ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.45 by root, Sat Nov 3 09:19:58 2007 UTC vs.
Revision 1.93 by root, Sun Nov 11 01:07:35 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31#if EV_USE_CONFIG_H 31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE
32# include "config.h" 37# include "config.h"
38
39# if HAVE_CLOCK_GETTIME
40# define EV_USE_MONOTONIC 1
41# define EV_USE_REALTIME 1
42# endif
43
44# if HAVE_SELECT && HAVE_SYS_SELECT_H
45# define EV_USE_SELECT 1
46# endif
47
48# if HAVE_POLL && HAVE_POLL_H
49# define EV_USE_POLL 1
50# endif
51
52# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
53# define EV_USE_EPOLL 1
54# endif
55
56# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
57# define EV_USE_KQUEUE 1
58# endif
59
33#endif 60#endif
34 61
35#include <math.h> 62#include <math.h>
36#include <stdlib.h> 63#include <stdlib.h>
37#include <unistd.h>
38#include <fcntl.h> 64#include <fcntl.h>
39#include <signal.h>
40#include <stddef.h> 65#include <stddef.h>
41 66
42#include <stdio.h> 67#include <stdio.h>
43 68
44#include <assert.h> 69#include <assert.h>
45#include <errno.h> 70#include <errno.h>
46#include <sys/types.h> 71#include <sys/types.h>
72#include <time.h>
73
74#include <signal.h>
75
47#ifndef WIN32 76#ifndef WIN32
77# include <unistd.h>
78# include <sys/time.h>
48# include <sys/wait.h> 79# include <sys/wait.h>
49#endif 80#endif
50#include <sys/time.h>
51#include <time.h>
52
53/**/ 81/**/
54 82
55#ifndef EV_USE_MONOTONIC 83#ifndef EV_USE_MONOTONIC
56# define EV_USE_MONOTONIC 1 84# define EV_USE_MONOTONIC 1
57#endif 85#endif
68# define EV_USE_EPOLL 0 96# define EV_USE_EPOLL 0
69#endif 97#endif
70 98
71#ifndef EV_USE_KQUEUE 99#ifndef EV_USE_KQUEUE
72# define EV_USE_KQUEUE 0 100# define EV_USE_KQUEUE 0
101#endif
102
103#ifndef EV_USE_WIN32
104# ifdef WIN32
105# define EV_USE_WIN32 0 /* it does not exist, use select */
106# undef EV_USE_SELECT
107# define EV_USE_SELECT 1
108# else
109# define EV_USE_WIN32 0
110# endif
73#endif 111#endif
74 112
75#ifndef EV_USE_REALTIME 113#ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 1 114# define EV_USE_REALTIME 1
77#endif 115#endif
93#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 131#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
94#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 132#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
95#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 133#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
96/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 134/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
97 135
136#ifdef EV_H
137# include EV_H
138#else
98#include "ev.h" 139# include "ev.h"
140#endif
99 141
100#if __GNUC__ >= 3 142#if __GNUC__ >= 3
101# define expect(expr,value) __builtin_expect ((expr),(value)) 143# define expect(expr,value) __builtin_expect ((expr),(value))
102# define inline inline 144# define inline inline
103#else 145#else
113 155
114typedef struct ev_watcher *W; 156typedef struct ev_watcher *W;
115typedef struct ev_watcher_list *WL; 157typedef struct ev_watcher_list *WL;
116typedef struct ev_watcher_time *WT; 158typedef struct ev_watcher_time *WT;
117 159
118static ev_tstamp now_floor, now, diff; /* monotonic clock */ 160static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
161
162#include "ev_win32.c"
163
164/*****************************************************************************/
165
166static void (*syserr_cb)(const char *msg);
167
168void ev_set_syserr_cb (void (*cb)(const char *msg))
169{
170 syserr_cb = cb;
171}
172
173static void
174syserr (const char *msg)
175{
176 if (!msg)
177 msg = "(libev) system error";
178
179 if (syserr_cb)
180 syserr_cb (msg);
181 else
182 {
183 perror (msg);
184 abort ();
185 }
186}
187
188static void *(*alloc)(void *ptr, long size);
189
190void ev_set_allocator (void *(*cb)(void *ptr, long size))
191{
192 alloc = cb;
193}
194
195static void *
196ev_realloc (void *ptr, long size)
197{
198 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
199
200 if (!ptr && size)
201 {
202 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
203 abort ();
204 }
205
206 return ptr;
207}
208
209#define ev_malloc(size) ev_realloc (0, (size))
210#define ev_free(ptr) ev_realloc ((ptr), 0)
211
212/*****************************************************************************/
213
214typedef struct
215{
216 WL head;
217 unsigned char events;
218 unsigned char reify;
219} ANFD;
220
221typedef struct
222{
223 W w;
224 int events;
225} ANPENDING;
226
227#if EV_MULTIPLICITY
228
229 struct ev_loop
230 {
231 ev_tstamp ev_rt_now;
232 #define VAR(name,decl) decl;
233 #include "ev_vars.h"
234 #undef VAR
235 };
236 #include "ev_wrap.h"
237
238 struct ev_loop default_loop_struct;
239 static struct ev_loop *default_loop;
240
241#else
242
119ev_tstamp ev_now; 243 ev_tstamp ev_rt_now;
120int ev_method; 244 #define VAR(name,decl) static decl;
245 #include "ev_vars.h"
246 #undef VAR
121 247
122static int have_monotonic; /* runtime */ 248 static int default_loop;
123 249
124static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 250#endif
125static void (*method_modify)(int fd, int oev, int nev);
126static void (*method_poll)(ev_tstamp timeout);
127 251
128/*****************************************************************************/ 252/*****************************************************************************/
129 253
130ev_tstamp 254ev_tstamp
131ev_time (void) 255ev_time (void)
139 gettimeofday (&tv, 0); 263 gettimeofday (&tv, 0);
140 return tv.tv_sec + tv.tv_usec * 1e-6; 264 return tv.tv_sec + tv.tv_usec * 1e-6;
141#endif 265#endif
142} 266}
143 267
144static ev_tstamp 268inline ev_tstamp
145get_clock (void) 269get_clock (void)
146{ 270{
147#if EV_USE_MONOTONIC 271#if EV_USE_MONOTONIC
148 if (expect_true (have_monotonic)) 272 if (expect_true (have_monotonic))
149 { 273 {
154#endif 278#endif
155 279
156 return ev_time (); 280 return ev_time ();
157} 281}
158 282
283#if EV_MULTIPLICITY
284ev_tstamp
285ev_now (EV_P)
286{
287 return ev_rt_now;
288}
289#endif
290
159#define array_roundsize(base,n) ((n) | 4 & ~3) 291#define array_roundsize(type,n) ((n) | 4 & ~3)
160 292
161#define array_needsize(base,cur,cnt,init) \ 293#define array_needsize(type,base,cur,cnt,init) \
162 if (expect_false ((cnt) > cur)) \ 294 if (expect_false ((cnt) > cur)) \
163 { \ 295 { \
164 int newcnt = cur; \ 296 int newcnt = cur; \
165 do \ 297 do \
166 { \ 298 { \
167 newcnt = array_roundsize (base, newcnt << 1); \ 299 newcnt = array_roundsize (type, newcnt << 1); \
168 } \ 300 } \
169 while ((cnt) > newcnt); \ 301 while ((cnt) > newcnt); \
170 \ 302 \
171 base = realloc (base, sizeof (*base) * (newcnt)); \ 303 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
172 init (base + cur, newcnt - cur); \ 304 init (base + cur, newcnt - cur); \
173 cur = newcnt; \ 305 cur = newcnt; \
174 } 306 }
307
308#define array_slim(type,stem) \
309 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
310 { \
311 stem ## max = array_roundsize (stem ## cnt >> 1); \
312 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
313 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
314 }
315
316/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
317/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
318#define array_free_microshit(stem) \
319 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
320
321#define array_free(stem, idx) \
322 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
175 323
176/*****************************************************************************/ 324/*****************************************************************************/
177
178typedef struct
179{
180 struct ev_io *head;
181 unsigned char events;
182 unsigned char reify;
183} ANFD;
184
185static ANFD *anfds;
186static int anfdmax;
187 325
188static void 326static void
189anfds_init (ANFD *base, int count) 327anfds_init (ANFD *base, int count)
190{ 328{
191 while (count--) 329 while (count--)
196 334
197 ++base; 335 ++base;
198 } 336 }
199} 337}
200 338
201typedef struct 339void
340ev_feed_event (EV_P_ void *w, int revents)
202{ 341{
203 W w; 342 W w_ = (W)w;
204 int events;
205} ANPENDING;
206 343
207static ANPENDING *pendings [NUMPRI];
208static int pendingmax [NUMPRI], pendingcnt [NUMPRI];
209
210static void
211event (W w, int events)
212{
213 if (w->pending) 344 if (w_->pending)
214 { 345 {
215 pendings [ABSPRI (w)][w->pending - 1].events |= events; 346 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
216 return; 347 return;
217 } 348 }
218 349
219 w->pending = ++pendingcnt [ABSPRI (w)]; 350 w_->pending = ++pendingcnt [ABSPRI (w_)];
220 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 351 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
221 pendings [ABSPRI (w)][w->pending - 1].w = w; 352 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
222 pendings [ABSPRI (w)][w->pending - 1].events = events; 353 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
223} 354}
224 355
225static void 356static void
226queue_events (W *events, int eventcnt, int type) 357queue_events (EV_P_ W *events, int eventcnt, int type)
227{ 358{
228 int i; 359 int i;
229 360
230 for (i = 0; i < eventcnt; ++i) 361 for (i = 0; i < eventcnt; ++i)
231 event (events [i], type); 362 ev_feed_event (EV_A_ events [i], type);
232} 363}
233 364
234static void 365inline void
235fd_event (int fd, int events) 366fd_event (EV_P_ int fd, int revents)
236{ 367{
237 ANFD *anfd = anfds + fd; 368 ANFD *anfd = anfds + fd;
238 struct ev_io *w; 369 struct ev_io *w;
239 370
240 for (w = anfd->head; w; w = w->next) 371 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
241 { 372 {
242 int ev = w->events & events; 373 int ev = w->events & revents;
243 374
244 if (ev) 375 if (ev)
245 event ((W)w, ev); 376 ev_feed_event (EV_A_ (W)w, ev);
246 } 377 }
378}
379
380void
381ev_feed_fd_event (EV_P_ int fd, int revents)
382{
383 fd_event (EV_A_ fd, revents);
247} 384}
248 385
249/*****************************************************************************/ 386/*****************************************************************************/
250 387
251static int *fdchanges;
252static int fdchangemax, fdchangecnt;
253
254static void 388static void
255fd_reify (void) 389fd_reify (EV_P)
256{ 390{
257 int i; 391 int i;
258 392
259 for (i = 0; i < fdchangecnt; ++i) 393 for (i = 0; i < fdchangecnt; ++i)
260 { 394 {
262 ANFD *anfd = anfds + fd; 396 ANFD *anfd = anfds + fd;
263 struct ev_io *w; 397 struct ev_io *w;
264 398
265 int events = 0; 399 int events = 0;
266 400
267 for (w = anfd->head; w; w = w->next) 401 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
268 events |= w->events; 402 events |= w->events;
269 403
270 anfd->reify = 0; 404 anfd->reify = 0;
271 405
272 if (anfd->events != events)
273 {
274 method_modify (fd, anfd->events, events); 406 method_modify (EV_A_ fd, anfd->events, events);
275 anfd->events = events; 407 anfd->events = events;
276 }
277 } 408 }
278 409
279 fdchangecnt = 0; 410 fdchangecnt = 0;
280} 411}
281 412
282static void 413static void
283fd_change (int fd) 414fd_change (EV_P_ int fd)
284{ 415{
285 if (anfds [fd].reify || fdchangecnt < 0) 416 if (anfds [fd].reify)
286 return; 417 return;
287 418
288 anfds [fd].reify = 1; 419 anfds [fd].reify = 1;
289 420
290 ++fdchangecnt; 421 ++fdchangecnt;
291 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 422 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
292 fdchanges [fdchangecnt - 1] = fd; 423 fdchanges [fdchangecnt - 1] = fd;
293} 424}
294 425
295static void 426static void
296fd_kill (int fd) 427fd_kill (EV_P_ int fd)
297{ 428{
298 struct ev_io *w; 429 struct ev_io *w;
299 430
300 printf ("killing fd %d\n", fd);//D
301 while ((w = anfds [fd].head)) 431 while ((w = (struct ev_io *)anfds [fd].head))
302 { 432 {
303 ev_io_stop (w); 433 ev_io_stop (EV_A_ w);
304 event ((W)w, EV_ERROR | EV_READ | EV_WRITE); 434 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
305 } 435 }
436}
437
438static int
439fd_valid (int fd)
440{
441#ifdef WIN32
442 return !!win32_get_osfhandle (fd);
443#else
444 return fcntl (fd, F_GETFD) != -1;
445#endif
306} 446}
307 447
308/* called on EBADF to verify fds */ 448/* called on EBADF to verify fds */
309static void 449static void
310fd_ebadf (void) 450fd_ebadf (EV_P)
311{ 451{
312 int fd; 452 int fd;
313 453
314 for (fd = 0; fd < anfdmax; ++fd) 454 for (fd = 0; fd < anfdmax; ++fd)
315 if (anfds [fd].events) 455 if (anfds [fd].events)
316 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 456 if (!fd_valid (fd) == -1 && errno == EBADF)
317 fd_kill (fd); 457 fd_kill (EV_A_ fd);
318} 458}
319 459
320/* called on ENOMEM in select/poll to kill some fds and retry */ 460/* called on ENOMEM in select/poll to kill some fds and retry */
321static void 461static void
322fd_enomem (void) 462fd_enomem (EV_P)
323{ 463{
324 int fd = anfdmax; 464 int fd;
325 465
326 while (fd--) 466 for (fd = anfdmax; fd--; )
327 if (anfds [fd].events) 467 if (anfds [fd].events)
328 { 468 {
329 close (fd);
330 fd_kill (fd); 469 fd_kill (EV_A_ fd);
331 return; 470 return;
332 } 471 }
333} 472}
334 473
474/* usually called after fork if method needs to re-arm all fds from scratch */
475static void
476fd_rearm_all (EV_P)
477{
478 int fd;
479
480 /* this should be highly optimised to not do anything but set a flag */
481 for (fd = 0; fd < anfdmax; ++fd)
482 if (anfds [fd].events)
483 {
484 anfds [fd].events = 0;
485 fd_change (EV_A_ fd);
486 }
487}
488
335/*****************************************************************************/ 489/*****************************************************************************/
336 490
337static struct ev_timer **timers;
338static int timermax, timercnt;
339
340static struct ev_periodic **periodics;
341static int periodicmax, periodiccnt;
342
343static void 491static void
344upheap (WT *timers, int k) 492upheap (WT *heap, int k)
345{ 493{
346 WT w = timers [k]; 494 WT w = heap [k];
347 495
348 while (k && timers [k >> 1]->at > w->at) 496 while (k && heap [k >> 1]->at > w->at)
349 { 497 {
350 timers [k] = timers [k >> 1]; 498 heap [k] = heap [k >> 1];
351 timers [k]->active = k + 1; 499 ((W)heap [k])->active = k + 1;
352 k >>= 1; 500 k >>= 1;
353 } 501 }
354 502
355 timers [k] = w; 503 heap [k] = w;
356 timers [k]->active = k + 1; 504 ((W)heap [k])->active = k + 1;
357 505
358} 506}
359 507
360static void 508static void
361downheap (WT *timers, int N, int k) 509downheap (WT *heap, int N, int k)
362{ 510{
363 WT w = timers [k]; 511 WT w = heap [k];
364 512
365 while (k < (N >> 1)) 513 while (k < (N >> 1))
366 { 514 {
367 int j = k << 1; 515 int j = k << 1;
368 516
369 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 517 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
370 ++j; 518 ++j;
371 519
372 if (w->at <= timers [j]->at) 520 if (w->at <= heap [j]->at)
373 break; 521 break;
374 522
375 timers [k] = timers [j]; 523 heap [k] = heap [j];
376 timers [k]->active = k + 1; 524 ((W)heap [k])->active = k + 1;
377 k = j; 525 k = j;
378 } 526 }
379 527
380 timers [k] = w; 528 heap [k] = w;
381 timers [k]->active = k + 1; 529 ((W)heap [k])->active = k + 1;
530}
531
532inline void
533adjustheap (WT *heap, int N, int k, ev_tstamp at)
534{
535 ev_tstamp old_at = heap [k]->at;
536 heap [k]->at = at;
537
538 if (old_at < at)
539 downheap (heap, N, k);
540 else
541 upheap (heap, k);
382} 542}
383 543
384/*****************************************************************************/ 544/*****************************************************************************/
385 545
386typedef struct 546typedef struct
387{ 547{
388 struct ev_signal *head; 548 WL head;
389 sig_atomic_t volatile gotsig; 549 sig_atomic_t volatile gotsig;
390} ANSIG; 550} ANSIG;
391 551
392static ANSIG *signals; 552static ANSIG *signals;
393static int signalmax; 553static int signalmax;
409} 569}
410 570
411static void 571static void
412sighandler (int signum) 572sighandler (int signum)
413{ 573{
574#if WIN32
575 signal (signum, sighandler);
576#endif
577
414 signals [signum - 1].gotsig = 1; 578 signals [signum - 1].gotsig = 1;
415 579
416 if (!gotsig) 580 if (!gotsig)
417 { 581 {
582 int old_errno = errno;
418 gotsig = 1; 583 gotsig = 1;
584#ifdef WIN32
585 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
586#else
419 write (sigpipe [1], &signum, 1); 587 write (sigpipe [1], &signum, 1);
588#endif
589 errno = old_errno;
420 } 590 }
421} 591}
422 592
593void
594ev_feed_signal_event (EV_P_ int signum)
595{
596 WL w;
597
598#if EV_MULTIPLICITY
599 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
600#endif
601
602 --signum;
603
604 if (signum < 0 || signum >= signalmax)
605 return;
606
607 signals [signum].gotsig = 0;
608
609 for (w = signals [signum].head; w; w = w->next)
610 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
611}
612
423static void 613static void
424sigcb (struct ev_io *iow, int revents) 614sigcb (EV_P_ struct ev_io *iow, int revents)
425{ 615{
426 struct ev_signal *w;
427 int signum; 616 int signum;
428 617
618#ifdef WIN32
619 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
620#else
429 read (sigpipe [0], &revents, 1); 621 read (sigpipe [0], &revents, 1);
622#endif
430 gotsig = 0; 623 gotsig = 0;
431 624
432 for (signum = signalmax; signum--; ) 625 for (signum = signalmax; signum--; )
433 if (signals [signum].gotsig) 626 if (signals [signum].gotsig)
434 { 627 ev_feed_signal_event (EV_A_ signum + 1);
435 signals [signum].gotsig = 0;
436
437 for (w = signals [signum].head; w; w = w->next)
438 event ((W)w, EV_SIGNAL);
439 }
440} 628}
441 629
442static void 630static void
443siginit (void) 631siginit (EV_P)
444{ 632{
445#ifndef WIN32 633#ifndef WIN32
446 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 634 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
447 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 635 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
448 636
450 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 638 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
451 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 639 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
452#endif 640#endif
453 641
454 ev_io_set (&sigev, sigpipe [0], EV_READ); 642 ev_io_set (&sigev, sigpipe [0], EV_READ);
455 ev_io_start (&sigev); 643 ev_io_start (EV_A_ &sigev);
644 ev_unref (EV_A); /* child watcher should not keep loop alive */
456} 645}
457 646
458/*****************************************************************************/ 647/*****************************************************************************/
459 648
460static struct ev_idle **idles;
461static int idlemax, idlecnt;
462
463static struct ev_prepare **prepares;
464static int preparemax, preparecnt;
465
466static struct ev_check **checks;
467static int checkmax, checkcnt;
468
469/*****************************************************************************/
470
471static struct ev_child *childs [PID_HASHSIZE]; 649static struct ev_child *childs [PID_HASHSIZE];
650
651#ifndef WIN32
652
472static struct ev_signal childev; 653static struct ev_signal childev;
473
474#ifndef WIN32
475 654
476#ifndef WCONTINUED 655#ifndef WCONTINUED
477# define WCONTINUED 0 656# define WCONTINUED 0
478#endif 657#endif
479 658
480static void 659static void
481childcb (struct ev_signal *sw, int revents) 660child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
482{ 661{
483 struct ev_child *w; 662 struct ev_child *w;
663
664 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
665 if (w->pid == pid || !w->pid)
666 {
667 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
668 w->rpid = pid;
669 w->rstatus = status;
670 ev_feed_event (EV_A_ (W)w, EV_CHILD);
671 }
672}
673
674static void
675childcb (EV_P_ struct ev_signal *sw, int revents)
676{
484 int pid, status; 677 int pid, status;
485 678
486 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 679 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
487 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 680 {
488 if (w->pid == pid || !w->pid) 681 /* make sure we are called again until all childs have been reaped */
489 { 682 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
490 w->status = status; 683
491 event ((W)w, EV_CHILD); 684 child_reap (EV_A_ sw, pid, pid, status);
492 } 685 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
686 }
493} 687}
494 688
495#endif 689#endif
496 690
497/*****************************************************************************/ 691/*****************************************************************************/
519ev_version_minor (void) 713ev_version_minor (void)
520{ 714{
521 return EV_VERSION_MINOR; 715 return EV_VERSION_MINOR;
522} 716}
523 717
524/* return true if we are running with elevated privileges and ignore env variables */ 718/* return true if we are running with elevated privileges and should ignore env variables */
525static int 719static int
526enable_secure () 720enable_secure (void)
527{ 721{
722#ifdef WIN32
723 return 0;
724#else
528 return getuid () != geteuid () 725 return getuid () != geteuid ()
529 || getgid () != getegid (); 726 || getgid () != getegid ();
727#endif
530} 728}
531 729
532int ev_init (int methods) 730int
731ev_method (EV_P)
533{ 732{
733 return method;
734}
735
736static void
737loop_init (EV_P_ int methods)
738{
534 if (!ev_method) 739 if (!method)
535 { 740 {
536#if EV_USE_MONOTONIC 741#if EV_USE_MONOTONIC
537 { 742 {
538 struct timespec ts; 743 struct timespec ts;
539 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 744 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
540 have_monotonic = 1; 745 have_monotonic = 1;
541 } 746 }
542#endif 747#endif
543 748
544 ev_now = ev_time (); 749 ev_rt_now = ev_time ();
545 now = get_clock (); 750 mn_now = get_clock ();
546 now_floor = now; 751 now_floor = mn_now;
547 diff = ev_now - now; 752 rtmn_diff = ev_rt_now - mn_now;
548
549 if (pipe (sigpipe))
550 return 0;
551 753
552 if (methods == EVMETHOD_AUTO) 754 if (methods == EVMETHOD_AUTO)
553 if (!enable_secure () && getenv ("LIBEV_METHODS")) 755 if (!enable_secure () && getenv ("LIBEV_METHODS"))
554 methods = atoi (getenv ("LIBEV_METHODS")); 756 methods = atoi (getenv ("LIBEV_METHODS"));
555 else 757 else
556 methods = EVMETHOD_ANY; 758 methods = EVMETHOD_ANY;
557 759
558 ev_method = 0; 760 method = 0;
761#if EV_USE_WIN32
762 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
763#endif
559#if EV_USE_KQUEUE 764#if EV_USE_KQUEUE
560 if (!ev_method && (methods & EVMETHOD_KQUEUE)) kqueue_init (methods); 765 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
561#endif 766#endif
562#if EV_USE_EPOLL 767#if EV_USE_EPOLL
563 if (!ev_method && (methods & EVMETHOD_EPOLL )) epoll_init (methods); 768 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
564#endif 769#endif
565#if EV_USE_POLL 770#if EV_USE_POLL
566 if (!ev_method && (methods & EVMETHOD_POLL )) poll_init (methods); 771 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
567#endif 772#endif
568#if EV_USE_SELECT 773#if EV_USE_SELECT
569 if (!ev_method && (methods & EVMETHOD_SELECT)) select_init (methods); 774 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
570#endif 775#endif
571 776
777 ev_init (&sigev, sigcb);
778 ev_set_priority (&sigev, EV_MAXPRI);
779 }
780}
781
782void
783loop_destroy (EV_P)
784{
785 int i;
786
787#if EV_USE_WIN32
788 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
789#endif
790#if EV_USE_KQUEUE
791 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
792#endif
793#if EV_USE_EPOLL
794 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
795#endif
796#if EV_USE_POLL
797 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
798#endif
799#if EV_USE_SELECT
800 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
801#endif
802
803 for (i = NUMPRI; i--; )
804 array_free (pending, [i]);
805
806 /* have to use the microsoft-never-gets-it-right macro */
807 array_free_microshit (fdchange);
808 array_free_microshit (timer);
809#if EV_PERIODICS
810 array_free_microshit (periodic);
811#endif
812 array_free_microshit (idle);
813 array_free_microshit (prepare);
814 array_free_microshit (check);
815
816 method = 0;
817}
818
819static void
820loop_fork (EV_P)
821{
822#if EV_USE_EPOLL
823 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
824#endif
825#if EV_USE_KQUEUE
826 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
827#endif
828
829 if (ev_is_active (&sigev))
830 {
831 /* default loop */
832
833 ev_ref (EV_A);
834 ev_io_stop (EV_A_ &sigev);
835 close (sigpipe [0]);
836 close (sigpipe [1]);
837
838 while (pipe (sigpipe))
839 syserr ("(libev) error creating pipe");
840
841 siginit (EV_A);
842 }
843
844 postfork = 0;
845}
846
847#if EV_MULTIPLICITY
848struct ev_loop *
849ev_loop_new (int methods)
850{
851 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
852
853 memset (loop, 0, sizeof (struct ev_loop));
854
855 loop_init (EV_A_ methods);
856
857 if (ev_method (EV_A))
858 return loop;
859
860 return 0;
861}
862
863void
864ev_loop_destroy (EV_P)
865{
866 loop_destroy (EV_A);
867 ev_free (loop);
868}
869
870void
871ev_loop_fork (EV_P)
872{
873 postfork = 1;
874}
875
876#endif
877
878#if EV_MULTIPLICITY
879struct ev_loop *
880#else
881int
882#endif
883ev_default_loop (int methods)
884{
885 if (sigpipe [0] == sigpipe [1])
886 if (pipe (sigpipe))
887 return 0;
888
889 if (!default_loop)
890 {
891#if EV_MULTIPLICITY
892 struct ev_loop *loop = default_loop = &default_loop_struct;
893#else
894 default_loop = 1;
895#endif
896
897 loop_init (EV_A_ methods);
898
572 if (ev_method) 899 if (ev_method (EV_A))
573 { 900 {
574 ev_watcher_init (&sigev, sigcb);
575 siginit (); 901 siginit (EV_A);
576 902
577#ifndef WIN32 903#ifndef WIN32
578 ev_signal_init (&childev, childcb, SIGCHLD); 904 ev_signal_init (&childev, childcb, SIGCHLD);
905 ev_set_priority (&childev, EV_MAXPRI);
579 ev_signal_start (&childev); 906 ev_signal_start (EV_A_ &childev);
907 ev_unref (EV_A); /* child watcher should not keep loop alive */
580#endif 908#endif
581 } 909 }
910 else
911 default_loop = 0;
582 } 912 }
583 913
584 return ev_method; 914 return default_loop;
915}
916
917void
918ev_default_destroy (void)
919{
920#if EV_MULTIPLICITY
921 struct ev_loop *loop = default_loop;
922#endif
923
924#ifndef WIN32
925 ev_ref (EV_A); /* child watcher */
926 ev_signal_stop (EV_A_ &childev);
927#endif
928
929 ev_ref (EV_A); /* signal watcher */
930 ev_io_stop (EV_A_ &sigev);
931
932 close (sigpipe [0]); sigpipe [0] = 0;
933 close (sigpipe [1]); sigpipe [1] = 0;
934
935 loop_destroy (EV_A);
936}
937
938void
939ev_default_fork (void)
940{
941#if EV_MULTIPLICITY
942 struct ev_loop *loop = default_loop;
943#endif
944
945 if (method)
946 postfork = 1;
585} 947}
586 948
587/*****************************************************************************/ 949/*****************************************************************************/
588 950
589void
590ev_fork_prepare (void)
591{
592 /* nop */
593}
594
595void
596ev_fork_parent (void)
597{
598 /* nop */
599}
600
601void
602ev_fork_child (void)
603{
604#if EV_USE_EPOLL
605 if (ev_method == EVMETHOD_EPOLL)
606 epoll_postfork_child ();
607#endif
608
609 ev_io_stop (&sigev);
610 close (sigpipe [0]);
611 close (sigpipe [1]);
612 pipe (sigpipe);
613 siginit ();
614}
615
616/*****************************************************************************/
617
618static void 951static int
952any_pending (EV_P)
953{
954 int pri;
955
956 for (pri = NUMPRI; pri--; )
957 if (pendingcnt [pri])
958 return 1;
959
960 return 0;
961}
962
963static void
619call_pending (void) 964call_pending (EV_P)
620{ 965{
621 int pri; 966 int pri;
622 967
623 for (pri = NUMPRI; pri--; ) 968 for (pri = NUMPRI; pri--; )
624 while (pendingcnt [pri]) 969 while (pendingcnt [pri])
626 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 971 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
627 972
628 if (p->w) 973 if (p->w)
629 { 974 {
630 p->w->pending = 0; 975 p->w->pending = 0;
631 p->w->cb (p->w, p->events); 976 EV_CB_INVOKE (p->w, p->events);
632 } 977 }
633 } 978 }
634} 979}
635 980
636static void 981static void
637timers_reify (void) 982timers_reify (EV_P)
638{ 983{
639 while (timercnt && timers [0]->at <= now) 984 while (timercnt && ((WT)timers [0])->at <= mn_now)
640 { 985 {
641 struct ev_timer *w = timers [0]; 986 struct ev_timer *w = timers [0];
987
988 assert (("inactive timer on timer heap detected", ev_is_active (w)));
642 989
643 /* first reschedule or stop timer */ 990 /* first reschedule or stop timer */
644 if (w->repeat) 991 if (w->repeat)
645 { 992 {
646 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 993 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
994
647 w->at = now + w->repeat; 995 ((WT)w)->at += w->repeat;
996 if (((WT)w)->at < mn_now)
997 ((WT)w)->at = mn_now;
998
648 downheap ((WT *)timers, timercnt, 0); 999 downheap ((WT *)timers, timercnt, 0);
649 } 1000 }
650 else 1001 else
651 ev_timer_stop (w); /* nonrepeating: stop timer */ 1002 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
652 1003
653 event ((W)w, EV_TIMEOUT); 1004 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
654 } 1005 }
655} 1006}
656 1007
1008#if EV_PERIODICS
657static void 1009static void
658periodics_reify (void) 1010periodics_reify (EV_P)
659{ 1011{
660 while (periodiccnt && periodics [0]->at <= ev_now) 1012 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
661 { 1013 {
662 struct ev_periodic *w = periodics [0]; 1014 struct ev_periodic *w = periodics [0];
663 1015
1016 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
1017
664 /* first reschedule or stop timer */ 1018 /* first reschedule or stop timer */
665 if (w->interval) 1019 if (w->reschedule_cb)
666 { 1020 {
1021 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1022
1023 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1024 downheap ((WT *)periodics, periodiccnt, 0);
1025 }
1026 else if (w->interval)
1027 {
667 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 1028 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
668 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now)); 1029 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
669 downheap ((WT *)periodics, periodiccnt, 0); 1030 downheap ((WT *)periodics, periodiccnt, 0);
670 } 1031 }
671 else 1032 else
672 ev_periodic_stop (w); /* nonrepeating: stop timer */ 1033 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
673 1034
674 event ((W)w, EV_PERIODIC); 1035 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
675 } 1036 }
676} 1037}
677 1038
678static void 1039static void
679periodics_reschedule (ev_tstamp diff) 1040periodics_reschedule (EV_P)
680{ 1041{
681 int i; 1042 int i;
682 1043
683 /* adjust periodics after time jump */ 1044 /* adjust periodics after time jump */
684 for (i = 0; i < periodiccnt; ++i) 1045 for (i = 0; i < periodiccnt; ++i)
685 { 1046 {
686 struct ev_periodic *w = periodics [i]; 1047 struct ev_periodic *w = periodics [i];
687 1048
1049 if (w->reschedule_cb)
1050 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
688 if (w->interval) 1051 else if (w->interval)
689 {
690 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 1052 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
691
692 if (fabs (diff) >= 1e-4)
693 {
694 ev_periodic_stop (w);
695 ev_periodic_start (w);
696
697 i = 0; /* restart loop, inefficient, but time jumps should be rare */
698 }
699 }
700 } 1053 }
701}
702 1054
703static int 1055 /* now rebuild the heap */
1056 for (i = periodiccnt >> 1; i--; )
1057 downheap ((WT *)periodics, periodiccnt, i);
1058}
1059#endif
1060
1061inline int
704time_update_monotonic (void) 1062time_update_monotonic (EV_P)
705{ 1063{
706 now = get_clock (); 1064 mn_now = get_clock ();
707 1065
708 if (expect_true (now - now_floor < MIN_TIMEJUMP * .5)) 1066 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
709 { 1067 {
710 ev_now = now + diff; 1068 ev_rt_now = rtmn_diff + mn_now;
711 return 0; 1069 return 0;
712 } 1070 }
713 else 1071 else
714 { 1072 {
715 now_floor = now; 1073 now_floor = mn_now;
716 ev_now = ev_time (); 1074 ev_rt_now = ev_time ();
717 return 1; 1075 return 1;
718 } 1076 }
719} 1077}
720 1078
721static void 1079static void
722time_update (void) 1080time_update (EV_P)
723{ 1081{
724 int i; 1082 int i;
725 1083
726#if EV_USE_MONOTONIC 1084#if EV_USE_MONOTONIC
727 if (expect_true (have_monotonic)) 1085 if (expect_true (have_monotonic))
728 { 1086 {
729 if (time_update_monotonic ()) 1087 if (time_update_monotonic (EV_A))
730 { 1088 {
731 ev_tstamp odiff = diff; 1089 ev_tstamp odiff = rtmn_diff;
732 1090
733 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1091 for (i = 4; --i; ) /* loop a few times, before making important decisions */
734 { 1092 {
735 diff = ev_now - now; 1093 rtmn_diff = ev_rt_now - mn_now;
736 1094
737 if (fabs (odiff - diff) < MIN_TIMEJUMP) 1095 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
738 return; /* all is well */ 1096 return; /* all is well */
739 1097
740 ev_now = ev_time (); 1098 ev_rt_now = ev_time ();
741 now = get_clock (); 1099 mn_now = get_clock ();
742 now_floor = now; 1100 now_floor = mn_now;
743 } 1101 }
744 1102
1103# if EV_PERIODICS
745 periodics_reschedule (diff - odiff); 1104 periodics_reschedule (EV_A);
1105# endif
746 /* no timer adjustment, as the monotonic clock doesn't jump */ 1106 /* no timer adjustment, as the monotonic clock doesn't jump */
1107 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
747 } 1108 }
748 } 1109 }
749 else 1110 else
750#endif 1111#endif
751 { 1112 {
752 ev_now = ev_time (); 1113 ev_rt_now = ev_time ();
753 1114
754 if (expect_false (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1115 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
755 { 1116 {
1117#if EV_PERIODICS
756 periodics_reschedule (ev_now - now); 1118 periodics_reschedule (EV_A);
1119#endif
757 1120
758 /* adjust timers. this is easy, as the offset is the same for all */ 1121 /* adjust timers. this is easy, as the offset is the same for all */
759 for (i = 0; i < timercnt; ++i) 1122 for (i = 0; i < timercnt; ++i)
760 timers [i]->at += diff; 1123 ((WT)timers [i])->at += ev_rt_now - mn_now;
761 } 1124 }
762 1125
763 now = ev_now; 1126 mn_now = ev_rt_now;
764 } 1127 }
765} 1128}
766 1129
767int ev_loop_done; 1130void
1131ev_ref (EV_P)
1132{
1133 ++activecnt;
1134}
768 1135
1136void
1137ev_unref (EV_P)
1138{
1139 --activecnt;
1140}
1141
1142static int loop_done;
1143
1144void
769void ev_loop (int flags) 1145ev_loop (EV_P_ int flags)
770{ 1146{
771 double block; 1147 double block;
772 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1148 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
773 1149
774 do 1150 do
775 { 1151 {
776 /* queue check watchers (and execute them) */ 1152 /* queue check watchers (and execute them) */
777 if (expect_false (preparecnt)) 1153 if (expect_false (preparecnt))
778 { 1154 {
779 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 1155 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
780 call_pending (); 1156 call_pending (EV_A);
781 } 1157 }
782 1158
1159 /* we might have forked, so reify kernel state if necessary */
1160 if (expect_false (postfork))
1161 loop_fork (EV_A);
1162
783 /* update fd-related kernel structures */ 1163 /* update fd-related kernel structures */
784 fd_reify (); 1164 fd_reify (EV_A);
785 1165
786 /* calculate blocking time */ 1166 /* calculate blocking time */
787 1167
788 /* we only need this for !monotonic clockor timers, but as we basically 1168 /* we only need this for !monotonic clock or timers, but as we basically
789 always have timers, we just calculate it always */ 1169 always have timers, we just calculate it always */
790#if EV_USE_MONOTONIC 1170#if EV_USE_MONOTONIC
791 if (expect_true (have_monotonic)) 1171 if (expect_true (have_monotonic))
792 time_update_monotonic (); 1172 time_update_monotonic (EV_A);
793 else 1173 else
794#endif 1174#endif
795 { 1175 {
796 ev_now = ev_time (); 1176 ev_rt_now = ev_time ();
797 now = ev_now; 1177 mn_now = ev_rt_now;
798 } 1178 }
799 1179
800 if (flags & EVLOOP_NONBLOCK || idlecnt) 1180 if (flags & EVLOOP_NONBLOCK || idlecnt)
801 block = 0.; 1181 block = 0.;
802 else 1182 else
803 { 1183 {
804 block = MAX_BLOCKTIME; 1184 block = MAX_BLOCKTIME;
805 1185
806 if (timercnt) 1186 if (timercnt)
807 { 1187 {
808 ev_tstamp to = timers [0]->at - now + method_fudge; 1188 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
809 if (block > to) block = to; 1189 if (block > to) block = to;
810 } 1190 }
811 1191
1192#if EV_PERIODICS
812 if (periodiccnt) 1193 if (periodiccnt)
813 { 1194 {
814 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1195 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
815 if (block > to) block = to; 1196 if (block > to) block = to;
816 } 1197 }
1198#endif
817 1199
818 if (block < 0.) block = 0.; 1200 if (block < 0.) block = 0.;
819 } 1201 }
820 1202
821 method_poll (block); 1203 method_poll (EV_A_ block);
822 1204
823 /* update ev_now, do magic */ 1205 /* update ev_rt_now, do magic */
824 time_update (); 1206 time_update (EV_A);
825 1207
826 /* queue pending timers and reschedule them */ 1208 /* queue pending timers and reschedule them */
827 timers_reify (); /* relative timers called last */ 1209 timers_reify (EV_A); /* relative timers called last */
1210#if EV_PERIODICS
828 periodics_reify (); /* absolute timers called first */ 1211 periodics_reify (EV_A); /* absolute timers called first */
1212#endif
829 1213
830 /* queue idle watchers unless io or timers are pending */ 1214 /* queue idle watchers unless io or timers are pending */
831 if (!pendingcnt) 1215 if (idlecnt && !any_pending (EV_A))
832 queue_events ((W *)idles, idlecnt, EV_IDLE); 1216 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
833 1217
834 /* queue check watchers, to be executed first */ 1218 /* queue check watchers, to be executed first */
835 if (checkcnt) 1219 if (checkcnt)
836 queue_events ((W *)checks, checkcnt, EV_CHECK); 1220 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
837 1221
838 call_pending (); 1222 call_pending (EV_A);
839 } 1223 }
840 while (!ev_loop_done); 1224 while (activecnt && !loop_done);
841 1225
842 if (ev_loop_done != 2) 1226 if (loop_done != 2)
843 ev_loop_done = 0; 1227 loop_done = 0;
1228}
1229
1230void
1231ev_unloop (EV_P_ int how)
1232{
1233 loop_done = how;
844} 1234}
845 1235
846/*****************************************************************************/ 1236/*****************************************************************************/
847 1237
848static void 1238inline void
849wlist_add (WL *head, WL elem) 1239wlist_add (WL *head, WL elem)
850{ 1240{
851 elem->next = *head; 1241 elem->next = *head;
852 *head = elem; 1242 *head = elem;
853} 1243}
854 1244
855static void 1245inline void
856wlist_del (WL *head, WL elem) 1246wlist_del (WL *head, WL elem)
857{ 1247{
858 while (*head) 1248 while (*head)
859 { 1249 {
860 if (*head == elem) 1250 if (*head == elem)
865 1255
866 head = &(*head)->next; 1256 head = &(*head)->next;
867 } 1257 }
868} 1258}
869 1259
870static void 1260inline void
871ev_clear_pending (W w) 1261ev_clear_pending (EV_P_ W w)
872{ 1262{
873 if (w->pending) 1263 if (w->pending)
874 { 1264 {
875 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1265 pendings [ABSPRI (w)][w->pending - 1].w = 0;
876 w->pending = 0; 1266 w->pending = 0;
877 } 1267 }
878} 1268}
879 1269
880static void 1270inline void
881ev_start (W w, int active) 1271ev_start (EV_P_ W w, int active)
882{ 1272{
883 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1273 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
884 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI; 1274 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
885 1275
886 w->active = active; 1276 w->active = active;
1277 ev_ref (EV_A);
887} 1278}
888 1279
889static void 1280inline void
890ev_stop (W w) 1281ev_stop (EV_P_ W w)
891{ 1282{
1283 ev_unref (EV_A);
892 w->active = 0; 1284 w->active = 0;
893} 1285}
894 1286
895/*****************************************************************************/ 1287/*****************************************************************************/
896 1288
897void 1289void
898ev_io_start (struct ev_io *w) 1290ev_io_start (EV_P_ struct ev_io *w)
899{ 1291{
900 int fd = w->fd; 1292 int fd = w->fd;
901 1293
902 if (ev_is_active (w)) 1294 if (ev_is_active (w))
903 return; 1295 return;
904 1296
905 assert (("ev_io_start called with negative fd", fd >= 0)); 1297 assert (("ev_io_start called with negative fd", fd >= 0));
906 1298
907 ev_start ((W)w, 1); 1299 ev_start (EV_A_ (W)w, 1);
908 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1300 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
909 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1301 wlist_add ((WL *)&anfds[fd].head, (WL)w);
910 1302
911 fd_change (fd); 1303 fd_change (EV_A_ fd);
912} 1304}
913 1305
914void 1306void
915ev_io_stop (struct ev_io *w) 1307ev_io_stop (EV_P_ struct ev_io *w)
916{ 1308{
917 ev_clear_pending ((W)w); 1309 ev_clear_pending (EV_A_ (W)w);
918 if (!ev_is_active (w)) 1310 if (!ev_is_active (w))
919 return; 1311 return;
920 1312
1313 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1314
921 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1315 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
922 ev_stop ((W)w); 1316 ev_stop (EV_A_ (W)w);
923 1317
924 fd_change (w->fd); 1318 fd_change (EV_A_ w->fd);
925} 1319}
926 1320
927void 1321void
928ev_timer_start (struct ev_timer *w) 1322ev_timer_start (EV_P_ struct ev_timer *w)
929{ 1323{
930 if (ev_is_active (w)) 1324 if (ev_is_active (w))
931 return; 1325 return;
932 1326
933 w->at += now; 1327 ((WT)w)->at += mn_now;
934 1328
935 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1329 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
936 1330
937 ev_start ((W)w, ++timercnt); 1331 ev_start (EV_A_ (W)w, ++timercnt);
938 array_needsize (timers, timermax, timercnt, ); 1332 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
939 timers [timercnt - 1] = w; 1333 timers [timercnt - 1] = w;
940 upheap ((WT *)timers, timercnt - 1); 1334 upheap ((WT *)timers, timercnt - 1);
941}
942 1335
1336 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1337}
1338
943void 1339void
944ev_timer_stop (struct ev_timer *w) 1340ev_timer_stop (EV_P_ struct ev_timer *w)
945{ 1341{
946 ev_clear_pending ((W)w); 1342 ev_clear_pending (EV_A_ (W)w);
947 if (!ev_is_active (w)) 1343 if (!ev_is_active (w))
948 return; 1344 return;
949 1345
1346 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1347
950 if (w->active < timercnt--) 1348 if (((W)w)->active < timercnt--)
951 { 1349 {
952 timers [w->active - 1] = timers [timercnt]; 1350 timers [((W)w)->active - 1] = timers [timercnt];
953 downheap ((WT *)timers, timercnt, w->active - 1); 1351 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
954 } 1352 }
955 1353
956 w->at = w->repeat; 1354 ((WT)w)->at -= mn_now;
957 1355
958 ev_stop ((W)w); 1356 ev_stop (EV_A_ (W)w);
959} 1357}
960 1358
961void 1359void
962ev_timer_again (struct ev_timer *w) 1360ev_timer_again (EV_P_ struct ev_timer *w)
963{ 1361{
964 if (ev_is_active (w)) 1362 if (ev_is_active (w))
965 { 1363 {
966 if (w->repeat) 1364 if (w->repeat)
967 {
968 w->at = now + w->repeat;
969 downheap ((WT *)timers, timercnt, w->active - 1); 1365 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1, mn_now + w->repeat);
970 }
971 else 1366 else
972 ev_timer_stop (w); 1367 ev_timer_stop (EV_A_ w);
973 } 1368 }
974 else if (w->repeat) 1369 else if (w->repeat)
975 ev_timer_start (w); 1370 ev_timer_start (EV_A_ w);
976} 1371}
977 1372
1373#if EV_PERIODICS
978void 1374void
979ev_periodic_start (struct ev_periodic *w) 1375ev_periodic_start (EV_P_ struct ev_periodic *w)
980{ 1376{
981 if (ev_is_active (w)) 1377 if (ev_is_active (w))
982 return; 1378 return;
983 1379
1380 if (w->reschedule_cb)
1381 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1382 else if (w->interval)
1383 {
984 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1384 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
985
986 /* this formula differs from the one in periodic_reify because we do not always round up */ 1385 /* this formula differs from the one in periodic_reify because we do not always round up */
987 if (w->interval)
988 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1386 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1387 }
989 1388
990 ev_start ((W)w, ++periodiccnt); 1389 ev_start (EV_A_ (W)w, ++periodiccnt);
991 array_needsize (periodics, periodicmax, periodiccnt, ); 1390 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
992 periodics [periodiccnt - 1] = w; 1391 periodics [periodiccnt - 1] = w;
993 upheap ((WT *)periodics, periodiccnt - 1); 1392 upheap ((WT *)periodics, periodiccnt - 1);
994}
995 1393
1394 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1395}
1396
996void 1397void
997ev_periodic_stop (struct ev_periodic *w) 1398ev_periodic_stop (EV_P_ struct ev_periodic *w)
998{ 1399{
999 ev_clear_pending ((W)w); 1400 ev_clear_pending (EV_A_ (W)w);
1000 if (!ev_is_active (w)) 1401 if (!ev_is_active (w))
1001 return; 1402 return;
1002 1403
1404 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1405
1003 if (w->active < periodiccnt--) 1406 if (((W)w)->active < periodiccnt--)
1004 { 1407 {
1005 periodics [w->active - 1] = periodics [periodiccnt]; 1408 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1006 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1409 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1007 } 1410 }
1008 1411
1009 ev_stop ((W)w); 1412 ev_stop (EV_A_ (W)w);
1010} 1413}
1011 1414
1012void 1415void
1416ev_periodic_again (EV_P_ struct ev_periodic *w)
1417{
1418 /* TODO: use adjustheap and recalculation */
1419 ev_periodic_stop (EV_A_ w);
1420 ev_periodic_start (EV_A_ w);
1421}
1422#endif
1423
1424void
1013ev_signal_start (struct ev_signal *w) 1425ev_idle_start (EV_P_ struct ev_idle *w)
1014{ 1426{
1015 if (ev_is_active (w)) 1427 if (ev_is_active (w))
1016 return; 1428 return;
1017 1429
1430 ev_start (EV_A_ (W)w, ++idlecnt);
1431 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1432 idles [idlecnt - 1] = w;
1433}
1434
1435void
1436ev_idle_stop (EV_P_ struct ev_idle *w)
1437{
1438 ev_clear_pending (EV_A_ (W)w);
1439 if (ev_is_active (w))
1440 return;
1441
1442 idles [((W)w)->active - 1] = idles [--idlecnt];
1443 ev_stop (EV_A_ (W)w);
1444}
1445
1446void
1447ev_prepare_start (EV_P_ struct ev_prepare *w)
1448{
1449 if (ev_is_active (w))
1450 return;
1451
1452 ev_start (EV_A_ (W)w, ++preparecnt);
1453 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1454 prepares [preparecnt - 1] = w;
1455}
1456
1457void
1458ev_prepare_stop (EV_P_ struct ev_prepare *w)
1459{
1460 ev_clear_pending (EV_A_ (W)w);
1461 if (ev_is_active (w))
1462 return;
1463
1464 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1465 ev_stop (EV_A_ (W)w);
1466}
1467
1468void
1469ev_check_start (EV_P_ struct ev_check *w)
1470{
1471 if (ev_is_active (w))
1472 return;
1473
1474 ev_start (EV_A_ (W)w, ++checkcnt);
1475 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1476 checks [checkcnt - 1] = w;
1477}
1478
1479void
1480ev_check_stop (EV_P_ struct ev_check *w)
1481{
1482 ev_clear_pending (EV_A_ (W)w);
1483 if (ev_is_active (w))
1484 return;
1485
1486 checks [((W)w)->active - 1] = checks [--checkcnt];
1487 ev_stop (EV_A_ (W)w);
1488}
1489
1490#ifndef SA_RESTART
1491# define SA_RESTART 0
1492#endif
1493
1494void
1495ev_signal_start (EV_P_ struct ev_signal *w)
1496{
1497#if EV_MULTIPLICITY
1498 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1499#endif
1500 if (ev_is_active (w))
1501 return;
1502
1018 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1503 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1019 1504
1020 ev_start ((W)w, 1); 1505 ev_start (EV_A_ (W)w, 1);
1021 array_needsize (signals, signalmax, w->signum, signals_init); 1506 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1022 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1507 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1023 1508
1024 if (!w->next) 1509 if (!((WL)w)->next)
1025 { 1510 {
1511#if WIN32
1512 signal (w->signum, sighandler);
1513#else
1026 struct sigaction sa; 1514 struct sigaction sa;
1027 sa.sa_handler = sighandler; 1515 sa.sa_handler = sighandler;
1028 sigfillset (&sa.sa_mask); 1516 sigfillset (&sa.sa_mask);
1029 sa.sa_flags = 0; 1517 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1030 sigaction (w->signum, &sa, 0); 1518 sigaction (w->signum, &sa, 0);
1519#endif
1031 } 1520 }
1032} 1521}
1033 1522
1034void 1523void
1035ev_signal_stop (struct ev_signal *w) 1524ev_signal_stop (EV_P_ struct ev_signal *w)
1036{ 1525{
1037 ev_clear_pending ((W)w); 1526 ev_clear_pending (EV_A_ (W)w);
1038 if (!ev_is_active (w)) 1527 if (!ev_is_active (w))
1039 return; 1528 return;
1040 1529
1041 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1530 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1042 ev_stop ((W)w); 1531 ev_stop (EV_A_ (W)w);
1043 1532
1044 if (!signals [w->signum - 1].head) 1533 if (!signals [w->signum - 1].head)
1045 signal (w->signum, SIG_DFL); 1534 signal (w->signum, SIG_DFL);
1046} 1535}
1047 1536
1048void 1537void
1049ev_idle_start (struct ev_idle *w) 1538ev_child_start (EV_P_ struct ev_child *w)
1050{ 1539{
1540#if EV_MULTIPLICITY
1541 assert (("child watchers are only supported in the default loop", loop == default_loop));
1542#endif
1051 if (ev_is_active (w)) 1543 if (ev_is_active (w))
1052 return; 1544 return;
1053 1545
1054 ev_start ((W)w, ++idlecnt); 1546 ev_start (EV_A_ (W)w, 1);
1055 array_needsize (idles, idlemax, idlecnt, ); 1547 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1056 idles [idlecnt - 1] = w;
1057} 1548}
1058 1549
1059void 1550void
1060ev_idle_stop (struct ev_idle *w) 1551ev_child_stop (EV_P_ struct ev_child *w)
1061{ 1552{
1062 ev_clear_pending ((W)w); 1553 ev_clear_pending (EV_A_ (W)w);
1063 if (ev_is_active (w)) 1554 if (ev_is_active (w))
1064 return; 1555 return;
1065 1556
1066 idles [w->active - 1] = idles [--idlecnt];
1067 ev_stop ((W)w);
1068}
1069
1070void
1071ev_prepare_start (struct ev_prepare *w)
1072{
1073 if (ev_is_active (w))
1074 return;
1075
1076 ev_start ((W)w, ++preparecnt);
1077 array_needsize (prepares, preparemax, preparecnt, );
1078 prepares [preparecnt - 1] = w;
1079}
1080
1081void
1082ev_prepare_stop (struct ev_prepare *w)
1083{
1084 ev_clear_pending ((W)w);
1085 if (ev_is_active (w))
1086 return;
1087
1088 prepares [w->active - 1] = prepares [--preparecnt];
1089 ev_stop ((W)w);
1090}
1091
1092void
1093ev_check_start (struct ev_check *w)
1094{
1095 if (ev_is_active (w))
1096 return;
1097
1098 ev_start ((W)w, ++checkcnt);
1099 array_needsize (checks, checkmax, checkcnt, );
1100 checks [checkcnt - 1] = w;
1101}
1102
1103void
1104ev_check_stop (struct ev_check *w)
1105{
1106 ev_clear_pending ((W)w);
1107 if (ev_is_active (w))
1108 return;
1109
1110 checks [w->active - 1] = checks [--checkcnt];
1111 ev_stop ((W)w);
1112}
1113
1114void
1115ev_child_start (struct ev_child *w)
1116{
1117 if (ev_is_active (w))
1118 return;
1119
1120 ev_start ((W)w, 1);
1121 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1122}
1123
1124void
1125ev_child_stop (struct ev_child *w)
1126{
1127 ev_clear_pending ((W)w);
1128 if (ev_is_active (w))
1129 return;
1130
1131 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1557 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1132 ev_stop ((W)w); 1558 ev_stop (EV_A_ (W)w);
1133} 1559}
1134 1560
1135/*****************************************************************************/ 1561/*****************************************************************************/
1136 1562
1137struct ev_once 1563struct ev_once
1141 void (*cb)(int revents, void *arg); 1567 void (*cb)(int revents, void *arg);
1142 void *arg; 1568 void *arg;
1143}; 1569};
1144 1570
1145static void 1571static void
1146once_cb (struct ev_once *once, int revents) 1572once_cb (EV_P_ struct ev_once *once, int revents)
1147{ 1573{
1148 void (*cb)(int revents, void *arg) = once->cb; 1574 void (*cb)(int revents, void *arg) = once->cb;
1149 void *arg = once->arg; 1575 void *arg = once->arg;
1150 1576
1151 ev_io_stop (&once->io); 1577 ev_io_stop (EV_A_ &once->io);
1152 ev_timer_stop (&once->to); 1578 ev_timer_stop (EV_A_ &once->to);
1153 free (once); 1579 ev_free (once);
1154 1580
1155 cb (revents, arg); 1581 cb (revents, arg);
1156} 1582}
1157 1583
1158static void 1584static void
1159once_cb_io (struct ev_io *w, int revents) 1585once_cb_io (EV_P_ struct ev_io *w, int revents)
1160{ 1586{
1161 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1587 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1162} 1588}
1163 1589
1164static void 1590static void
1165once_cb_to (struct ev_timer *w, int revents) 1591once_cb_to (EV_P_ struct ev_timer *w, int revents)
1166{ 1592{
1167 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1593 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1168} 1594}
1169 1595
1170void 1596void
1171ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1597ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1172{ 1598{
1173 struct ev_once *once = malloc (sizeof (struct ev_once)); 1599 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1174 1600
1175 if (!once) 1601 if (!once)
1176 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1602 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1177 else 1603 else
1178 { 1604 {
1179 once->cb = cb; 1605 once->cb = cb;
1180 once->arg = arg; 1606 once->arg = arg;
1181 1607
1182 ev_watcher_init (&once->io, once_cb_io); 1608 ev_init (&once->io, once_cb_io);
1183 if (fd >= 0) 1609 if (fd >= 0)
1184 { 1610 {
1185 ev_io_set (&once->io, fd, events); 1611 ev_io_set (&once->io, fd, events);
1186 ev_io_start (&once->io); 1612 ev_io_start (EV_A_ &once->io);
1187 } 1613 }
1188 1614
1189 ev_watcher_init (&once->to, once_cb_to); 1615 ev_init (&once->to, once_cb_to);
1190 if (timeout >= 0.) 1616 if (timeout >= 0.)
1191 { 1617 {
1192 ev_timer_set (&once->to, timeout, 0.); 1618 ev_timer_set (&once->to, timeout, 0.);
1193 ev_timer_start (&once->to); 1619 ev_timer_start (EV_A_ &once->to);
1194 } 1620 }
1195 } 1621 }
1196} 1622}
1197 1623
1198/*****************************************************************************/ 1624#ifdef __cplusplus
1199
1200#if 0
1201
1202struct ev_io wio;
1203
1204static void
1205sin_cb (struct ev_io *w, int revents)
1206{
1207 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1208} 1625}
1209
1210static void
1211ocb (struct ev_timer *w, int revents)
1212{
1213 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1214 ev_timer_stop (w);
1215 ev_timer_start (w);
1216}
1217
1218static void
1219scb (struct ev_signal *w, int revents)
1220{
1221 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1222 ev_io_stop (&wio);
1223 ev_io_start (&wio);
1224}
1225
1226static void
1227gcb (struct ev_signal *w, int revents)
1228{
1229 fprintf (stderr, "generic %x\n", revents);
1230
1231}
1232
1233int main (void)
1234{
1235 ev_init (0);
1236
1237 ev_io_init (&wio, sin_cb, 0, EV_READ);
1238 ev_io_start (&wio);
1239
1240 struct ev_timer t[10000];
1241
1242#if 0
1243 int i;
1244 for (i = 0; i < 10000; ++i)
1245 {
1246 struct ev_timer *w = t + i;
1247 ev_watcher_init (w, ocb, i);
1248 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1249 ev_timer_start (w);
1250 if (drand48 () < 0.5)
1251 ev_timer_stop (w);
1252 }
1253#endif 1626#endif
1254 1627
1255 struct ev_timer t1;
1256 ev_timer_init (&t1, ocb, 5, 10);
1257 ev_timer_start (&t1);
1258
1259 struct ev_signal sig;
1260 ev_signal_init (&sig, scb, SIGQUIT);
1261 ev_signal_start (&sig);
1262
1263 struct ev_check cw;
1264 ev_check_init (&cw, gcb);
1265 ev_check_start (&cw);
1266
1267 struct ev_idle iw;
1268 ev_idle_init (&iw, gcb);
1269 ev_idle_start (&iw);
1270
1271 ev_loop (0);
1272
1273 return 0;
1274}
1275
1276#endif
1277
1278
1279
1280

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines