
2417
2418#if EV_CLEANUP_ENABLE
2419 /* queue cleanup watchers (and execute them) */
2420 if (expect_false (cleanupcnt))
2421 {
2422 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2423 EV_INVOKE_PENDING;
2424 }
2425#endif
2426
2427#if EV_CHILD_ENABLE
2428 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2429 {
2430 ev_ref (EV_A); /* child watcher */
2431 ev_signal_stop (EV_A_ &childev);
2432 }
2433#endif
2434
1365 if (ev_is_active (&pipeev)) 2435 if (ev_is_active (&pipe_w))
1366 { 2436 {
1367 ev_ref (EV_A); /* signal watcher */ 2437 /*ev_ref (EV_A);*/
1368 ev_io_stop (EV_A_ &pipeev); 2438 /*ev_io_stop (EV_A_ &pipe_w);*/
1369 2439
2440 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2441 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2442 }
2443
1370#if EV_USE_EVENTFD 2444#if EV_USE_SIGNALFD
1371 if (evfd >= 0) 2445 if (ev_is_active (&sigfd_w))
1372 close (evfd); 2446 close (sigfd);
1373#endif 2447#endif
1374
1375 if (evpipe [0] >= 0)
1376 {
1377 close (evpipe [0]);
1378 close (evpipe [1]);
1379 }
1380 }
1381 2448
1382#if EV_USE_INOTIFY 2449#if EV_USE_INOTIFY
1383 if (fs_fd >= 0) 2450 if (fs_fd >= 0)
1384 close (fs_fd); 2451 close (fs_fd);
1385#endif 2452#endif
1386 2453
1387 if (backend_fd >= 0) 2454 if (backend_fd >= 0)
1388 close (backend_fd); 2455 close (backend_fd);
1389 2456
2457#if EV_USE_IOCP
2458 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2459#endif
1390#if EV_USE_PORT 2460#if EV_USE_PORT
1391 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2461 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1392#endif 2462#endif
1393#if EV_USE_KQUEUE 2463#if EV_USE_KQUEUE
1394 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2464 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1409#if EV_IDLE_ENABLE 2479#if EV_IDLE_ENABLE
1410 array_free (idle, [i]); 2480 array_free (idle, [i]);
1411#endif 2481#endif
1412 } 2482 }
1413 2483
1414 ev_free (anfds); anfdmax = 0; 2484 ev_free (anfds); anfds = 0; anfdmax = 0;
1415 2485
1416 /* have to use the microsoft-never-gets-it-right macro */ 2486 /* have to use the microsoft-never-gets-it-right macro */
2487 array_free (rfeed, EMPTY);
1417 array_free (fdchange, EMPTY); 2488 array_free (fdchange, EMPTY);
1418 array_free (timer, EMPTY); 2489 array_free (timer, EMPTY);
1419#if EV_PERIODIC_ENABLE 2490#if EV_PERIODIC_ENABLE
1420 array_free (periodic, EMPTY); 2491 array_free (periodic, EMPTY);
1421#endif 2492#endif
1422#if EV_FORK_ENABLE 2493#if EV_FORK_ENABLE
1423 array_free (fork, EMPTY); 2494 array_free (fork, EMPTY);
1424#endif 2495#endif
2496#if EV_CLEANUP_ENABLE
2497 array_free (cleanup, EMPTY);
2498#endif
1425 array_free (prepare, EMPTY); 2499 array_free (prepare, EMPTY);
1426 array_free (check, EMPTY); 2500 array_free (check, EMPTY);
1427#if EV_ASYNC_ENABLE 2501#if EV_ASYNC_ENABLE
1428 array_free (async, EMPTY); 2502 array_free (async, EMPTY);
1429#endif 2503#endif
1430 2504
1431 backend = 0; 2505 backend = 0;
2506
2507#if EV_MULTIPLICITY
2508 if (ev_is_default_loop (EV_A))
2509#endif
2510 ev_default_loop_ptr = 0;
2511#if EV_MULTIPLICITY
2512 else
2513 ev_free (EV_A);
2514#endif
1432} 2515}
1433 2516
1434#if EV_USE_INOTIFY 2517#if EV_USE_INOTIFY
1435void inline_size infy_fork (EV_P); 2518inline_size void infy_fork (EV_P);
1436#endif 2519#endif
1437 2520
1438void inline_size 2521inline_size void
1439loop_fork (EV_P) 2522loop_fork (EV_P)
1440{ 2523{
1441#if EV_USE_PORT 2524#if EV_USE_PORT
1442 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2525 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1443#endif 2526#endif
1449#endif 2532#endif
1450#if EV_USE_INOTIFY 2533#if EV_USE_INOTIFY
1451 infy_fork (EV_A); 2534 infy_fork (EV_A);
1452#endif 2535#endif
1453 2536
2537#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1454 if (ev_is_active (&pipeev)) 2538 if (ev_is_active (&pipe_w))
1455 { 2539 {
1456 /* this "locks" the handlers against writing to the pipe */ 2540 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1457 /* while we modify the fd vars */
1458 gotsig = 1;
1459#if EV_ASYNC_ENABLE
1460 gotasync = 1;
1461#endif
1462 2541
1463 ev_ref (EV_A); 2542 ev_ref (EV_A);
1464 ev_io_stop (EV_A_ &pipeev); 2543 ev_io_stop (EV_A_ &pipe_w);
1465
1466#if EV_USE_EVENTFD
1467 if (evfd >= 0)
1468 close (evfd);
1469#endif
1470 2544
1471 if (evpipe [0] >= 0) 2545 if (evpipe [0] >= 0)
1472 { 2546 EV_WIN32_CLOSE_FD (evpipe [0]);
1473 close (evpipe [0]);
1474 close (evpipe [1]);
1475 }
1476 2547
1477 evpipe_init (EV_A); 2548 evpipe_init (EV_A);
1478 /* now iterate over everything, in case we missed something */ 2549 /* iterate over everything, in case we missed something before */
1479 pipecb (EV_A_ &pipeev, EV_READ); 2550 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
1480 } 2551 }
2552#endif
1481 2553
1482 postfork = 0; 2554 postfork = 0;
1483} 2555}
1484 2556
1485#if EV_MULTIPLICITY 2557#if EV_MULTIPLICITY
1486 2558
1487struct ev_loop * 2559struct ev_loop * ecb_cold
1488ev_loop_new (unsigned int flags) 2560ev_loop_new (unsigned int flags) EV_THROW
1489{ 2561{
1490 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2562 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1491 2563
1492 memset (loop, 0, sizeof (struct ev_loop)); 2564 memset (EV_A, 0, sizeof (struct ev_loop));
1493
1494 loop_init (EV_A_ flags); 2565 loop_init (EV_A_ flags);
1495 2566
1496 if (ev_backend (EV_A)) 2567 if (ev_backend (EV_A))
1497 return loop; 2568 return EV_A;
1498 2569
2570 ev_free (EV_A);
1499 return 0; 2571 return 0;
1500} 2572}
1501 2573
1502void 2574#endif /* multiplicity */
1503ev_loop_destroy (EV_P)
1504{
1505 loop_destroy (EV_A);
1506 ev_free (loop);
1507}
1508
1509void
1510ev_loop_fork (EV_P)
1511{
1512 postfork = 1; /* must be in line with ev_default_fork */
1513}
1514 2575
1515#if EV_VERIFY 2576#if EV_VERIFY
1516static void noinline 2577static void noinline ecb_cold
1517verify_watcher (EV_P_ W w) 2578verify_watcher (EV_P_ W w)
1518{ 2579{
1519 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI)); 2580 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1520 2581
1521 if (w->pending) 2582 if (w->pending)
1522 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w)); 2583 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1523} 2584}
1524 2585
1525static void noinline 2586static void noinline ecb_cold
1526verify_heap (EV_P_ ANHE *heap, int N) 2587verify_heap (EV_P_ ANHE *heap, int N)
1527{ 2588{
1528 int i; 2589 int i;
1529 2590
1530 for (i = HEAP0; i < N + HEAP0; ++i) 2591 for (i = HEAP0; i < N + HEAP0; ++i)
1531 { 2592 {
1532 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i)); 2593 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1533 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i]))); 2594 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1534 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i])))); 2595 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1535 2596
1536 verify_watcher (EV_A_ (W)ANHE_w (heap [i])); 2597 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1537 } 2598 }
1538} 2599}
1539 2600
1540static void noinline 2601static void noinline ecb_cold
1541array_verify (EV_P_ W *ws, int cnt) 2602array_verify (EV_P_ W *ws, int cnt)
1542{ 2603{
1543 while (cnt--) 2604 while (cnt--)
1544 { 2605 {
1545 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1)); 2606 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1546 verify_watcher (EV_A_ ws [cnt]); 2607 verify_watcher (EV_A_ ws [cnt]);
1547 } 2608 }
1548} 2609}
1549#endif 2610#endif
1550 2611
1551void 2612#if EV_FEATURE_API
1552ev_loop_verify (EV_P) 2613void ecb_cold
2614ev_verify (EV_P) EV_THROW
1553{ 2615{
1554#if EV_VERIFY 2616#if EV_VERIFY
1555 int i; 2617 int i;
1556 WL w; 2618 WL w, w2;
1557 2619
1558 assert (activecnt >= -1); 2620 assert (activecnt >= -1);
1559 2621
1560 assert (fdchangemax >= fdchangecnt); 2622 assert (fdchangemax >= fdchangecnt);
1561 for (i = 0; i < fdchangecnt; ++i) 2623 for (i = 0; i < fdchangecnt; ++i)
1562 assert (("negative fd in fdchanges", fdchanges [i] >= 0)); 2624 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1563 2625
1564 assert (anfdmax >= 0); 2626 assert (anfdmax >= 0);
1565 for (i = 0; i < anfdmax; ++i) 2627 for (i = 0; i < anfdmax; ++i)
2628 {
2629 int j = 0;
2630
1566 for (w = anfds [i].head; w; w = w->next) 2631 for (w = w2 = anfds [i].head; w; w = w->next)
1567 { 2632 {
1568 verify_watcher (EV_A_ (W)w); 2633 verify_watcher (EV_A_ (W)w);
2634
2635 if (j++ & 1)
2636 {
2637 assert (("libev: io watcher list contains a loop", w != w2));
2638 w2 = w2->next;
2639 }
2640
1569 assert (("inactive fd watcher on anfd list", ev_active (w) == 1)); 2641 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1570 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i)); 2642 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1571 } 2643 }
2644 }
1572 2645
1573 assert (timermax >= timercnt); 2646 assert (timermax >= timercnt);
1574 verify_heap (EV_A_ timers, timercnt); 2647 verify_heap (EV_A_ timers, timercnt);
1575 2648
1576#if EV_PERIODIC_ENABLE 2649#if EV_PERIODIC_ENABLE
1591#if EV_FORK_ENABLE 2664#if EV_FORK_ENABLE
1592 assert (forkmax >= forkcnt); 2665 assert (forkmax >= forkcnt);
1593 array_verify (EV_A_ (W *)forks, forkcnt); 2666 array_verify (EV_A_ (W *)forks, forkcnt);
1594#endif 2667#endif
1595 2668
2669#if EV_CLEANUP_ENABLE
2670 assert (cleanupmax >= cleanupcnt);
2671 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2672#endif
2673
1596#if EV_ASYNC_ENABLE 2674#if EV_ASYNC_ENABLE
1597 assert (asyncmax >= asynccnt); 2675 assert (asyncmax >= asynccnt);
1598 array_verify (EV_A_ (W *)asyncs, asynccnt); 2676 array_verify (EV_A_ (W *)asyncs, asynccnt);
1599#endif 2677#endif
1600 2678
2679#if EV_PREPARE_ENABLE
1601 assert (preparemax >= preparecnt); 2680 assert (preparemax >= preparecnt);
1602 array_verify (EV_A_ (W *)prepares, preparecnt); 2681 array_verify (EV_A_ (W *)prepares, preparecnt);
2682#endif
1603 2683
2684#if EV_CHECK_ENABLE
1604 assert (checkmax >= checkcnt); 2685 assert (checkmax >= checkcnt);
1605 array_verify (EV_A_ (W *)checks, checkcnt); 2686 array_verify (EV_A_ (W *)checks, checkcnt);
2687#endif
1606 2688
1607# if 0 2689# if 0
2690#if EV_CHILD_ENABLE
1608 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2691 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1609 for (signum = signalmax; signum--; ) if (signals [signum].gotsig) 2692 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2693#endif
1610# endif 2694# endif
1611#endif 2695#endif
1612} 2696}
1613 2697#endif
1614#endif /* multiplicity */
1615 2698
1616#if EV_MULTIPLICITY 2699#if EV_MULTIPLICITY
1617struct ev_loop * 2700struct ev_loop * ecb_cold
1618ev_default_loop_init (unsigned int flags)
1619#else 2701#else
1620int 2702int
2703#endif
1621ev_default_loop (unsigned int flags) 2704ev_default_loop (unsigned int flags) EV_THROW
1622#endif
1623{ 2705{
1624 if (!ev_default_loop_ptr) 2706 if (!ev_default_loop_ptr)
1625 { 2707 {
1626#if EV_MULTIPLICITY 2708#if EV_MULTIPLICITY
1627 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2709 EV_P = ev_default_loop_ptr = &default_loop_struct;
1628#else 2710#else
1629 ev_default_loop_ptr = 1; 2711 ev_default_loop_ptr = 1;
1630#endif 2712#endif
1631 2713
1632 loop_init (EV_A_ flags); 2714 loop_init (EV_A_ flags);
1633 2715
1634 if (ev_backend (EV_A)) 2716 if (ev_backend (EV_A))
1635 { 2717 {
1636#ifndef _WIN32 2718#if EV_CHILD_ENABLE
1637 ev_signal_init (&childev, childcb, SIGCHLD); 2719 ev_signal_init (&childev, childcb, SIGCHLD);
1638 ev_set_priority (&childev, EV_MAXPRI); 2720 ev_set_priority (&childev, EV_MAXPRI);
1639 ev_signal_start (EV_A_ &childev); 2721 ev_signal_start (EV_A_ &childev);
1640 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2722 ev_unref (EV_A); /* child watcher should not keep loop alive */
1641#endif 2723#endif
1646 2728
1647 return ev_default_loop_ptr; 2729 return ev_default_loop_ptr;
1648} 2730}
1649 2731
1650void 2732void
1651ev_default_destroy (void) 2733ev_loop_fork (EV_P) EV_THROW
1652{ 2734{
1653#if EV_MULTIPLICITY 2735 postfork = 1;
1654 struct ev_loop *loop = ev_default_loop_ptr;
1655#endif
1656
1657#ifndef _WIN32
1658 ev_ref (EV_A); /* child watcher */
1659 ev_signal_stop (EV_A_ &childev);
1660#endif
1661
1662 loop_destroy (EV_A);
1663}
1664
1665void
1666ev_default_fork (void)
1667{
1668#if EV_MULTIPLICITY
1669 struct ev_loop *loop = ev_default_loop_ptr;
1670#endif
1671
1672 if (backend)
1673 postfork = 1; /* must be in line with ev_loop_fork */
1674} 2736}
1675 2737
1676/*****************************************************************************/ 2738/*****************************************************************************/
1677 2739
1678void 2740void
1679ev_invoke (EV_P_ void *w, int revents) 2741ev_invoke (EV_P_ void *w, int revents)
1680{ 2742{
1681 EV_CB_INVOKE ((W)w, revents); 2743 EV_CB_INVOKE ((W)w, revents);
1682} 2744}
1683 2745
1684void inline_speed 2746unsigned int
1685call_pending (EV_P) 2747ev_pending_count (EV_P) EV_THROW
1686{ 2748{
1687 int pri; 2749 int pri;
2750 unsigned int count = 0;
1688 2751
1689 for (pri = NUMPRI; pri--; ) 2752 for (pri = NUMPRI; pri--; )
2753 count += pendingcnt [pri];
2754
2755 return count;
2756}
2757
2758void noinline
2759ev_invoke_pending (EV_P)
2760{
2761 pendingpri = NUMPRI;
2762
2763 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
2764 {
2765 --pendingpri;
2766
1690 while (pendingcnt [pri]) 2767 while (pendingcnt [pendingpri])
1691 {
1692 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1693
1694 if (expect_true (p->w))
1695 { 2768 {
1696 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 2769 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1697 2770
1698 p->w->pending = 0; 2771 p->w->pending = 0;
1699 EV_CB_INVOKE (p->w, p->events); 2772 EV_CB_INVOKE (p->w, p->events);
1700 EV_FREQUENT_CHECK; 2773 EV_FREQUENT_CHECK;
1701 } 2774 }
1702 } 2775 }
1703} 2776}
1704 2777
1705#if EV_IDLE_ENABLE 2778#if EV_IDLE_ENABLE
1706void inline_size 2779/* make idle watchers pending. this handles the "call-idle */
2780/* only when higher priorities are idle" logic */
2781inline_size void
1707idle_reify (EV_P) 2782idle_reify (EV_P)
1708{ 2783{
1709 if (expect_false (idleall)) 2784 if (expect_false (idleall))
1710 { 2785 {
1711 int pri; 2786 int pri;
1723 } 2798 }
1724 } 2799 }
1725} 2800}
1726#endif 2801#endif
1727 2802
1728void inline_size 2803/* make timers pending */
2804inline_size void
1729timers_reify (EV_P) 2805timers_reify (EV_P)
1730{ 2806{
1731 EV_FREQUENT_CHECK; 2807 EV_FREQUENT_CHECK;
1732 2808
1733 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 2809 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1734 { 2810 {
1735 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 2811 do
1736
1737 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1738
1739 /* first reschedule or stop timer */
1740 if (w->repeat)
1741 { 2812 {
2813 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2814
2815 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2816
2817 /* first reschedule or stop timer */
2818 if (w->repeat)
2819 {
1742 ev_at (w) += w->repeat; 2820 ev_at (w) += w->repeat;
1743 if (ev_at (w) < mn_now) 2821 if (ev_at (w) < mn_now)
1744 ev_at (w) = mn_now; 2822 ev_at (w) = mn_now;
1745 2823
1746 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2824 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1747 2825
1748 ANHE_at_cache (timers [HEAP0]); 2826 ANHE_at_cache (timers [HEAP0]);
1749 downheap (timers, timercnt, HEAP0); 2827 downheap (timers, timercnt, HEAP0);
2828 }
2829 else
2830 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2831
2832 EV_FREQUENT_CHECK;
2833 feed_reverse (EV_A_ (W)w);
1750 } 2834 }
1751 else 2835 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1752 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1753 2836
1754 EV_FREQUENT_CHECK; 2837 feed_reverse_done (EV_A_ EV_TIMER);
1755 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1756 } 2838 }
1757} 2839}
1758 2840
1759#if EV_PERIODIC_ENABLE 2841#if EV_PERIODIC_ENABLE
1760void inline_size 2842
2843static void noinline
2844periodic_recalc (EV_P_ ev_periodic *w)
2845{
2846 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2847 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2848
2849 /* the above almost always errs on the low side */
2850 while (at <= ev_rt_now)
2851 {
2852 ev_tstamp nat = at + w->interval;
2853
2854 /* when resolution fails us, we use ev_rt_now */
2855 if (expect_false (nat == at))
2856 {
2857 at = ev_rt_now;
2858 break;
2859 }
2860
2861 at = nat;
2862 }
2863
2864 ev_at (w) = at;
2865}
2866
2867/* make periodics pending */
2868inline_size void
1761periodics_reify (EV_P) 2869periodics_reify (EV_P)
1762{ 2870{
1763 EV_FREQUENT_CHECK; 2871 EV_FREQUENT_CHECK;
1764 2872
1765 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 2873 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1766 { 2874 {
1767 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 2875 do
1768
1769 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1770
1771 /* first reschedule or stop timer */
1772 if (w->reschedule_cb)
1773 { 2876 {
2877 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2878
2879 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2880
2881 /* first reschedule or stop timer */
2882 if (w->reschedule_cb)
2883 {
1774 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2884 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1775 2885
1776 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 2886 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1777 2887
1778 ANHE_at_cache (periodics [HEAP0]); 2888 ANHE_at_cache (periodics [HEAP0]);
1779 downheap (periodics, periodiccnt, HEAP0); 2889 downheap (periodics, periodiccnt, HEAP0);
2890 }
2891 else if (w->interval)
2892 {
2893 periodic_recalc (EV_A_ w);
2894 ANHE_at_cache (periodics [HEAP0]);
2895 downheap (periodics, periodiccnt, HEAP0);
2896 }
2897 else
2898 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2899
2900 EV_FREQUENT_CHECK;
2901 feed_reverse (EV_A_ (W)w);
1780 } 2902 }
1781 else if (w->interval) 2903 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1782 {
1783 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1784 /* if next trigger time is not sufficiently in the future, put it there */
1785 /* this might happen because of floating point inexactness */
1786 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1787 {
1788 ev_at (w) += w->interval;
1789 2904
1790 /* if interval is unreasonably low we might still have a time in the past */
1791 /* so correct this. this will make the periodic very inexact, but the user */
1792 /* has effectively asked to get triggered more often than possible */
1793 if (ev_at (w) < ev_rt_now)
1794 ev_at (w) = ev_rt_now;
1795 }
1796
1797 ANHE_at_cache (periodics [HEAP0]);
1798 downheap (periodics, periodiccnt, HEAP0);
1799 }
1800 else
1801 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1802
1803 EV_FREQUENT_CHECK;
1804 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2905 feed_reverse_done (EV_A_ EV_PERIODIC);
1805 } 2906 }
1806} 2907}
1807 2908
2909/* simply recalculate all periodics */
2910/* TODO: maybe ensure that at least one event happens when jumping forward? */
1808static void noinline 2911static void noinline ecb_cold
1809periodics_reschedule (EV_P) 2912periodics_reschedule (EV_P)
1810{ 2913{
1811 int i; 2914 int i;
1812 2915
1813 /* adjust periodics after time jump */ 2916 /* adjust periodics after time jump */
1816 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]); 2919 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1817 2920
1818 if (w->reschedule_cb) 2921 if (w->reschedule_cb)
1819 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2922 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1820 else if (w->interval) 2923 else if (w->interval)
1821 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2924 periodic_recalc (EV_A_ w);
1822 2925
1823 ANHE_at_cache (periodics [i]); 2926 ANHE_at_cache (periodics [i]);
1824 } 2927 }
1825 2928
1826 reheap (periodics, periodiccnt); 2929 reheap (periodics, periodiccnt);
1827} 2930}
1828#endif 2931#endif
1829 2932
1830void inline_speed 2933/* adjust all timers by a given offset */
2934static void noinline ecb_cold
2935timers_reschedule (EV_P_ ev_tstamp adjust)
2936{
2937 int i;
2938
2939 for (i = 0; i < timercnt; ++i)
2940 {
2941 ANHE *he = timers + i + HEAP0;
2942 ANHE_w (*he)->at += adjust;
2943 ANHE_at_cache (*he);
2944 }
2945}
2946
2947/* fetch new monotonic and realtime times from the kernel */
2948/* also detect if there was a timejump, and act accordingly */
2949inline_speed void
1831time_update (EV_P_ ev_tstamp max_block) 2950time_update (EV_P_ ev_tstamp max_block)
1832{ 2951{
1833 int i;
1834
1835#if EV_USE_MONOTONIC 2952#if EV_USE_MONOTONIC
1836 if (expect_true (have_monotonic)) 2953 if (expect_true (have_monotonic))
1837 { 2954 {
2955 int i;
1838 ev_tstamp odiff = rtmn_diff; 2956 ev_tstamp odiff = rtmn_diff;
1839 2957
1840 mn_now = get_clock (); 2958 mn_now = get_clock ();
1841 2959
1842 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2960 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1858 * doesn't hurt either as we only do this on time-jumps or 2976 * doesn't hurt either as we only do this on time-jumps or
1859 * in the unlikely event of having been preempted here. 2977 * in the unlikely event of having been preempted here.
1860 */ 2978 */
1861 for (i = 4; --i; ) 2979 for (i = 4; --i; )
1862 { 2980 {
2981 ev_tstamp diff;
1863 rtmn_diff = ev_rt_now - mn_now; 2982 rtmn_diff = ev_rt_now - mn_now;
1864 2983
2984 diff = odiff - rtmn_diff;
2985
1865 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)) 2986 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1866 return; /* all is well */ 2987 return; /* all is well */
1867 2988
1868 ev_rt_now = ev_time (); 2989 ev_rt_now = ev_time ();
1869 mn_now = get_clock (); 2990 mn_now = get_clock ();
1870 now_floor = mn_now; 2991 now_floor = mn_now;
1871 } 2992 }
1872 2993
2994 /* no timer adjustment, as the monotonic clock doesn't jump */
2995 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1873# if EV_PERIODIC_ENABLE 2996# if EV_PERIODIC_ENABLE
1874 periodics_reschedule (EV_A); 2997 periodics_reschedule (EV_A);
1875# endif 2998# endif
1876 /* no timer adjustment, as the monotonic clock doesn't jump */
1877 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1878 } 2999 }
1879 else 3000 else
1880#endif 3001#endif
1881 { 3002 {
1882 ev_rt_now = ev_time (); 3003 ev_rt_now = ev_time ();
1883 3004
1884 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 3005 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1885 { 3006 {
3007 /* adjust timers. this is easy, as the offset is the same for all of them */
3008 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1886#if EV_PERIODIC_ENABLE 3009#if EV_PERIODIC_ENABLE
1887 periodics_reschedule (EV_A); 3010 periodics_reschedule (EV_A);
1888#endif 3011#endif
1889 /* adjust timers. this is easy, as the offset is the same for all of them */
1890 for (i = 0; i < timercnt; ++i)
1891 {
1892 ANHE *he = timers + i + HEAP0;
1893 ANHE_w (*he)->at += ev_rt_now - mn_now;
1894 ANHE_at_cache (*he);
1895 }
1896 } 3012 }
1897 3013
1898 mn_now = ev_rt_now; 3014 mn_now = ev_rt_now;
1899 } 3015 }
1900} 3016}
1901 3017
1902void 3018int
1903ev_ref (EV_P)
1904{
1905 ++activecnt;
1906}
1907
1908void
1909ev_unref (EV_P)
1910{
1911 --activecnt;
1912}
1913
1914static int loop_done;
1915
1916void
1917ev_loop (EV_P_ int flags) 3019ev_run (EV_P_ int flags)
1918{ 3020{
3021#if EV_FEATURE_API
3022 ++loop_depth;
3023#endif
3024
3025 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3026
1919 loop_done = EVUNLOOP_CANCEL; 3027 loop_done = EVBREAK_CANCEL;
1920 3028
1921 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3029 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1922 3030
1923 do 3031 do
1924 { 3032 {
1925#if EV_VERIFY >= 2 3033#if EV_VERIFY >= 2
1926 ev_loop_verify (EV_A); 3034 ev_verify (EV_A);
1927#endif 3035#endif
1928 3036
1929#ifndef _WIN32 3037#ifndef _WIN32
1930 if (expect_false (curpid)) /* penalise the forking check even more */ 3038 if (expect_false (curpid)) /* penalise the forking check even more */
1931 if (expect_false (getpid () != curpid)) 3039 if (expect_false (getpid () != curpid))
1939 /* we might have forked, so queue fork handlers */ 3047 /* we might have forked, so queue fork handlers */
1940 if (expect_false (postfork)) 3048 if (expect_false (postfork))
1941 if (forkcnt) 3049 if (forkcnt)
1942 { 3050 {
1943 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3051 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1944 call_pending (EV_A); 3052 EV_INVOKE_PENDING;
1945 } 3053 }
1946#endif 3054#endif
1947 3055
3056#if EV_PREPARE_ENABLE
1948 /* queue prepare watchers (and execute them) */ 3057 /* queue prepare watchers (and execute them) */
1949 if (expect_false (preparecnt)) 3058 if (expect_false (preparecnt))
1950 { 3059 {
1951 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3060 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1952 call_pending (EV_A); 3061 EV_INVOKE_PENDING;
1953 } 3062 }
3063#endif
1954 3064
1955 if (expect_false (!activecnt)) 3065 if (expect_false (loop_done))
1956 break; 3066 break;
1957 3067
1958 /* we might have forked, so reify kernel state if necessary */ 3068 /* we might have forked, so reify kernel state if necessary */
1959 if (expect_false (postfork)) 3069 if (expect_false (postfork))
1960 loop_fork (EV_A); 3070 loop_fork (EV_A);
1965 /* calculate blocking time */ 3075 /* calculate blocking time */
1966 { 3076 {
1967 ev_tstamp waittime = 0.; 3077 ev_tstamp waittime = 0.;
1968 ev_tstamp sleeptime = 0.; 3078 ev_tstamp sleeptime = 0.;
1969 3079
3080 /* remember old timestamp for io_blocktime calculation */
3081 ev_tstamp prev_mn_now = mn_now;
3082
3083 /* update time to cancel out callback processing overhead */
3084 time_update (EV_A_ 1e100);
3085
3086 /* from now on, we want a pipe-wake-up */
3087 pipe_write_wanted = 1;
3088
3089 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3090
1970 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3091 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1971 { 3092 {
1972 /* update time to cancel out callback processing overhead */
1973 time_update (EV_A_ 1e100);
1974
1975 waittime = MAX_BLOCKTIME; 3093 waittime = MAX_BLOCKTIME;
1976 3094
1977 if (timercnt) 3095 if (timercnt)
1978 { 3096 {
1979 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 3097 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1980 if (waittime > to) waittime = to; 3098 if (waittime > to) waittime = to;
1981 } 3099 }
1982 3100
1983#if EV_PERIODIC_ENABLE 3101#if EV_PERIODIC_ENABLE
1984 if (periodiccnt) 3102 if (periodiccnt)
1985 { 3103 {
1986 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 3104 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1987 if (waittime > to) waittime = to; 3105 if (waittime > to) waittime = to;
1988 } 3106 }
1989#endif 3107#endif
1990 3108
3109 /* don't let timeouts decrease the waittime below timeout_blocktime */
1991 if (expect_false (waittime < timeout_blocktime)) 3110 if (expect_false (waittime < timeout_blocktime))
1992 waittime = timeout_blocktime; 3111 waittime = timeout_blocktime;
1993 3112
1994 sleeptime = waittime - backend_fudge; 3113 /* at this point, we NEED to wait, so we have to ensure */
3114 /* to pass a minimum nonzero value to the backend */
3115 if (expect_false (waittime < backend_mintime))
3116 waittime = backend_mintime;
1995 3117
3118 /* extra check because io_blocktime is commonly 0 */
1996 if (expect_true (sleeptime > io_blocktime)) 3119 if (expect_false (io_blocktime))
1997 sleeptime = io_blocktime;
1998
1999 if (sleeptime)
2000 { 3120 {
3121 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3122
3123 if (sleeptime > waittime - backend_mintime)
3124 sleeptime = waittime - backend_mintime;
3125
3126 if (expect_true (sleeptime > 0.))
3127 {
2001 ev_sleep (sleeptime); 3128 ev_sleep (sleeptime);
2002 waittime -= sleeptime; 3129 waittime -= sleeptime;
3130 }
2003 } 3131 }
2004 } 3132 }
2005 3133
3134#if EV_FEATURE_API
2006 ++loop_count; 3135 ++loop_count;
3136#endif
3137 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2007 backend_poll (EV_A_ waittime); 3138 backend_poll (EV_A_ waittime);
3139 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3140
3141 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3142
3143 ECB_MEMORY_FENCE_ACQUIRE;
3144 if (pipe_write_skipped)
3145 {
3146 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3147 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3148 }
3149
2008 3150
2009 /* update ev_rt_now, do magic */ 3151 /* update ev_rt_now, do magic */
2010 time_update (EV_A_ waittime + sleeptime); 3152 time_update (EV_A_ waittime + sleeptime);
2011 } 3153 }
2012 3154
2019#if EV_IDLE_ENABLE 3161#if EV_IDLE_ENABLE
2020 /* queue idle watchers unless other events are pending */ 3162 /* queue idle watchers unless other events are pending */
2021 idle_reify (EV_A); 3163 idle_reify (EV_A);
2022#endif 3164#endif
2023 3165
3166#if EV_CHECK_ENABLE
2024 /* queue check watchers, to be executed first */ 3167 /* queue check watchers, to be executed first */
2025 if (expect_false (checkcnt)) 3168 if (expect_false (checkcnt))
2026 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3169 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3170#endif
2027 3171
2028 call_pending (EV_A); 3172 EV_INVOKE_PENDING;
2029 } 3173 }
2030 while (expect_true ( 3174 while (expect_true (
2031 activecnt 3175 activecnt
2032 && !loop_done 3176 && !loop_done
2033 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 3177 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2034 )); 3178 ));
2035 3179
2036 if (loop_done == EVUNLOOP_ONE) 3180 if (loop_done == EVBREAK_ONE)
2037 loop_done = EVUNLOOP_CANCEL; 3181 loop_done = EVBREAK_CANCEL;
3182
3183#if EV_FEATURE_API
3184 --loop_depth;
3185#endif
3186
3187 return activecnt;
2038} 3188}
2039 3189
2040void 3190void
2041ev_unloop (EV_P_ int how) 3191ev_break (EV_P_ int how) EV_THROW
2042{ 3192{
2043 loop_done = how; 3193 loop_done = how;
2044} 3194}
2045 3195
3196void
3197ev_ref (EV_P) EV_THROW
3198{
3199 ++activecnt;
3200}
3201
3202void
3203ev_unref (EV_P) EV_THROW
3204{
3205 --activecnt;
3206}
3207
3208void
3209ev_now_update (EV_P) EV_THROW
3210{
3211 time_update (EV_A_ 1e100);
3212}
3213
3214void
3215ev_suspend (EV_P) EV_THROW
3216{
3217 ev_now_update (EV_A);
3218}
3219
3220void
3221ev_resume (EV_P) EV_THROW
3222{
3223 ev_tstamp mn_prev = mn_now;
3224
3225 ev_now_update (EV_A);
3226 timers_reschedule (EV_A_ mn_now - mn_prev);
3227#if EV_PERIODIC_ENABLE
3228 /* TODO: really do this? */
3229 periodics_reschedule (EV_A);
3230#endif
3231}
3232
2046/*****************************************************************************/ 3233/*****************************************************************************/
3234/* singly-linked list management, used when the expected list length is short */
2047 3235
2048void inline_size 3236inline_size void
2049wlist_add (WL *head, WL elem) 3237wlist_add (WL *head, WL elem)
2050{ 3238{
2051 elem->next = *head; 3239 elem->next = *head;
2052 *head = elem; 3240 *head = elem;
2053} 3241}
2054 3242
2055void inline_size 3243inline_size void
2056wlist_del (WL *head, WL elem) 3244wlist_del (WL *head, WL elem)
2057{ 3245{
2058 while (*head) 3246 while (*head)
2059 { 3247 {
2060 if (*head == elem) 3248 if (expect_true (*head == elem))
2061 { 3249 {
2062 *head = elem->next; 3250 *head = elem->next;
2063 return; 3251 break;
2064 } 3252 }
2065 3253
2066 head = &(*head)->next; 3254 head = &(*head)->next;
2067 } 3255 }
2068} 3256}
2069 3257
2070void inline_speed 3258/* internal, faster, version of ev_clear_pending */
3259inline_speed void
2071clear_pending (EV_P_ W w) 3260clear_pending (EV_P_ W w)
2072{ 3261{
2073 if (w->pending) 3262 if (w->pending)
2074 { 3263 {
2075 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3264 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2076 w->pending = 0; 3265 w->pending = 0;
2077 } 3266 }
2078} 3267}
2079 3268
2080int 3269int
2081ev_clear_pending (EV_P_ void *w) 3270ev_clear_pending (EV_P_ void *w) EV_THROW
2082{ 3271{
2083 W w_ = (W)w; 3272 W w_ = (W)w;
2084 int pending = w_->pending; 3273 int pending = w_->pending;
2085 3274
2086 if (expect_true (pending)) 3275 if (expect_true (pending))
2087 { 3276 {
2088 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3277 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3278 p->w = (W)&pending_w;
2089 w_->pending = 0; 3279 w_->pending = 0;
2090 p->w = 0;
2091 return p->events; 3280 return p->events;
2092 } 3281 }
2093 else 3282 else
2094 return 0; 3283 return 0;
2095} 3284}
2096 3285
2097void inline_size 3286inline_size void
2098pri_adjust (EV_P_ W w) 3287pri_adjust (EV_P_ W w)
2099{ 3288{
2100 int pri = w->priority; 3289 int pri = ev_priority (w);
2101 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3290 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2102 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3291 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2103 w->priority = pri; 3292 ev_set_priority (w, pri);
2104} 3293}
2105 3294
2106void inline_speed 3295inline_speed void
2107ev_start (EV_P_ W w, int active) 3296ev_start (EV_P_ W w, int active)
2108{ 3297{
2109 pri_adjust (EV_A_ w); 3298 pri_adjust (EV_A_ w);
2110 w->active = active; 3299 w->active = active;
2111 ev_ref (EV_A); 3300 ev_ref (EV_A);
2112} 3301}
2113 3302
2114void inline_size 3303inline_size void
2115ev_stop (EV_P_ W w) 3304ev_stop (EV_P_ W w)
2116{ 3305{
2117 ev_unref (EV_A); 3306 ev_unref (EV_A);
2118 w->active = 0; 3307 w->active = 0;
2119} 3308}
2120 3309
2121/*****************************************************************************/ 3310/*****************************************************************************/
2122 3311
2123void noinline 3312void noinline
2124ev_io_start (EV_P_ ev_io *w) 3313ev_io_start (EV_P_ ev_io *w) EV_THROW
2125{ 3314{
2126 int fd = w->fd; 3315 int fd = w->fd;
2127 3316
2128 if (expect_false (ev_is_active (w))) 3317 if (expect_false (ev_is_active (w)))
2129 return; 3318 return;
2130 3319
2131 assert (("ev_io_start called with negative fd", fd >= 0)); 3320 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3321 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2132 3322
2133 EV_FREQUENT_CHECK; 3323 EV_FREQUENT_CHECK;
2134 3324
2135 ev_start (EV_A_ (W)w, 1); 3325 ev_start (EV_A_ (W)w, 1);
2136 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3326 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2137 wlist_add (&anfds[fd].head, (WL)w); 3327 wlist_add (&anfds[fd].head, (WL)w);
2138 3328
3329 /* common bug, apparently */
3330 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3331
2139 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3332 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2140 w->events &= ~EV_IOFDSET; 3333 w->events &= ~EV__IOFDSET;
2141 3334
2142 EV_FREQUENT_CHECK; 3335 EV_FREQUENT_CHECK;
2143} 3336}
2144 3337
2145void noinline 3338void noinline
2146ev_io_stop (EV_P_ ev_io *w) 3339ev_io_stop (EV_P_ ev_io *w) EV_THROW
2147{ 3340{
2148 clear_pending (EV_A_ (W)w); 3341 clear_pending (EV_A_ (W)w);
2149 if (expect_false (!ev_is_active (w))) 3342 if (expect_false (!ev_is_active (w)))
2150 return; 3343 return;
2151 3344
2152 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3345 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2153 3346
2154 EV_FREQUENT_CHECK; 3347 EV_FREQUENT_CHECK;
2155 3348
2156 wlist_del (&anfds[w->fd].head, (WL)w); 3349 wlist_del (&anfds[w->fd].head, (WL)w);
2157 ev_stop (EV_A_ (W)w); 3350 ev_stop (EV_A_ (W)w);
2158 3351
2159 fd_change (EV_A_ w->fd, 1); 3352 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2160 3353
2161 EV_FREQUENT_CHECK; 3354 EV_FREQUENT_CHECK;
2162} 3355}
2163 3356
2164void noinline 3357void noinline
2165ev_timer_start (EV_P_ ev_timer *w) 3358ev_timer_start (EV_P_ ev_timer *w) EV_THROW
2166{ 3359{
2167 if (expect_false (ev_is_active (w))) 3360 if (expect_false (ev_is_active (w)))
2168 return; 3361 return;
2169 3362
2170 ev_at (w) += mn_now; 3363 ev_at (w) += mn_now;
2171 3364
2172 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3365 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2173 3366
2174 EV_FREQUENT_CHECK; 3367 EV_FREQUENT_CHECK;
2175 3368
2176 ++timercnt; 3369 ++timercnt;
2177 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1); 3370 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2180 ANHE_at_cache (timers [ev_active (w)]); 3373 ANHE_at_cache (timers [ev_active (w)]);
2181 upheap (timers, ev_active (w)); 3374 upheap (timers, ev_active (w));
2182 3375
2183 EV_FREQUENT_CHECK; 3376 EV_FREQUENT_CHECK;
2184 3377
2185 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 3378 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2186} 3379}
2187 3380
2188void noinline 3381void noinline
2189ev_timer_stop (EV_P_ ev_timer *w) 3382ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
2190{ 3383{
2191 clear_pending (EV_A_ (W)w); 3384 clear_pending (EV_A_ (W)w);
2192 if (expect_false (!ev_is_active (w))) 3385 if (expect_false (!ev_is_active (w)))
2193 return; 3386 return;
2194 3387
2195 EV_FREQUENT_CHECK; 3388 EV_FREQUENT_CHECK;
2196 3389
2197 { 3390 {
2198 int active = ev_active (w); 3391 int active = ev_active (w);
2199 3392
2200 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 3393 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2201 3394
2202 --timercnt; 3395 --timercnt;
2203 3396
2204 if (expect_true (active < timercnt + HEAP0)) 3397 if (expect_true (active < timercnt + HEAP0))
2205 { 3398 {
2206 timers [active] = timers [timercnt + HEAP0]; 3399 timers [active] = timers [timercnt + HEAP0];
2207 adjustheap (timers, timercnt, active); 3400 adjustheap (timers, timercnt, active);
2208 } 3401 }
2209 } 3402 }
2210 3403
2211 EV_FREQUENT_CHECK;
2212
2213 ev_at (w) -= mn_now; 3404 ev_at (w) -= mn_now;
2214 3405
2215 ev_stop (EV_A_ (W)w); 3406 ev_stop (EV_A_ (W)w);
3407
3408 EV_FREQUENT_CHECK;
2216} 3409}
2217 3410
2218void noinline 3411void noinline
2219ev_timer_again (EV_P_ ev_timer *w) 3412ev_timer_again (EV_P_ ev_timer *w) EV_THROW
2220{ 3413{
2221 EV_FREQUENT_CHECK; 3414 EV_FREQUENT_CHECK;
3415
3416 clear_pending (EV_A_ (W)w);
2222 3417
2223 if (ev_is_active (w)) 3418 if (ev_is_active (w))
2224 { 3419 {
2225 if (w->repeat) 3420 if (w->repeat)
2226 { 3421 {
2238 } 3433 }
2239 3434
2240 EV_FREQUENT_CHECK; 3435 EV_FREQUENT_CHECK;
2241} 3436}
2242 3437
3438ev_tstamp
3439ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3440{
3441 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3442}
3443
2243#if EV_PERIODIC_ENABLE 3444#if EV_PERIODIC_ENABLE
2244void noinline 3445void noinline
2245ev_periodic_start (EV_P_ ev_periodic *w) 3446ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
2246{ 3447{
2247 if (expect_false (ev_is_active (w))) 3448 if (expect_false (ev_is_active (w)))
2248 return; 3449 return;
2249 3450
2250 if (w->reschedule_cb) 3451 if (w->reschedule_cb)
2251 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3452 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2252 else if (w->interval) 3453 else if (w->interval)
2253 { 3454 {
2254 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3455 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2255 /* this formula differs from the one in periodic_reify because we do not always round up */ 3456 periodic_recalc (EV_A_ w);
2256 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2257 } 3457 }
2258 else 3458 else
2259 ev_at (w) = w->offset; 3459 ev_at (w) = w->offset;
2260 3460
2261 EV_FREQUENT_CHECK; 3461 EV_FREQUENT_CHECK;
2267 ANHE_at_cache (periodics [ev_active (w)]); 3467 ANHE_at_cache (periodics [ev_active (w)]);
2268 upheap (periodics, ev_active (w)); 3468 upheap (periodics, ev_active (w));
2269 3469
2270 EV_FREQUENT_CHECK; 3470 EV_FREQUENT_CHECK;
2271 3471
2272 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 3472 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2273} 3473}
2274 3474
2275void noinline 3475void noinline
2276ev_periodic_stop (EV_P_ ev_periodic *w) 3476ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
2277{ 3477{
2278 clear_pending (EV_A_ (W)w); 3478 clear_pending (EV_A_ (W)w);
2279 if (expect_false (!ev_is_active (w))) 3479 if (expect_false (!ev_is_active (w)))
2280 return; 3480 return;
2281 3481
2282 EV_FREQUENT_CHECK; 3482 EV_FREQUENT_CHECK;
2283 3483
2284 { 3484 {
2285 int active = ev_active (w); 3485 int active = ev_active (w);
2286 3486
2287 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 3487 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2288 3488
2289 --periodiccnt; 3489 --periodiccnt;
2290 3490
2291 if (expect_true (active < periodiccnt + HEAP0)) 3491 if (expect_true (active < periodiccnt + HEAP0))
2292 { 3492 {
2293 periodics [active] = periodics [periodiccnt + HEAP0]; 3493 periodics [active] = periodics [periodiccnt + HEAP0];
2294 adjustheap (periodics, periodiccnt, active); 3494 adjustheap (periodics, periodiccnt, active);
2295 } 3495 }
2296 } 3496 }
2297 3497
2298 EV_FREQUENT_CHECK;
2299
2300 ev_stop (EV_A_ (W)w); 3498 ev_stop (EV_A_ (W)w);
3499
3500 EV_FREQUENT_CHECK;
2301} 3501}
2302 3502
2303void noinline 3503void noinline
2304ev_periodic_again (EV_P_ ev_periodic *w) 3504ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
2305{ 3505{
2306 /* TODO: use adjustheap and recalculation */ 3506 /* TODO: use adjustheap and recalculation */
2307 ev_periodic_stop (EV_A_ w); 3507 ev_periodic_stop (EV_A_ w);
2308 ev_periodic_start (EV_A_ w); 3508 ev_periodic_start (EV_A_ w);
2309} 3509}
2311 3511
2312#ifndef SA_RESTART 3512#ifndef SA_RESTART
2313# define SA_RESTART 0 3513# define SA_RESTART 0
2314#endif 3514#endif
2315 3515
3516#if EV_SIGNAL_ENABLE
3517
2316void noinline 3518void noinline
2317ev_signal_start (EV_P_ ev_signal *w) 3519ev_signal_start (EV_P_ ev_signal *w) EV_THROW
2318{ 3520{
2319#if EV_MULTIPLICITY
2320 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2321#endif
2322 if (expect_false (ev_is_active (w))) 3521 if (expect_false (ev_is_active (w)))
2323 return; 3522 return;
2324 3523
2325 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3524 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2326 3525
2327 evpipe_init (EV_A); 3526#if EV_MULTIPLICITY
3527 assert (("libev: a signal must not be attached to two different loops",
3528 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2328 3529
2329 EV_FREQUENT_CHECK; 3530 signals [w->signum - 1].loop = EV_A;
3531#endif
2330 3532
3533 EV_FREQUENT_CHECK;
3534
3535#if EV_USE_SIGNALFD
3536 if (sigfd == -2)
2331 { 3537 {
2332#ifndef _WIN32 3538 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2333 sigset_t full, prev; 3539 if (sigfd < 0 && errno == EINVAL)
2334 sigfillset (&full); 3540 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2335 sigprocmask (SIG_SETMASK, &full, &prev);
2336#endif
2337 3541
2338 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3542 if (sigfd >= 0)
3543 {
3544 fd_intern (sigfd); /* doing it twice will not hurt */
2339 3545
2340#ifndef _WIN32 3546 sigemptyset (&sigfd_set);
2341 sigprocmask (SIG_SETMASK, &prev, 0); 3547
2342#endif 3548 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3549 ev_set_priority (&sigfd_w, EV_MAXPRI);
3550 ev_io_start (EV_A_ &sigfd_w);
3551 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3552 }
2343 } 3553 }
3554
3555 if (sigfd >= 0)
3556 {
3557 /* TODO: check .head */
3558 sigaddset (&sigfd_set, w->signum);
3559 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3560
3561 signalfd (sigfd, &sigfd_set, 0);
3562 }
3563#endif
2344 3564
2345 ev_start (EV_A_ (W)w, 1); 3565 ev_start (EV_A_ (W)w, 1);
2346 wlist_add (&signals [w->signum - 1].head, (WL)w); 3566 wlist_add (&signals [w->signum - 1].head, (WL)w);
2347 3567
2348 if (!((WL)w)->next) 3568 if (!((WL)w)->next)
3569# if EV_USE_SIGNALFD
3570 if (sigfd < 0) /*TODO*/
3571# endif
2349 { 3572 {
2350#if _WIN32 3573# ifdef _WIN32
3574 evpipe_init (EV_A);
3575
2351 signal (w->signum, ev_sighandler); 3576 signal (w->signum, ev_sighandler);
2352#else 3577# else
2353 struct sigaction sa; 3578 struct sigaction sa;
3579
3580 evpipe_init (EV_A);
3581
2354 sa.sa_handler = ev_sighandler; 3582 sa.sa_handler = ev_sighandler;
2355 sigfillset (&sa.sa_mask); 3583 sigfillset (&sa.sa_mask);
2356 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3584 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2357 sigaction (w->signum, &sa, 0); 3585 sigaction (w->signum, &sa, 0);
3586
3587 if (origflags & EVFLAG_NOSIGMASK)
3588 {
3589 sigemptyset (&sa.sa_mask);
3590 sigaddset (&sa.sa_mask, w->signum);
3591 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3592 }
2358#endif 3593#endif
2359 } 3594 }
2360 3595
2361 EV_FREQUENT_CHECK; 3596 EV_FREQUENT_CHECK;
2362} 3597}
2363 3598
2364void noinline 3599void noinline
2365ev_signal_stop (EV_P_ ev_signal *w) 3600ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
2366{ 3601{
2367 clear_pending (EV_A_ (W)w); 3602 clear_pending (EV_A_ (W)w);
2368 if (expect_false (!ev_is_active (w))) 3603 if (expect_false (!ev_is_active (w)))
2369 return; 3604 return;
2370 3605
2372 3607
2373 wlist_del (&signals [w->signum - 1].head, (WL)w); 3608 wlist_del (&signals [w->signum - 1].head, (WL)w);
2374 ev_stop (EV_A_ (W)w); 3609 ev_stop (EV_A_ (W)w);
2375 3610
2376 if (!signals [w->signum - 1].head) 3611 if (!signals [w->signum - 1].head)
3612 {
3613#if EV_MULTIPLICITY
3614 signals [w->signum - 1].loop = 0; /* unattach from signal */
3615#endif
3616#if EV_USE_SIGNALFD
3617 if (sigfd >= 0)
3618 {
3619 sigset_t ss;
3620
3621 sigemptyset (&ss);
3622 sigaddset (&ss, w->signum);
3623 sigdelset (&sigfd_set, w->signum);
3624
3625 signalfd (sigfd, &sigfd_set, 0);
3626 sigprocmask (SIG_UNBLOCK, &ss, 0);
3627 }
3628 else
3629#endif
2377 signal (w->signum, SIG_DFL); 3630 signal (w->signum, SIG_DFL);
3631 }
2378 3632
2379 EV_FREQUENT_CHECK; 3633 EV_FREQUENT_CHECK;
2380} 3634}
3635
3636#endif
3637
3638#if EV_CHILD_ENABLE
2381 3639
2382void 3640void
2383ev_child_start (EV_P_ ev_child *w) 3641ev_child_start (EV_P_ ev_child *w) EV_THROW
2384{ 3642{
2385#if EV_MULTIPLICITY 3643#if EV_MULTIPLICITY
2386 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3644 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2387#endif 3645#endif
2388 if (expect_false (ev_is_active (w))) 3646 if (expect_false (ev_is_active (w)))
2389 return; 3647 return;
2390 3648
2391 EV_FREQUENT_CHECK; 3649 EV_FREQUENT_CHECK;
2392 3650
2393 ev_start (EV_A_ (W)w, 1); 3651 ev_start (EV_A_ (W)w, 1);
2394 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3652 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2395 3653
2396 EV_FREQUENT_CHECK; 3654 EV_FREQUENT_CHECK;
2397} 3655}
2398 3656
2399void 3657void
2400ev_child_stop (EV_P_ ev_child *w) 3658ev_child_stop (EV_P_ ev_child *w) EV_THROW
2401{ 3659{
2402 clear_pending (EV_A_ (W)w); 3660 clear_pending (EV_A_ (W)w);
2403 if (expect_false (!ev_is_active (w))) 3661 if (expect_false (!ev_is_active (w)))
2404 return; 3662 return;
2405 3663
2406 EV_FREQUENT_CHECK; 3664 EV_FREQUENT_CHECK;
2407 3665
2408 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3666 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2409 ev_stop (EV_A_ (W)w); 3667 ev_stop (EV_A_ (W)w);
2410 3668
2411 EV_FREQUENT_CHECK; 3669 EV_FREQUENT_CHECK;
2412} 3670}
3671
3672#endif
2413 3673
2414#if EV_STAT_ENABLE 3674#if EV_STAT_ENABLE
2415 3675
2416# ifdef _WIN32 3676# ifdef _WIN32
2417# undef lstat 3677# undef lstat
2418# define lstat(a,b) _stati64 (a,b) 3678# define lstat(a,b) _stati64 (a,b)
2419# endif 3679# endif
2420 3680
2421#define DEF_STAT_INTERVAL 5.0074891 3681#define DEF_STAT_INTERVAL 5.0074891
3682#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2422#define MIN_STAT_INTERVAL 0.1074891 3683#define MIN_STAT_INTERVAL 0.1074891
2423 3684
2424static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3685static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2425 3686
2426#if EV_USE_INOTIFY 3687#if EV_USE_INOTIFY
2427# define EV_INOTIFY_BUFSIZE 8192 3688
3689/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3690# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2428 3691
2429static void noinline 3692static void noinline
2430infy_add (EV_P_ ev_stat *w) 3693infy_add (EV_P_ ev_stat *w)
2431{ 3694{
2432 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3695 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2433 3696
2434 if (w->wd < 0) 3697 if (w->wd >= 0)
3698 {
3699 struct statfs sfs;
3700
3701 /* now local changes will be tracked by inotify, but remote changes won't */
3702 /* unless the filesystem is known to be local, we therefore still poll */
3703 /* also do poll on <2.6.25, but with normal frequency */
3704
3705 if (!fs_2625)
3706 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3707 else if (!statfs (w->path, &sfs)
3708 && (sfs.f_type == 0x1373 /* devfs */
3709 || sfs.f_type == 0xEF53 /* ext2/3 */
3710 || sfs.f_type == 0x3153464a /* jfs */
3711 || sfs.f_type == 0x52654973 /* reiser3 */
3712 || sfs.f_type == 0x01021994 /* tempfs */
3713 || sfs.f_type == 0x58465342 /* xfs */))
3714 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3715 else
3716 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2435 { 3717 }
2436 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3718 else
3719 {
3720 /* can't use inotify, continue to stat */
3721 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2437 3722
2438 /* monitor some parent directory for speedup hints */ 3723 /* if path is not there, monitor some parent directory for speedup hints */
2439 /* note that exceeding the hardcoded limit is not a correctness issue, */ 3724 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2440 /* but an efficiency issue only */ 3725 /* but an efficiency issue only */
2441 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3726 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2442 { 3727 {
2443 char path [4096]; 3728 char path [4096];
2444 strcpy (path, w->path); 3729 strcpy (path, w->path);
2448 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3733 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2449 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3734 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2450 3735
2451 char *pend = strrchr (path, '/'); 3736 char *pend = strrchr (path, '/');
2452 3737
2453 if (!pend) 3738 if (!pend || pend == path)
2454 break; /* whoops, no '/', complain to your admin */ 3739 break;
2455 3740
2456 *pend = 0; 3741 *pend = 0;
2457 w->wd = inotify_add_watch (fs_fd, path, mask); 3742 w->wd = inotify_add_watch (fs_fd, path, mask);
2458 } 3743 }
2459 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3744 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2460 } 3745 }
2461 } 3746 }
2462 else
2463 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2464 3747
2465 if (w->wd >= 0) 3748 if (w->wd >= 0)
2466 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3749 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3750
3751 /* now re-arm timer, if required */
3752 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3753 ev_timer_again (EV_A_ &w->timer);
3754 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2467} 3755}
2468 3756
2469static void noinline 3757static void noinline
2470infy_del (EV_P_ ev_stat *w) 3758infy_del (EV_P_ ev_stat *w)
2471{ 3759{
2474 3762
2475 if (wd < 0) 3763 if (wd < 0)
2476 return; 3764 return;
2477 3765
2478 w->wd = -2; 3766 w->wd = -2;
2479 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3767 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2480 wlist_del (&fs_hash [slot].head, (WL)w); 3768 wlist_del (&fs_hash [slot].head, (WL)w);
2481 3769
2482 /* remove this watcher, if others are watching it, they will rearm */ 3770 /* remove this watcher, if others are watching it, they will rearm */
2483 inotify_rm_watch (fs_fd, wd); 3771 inotify_rm_watch (fs_fd, wd);
2484} 3772}
2485 3773
2486static void noinline 3774static void noinline
2487infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3775infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2488{ 3776{
2489 if (slot < 0) 3777 if (slot < 0)
2490 /* overflow, need to check for all hahs slots */ 3778 /* overflow, need to check for all hash slots */
2491 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3779 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2492 infy_wd (EV_A_ slot, wd, ev); 3780 infy_wd (EV_A_ slot, wd, ev);
2493 else 3781 else
2494 { 3782 {
2495 WL w_; 3783 WL w_;
2496 3784
2497 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3785 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2498 { 3786 {
2499 ev_stat *w = (ev_stat *)w_; 3787 ev_stat *w = (ev_stat *)w_;
2500 w_ = w_->next; /* lets us remove this watcher and all before it */ 3788 w_ = w_->next; /* lets us remove this watcher and all before it */
2501 3789
2502 if (w->wd == wd || wd == -1) 3790 if (w->wd == wd || wd == -1)
2503 { 3791 {
2504 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3792 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2505 { 3793 {
3794 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2506 w->wd = -1; 3795 w->wd = -1;
2507 infy_add (EV_A_ w); /* re-add, no matter what */ 3796 infy_add (EV_A_ w); /* re-add, no matter what */
2508 } 3797 }
2509 3798
2510 stat_timer_cb (EV_A_ &w->timer, 0); 3799 stat_timer_cb (EV_A_ &w->timer, 0);
2515 3804
2516static void 3805static void
2517infy_cb (EV_P_ ev_io *w, int revents) 3806infy_cb (EV_P_ ev_io *w, int revents)
2518{ 3807{
2519 char buf [EV_INOTIFY_BUFSIZE]; 3808 char buf [EV_INOTIFY_BUFSIZE];
2520 struct inotify_event *ev = (struct inotify_event *)buf;
2521 int ofs; 3809 int ofs;
2522 int len = read (fs_fd, buf, sizeof (buf)); 3810 int len = read (fs_fd, buf, sizeof (buf));
2523 3811
2524 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3812 for (ofs = 0; ofs < len; )
3813 {
3814 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2525 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3815 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3816 ofs += sizeof (struct inotify_event) + ev->len;
3817 }
2526} 3818}
2527 3819
2528void inline_size 3820inline_size void ecb_cold
3821ev_check_2625 (EV_P)
3822{
3823 /* kernels < 2.6.25 are borked
3824 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3825 */
3826 if (ev_linux_version () < 0x020619)
3827 return;
3828
3829 fs_2625 = 1;
3830}
3831
3832inline_size int
3833infy_newfd (void)
3834{
3835#if defined IN_CLOEXEC && defined IN_NONBLOCK
3836 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3837 if (fd >= 0)
3838 return fd;
3839#endif
3840 return inotify_init ();
3841}
3842
3843inline_size void
2529infy_init (EV_P) 3844infy_init (EV_P)
2530{ 3845{
2531 if (fs_fd != -2) 3846 if (fs_fd != -2)
2532 return; 3847 return;
2533 3848
3849 fs_fd = -1;
3850
3851 ev_check_2625 (EV_A);
3852
2534 fs_fd = inotify_init (); 3853 fs_fd = infy_newfd ();
2535 3854
2536 if (fs_fd >= 0) 3855 if (fs_fd >= 0)
2537 { 3856 {
3857 fd_intern (fs_fd);
2538 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3858 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2539 ev_set_priority (&fs_w, EV_MAXPRI); 3859 ev_set_priority (&fs_w, EV_MAXPRI);
2540 ev_io_start (EV_A_ &fs_w); 3860 ev_io_start (EV_A_ &fs_w);
3861 ev_unref (EV_A);
2541 } 3862 }
2542} 3863}
2543 3864
2544void inline_size 3865inline_size void
2545infy_fork (EV_P) 3866infy_fork (EV_P)
2546{ 3867{
2547 int slot; 3868 int slot;
2548 3869
2549 if (fs_fd < 0) 3870 if (fs_fd < 0)
2550 return; 3871 return;
2551 3872
3873 ev_ref (EV_A);
3874 ev_io_stop (EV_A_ &fs_w);
2552 close (fs_fd); 3875 close (fs_fd);
2553 fs_fd = inotify_init (); 3876 fs_fd = infy_newfd ();
2554 3877
3878 if (fs_fd >= 0)
3879 {
3880 fd_intern (fs_fd);
3881 ev_io_set (&fs_w, fs_fd, EV_READ);
3882 ev_io_start (EV_A_ &fs_w);
3883 ev_unref (EV_A);
3884 }
3885
2555 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3886 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2556 { 3887 {
2557 WL w_ = fs_hash [slot].head; 3888 WL w_ = fs_hash [slot].head;
2558 fs_hash [slot].head = 0; 3889 fs_hash [slot].head = 0;
2559 3890
2560 while (w_) 3891 while (w_)
2565 w->wd = -1; 3896 w->wd = -1;
2566 3897
2567 if (fs_fd >= 0) 3898 if (fs_fd >= 0)
2568 infy_add (EV_A_ w); /* re-add, no matter what */ 3899 infy_add (EV_A_ w); /* re-add, no matter what */
2569 else 3900 else
3901 {
3902 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3903 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2570 ev_timer_start (EV_A_ &w->timer); 3904 ev_timer_again (EV_A_ &w->timer);
3905 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3906 }
2571 } 3907 }
2572
2573 } 3908 }
2574} 3909}
2575 3910
2576#endif 3911#endif
2577 3912
2580#else 3915#else
2581# define EV_LSTAT(p,b) lstat (p, b) 3916# define EV_LSTAT(p,b) lstat (p, b)
2582#endif 3917#endif
2583 3918
2584void 3919void
2585ev_stat_stat (EV_P_ ev_stat *w) 3920ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
2586{ 3921{
2587 if (lstat (w->path, &w->attr) < 0) 3922 if (lstat (w->path, &w->attr) < 0)
2588 w->attr.st_nlink = 0; 3923 w->attr.st_nlink = 0;
2589 else if (!w->attr.st_nlink) 3924 else if (!w->attr.st_nlink)
2590 w->attr.st_nlink = 1; 3925 w->attr.st_nlink = 1;
2593static void noinline 3928static void noinline
2594stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3929stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2595{ 3930{
2596 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3931 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2597 3932
2598 /* we copy this here each the time so that */ 3933 ev_statdata prev = w->attr;
2599 /* prev has the old value when the callback gets invoked */
2600 w->prev = w->attr;
2601 ev_stat_stat (EV_A_ w); 3934 ev_stat_stat (EV_A_ w);
2602 3935
2603 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3936 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2604 if ( 3937 if (
2605 w->prev.st_dev != w->attr.st_dev 3938 prev.st_dev != w->attr.st_dev
2606 || w->prev.st_ino != w->attr.st_ino 3939 || prev.st_ino != w->attr.st_ino
2607 || w->prev.st_mode != w->attr.st_mode 3940 || prev.st_mode != w->attr.st_mode
2608 || w->prev.st_nlink != w->attr.st_nlink 3941 || prev.st_nlink != w->attr.st_nlink
2609 || w->prev.st_uid != w->attr.st_uid 3942 || prev.st_uid != w->attr.st_uid
2610 || w->prev.st_gid != w->attr.st_gid 3943 || prev.st_gid != w->attr.st_gid
2611 || w->prev.st_rdev != w->attr.st_rdev 3944 || prev.st_rdev != w->attr.st_rdev
2612 || w->prev.st_size != w->attr.st_size 3945 || prev.st_size != w->attr.st_size
2613 || w->prev.st_atime != w->attr.st_atime 3946 || prev.st_atime != w->attr.st_atime
2614 || w->prev.st_mtime != w->attr.st_mtime 3947 || prev.st_mtime != w->attr.st_mtime
2615 || w->prev.st_ctime != w->attr.st_ctime 3948 || prev.st_ctime != w->attr.st_ctime
2616 ) { 3949 ) {
3950 /* we only update w->prev on actual differences */
3951 /* in case we test more often than invoke the callback, */
3952 /* to ensure that prev is always different to attr */
3953 w->prev = prev;
3954
2617 #if EV_USE_INOTIFY 3955 #if EV_USE_INOTIFY
3956 if (fs_fd >= 0)
3957 {
2618 infy_del (EV_A_ w); 3958 infy_del (EV_A_ w);
2619 infy_add (EV_A_ w); 3959 infy_add (EV_A_ w);
2620 ev_stat_stat (EV_A_ w); /* avoid race... */ 3960 ev_stat_stat (EV_A_ w); /* avoid race... */
3961 }
2621 #endif 3962 #endif
2622 3963
2623 ev_feed_event (EV_A_ w, EV_STAT); 3964 ev_feed_event (EV_A_ w, EV_STAT);
2624 } 3965 }
2625} 3966}
2626 3967
2627void 3968void
2628ev_stat_start (EV_P_ ev_stat *w) 3969ev_stat_start (EV_P_ ev_stat *w) EV_THROW
2629{ 3970{
2630 if (expect_false (ev_is_active (w))) 3971 if (expect_false (ev_is_active (w)))
2631 return; 3972 return;
2632 3973
2633 /* since we use memcmp, we need to clear any padding data etc. */
2634 memset (&w->prev, 0, sizeof (ev_statdata));
2635 memset (&w->attr, 0, sizeof (ev_statdata));
2636
2637 ev_stat_stat (EV_A_ w); 3974 ev_stat_stat (EV_A_ w);
2638 3975
3976 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2639 if (w->interval < MIN_STAT_INTERVAL) 3977 w->interval = MIN_STAT_INTERVAL;
2640 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2641 3978
2642 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3979 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2643 ev_set_priority (&w->timer, ev_priority (w)); 3980 ev_set_priority (&w->timer, ev_priority (w));
2644 3981
2645#if EV_USE_INOTIFY 3982#if EV_USE_INOTIFY
2646 infy_init (EV_A); 3983 infy_init (EV_A);
2647 3984
2648 if (fs_fd >= 0) 3985 if (fs_fd >= 0)
2649 infy_add (EV_A_ w); 3986 infy_add (EV_A_ w);
2650 else 3987 else
2651#endif 3988#endif
3989 {
2652 ev_timer_start (EV_A_ &w->timer); 3990 ev_timer_again (EV_A_ &w->timer);
3991 ev_unref (EV_A);
3992 }
2653 3993
2654 ev_start (EV_A_ (W)w, 1); 3994 ev_start (EV_A_ (W)w, 1);
2655 3995
2656 EV_FREQUENT_CHECK; 3996 EV_FREQUENT_CHECK;
2657} 3997}
2658 3998
2659void 3999void
2660ev_stat_stop (EV_P_ ev_stat *w) 4000ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
2661{ 4001{
2662 clear_pending (EV_A_ (W)w); 4002 clear_pending (EV_A_ (W)w);
2663 if (expect_false (!ev_is_active (w))) 4003 if (expect_false (!ev_is_active (w)))
2664 return; 4004 return;
2665 4005
2666 EV_FREQUENT_CHECK; 4006 EV_FREQUENT_CHECK;
2667 4007
2668#if EV_USE_INOTIFY 4008#if EV_USE_INOTIFY
2669 infy_del (EV_A_ w); 4009 infy_del (EV_A_ w);
2670#endif 4010#endif
4011
4012 if (ev_is_active (&w->timer))
4013 {
4014 ev_ref (EV_A);
2671 ev_timer_stop (EV_A_ &w->timer); 4015 ev_timer_stop (EV_A_ &w->timer);
4016 }
2672 4017
2673 ev_stop (EV_A_ (W)w); 4018 ev_stop (EV_A_ (W)w);
2674 4019
2675 EV_FREQUENT_CHECK; 4020 EV_FREQUENT_CHECK;
2676} 4021}
2677#endif 4022#endif
2678 4023
2679#if EV_IDLE_ENABLE 4024#if EV_IDLE_ENABLE
2680void 4025void
2681ev_idle_start (EV_P_ ev_idle *w) 4026ev_idle_start (EV_P_ ev_idle *w) EV_THROW
2682{ 4027{
2683 if (expect_false (ev_is_active (w))) 4028 if (expect_false (ev_is_active (w)))
2684 return; 4029 return;
2685 4030
2686 pri_adjust (EV_A_ (W)w); 4031 pri_adjust (EV_A_ (W)w);
2699 4044
2700 EV_FREQUENT_CHECK; 4045 EV_FREQUENT_CHECK;
2701} 4046}
2702 4047
2703void 4048void
2704ev_idle_stop (EV_P_ ev_idle *w) 4049ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
2705{ 4050{
2706 clear_pending (EV_A_ (W)w); 4051 clear_pending (EV_A_ (W)w);
2707 if (expect_false (!ev_is_active (w))) 4052 if (expect_false (!ev_is_active (w)))
2708 return; 4053 return;
2709 4054
2721 4066
2722 EV_FREQUENT_CHECK; 4067 EV_FREQUENT_CHECK;
2723} 4068}
2724#endif 4069#endif
2725 4070
4071#if EV_PREPARE_ENABLE
2726void 4072void
2727ev_prepare_start (EV_P_ ev_prepare *w) 4073ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
2728{ 4074{
2729 if (expect_false (ev_is_active (w))) 4075 if (expect_false (ev_is_active (w)))
2730 return; 4076 return;
2731 4077
2732 EV_FREQUENT_CHECK; 4078 EV_FREQUENT_CHECK;
2737 4083
2738 EV_FREQUENT_CHECK; 4084 EV_FREQUENT_CHECK;
2739} 4085}
2740 4086
2741void 4087void
2742ev_prepare_stop (EV_P_ ev_prepare *w) 4088ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
2743{ 4089{
2744 clear_pending (EV_A_ (W)w); 4090 clear_pending (EV_A_ (W)w);
2745 if (expect_false (!ev_is_active (w))) 4091 if (expect_false (!ev_is_active (w)))
2746 return; 4092 return;
2747 4093
2756 4102
2757 ev_stop (EV_A_ (W)w); 4103 ev_stop (EV_A_ (W)w);
2758 4104
2759 EV_FREQUENT_CHECK; 4105 EV_FREQUENT_CHECK;
2760} 4106}
4107#endif
2761 4108
4109#if EV_CHECK_ENABLE
2762void 4110void
2763ev_check_start (EV_P_ ev_check *w) 4111ev_check_start (EV_P_ ev_check *w) EV_THROW
2764{ 4112{
2765 if (expect_false (ev_is_active (w))) 4113 if (expect_false (ev_is_active (w)))
2766 return; 4114 return;
2767 4115
2768 EV_FREQUENT_CHECK; 4116 EV_FREQUENT_CHECK;
2773 4121
2774 EV_FREQUENT_CHECK; 4122 EV_FREQUENT_CHECK;
2775} 4123}
2776 4124
2777void 4125void
2778ev_check_stop (EV_P_ ev_check *w) 4126ev_check_stop (EV_P_ ev_check *w) EV_THROW
2779{ 4127{
2780 clear_pending (EV_A_ (W)w); 4128 clear_pending (EV_A_ (W)w);
2781 if (expect_false (!ev_is_active (w))) 4129 if (expect_false (!ev_is_active (w)))
2782 return; 4130 return;
2783 4131
2792 4140
2793 ev_stop (EV_A_ (W)w); 4141 ev_stop (EV_A_ (W)w);
2794 4142
2795 EV_FREQUENT_CHECK; 4143 EV_FREQUENT_CHECK;
2796} 4144}
4145#endif
2797 4146
2798#if EV_EMBED_ENABLE 4147#if EV_EMBED_ENABLE
2799void noinline 4148void noinline
2800ev_embed_sweep (EV_P_ ev_embed *w) 4149ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
2801{ 4150{
2802 ev_loop (w->other, EVLOOP_NONBLOCK); 4151 ev_run (w->other, EVRUN_NOWAIT);
2803} 4152}
2804 4153
2805static void 4154static void
2806embed_io_cb (EV_P_ ev_io *io, int revents) 4155embed_io_cb (EV_P_ ev_io *io, int revents)
2807{ 4156{
2808 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4157 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2809 4158
2810 if (ev_cb (w)) 4159 if (ev_cb (w))
2811 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4160 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2812 else 4161 else
2813 ev_loop (w->other, EVLOOP_NONBLOCK); 4162 ev_run (w->other, EVRUN_NOWAIT);
2814} 4163}
2815 4164
2816static void 4165static void
2817embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4166embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2818{ 4167{
2819 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4168 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2820 4169
2821 { 4170 {
2822 struct ev_loop *loop = w->other; 4171 EV_P = w->other;
2823 4172
2824 while (fdchangecnt) 4173 while (fdchangecnt)
2825 { 4174 {
2826 fd_reify (EV_A); 4175 fd_reify (EV_A);
2827 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4176 ev_run (EV_A_ EVRUN_NOWAIT);
2828 } 4177 }
2829 } 4178 }
4179}
4180
4181static void
4182embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4183{
4184 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4185
4186 ev_embed_stop (EV_A_ w);
4187
4188 {
4189 EV_P = w->other;
4190
4191 ev_loop_fork (EV_A);
4192 ev_run (EV_A_ EVRUN_NOWAIT);
4193 }
4194
4195 ev_embed_start (EV_A_ w);
2830} 4196}
2831 4197
2832#if 0 4198#if 0
2833static void 4199static void
2834embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4200embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2836 ev_idle_stop (EV_A_ idle); 4202 ev_idle_stop (EV_A_ idle);
2837} 4203}
2838#endif 4204#endif
2839 4205
2840void 4206void
2841ev_embed_start (EV_P_ ev_embed *w) 4207ev_embed_start (EV_P_ ev_embed *w) EV_THROW
2842{ 4208{
2843 if (expect_false (ev_is_active (w))) 4209 if (expect_false (ev_is_active (w)))
2844 return; 4210 return;
2845 4211
2846 { 4212 {
2847 struct ev_loop *loop = w->other; 4213 EV_P = w->other;
2848 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4214 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2849 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4215 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2850 } 4216 }
2851 4217
2852 EV_FREQUENT_CHECK; 4218 EV_FREQUENT_CHECK;
2853 4219
2856 4222
2857 ev_prepare_init (&w->prepare, embed_prepare_cb); 4223 ev_prepare_init (&w->prepare, embed_prepare_cb);
2858 ev_set_priority (&w->prepare, EV_MINPRI); 4224 ev_set_priority (&w->prepare, EV_MINPRI);
2859 ev_prepare_start (EV_A_ &w->prepare); 4225 ev_prepare_start (EV_A_ &w->prepare);
2860 4226
4227 ev_fork_init (&w->fork, embed_fork_cb);
4228 ev_fork_start (EV_A_ &w->fork);
4229
2861 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 4230 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2862 4231
2863 ev_start (EV_A_ (W)w, 1); 4232 ev_start (EV_A_ (W)w, 1);
2864 4233
2865 EV_FREQUENT_CHECK; 4234 EV_FREQUENT_CHECK;
2866} 4235}
2867 4236
2868void 4237void
2869ev_embed_stop (EV_P_ ev_embed *w) 4238ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
2870{ 4239{
2871 clear_pending (EV_A_ (W)w); 4240 clear_pending (EV_A_ (W)w);
2872 if (expect_false (!ev_is_active (w))) 4241 if (expect_false (!ev_is_active (w)))
2873 return; 4242 return;
2874 4243
2875 EV_FREQUENT_CHECK; 4244 EV_FREQUENT_CHECK;
2876 4245
2877 ev_io_stop (EV_A_ &w->io); 4246 ev_io_stop (EV_A_ &w->io);
2878 ev_prepare_stop (EV_A_ &w->prepare); 4247 ev_prepare_stop (EV_A_ &w->prepare);
4248 ev_fork_stop (EV_A_ &w->fork);
2879 4249
2880 ev_stop (EV_A_ (W)w); 4250 ev_stop (EV_A_ (W)w);
2881 4251
2882 EV_FREQUENT_CHECK; 4252 EV_FREQUENT_CHECK;
2883} 4253}
2884#endif 4254#endif
2885 4255
2886#if EV_FORK_ENABLE 4256#if EV_FORK_ENABLE
2887void 4257void
2888ev_fork_start (EV_P_ ev_fork *w) 4258ev_fork_start (EV_P_ ev_fork *w) EV_THROW
2889{ 4259{
2890 if (expect_false (ev_is_active (w))) 4260 if (expect_false (ev_is_active (w)))
2891 return; 4261 return;
2892 4262
2893 EV_FREQUENT_CHECK; 4263 EV_FREQUENT_CHECK;
2898 4268
2899 EV_FREQUENT_CHECK; 4269 EV_FREQUENT_CHECK;
2900} 4270}
2901 4271
2902void 4272void
2903ev_fork_stop (EV_P_ ev_fork *w) 4273ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
2904{ 4274{
2905 clear_pending (EV_A_ (W)w); 4275 clear_pending (EV_A_ (W)w);
2906 if (expect_false (!ev_is_active (w))) 4276 if (expect_false (!ev_is_active (w)))
2907 return; 4277 return;
2908 4278
2919 4289
2920 EV_FREQUENT_CHECK; 4290 EV_FREQUENT_CHECK;
2921} 4291}
2922#endif 4292#endif
2923 4293
4294#if EV_CLEANUP_ENABLE
4295void
4296ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4297{
4298 if (expect_false (ev_is_active (w)))
4299 return;
4300
4301 EV_FREQUENT_CHECK;
4302
4303 ev_start (EV_A_ (W)w, ++cleanupcnt);
4304 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4305 cleanups [cleanupcnt - 1] = w;
4306
4307 /* cleanup watchers should never keep a refcount on the loop */
4308 ev_unref (EV_A);
4309 EV_FREQUENT_CHECK;
4310}
4311
4312void
4313ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4314{
4315 clear_pending (EV_A_ (W)w);
4316 if (expect_false (!ev_is_active (w)))
4317 return;
4318
4319 EV_FREQUENT_CHECK;
4320 ev_ref (EV_A);
4321
4322 {
4323 int active = ev_active (w);
4324
4325 cleanups [active - 1] = cleanups [--cleanupcnt];
4326 ev_active (cleanups [active - 1]) = active;
4327 }
4328
4329 ev_stop (EV_A_ (W)w);
4330
4331 EV_FREQUENT_CHECK;
4332}
4333#endif
4334
2924#if EV_ASYNC_ENABLE 4335#if EV_ASYNC_ENABLE
2925void 4336void
2926ev_async_start (EV_P_ ev_async *w) 4337ev_async_start (EV_P_ ev_async *w) EV_THROW
2927{ 4338{
2928 if (expect_false (ev_is_active (w))) 4339 if (expect_false (ev_is_active (w)))
2929 return; 4340 return;
4341
4342 w->sent = 0;
2930 4343
2931 evpipe_init (EV_A); 4344 evpipe_init (EV_A);
2932 4345
2933 EV_FREQUENT_CHECK; 4346 EV_FREQUENT_CHECK;
2934 4347
2938 4351
2939 EV_FREQUENT_CHECK; 4352 EV_FREQUENT_CHECK;
2940} 4353}
2941 4354
2942void 4355void
2943ev_async_stop (EV_P_ ev_async *w) 4356ev_async_stop (EV_P_ ev_async *w) EV_THROW
2944{ 4357{
2945 clear_pending (EV_A_ (W)w); 4358 clear_pending (EV_A_ (W)w);
2946 if (expect_false (!ev_is_active (w))) 4359 if (expect_false (!ev_is_active (w)))
2947 return; 4360 return;
2948 4361
2959 4372
2960 EV_FREQUENT_CHECK; 4373 EV_FREQUENT_CHECK;
2961} 4374}
2962 4375
2963void 4376void
2964ev_async_send (EV_P_ ev_async *w) 4377ev_async_send (EV_P_ ev_async *w) EV_THROW
2965{ 4378{
2966 w->sent = 1; 4379 w->sent = 1;
2967 evpipe_write (EV_A_ &gotasync); 4380 evpipe_write (EV_A_ &async_pending);
2968} 4381}
2969#endif 4382#endif
2970 4383
2971/*****************************************************************************/ 4384/*****************************************************************************/
2972 4385
2982once_cb (EV_P_ struct ev_once *once, int revents) 4395once_cb (EV_P_ struct ev_once *once, int revents)
2983{ 4396{
2984 void (*cb)(int revents, void *arg) = once->cb; 4397 void (*cb)(int revents, void *arg) = once->cb;
2985 void *arg = once->arg; 4398 void *arg = once->arg;
2986 4399
2987 ev_io_stop (EV_A_ &once->io); 4400 ev_io_stop (EV_A_ &once->io);
2988 ev_timer_stop (EV_A_ &once->to); 4401 ev_timer_stop (EV_A_ &once->to);
2989 ev_free (once); 4402 ev_free (once);
2990 4403
2991 cb (revents, arg); 4404 cb (revents, arg);
2992} 4405}
2993 4406
2994static void 4407static void
2995once_cb_io (EV_P_ ev_io *w, int revents) 4408once_cb_io (EV_P_ ev_io *w, int revents)
2996{ 4409{
2997 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4410 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4411
4412 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2998} 4413}
2999 4414
3000static void 4415static void
3001once_cb_to (EV_P_ ev_timer *w, int revents) 4416once_cb_to (EV_P_ ev_timer *w, int revents)
3002{ 4417{
3003 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4418 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4419
4420 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3004} 4421}
3005 4422
3006void 4423void
3007ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4424ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
3008{ 4425{
3009 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4426 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3010 4427
3011 if (expect_false (!once)) 4428 if (expect_false (!once))
3012 { 4429 {
3013 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4430 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
3014 return; 4431 return;
3015 } 4432 }
3016 4433
3017 once->cb = cb; 4434 once->cb = cb;
3018 once->arg = arg; 4435 once->arg = arg;
3030 ev_timer_set (&once->to, timeout, 0.); 4447 ev_timer_set (&once->to, timeout, 0.);
3031 ev_timer_start (EV_A_ &once->to); 4448 ev_timer_start (EV_A_ &once->to);
3032 } 4449 }
3033} 4450}
3034 4451
4452/*****************************************************************************/
4453
4454#if EV_WALK_ENABLE
4455void ecb_cold
4456ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4457{
4458 int i, j;
4459 ev_watcher_list *wl, *wn;
4460
4461 if (types & (EV_IO | EV_EMBED))
4462 for (i = 0; i < anfdmax; ++i)
4463 for (wl = anfds [i].head; wl; )
4464 {
4465 wn = wl->next;
4466
4467#if EV_EMBED_ENABLE
4468 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4469 {
4470 if (types & EV_EMBED)
4471 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4472 }
4473 else
4474#endif
4475#if EV_USE_INOTIFY
4476 if (ev_cb ((ev_io *)wl) == infy_cb)
4477 ;
4478 else
4479#endif
4480 if ((ev_io *)wl != &pipe_w)
4481 if (types & EV_IO)
4482 cb (EV_A_ EV_IO, wl);
4483
4484 wl = wn;
4485 }
4486
4487 if (types & (EV_TIMER | EV_STAT))
4488 for (i = timercnt + HEAP0; i-- > HEAP0; )
4489#if EV_STAT_ENABLE
4490 /*TODO: timer is not always active*/
4491 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4492 {
4493 if (types & EV_STAT)
4494 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4495 }
4496 else
4497#endif
4498 if (types & EV_TIMER)
4499 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4500
4501#if EV_PERIODIC_ENABLE
4502 if (types & EV_PERIODIC)
4503 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4504 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4505#endif
4506
4507#if EV_IDLE_ENABLE
4508 if (types & EV_IDLE)
4509 for (j = NUMPRI; j--; )
4510 for (i = idlecnt [j]; i--; )
4511 cb (EV_A_ EV_IDLE, idles [j][i]);
4512#endif
4513
4514#if EV_FORK_ENABLE
4515 if (types & EV_FORK)
4516 for (i = forkcnt; i--; )
4517 if (ev_cb (forks [i]) != embed_fork_cb)
4518 cb (EV_A_ EV_FORK, forks [i]);
4519#endif
4520
4521#if EV_ASYNC_ENABLE
4522 if (types & EV_ASYNC)
4523 for (i = asynccnt; i--; )
4524 cb (EV_A_ EV_ASYNC, asyncs [i]);
4525#endif
4526
4527#if EV_PREPARE_ENABLE
4528 if (types & EV_PREPARE)
4529 for (i = preparecnt; i--; )
4530# if EV_EMBED_ENABLE
4531 if (ev_cb (prepares [i]) != embed_prepare_cb)
4532# endif
4533 cb (EV_A_ EV_PREPARE, prepares [i]);
4534#endif
4535
4536#if EV_CHECK_ENABLE
4537 if (types & EV_CHECK)
4538 for (i = checkcnt; i--; )
4539 cb (EV_A_ EV_CHECK, checks [i]);
4540#endif
4541
4542#if EV_SIGNAL_ENABLE
4543 if (types & EV_SIGNAL)
4544 for (i = 0; i < EV_NSIG - 1; ++i)
4545 for (wl = signals [i].head; wl; )
4546 {
4547 wn = wl->next;
4548 cb (EV_A_ EV_SIGNAL, wl);
4549 wl = wn;
4550 }
4551#endif
4552
4553#if EV_CHILD_ENABLE
4554 if (types & EV_CHILD)
4555 for (i = (EV_PID_HASHSIZE); i--; )
4556 for (wl = childs [i]; wl; )
4557 {
4558 wn = wl->next;
4559 cb (EV_A_ EV_CHILD, wl);
4560 wl = wn;
4561 }
4562#endif
4563/* EV_STAT 0x00001000 /* stat data changed */
4564/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4565}
4566#endif
4567
3035#if EV_MULTIPLICITY 4568#if EV_MULTIPLICITY
3036 #include "ev_wrap.h" 4569 #include "ev_wrap.h"
3037#endif 4570#endif
3038 4571
3039#ifdef __cplusplus
3040}
3041#endif
3042

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines