ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.45 by root, Sat Nov 3 09:19:58 2007 UTC vs.
Revision 1.66 by root, Sun Nov 4 23:30:53 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31#if EV_USE_CONFIG_H 31#ifndef EV_STANDALONE
32# include "config.h" 32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
33#endif 55#endif
34 56
35#include <math.h> 57#include <math.h>
36#include <stdlib.h> 58#include <stdlib.h>
37#include <unistd.h> 59#include <unistd.h>
70 92
71#ifndef EV_USE_KQUEUE 93#ifndef EV_USE_KQUEUE
72# define EV_USE_KQUEUE 0 94# define EV_USE_KQUEUE 0
73#endif 95#endif
74 96
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
102# endif
103#endif
104
75#ifndef EV_USE_REALTIME 105#ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 1 106# define EV_USE_REALTIME 1
77#endif 107#endif
78 108
79/**/ 109/**/
113 143
114typedef struct ev_watcher *W; 144typedef struct ev_watcher *W;
115typedef struct ev_watcher_list *WL; 145typedef struct ev_watcher_list *WL;
116typedef struct ev_watcher_time *WT; 146typedef struct ev_watcher_time *WT;
117 147
118static ev_tstamp now_floor, now, diff; /* monotonic clock */ 148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
119ev_tstamp ev_now;
120int ev_method;
121
122static int have_monotonic; /* runtime */
123
124static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */
125static void (*method_modify)(int fd, int oev, int nev);
126static void (*method_poll)(ev_tstamp timeout);
127 149
128/*****************************************************************************/ 150/*****************************************************************************/
129 151
130ev_tstamp 152typedef struct
153{
154 struct ev_watcher_list *head;
155 unsigned char events;
156 unsigned char reify;
157} ANFD;
158
159typedef struct
160{
161 W w;
162 int events;
163} ANPENDING;
164
165#if EV_MULTIPLICITY
166
167struct ev_loop
168{
169# define VAR(name,decl) decl;
170# include "ev_vars.h"
171};
172# undef VAR
173# include "ev_wrap.h"
174
175#else
176
177# define VAR(name,decl) static decl;
178# include "ev_vars.h"
179# undef VAR
180
181#endif
182
183/*****************************************************************************/
184
185inline ev_tstamp
131ev_time (void) 186ev_time (void)
132{ 187{
133#if EV_USE_REALTIME 188#if EV_USE_REALTIME
134 struct timespec ts; 189 struct timespec ts;
135 clock_gettime (CLOCK_REALTIME, &ts); 190 clock_gettime (CLOCK_REALTIME, &ts);
139 gettimeofday (&tv, 0); 194 gettimeofday (&tv, 0);
140 return tv.tv_sec + tv.tv_usec * 1e-6; 195 return tv.tv_sec + tv.tv_usec * 1e-6;
141#endif 196#endif
142} 197}
143 198
144static ev_tstamp 199inline ev_tstamp
145get_clock (void) 200get_clock (void)
146{ 201{
147#if EV_USE_MONOTONIC 202#if EV_USE_MONOTONIC
148 if (expect_true (have_monotonic)) 203 if (expect_true (have_monotonic))
149 { 204 {
152 return ts.tv_sec + ts.tv_nsec * 1e-9; 207 return ts.tv_sec + ts.tv_nsec * 1e-9;
153 } 208 }
154#endif 209#endif
155 210
156 return ev_time (); 211 return ev_time ();
212}
213
214ev_tstamp
215ev_now (EV_P)
216{
217 return rt_now;
157} 218}
158 219
159#define array_roundsize(base,n) ((n) | 4 & ~3) 220#define array_roundsize(base,n) ((n) | 4 & ~3)
160 221
161#define array_needsize(base,cur,cnt,init) \ 222#define array_needsize(base,cur,cnt,init) \
171 base = realloc (base, sizeof (*base) * (newcnt)); \ 232 base = realloc (base, sizeof (*base) * (newcnt)); \
172 init (base + cur, newcnt - cur); \ 233 init (base + cur, newcnt - cur); \
173 cur = newcnt; \ 234 cur = newcnt; \
174 } 235 }
175 236
237#define array_free(stem, idx) \
238 free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
239
176/*****************************************************************************/ 240/*****************************************************************************/
177
178typedef struct
179{
180 struct ev_io *head;
181 unsigned char events;
182 unsigned char reify;
183} ANFD;
184
185static ANFD *anfds;
186static int anfdmax;
187 241
188static void 242static void
189anfds_init (ANFD *base, int count) 243anfds_init (ANFD *base, int count)
190{ 244{
191 while (count--) 245 while (count--)
196 250
197 ++base; 251 ++base;
198 } 252 }
199} 253}
200 254
201typedef struct
202{
203 W w;
204 int events;
205} ANPENDING;
206
207static ANPENDING *pendings [NUMPRI];
208static int pendingmax [NUMPRI], pendingcnt [NUMPRI];
209
210static void 255static void
211event (W w, int events) 256event (EV_P_ W w, int events)
212{ 257{
213 if (w->pending) 258 if (w->pending)
214 { 259 {
215 pendings [ABSPRI (w)][w->pending - 1].events |= events; 260 pendings [ABSPRI (w)][w->pending - 1].events |= events;
216 return; 261 return;
221 pendings [ABSPRI (w)][w->pending - 1].w = w; 266 pendings [ABSPRI (w)][w->pending - 1].w = w;
222 pendings [ABSPRI (w)][w->pending - 1].events = events; 267 pendings [ABSPRI (w)][w->pending - 1].events = events;
223} 268}
224 269
225static void 270static void
226queue_events (W *events, int eventcnt, int type) 271queue_events (EV_P_ W *events, int eventcnt, int type)
227{ 272{
228 int i; 273 int i;
229 274
230 for (i = 0; i < eventcnt; ++i) 275 for (i = 0; i < eventcnt; ++i)
231 event (events [i], type); 276 event (EV_A_ events [i], type);
232} 277}
233 278
234static void 279static void
235fd_event (int fd, int events) 280fd_event (EV_P_ int fd, int events)
236{ 281{
237 ANFD *anfd = anfds + fd; 282 ANFD *anfd = anfds + fd;
238 struct ev_io *w; 283 struct ev_io *w;
239 284
240 for (w = anfd->head; w; w = w->next) 285 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
241 { 286 {
242 int ev = w->events & events; 287 int ev = w->events & events;
243 288
244 if (ev) 289 if (ev)
245 event ((W)w, ev); 290 event (EV_A_ (W)w, ev);
246 } 291 }
247} 292}
248 293
249/*****************************************************************************/ 294/*****************************************************************************/
250 295
251static int *fdchanges;
252static int fdchangemax, fdchangecnt;
253
254static void 296static void
255fd_reify (void) 297fd_reify (EV_P)
256{ 298{
257 int i; 299 int i;
258 300
259 for (i = 0; i < fdchangecnt; ++i) 301 for (i = 0; i < fdchangecnt; ++i)
260 { 302 {
262 ANFD *anfd = anfds + fd; 304 ANFD *anfd = anfds + fd;
263 struct ev_io *w; 305 struct ev_io *w;
264 306
265 int events = 0; 307 int events = 0;
266 308
267 for (w = anfd->head; w; w = w->next) 309 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
268 events |= w->events; 310 events |= w->events;
269 311
270 anfd->reify = 0; 312 anfd->reify = 0;
271 313
272 if (anfd->events != events)
273 {
274 method_modify (fd, anfd->events, events); 314 method_modify (EV_A_ fd, anfd->events, events);
275 anfd->events = events; 315 anfd->events = events;
276 }
277 } 316 }
278 317
279 fdchangecnt = 0; 318 fdchangecnt = 0;
280} 319}
281 320
282static void 321static void
283fd_change (int fd) 322fd_change (EV_P_ int fd)
284{ 323{
285 if (anfds [fd].reify || fdchangecnt < 0) 324 if (anfds [fd].reify || fdchangecnt < 0)
286 return; 325 return;
287 326
288 anfds [fd].reify = 1; 327 anfds [fd].reify = 1;
291 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 330 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
292 fdchanges [fdchangecnt - 1] = fd; 331 fdchanges [fdchangecnt - 1] = fd;
293} 332}
294 333
295static void 334static void
296fd_kill (int fd) 335fd_kill (EV_P_ int fd)
297{ 336{
298 struct ev_io *w; 337 struct ev_io *w;
299 338
300 printf ("killing fd %d\n", fd);//D
301 while ((w = anfds [fd].head)) 339 while ((w = (struct ev_io *)anfds [fd].head))
302 { 340 {
303 ev_io_stop (w); 341 ev_io_stop (EV_A_ w);
304 event ((W)w, EV_ERROR | EV_READ | EV_WRITE); 342 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
305 } 343 }
306} 344}
307 345
308/* called on EBADF to verify fds */ 346/* called on EBADF to verify fds */
309static void 347static void
310fd_ebadf (void) 348fd_ebadf (EV_P)
311{ 349{
312 int fd; 350 int fd;
313 351
314 for (fd = 0; fd < anfdmax; ++fd) 352 for (fd = 0; fd < anfdmax; ++fd)
315 if (anfds [fd].events) 353 if (anfds [fd].events)
316 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 354 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
317 fd_kill (fd); 355 fd_kill (EV_A_ fd);
318} 356}
319 357
320/* called on ENOMEM in select/poll to kill some fds and retry */ 358/* called on ENOMEM in select/poll to kill some fds and retry */
321static void 359static void
322fd_enomem (void) 360fd_enomem (EV_P)
323{ 361{
324 int fd = anfdmax; 362 int fd;
325 363
326 while (fd--) 364 for (fd = anfdmax; fd--; )
327 if (anfds [fd].events) 365 if (anfds [fd].events)
328 { 366 {
329 close (fd); 367 close (fd);
330 fd_kill (fd); 368 fd_kill (EV_A_ fd);
331 return; 369 return;
332 } 370 }
333} 371}
334 372
373/* susually called after fork if method needs to re-arm all fds from scratch */
374static void
375fd_rearm_all (EV_P)
376{
377 int fd;
378
379 /* this should be highly optimised to not do anything but set a flag */
380 for (fd = 0; fd < anfdmax; ++fd)
381 if (anfds [fd].events)
382 {
383 anfds [fd].events = 0;
384 fd_change (EV_A_ fd);
385 }
386}
387
335/*****************************************************************************/ 388/*****************************************************************************/
336 389
337static struct ev_timer **timers;
338static int timermax, timercnt;
339
340static struct ev_periodic **periodics;
341static int periodicmax, periodiccnt;
342
343static void 390static void
344upheap (WT *timers, int k) 391upheap (WT *heap, int k)
345{ 392{
346 WT w = timers [k]; 393 WT w = heap [k];
347 394
348 while (k && timers [k >> 1]->at > w->at) 395 while (k && heap [k >> 1]->at > w->at)
349 { 396 {
350 timers [k] = timers [k >> 1]; 397 heap [k] = heap [k >> 1];
351 timers [k]->active = k + 1; 398 ((W)heap [k])->active = k + 1;
352 k >>= 1; 399 k >>= 1;
353 } 400 }
354 401
355 timers [k] = w; 402 heap [k] = w;
356 timers [k]->active = k + 1; 403 ((W)heap [k])->active = k + 1;
357 404
358} 405}
359 406
360static void 407static void
361downheap (WT *timers, int N, int k) 408downheap (WT *heap, int N, int k)
362{ 409{
363 WT w = timers [k]; 410 WT w = heap [k];
364 411
365 while (k < (N >> 1)) 412 while (k < (N >> 1))
366 { 413 {
367 int j = k << 1; 414 int j = k << 1;
368 415
369 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 416 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
370 ++j; 417 ++j;
371 418
372 if (w->at <= timers [j]->at) 419 if (w->at <= heap [j]->at)
373 break; 420 break;
374 421
375 timers [k] = timers [j]; 422 heap [k] = heap [j];
376 timers [k]->active = k + 1; 423 ((W)heap [k])->active = k + 1;
377 k = j; 424 k = j;
378 } 425 }
379 426
380 timers [k] = w; 427 heap [k] = w;
381 timers [k]->active = k + 1; 428 ((W)heap [k])->active = k + 1;
382} 429}
383 430
384/*****************************************************************************/ 431/*****************************************************************************/
385 432
386typedef struct 433typedef struct
387{ 434{
388 struct ev_signal *head; 435 struct ev_watcher_list *head;
389 sig_atomic_t volatile gotsig; 436 sig_atomic_t volatile gotsig;
390} ANSIG; 437} ANSIG;
391 438
392static ANSIG *signals; 439static ANSIG *signals;
393static int signalmax; 440static int signalmax;
413{ 460{
414 signals [signum - 1].gotsig = 1; 461 signals [signum - 1].gotsig = 1;
415 462
416 if (!gotsig) 463 if (!gotsig)
417 { 464 {
465 int old_errno = errno;
418 gotsig = 1; 466 gotsig = 1;
419 write (sigpipe [1], &signum, 1); 467 write (sigpipe [1], &signum, 1);
468 errno = old_errno;
420 } 469 }
421} 470}
422 471
423static void 472static void
424sigcb (struct ev_io *iow, int revents) 473sigcb (EV_P_ struct ev_io *iow, int revents)
425{ 474{
426 struct ev_signal *w; 475 struct ev_watcher_list *w;
427 int signum; 476 int signum;
428 477
429 read (sigpipe [0], &revents, 1); 478 read (sigpipe [0], &revents, 1);
430 gotsig = 0; 479 gotsig = 0;
431 480
433 if (signals [signum].gotsig) 482 if (signals [signum].gotsig)
434 { 483 {
435 signals [signum].gotsig = 0; 484 signals [signum].gotsig = 0;
436 485
437 for (w = signals [signum].head; w; w = w->next) 486 for (w = signals [signum].head; w; w = w->next)
438 event ((W)w, EV_SIGNAL); 487 event (EV_A_ (W)w, EV_SIGNAL);
439 } 488 }
440} 489}
441 490
442static void 491static void
443siginit (void) 492siginit (EV_P)
444{ 493{
445#ifndef WIN32 494#ifndef WIN32
446 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 495 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
447 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 496 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
448 497
450 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 499 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
451 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 500 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
452#endif 501#endif
453 502
454 ev_io_set (&sigev, sigpipe [0], EV_READ); 503 ev_io_set (&sigev, sigpipe [0], EV_READ);
455 ev_io_start (&sigev); 504 ev_io_start (EV_A_ &sigev);
505 ev_unref (EV_A); /* child watcher should not keep loop alive */
456} 506}
457 507
458/*****************************************************************************/ 508/*****************************************************************************/
459 509
460static struct ev_idle **idles; 510#ifndef WIN32
461static int idlemax, idlecnt;
462
463static struct ev_prepare **prepares;
464static int preparemax, preparecnt;
465
466static struct ev_check **checks;
467static int checkmax, checkcnt;
468
469/*****************************************************************************/
470 511
471static struct ev_child *childs [PID_HASHSIZE]; 512static struct ev_child *childs [PID_HASHSIZE];
472static struct ev_signal childev; 513static struct ev_signal childev;
473 514
474#ifndef WIN32
475
476#ifndef WCONTINUED 515#ifndef WCONTINUED
477# define WCONTINUED 0 516# define WCONTINUED 0
478#endif 517#endif
479 518
480static void 519static void
481childcb (struct ev_signal *sw, int revents) 520child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
482{ 521{
483 struct ev_child *w; 522 struct ev_child *w;
523
524 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
525 if (w->pid == pid || !w->pid)
526 {
527 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
528 w->rpid = pid;
529 w->rstatus = status;
530 event (EV_A_ (W)w, EV_CHILD);
531 }
532}
533
534static void
535childcb (EV_P_ struct ev_signal *sw, int revents)
536{
484 int pid, status; 537 int pid, status;
485 538
486 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 539 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
487 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 540 {
488 if (w->pid == pid || !w->pid) 541 /* make sure we are called again until all childs have been reaped */
489 { 542 event (EV_A_ (W)sw, EV_SIGNAL);
490 w->status = status; 543
491 event ((W)w, EV_CHILD); 544 child_reap (EV_A_ sw, pid, pid, status);
492 } 545 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
546 }
493} 547}
494 548
495#endif 549#endif
496 550
497/*****************************************************************************/ 551/*****************************************************************************/
519ev_version_minor (void) 573ev_version_minor (void)
520{ 574{
521 return EV_VERSION_MINOR; 575 return EV_VERSION_MINOR;
522} 576}
523 577
524/* return true if we are running with elevated privileges and ignore env variables */ 578/* return true if we are running with elevated privileges and should ignore env variables */
525static int 579static int
526enable_secure () 580enable_secure (void)
527{ 581{
582#ifdef WIN32
583 return 0;
584#else
528 return getuid () != geteuid () 585 return getuid () != geteuid ()
529 || getgid () != getegid (); 586 || getgid () != getegid ();
587#endif
530} 588}
531 589
532int ev_init (int methods) 590int
591ev_method (EV_P)
533{ 592{
593 return method;
594}
595
596static void
597loop_init (EV_P_ int methods)
598{
534 if (!ev_method) 599 if (!method)
535 { 600 {
536#if EV_USE_MONOTONIC 601#if EV_USE_MONOTONIC
537 { 602 {
538 struct timespec ts; 603 struct timespec ts;
539 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 604 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
540 have_monotonic = 1; 605 have_monotonic = 1;
541 } 606 }
542#endif 607#endif
543 608
544 ev_now = ev_time (); 609 rt_now = ev_time ();
545 now = get_clock (); 610 mn_now = get_clock ();
546 now_floor = now; 611 now_floor = mn_now;
547 diff = ev_now - now; 612 rtmn_diff = rt_now - mn_now;
548
549 if (pipe (sigpipe))
550 return 0;
551 613
552 if (methods == EVMETHOD_AUTO) 614 if (methods == EVMETHOD_AUTO)
553 if (!enable_secure () && getenv ("LIBEV_METHODS")) 615 if (!enable_secure () && getenv ("LIBEV_METHODS"))
554 methods = atoi (getenv ("LIBEV_METHODS")); 616 methods = atoi (getenv ("LIBEV_METHODS"));
555 else 617 else
556 methods = EVMETHOD_ANY; 618 methods = EVMETHOD_ANY;
557 619
558 ev_method = 0; 620 method = 0;
621#if EV_USE_WIN32
622 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
623#endif
559#if EV_USE_KQUEUE 624#if EV_USE_KQUEUE
560 if (!ev_method && (methods & EVMETHOD_KQUEUE)) kqueue_init (methods); 625 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
561#endif 626#endif
562#if EV_USE_EPOLL 627#if EV_USE_EPOLL
563 if (!ev_method && (methods & EVMETHOD_EPOLL )) epoll_init (methods); 628 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
564#endif 629#endif
565#if EV_USE_POLL 630#if EV_USE_POLL
566 if (!ev_method && (methods & EVMETHOD_POLL )) poll_init (methods); 631 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
567#endif 632#endif
568#if EV_USE_SELECT 633#if EV_USE_SELECT
569 if (!ev_method && (methods & EVMETHOD_SELECT)) select_init (methods); 634 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
570#endif 635#endif
636 }
637}
571 638
639void
640loop_destroy (EV_P)
641{
642 int i;
643
644#if EV_USE_WIN32
645 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
646#endif
647#if EV_USE_KQUEUE
648 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
649#endif
650#if EV_USE_EPOLL
651 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
652#endif
653#if EV_USE_POLL
654 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
655#endif
656#if EV_USE_SELECT
657 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
658#endif
659
660 for (i = NUMPRI; i--; )
661 array_free (pending, [i]);
662
663 array_free (fdchange, );
664 array_free (timer, );
665 array_free (periodic, );
666 array_free (idle, );
667 array_free (prepare, );
668 array_free (check, );
669
670 method = 0;
671 /*TODO*/
672}
673
674void
675loop_fork (EV_P)
676{
677 /*TODO*/
678#if EV_USE_EPOLL
679 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
680#endif
681#if EV_USE_KQUEUE
682 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
683#endif
684}
685
686#if EV_MULTIPLICITY
687struct ev_loop *
688ev_loop_new (int methods)
689{
690 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
691
692 loop_init (EV_A_ methods);
693
694 if (ev_method (EV_A))
695 return loop;
696
697 return 0;
698}
699
700void
701ev_loop_destroy (EV_P)
702{
703 loop_destroy (EV_A);
704 free (loop);
705}
706
707void
708ev_loop_fork (EV_P)
709{
710 loop_fork (EV_A);
711}
712
713#endif
714
715#if EV_MULTIPLICITY
716struct ev_loop default_loop_struct;
717static struct ev_loop *default_loop;
718
719struct ev_loop *
720#else
721static int default_loop;
722
723int
724#endif
725ev_default_loop (int methods)
726{
727 if (sigpipe [0] == sigpipe [1])
728 if (pipe (sigpipe))
729 return 0;
730
731 if (!default_loop)
732 {
733#if EV_MULTIPLICITY
734 struct ev_loop *loop = default_loop = &default_loop_struct;
735#else
736 default_loop = 1;
737#endif
738
739 loop_init (EV_A_ methods);
740
572 if (ev_method) 741 if (ev_method (EV_A))
573 { 742 {
574 ev_watcher_init (&sigev, sigcb); 743 ev_watcher_init (&sigev, sigcb);
744 ev_set_priority (&sigev, EV_MAXPRI);
575 siginit (); 745 siginit (EV_A);
576 746
577#ifndef WIN32 747#ifndef WIN32
578 ev_signal_init (&childev, childcb, SIGCHLD); 748 ev_signal_init (&childev, childcb, SIGCHLD);
749 ev_set_priority (&childev, EV_MAXPRI);
579 ev_signal_start (&childev); 750 ev_signal_start (EV_A_ &childev);
751 ev_unref (EV_A); /* child watcher should not keep loop alive */
580#endif 752#endif
581 } 753 }
754 else
755 default_loop = 0;
582 } 756 }
583 757
584 return ev_method; 758 return default_loop;
585} 759}
586 760
587/*****************************************************************************/
588
589void 761void
590ev_fork_prepare (void) 762ev_default_destroy (void)
591{ 763{
592 /* nop */ 764#if EV_MULTIPLICITY
593} 765 struct ev_loop *loop = default_loop;
594
595void
596ev_fork_parent (void)
597{
598 /* nop */
599}
600
601void
602ev_fork_child (void)
603{
604#if EV_USE_EPOLL
605 if (ev_method == EVMETHOD_EPOLL)
606 epoll_postfork_child ();
607#endif 766#endif
608 767
768 ev_ref (EV_A); /* child watcher */
769 ev_signal_stop (EV_A_ &childev);
770
771 ev_ref (EV_A); /* signal watcher */
609 ev_io_stop (&sigev); 772 ev_io_stop (EV_A_ &sigev);
773
774 close (sigpipe [0]); sigpipe [0] = 0;
775 close (sigpipe [1]); sigpipe [1] = 0;
776
777 loop_destroy (EV_A);
778}
779
780void
781ev_default_fork (void)
782{
783#if EV_MULTIPLICITY
784 struct ev_loop *loop = default_loop;
785#endif
786
787 loop_fork (EV_A);
788
789 ev_io_stop (EV_A_ &sigev);
610 close (sigpipe [0]); 790 close (sigpipe [0]);
611 close (sigpipe [1]); 791 close (sigpipe [1]);
612 pipe (sigpipe); 792 pipe (sigpipe);
793
794 ev_ref (EV_A); /* signal watcher */
613 siginit (); 795 siginit (EV_A);
614} 796}
615 797
616/*****************************************************************************/ 798/*****************************************************************************/
617 799
618static void 800static void
619call_pending (void) 801call_pending (EV_P)
620{ 802{
621 int pri; 803 int pri;
622 804
623 for (pri = NUMPRI; pri--; ) 805 for (pri = NUMPRI; pri--; )
624 while (pendingcnt [pri]) 806 while (pendingcnt [pri])
626 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 808 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
627 809
628 if (p->w) 810 if (p->w)
629 { 811 {
630 p->w->pending = 0; 812 p->w->pending = 0;
631 p->w->cb (p->w, p->events); 813 p->w->cb (EV_A_ p->w, p->events);
632 } 814 }
633 } 815 }
634} 816}
635 817
636static void 818static void
637timers_reify (void) 819timers_reify (EV_P)
638{ 820{
639 while (timercnt && timers [0]->at <= now) 821 while (timercnt && ((WT)timers [0])->at <= mn_now)
640 { 822 {
641 struct ev_timer *w = timers [0]; 823 struct ev_timer *w = timers [0];
824
825 assert (("inactive timer on timer heap detected", ev_is_active (w)));
642 826
643 /* first reschedule or stop timer */ 827 /* first reschedule or stop timer */
644 if (w->repeat) 828 if (w->repeat)
645 { 829 {
646 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 830 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
647 w->at = now + w->repeat; 831 ((WT)w)->at = mn_now + w->repeat;
648 downheap ((WT *)timers, timercnt, 0); 832 downheap ((WT *)timers, timercnt, 0);
649 } 833 }
650 else 834 else
651 ev_timer_stop (w); /* nonrepeating: stop timer */ 835 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
652 836
653 event ((W)w, EV_TIMEOUT); 837 event (EV_A_ (W)w, EV_TIMEOUT);
654 } 838 }
655} 839}
656 840
657static void 841static void
658periodics_reify (void) 842periodics_reify (EV_P)
659{ 843{
660 while (periodiccnt && periodics [0]->at <= ev_now) 844 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
661 { 845 {
662 struct ev_periodic *w = periodics [0]; 846 struct ev_periodic *w = periodics [0];
847
848 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
663 849
664 /* first reschedule or stop timer */ 850 /* first reschedule or stop timer */
665 if (w->interval) 851 if (w->interval)
666 { 852 {
667 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 853 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
668 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now)); 854 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
669 downheap ((WT *)periodics, periodiccnt, 0); 855 downheap ((WT *)periodics, periodiccnt, 0);
670 } 856 }
671 else 857 else
672 ev_periodic_stop (w); /* nonrepeating: stop timer */ 858 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
673 859
674 event ((W)w, EV_PERIODIC); 860 event (EV_A_ (W)w, EV_PERIODIC);
675 } 861 }
676} 862}
677 863
678static void 864static void
679periodics_reschedule (ev_tstamp diff) 865periodics_reschedule (EV_P)
680{ 866{
681 int i; 867 int i;
682 868
683 /* adjust periodics after time jump */ 869 /* adjust periodics after time jump */
684 for (i = 0; i < periodiccnt; ++i) 870 for (i = 0; i < periodiccnt; ++i)
685 { 871 {
686 struct ev_periodic *w = periodics [i]; 872 struct ev_periodic *w = periodics [i];
687 873
688 if (w->interval) 874 if (w->interval)
689 { 875 {
690 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 876 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
691 877
692 if (fabs (diff) >= 1e-4) 878 if (fabs (diff) >= 1e-4)
693 { 879 {
694 ev_periodic_stop (w); 880 ev_periodic_stop (EV_A_ w);
695 ev_periodic_start (w); 881 ev_periodic_start (EV_A_ w);
696 882
697 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 883 i = 0; /* restart loop, inefficient, but time jumps should be rare */
698 } 884 }
699 } 885 }
700 } 886 }
701} 887}
702 888
703static int 889inline int
704time_update_monotonic (void) 890time_update_monotonic (EV_P)
705{ 891{
706 now = get_clock (); 892 mn_now = get_clock ();
707 893
708 if (expect_true (now - now_floor < MIN_TIMEJUMP * .5)) 894 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
709 { 895 {
710 ev_now = now + diff; 896 rt_now = rtmn_diff + mn_now;
711 return 0; 897 return 0;
712 } 898 }
713 else 899 else
714 { 900 {
715 now_floor = now; 901 now_floor = mn_now;
716 ev_now = ev_time (); 902 rt_now = ev_time ();
717 return 1; 903 return 1;
718 } 904 }
719} 905}
720 906
721static void 907static void
722time_update (void) 908time_update (EV_P)
723{ 909{
724 int i; 910 int i;
725 911
726#if EV_USE_MONOTONIC 912#if EV_USE_MONOTONIC
727 if (expect_true (have_monotonic)) 913 if (expect_true (have_monotonic))
728 { 914 {
729 if (time_update_monotonic ()) 915 if (time_update_monotonic (EV_A))
730 { 916 {
731 ev_tstamp odiff = diff; 917 ev_tstamp odiff = rtmn_diff;
732 918
733 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 919 for (i = 4; --i; ) /* loop a few times, before making important decisions */
734 { 920 {
735 diff = ev_now - now; 921 rtmn_diff = rt_now - mn_now;
736 922
737 if (fabs (odiff - diff) < MIN_TIMEJUMP) 923 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
738 return; /* all is well */ 924 return; /* all is well */
739 925
740 ev_now = ev_time (); 926 rt_now = ev_time ();
741 now = get_clock (); 927 mn_now = get_clock ();
742 now_floor = now; 928 now_floor = mn_now;
743 } 929 }
744 930
745 periodics_reschedule (diff - odiff); 931 periodics_reschedule (EV_A);
746 /* no timer adjustment, as the monotonic clock doesn't jump */ 932 /* no timer adjustment, as the monotonic clock doesn't jump */
933 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
747 } 934 }
748 } 935 }
749 else 936 else
750#endif 937#endif
751 { 938 {
752 ev_now = ev_time (); 939 rt_now = ev_time ();
753 940
754 if (expect_false (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 941 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
755 { 942 {
756 periodics_reschedule (ev_now - now); 943 periodics_reschedule (EV_A);
757 944
758 /* adjust timers. this is easy, as the offset is the same for all */ 945 /* adjust timers. this is easy, as the offset is the same for all */
759 for (i = 0; i < timercnt; ++i) 946 for (i = 0; i < timercnt; ++i)
760 timers [i]->at += diff; 947 ((WT)timers [i])->at += rt_now - mn_now;
761 } 948 }
762 949
763 now = ev_now; 950 mn_now = rt_now;
764 } 951 }
765} 952}
766 953
767int ev_loop_done; 954void
955ev_ref (EV_P)
956{
957 ++activecnt;
958}
768 959
960void
961ev_unref (EV_P)
962{
963 --activecnt;
964}
965
966static int loop_done;
967
968void
769void ev_loop (int flags) 969ev_loop (EV_P_ int flags)
770{ 970{
771 double block; 971 double block;
772 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 972 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
773 973
774 do 974 do
775 { 975 {
776 /* queue check watchers (and execute them) */ 976 /* queue check watchers (and execute them) */
777 if (expect_false (preparecnt)) 977 if (expect_false (preparecnt))
778 { 978 {
779 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 979 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
780 call_pending (); 980 call_pending (EV_A);
781 } 981 }
782 982
783 /* update fd-related kernel structures */ 983 /* update fd-related kernel structures */
784 fd_reify (); 984 fd_reify (EV_A);
785 985
786 /* calculate blocking time */ 986 /* calculate blocking time */
787 987
788 /* we only need this for !monotonic clockor timers, but as we basically 988 /* we only need this for !monotonic clockor timers, but as we basically
789 always have timers, we just calculate it always */ 989 always have timers, we just calculate it always */
790#if EV_USE_MONOTONIC 990#if EV_USE_MONOTONIC
791 if (expect_true (have_monotonic)) 991 if (expect_true (have_monotonic))
792 time_update_monotonic (); 992 time_update_monotonic (EV_A);
793 else 993 else
794#endif 994#endif
795 { 995 {
796 ev_now = ev_time (); 996 rt_now = ev_time ();
797 now = ev_now; 997 mn_now = rt_now;
798 } 998 }
799 999
800 if (flags & EVLOOP_NONBLOCK || idlecnt) 1000 if (flags & EVLOOP_NONBLOCK || idlecnt)
801 block = 0.; 1001 block = 0.;
802 else 1002 else
803 { 1003 {
804 block = MAX_BLOCKTIME; 1004 block = MAX_BLOCKTIME;
805 1005
806 if (timercnt) 1006 if (timercnt)
807 { 1007 {
808 ev_tstamp to = timers [0]->at - now + method_fudge; 1008 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
809 if (block > to) block = to; 1009 if (block > to) block = to;
810 } 1010 }
811 1011
812 if (periodiccnt) 1012 if (periodiccnt)
813 { 1013 {
814 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1014 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
815 if (block > to) block = to; 1015 if (block > to) block = to;
816 } 1016 }
817 1017
818 if (block < 0.) block = 0.; 1018 if (block < 0.) block = 0.;
819 } 1019 }
820 1020
821 method_poll (block); 1021 method_poll (EV_A_ block);
822 1022
823 /* update ev_now, do magic */ 1023 /* update rt_now, do magic */
824 time_update (); 1024 time_update (EV_A);
825 1025
826 /* queue pending timers and reschedule them */ 1026 /* queue pending timers and reschedule them */
827 timers_reify (); /* relative timers called last */ 1027 timers_reify (EV_A); /* relative timers called last */
828 periodics_reify (); /* absolute timers called first */ 1028 periodics_reify (EV_A); /* absolute timers called first */
829 1029
830 /* queue idle watchers unless io or timers are pending */ 1030 /* queue idle watchers unless io or timers are pending */
831 if (!pendingcnt) 1031 if (!pendingcnt)
832 queue_events ((W *)idles, idlecnt, EV_IDLE); 1032 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
833 1033
834 /* queue check watchers, to be executed first */ 1034 /* queue check watchers, to be executed first */
835 if (checkcnt) 1035 if (checkcnt)
836 queue_events ((W *)checks, checkcnt, EV_CHECK); 1036 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
837 1037
838 call_pending (); 1038 call_pending (EV_A);
839 } 1039 }
840 while (!ev_loop_done); 1040 while (activecnt && !loop_done);
841 1041
842 if (ev_loop_done != 2) 1042 if (loop_done != 2)
843 ev_loop_done = 0; 1043 loop_done = 0;
1044}
1045
1046void
1047ev_unloop (EV_P_ int how)
1048{
1049 loop_done = how;
844} 1050}
845 1051
846/*****************************************************************************/ 1052/*****************************************************************************/
847 1053
848static void 1054inline void
849wlist_add (WL *head, WL elem) 1055wlist_add (WL *head, WL elem)
850{ 1056{
851 elem->next = *head; 1057 elem->next = *head;
852 *head = elem; 1058 *head = elem;
853} 1059}
854 1060
855static void 1061inline void
856wlist_del (WL *head, WL elem) 1062wlist_del (WL *head, WL elem)
857{ 1063{
858 while (*head) 1064 while (*head)
859 { 1065 {
860 if (*head == elem) 1066 if (*head == elem)
865 1071
866 head = &(*head)->next; 1072 head = &(*head)->next;
867 } 1073 }
868} 1074}
869 1075
870static void 1076inline void
871ev_clear_pending (W w) 1077ev_clear_pending (EV_P_ W w)
872{ 1078{
873 if (w->pending) 1079 if (w->pending)
874 { 1080 {
875 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1081 pendings [ABSPRI (w)][w->pending - 1].w = 0;
876 w->pending = 0; 1082 w->pending = 0;
877 } 1083 }
878} 1084}
879 1085
880static void 1086inline void
881ev_start (W w, int active) 1087ev_start (EV_P_ W w, int active)
882{ 1088{
883 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1089 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
884 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI; 1090 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
885 1091
886 w->active = active; 1092 w->active = active;
1093 ev_ref (EV_A);
887} 1094}
888 1095
889static void 1096inline void
890ev_stop (W w) 1097ev_stop (EV_P_ W w)
891{ 1098{
1099 ev_unref (EV_A);
892 w->active = 0; 1100 w->active = 0;
893} 1101}
894 1102
895/*****************************************************************************/ 1103/*****************************************************************************/
896 1104
897void 1105void
898ev_io_start (struct ev_io *w) 1106ev_io_start (EV_P_ struct ev_io *w)
899{ 1107{
900 int fd = w->fd; 1108 int fd = w->fd;
901 1109
902 if (ev_is_active (w)) 1110 if (ev_is_active (w))
903 return; 1111 return;
904 1112
905 assert (("ev_io_start called with negative fd", fd >= 0)); 1113 assert (("ev_io_start called with negative fd", fd >= 0));
906 1114
907 ev_start ((W)w, 1); 1115 ev_start (EV_A_ (W)w, 1);
908 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1116 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
909 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1117 wlist_add ((WL *)&anfds[fd].head, (WL)w);
910 1118
911 fd_change (fd); 1119 fd_change (EV_A_ fd);
912} 1120}
913 1121
914void 1122void
915ev_io_stop (struct ev_io *w) 1123ev_io_stop (EV_P_ struct ev_io *w)
916{ 1124{
917 ev_clear_pending ((W)w); 1125 ev_clear_pending (EV_A_ (W)w);
918 if (!ev_is_active (w)) 1126 if (!ev_is_active (w))
919 return; 1127 return;
920 1128
921 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1129 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
922 ev_stop ((W)w); 1130 ev_stop (EV_A_ (W)w);
923 1131
924 fd_change (w->fd); 1132 fd_change (EV_A_ w->fd);
925} 1133}
926 1134
927void 1135void
928ev_timer_start (struct ev_timer *w) 1136ev_timer_start (EV_P_ struct ev_timer *w)
929{ 1137{
930 if (ev_is_active (w)) 1138 if (ev_is_active (w))
931 return; 1139 return;
932 1140
933 w->at += now; 1141 ((WT)w)->at += mn_now;
934 1142
935 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1143 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
936 1144
937 ev_start ((W)w, ++timercnt); 1145 ev_start (EV_A_ (W)w, ++timercnt);
938 array_needsize (timers, timermax, timercnt, ); 1146 array_needsize (timers, timermax, timercnt, );
939 timers [timercnt - 1] = w; 1147 timers [timercnt - 1] = w;
940 upheap ((WT *)timers, timercnt - 1); 1148 upheap ((WT *)timers, timercnt - 1);
941}
942 1149
1150 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1151}
1152
943void 1153void
944ev_timer_stop (struct ev_timer *w) 1154ev_timer_stop (EV_P_ struct ev_timer *w)
945{ 1155{
946 ev_clear_pending ((W)w); 1156 ev_clear_pending (EV_A_ (W)w);
947 if (!ev_is_active (w)) 1157 if (!ev_is_active (w))
948 return; 1158 return;
949 1159
1160 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1161
950 if (w->active < timercnt--) 1162 if (((W)w)->active < timercnt--)
951 { 1163 {
952 timers [w->active - 1] = timers [timercnt]; 1164 timers [((W)w)->active - 1] = timers [timercnt];
953 downheap ((WT *)timers, timercnt, w->active - 1); 1165 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
954 } 1166 }
955 1167
956 w->at = w->repeat; 1168 ((WT)w)->at = w->repeat;
957 1169
958 ev_stop ((W)w); 1170 ev_stop (EV_A_ (W)w);
959} 1171}
960 1172
961void 1173void
962ev_timer_again (struct ev_timer *w) 1174ev_timer_again (EV_P_ struct ev_timer *w)
963{ 1175{
964 if (ev_is_active (w)) 1176 if (ev_is_active (w))
965 { 1177 {
966 if (w->repeat) 1178 if (w->repeat)
967 { 1179 {
968 w->at = now + w->repeat; 1180 ((WT)w)->at = mn_now + w->repeat;
969 downheap ((WT *)timers, timercnt, w->active - 1); 1181 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
970 } 1182 }
971 else 1183 else
972 ev_timer_stop (w); 1184 ev_timer_stop (EV_A_ w);
973 } 1185 }
974 else if (w->repeat) 1186 else if (w->repeat)
975 ev_timer_start (w); 1187 ev_timer_start (EV_A_ w);
976} 1188}
977 1189
978void 1190void
979ev_periodic_start (struct ev_periodic *w) 1191ev_periodic_start (EV_P_ struct ev_periodic *w)
980{ 1192{
981 if (ev_is_active (w)) 1193 if (ev_is_active (w))
982 return; 1194 return;
983 1195
984 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1196 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
985 1197
986 /* this formula differs from the one in periodic_reify because we do not always round up */ 1198 /* this formula differs from the one in periodic_reify because we do not always round up */
987 if (w->interval) 1199 if (w->interval)
988 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1200 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
989 1201
990 ev_start ((W)w, ++periodiccnt); 1202 ev_start (EV_A_ (W)w, ++periodiccnt);
991 array_needsize (periodics, periodicmax, periodiccnt, ); 1203 array_needsize (periodics, periodicmax, periodiccnt, );
992 periodics [periodiccnt - 1] = w; 1204 periodics [periodiccnt - 1] = w;
993 upheap ((WT *)periodics, periodiccnt - 1); 1205 upheap ((WT *)periodics, periodiccnt - 1);
994}
995 1206
1207 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1208}
1209
996void 1210void
997ev_periodic_stop (struct ev_periodic *w) 1211ev_periodic_stop (EV_P_ struct ev_periodic *w)
998{ 1212{
999 ev_clear_pending ((W)w); 1213 ev_clear_pending (EV_A_ (W)w);
1000 if (!ev_is_active (w)) 1214 if (!ev_is_active (w))
1001 return; 1215 return;
1002 1216
1217 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1218
1003 if (w->active < periodiccnt--) 1219 if (((W)w)->active < periodiccnt--)
1004 { 1220 {
1005 periodics [w->active - 1] = periodics [periodiccnt]; 1221 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1006 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1222 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1007 } 1223 }
1008 1224
1009 ev_stop ((W)w); 1225 ev_stop (EV_A_ (W)w);
1010} 1226}
1011 1227
1012void 1228void
1013ev_signal_start (struct ev_signal *w) 1229ev_idle_start (EV_P_ struct ev_idle *w)
1014{ 1230{
1015 if (ev_is_active (w)) 1231 if (ev_is_active (w))
1016 return; 1232 return;
1017 1233
1234 ev_start (EV_A_ (W)w, ++idlecnt);
1235 array_needsize (idles, idlemax, idlecnt, );
1236 idles [idlecnt - 1] = w;
1237}
1238
1239void
1240ev_idle_stop (EV_P_ struct ev_idle *w)
1241{
1242 ev_clear_pending (EV_A_ (W)w);
1243 if (ev_is_active (w))
1244 return;
1245
1246 idles [((W)w)->active - 1] = idles [--idlecnt];
1247 ev_stop (EV_A_ (W)w);
1248}
1249
1250void
1251ev_prepare_start (EV_P_ struct ev_prepare *w)
1252{
1253 if (ev_is_active (w))
1254 return;
1255
1256 ev_start (EV_A_ (W)w, ++preparecnt);
1257 array_needsize (prepares, preparemax, preparecnt, );
1258 prepares [preparecnt - 1] = w;
1259}
1260
1261void
1262ev_prepare_stop (EV_P_ struct ev_prepare *w)
1263{
1264 ev_clear_pending (EV_A_ (W)w);
1265 if (ev_is_active (w))
1266 return;
1267
1268 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1269 ev_stop (EV_A_ (W)w);
1270}
1271
1272void
1273ev_check_start (EV_P_ struct ev_check *w)
1274{
1275 if (ev_is_active (w))
1276 return;
1277
1278 ev_start (EV_A_ (W)w, ++checkcnt);
1279 array_needsize (checks, checkmax, checkcnt, );
1280 checks [checkcnt - 1] = w;
1281}
1282
1283void
1284ev_check_stop (EV_P_ struct ev_check *w)
1285{
1286 ev_clear_pending (EV_A_ (W)w);
1287 if (ev_is_active (w))
1288 return;
1289
1290 checks [((W)w)->active - 1] = checks [--checkcnt];
1291 ev_stop (EV_A_ (W)w);
1292}
1293
1294#ifndef SA_RESTART
1295# define SA_RESTART 0
1296#endif
1297
1298void
1299ev_signal_start (EV_P_ struct ev_signal *w)
1300{
1301#if EV_MULTIPLICITY
1302 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1303#endif
1304 if (ev_is_active (w))
1305 return;
1306
1018 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1307 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1019 1308
1020 ev_start ((W)w, 1); 1309 ev_start (EV_A_ (W)w, 1);
1021 array_needsize (signals, signalmax, w->signum, signals_init); 1310 array_needsize (signals, signalmax, w->signum, signals_init);
1022 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1311 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1023 1312
1024 if (!w->next) 1313 if (!((WL)w)->next)
1025 { 1314 {
1026 struct sigaction sa; 1315 struct sigaction sa;
1027 sa.sa_handler = sighandler; 1316 sa.sa_handler = sighandler;
1028 sigfillset (&sa.sa_mask); 1317 sigfillset (&sa.sa_mask);
1029 sa.sa_flags = 0; 1318 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1030 sigaction (w->signum, &sa, 0); 1319 sigaction (w->signum, &sa, 0);
1031 } 1320 }
1032} 1321}
1033 1322
1034void 1323void
1035ev_signal_stop (struct ev_signal *w) 1324ev_signal_stop (EV_P_ struct ev_signal *w)
1036{ 1325{
1037 ev_clear_pending ((W)w); 1326 ev_clear_pending (EV_A_ (W)w);
1038 if (!ev_is_active (w)) 1327 if (!ev_is_active (w))
1039 return; 1328 return;
1040 1329
1041 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1330 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1042 ev_stop ((W)w); 1331 ev_stop (EV_A_ (W)w);
1043 1332
1044 if (!signals [w->signum - 1].head) 1333 if (!signals [w->signum - 1].head)
1045 signal (w->signum, SIG_DFL); 1334 signal (w->signum, SIG_DFL);
1046} 1335}
1047 1336
1048void 1337void
1049ev_idle_start (struct ev_idle *w) 1338ev_child_start (EV_P_ struct ev_child *w)
1050{ 1339{
1340#if EV_MULTIPLICITY
1341 assert (("child watchers are only supported in the default loop", loop == default_loop));
1342#endif
1051 if (ev_is_active (w)) 1343 if (ev_is_active (w))
1052 return; 1344 return;
1053 1345
1054 ev_start ((W)w, ++idlecnt); 1346 ev_start (EV_A_ (W)w, 1);
1055 array_needsize (idles, idlemax, idlecnt, ); 1347 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1056 idles [idlecnt - 1] = w;
1057} 1348}
1058 1349
1059void 1350void
1060ev_idle_stop (struct ev_idle *w) 1351ev_child_stop (EV_P_ struct ev_child *w)
1061{ 1352{
1062 ev_clear_pending ((W)w); 1353 ev_clear_pending (EV_A_ (W)w);
1063 if (ev_is_active (w)) 1354 if (ev_is_active (w))
1064 return; 1355 return;
1065 1356
1066 idles [w->active - 1] = idles [--idlecnt];
1067 ev_stop ((W)w);
1068}
1069
1070void
1071ev_prepare_start (struct ev_prepare *w)
1072{
1073 if (ev_is_active (w))
1074 return;
1075
1076 ev_start ((W)w, ++preparecnt);
1077 array_needsize (prepares, preparemax, preparecnt, );
1078 prepares [preparecnt - 1] = w;
1079}
1080
1081void
1082ev_prepare_stop (struct ev_prepare *w)
1083{
1084 ev_clear_pending ((W)w);
1085 if (ev_is_active (w))
1086 return;
1087
1088 prepares [w->active - 1] = prepares [--preparecnt];
1089 ev_stop ((W)w);
1090}
1091
1092void
1093ev_check_start (struct ev_check *w)
1094{
1095 if (ev_is_active (w))
1096 return;
1097
1098 ev_start ((W)w, ++checkcnt);
1099 array_needsize (checks, checkmax, checkcnt, );
1100 checks [checkcnt - 1] = w;
1101}
1102
1103void
1104ev_check_stop (struct ev_check *w)
1105{
1106 ev_clear_pending ((W)w);
1107 if (ev_is_active (w))
1108 return;
1109
1110 checks [w->active - 1] = checks [--checkcnt];
1111 ev_stop ((W)w);
1112}
1113
1114void
1115ev_child_start (struct ev_child *w)
1116{
1117 if (ev_is_active (w))
1118 return;
1119
1120 ev_start ((W)w, 1);
1121 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1122}
1123
1124void
1125ev_child_stop (struct ev_child *w)
1126{
1127 ev_clear_pending ((W)w);
1128 if (ev_is_active (w))
1129 return;
1130
1131 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1357 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1132 ev_stop ((W)w); 1358 ev_stop (EV_A_ (W)w);
1133} 1359}
1134 1360
1135/*****************************************************************************/ 1361/*****************************************************************************/
1136 1362
1137struct ev_once 1363struct ev_once
1141 void (*cb)(int revents, void *arg); 1367 void (*cb)(int revents, void *arg);
1142 void *arg; 1368 void *arg;
1143}; 1369};
1144 1370
1145static void 1371static void
1146once_cb (struct ev_once *once, int revents) 1372once_cb (EV_P_ struct ev_once *once, int revents)
1147{ 1373{
1148 void (*cb)(int revents, void *arg) = once->cb; 1374 void (*cb)(int revents, void *arg) = once->cb;
1149 void *arg = once->arg; 1375 void *arg = once->arg;
1150 1376
1151 ev_io_stop (&once->io); 1377 ev_io_stop (EV_A_ &once->io);
1152 ev_timer_stop (&once->to); 1378 ev_timer_stop (EV_A_ &once->to);
1153 free (once); 1379 free (once);
1154 1380
1155 cb (revents, arg); 1381 cb (revents, arg);
1156} 1382}
1157 1383
1158static void 1384static void
1159once_cb_io (struct ev_io *w, int revents) 1385once_cb_io (EV_P_ struct ev_io *w, int revents)
1160{ 1386{
1161 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1387 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1162} 1388}
1163 1389
1164static void 1390static void
1165once_cb_to (struct ev_timer *w, int revents) 1391once_cb_to (EV_P_ struct ev_timer *w, int revents)
1166{ 1392{
1167 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1393 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1168} 1394}
1169 1395
1170void 1396void
1171ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1397ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1172{ 1398{
1173 struct ev_once *once = malloc (sizeof (struct ev_once)); 1399 struct ev_once *once = malloc (sizeof (struct ev_once));
1174 1400
1175 if (!once) 1401 if (!once)
1176 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1402 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1181 1407
1182 ev_watcher_init (&once->io, once_cb_io); 1408 ev_watcher_init (&once->io, once_cb_io);
1183 if (fd >= 0) 1409 if (fd >= 0)
1184 { 1410 {
1185 ev_io_set (&once->io, fd, events); 1411 ev_io_set (&once->io, fd, events);
1186 ev_io_start (&once->io); 1412 ev_io_start (EV_A_ &once->io);
1187 } 1413 }
1188 1414
1189 ev_watcher_init (&once->to, once_cb_to); 1415 ev_watcher_init (&once->to, once_cb_to);
1190 if (timeout >= 0.) 1416 if (timeout >= 0.)
1191 { 1417 {
1192 ev_timer_set (&once->to, timeout, 0.); 1418 ev_timer_set (&once->to, timeout, 0.);
1193 ev_timer_start (&once->to); 1419 ev_timer_start (EV_A_ &once->to);
1194 } 1420 }
1195 } 1421 }
1196} 1422}
1197 1423
1198/*****************************************************************************/
1199
1200#if 0
1201
1202struct ev_io wio;
1203
1204static void
1205sin_cb (struct ev_io *w, int revents)
1206{
1207 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1208}
1209
1210static void
1211ocb (struct ev_timer *w, int revents)
1212{
1213 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1214 ev_timer_stop (w);
1215 ev_timer_start (w);
1216}
1217
1218static void
1219scb (struct ev_signal *w, int revents)
1220{
1221 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1222 ev_io_stop (&wio);
1223 ev_io_start (&wio);
1224}
1225
1226static void
1227gcb (struct ev_signal *w, int revents)
1228{
1229 fprintf (stderr, "generic %x\n", revents);
1230
1231}
1232
1233int main (void)
1234{
1235 ev_init (0);
1236
1237 ev_io_init (&wio, sin_cb, 0, EV_READ);
1238 ev_io_start (&wio);
1239
1240 struct ev_timer t[10000];
1241
1242#if 0
1243 int i;
1244 for (i = 0; i < 10000; ++i)
1245 {
1246 struct ev_timer *w = t + i;
1247 ev_watcher_init (w, ocb, i);
1248 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1249 ev_timer_start (w);
1250 if (drand48 () < 0.5)
1251 ev_timer_stop (w);
1252 }
1253#endif
1254
1255 struct ev_timer t1;
1256 ev_timer_init (&t1, ocb, 5, 10);
1257 ev_timer_start (&t1);
1258
1259 struct ev_signal sig;
1260 ev_signal_init (&sig, scb, SIGQUIT);
1261 ev_signal_start (&sig);
1262
1263 struct ev_check cw;
1264 ev_check_init (&cw, gcb);
1265 ev_check_start (&cw);
1266
1267 struct ev_idle iw;
1268 ev_idle_init (&iw, gcb);
1269 ev_idle_start (&iw);
1270
1271 ev_loop (0);
1272
1273 return 0;
1274}
1275
1276#endif
1277
1278
1279
1280

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines