ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.86 by root, Sat Nov 10 03:19:21 2007 UTC vs.
Revision 1.449 by root, Sun Sep 23 21:21:58 2012 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
39
40/* this big block deduces configuration from config.h */
31#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
32# include "config.h" 45# include "config.h"
46# endif
47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
33 67
34# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
69# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
71# endif
72# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
74# endif
75# else
76# ifndef EV_USE_MONOTONIC
77# define EV_USE_MONOTONIC 0
78# endif
79# ifndef EV_USE_REALTIME
80# define EV_USE_REALTIME 0
81# endif
37# endif 82# endif
38 83
84# if HAVE_NANOSLEEP
85# ifndef EV_USE_NANOSLEEP
86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
91# endif
92
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
96# endif
97# else
98# undef EV_USE_SELECT
40# define EV_USE_SELECT 1 99# define EV_USE_SELECT 0
41# endif 100# endif
42 101
43# if HAVE_POLL && HAVE_POLL_H 102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
44# define EV_USE_POLL 1 108# define EV_USE_POLL 0
45# endif 109# endif
46 110
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112# ifndef EV_USE_EPOLL
113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
114# endif
115# else
116# undef EV_USE_EPOLL
48# define EV_USE_EPOLL 1 117# define EV_USE_EPOLL 0
49# endif 118# endif
50 119
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121# ifndef EV_USE_KQUEUE
122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123# endif
124# else
125# undef EV_USE_KQUEUE
52# define EV_USE_KQUEUE 1 126# define EV_USE_KQUEUE 0
53# endif 127# endif
54 128
129# if HAVE_PORT_H && HAVE_PORT_CREATE
130# ifndef EV_USE_PORT
131# define EV_USE_PORT EV_FEATURE_BACKENDS
132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
55#endif 136# endif
56 137
57#include <math.h> 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139# ifndef EV_USE_INOTIFY
140# define EV_USE_INOTIFY EV_FEATURE_OS
141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
145# endif
146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
58#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
59#include <fcntl.h> 169#include <fcntl.h>
60#include <stddef.h> 170#include <stddef.h>
61 171
62#include <stdio.h> 172#include <stdio.h>
63 173
64#include <assert.h> 174#include <assert.h>
65#include <errno.h> 175#include <errno.h>
66#include <sys/types.h> 176#include <sys/types.h>
67#include <time.h> 177#include <time.h>
178#include <limits.h>
68 179
69#include <signal.h> 180#include <signal.h>
70
71#ifndef WIN32
72# include <unistd.h>
73# include <sys/time.h>
74# include <sys/wait.h>
75#endif
76/**/
77
78#ifndef EV_USE_MONOTONIC
79# define EV_USE_MONOTONIC 1
80#endif
81
82#ifndef EV_USE_SELECT
83# define EV_USE_SELECT 1
84#endif
85
86#ifndef EV_USE_POLL
87# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
88#endif
89
90#ifndef EV_USE_EPOLL
91# define EV_USE_EPOLL 0
92#endif
93
94#ifndef EV_USE_KQUEUE
95# define EV_USE_KQUEUE 0
96#endif
97
98#ifndef EV_USE_WIN32
99# ifdef WIN32
100# define EV_USE_WIN32 0 /* it does not exist, use select */
101# undef EV_USE_SELECT
102# define EV_USE_SELECT 1
103# else
104# define EV_USE_WIN32 0
105# endif
106#endif
107
108#ifndef EV_USE_REALTIME
109# define EV_USE_REALTIME 1
110#endif
111
112/**/
113
114#ifndef CLOCK_MONOTONIC
115# undef EV_USE_MONOTONIC
116# define EV_USE_MONOTONIC 0
117#endif
118
119#ifndef CLOCK_REALTIME
120# undef EV_USE_REALTIME
121# define EV_USE_REALTIME 0
122#endif
123
124/**/
125
126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
130 181
131#ifdef EV_H 182#ifdef EV_H
132# include EV_H 183# include EV_H
133#else 184#else
134# include "ev.h" 185# include "ev.h"
135#endif 186#endif
136 187
137#if __GNUC__ >= 3 188#if EV_NO_THREADS
138# define expect(expr,value) __builtin_expect ((expr),(value)) 189# undef EV_NO_SMP
139# define inline inline 190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
197#endif
198
199#ifndef _WIN32
200# include <sys/time.h>
201# include <sys/wait.h>
202# include <unistd.h>
140#else 203#else
141# define expect(expr,value) (expr) 204# include <io.h>
142# define inline static 205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
207# include <windows.h>
208# ifndef EV_SELECT_IS_WINSOCKET
209# define EV_SELECT_IS_WINSOCKET 1
143#endif 210# endif
211# undef EV_AVOID_STDIO
212#endif
144 213
145#define expect_false(expr) expect ((expr) != 0, 0) 214/* OS X, in its infinite idiocy, actually HARDCODES
146#define expect_true(expr) expect ((expr) != 0, 1) 215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
147 221
148#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 222/* this block tries to deduce configuration from header-defined symbols and defaults */
149#define ABSPRI(w) ((w)->priority - EV_MINPRI)
150 223
151typedef struct ev_watcher *W; 224/* try to deduce the maximum number of signals on this platform */
152typedef struct ev_watcher_list *WL; 225#if defined EV_NSIG
153typedef struct ev_watcher_time *WT; 226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# error "unable to find value for NSIG, please report"
247/* to make it compile regardless, just remove the above line, */
248/* but consider reporting it, too! :) */
249# define EV_NSIG 65
250#endif
154 251
155static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 252#ifndef EV_USE_FLOOR
253# define EV_USE_FLOOR 0
254#endif
156 255
157#include "ev_win32.c" 256#ifndef EV_USE_CLOCK_SYSCALL
257# if __linux && __GLIBC__ >= 2
258# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
259# else
260# define EV_USE_CLOCK_SYSCALL 0
261# endif
262#endif
263
264#ifndef EV_USE_MONOTONIC
265# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
266# define EV_USE_MONOTONIC EV_FEATURE_OS
267# else
268# define EV_USE_MONOTONIC 0
269# endif
270#endif
271
272#ifndef EV_USE_REALTIME
273# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
274#endif
275
276#ifndef EV_USE_NANOSLEEP
277# if _POSIX_C_SOURCE >= 199309L
278# define EV_USE_NANOSLEEP EV_FEATURE_OS
279# else
280# define EV_USE_NANOSLEEP 0
281# endif
282#endif
283
284#ifndef EV_USE_SELECT
285# define EV_USE_SELECT EV_FEATURE_BACKENDS
286#endif
287
288#ifndef EV_USE_POLL
289# ifdef _WIN32
290# define EV_USE_POLL 0
291# else
292# define EV_USE_POLL EV_FEATURE_BACKENDS
293# endif
294#endif
295
296#ifndef EV_USE_EPOLL
297# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
298# define EV_USE_EPOLL EV_FEATURE_BACKENDS
299# else
300# define EV_USE_EPOLL 0
301# endif
302#endif
303
304#ifndef EV_USE_KQUEUE
305# define EV_USE_KQUEUE 0
306#endif
307
308#ifndef EV_USE_PORT
309# define EV_USE_PORT 0
310#endif
311
312#ifndef EV_USE_INOTIFY
313# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
314# define EV_USE_INOTIFY EV_FEATURE_OS
315# else
316# define EV_USE_INOTIFY 0
317# endif
318#endif
319
320#ifndef EV_PID_HASHSIZE
321# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
322#endif
323
324#ifndef EV_INOTIFY_HASHSIZE
325# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
326#endif
327
328#ifndef EV_USE_EVENTFD
329# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
330# define EV_USE_EVENTFD EV_FEATURE_OS
331# else
332# define EV_USE_EVENTFD 0
333# endif
334#endif
335
336#ifndef EV_USE_SIGNALFD
337# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
338# define EV_USE_SIGNALFD EV_FEATURE_OS
339# else
340# define EV_USE_SIGNALFD 0
341# endif
342#endif
343
344#if 0 /* debugging */
345# define EV_VERIFY 3
346# define EV_USE_4HEAP 1
347# define EV_HEAP_CACHE_AT 1
348#endif
349
350#ifndef EV_VERIFY
351# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
352#endif
353
354#ifndef EV_USE_4HEAP
355# define EV_USE_4HEAP EV_FEATURE_DATA
356#endif
357
358#ifndef EV_HEAP_CACHE_AT
359# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
360#endif
361
362/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
363/* which makes programs even slower. might work on other unices, too. */
364#if EV_USE_CLOCK_SYSCALL
365# include <sys/syscall.h>
366# ifdef SYS_clock_gettime
367# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
368# undef EV_USE_MONOTONIC
369# define EV_USE_MONOTONIC 1
370# else
371# undef EV_USE_CLOCK_SYSCALL
372# define EV_USE_CLOCK_SYSCALL 0
373# endif
374#endif
375
376/* this block fixes any misconfiguration where we know we run into trouble otherwise */
377
378#ifdef _AIX
379/* AIX has a completely broken poll.h header */
380# undef EV_USE_POLL
381# define EV_USE_POLL 0
382#endif
383
384#ifndef CLOCK_MONOTONIC
385# undef EV_USE_MONOTONIC
386# define EV_USE_MONOTONIC 0
387#endif
388
389#ifndef CLOCK_REALTIME
390# undef EV_USE_REALTIME
391# define EV_USE_REALTIME 0
392#endif
393
394#if !EV_STAT_ENABLE
395# undef EV_USE_INOTIFY
396# define EV_USE_INOTIFY 0
397#endif
398
399#if !EV_USE_NANOSLEEP
400/* hp-ux has it in sys/time.h, which we unconditionally include above */
401# if !defined _WIN32 && !defined __hpux
402# include <sys/select.h>
403# endif
404#endif
405
406#if EV_USE_INOTIFY
407# include <sys/statfs.h>
408# include <sys/inotify.h>
409/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
410# ifndef IN_DONT_FOLLOW
411# undef EV_USE_INOTIFY
412# define EV_USE_INOTIFY 0
413# endif
414#endif
415
416#if EV_USE_EVENTFD
417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
418# include <stdint.h>
419# ifndef EFD_NONBLOCK
420# define EFD_NONBLOCK O_NONBLOCK
421# endif
422# ifndef EFD_CLOEXEC
423# ifdef O_CLOEXEC
424# define EFD_CLOEXEC O_CLOEXEC
425# else
426# define EFD_CLOEXEC 02000000
427# endif
428# endif
429EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
430#endif
431
432#if EV_USE_SIGNALFD
433/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
434# include <stdint.h>
435# ifndef SFD_NONBLOCK
436# define SFD_NONBLOCK O_NONBLOCK
437# endif
438# ifndef SFD_CLOEXEC
439# ifdef O_CLOEXEC
440# define SFD_CLOEXEC O_CLOEXEC
441# else
442# define SFD_CLOEXEC 02000000
443# endif
444# endif
445EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
446
447struct signalfd_siginfo
448{
449 uint32_t ssi_signo;
450 char pad[128 - sizeof (uint32_t)];
451};
452#endif
453
454/**/
455
456#if EV_VERIFY >= 3
457# define EV_FREQUENT_CHECK ev_verify (EV_A)
458#else
459# define EV_FREQUENT_CHECK do { } while (0)
460#endif
461
462/*
463 * This is used to work around floating point rounding problems.
464 * This value is good at least till the year 4000.
465 */
466#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
467/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
468
469#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
470#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
471
472#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
473#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
474
475/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
476/* ECB.H BEGIN */
477/*
478 * libecb - http://software.schmorp.de/pkg/libecb
479 *
480 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
481 * Copyright (©) 2011 Emanuele Giaquinta
482 * All rights reserved.
483 *
484 * Redistribution and use in source and binary forms, with or without modifica-
485 * tion, are permitted provided that the following conditions are met:
486 *
487 * 1. Redistributions of source code must retain the above copyright notice,
488 * this list of conditions and the following disclaimer.
489 *
490 * 2. Redistributions in binary form must reproduce the above copyright
491 * notice, this list of conditions and the following disclaimer in the
492 * documentation and/or other materials provided with the distribution.
493 *
494 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
495 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
496 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
497 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
498 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
499 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
500 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
501 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
502 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
503 * OF THE POSSIBILITY OF SUCH DAMAGE.
504 */
505
506#ifndef ECB_H
507#define ECB_H
508
509/* 16 bits major, 16 bits minor */
510#define ECB_VERSION 0x00010001
511
512#ifdef _WIN32
513 typedef signed char int8_t;
514 typedef unsigned char uint8_t;
515 typedef signed short int16_t;
516 typedef unsigned short uint16_t;
517 typedef signed int int32_t;
518 typedef unsigned int uint32_t;
519 #if __GNUC__
520 typedef signed long long int64_t;
521 typedef unsigned long long uint64_t;
522 #else /* _MSC_VER || __BORLANDC__ */
523 typedef signed __int64 int64_t;
524 typedef unsigned __int64 uint64_t;
525 #endif
526 #ifdef _WIN64
527 #define ECB_PTRSIZE 8
528 typedef uint64_t uintptr_t;
529 typedef int64_t intptr_t;
530 #else
531 #define ECB_PTRSIZE 4
532 typedef uint32_t uintptr_t;
533 typedef int32_t intptr_t;
534 #endif
535 typedef intptr_t ptrdiff_t;
536#else
537 #include <inttypes.h>
538 #if UINTMAX_MAX > 0xffffffffU
539 #define ECB_PTRSIZE 8
540 #else
541 #define ECB_PTRSIZE 4
542 #endif
543#endif
544
545/* many compilers define _GNUC_ to some versions but then only implement
546 * what their idiot authors think are the "more important" extensions,
547 * causing enormous grief in return for some better fake benchmark numbers.
548 * or so.
549 * we try to detect these and simply assume they are not gcc - if they have
550 * an issue with that they should have done it right in the first place.
551 */
552#ifndef ECB_GCC_VERSION
553 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
554 #define ECB_GCC_VERSION(major,minor) 0
555 #else
556 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
557 #endif
558#endif
559
560#define ECB_C (__STDC__+0) /* this assumes that __STDC__ is either empty or a number */
561#define ECB_C99 (__STDC_VERSION__ >= 199901L)
562#define ECB_C11 (__STDC_VERSION__ >= 201112L)
563#define ECB_CPP (__cplusplus+0)
564#define ECB_CPP11 (__cplusplus >= 201103L)
158 565
159/*****************************************************************************/ 566/*****************************************************************************/
160 567
568/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
569/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
570
571#if ECB_NO_THREADS
572 #define ECB_NO_SMP 1
573#endif
574
575#if ECB_NO_SMP
576 #define ECB_MEMORY_FENCE do { } while (0)
577#endif
578
579#ifndef ECB_MEMORY_FENCE
580 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
581 #if __i386 || __i386__
582 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
583 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
584 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
585 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
586 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
587 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
588 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
589 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
590 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
591 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
592 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
593 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
594 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
595 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
596 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
597 #elif __sparc || __sparc__
598 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
599 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
600 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
601 #elif defined __s390__ || defined __s390x__
602 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
603 #elif defined __mips__
604 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
605 #elif defined __alpha__
606 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
607 #elif defined __hppa__
608 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
609 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
610 #elif defined __ia64__
611 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
612 #endif
613 #endif
614#endif
615
616#ifndef ECB_MEMORY_FENCE
617 #if ECB_GCC_VERSION(4,7)
618 /* see comment below (stdatomic.h) about the C11 memory model. */
619 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
620 #elif defined __clang && __has_feature (cxx_atomic)
621 /* see comment below (stdatomic.h) about the C11 memory model. */
622 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
623 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
624 #define ECB_MEMORY_FENCE __sync_synchronize ()
625 #elif _MSC_VER >= 1400 /* VC++ 2005 */
626 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
627 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
628 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
629 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
630 #elif defined _WIN32
631 #include <WinNT.h>
632 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
633 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
634 #include <mbarrier.h>
635 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
636 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
637 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
638 #elif __xlC__
639 #define ECB_MEMORY_FENCE __sync ()
640 #endif
641#endif
642
643#ifndef ECB_MEMORY_FENCE
644 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
645 /* we assume that these memory fences work on all variables/all memory accesses, */
646 /* not just C11 atomics and atomic accesses */
647 #include <stdatomic.h>
648 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
649 /* any fence other than seq_cst, which isn't very efficient for us. */
650 /* Why that is, we don't know - either the C11 memory model is quite useless */
651 /* for most usages, or gcc and clang have a bug */
652 /* I *currently* lean towards the latter, and inefficiently implement */
653 /* all three of ecb's fences as a seq_cst fence */
654 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
655 #endif
656#endif
657
658#ifndef ECB_MEMORY_FENCE
659 #if !ECB_AVOID_PTHREADS
660 /*
661 * if you get undefined symbol references to pthread_mutex_lock,
662 * or failure to find pthread.h, then you should implement
663 * the ECB_MEMORY_FENCE operations for your cpu/compiler
664 * OR provide pthread.h and link against the posix thread library
665 * of your system.
666 */
667 #include <pthread.h>
668 #define ECB_NEEDS_PTHREADS 1
669 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
670
671 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
672 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
673 #endif
674#endif
675
676#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
677 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
678#endif
679
680#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
681 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
682#endif
683
684/*****************************************************************************/
685
686#if __cplusplus
687 #define ecb_inline static inline
688#elif ECB_GCC_VERSION(2,5)
689 #define ecb_inline static __inline__
690#elif ECB_C99
691 #define ecb_inline static inline
692#else
693 #define ecb_inline static
694#endif
695
696#if ECB_GCC_VERSION(3,3)
697 #define ecb_restrict __restrict__
698#elif ECB_C99
699 #define ecb_restrict restrict
700#else
701 #define ecb_restrict
702#endif
703
704typedef int ecb_bool;
705
706#define ECB_CONCAT_(a, b) a ## b
707#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
708#define ECB_STRINGIFY_(a) # a
709#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
710
711#define ecb_function_ ecb_inline
712
713#if ECB_GCC_VERSION(3,1)
714 #define ecb_attribute(attrlist) __attribute__(attrlist)
715 #define ecb_is_constant(expr) __builtin_constant_p (expr)
716 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
717 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
718#else
719 #define ecb_attribute(attrlist)
720 #define ecb_is_constant(expr) 0
721 #define ecb_expect(expr,value) (expr)
722 #define ecb_prefetch(addr,rw,locality)
723#endif
724
725/* no emulation for ecb_decltype */
726#if ECB_GCC_VERSION(4,5)
727 #define ecb_decltype(x) __decltype(x)
728#elif ECB_GCC_VERSION(3,0)
729 #define ecb_decltype(x) __typeof(x)
730#endif
731
732#define ecb_noinline ecb_attribute ((__noinline__))
733#define ecb_unused ecb_attribute ((__unused__))
734#define ecb_const ecb_attribute ((__const__))
735#define ecb_pure ecb_attribute ((__pure__))
736
737#if ECB_C11
738 #define ecb_noreturn _Noreturn
739#else
740 #define ecb_noreturn ecb_attribute ((__noreturn__))
741#endif
742
743#if ECB_GCC_VERSION(4,3)
744 #define ecb_artificial ecb_attribute ((__artificial__))
745 #define ecb_hot ecb_attribute ((__hot__))
746 #define ecb_cold ecb_attribute ((__cold__))
747#else
748 #define ecb_artificial
749 #define ecb_hot
750 #define ecb_cold
751#endif
752
753/* put around conditional expressions if you are very sure that the */
754/* expression is mostly true or mostly false. note that these return */
755/* booleans, not the expression. */
756#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
757#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
758/* for compatibility to the rest of the world */
759#define ecb_likely(expr) ecb_expect_true (expr)
760#define ecb_unlikely(expr) ecb_expect_false (expr)
761
762/* count trailing zero bits and count # of one bits */
763#if ECB_GCC_VERSION(3,4)
764 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
765 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
766 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
767 #define ecb_ctz32(x) __builtin_ctz (x)
768 #define ecb_ctz64(x) __builtin_ctzll (x)
769 #define ecb_popcount32(x) __builtin_popcount (x)
770 /* no popcountll */
771#else
772 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
773 ecb_function_ int
774 ecb_ctz32 (uint32_t x)
775 {
776 int r = 0;
777
778 x &= ~x + 1; /* this isolates the lowest bit */
779
780#if ECB_branchless_on_i386
781 r += !!(x & 0xaaaaaaaa) << 0;
782 r += !!(x & 0xcccccccc) << 1;
783 r += !!(x & 0xf0f0f0f0) << 2;
784 r += !!(x & 0xff00ff00) << 3;
785 r += !!(x & 0xffff0000) << 4;
786#else
787 if (x & 0xaaaaaaaa) r += 1;
788 if (x & 0xcccccccc) r += 2;
789 if (x & 0xf0f0f0f0) r += 4;
790 if (x & 0xff00ff00) r += 8;
791 if (x & 0xffff0000) r += 16;
792#endif
793
794 return r;
795 }
796
797 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
798 ecb_function_ int
799 ecb_ctz64 (uint64_t x)
800 {
801 int shift = x & 0xffffffffU ? 0 : 32;
802 return ecb_ctz32 (x >> shift) + shift;
803 }
804
805 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
806 ecb_function_ int
807 ecb_popcount32 (uint32_t x)
808 {
809 x -= (x >> 1) & 0x55555555;
810 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
811 x = ((x >> 4) + x) & 0x0f0f0f0f;
812 x *= 0x01010101;
813
814 return x >> 24;
815 }
816
817 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
818 ecb_function_ int ecb_ld32 (uint32_t x)
819 {
820 int r = 0;
821
822 if (x >> 16) { x >>= 16; r += 16; }
823 if (x >> 8) { x >>= 8; r += 8; }
824 if (x >> 4) { x >>= 4; r += 4; }
825 if (x >> 2) { x >>= 2; r += 2; }
826 if (x >> 1) { r += 1; }
827
828 return r;
829 }
830
831 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
832 ecb_function_ int ecb_ld64 (uint64_t x)
833 {
834 int r = 0;
835
836 if (x >> 32) { x >>= 32; r += 32; }
837
838 return r + ecb_ld32 (x);
839 }
840#endif
841
842ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
843ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
844ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
845ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
846
847ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
848ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
849{
850 return ( (x * 0x0802U & 0x22110U)
851 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
852}
853
854ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
855ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
856{
857 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
858 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
859 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
860 x = ( x >> 8 ) | ( x << 8);
861
862 return x;
863}
864
865ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
866ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
867{
868 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
869 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
870 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
871 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
872 x = ( x >> 16 ) | ( x << 16);
873
874 return x;
875}
876
877/* popcount64 is only available on 64 bit cpus as gcc builtin */
878/* so for this version we are lazy */
879ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
880ecb_function_ int
881ecb_popcount64 (uint64_t x)
882{
883 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
884}
885
886ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
887ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
888ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
889ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
890ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
891ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
892ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
893ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
894
895ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
896ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
897ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
898ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
899ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
900ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
901ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
902ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
903
904#if ECB_GCC_VERSION(4,3)
905 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
906 #define ecb_bswap32(x) __builtin_bswap32 (x)
907 #define ecb_bswap64(x) __builtin_bswap64 (x)
908#else
909 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
910 ecb_function_ uint16_t
911 ecb_bswap16 (uint16_t x)
912 {
913 return ecb_rotl16 (x, 8);
914 }
915
916 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
917 ecb_function_ uint32_t
918 ecb_bswap32 (uint32_t x)
919 {
920 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
921 }
922
923 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
924 ecb_function_ uint64_t
925 ecb_bswap64 (uint64_t x)
926 {
927 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
928 }
929#endif
930
931#if ECB_GCC_VERSION(4,5)
932 #define ecb_unreachable() __builtin_unreachable ()
933#else
934 /* this seems to work fine, but gcc always emits a warning for it :/ */
935 ecb_inline void ecb_unreachable (void) ecb_noreturn;
936 ecb_inline void ecb_unreachable (void) { }
937#endif
938
939/* try to tell the compiler that some condition is definitely true */
940#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
941
942ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
943ecb_inline unsigned char
944ecb_byteorder_helper (void)
945{
946 const uint32_t u = 0x11223344;
947 return *(unsigned char *)&u;
948}
949
950ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
951ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
952ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
953ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
954
955#if ECB_GCC_VERSION(3,0) || ECB_C99
956 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
957#else
958 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
959#endif
960
961#if __cplusplus
962 template<typename T>
963 static inline T ecb_div_rd (T val, T div)
964 {
965 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
966 }
967 template<typename T>
968 static inline T ecb_div_ru (T val, T div)
969 {
970 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
971 }
972#else
973 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
974 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
975#endif
976
977#if ecb_cplusplus_does_not_suck
978 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
979 template<typename T, int N>
980 static inline int ecb_array_length (const T (&arr)[N])
981 {
982 return N;
983 }
984#else
985 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
986#endif
987
988#endif
989
990/* ECB.H END */
991
992#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
993/* if your architecture doesn't need memory fences, e.g. because it is
994 * single-cpu/core, or if you use libev in a project that doesn't use libev
995 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
996 * libev, in which cases the memory fences become nops.
997 * alternatively, you can remove this #error and link against libpthread,
998 * which will then provide the memory fences.
999 */
1000# error "memory fences not defined for your architecture, please report"
1001#endif
1002
1003#ifndef ECB_MEMORY_FENCE
1004# define ECB_MEMORY_FENCE do { } while (0)
1005# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1006# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1007#endif
1008
1009#define expect_false(cond) ecb_expect_false (cond)
1010#define expect_true(cond) ecb_expect_true (cond)
1011#define noinline ecb_noinline
1012
1013#define inline_size ecb_inline
1014
1015#if EV_FEATURE_CODE
1016# define inline_speed ecb_inline
1017#else
1018# define inline_speed static noinline
1019#endif
1020
1021#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1022
1023#if EV_MINPRI == EV_MAXPRI
1024# define ABSPRI(w) (((W)w), 0)
1025#else
1026# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1027#endif
1028
1029#define EMPTY /* required for microsofts broken pseudo-c compiler */
1030#define EMPTY2(a,b) /* used to suppress some warnings */
1031
1032typedef ev_watcher *W;
1033typedef ev_watcher_list *WL;
1034typedef ev_watcher_time *WT;
1035
1036#define ev_active(w) ((W)(w))->active
1037#define ev_at(w) ((WT)(w))->at
1038
1039#if EV_USE_REALTIME
1040/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1041/* giving it a reasonably high chance of working on typical architectures */
1042static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1043#endif
1044
1045#if EV_USE_MONOTONIC
1046static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1047#endif
1048
1049#ifndef EV_FD_TO_WIN32_HANDLE
1050# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1051#endif
1052#ifndef EV_WIN32_HANDLE_TO_FD
1053# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1054#endif
1055#ifndef EV_WIN32_CLOSE_FD
1056# define EV_WIN32_CLOSE_FD(fd) close (fd)
1057#endif
1058
1059#ifdef _WIN32
1060# include "ev_win32.c"
1061#endif
1062
1063/*****************************************************************************/
1064
1065/* define a suitable floor function (only used by periodics atm) */
1066
1067#if EV_USE_FLOOR
1068# include <math.h>
1069# define ev_floor(v) floor (v)
1070#else
1071
1072#include <float.h>
1073
1074/* a floor() replacement function, should be independent of ev_tstamp type */
1075static ev_tstamp noinline
1076ev_floor (ev_tstamp v)
1077{
1078 /* the choice of shift factor is not terribly important */
1079#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1080 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1081#else
1082 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1083#endif
1084
1085 /* argument too large for an unsigned long? */
1086 if (expect_false (v >= shift))
1087 {
1088 ev_tstamp f;
1089
1090 if (v == v - 1.)
1091 return v; /* very large number */
1092
1093 f = shift * ev_floor (v * (1. / shift));
1094 return f + ev_floor (v - f);
1095 }
1096
1097 /* special treatment for negative args? */
1098 if (expect_false (v < 0.))
1099 {
1100 ev_tstamp f = -ev_floor (-v);
1101
1102 return f - (f == v ? 0 : 1);
1103 }
1104
1105 /* fits into an unsigned long */
1106 return (unsigned long)v;
1107}
1108
1109#endif
1110
1111/*****************************************************************************/
1112
1113#ifdef __linux
1114# include <sys/utsname.h>
1115#endif
1116
1117static unsigned int noinline ecb_cold
1118ev_linux_version (void)
1119{
1120#ifdef __linux
1121 unsigned int v = 0;
1122 struct utsname buf;
1123 int i;
1124 char *p = buf.release;
1125
1126 if (uname (&buf))
1127 return 0;
1128
1129 for (i = 3+1; --i; )
1130 {
1131 unsigned int c = 0;
1132
1133 for (;;)
1134 {
1135 if (*p >= '0' && *p <= '9')
1136 c = c * 10 + *p++ - '0';
1137 else
1138 {
1139 p += *p == '.';
1140 break;
1141 }
1142 }
1143
1144 v = (v << 8) | c;
1145 }
1146
1147 return v;
1148#else
1149 return 0;
1150#endif
1151}
1152
1153/*****************************************************************************/
1154
1155#if EV_AVOID_STDIO
1156static void noinline ecb_cold
1157ev_printerr (const char *msg)
1158{
1159 write (STDERR_FILENO, msg, strlen (msg));
1160}
1161#endif
1162
161static void (*syserr_cb)(const char *msg); 1163static void (*syserr_cb)(const char *msg) EV_THROW;
162 1164
1165void ecb_cold
163void ev_set_syserr_cb (void (*cb)(const char *msg)) 1166ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
164{ 1167{
165 syserr_cb = cb; 1168 syserr_cb = cb;
166} 1169}
167 1170
168static void 1171static void noinline ecb_cold
169syserr (const char *msg) 1172ev_syserr (const char *msg)
170{ 1173{
171 if (!msg) 1174 if (!msg)
172 msg = "(libev) system error"; 1175 msg = "(libev) system error";
173 1176
174 if (syserr_cb) 1177 if (syserr_cb)
175 syserr_cb (msg); 1178 syserr_cb (msg);
176 else 1179 else
177 { 1180 {
1181#if EV_AVOID_STDIO
1182 ev_printerr (msg);
1183 ev_printerr (": ");
1184 ev_printerr (strerror (errno));
1185 ev_printerr ("\n");
1186#else
178 perror (msg); 1187 perror (msg);
1188#endif
179 abort (); 1189 abort ();
180 } 1190 }
181} 1191}
182 1192
1193static void *
1194ev_realloc_emul (void *ptr, long size) EV_THROW
1195{
1196 /* some systems, notably openbsd and darwin, fail to properly
1197 * implement realloc (x, 0) (as required by both ansi c-89 and
1198 * the single unix specification, so work around them here.
1199 * recently, also (at least) fedora and debian started breaking it,
1200 * despite documenting it otherwise.
1201 */
1202
1203 if (size)
1204 return realloc (ptr, size);
1205
1206 free (ptr);
1207 return 0;
1208}
1209
183static void *(*alloc)(void *ptr, long size); 1210static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
184 1211
1212void ecb_cold
185void ev_set_allocator (void *(*cb)(void *ptr, long size)) 1213ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
186{ 1214{
187 alloc = cb; 1215 alloc = cb;
188} 1216}
189 1217
190static void * 1218inline_speed void *
191ev_realloc (void *ptr, long size) 1219ev_realloc (void *ptr, long size)
192{ 1220{
193 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1221 ptr = alloc (ptr, size);
194 1222
195 if (!ptr && size) 1223 if (!ptr && size)
196 { 1224 {
1225#if EV_AVOID_STDIO
1226 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1227#else
197 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1228 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1229#endif
198 abort (); 1230 abort ();
199 } 1231 }
200 1232
201 return ptr; 1233 return ptr;
202} 1234}
204#define ev_malloc(size) ev_realloc (0, (size)) 1236#define ev_malloc(size) ev_realloc (0, (size))
205#define ev_free(ptr) ev_realloc ((ptr), 0) 1237#define ev_free(ptr) ev_realloc ((ptr), 0)
206 1238
207/*****************************************************************************/ 1239/*****************************************************************************/
208 1240
1241/* set in reify when reification needed */
1242#define EV_ANFD_REIFY 1
1243
1244/* file descriptor info structure */
209typedef struct 1245typedef struct
210{ 1246{
211 WL head; 1247 WL head;
212 unsigned char events; 1248 unsigned char events; /* the events watched for */
1249 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1250 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
213 unsigned char reify; 1251 unsigned char unused;
1252#if EV_USE_EPOLL
1253 unsigned int egen; /* generation counter to counter epoll bugs */
1254#endif
1255#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1256 SOCKET handle;
1257#endif
1258#if EV_USE_IOCP
1259 OVERLAPPED or, ow;
1260#endif
214} ANFD; 1261} ANFD;
215 1262
1263/* stores the pending event set for a given watcher */
216typedef struct 1264typedef struct
217{ 1265{
218 W w; 1266 W w;
219 int events; 1267 int events; /* the pending event set for the given watcher */
220} ANPENDING; 1268} ANPENDING;
1269
1270#if EV_USE_INOTIFY
1271/* hash table entry per inotify-id */
1272typedef struct
1273{
1274 WL head;
1275} ANFS;
1276#endif
1277
1278/* Heap Entry */
1279#if EV_HEAP_CACHE_AT
1280 /* a heap element */
1281 typedef struct {
1282 ev_tstamp at;
1283 WT w;
1284 } ANHE;
1285
1286 #define ANHE_w(he) (he).w /* access watcher, read-write */
1287 #define ANHE_at(he) (he).at /* access cached at, read-only */
1288 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1289#else
1290 /* a heap element */
1291 typedef WT ANHE;
1292
1293 #define ANHE_w(he) (he)
1294 #define ANHE_at(he) (he)->at
1295 #define ANHE_at_cache(he)
1296#endif
221 1297
222#if EV_MULTIPLICITY 1298#if EV_MULTIPLICITY
223 1299
224 struct ev_loop 1300 struct ev_loop
225 { 1301 {
226 ev_tstamp ev_rt_now; 1302 ev_tstamp ev_rt_now;
1303 #define ev_rt_now ((loop)->ev_rt_now)
227 #define VAR(name,decl) decl; 1304 #define VAR(name,decl) decl;
228 #include "ev_vars.h" 1305 #include "ev_vars.h"
229 #undef VAR 1306 #undef VAR
230 }; 1307 };
231 #include "ev_wrap.h" 1308 #include "ev_wrap.h"
232 1309
233 struct ev_loop default_loop_struct; 1310 static struct ev_loop default_loop_struct;
234 static struct ev_loop *default_loop; 1311 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
235 1312
236#else 1313#else
237 1314
238 ev_tstamp ev_rt_now; 1315 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
239 #define VAR(name,decl) static decl; 1316 #define VAR(name,decl) static decl;
240 #include "ev_vars.h" 1317 #include "ev_vars.h"
241 #undef VAR 1318 #undef VAR
242 1319
243 static int default_loop; 1320 static int ev_default_loop_ptr;
244 1321
245#endif 1322#endif
1323
1324#if EV_FEATURE_API
1325# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1326# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1327# define EV_INVOKE_PENDING invoke_cb (EV_A)
1328#else
1329# define EV_RELEASE_CB (void)0
1330# define EV_ACQUIRE_CB (void)0
1331# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1332#endif
1333
1334#define EVBREAK_RECURSE 0x80
246 1335
247/*****************************************************************************/ 1336/*****************************************************************************/
248 1337
249inline ev_tstamp 1338#ifndef EV_HAVE_EV_TIME
1339ev_tstamp
250ev_time (void) 1340ev_time (void) EV_THROW
251{ 1341{
252#if EV_USE_REALTIME 1342#if EV_USE_REALTIME
1343 if (expect_true (have_realtime))
1344 {
253 struct timespec ts; 1345 struct timespec ts;
254 clock_gettime (CLOCK_REALTIME, &ts); 1346 clock_gettime (CLOCK_REALTIME, &ts);
255 return ts.tv_sec + ts.tv_nsec * 1e-9; 1347 return ts.tv_sec + ts.tv_nsec * 1e-9;
256#else 1348 }
1349#endif
1350
257 struct timeval tv; 1351 struct timeval tv;
258 gettimeofday (&tv, 0); 1352 gettimeofday (&tv, 0);
259 return tv.tv_sec + tv.tv_usec * 1e-6; 1353 return tv.tv_sec + tv.tv_usec * 1e-6;
260#endif
261} 1354}
1355#endif
262 1356
263inline ev_tstamp 1357inline_size ev_tstamp
264get_clock (void) 1358get_clock (void)
265{ 1359{
266#if EV_USE_MONOTONIC 1360#if EV_USE_MONOTONIC
267 if (expect_true (have_monotonic)) 1361 if (expect_true (have_monotonic))
268 { 1362 {
275 return ev_time (); 1369 return ev_time ();
276} 1370}
277 1371
278#if EV_MULTIPLICITY 1372#if EV_MULTIPLICITY
279ev_tstamp 1373ev_tstamp
280ev_now (EV_P) 1374ev_now (EV_P) EV_THROW
281{ 1375{
282 return ev_rt_now; 1376 return ev_rt_now;
283} 1377}
284#endif 1378#endif
285 1379
286#define array_roundsize(type,n) ((n) | 4 & ~3) 1380void
1381ev_sleep (ev_tstamp delay) EV_THROW
1382{
1383 if (delay > 0.)
1384 {
1385#if EV_USE_NANOSLEEP
1386 struct timespec ts;
1387
1388 EV_TS_SET (ts, delay);
1389 nanosleep (&ts, 0);
1390#elif defined _WIN32
1391 Sleep ((unsigned long)(delay * 1e3));
1392#else
1393 struct timeval tv;
1394
1395 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1396 /* something not guaranteed by newer posix versions, but guaranteed */
1397 /* by older ones */
1398 EV_TV_SET (tv, delay);
1399 select (0, 0, 0, 0, &tv);
1400#endif
1401 }
1402}
1403
1404/*****************************************************************************/
1405
1406#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1407
1408/* find a suitable new size for the given array, */
1409/* hopefully by rounding to a nice-to-malloc size */
1410inline_size int
1411array_nextsize (int elem, int cur, int cnt)
1412{
1413 int ncur = cur + 1;
1414
1415 do
1416 ncur <<= 1;
1417 while (cnt > ncur);
1418
1419 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1420 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1421 {
1422 ncur *= elem;
1423 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1424 ncur = ncur - sizeof (void *) * 4;
1425 ncur /= elem;
1426 }
1427
1428 return ncur;
1429}
1430
1431static void * noinline ecb_cold
1432array_realloc (int elem, void *base, int *cur, int cnt)
1433{
1434 *cur = array_nextsize (elem, *cur, cnt);
1435 return ev_realloc (base, elem * *cur);
1436}
1437
1438#define array_init_zero(base,count) \
1439 memset ((void *)(base), 0, sizeof (*(base)) * (count))
287 1440
288#define array_needsize(type,base,cur,cnt,init) \ 1441#define array_needsize(type,base,cur,cnt,init) \
289 if (expect_false ((cnt) > cur)) \ 1442 if (expect_false ((cnt) > (cur))) \
290 { \ 1443 { \
291 int newcnt = cur; \ 1444 int ecb_unused ocur_ = (cur); \
292 do \ 1445 (base) = (type *)array_realloc \
293 { \ 1446 (sizeof (type), (base), &(cur), (cnt)); \
294 newcnt = array_roundsize (type, newcnt << 1); \ 1447 init ((base) + (ocur_), (cur) - ocur_); \
295 } \
296 while ((cnt) > newcnt); \
297 \
298 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
299 init (base + cur, newcnt - cur); \
300 cur = newcnt; \
301 } 1448 }
302 1449
1450#if 0
303#define array_slim(type,stem) \ 1451#define array_slim(type,stem) \
304 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 1452 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
305 { \ 1453 { \
306 stem ## max = array_roundsize (stem ## cnt >> 1); \ 1454 stem ## max = array_roundsize (stem ## cnt >> 1); \
307 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 1455 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
308 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1456 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
309 } 1457 }
310 1458#endif
311/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
312/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
313#define array_free_microshit(stem) \
314 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
315 1459
316#define array_free(stem, idx) \ 1460#define array_free(stem, idx) \
317 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1461 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
318 1462
319/*****************************************************************************/ 1463/*****************************************************************************/
320 1464
321static void 1465/* dummy callback for pending events */
322anfds_init (ANFD *base, int count) 1466static void noinline
1467pendingcb (EV_P_ ev_prepare *w, int revents)
323{ 1468{
324 while (count--)
325 {
326 base->head = 0;
327 base->events = EV_NONE;
328 base->reify = 0;
329
330 ++base;
331 }
332} 1469}
333 1470
334void 1471void noinline
335ev_feed_event (EV_P_ void *w, int revents) 1472ev_feed_event (EV_P_ void *w, int revents) EV_THROW
336{ 1473{
337 W w_ = (W)w; 1474 W w_ = (W)w;
1475 int pri = ABSPRI (w_);
338 1476
339 if (w_->pending) 1477 if (expect_false (w_->pending))
1478 pendings [pri][w_->pending - 1].events |= revents;
1479 else
340 { 1480 {
1481 w_->pending = ++pendingcnt [pri];
1482 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1483 pendings [pri][w_->pending - 1].w = w_;
341 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 1484 pendings [pri][w_->pending - 1].events = revents;
342 return;
343 } 1485 }
344 1486
345 w_->pending = ++pendingcnt [ABSPRI (w_)]; 1487 pendingpri = NUMPRI - 1;
346 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
347 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
348 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
349} 1488}
350 1489
351static void 1490inline_speed void
1491feed_reverse (EV_P_ W w)
1492{
1493 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1494 rfeeds [rfeedcnt++] = w;
1495}
1496
1497inline_size void
1498feed_reverse_done (EV_P_ int revents)
1499{
1500 do
1501 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1502 while (rfeedcnt);
1503}
1504
1505inline_speed void
352queue_events (EV_P_ W *events, int eventcnt, int type) 1506queue_events (EV_P_ W *events, int eventcnt, int type)
353{ 1507{
354 int i; 1508 int i;
355 1509
356 for (i = 0; i < eventcnt; ++i) 1510 for (i = 0; i < eventcnt; ++i)
357 ev_feed_event (EV_A_ events [i], type); 1511 ev_feed_event (EV_A_ events [i], type);
358} 1512}
359 1513
1514/*****************************************************************************/
1515
360inline void 1516inline_speed void
361fd_event (EV_P_ int fd, int revents) 1517fd_event_nocheck (EV_P_ int fd, int revents)
362{ 1518{
363 ANFD *anfd = anfds + fd; 1519 ANFD *anfd = anfds + fd;
364 struct ev_io *w; 1520 ev_io *w;
365 1521
366 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 1522 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
367 { 1523 {
368 int ev = w->events & revents; 1524 int ev = w->events & revents;
369 1525
370 if (ev) 1526 if (ev)
371 ev_feed_event (EV_A_ (W)w, ev); 1527 ev_feed_event (EV_A_ (W)w, ev);
372 } 1528 }
373} 1529}
374 1530
1531/* do not submit kernel events for fds that have reify set */
1532/* because that means they changed while we were polling for new events */
1533inline_speed void
1534fd_event (EV_P_ int fd, int revents)
1535{
1536 ANFD *anfd = anfds + fd;
1537
1538 if (expect_true (!anfd->reify))
1539 fd_event_nocheck (EV_A_ fd, revents);
1540}
1541
375void 1542void
376ev_feed_fd_event (EV_P_ int fd, int revents) 1543ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
377{ 1544{
1545 if (fd >= 0 && fd < anfdmax)
378 fd_event (EV_A_ fd, revents); 1546 fd_event_nocheck (EV_A_ fd, revents);
379} 1547}
380 1548
381/*****************************************************************************/ 1549/* make sure the external fd watch events are in-sync */
382 1550/* with the kernel/libev internal state */
383static void 1551inline_size void
384fd_reify (EV_P) 1552fd_reify (EV_P)
385{ 1553{
386 int i; 1554 int i;
387 1555
1556#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
388 for (i = 0; i < fdchangecnt; ++i) 1557 for (i = 0; i < fdchangecnt; ++i)
389 { 1558 {
390 int fd = fdchanges [i]; 1559 int fd = fdchanges [i];
391 ANFD *anfd = anfds + fd; 1560 ANFD *anfd = anfds + fd;
1561
1562 if (anfd->reify & EV__IOFDSET && anfd->head)
1563 {
1564 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1565
1566 if (handle != anfd->handle)
1567 {
1568 unsigned long arg;
1569
1570 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1571
1572 /* handle changed, but fd didn't - we need to do it in two steps */
1573 backend_modify (EV_A_ fd, anfd->events, 0);
1574 anfd->events = 0;
1575 anfd->handle = handle;
1576 }
1577 }
1578 }
1579#endif
1580
1581 for (i = 0; i < fdchangecnt; ++i)
1582 {
1583 int fd = fdchanges [i];
1584 ANFD *anfd = anfds + fd;
392 struct ev_io *w; 1585 ev_io *w;
393 1586
394 int events = 0; 1587 unsigned char o_events = anfd->events;
1588 unsigned char o_reify = anfd->reify;
395 1589
396 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
397 events |= w->events;
398
399 anfd->reify = 0; 1590 anfd->reify = 0;
400 1591
401 method_modify (EV_A_ fd, anfd->events, events); 1592 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1593 {
402 anfd->events = events; 1594 anfd->events = 0;
1595
1596 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1597 anfd->events |= (unsigned char)w->events;
1598
1599 if (o_events != anfd->events)
1600 o_reify = EV__IOFDSET; /* actually |= */
1601 }
1602
1603 if (o_reify & EV__IOFDSET)
1604 backend_modify (EV_A_ fd, o_events, anfd->events);
403 } 1605 }
404 1606
405 fdchangecnt = 0; 1607 fdchangecnt = 0;
406} 1608}
407 1609
408static void 1610/* something about the given fd changed */
1611inline_size void
409fd_change (EV_P_ int fd) 1612fd_change (EV_P_ int fd, int flags)
410{ 1613{
411 if (anfds [fd].reify) 1614 unsigned char reify = anfds [fd].reify;
412 return;
413
414 anfds [fd].reify = 1; 1615 anfds [fd].reify |= flags;
415 1616
1617 if (expect_true (!reify))
1618 {
416 ++fdchangecnt; 1619 ++fdchangecnt;
417 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 1620 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
418 fdchanges [fdchangecnt - 1] = fd; 1621 fdchanges [fdchangecnt - 1] = fd;
1622 }
419} 1623}
420 1624
421static void 1625/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1626inline_speed void ecb_cold
422fd_kill (EV_P_ int fd) 1627fd_kill (EV_P_ int fd)
423{ 1628{
424 struct ev_io *w; 1629 ev_io *w;
425 1630
426 while ((w = (struct ev_io *)anfds [fd].head)) 1631 while ((w = (ev_io *)anfds [fd].head))
427 { 1632 {
428 ev_io_stop (EV_A_ w); 1633 ev_io_stop (EV_A_ w);
429 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1634 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
430 } 1635 }
431} 1636}
432 1637
433static int 1638/* check whether the given fd is actually valid, for error recovery */
1639inline_size int ecb_cold
434fd_valid (int fd) 1640fd_valid (int fd)
435{ 1641{
436#ifdef WIN32 1642#ifdef _WIN32
437 return !!win32_get_osfhandle (fd); 1643 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
438#else 1644#else
439 return fcntl (fd, F_GETFD) != -1; 1645 return fcntl (fd, F_GETFD) != -1;
440#endif 1646#endif
441} 1647}
442 1648
443/* called on EBADF to verify fds */ 1649/* called on EBADF to verify fds */
444static void 1650static void noinline ecb_cold
445fd_ebadf (EV_P) 1651fd_ebadf (EV_P)
446{ 1652{
447 int fd; 1653 int fd;
448 1654
449 for (fd = 0; fd < anfdmax; ++fd) 1655 for (fd = 0; fd < anfdmax; ++fd)
450 if (anfds [fd].events) 1656 if (anfds [fd].events)
451 if (!fd_valid (fd) == -1 && errno == EBADF) 1657 if (!fd_valid (fd) && errno == EBADF)
452 fd_kill (EV_A_ fd); 1658 fd_kill (EV_A_ fd);
453} 1659}
454 1660
455/* called on ENOMEM in select/poll to kill some fds and retry */ 1661/* called on ENOMEM in select/poll to kill some fds and retry */
456static void 1662static void noinline ecb_cold
457fd_enomem (EV_P) 1663fd_enomem (EV_P)
458{ 1664{
459 int fd; 1665 int fd;
460 1666
461 for (fd = anfdmax; fd--; ) 1667 for (fd = anfdmax; fd--; )
462 if (anfds [fd].events) 1668 if (anfds [fd].events)
463 { 1669 {
464 fd_kill (EV_A_ fd); 1670 fd_kill (EV_A_ fd);
465 return; 1671 break;
466 } 1672 }
467} 1673}
468 1674
469/* usually called after fork if method needs to re-arm all fds from scratch */ 1675/* usually called after fork if backend needs to re-arm all fds from scratch */
470static void 1676static void noinline
471fd_rearm_all (EV_P) 1677fd_rearm_all (EV_P)
472{ 1678{
473 int fd; 1679 int fd;
474 1680
475 /* this should be highly optimised to not do anything but set a flag */
476 for (fd = 0; fd < anfdmax; ++fd) 1681 for (fd = 0; fd < anfdmax; ++fd)
477 if (anfds [fd].events) 1682 if (anfds [fd].events)
478 { 1683 {
479 anfds [fd].events = 0; 1684 anfds [fd].events = 0;
480 fd_change (EV_A_ fd); 1685 anfds [fd].emask = 0;
1686 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
481 } 1687 }
482} 1688}
483 1689
1690/* used to prepare libev internal fd's */
1691/* this is not fork-safe */
1692inline_speed void
1693fd_intern (int fd)
1694{
1695#ifdef _WIN32
1696 unsigned long arg = 1;
1697 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1698#else
1699 fcntl (fd, F_SETFD, FD_CLOEXEC);
1700 fcntl (fd, F_SETFL, O_NONBLOCK);
1701#endif
1702}
1703
484/*****************************************************************************/ 1704/*****************************************************************************/
485 1705
1706/*
1707 * the heap functions want a real array index. array index 0 is guaranteed to not
1708 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1709 * the branching factor of the d-tree.
1710 */
1711
1712/*
1713 * at the moment we allow libev the luxury of two heaps,
1714 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1715 * which is more cache-efficient.
1716 * the difference is about 5% with 50000+ watchers.
1717 */
1718#if EV_USE_4HEAP
1719
1720#define DHEAP 4
1721#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1722#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1723#define UPHEAP_DONE(p,k) ((p) == (k))
1724
1725/* away from the root */
1726inline_speed void
1727downheap (ANHE *heap, int N, int k)
1728{
1729 ANHE he = heap [k];
1730 ANHE *E = heap + N + HEAP0;
1731
1732 for (;;)
1733 {
1734 ev_tstamp minat;
1735 ANHE *minpos;
1736 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1737
1738 /* find minimum child */
1739 if (expect_true (pos + DHEAP - 1 < E))
1740 {
1741 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1742 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1743 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1744 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1745 }
1746 else if (pos < E)
1747 {
1748 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1749 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1750 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1751 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1752 }
1753 else
1754 break;
1755
1756 if (ANHE_at (he) <= minat)
1757 break;
1758
1759 heap [k] = *minpos;
1760 ev_active (ANHE_w (*minpos)) = k;
1761
1762 k = minpos - heap;
1763 }
1764
1765 heap [k] = he;
1766 ev_active (ANHE_w (he)) = k;
1767}
1768
1769#else /* 4HEAP */
1770
1771#define HEAP0 1
1772#define HPARENT(k) ((k) >> 1)
1773#define UPHEAP_DONE(p,k) (!(p))
1774
1775/* away from the root */
1776inline_speed void
1777downheap (ANHE *heap, int N, int k)
1778{
1779 ANHE he = heap [k];
1780
1781 for (;;)
1782 {
1783 int c = k << 1;
1784
1785 if (c >= N + HEAP0)
1786 break;
1787
1788 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1789 ? 1 : 0;
1790
1791 if (ANHE_at (he) <= ANHE_at (heap [c]))
1792 break;
1793
1794 heap [k] = heap [c];
1795 ev_active (ANHE_w (heap [k])) = k;
1796
1797 k = c;
1798 }
1799
1800 heap [k] = he;
1801 ev_active (ANHE_w (he)) = k;
1802}
1803#endif
1804
1805/* towards the root */
1806inline_speed void
1807upheap (ANHE *heap, int k)
1808{
1809 ANHE he = heap [k];
1810
1811 for (;;)
1812 {
1813 int p = HPARENT (k);
1814
1815 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1816 break;
1817
1818 heap [k] = heap [p];
1819 ev_active (ANHE_w (heap [k])) = k;
1820 k = p;
1821 }
1822
1823 heap [k] = he;
1824 ev_active (ANHE_w (he)) = k;
1825}
1826
1827/* move an element suitably so it is in a correct place */
1828inline_size void
1829adjustheap (ANHE *heap, int N, int k)
1830{
1831 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1832 upheap (heap, k);
1833 else
1834 downheap (heap, N, k);
1835}
1836
1837/* rebuild the heap: this function is used only once and executed rarely */
1838inline_size void
1839reheap (ANHE *heap, int N)
1840{
1841 int i;
1842
1843 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1844 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1845 for (i = 0; i < N; ++i)
1846 upheap (heap, i + HEAP0);
1847}
1848
1849/*****************************************************************************/
1850
1851/* associate signal watchers to a signal signal */
1852typedef struct
1853{
1854 EV_ATOMIC_T pending;
1855#if EV_MULTIPLICITY
1856 EV_P;
1857#endif
1858 WL head;
1859} ANSIG;
1860
1861static ANSIG signals [EV_NSIG - 1];
1862
1863/*****************************************************************************/
1864
1865#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1866
1867static void noinline ecb_cold
1868evpipe_init (EV_P)
1869{
1870 if (!ev_is_active (&pipe_w))
1871 {
1872 int fds [2];
1873
1874# if EV_USE_EVENTFD
1875 fds [0] = -1;
1876 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1877 if (fds [1] < 0 && errno == EINVAL)
1878 fds [1] = eventfd (0, 0);
1879
1880 if (fds [1] < 0)
1881# endif
1882 {
1883 while (pipe (fds))
1884 ev_syserr ("(libev) error creating signal/async pipe");
1885
1886 fd_intern (fds [0]);
1887 }
1888
1889 fd_intern (fds [1]);
1890
1891 evpipe [0] = fds [0];
1892
1893 if (evpipe [1] < 0)
1894 evpipe [1] = fds [1]; /* first call, set write fd */
1895 else
1896 {
1897 /* on subsequent calls, do not change evpipe [1] */
1898 /* so that evpipe_write can always rely on its value. */
1899 /* this branch does not do anything sensible on windows, */
1900 /* so must not be executed on windows */
1901
1902 dup2 (fds [1], evpipe [1]);
1903 close (fds [1]);
1904 }
1905
1906 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
1907 ev_io_start (EV_A_ &pipe_w);
1908 ev_unref (EV_A); /* watcher should not keep loop alive */
1909 }
1910}
1911
1912inline_speed void
1913evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1914{
1915 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
1916
1917 if (expect_true (*flag))
1918 return;
1919
1920 *flag = 1;
1921 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1922
1923 pipe_write_skipped = 1;
1924
1925 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1926
1927 if (pipe_write_wanted)
1928 {
1929 int old_errno;
1930
1931 pipe_write_skipped = 0;
1932 ECB_MEMORY_FENCE_RELEASE;
1933
1934 old_errno = errno; /* save errno because write will clobber it */
1935
1936#if EV_USE_EVENTFD
1937 if (evpipe [0] < 0)
1938 {
1939 uint64_t counter = 1;
1940 write (evpipe [1], &counter, sizeof (uint64_t));
1941 }
1942 else
1943#endif
1944 {
1945#ifdef _WIN32
1946 WSABUF buf;
1947 DWORD sent;
1948 buf.buf = &buf;
1949 buf.len = 1;
1950 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
1951#else
1952 write (evpipe [1], &(evpipe [1]), 1);
1953#endif
1954 }
1955
1956 errno = old_errno;
1957 }
1958}
1959
1960/* called whenever the libev signal pipe */
1961/* got some events (signal, async) */
486static void 1962static void
487upheap (WT *heap, int k) 1963pipecb (EV_P_ ev_io *iow, int revents)
488{ 1964{
489 WT w = heap [k]; 1965 int i;
490 1966
491 while (k && heap [k >> 1]->at > w->at) 1967 if (revents & EV_READ)
492 {
493 heap [k] = heap [k >> 1];
494 ((W)heap [k])->active = k + 1;
495 k >>= 1;
496 } 1968 {
1969#if EV_USE_EVENTFD
1970 if (evpipe [0] < 0)
1971 {
1972 uint64_t counter;
1973 read (evpipe [1], &counter, sizeof (uint64_t));
1974 }
1975 else
1976#endif
1977 {
1978 char dummy[4];
1979#ifdef _WIN32
1980 WSABUF buf;
1981 DWORD recvd;
1982 DWORD flags = 0;
1983 buf.buf = dummy;
1984 buf.len = sizeof (dummy);
1985 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
1986#else
1987 read (evpipe [0], &dummy, sizeof (dummy));
1988#endif
1989 }
1990 }
497 1991
498 heap [k] = w; 1992 pipe_write_skipped = 0;
499 ((W)heap [k])->active = k + 1;
500 1993
1994 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
1995
1996#if EV_SIGNAL_ENABLE
1997 if (sig_pending)
1998 {
1999 sig_pending = 0;
2000
2001 ECB_MEMORY_FENCE;
2002
2003 for (i = EV_NSIG - 1; i--; )
2004 if (expect_false (signals [i].pending))
2005 ev_feed_signal_event (EV_A_ i + 1);
2006 }
2007#endif
2008
2009#if EV_ASYNC_ENABLE
2010 if (async_pending)
2011 {
2012 async_pending = 0;
2013
2014 ECB_MEMORY_FENCE;
2015
2016 for (i = asynccnt; i--; )
2017 if (asyncs [i]->sent)
2018 {
2019 asyncs [i]->sent = 0;
2020 ECB_MEMORY_FENCE_RELEASE;
2021 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2022 }
2023 }
2024#endif
2025}
2026
2027/*****************************************************************************/
2028
2029void
2030ev_feed_signal (int signum) EV_THROW
2031{
2032#if EV_MULTIPLICITY
2033 ECB_MEMORY_FENCE_ACQUIRE;
2034 EV_P = signals [signum - 1].loop;
2035
2036 if (!EV_A)
2037 return;
2038#endif
2039
2040 signals [signum - 1].pending = 1;
2041 evpipe_write (EV_A_ &sig_pending);
501} 2042}
502 2043
503static void 2044static void
504downheap (WT *heap, int N, int k)
505{
506 WT w = heap [k];
507
508 while (k < (N >> 1))
509 {
510 int j = k << 1;
511
512 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
513 ++j;
514
515 if (w->at <= heap [j]->at)
516 break;
517
518 heap [k] = heap [j];
519 ((W)heap [k])->active = k + 1;
520 k = j;
521 }
522
523 heap [k] = w;
524 ((W)heap [k])->active = k + 1;
525}
526
527inline void
528adjustheap (WT *heap, int N, int k, ev_tstamp at)
529{
530 ev_tstamp old_at = heap [k]->at;
531 heap [k]->at = at;
532
533 if (old_at < at)
534 downheap (heap, N, k);
535 else
536 upheap (heap, k);
537}
538
539/*****************************************************************************/
540
541typedef struct
542{
543 WL head;
544 sig_atomic_t volatile gotsig;
545} ANSIG;
546
547static ANSIG *signals;
548static int signalmax;
549
550static int sigpipe [2];
551static sig_atomic_t volatile gotsig;
552static struct ev_io sigev;
553
554static void
555signals_init (ANSIG *base, int count)
556{
557 while (count--)
558 {
559 base->head = 0;
560 base->gotsig = 0;
561
562 ++base;
563 }
564}
565
566static void
567sighandler (int signum) 2045ev_sighandler (int signum)
568{ 2046{
569#if WIN32
570 signal (signum, sighandler);
571#endif
572
573 signals [signum - 1].gotsig = 1;
574
575 if (!gotsig)
576 {
577 int old_errno = errno;
578 gotsig = 1;
579#ifdef WIN32 2047#ifdef _WIN32
580 send (sigpipe [1], &signum, 1, MSG_DONTWAIT); 2048 signal (signum, ev_sighandler);
581#else
582 write (sigpipe [1], &signum, 1);
583#endif 2049#endif
584 errno = old_errno;
585 }
586}
587 2050
588void 2051 ev_feed_signal (signum);
2052}
2053
2054void noinline
589ev_feed_signal_event (EV_P_ int signum) 2055ev_feed_signal_event (EV_P_ int signum) EV_THROW
590{ 2056{
591 WL w; 2057 WL w;
592 2058
2059 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2060 return;
2061
2062 --signum;
2063
593#if EV_MULTIPLICITY 2064#if EV_MULTIPLICITY
594 assert (("feeding signal events is only supported in the default loop", loop == default_loop)); 2065 /* it is permissible to try to feed a signal to the wrong loop */
595#endif 2066 /* or, likely more useful, feeding a signal nobody is waiting for */
596 2067
597 --signum; 2068 if (expect_false (signals [signum].loop != EV_A))
598
599 if (signum < 0 || signum >= signalmax)
600 return; 2069 return;
2070#endif
601 2071
602 signals [signum].gotsig = 0; 2072 signals [signum].pending = 0;
2073 ECB_MEMORY_FENCE_RELEASE;
603 2074
604 for (w = signals [signum].head; w; w = w->next) 2075 for (w = signals [signum].head; w; w = w->next)
605 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2076 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
606} 2077}
607 2078
2079#if EV_USE_SIGNALFD
608static void 2080static void
609sigcb (EV_P_ struct ev_io *iow, int revents) 2081sigfdcb (EV_P_ ev_io *iow, int revents)
610{ 2082{
611 int signum; 2083 struct signalfd_siginfo si[2], *sip; /* these structs are big */
612 2084
613#ifdef WIN32 2085 for (;;)
614 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT); 2086 {
615#else 2087 ssize_t res = read (sigfd, si, sizeof (si));
616 read (sigpipe [0], &revents, 1);
617#endif
618 gotsig = 0;
619 2088
620 for (signum = signalmax; signum--; ) 2089 /* not ISO-C, as res might be -1, but works with SuS */
621 if (signals [signum].gotsig) 2090 for (sip = si; (char *)sip < (char *)si + res; ++sip)
622 ev_feed_signal_event (EV_A_ signum + 1); 2091 ev_feed_signal_event (EV_A_ sip->ssi_signo);
623}
624 2092
625static void 2093 if (res < (ssize_t)sizeof (si))
626siginit (EV_P) 2094 break;
627{ 2095 }
628#ifndef WIN32
629 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
630 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
631
632 /* rather than sort out wether we really need nb, set it */
633 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
634 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
635#endif
636
637 ev_io_set (&sigev, sigpipe [0], EV_READ);
638 ev_io_start (EV_A_ &sigev);
639 ev_unref (EV_A); /* child watcher should not keep loop alive */
640} 2096}
2097#endif
2098
2099#endif
641 2100
642/*****************************************************************************/ 2101/*****************************************************************************/
643 2102
644static struct ev_child *childs [PID_HASHSIZE]; 2103#if EV_CHILD_ENABLE
2104static WL childs [EV_PID_HASHSIZE];
645 2105
646#ifndef WIN32
647
648static struct ev_signal childev; 2106static ev_signal childev;
2107
2108#ifndef WIFCONTINUED
2109# define WIFCONTINUED(status) 0
2110#endif
2111
2112/* handle a single child status event */
2113inline_speed void
2114child_reap (EV_P_ int chain, int pid, int status)
2115{
2116 ev_child *w;
2117 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2118
2119 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2120 {
2121 if ((w->pid == pid || !w->pid)
2122 && (!traced || (w->flags & 1)))
2123 {
2124 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2125 w->rpid = pid;
2126 w->rstatus = status;
2127 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2128 }
2129 }
2130}
649 2131
650#ifndef WCONTINUED 2132#ifndef WCONTINUED
651# define WCONTINUED 0 2133# define WCONTINUED 0
652#endif 2134#endif
653 2135
2136/* called on sigchld etc., calls waitpid */
654static void 2137static void
655child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
656{
657 struct ev_child *w;
658
659 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
660 if (w->pid == pid || !w->pid)
661 {
662 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
663 w->rpid = pid;
664 w->rstatus = status;
665 ev_feed_event (EV_A_ (W)w, EV_CHILD);
666 }
667}
668
669static void
670childcb (EV_P_ struct ev_signal *sw, int revents) 2138childcb (EV_P_ ev_signal *sw, int revents)
671{ 2139{
672 int pid, status; 2140 int pid, status;
673 2141
2142 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
674 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 2143 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
675 { 2144 if (!WCONTINUED
2145 || errno != EINVAL
2146 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2147 return;
2148
676 /* make sure we are called again until all childs have been reaped */ 2149 /* make sure we are called again until all children have been reaped */
2150 /* we need to do it this way so that the callback gets called before we continue */
677 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2151 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
678 2152
679 child_reap (EV_A_ sw, pid, pid, status); 2153 child_reap (EV_A_ pid, pid, status);
2154 if ((EV_PID_HASHSIZE) > 1)
680 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 2155 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
681 }
682} 2156}
683 2157
684#endif 2158#endif
685 2159
686/*****************************************************************************/ 2160/*****************************************************************************/
687 2161
2162#if EV_USE_IOCP
2163# include "ev_iocp.c"
2164#endif
2165#if EV_USE_PORT
2166# include "ev_port.c"
2167#endif
688#if EV_USE_KQUEUE 2168#if EV_USE_KQUEUE
689# include "ev_kqueue.c" 2169# include "ev_kqueue.c"
690#endif 2170#endif
691#if EV_USE_EPOLL 2171#if EV_USE_EPOLL
692# include "ev_epoll.c" 2172# include "ev_epoll.c"
696#endif 2176#endif
697#if EV_USE_SELECT 2177#if EV_USE_SELECT
698# include "ev_select.c" 2178# include "ev_select.c"
699#endif 2179#endif
700 2180
701int 2181int ecb_cold
702ev_version_major (void) 2182ev_version_major (void) EV_THROW
703{ 2183{
704 return EV_VERSION_MAJOR; 2184 return EV_VERSION_MAJOR;
705} 2185}
706 2186
707int 2187int ecb_cold
708ev_version_minor (void) 2188ev_version_minor (void) EV_THROW
709{ 2189{
710 return EV_VERSION_MINOR; 2190 return EV_VERSION_MINOR;
711} 2191}
712 2192
713/* return true if we are running with elevated privileges and should ignore env variables */ 2193/* return true if we are running with elevated privileges and should ignore env variables */
714static int 2194int inline_size ecb_cold
715enable_secure (void) 2195enable_secure (void)
716{ 2196{
717#ifdef WIN32 2197#ifdef _WIN32
718 return 0; 2198 return 0;
719#else 2199#else
720 return getuid () != geteuid () 2200 return getuid () != geteuid ()
721 || getgid () != getegid (); 2201 || getgid () != getegid ();
722#endif 2202#endif
723} 2203}
724 2204
725int 2205unsigned int ecb_cold
726ev_method (EV_P) 2206ev_supported_backends (void) EV_THROW
727{ 2207{
728 return method; 2208 unsigned int flags = 0;
729}
730 2209
731static void 2210 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
732loop_init (EV_P_ int methods) 2211 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2212 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2213 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2214 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2215
2216 return flags;
2217}
2218
2219unsigned int ecb_cold
2220ev_recommended_backends (void) EV_THROW
733{ 2221{
734 if (!method) 2222 unsigned int flags = ev_supported_backends ();
2223
2224#ifndef __NetBSD__
2225 /* kqueue is borked on everything but netbsd apparently */
2226 /* it usually doesn't work correctly on anything but sockets and pipes */
2227 flags &= ~EVBACKEND_KQUEUE;
2228#endif
2229#ifdef __APPLE__
2230 /* only select works correctly on that "unix-certified" platform */
2231 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2232 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2233#endif
2234#ifdef __FreeBSD__
2235 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2236#endif
2237
2238 return flags;
2239}
2240
2241unsigned int ecb_cold
2242ev_embeddable_backends (void) EV_THROW
2243{
2244 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2245
2246 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2247 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2248 flags &= ~EVBACKEND_EPOLL;
2249
2250 return flags;
2251}
2252
2253unsigned int
2254ev_backend (EV_P) EV_THROW
2255{
2256 return backend;
2257}
2258
2259#if EV_FEATURE_API
2260unsigned int
2261ev_iteration (EV_P) EV_THROW
2262{
2263 return loop_count;
2264}
2265
2266unsigned int
2267ev_depth (EV_P) EV_THROW
2268{
2269 return loop_depth;
2270}
2271
2272void
2273ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2274{
2275 io_blocktime = interval;
2276}
2277
2278void
2279ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2280{
2281 timeout_blocktime = interval;
2282}
2283
2284void
2285ev_set_userdata (EV_P_ void *data) EV_THROW
2286{
2287 userdata = data;
2288}
2289
2290void *
2291ev_userdata (EV_P) EV_THROW
2292{
2293 return userdata;
2294}
2295
2296void
2297ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2298{
2299 invoke_cb = invoke_pending_cb;
2300}
2301
2302void
2303ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2304{
2305 release_cb = release;
2306 acquire_cb = acquire;
2307}
2308#endif
2309
2310/* initialise a loop structure, must be zero-initialised */
2311static void noinline ecb_cold
2312loop_init (EV_P_ unsigned int flags) EV_THROW
2313{
2314 if (!backend)
735 { 2315 {
2316 origflags = flags;
2317
2318#if EV_USE_REALTIME
2319 if (!have_realtime)
2320 {
2321 struct timespec ts;
2322
2323 if (!clock_gettime (CLOCK_REALTIME, &ts))
2324 have_realtime = 1;
2325 }
2326#endif
2327
736#if EV_USE_MONOTONIC 2328#if EV_USE_MONOTONIC
2329 if (!have_monotonic)
737 { 2330 {
738 struct timespec ts; 2331 struct timespec ts;
2332
739 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2333 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
740 have_monotonic = 1; 2334 have_monotonic = 1;
741 } 2335 }
742#endif 2336#endif
743 2337
2338 /* pid check not overridable via env */
2339#ifndef _WIN32
2340 if (flags & EVFLAG_FORKCHECK)
2341 curpid = getpid ();
2342#endif
2343
2344 if (!(flags & EVFLAG_NOENV)
2345 && !enable_secure ()
2346 && getenv ("LIBEV_FLAGS"))
2347 flags = atoi (getenv ("LIBEV_FLAGS"));
2348
744 ev_rt_now = ev_time (); 2349 ev_rt_now = ev_time ();
745 mn_now = get_clock (); 2350 mn_now = get_clock ();
746 now_floor = mn_now; 2351 now_floor = mn_now;
747 rtmn_diff = ev_rt_now - mn_now; 2352 rtmn_diff = ev_rt_now - mn_now;
2353#if EV_FEATURE_API
2354 invoke_cb = ev_invoke_pending;
2355#endif
748 2356
749 if (methods == EVMETHOD_AUTO) 2357 io_blocktime = 0.;
750 if (!enable_secure () && getenv ("LIBEV_METHODS")) 2358 timeout_blocktime = 0.;
751 methods = atoi (getenv ("LIBEV_METHODS")); 2359 backend = 0;
752 else 2360 backend_fd = -1;
753 methods = EVMETHOD_ANY; 2361 sig_pending = 0;
2362#if EV_ASYNC_ENABLE
2363 async_pending = 0;
2364#endif
2365 pipe_write_skipped = 0;
2366 pipe_write_wanted = 0;
2367 evpipe [0] = -1;
2368 evpipe [1] = -1;
2369#if EV_USE_INOTIFY
2370 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2371#endif
2372#if EV_USE_SIGNALFD
2373 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2374#endif
754 2375
755 method = 0; 2376 if (!(flags & EVBACKEND_MASK))
2377 flags |= ev_recommended_backends ();
2378
756#if EV_USE_WIN32 2379#if EV_USE_IOCP
757 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods); 2380 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2381#endif
2382#if EV_USE_PORT
2383 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
758#endif 2384#endif
759#if EV_USE_KQUEUE 2385#if EV_USE_KQUEUE
760 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 2386 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
761#endif 2387#endif
762#if EV_USE_EPOLL 2388#if EV_USE_EPOLL
763 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 2389 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
764#endif 2390#endif
765#if EV_USE_POLL 2391#if EV_USE_POLL
766 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 2392 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
767#endif 2393#endif
768#if EV_USE_SELECT 2394#if EV_USE_SELECT
769 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 2395 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
770#endif 2396#endif
771 2397
2398 ev_prepare_init (&pending_w, pendingcb);
2399
2400#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
772 ev_init (&sigev, sigcb); 2401 ev_init (&pipe_w, pipecb);
773 ev_set_priority (&sigev, EV_MAXPRI); 2402 ev_set_priority (&pipe_w, EV_MAXPRI);
2403#endif
774 } 2404 }
775} 2405}
776 2406
777void 2407/* free up a loop structure */
2408void ecb_cold
778loop_destroy (EV_P) 2409ev_loop_destroy (EV_P)
779{ 2410{
780 int i; 2411 int i;
781 2412
2413#if EV_MULTIPLICITY
2414 /* mimic free (0) */
2415 if (!EV_A)
2416 return;
2417#endif
2418
2419#if EV_CLEANUP_ENABLE
2420 /* queue cleanup watchers (and execute them) */
2421 if (expect_false (cleanupcnt))
2422 {
2423 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2424 EV_INVOKE_PENDING;
2425 }
2426#endif
2427
2428#if EV_CHILD_ENABLE
2429 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2430 {
2431 ev_ref (EV_A); /* child watcher */
2432 ev_signal_stop (EV_A_ &childev);
2433 }
2434#endif
2435
2436 if (ev_is_active (&pipe_w))
2437 {
2438 /*ev_ref (EV_A);*/
2439 /*ev_io_stop (EV_A_ &pipe_w);*/
2440
2441 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2442 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2443 }
2444
2445#if EV_USE_SIGNALFD
2446 if (ev_is_active (&sigfd_w))
2447 close (sigfd);
2448#endif
2449
2450#if EV_USE_INOTIFY
2451 if (fs_fd >= 0)
2452 close (fs_fd);
2453#endif
2454
2455 if (backend_fd >= 0)
2456 close (backend_fd);
2457
782#if EV_USE_WIN32 2458#if EV_USE_IOCP
783 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A); 2459 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2460#endif
2461#if EV_USE_PORT
2462 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
784#endif 2463#endif
785#if EV_USE_KQUEUE 2464#if EV_USE_KQUEUE
786 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 2465 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
787#endif 2466#endif
788#if EV_USE_EPOLL 2467#if EV_USE_EPOLL
789 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 2468 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
790#endif 2469#endif
791#if EV_USE_POLL 2470#if EV_USE_POLL
792 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 2471 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
793#endif 2472#endif
794#if EV_USE_SELECT 2473#if EV_USE_SELECT
795 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 2474 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
796#endif 2475#endif
797 2476
798 for (i = NUMPRI; i--; ) 2477 for (i = NUMPRI; i--; )
2478 {
799 array_free (pending, [i]); 2479 array_free (pending, [i]);
2480#if EV_IDLE_ENABLE
2481 array_free (idle, [i]);
2482#endif
2483 }
2484
2485 ev_free (anfds); anfds = 0; anfdmax = 0;
800 2486
801 /* have to use the microsoft-never-gets-it-right macro */ 2487 /* have to use the microsoft-never-gets-it-right macro */
802 array_free_microshit (fdchange); 2488 array_free (rfeed, EMPTY);
803 array_free_microshit (timer); 2489 array_free (fdchange, EMPTY);
804 array_free_microshit (periodic); 2490 array_free (timer, EMPTY);
805 array_free_microshit (idle); 2491#if EV_PERIODIC_ENABLE
806 array_free_microshit (prepare); 2492 array_free (periodic, EMPTY);
807 array_free_microshit (check); 2493#endif
2494#if EV_FORK_ENABLE
2495 array_free (fork, EMPTY);
2496#endif
2497#if EV_CLEANUP_ENABLE
2498 array_free (cleanup, EMPTY);
2499#endif
2500 array_free (prepare, EMPTY);
2501 array_free (check, EMPTY);
2502#if EV_ASYNC_ENABLE
2503 array_free (async, EMPTY);
2504#endif
808 2505
809 method = 0; 2506 backend = 0;
810}
811 2507
812static void 2508#if EV_MULTIPLICITY
2509 if (ev_is_default_loop (EV_A))
2510#endif
2511 ev_default_loop_ptr = 0;
2512#if EV_MULTIPLICITY
2513 else
2514 ev_free (EV_A);
2515#endif
2516}
2517
2518#if EV_USE_INOTIFY
2519inline_size void infy_fork (EV_P);
2520#endif
2521
2522inline_size void
813loop_fork (EV_P) 2523loop_fork (EV_P)
814{ 2524{
2525#if EV_USE_PORT
2526 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
2527#endif
2528#if EV_USE_KQUEUE
2529 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2530#endif
815#if EV_USE_EPOLL 2531#if EV_USE_EPOLL
816 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 2532 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
817#endif 2533#endif
818#if EV_USE_KQUEUE 2534#if EV_USE_INOTIFY
819 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 2535 infy_fork (EV_A);
820#endif 2536#endif
821 2537
2538#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
822 if (ev_is_active (&sigev)) 2539 if (ev_is_active (&pipe_w))
823 { 2540 {
824 /* default loop */ 2541 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
825 2542
826 ev_ref (EV_A); 2543 ev_ref (EV_A);
827 ev_io_stop (EV_A_ &sigev); 2544 ev_io_stop (EV_A_ &pipe_w);
828 close (sigpipe [0]);
829 close (sigpipe [1]);
830 2545
831 while (pipe (sigpipe)) 2546 if (evpipe [0] >= 0)
832 syserr ("(libev) error creating pipe"); 2547 EV_WIN32_CLOSE_FD (evpipe [0]);
833 2548
834 siginit (EV_A); 2549 evpipe_init (EV_A);
2550 /* iterate over everything, in case we missed something before */
2551 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
835 } 2552 }
2553#endif
836 2554
837 postfork = 0; 2555 postfork = 0;
838} 2556}
839 2557
840#if EV_MULTIPLICITY 2558#if EV_MULTIPLICITY
2559
841struct ev_loop * 2560struct ev_loop * ecb_cold
842ev_loop_new (int methods) 2561ev_loop_new (unsigned int flags) EV_THROW
843{ 2562{
844 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2563 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
845 2564
846 memset (loop, 0, sizeof (struct ev_loop)); 2565 memset (EV_A, 0, sizeof (struct ev_loop));
847
848 loop_init (EV_A_ methods); 2566 loop_init (EV_A_ flags);
849 2567
850 if (ev_method (EV_A)) 2568 if (ev_backend (EV_A))
851 return loop; 2569 return EV_A;
852 2570
2571 ev_free (EV_A);
853 return 0; 2572 return 0;
854} 2573}
855 2574
856void 2575#endif /* multiplicity */
857ev_loop_destroy (EV_P)
858{
859 loop_destroy (EV_A);
860 ev_free (loop);
861}
862 2576
863void 2577#if EV_VERIFY
864ev_loop_fork (EV_P) 2578static void noinline ecb_cold
2579verify_watcher (EV_P_ W w)
865{ 2580{
866 postfork = 1; 2581 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
867}
868 2582
2583 if (w->pending)
2584 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2585}
2586
2587static void noinline ecb_cold
2588verify_heap (EV_P_ ANHE *heap, int N)
2589{
2590 int i;
2591
2592 for (i = HEAP0; i < N + HEAP0; ++i)
2593 {
2594 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2595 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2596 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2597
2598 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2599 }
2600}
2601
2602static void noinline ecb_cold
2603array_verify (EV_P_ W *ws, int cnt)
2604{
2605 while (cnt--)
2606 {
2607 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2608 verify_watcher (EV_A_ ws [cnt]);
2609 }
2610}
2611#endif
2612
2613#if EV_FEATURE_API
2614void ecb_cold
2615ev_verify (EV_P) EV_THROW
2616{
2617#if EV_VERIFY
2618 int i;
2619 WL w, w2;
2620
2621 assert (activecnt >= -1);
2622
2623 assert (fdchangemax >= fdchangecnt);
2624 for (i = 0; i < fdchangecnt; ++i)
2625 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2626
2627 assert (anfdmax >= 0);
2628 for (i = 0; i < anfdmax; ++i)
2629 {
2630 int j = 0;
2631
2632 for (w = w2 = anfds [i].head; w; w = w->next)
2633 {
2634 verify_watcher (EV_A_ (W)w);
2635
2636 if (j++ & 1)
2637 {
2638 assert (("libev: io watcher list contains a loop", w != w2));
2639 w2 = w2->next;
2640 }
2641
2642 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2643 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2644 }
2645 }
2646
2647 assert (timermax >= timercnt);
2648 verify_heap (EV_A_ timers, timercnt);
2649
2650#if EV_PERIODIC_ENABLE
2651 assert (periodicmax >= periodiccnt);
2652 verify_heap (EV_A_ periodics, periodiccnt);
2653#endif
2654
2655 for (i = NUMPRI; i--; )
2656 {
2657 assert (pendingmax [i] >= pendingcnt [i]);
2658#if EV_IDLE_ENABLE
2659 assert (idleall >= 0);
2660 assert (idlemax [i] >= idlecnt [i]);
2661 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2662#endif
2663 }
2664
2665#if EV_FORK_ENABLE
2666 assert (forkmax >= forkcnt);
2667 array_verify (EV_A_ (W *)forks, forkcnt);
2668#endif
2669
2670#if EV_CLEANUP_ENABLE
2671 assert (cleanupmax >= cleanupcnt);
2672 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2673#endif
2674
2675#if EV_ASYNC_ENABLE
2676 assert (asyncmax >= asynccnt);
2677 array_verify (EV_A_ (W *)asyncs, asynccnt);
2678#endif
2679
2680#if EV_PREPARE_ENABLE
2681 assert (preparemax >= preparecnt);
2682 array_verify (EV_A_ (W *)prepares, preparecnt);
2683#endif
2684
2685#if EV_CHECK_ENABLE
2686 assert (checkmax >= checkcnt);
2687 array_verify (EV_A_ (W *)checks, checkcnt);
2688#endif
2689
2690# if 0
2691#if EV_CHILD_ENABLE
2692 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2693 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2694#endif
2695# endif
2696#endif
2697}
869#endif 2698#endif
870 2699
871#if EV_MULTIPLICITY 2700#if EV_MULTIPLICITY
872struct ev_loop * 2701struct ev_loop * ecb_cold
873#else 2702#else
874int 2703int
875#endif 2704#endif
876ev_default_loop (int methods) 2705ev_default_loop (unsigned int flags) EV_THROW
877{ 2706{
878 if (sigpipe [0] == sigpipe [1])
879 if (pipe (sigpipe))
880 return 0;
881
882 if (!default_loop) 2707 if (!ev_default_loop_ptr)
883 { 2708 {
884#if EV_MULTIPLICITY 2709#if EV_MULTIPLICITY
885 struct ev_loop *loop = default_loop = &default_loop_struct; 2710 EV_P = ev_default_loop_ptr = &default_loop_struct;
886#else 2711#else
887 default_loop = 1; 2712 ev_default_loop_ptr = 1;
888#endif 2713#endif
889 2714
890 loop_init (EV_A_ methods); 2715 loop_init (EV_A_ flags);
891 2716
892 if (ev_method (EV_A)) 2717 if (ev_backend (EV_A))
893 { 2718 {
894 siginit (EV_A); 2719#if EV_CHILD_ENABLE
895
896#ifndef WIN32
897 ev_signal_init (&childev, childcb, SIGCHLD); 2720 ev_signal_init (&childev, childcb, SIGCHLD);
898 ev_set_priority (&childev, EV_MAXPRI); 2721 ev_set_priority (&childev, EV_MAXPRI);
899 ev_signal_start (EV_A_ &childev); 2722 ev_signal_start (EV_A_ &childev);
900 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2723 ev_unref (EV_A); /* child watcher should not keep loop alive */
901#endif 2724#endif
902 } 2725 }
903 else 2726 else
904 default_loop = 0; 2727 ev_default_loop_ptr = 0;
905 } 2728 }
906 2729
907 return default_loop; 2730 return ev_default_loop_ptr;
908} 2731}
909 2732
910void 2733void
911ev_default_destroy (void) 2734ev_loop_fork (EV_P) EV_THROW
912{ 2735{
913#if EV_MULTIPLICITY 2736 postfork = 1;
914 struct ev_loop *loop = default_loop;
915#endif
916
917#ifndef WIN32
918 ev_ref (EV_A); /* child watcher */
919 ev_signal_stop (EV_A_ &childev);
920#endif
921
922 ev_ref (EV_A); /* signal watcher */
923 ev_io_stop (EV_A_ &sigev);
924
925 close (sigpipe [0]); sigpipe [0] = 0;
926 close (sigpipe [1]); sigpipe [1] = 0;
927
928 loop_destroy (EV_A);
929} 2737}
2738
2739/*****************************************************************************/
930 2740
931void 2741void
932ev_default_fork (void) 2742ev_invoke (EV_P_ void *w, int revents)
933{ 2743{
934#if EV_MULTIPLICITY 2744 EV_CB_INVOKE ((W)w, revents);
935 struct ev_loop *loop = default_loop;
936#endif
937
938 if (method)
939 postfork = 1;
940} 2745}
941 2746
942/*****************************************************************************/ 2747unsigned int
943 2748ev_pending_count (EV_P) EV_THROW
944static int
945any_pending (EV_P)
946{ 2749{
947 int pri; 2750 int pri;
2751 unsigned int count = 0;
948 2752
949 for (pri = NUMPRI; pri--; ) 2753 for (pri = NUMPRI; pri--; )
950 if (pendingcnt [pri]) 2754 count += pendingcnt [pri];
951 return 1;
952 2755
953 return 0; 2756 return count;
954} 2757}
955 2758
956static void 2759void noinline
957call_pending (EV_P) 2760ev_invoke_pending (EV_P)
958{ 2761{
959 int pri; 2762 pendingpri = NUMPRI;
960 2763
961 for (pri = NUMPRI; pri--; ) 2764 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
2765 {
2766 --pendingpri;
2767
962 while (pendingcnt [pri]) 2768 while (pendingcnt [pendingpri])
963 {
964 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
965
966 if (p->w)
967 { 2769 {
2770 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
2771
968 p->w->pending = 0; 2772 p->w->pending = 0;
969 EV_CB_INVOKE (p->w, p->events); 2773 EV_CB_INVOKE (p->w, p->events);
2774 EV_FREQUENT_CHECK;
2775 }
2776 }
2777}
2778
2779#if EV_IDLE_ENABLE
2780/* make idle watchers pending. this handles the "call-idle */
2781/* only when higher priorities are idle" logic */
2782inline_size void
2783idle_reify (EV_P)
2784{
2785 if (expect_false (idleall))
2786 {
2787 int pri;
2788
2789 for (pri = NUMPRI; pri--; )
2790 {
2791 if (pendingcnt [pri])
2792 break;
2793
2794 if (idlecnt [pri])
2795 {
2796 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2797 break;
970 } 2798 }
971 } 2799 }
2800 }
972} 2801}
2802#endif
973 2803
974static void 2804/* make timers pending */
2805inline_size void
975timers_reify (EV_P) 2806timers_reify (EV_P)
976{ 2807{
2808 EV_FREQUENT_CHECK;
2809
977 while (timercnt && ((WT)timers [0])->at <= mn_now) 2810 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
978 { 2811 {
979 struct ev_timer *w = timers [0]; 2812 do
980
981 assert (("inactive timer on timer heap detected", ev_is_active (w)));
982
983 /* first reschedule or stop timer */
984 if (w->repeat)
985 { 2813 {
2814 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2815
2816 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2817
2818 /* first reschedule or stop timer */
2819 if (w->repeat)
2820 {
2821 ev_at (w) += w->repeat;
2822 if (ev_at (w) < mn_now)
2823 ev_at (w) = mn_now;
2824
986 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2825 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
987 ((WT)w)->at = mn_now + w->repeat; 2826
2827 ANHE_at_cache (timers [HEAP0]);
988 downheap ((WT *)timers, timercnt, 0); 2828 downheap (timers, timercnt, HEAP0);
2829 }
2830 else
2831 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2832
2833 EV_FREQUENT_CHECK;
2834 feed_reverse (EV_A_ (W)w);
989 } 2835 }
990 else 2836 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
991 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
992 2837
993 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2838 feed_reverse_done (EV_A_ EV_TIMER);
2839 }
2840}
2841
2842#if EV_PERIODIC_ENABLE
2843
2844static void noinline
2845periodic_recalc (EV_P_ ev_periodic *w)
2846{
2847 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2848 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2849
2850 /* the above almost always errs on the low side */
2851 while (at <= ev_rt_now)
994 } 2852 {
995} 2853 ev_tstamp nat = at + w->interval;
996 2854
997static void 2855 /* when resolution fails us, we use ev_rt_now */
2856 if (expect_false (nat == at))
2857 {
2858 at = ev_rt_now;
2859 break;
2860 }
2861
2862 at = nat;
2863 }
2864
2865 ev_at (w) = at;
2866}
2867
2868/* make periodics pending */
2869inline_size void
998periodics_reify (EV_P) 2870periodics_reify (EV_P)
999{ 2871{
2872 EV_FREQUENT_CHECK;
2873
1000 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2874 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1001 { 2875 {
1002 struct ev_periodic *w = periodics [0]; 2876 do
2877 {
2878 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1003 2879
1004 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 2880 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1005 2881
1006 /* first reschedule or stop timer */ 2882 /* first reschedule or stop timer */
2883 if (w->reschedule_cb)
2884 {
2885 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2886
2887 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2888
2889 ANHE_at_cache (periodics [HEAP0]);
2890 downheap (periodics, periodiccnt, HEAP0);
2891 }
2892 else if (w->interval)
2893 {
2894 periodic_recalc (EV_A_ w);
2895 ANHE_at_cache (periodics [HEAP0]);
2896 downheap (periodics, periodiccnt, HEAP0);
2897 }
2898 else
2899 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2900
2901 EV_FREQUENT_CHECK;
2902 feed_reverse (EV_A_ (W)w);
2903 }
2904 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2905
2906 feed_reverse_done (EV_A_ EV_PERIODIC);
2907 }
2908}
2909
2910/* simply recalculate all periodics */
2911/* TODO: maybe ensure that at least one event happens when jumping forward? */
2912static void noinline ecb_cold
2913periodics_reschedule (EV_P)
2914{
2915 int i;
2916
2917 /* adjust periodics after time jump */
2918 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2919 {
2920 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2921
1007 if (w->reschedule_cb) 2922 if (w->reschedule_cb)
2923 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2924 else if (w->interval)
2925 periodic_recalc (EV_A_ w);
2926
2927 ANHE_at_cache (periodics [i]);
2928 }
2929
2930 reheap (periodics, periodiccnt);
2931}
2932#endif
2933
2934/* adjust all timers by a given offset */
2935static void noinline ecb_cold
2936timers_reschedule (EV_P_ ev_tstamp adjust)
2937{
2938 int i;
2939
2940 for (i = 0; i < timercnt; ++i)
2941 {
2942 ANHE *he = timers + i + HEAP0;
2943 ANHE_w (*he)->at += adjust;
2944 ANHE_at_cache (*he);
2945 }
2946}
2947
2948/* fetch new monotonic and realtime times from the kernel */
2949/* also detect if there was a timejump, and act accordingly */
2950inline_speed void
2951time_update (EV_P_ ev_tstamp max_block)
2952{
2953#if EV_USE_MONOTONIC
2954 if (expect_true (have_monotonic))
2955 {
2956 int i;
2957 ev_tstamp odiff = rtmn_diff;
2958
2959 mn_now = get_clock ();
2960
2961 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2962 /* interpolate in the meantime */
2963 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1008 { 2964 {
1009 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2965 ev_rt_now = rtmn_diff + mn_now;
1010 2966 return;
1011 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1012 downheap ((WT *)periodics, periodiccnt, 0);
1013 } 2967 }
1014 else if (w->interval)
1015 {
1016 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1017 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1018 downheap ((WT *)periodics, periodiccnt, 0);
1019 }
1020 else
1021 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1022 2968
1023 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1024 }
1025}
1026
1027static void
1028periodics_reschedule (EV_P)
1029{
1030 int i;
1031
1032 /* adjust periodics after time jump */
1033 for (i = 0; i < periodiccnt; ++i)
1034 {
1035 struct ev_periodic *w = periodics [i];
1036
1037 if (w->reschedule_cb)
1038 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1039 else if (w->interval)
1040 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1041 }
1042
1043 /* now rebuild the heap */
1044 for (i = periodiccnt >> 1; i--; )
1045 downheap ((WT *)periodics, periodiccnt, i);
1046}
1047
1048inline int
1049time_update_monotonic (EV_P)
1050{
1051 mn_now = get_clock ();
1052
1053 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1054 {
1055 ev_rt_now = rtmn_diff + mn_now;
1056 return 0;
1057 }
1058 else
1059 {
1060 now_floor = mn_now; 2969 now_floor = mn_now;
1061 ev_rt_now = ev_time (); 2970 ev_rt_now = ev_time ();
1062 return 1;
1063 }
1064}
1065 2971
1066static void 2972 /* loop a few times, before making important decisions.
1067time_update (EV_P) 2973 * on the choice of "4": one iteration isn't enough,
1068{ 2974 * in case we get preempted during the calls to
1069 int i; 2975 * ev_time and get_clock. a second call is almost guaranteed
1070 2976 * to succeed in that case, though. and looping a few more times
1071#if EV_USE_MONOTONIC 2977 * doesn't hurt either as we only do this on time-jumps or
1072 if (expect_true (have_monotonic)) 2978 * in the unlikely event of having been preempted here.
1073 { 2979 */
1074 if (time_update_monotonic (EV_A)) 2980 for (i = 4; --i; )
1075 { 2981 {
1076 ev_tstamp odiff = rtmn_diff; 2982 ev_tstamp diff;
1077
1078 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1079 {
1080 rtmn_diff = ev_rt_now - mn_now; 2983 rtmn_diff = ev_rt_now - mn_now;
1081 2984
1082 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2985 diff = odiff - rtmn_diff;
2986
2987 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1083 return; /* all is well */ 2988 return; /* all is well */
1084 2989
1085 ev_rt_now = ev_time (); 2990 ev_rt_now = ev_time ();
1086 mn_now = get_clock (); 2991 mn_now = get_clock ();
1087 now_floor = mn_now; 2992 now_floor = mn_now;
1088 } 2993 }
1089 2994
2995 /* no timer adjustment, as the monotonic clock doesn't jump */
2996 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2997# if EV_PERIODIC_ENABLE
2998 periodics_reschedule (EV_A);
2999# endif
3000 }
3001 else
3002#endif
3003 {
3004 ev_rt_now = ev_time ();
3005
3006 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
3007 {
3008 /* adjust timers. this is easy, as the offset is the same for all of them */
3009 timers_reschedule (EV_A_ ev_rt_now - mn_now);
3010#if EV_PERIODIC_ENABLE
1090 periodics_reschedule (EV_A); 3011 periodics_reschedule (EV_A);
1091 /* no timer adjustment, as the monotonic clock doesn't jump */ 3012#endif
1092 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1093 } 3013 }
1094 }
1095 else
1096#endif
1097 {
1098 ev_rt_now = ev_time ();
1099
1100 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1101 {
1102 periodics_reschedule (EV_A);
1103
1104 /* adjust timers. this is easy, as the offset is the same for all */
1105 for (i = 0; i < timercnt; ++i)
1106 ((WT)timers [i])->at += ev_rt_now - mn_now;
1107 }
1108 3014
1109 mn_now = ev_rt_now; 3015 mn_now = ev_rt_now;
1110 } 3016 }
1111} 3017}
1112 3018
1113void 3019int
1114ev_ref (EV_P)
1115{
1116 ++activecnt;
1117}
1118
1119void
1120ev_unref (EV_P)
1121{
1122 --activecnt;
1123}
1124
1125static int loop_done;
1126
1127void
1128ev_loop (EV_P_ int flags) 3020ev_run (EV_P_ int flags)
1129{ 3021{
1130 double block; 3022#if EV_FEATURE_API
1131 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 3023 ++loop_depth;
3024#endif
3025
3026 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3027
3028 loop_done = EVBREAK_CANCEL;
3029
3030 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1132 3031
1133 do 3032 do
1134 { 3033 {
3034#if EV_VERIFY >= 2
3035 ev_verify (EV_A);
3036#endif
3037
3038#ifndef _WIN32
3039 if (expect_false (curpid)) /* penalise the forking check even more */
3040 if (expect_false (getpid () != curpid))
3041 {
3042 curpid = getpid ();
3043 postfork = 1;
3044 }
3045#endif
3046
3047#if EV_FORK_ENABLE
3048 /* we might have forked, so queue fork handlers */
3049 if (expect_false (postfork))
3050 if (forkcnt)
3051 {
3052 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3053 EV_INVOKE_PENDING;
3054 }
3055#endif
3056
3057#if EV_PREPARE_ENABLE
1135 /* queue check watchers (and execute them) */ 3058 /* queue prepare watchers (and execute them) */
1136 if (expect_false (preparecnt)) 3059 if (expect_false (preparecnt))
1137 { 3060 {
1138 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3061 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1139 call_pending (EV_A); 3062 EV_INVOKE_PENDING;
1140 } 3063 }
3064#endif
3065
3066 if (expect_false (loop_done))
3067 break;
1141 3068
1142 /* we might have forked, so reify kernel state if necessary */ 3069 /* we might have forked, so reify kernel state if necessary */
1143 if (expect_false (postfork)) 3070 if (expect_false (postfork))
1144 loop_fork (EV_A); 3071 loop_fork (EV_A);
1145 3072
1146 /* update fd-related kernel structures */ 3073 /* update fd-related kernel structures */
1147 fd_reify (EV_A); 3074 fd_reify (EV_A);
1148 3075
1149 /* calculate blocking time */ 3076 /* calculate blocking time */
3077 {
3078 ev_tstamp waittime = 0.;
3079 ev_tstamp sleeptime = 0.;
1150 3080
1151 /* we only need this for !monotonic clock or timers, but as we basically 3081 /* remember old timestamp for io_blocktime calculation */
1152 always have timers, we just calculate it always */ 3082 ev_tstamp prev_mn_now = mn_now;
1153#if EV_USE_MONOTONIC 3083
1154 if (expect_true (have_monotonic)) 3084 /* update time to cancel out callback processing overhead */
1155 time_update_monotonic (EV_A); 3085 time_update (EV_A_ 1e100);
1156 else 3086
1157#endif 3087 /* from now on, we want a pipe-wake-up */
3088 pipe_write_wanted = 1;
3089
3090 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3091
3092 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1158 { 3093 {
1159 ev_rt_now = ev_time ();
1160 mn_now = ev_rt_now;
1161 }
1162
1163 if (flags & EVLOOP_NONBLOCK || idlecnt)
1164 block = 0.;
1165 else
1166 {
1167 block = MAX_BLOCKTIME; 3094 waittime = MAX_BLOCKTIME;
1168 3095
1169 if (timercnt) 3096 if (timercnt)
1170 { 3097 {
1171 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 3098 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1172 if (block > to) block = to; 3099 if (waittime > to) waittime = to;
1173 } 3100 }
1174 3101
3102#if EV_PERIODIC_ENABLE
1175 if (periodiccnt) 3103 if (periodiccnt)
1176 { 3104 {
1177 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 3105 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1178 if (block > to) block = to; 3106 if (waittime > to) waittime = to;
1179 } 3107 }
3108#endif
1180 3109
1181 if (block < 0.) block = 0.; 3110 /* don't let timeouts decrease the waittime below timeout_blocktime */
3111 if (expect_false (waittime < timeout_blocktime))
3112 waittime = timeout_blocktime;
3113
3114 /* at this point, we NEED to wait, so we have to ensure */
3115 /* to pass a minimum nonzero value to the backend */
3116 if (expect_false (waittime < backend_mintime))
3117 waittime = backend_mintime;
3118
3119 /* extra check because io_blocktime is commonly 0 */
3120 if (expect_false (io_blocktime))
3121 {
3122 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3123
3124 if (sleeptime > waittime - backend_mintime)
3125 sleeptime = waittime - backend_mintime;
3126
3127 if (expect_true (sleeptime > 0.))
3128 {
3129 ev_sleep (sleeptime);
3130 waittime -= sleeptime;
3131 }
3132 }
1182 } 3133 }
1183 3134
1184 method_poll (EV_A_ block); 3135#if EV_FEATURE_API
3136 ++loop_count;
3137#endif
3138 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3139 backend_poll (EV_A_ waittime);
3140 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1185 3141
3142 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3143
3144 ECB_MEMORY_FENCE_ACQUIRE;
3145 if (pipe_write_skipped)
3146 {
3147 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3148 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3149 }
3150
3151
1186 /* update ev_rt_now, do magic */ 3152 /* update ev_rt_now, do magic */
1187 time_update (EV_A); 3153 time_update (EV_A_ waittime + sleeptime);
3154 }
1188 3155
1189 /* queue pending timers and reschedule them */ 3156 /* queue pending timers and reschedule them */
1190 timers_reify (EV_A); /* relative timers called last */ 3157 timers_reify (EV_A); /* relative timers called last */
3158#if EV_PERIODIC_ENABLE
1191 periodics_reify (EV_A); /* absolute timers called first */ 3159 periodics_reify (EV_A); /* absolute timers called first */
3160#endif
1192 3161
3162#if EV_IDLE_ENABLE
1193 /* queue idle watchers unless io or timers are pending */ 3163 /* queue idle watchers unless other events are pending */
1194 if (idlecnt && !any_pending (EV_A)) 3164 idle_reify (EV_A);
1195 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 3165#endif
1196 3166
3167#if EV_CHECK_ENABLE
1197 /* queue check watchers, to be executed first */ 3168 /* queue check watchers, to be executed first */
1198 if (checkcnt) 3169 if (expect_false (checkcnt))
1199 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3170 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3171#endif
1200 3172
1201 call_pending (EV_A); 3173 EV_INVOKE_PENDING;
1202 } 3174 }
1203 while (activecnt && !loop_done); 3175 while (expect_true (
3176 activecnt
3177 && !loop_done
3178 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3179 ));
1204 3180
1205 if (loop_done != 2) 3181 if (loop_done == EVBREAK_ONE)
1206 loop_done = 0; 3182 loop_done = EVBREAK_CANCEL;
3183
3184#if EV_FEATURE_API
3185 --loop_depth;
3186#endif
3187
3188 return activecnt;
1207} 3189}
1208 3190
1209void 3191void
1210ev_unloop (EV_P_ int how) 3192ev_break (EV_P_ int how) EV_THROW
1211{ 3193{
1212 loop_done = how; 3194 loop_done = how;
1213} 3195}
1214 3196
3197void
3198ev_ref (EV_P) EV_THROW
3199{
3200 ++activecnt;
3201}
3202
3203void
3204ev_unref (EV_P) EV_THROW
3205{
3206 --activecnt;
3207}
3208
3209void
3210ev_now_update (EV_P) EV_THROW
3211{
3212 time_update (EV_A_ 1e100);
3213}
3214
3215void
3216ev_suspend (EV_P) EV_THROW
3217{
3218 ev_now_update (EV_A);
3219}
3220
3221void
3222ev_resume (EV_P) EV_THROW
3223{
3224 ev_tstamp mn_prev = mn_now;
3225
3226 ev_now_update (EV_A);
3227 timers_reschedule (EV_A_ mn_now - mn_prev);
3228#if EV_PERIODIC_ENABLE
3229 /* TODO: really do this? */
3230 periodics_reschedule (EV_A);
3231#endif
3232}
3233
1215/*****************************************************************************/ 3234/*****************************************************************************/
3235/* singly-linked list management, used when the expected list length is short */
1216 3236
1217inline void 3237inline_size void
1218wlist_add (WL *head, WL elem) 3238wlist_add (WL *head, WL elem)
1219{ 3239{
1220 elem->next = *head; 3240 elem->next = *head;
1221 *head = elem; 3241 *head = elem;
1222} 3242}
1223 3243
1224inline void 3244inline_size void
1225wlist_del (WL *head, WL elem) 3245wlist_del (WL *head, WL elem)
1226{ 3246{
1227 while (*head) 3247 while (*head)
1228 { 3248 {
1229 if (*head == elem) 3249 if (expect_true (*head == elem))
1230 { 3250 {
1231 *head = elem->next; 3251 *head = elem->next;
1232 return; 3252 break;
1233 } 3253 }
1234 3254
1235 head = &(*head)->next; 3255 head = &(*head)->next;
1236 } 3256 }
1237} 3257}
1238 3258
3259/* internal, faster, version of ev_clear_pending */
1239inline void 3260inline_speed void
1240ev_clear_pending (EV_P_ W w) 3261clear_pending (EV_P_ W w)
1241{ 3262{
1242 if (w->pending) 3263 if (w->pending)
1243 { 3264 {
1244 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3265 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1245 w->pending = 0; 3266 w->pending = 0;
1246 } 3267 }
1247} 3268}
1248 3269
3270int
3271ev_clear_pending (EV_P_ void *w) EV_THROW
3272{
3273 W w_ = (W)w;
3274 int pending = w_->pending;
3275
3276 if (expect_true (pending))
3277 {
3278 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3279 p->w = (W)&pending_w;
3280 w_->pending = 0;
3281 return p->events;
3282 }
3283 else
3284 return 0;
3285}
3286
1249inline void 3287inline_size void
3288pri_adjust (EV_P_ W w)
3289{
3290 int pri = ev_priority (w);
3291 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3292 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3293 ev_set_priority (w, pri);
3294}
3295
3296inline_speed void
1250ev_start (EV_P_ W w, int active) 3297ev_start (EV_P_ W w, int active)
1251{ 3298{
1252 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 3299 pri_adjust (EV_A_ w);
1253 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1254
1255 w->active = active; 3300 w->active = active;
1256 ev_ref (EV_A); 3301 ev_ref (EV_A);
1257} 3302}
1258 3303
1259inline void 3304inline_size void
1260ev_stop (EV_P_ W w) 3305ev_stop (EV_P_ W w)
1261{ 3306{
1262 ev_unref (EV_A); 3307 ev_unref (EV_A);
1263 w->active = 0; 3308 w->active = 0;
1264} 3309}
1265 3310
1266/*****************************************************************************/ 3311/*****************************************************************************/
1267 3312
1268void 3313void noinline
1269ev_io_start (EV_P_ struct ev_io *w) 3314ev_io_start (EV_P_ ev_io *w) EV_THROW
1270{ 3315{
1271 int fd = w->fd; 3316 int fd = w->fd;
1272 3317
3318 if (expect_false (ev_is_active (w)))
3319 return;
3320
3321 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3322 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3323
3324 EV_FREQUENT_CHECK;
3325
3326 ev_start (EV_A_ (W)w, 1);
3327 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
3328 wlist_add (&anfds[fd].head, (WL)w);
3329
3330 /* common bug, apparently */
3331 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3332
3333 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3334 w->events &= ~EV__IOFDSET;
3335
3336 EV_FREQUENT_CHECK;
3337}
3338
3339void noinline
3340ev_io_stop (EV_P_ ev_io *w) EV_THROW
3341{
3342 clear_pending (EV_A_ (W)w);
3343 if (expect_false (!ev_is_active (w)))
3344 return;
3345
3346 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3347
3348 EV_FREQUENT_CHECK;
3349
3350 wlist_del (&anfds[w->fd].head, (WL)w);
3351 ev_stop (EV_A_ (W)w);
3352
3353 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3354
3355 EV_FREQUENT_CHECK;
3356}
3357
3358void noinline
3359ev_timer_start (EV_P_ ev_timer *w) EV_THROW
3360{
3361 if (expect_false (ev_is_active (w)))
3362 return;
3363
3364 ev_at (w) += mn_now;
3365
3366 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
3367
3368 EV_FREQUENT_CHECK;
3369
3370 ++timercnt;
3371 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
3372 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
3373 ANHE_w (timers [ev_active (w)]) = (WT)w;
3374 ANHE_at_cache (timers [ev_active (w)]);
3375 upheap (timers, ev_active (w));
3376
3377 EV_FREQUENT_CHECK;
3378
3379 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3380}
3381
3382void noinline
3383ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
3384{
3385 clear_pending (EV_A_ (W)w);
3386 if (expect_false (!ev_is_active (w)))
3387 return;
3388
3389 EV_FREQUENT_CHECK;
3390
3391 {
3392 int active = ev_active (w);
3393
3394 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3395
3396 --timercnt;
3397
3398 if (expect_true (active < timercnt + HEAP0))
3399 {
3400 timers [active] = timers [timercnt + HEAP0];
3401 adjustheap (timers, timercnt, active);
3402 }
3403 }
3404
3405 ev_at (w) -= mn_now;
3406
3407 ev_stop (EV_A_ (W)w);
3408
3409 EV_FREQUENT_CHECK;
3410}
3411
3412void noinline
3413ev_timer_again (EV_P_ ev_timer *w) EV_THROW
3414{
3415 EV_FREQUENT_CHECK;
3416
3417 clear_pending (EV_A_ (W)w);
3418
1273 if (ev_is_active (w)) 3419 if (ev_is_active (w))
1274 return;
1275
1276 assert (("ev_io_start called with negative fd", fd >= 0));
1277
1278 ev_start (EV_A_ (W)w, 1);
1279 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1280 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1281
1282 fd_change (EV_A_ fd);
1283}
1284
1285void
1286ev_io_stop (EV_P_ struct ev_io *w)
1287{
1288 ev_clear_pending (EV_A_ (W)w);
1289 if (!ev_is_active (w))
1290 return;
1291
1292 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1293 ev_stop (EV_A_ (W)w);
1294
1295 fd_change (EV_A_ w->fd);
1296}
1297
1298void
1299ev_timer_start (EV_P_ struct ev_timer *w)
1300{
1301 if (ev_is_active (w))
1302 return;
1303
1304 ((WT)w)->at += mn_now;
1305
1306 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1307
1308 ev_start (EV_A_ (W)w, ++timercnt);
1309 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1310 timers [timercnt - 1] = w;
1311 upheap ((WT *)timers, timercnt - 1);
1312
1313 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1314}
1315
1316void
1317ev_timer_stop (EV_P_ struct ev_timer *w)
1318{
1319 ev_clear_pending (EV_A_ (W)w);
1320 if (!ev_is_active (w))
1321 return;
1322
1323 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1324
1325 if (((W)w)->active < timercnt--)
1326 {
1327 timers [((W)w)->active - 1] = timers [timercnt];
1328 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1329 }
1330
1331 ((WT)w)->at = w->repeat;
1332
1333 ev_stop (EV_A_ (W)w);
1334}
1335
1336void
1337ev_timer_again (EV_P_ struct ev_timer *w)
1338{
1339 if (ev_is_active (w))
1340 { 3420 {
1341 if (w->repeat) 3421 if (w->repeat)
1342 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1, mn_now + w->repeat); 3422 {
3423 ev_at (w) = mn_now + w->repeat;
3424 ANHE_at_cache (timers [ev_active (w)]);
3425 adjustheap (timers, timercnt, ev_active (w));
3426 }
1343 else 3427 else
1344 ev_timer_stop (EV_A_ w); 3428 ev_timer_stop (EV_A_ w);
1345 } 3429 }
1346 else if (w->repeat) 3430 else if (w->repeat)
3431 {
3432 ev_at (w) = w->repeat;
1347 ev_timer_start (EV_A_ w); 3433 ev_timer_start (EV_A_ w);
1348} 3434 }
1349 3435
1350void 3436 EV_FREQUENT_CHECK;
3437}
3438
3439ev_tstamp
3440ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3441{
3442 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3443}
3444
3445#if EV_PERIODIC_ENABLE
3446void noinline
1351ev_periodic_start (EV_P_ struct ev_periodic *w) 3447ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
1352{ 3448{
1353 if (ev_is_active (w)) 3449 if (expect_false (ev_is_active (w)))
1354 return; 3450 return;
1355 3451
1356 if (w->reschedule_cb) 3452 if (w->reschedule_cb)
1357 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 3453 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1358 else if (w->interval) 3454 else if (w->interval)
1359 { 3455 {
1360 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3456 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1361 /* this formula differs from the one in periodic_reify because we do not always round up */ 3457 periodic_recalc (EV_A_ w);
1362 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1363 } 3458 }
3459 else
3460 ev_at (w) = w->offset;
1364 3461
3462 EV_FREQUENT_CHECK;
3463
3464 ++periodiccnt;
1365 ev_start (EV_A_ (W)w, ++periodiccnt); 3465 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1366 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 3466 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1367 periodics [periodiccnt - 1] = w; 3467 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1368 upheap ((WT *)periodics, periodiccnt - 1); 3468 ANHE_at_cache (periodics [ev_active (w)]);
3469 upheap (periodics, ev_active (w));
1369 3470
3471 EV_FREQUENT_CHECK;
3472
1370 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3473 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1371} 3474}
1372 3475
1373void 3476void noinline
1374ev_periodic_stop (EV_P_ struct ev_periodic *w) 3477ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
1375{ 3478{
1376 ev_clear_pending (EV_A_ (W)w); 3479 clear_pending (EV_A_ (W)w);
1377 if (!ev_is_active (w)) 3480 if (expect_false (!ev_is_active (w)))
1378 return; 3481 return;
1379 3482
3483 EV_FREQUENT_CHECK;
3484
3485 {
3486 int active = ev_active (w);
3487
1380 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3488 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1381 3489
1382 if (((W)w)->active < periodiccnt--) 3490 --periodiccnt;
3491
3492 if (expect_true (active < periodiccnt + HEAP0))
1383 { 3493 {
1384 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 3494 periodics [active] = periodics [periodiccnt + HEAP0];
1385 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 3495 adjustheap (periodics, periodiccnt, active);
1386 } 3496 }
3497 }
1387 3498
1388 ev_stop (EV_A_ (W)w); 3499 ev_stop (EV_A_ (W)w);
1389}
1390 3500
1391void 3501 EV_FREQUENT_CHECK;
3502}
3503
3504void noinline
1392ev_periodic_again (EV_P_ struct ev_periodic *w) 3505ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
1393{ 3506{
1394 /* TODO: use adjustheap and recalculation */ 3507 /* TODO: use adjustheap and recalculation */
1395 ev_periodic_stop (EV_A_ w); 3508 ev_periodic_stop (EV_A_ w);
1396 ev_periodic_start (EV_A_ w); 3509 ev_periodic_start (EV_A_ w);
1397} 3510}
1398 3511#endif
1399void
1400ev_idle_start (EV_P_ struct ev_idle *w)
1401{
1402 if (ev_is_active (w))
1403 return;
1404
1405 ev_start (EV_A_ (W)w, ++idlecnt);
1406 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1407 idles [idlecnt - 1] = w;
1408}
1409
1410void
1411ev_idle_stop (EV_P_ struct ev_idle *w)
1412{
1413 ev_clear_pending (EV_A_ (W)w);
1414 if (ev_is_active (w))
1415 return;
1416
1417 idles [((W)w)->active - 1] = idles [--idlecnt];
1418 ev_stop (EV_A_ (W)w);
1419}
1420
1421void
1422ev_prepare_start (EV_P_ struct ev_prepare *w)
1423{
1424 if (ev_is_active (w))
1425 return;
1426
1427 ev_start (EV_A_ (W)w, ++preparecnt);
1428 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1429 prepares [preparecnt - 1] = w;
1430}
1431
1432void
1433ev_prepare_stop (EV_P_ struct ev_prepare *w)
1434{
1435 ev_clear_pending (EV_A_ (W)w);
1436 if (ev_is_active (w))
1437 return;
1438
1439 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1440 ev_stop (EV_A_ (W)w);
1441}
1442
1443void
1444ev_check_start (EV_P_ struct ev_check *w)
1445{
1446 if (ev_is_active (w))
1447 return;
1448
1449 ev_start (EV_A_ (W)w, ++checkcnt);
1450 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1451 checks [checkcnt - 1] = w;
1452}
1453
1454void
1455ev_check_stop (EV_P_ struct ev_check *w)
1456{
1457 ev_clear_pending (EV_A_ (W)w);
1458 if (ev_is_active (w))
1459 return;
1460
1461 checks [((W)w)->active - 1] = checks [--checkcnt];
1462 ev_stop (EV_A_ (W)w);
1463}
1464 3512
1465#ifndef SA_RESTART 3513#ifndef SA_RESTART
1466# define SA_RESTART 0 3514# define SA_RESTART 0
1467#endif 3515#endif
1468 3516
3517#if EV_SIGNAL_ENABLE
3518
3519void noinline
3520ev_signal_start (EV_P_ ev_signal *w) EV_THROW
3521{
3522 if (expect_false (ev_is_active (w)))
3523 return;
3524
3525 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3526
3527#if EV_MULTIPLICITY
3528 assert (("libev: a signal must not be attached to two different loops",
3529 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3530
3531 signals [w->signum - 1].loop = EV_A;
3532 ECB_MEMORY_FENCE_RELEASE;
3533#endif
3534
3535 EV_FREQUENT_CHECK;
3536
3537#if EV_USE_SIGNALFD
3538 if (sigfd == -2)
3539 {
3540 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3541 if (sigfd < 0 && errno == EINVAL)
3542 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3543
3544 if (sigfd >= 0)
3545 {
3546 fd_intern (sigfd); /* doing it twice will not hurt */
3547
3548 sigemptyset (&sigfd_set);
3549
3550 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3551 ev_set_priority (&sigfd_w, EV_MAXPRI);
3552 ev_io_start (EV_A_ &sigfd_w);
3553 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3554 }
3555 }
3556
3557 if (sigfd >= 0)
3558 {
3559 /* TODO: check .head */
3560 sigaddset (&sigfd_set, w->signum);
3561 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3562
3563 signalfd (sigfd, &sigfd_set, 0);
3564 }
3565#endif
3566
3567 ev_start (EV_A_ (W)w, 1);
3568 wlist_add (&signals [w->signum - 1].head, (WL)w);
3569
3570 if (!((WL)w)->next)
3571# if EV_USE_SIGNALFD
3572 if (sigfd < 0) /*TODO*/
3573# endif
3574 {
3575# ifdef _WIN32
3576 evpipe_init (EV_A);
3577
3578 signal (w->signum, ev_sighandler);
3579# else
3580 struct sigaction sa;
3581
3582 evpipe_init (EV_A);
3583
3584 sa.sa_handler = ev_sighandler;
3585 sigfillset (&sa.sa_mask);
3586 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3587 sigaction (w->signum, &sa, 0);
3588
3589 if (origflags & EVFLAG_NOSIGMASK)
3590 {
3591 sigemptyset (&sa.sa_mask);
3592 sigaddset (&sa.sa_mask, w->signum);
3593 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3594 }
3595#endif
3596 }
3597
3598 EV_FREQUENT_CHECK;
3599}
3600
3601void noinline
3602ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
3603{
3604 clear_pending (EV_A_ (W)w);
3605 if (expect_false (!ev_is_active (w)))
3606 return;
3607
3608 EV_FREQUENT_CHECK;
3609
3610 wlist_del (&signals [w->signum - 1].head, (WL)w);
3611 ev_stop (EV_A_ (W)w);
3612
3613 if (!signals [w->signum - 1].head)
3614 {
3615#if EV_MULTIPLICITY
3616 signals [w->signum - 1].loop = 0; /* unattach from signal */
3617#endif
3618#if EV_USE_SIGNALFD
3619 if (sigfd >= 0)
3620 {
3621 sigset_t ss;
3622
3623 sigemptyset (&ss);
3624 sigaddset (&ss, w->signum);
3625 sigdelset (&sigfd_set, w->signum);
3626
3627 signalfd (sigfd, &sigfd_set, 0);
3628 sigprocmask (SIG_UNBLOCK, &ss, 0);
3629 }
3630 else
3631#endif
3632 signal (w->signum, SIG_DFL);
3633 }
3634
3635 EV_FREQUENT_CHECK;
3636}
3637
3638#endif
3639
3640#if EV_CHILD_ENABLE
3641
1469void 3642void
1470ev_signal_start (EV_P_ struct ev_signal *w) 3643ev_child_start (EV_P_ ev_child *w) EV_THROW
1471{ 3644{
1472#if EV_MULTIPLICITY 3645#if EV_MULTIPLICITY
1473 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 3646 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1474#endif 3647#endif
1475 if (ev_is_active (w)) 3648 if (expect_false (ev_is_active (w)))
1476 return; 3649 return;
1477 3650
1478 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3651 EV_FREQUENT_CHECK;
1479 3652
1480 ev_start (EV_A_ (W)w, 1); 3653 ev_start (EV_A_ (W)w, 1);
1481 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3654 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1482 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1483 3655
1484 if (!((WL)w)->next) 3656 EV_FREQUENT_CHECK;
3657}
3658
3659void
3660ev_child_stop (EV_P_ ev_child *w) EV_THROW
3661{
3662 clear_pending (EV_A_ (W)w);
3663 if (expect_false (!ev_is_active (w)))
3664 return;
3665
3666 EV_FREQUENT_CHECK;
3667
3668 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3669 ev_stop (EV_A_ (W)w);
3670
3671 EV_FREQUENT_CHECK;
3672}
3673
3674#endif
3675
3676#if EV_STAT_ENABLE
3677
3678# ifdef _WIN32
3679# undef lstat
3680# define lstat(a,b) _stati64 (a,b)
3681# endif
3682
3683#define DEF_STAT_INTERVAL 5.0074891
3684#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3685#define MIN_STAT_INTERVAL 0.1074891
3686
3687static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3688
3689#if EV_USE_INOTIFY
3690
3691/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3692# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3693
3694static void noinline
3695infy_add (EV_P_ ev_stat *w)
3696{
3697 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3698
3699 if (w->wd >= 0)
3700 {
3701 struct statfs sfs;
3702
3703 /* now local changes will be tracked by inotify, but remote changes won't */
3704 /* unless the filesystem is known to be local, we therefore still poll */
3705 /* also do poll on <2.6.25, but with normal frequency */
3706
3707 if (!fs_2625)
3708 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3709 else if (!statfs (w->path, &sfs)
3710 && (sfs.f_type == 0x1373 /* devfs */
3711 || sfs.f_type == 0xEF53 /* ext2/3 */
3712 || sfs.f_type == 0x3153464a /* jfs */
3713 || sfs.f_type == 0x52654973 /* reiser3 */
3714 || sfs.f_type == 0x01021994 /* tempfs */
3715 || sfs.f_type == 0x58465342 /* xfs */))
3716 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3717 else
3718 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1485 { 3719 }
1486#if WIN32 3720 else
1487 signal (w->signum, sighandler); 3721 {
3722 /* can't use inotify, continue to stat */
3723 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3724
3725 /* if path is not there, monitor some parent directory for speedup hints */
3726 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3727 /* but an efficiency issue only */
3728 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3729 {
3730 char path [4096];
3731 strcpy (path, w->path);
3732
3733 do
3734 {
3735 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3736 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3737
3738 char *pend = strrchr (path, '/');
3739
3740 if (!pend || pend == path)
3741 break;
3742
3743 *pend = 0;
3744 w->wd = inotify_add_watch (fs_fd, path, mask);
3745 }
3746 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3747 }
3748 }
3749
3750 if (w->wd >= 0)
3751 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3752
3753 /* now re-arm timer, if required */
3754 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3755 ev_timer_again (EV_A_ &w->timer);
3756 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3757}
3758
3759static void noinline
3760infy_del (EV_P_ ev_stat *w)
3761{
3762 int slot;
3763 int wd = w->wd;
3764
3765 if (wd < 0)
3766 return;
3767
3768 w->wd = -2;
3769 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3770 wlist_del (&fs_hash [slot].head, (WL)w);
3771
3772 /* remove this watcher, if others are watching it, they will rearm */
3773 inotify_rm_watch (fs_fd, wd);
3774}
3775
3776static void noinline
3777infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3778{
3779 if (slot < 0)
3780 /* overflow, need to check for all hash slots */
3781 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3782 infy_wd (EV_A_ slot, wd, ev);
3783 else
3784 {
3785 WL w_;
3786
3787 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3788 {
3789 ev_stat *w = (ev_stat *)w_;
3790 w_ = w_->next; /* lets us remove this watcher and all before it */
3791
3792 if (w->wd == wd || wd == -1)
3793 {
3794 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3795 {
3796 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3797 w->wd = -1;
3798 infy_add (EV_A_ w); /* re-add, no matter what */
3799 }
3800
3801 stat_timer_cb (EV_A_ &w->timer, 0);
3802 }
3803 }
3804 }
3805}
3806
3807static void
3808infy_cb (EV_P_ ev_io *w, int revents)
3809{
3810 char buf [EV_INOTIFY_BUFSIZE];
3811 int ofs;
3812 int len = read (fs_fd, buf, sizeof (buf));
3813
3814 for (ofs = 0; ofs < len; )
3815 {
3816 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3817 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3818 ofs += sizeof (struct inotify_event) + ev->len;
3819 }
3820}
3821
3822inline_size void ecb_cold
3823ev_check_2625 (EV_P)
3824{
3825 /* kernels < 2.6.25 are borked
3826 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3827 */
3828 if (ev_linux_version () < 0x020619)
3829 return;
3830
3831 fs_2625 = 1;
3832}
3833
3834inline_size int
3835infy_newfd (void)
3836{
3837#if defined IN_CLOEXEC && defined IN_NONBLOCK
3838 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3839 if (fd >= 0)
3840 return fd;
3841#endif
3842 return inotify_init ();
3843}
3844
3845inline_size void
3846infy_init (EV_P)
3847{
3848 if (fs_fd != -2)
3849 return;
3850
3851 fs_fd = -1;
3852
3853 ev_check_2625 (EV_A);
3854
3855 fs_fd = infy_newfd ();
3856
3857 if (fs_fd >= 0)
3858 {
3859 fd_intern (fs_fd);
3860 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3861 ev_set_priority (&fs_w, EV_MAXPRI);
3862 ev_io_start (EV_A_ &fs_w);
3863 ev_unref (EV_A);
3864 }
3865}
3866
3867inline_size void
3868infy_fork (EV_P)
3869{
3870 int slot;
3871
3872 if (fs_fd < 0)
3873 return;
3874
3875 ev_ref (EV_A);
3876 ev_io_stop (EV_A_ &fs_w);
3877 close (fs_fd);
3878 fs_fd = infy_newfd ();
3879
3880 if (fs_fd >= 0)
3881 {
3882 fd_intern (fs_fd);
3883 ev_io_set (&fs_w, fs_fd, EV_READ);
3884 ev_io_start (EV_A_ &fs_w);
3885 ev_unref (EV_A);
3886 }
3887
3888 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3889 {
3890 WL w_ = fs_hash [slot].head;
3891 fs_hash [slot].head = 0;
3892
3893 while (w_)
3894 {
3895 ev_stat *w = (ev_stat *)w_;
3896 w_ = w_->next; /* lets us add this watcher */
3897
3898 w->wd = -1;
3899
3900 if (fs_fd >= 0)
3901 infy_add (EV_A_ w); /* re-add, no matter what */
3902 else
3903 {
3904 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3905 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3906 ev_timer_again (EV_A_ &w->timer);
3907 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3908 }
3909 }
3910 }
3911}
3912
3913#endif
3914
3915#ifdef _WIN32
3916# define EV_LSTAT(p,b) _stati64 (p, b)
1488#else 3917#else
1489 struct sigaction sa; 3918# define EV_LSTAT(p,b) lstat (p, b)
1490 sa.sa_handler = sighandler;
1491 sigfillset (&sa.sa_mask);
1492 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1493 sigaction (w->signum, &sa, 0);
1494#endif 3919#endif
1495 }
1496}
1497 3920
1498void 3921void
1499ev_signal_stop (EV_P_ struct ev_signal *w) 3922ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
1500{ 3923{
1501 ev_clear_pending (EV_A_ (W)w); 3924 if (lstat (w->path, &w->attr) < 0)
1502 if (!ev_is_active (w)) 3925 w->attr.st_nlink = 0;
3926 else if (!w->attr.st_nlink)
3927 w->attr.st_nlink = 1;
3928}
3929
3930static void noinline
3931stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3932{
3933 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3934
3935 ev_statdata prev = w->attr;
3936 ev_stat_stat (EV_A_ w);
3937
3938 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3939 if (
3940 prev.st_dev != w->attr.st_dev
3941 || prev.st_ino != w->attr.st_ino
3942 || prev.st_mode != w->attr.st_mode
3943 || prev.st_nlink != w->attr.st_nlink
3944 || prev.st_uid != w->attr.st_uid
3945 || prev.st_gid != w->attr.st_gid
3946 || prev.st_rdev != w->attr.st_rdev
3947 || prev.st_size != w->attr.st_size
3948 || prev.st_atime != w->attr.st_atime
3949 || prev.st_mtime != w->attr.st_mtime
3950 || prev.st_ctime != w->attr.st_ctime
3951 ) {
3952 /* we only update w->prev on actual differences */
3953 /* in case we test more often than invoke the callback, */
3954 /* to ensure that prev is always different to attr */
3955 w->prev = prev;
3956
3957 #if EV_USE_INOTIFY
3958 if (fs_fd >= 0)
3959 {
3960 infy_del (EV_A_ w);
3961 infy_add (EV_A_ w);
3962 ev_stat_stat (EV_A_ w); /* avoid race... */
3963 }
3964 #endif
3965
3966 ev_feed_event (EV_A_ w, EV_STAT);
3967 }
3968}
3969
3970void
3971ev_stat_start (EV_P_ ev_stat *w) EV_THROW
3972{
3973 if (expect_false (ev_is_active (w)))
1503 return; 3974 return;
1504 3975
1505 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3976 ev_stat_stat (EV_A_ w);
3977
3978 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3979 w->interval = MIN_STAT_INTERVAL;
3980
3981 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3982 ev_set_priority (&w->timer, ev_priority (w));
3983
3984#if EV_USE_INOTIFY
3985 infy_init (EV_A);
3986
3987 if (fs_fd >= 0)
3988 infy_add (EV_A_ w);
3989 else
3990#endif
3991 {
3992 ev_timer_again (EV_A_ &w->timer);
3993 ev_unref (EV_A);
3994 }
3995
3996 ev_start (EV_A_ (W)w, 1);
3997
3998 EV_FREQUENT_CHECK;
3999}
4000
4001void
4002ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
4003{
4004 clear_pending (EV_A_ (W)w);
4005 if (expect_false (!ev_is_active (w)))
4006 return;
4007
4008 EV_FREQUENT_CHECK;
4009
4010#if EV_USE_INOTIFY
4011 infy_del (EV_A_ w);
4012#endif
4013
4014 if (ev_is_active (&w->timer))
4015 {
4016 ev_ref (EV_A);
4017 ev_timer_stop (EV_A_ &w->timer);
4018 }
4019
1506 ev_stop (EV_A_ (W)w); 4020 ev_stop (EV_A_ (W)w);
1507 4021
1508 if (!signals [w->signum - 1].head) 4022 EV_FREQUENT_CHECK;
1509 signal (w->signum, SIG_DFL);
1510} 4023}
4024#endif
1511 4025
4026#if EV_IDLE_ENABLE
1512void 4027void
1513ev_child_start (EV_P_ struct ev_child *w) 4028ev_idle_start (EV_P_ ev_idle *w) EV_THROW
1514{ 4029{
1515#if EV_MULTIPLICITY
1516 assert (("child watchers are only supported in the default loop", loop == default_loop));
1517#endif
1518 if (ev_is_active (w)) 4030 if (expect_false (ev_is_active (w)))
1519 return; 4031 return;
1520 4032
4033 pri_adjust (EV_A_ (W)w);
4034
4035 EV_FREQUENT_CHECK;
4036
4037 {
4038 int active = ++idlecnt [ABSPRI (w)];
4039
4040 ++idleall;
4041 ev_start (EV_A_ (W)w, active);
4042
4043 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
4044 idles [ABSPRI (w)][active - 1] = w;
4045 }
4046
4047 EV_FREQUENT_CHECK;
4048}
4049
4050void
4051ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
4052{
4053 clear_pending (EV_A_ (W)w);
4054 if (expect_false (!ev_is_active (w)))
4055 return;
4056
4057 EV_FREQUENT_CHECK;
4058
4059 {
4060 int active = ev_active (w);
4061
4062 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4063 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4064
4065 ev_stop (EV_A_ (W)w);
4066 --idleall;
4067 }
4068
4069 EV_FREQUENT_CHECK;
4070}
4071#endif
4072
4073#if EV_PREPARE_ENABLE
4074void
4075ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
4076{
4077 if (expect_false (ev_is_active (w)))
4078 return;
4079
4080 EV_FREQUENT_CHECK;
4081
4082 ev_start (EV_A_ (W)w, ++preparecnt);
4083 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
4084 prepares [preparecnt - 1] = w;
4085
4086 EV_FREQUENT_CHECK;
4087}
4088
4089void
4090ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
4091{
4092 clear_pending (EV_A_ (W)w);
4093 if (expect_false (!ev_is_active (w)))
4094 return;
4095
4096 EV_FREQUENT_CHECK;
4097
4098 {
4099 int active = ev_active (w);
4100
4101 prepares [active - 1] = prepares [--preparecnt];
4102 ev_active (prepares [active - 1]) = active;
4103 }
4104
4105 ev_stop (EV_A_ (W)w);
4106
4107 EV_FREQUENT_CHECK;
4108}
4109#endif
4110
4111#if EV_CHECK_ENABLE
4112void
4113ev_check_start (EV_P_ ev_check *w) EV_THROW
4114{
4115 if (expect_false (ev_is_active (w)))
4116 return;
4117
4118 EV_FREQUENT_CHECK;
4119
4120 ev_start (EV_A_ (W)w, ++checkcnt);
4121 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4122 checks [checkcnt - 1] = w;
4123
4124 EV_FREQUENT_CHECK;
4125}
4126
4127void
4128ev_check_stop (EV_P_ ev_check *w) EV_THROW
4129{
4130 clear_pending (EV_A_ (W)w);
4131 if (expect_false (!ev_is_active (w)))
4132 return;
4133
4134 EV_FREQUENT_CHECK;
4135
4136 {
4137 int active = ev_active (w);
4138
4139 checks [active - 1] = checks [--checkcnt];
4140 ev_active (checks [active - 1]) = active;
4141 }
4142
4143 ev_stop (EV_A_ (W)w);
4144
4145 EV_FREQUENT_CHECK;
4146}
4147#endif
4148
4149#if EV_EMBED_ENABLE
4150void noinline
4151ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
4152{
4153 ev_run (w->other, EVRUN_NOWAIT);
4154}
4155
4156static void
4157embed_io_cb (EV_P_ ev_io *io, int revents)
4158{
4159 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4160
4161 if (ev_cb (w))
4162 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4163 else
4164 ev_run (w->other, EVRUN_NOWAIT);
4165}
4166
4167static void
4168embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4169{
4170 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4171
4172 {
4173 EV_P = w->other;
4174
4175 while (fdchangecnt)
4176 {
4177 fd_reify (EV_A);
4178 ev_run (EV_A_ EVRUN_NOWAIT);
4179 }
4180 }
4181}
4182
4183static void
4184embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4185{
4186 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4187
4188 ev_embed_stop (EV_A_ w);
4189
4190 {
4191 EV_P = w->other;
4192
4193 ev_loop_fork (EV_A);
4194 ev_run (EV_A_ EVRUN_NOWAIT);
4195 }
4196
4197 ev_embed_start (EV_A_ w);
4198}
4199
4200#if 0
4201static void
4202embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4203{
4204 ev_idle_stop (EV_A_ idle);
4205}
4206#endif
4207
4208void
4209ev_embed_start (EV_P_ ev_embed *w) EV_THROW
4210{
4211 if (expect_false (ev_is_active (w)))
4212 return;
4213
4214 {
4215 EV_P = w->other;
4216 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4217 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4218 }
4219
4220 EV_FREQUENT_CHECK;
4221
4222 ev_set_priority (&w->io, ev_priority (w));
4223 ev_io_start (EV_A_ &w->io);
4224
4225 ev_prepare_init (&w->prepare, embed_prepare_cb);
4226 ev_set_priority (&w->prepare, EV_MINPRI);
4227 ev_prepare_start (EV_A_ &w->prepare);
4228
4229 ev_fork_init (&w->fork, embed_fork_cb);
4230 ev_fork_start (EV_A_ &w->fork);
4231
4232 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4233
1521 ev_start (EV_A_ (W)w, 1); 4234 ev_start (EV_A_ (W)w, 1);
1522 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 4235
4236 EV_FREQUENT_CHECK;
1523} 4237}
1524 4238
1525void 4239void
1526ev_child_stop (EV_P_ struct ev_child *w) 4240ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
1527{ 4241{
1528 ev_clear_pending (EV_A_ (W)w); 4242 clear_pending (EV_A_ (W)w);
1529 if (ev_is_active (w)) 4243 if (expect_false (!ev_is_active (w)))
1530 return; 4244 return;
1531 4245
1532 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 4246 EV_FREQUENT_CHECK;
4247
4248 ev_io_stop (EV_A_ &w->io);
4249 ev_prepare_stop (EV_A_ &w->prepare);
4250 ev_fork_stop (EV_A_ &w->fork);
4251
1533 ev_stop (EV_A_ (W)w); 4252 ev_stop (EV_A_ (W)w);
4253
4254 EV_FREQUENT_CHECK;
1534} 4255}
4256#endif
4257
4258#if EV_FORK_ENABLE
4259void
4260ev_fork_start (EV_P_ ev_fork *w) EV_THROW
4261{
4262 if (expect_false (ev_is_active (w)))
4263 return;
4264
4265 EV_FREQUENT_CHECK;
4266
4267 ev_start (EV_A_ (W)w, ++forkcnt);
4268 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4269 forks [forkcnt - 1] = w;
4270
4271 EV_FREQUENT_CHECK;
4272}
4273
4274void
4275ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
4276{
4277 clear_pending (EV_A_ (W)w);
4278 if (expect_false (!ev_is_active (w)))
4279 return;
4280
4281 EV_FREQUENT_CHECK;
4282
4283 {
4284 int active = ev_active (w);
4285
4286 forks [active - 1] = forks [--forkcnt];
4287 ev_active (forks [active - 1]) = active;
4288 }
4289
4290 ev_stop (EV_A_ (W)w);
4291
4292 EV_FREQUENT_CHECK;
4293}
4294#endif
4295
4296#if EV_CLEANUP_ENABLE
4297void
4298ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4299{
4300 if (expect_false (ev_is_active (w)))
4301 return;
4302
4303 EV_FREQUENT_CHECK;
4304
4305 ev_start (EV_A_ (W)w, ++cleanupcnt);
4306 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4307 cleanups [cleanupcnt - 1] = w;
4308
4309 /* cleanup watchers should never keep a refcount on the loop */
4310 ev_unref (EV_A);
4311 EV_FREQUENT_CHECK;
4312}
4313
4314void
4315ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4316{
4317 clear_pending (EV_A_ (W)w);
4318 if (expect_false (!ev_is_active (w)))
4319 return;
4320
4321 EV_FREQUENT_CHECK;
4322 ev_ref (EV_A);
4323
4324 {
4325 int active = ev_active (w);
4326
4327 cleanups [active - 1] = cleanups [--cleanupcnt];
4328 ev_active (cleanups [active - 1]) = active;
4329 }
4330
4331 ev_stop (EV_A_ (W)w);
4332
4333 EV_FREQUENT_CHECK;
4334}
4335#endif
4336
4337#if EV_ASYNC_ENABLE
4338void
4339ev_async_start (EV_P_ ev_async *w) EV_THROW
4340{
4341 if (expect_false (ev_is_active (w)))
4342 return;
4343
4344 w->sent = 0;
4345
4346 evpipe_init (EV_A);
4347
4348 EV_FREQUENT_CHECK;
4349
4350 ev_start (EV_A_ (W)w, ++asynccnt);
4351 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4352 asyncs [asynccnt - 1] = w;
4353
4354 EV_FREQUENT_CHECK;
4355}
4356
4357void
4358ev_async_stop (EV_P_ ev_async *w) EV_THROW
4359{
4360 clear_pending (EV_A_ (W)w);
4361 if (expect_false (!ev_is_active (w)))
4362 return;
4363
4364 EV_FREQUENT_CHECK;
4365
4366 {
4367 int active = ev_active (w);
4368
4369 asyncs [active - 1] = asyncs [--asynccnt];
4370 ev_active (asyncs [active - 1]) = active;
4371 }
4372
4373 ev_stop (EV_A_ (W)w);
4374
4375 EV_FREQUENT_CHECK;
4376}
4377
4378void
4379ev_async_send (EV_P_ ev_async *w) EV_THROW
4380{
4381 w->sent = 1;
4382 evpipe_write (EV_A_ &async_pending);
4383}
4384#endif
1535 4385
1536/*****************************************************************************/ 4386/*****************************************************************************/
1537 4387
1538struct ev_once 4388struct ev_once
1539{ 4389{
1540 struct ev_io io; 4390 ev_io io;
1541 struct ev_timer to; 4391 ev_timer to;
1542 void (*cb)(int revents, void *arg); 4392 void (*cb)(int revents, void *arg);
1543 void *arg; 4393 void *arg;
1544}; 4394};
1545 4395
1546static void 4396static void
1547once_cb (EV_P_ struct ev_once *once, int revents) 4397once_cb (EV_P_ struct ev_once *once, int revents)
1548{ 4398{
1549 void (*cb)(int revents, void *arg) = once->cb; 4399 void (*cb)(int revents, void *arg) = once->cb;
1550 void *arg = once->arg; 4400 void *arg = once->arg;
1551 4401
1552 ev_io_stop (EV_A_ &once->io); 4402 ev_io_stop (EV_A_ &once->io);
1553 ev_timer_stop (EV_A_ &once->to); 4403 ev_timer_stop (EV_A_ &once->to);
1554 ev_free (once); 4404 ev_free (once);
1555 4405
1556 cb (revents, arg); 4406 cb (revents, arg);
1557} 4407}
1558 4408
1559static void 4409static void
1560once_cb_io (EV_P_ struct ev_io *w, int revents) 4410once_cb_io (EV_P_ ev_io *w, int revents)
1561{ 4411{
1562 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4412 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4413
4414 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1563} 4415}
1564 4416
1565static void 4417static void
1566once_cb_to (EV_P_ struct ev_timer *w, int revents) 4418once_cb_to (EV_P_ ev_timer *w, int revents)
1567{ 4419{
1568 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4420 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4421
4422 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1569} 4423}
1570 4424
1571void 4425void
1572ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4426ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
1573{ 4427{
1574 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4428 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1575 4429
1576 if (!once) 4430 if (expect_false (!once))
4431 {
1577 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4432 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1578 else 4433 return;
1579 { 4434 }
4435
1580 once->cb = cb; 4436 once->cb = cb;
1581 once->arg = arg; 4437 once->arg = arg;
1582 4438
1583 ev_init (&once->io, once_cb_io); 4439 ev_init (&once->io, once_cb_io);
1584 if (fd >= 0) 4440 if (fd >= 0)
4441 {
4442 ev_io_set (&once->io, fd, events);
4443 ev_io_start (EV_A_ &once->io);
4444 }
4445
4446 ev_init (&once->to, once_cb_to);
4447 if (timeout >= 0.)
4448 {
4449 ev_timer_set (&once->to, timeout, 0.);
4450 ev_timer_start (EV_A_ &once->to);
4451 }
4452}
4453
4454/*****************************************************************************/
4455
4456#if EV_WALK_ENABLE
4457void ecb_cold
4458ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4459{
4460 int i, j;
4461 ev_watcher_list *wl, *wn;
4462
4463 if (types & (EV_IO | EV_EMBED))
4464 for (i = 0; i < anfdmax; ++i)
4465 for (wl = anfds [i].head; wl; )
1585 { 4466 {
1586 ev_io_set (&once->io, fd, events); 4467 wn = wl->next;
1587 ev_io_start (EV_A_ &once->io); 4468
4469#if EV_EMBED_ENABLE
4470 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4471 {
4472 if (types & EV_EMBED)
4473 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4474 }
4475 else
4476#endif
4477#if EV_USE_INOTIFY
4478 if (ev_cb ((ev_io *)wl) == infy_cb)
4479 ;
4480 else
4481#endif
4482 if ((ev_io *)wl != &pipe_w)
4483 if (types & EV_IO)
4484 cb (EV_A_ EV_IO, wl);
4485
4486 wl = wn;
1588 } 4487 }
1589 4488
1590 ev_init (&once->to, once_cb_to); 4489 if (types & (EV_TIMER | EV_STAT))
1591 if (timeout >= 0.) 4490 for (i = timercnt + HEAP0; i-- > HEAP0; )
4491#if EV_STAT_ENABLE
4492 /*TODO: timer is not always active*/
4493 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1592 { 4494 {
1593 ev_timer_set (&once->to, timeout, 0.); 4495 if (types & EV_STAT)
1594 ev_timer_start (EV_A_ &once->to); 4496 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1595 } 4497 }
1596 } 4498 else
1597} 4499#endif
4500 if (types & EV_TIMER)
4501 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1598 4502
4503#if EV_PERIODIC_ENABLE
4504 if (types & EV_PERIODIC)
4505 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4506 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4507#endif
4508
4509#if EV_IDLE_ENABLE
4510 if (types & EV_IDLE)
4511 for (j = NUMPRI; j--; )
4512 for (i = idlecnt [j]; i--; )
4513 cb (EV_A_ EV_IDLE, idles [j][i]);
4514#endif
4515
4516#if EV_FORK_ENABLE
4517 if (types & EV_FORK)
4518 for (i = forkcnt; i--; )
4519 if (ev_cb (forks [i]) != embed_fork_cb)
4520 cb (EV_A_ EV_FORK, forks [i]);
4521#endif
4522
4523#if EV_ASYNC_ENABLE
4524 if (types & EV_ASYNC)
4525 for (i = asynccnt; i--; )
4526 cb (EV_A_ EV_ASYNC, asyncs [i]);
4527#endif
4528
4529#if EV_PREPARE_ENABLE
4530 if (types & EV_PREPARE)
4531 for (i = preparecnt; i--; )
4532# if EV_EMBED_ENABLE
4533 if (ev_cb (prepares [i]) != embed_prepare_cb)
4534# endif
4535 cb (EV_A_ EV_PREPARE, prepares [i]);
4536#endif
4537
4538#if EV_CHECK_ENABLE
4539 if (types & EV_CHECK)
4540 for (i = checkcnt; i--; )
4541 cb (EV_A_ EV_CHECK, checks [i]);
4542#endif
4543
4544#if EV_SIGNAL_ENABLE
4545 if (types & EV_SIGNAL)
4546 for (i = 0; i < EV_NSIG - 1; ++i)
4547 for (wl = signals [i].head; wl; )
4548 {
4549 wn = wl->next;
4550 cb (EV_A_ EV_SIGNAL, wl);
4551 wl = wn;
4552 }
4553#endif
4554
4555#if EV_CHILD_ENABLE
4556 if (types & EV_CHILD)
4557 for (i = (EV_PID_HASHSIZE); i--; )
4558 for (wl = childs [i]; wl; )
4559 {
4560 wn = wl->next;
4561 cb (EV_A_ EV_CHILD, wl);
4562 wl = wn;
4563 }
4564#endif
4565/* EV_STAT 0x00001000 /* stat data changed */
4566/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4567}
4568#endif
4569
4570#if EV_MULTIPLICITY
4571 #include "ev_wrap.h"
4572#endif
4573

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines