ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.77 by root, Thu Nov 8 00:44:17 2007 UTC vs.
Revision 1.450 by root, Mon Oct 8 15:43:35 2012 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
39
40/* this big block deduces configuration from config.h */
31#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
32# include "config.h" 45# include "config.h"
46# endif
47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
33 67
34# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
69# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
71# endif
72# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
74# endif
75# else
76# ifndef EV_USE_MONOTONIC
77# define EV_USE_MONOTONIC 0
78# endif
79# ifndef EV_USE_REALTIME
80# define EV_USE_REALTIME 0
81# endif
37# endif 82# endif
38 83
84# if HAVE_NANOSLEEP
85# ifndef EV_USE_NANOSLEEP
86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
91# endif
92
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
96# endif
97# else
98# undef EV_USE_SELECT
40# define EV_USE_SELECT 1 99# define EV_USE_SELECT 0
41# endif 100# endif
42 101
43# if HAVE_POLL && HAVE_POLL_H 102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
44# define EV_USE_POLL 1 108# define EV_USE_POLL 0
45# endif 109# endif
46 110
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112# ifndef EV_USE_EPOLL
113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
114# endif
115# else
116# undef EV_USE_EPOLL
48# define EV_USE_EPOLL 1 117# define EV_USE_EPOLL 0
49# endif 118# endif
50 119
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121# ifndef EV_USE_KQUEUE
122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123# endif
124# else
125# undef EV_USE_KQUEUE
52# define EV_USE_KQUEUE 1 126# define EV_USE_KQUEUE 0
53# endif 127# endif
54 128
129# if HAVE_PORT_H && HAVE_PORT_CREATE
130# ifndef EV_USE_PORT
131# define EV_USE_PORT EV_FEATURE_BACKENDS
132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
55#endif 136# endif
56 137
57#include <math.h> 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139# ifndef EV_USE_INOTIFY
140# define EV_USE_INOTIFY EV_FEATURE_OS
141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
145# endif
146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
58#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
59#include <fcntl.h> 169#include <fcntl.h>
60#include <stddef.h> 170#include <stddef.h>
61 171
62#include <stdio.h> 172#include <stdio.h>
63 173
64#include <assert.h> 174#include <assert.h>
65#include <errno.h> 175#include <errno.h>
66#include <sys/types.h> 176#include <sys/types.h>
67#include <time.h> 177#include <time.h>
178#include <limits.h>
68 179
69#include <signal.h> 180#include <signal.h>
70 181
182#ifdef EV_H
183# include EV_H
184#else
185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
197#endif
198
71#ifndef WIN32 199#ifndef _WIN32
72# include <unistd.h>
73# include <sys/time.h> 200# include <sys/time.h>
74# include <sys/wait.h> 201# include <sys/wait.h>
202# include <unistd.h>
203#else
204# include <io.h>
205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
207# include <windows.h>
208# ifndef EV_SELECT_IS_WINSOCKET
209# define EV_SELECT_IS_WINSOCKET 1
75#endif 210# endif
76/**/ 211# undef EV_AVOID_STDIO
212#endif
213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
221
222/* this block tries to deduce configuration from header-defined symbols and defaults */
223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# error "unable to find value for NSIG, please report"
247/* to make it compile regardless, just remove the above line, */
248/* but consider reporting it, too! :) */
249# define EV_NSIG 65
250#endif
251
252#ifndef EV_USE_FLOOR
253# define EV_USE_FLOOR 0
254#endif
255
256#ifndef EV_USE_CLOCK_SYSCALL
257# if __linux && __GLIBC__ >= 2
258# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
259# else
260# define EV_USE_CLOCK_SYSCALL 0
261# endif
262#endif
77 263
78#ifndef EV_USE_MONOTONIC 264#ifndef EV_USE_MONOTONIC
265# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
266# define EV_USE_MONOTONIC EV_FEATURE_OS
267# else
79# define EV_USE_MONOTONIC 1 268# define EV_USE_MONOTONIC 0
269# endif
270#endif
271
272#ifndef EV_USE_REALTIME
273# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
274#endif
275
276#ifndef EV_USE_NANOSLEEP
277# if _POSIX_C_SOURCE >= 199309L
278# define EV_USE_NANOSLEEP EV_FEATURE_OS
279# else
280# define EV_USE_NANOSLEEP 0
281# endif
80#endif 282#endif
81 283
82#ifndef EV_USE_SELECT 284#ifndef EV_USE_SELECT
83# define EV_USE_SELECT 1 285# define EV_USE_SELECT EV_FEATURE_BACKENDS
84#endif 286#endif
85 287
86#ifndef EV_USE_POLL 288#ifndef EV_USE_POLL
87# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 289# ifdef _WIN32
290# define EV_USE_POLL 0
291# else
292# define EV_USE_POLL EV_FEATURE_BACKENDS
293# endif
88#endif 294#endif
89 295
90#ifndef EV_USE_EPOLL 296#ifndef EV_USE_EPOLL
297# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
298# define EV_USE_EPOLL EV_FEATURE_BACKENDS
299# else
91# define EV_USE_EPOLL 0 300# define EV_USE_EPOLL 0
301# endif
92#endif 302#endif
93 303
94#ifndef EV_USE_KQUEUE 304#ifndef EV_USE_KQUEUE
95# define EV_USE_KQUEUE 0 305# define EV_USE_KQUEUE 0
96#endif 306#endif
97 307
308#ifndef EV_USE_PORT
309# define EV_USE_PORT 0
310#endif
311
98#ifndef EV_USE_WIN32 312#ifndef EV_USE_INOTIFY
99# ifdef WIN32 313# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
100# define EV_USE_WIN32 0 /* it does not exist, use select */ 314# define EV_USE_INOTIFY EV_FEATURE_OS
101# undef EV_USE_SELECT
102# define EV_USE_SELECT 1
103# else 315# else
104# define EV_USE_WIN32 0 316# define EV_USE_INOTIFY 0
105# endif 317# endif
106#endif 318#endif
107 319
320#ifndef EV_PID_HASHSIZE
321# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
322#endif
323
324#ifndef EV_INOTIFY_HASHSIZE
325# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
326#endif
327
108#ifndef EV_USE_REALTIME 328#ifndef EV_USE_EVENTFD
109# define EV_USE_REALTIME 1 329# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
330# define EV_USE_EVENTFD EV_FEATURE_OS
331# else
332# define EV_USE_EVENTFD 0
110#endif 333# endif
334#endif
111 335
112/**/ 336#ifndef EV_USE_SIGNALFD
337# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
338# define EV_USE_SIGNALFD EV_FEATURE_OS
339# else
340# define EV_USE_SIGNALFD 0
341# endif
342#endif
343
344#if 0 /* debugging */
345# define EV_VERIFY 3
346# define EV_USE_4HEAP 1
347# define EV_HEAP_CACHE_AT 1
348#endif
349
350#ifndef EV_VERIFY
351# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
352#endif
353
354#ifndef EV_USE_4HEAP
355# define EV_USE_4HEAP EV_FEATURE_DATA
356#endif
357
358#ifndef EV_HEAP_CACHE_AT
359# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
360#endif
361
362/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
363/* which makes programs even slower. might work on other unices, too. */
364#if EV_USE_CLOCK_SYSCALL
365# include <sys/syscall.h>
366# ifdef SYS_clock_gettime
367# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
368# undef EV_USE_MONOTONIC
369# define EV_USE_MONOTONIC 1
370# else
371# undef EV_USE_CLOCK_SYSCALL
372# define EV_USE_CLOCK_SYSCALL 0
373# endif
374#endif
375
376/* this block fixes any misconfiguration where we know we run into trouble otherwise */
377
378#ifdef _AIX
379/* AIX has a completely broken poll.h header */
380# undef EV_USE_POLL
381# define EV_USE_POLL 0
382#endif
113 383
114#ifndef CLOCK_MONOTONIC 384#ifndef CLOCK_MONOTONIC
115# undef EV_USE_MONOTONIC 385# undef EV_USE_MONOTONIC
116# define EV_USE_MONOTONIC 0 386# define EV_USE_MONOTONIC 0
117#endif 387#endif
119#ifndef CLOCK_REALTIME 389#ifndef CLOCK_REALTIME
120# undef EV_USE_REALTIME 390# undef EV_USE_REALTIME
121# define EV_USE_REALTIME 0 391# define EV_USE_REALTIME 0
122#endif 392#endif
123 393
394#if !EV_STAT_ENABLE
395# undef EV_USE_INOTIFY
396# define EV_USE_INOTIFY 0
397#endif
398
399#if !EV_USE_NANOSLEEP
400/* hp-ux has it in sys/time.h, which we unconditionally include above */
401# if !defined _WIN32 && !defined __hpux
402# include <sys/select.h>
403# endif
404#endif
405
406#if EV_USE_INOTIFY
407# include <sys/statfs.h>
408# include <sys/inotify.h>
409/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
410# ifndef IN_DONT_FOLLOW
411# undef EV_USE_INOTIFY
412# define EV_USE_INOTIFY 0
413# endif
414#endif
415
416#if EV_USE_EVENTFD
417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
418# include <stdint.h>
419# ifndef EFD_NONBLOCK
420# define EFD_NONBLOCK O_NONBLOCK
421# endif
422# ifndef EFD_CLOEXEC
423# ifdef O_CLOEXEC
424# define EFD_CLOEXEC O_CLOEXEC
425# else
426# define EFD_CLOEXEC 02000000
427# endif
428# endif
429EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
430#endif
431
432#if EV_USE_SIGNALFD
433/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
434# include <stdint.h>
435# ifndef SFD_NONBLOCK
436# define SFD_NONBLOCK O_NONBLOCK
437# endif
438# ifndef SFD_CLOEXEC
439# ifdef O_CLOEXEC
440# define SFD_CLOEXEC O_CLOEXEC
441# else
442# define SFD_CLOEXEC 02000000
443# endif
444# endif
445EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
446
447struct signalfd_siginfo
448{
449 uint32_t ssi_signo;
450 char pad[128 - sizeof (uint32_t)];
451};
452#endif
453
124/**/ 454/**/
125 455
456#if EV_VERIFY >= 3
457# define EV_FREQUENT_CHECK ev_verify (EV_A)
458#else
459# define EV_FREQUENT_CHECK do { } while (0)
460#endif
461
462/*
463 * This is used to work around floating point rounding problems.
464 * This value is good at least till the year 4000.
465 */
466#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
467/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
468
126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 469#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 470#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
130 471
131#include "ev.h" 472#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
473#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
132 474
475/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
476/* ECB.H BEGIN */
477/*
478 * libecb - http://software.schmorp.de/pkg/libecb
479 *
480 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
481 * Copyright (©) 2011 Emanuele Giaquinta
482 * All rights reserved.
483 *
484 * Redistribution and use in source and binary forms, with or without modifica-
485 * tion, are permitted provided that the following conditions are met:
486 *
487 * 1. Redistributions of source code must retain the above copyright notice,
488 * this list of conditions and the following disclaimer.
489 *
490 * 2. Redistributions in binary form must reproduce the above copyright
491 * notice, this list of conditions and the following disclaimer in the
492 * documentation and/or other materials provided with the distribution.
493 *
494 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
495 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
496 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
497 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
498 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
499 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
500 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
501 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
502 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
503 * OF THE POSSIBILITY OF SUCH DAMAGE.
504 */
505
506#ifndef ECB_H
507#define ECB_H
508
509/* 16 bits major, 16 bits minor */
510#define ECB_VERSION 0x00010002
511
512#ifdef _WIN32
513 typedef signed char int8_t;
514 typedef unsigned char uint8_t;
515 typedef signed short int16_t;
516 typedef unsigned short uint16_t;
517 typedef signed int int32_t;
518 typedef unsigned int uint32_t;
133#if __GNUC__ >= 3 519 #if __GNUC__
134# define expect(expr,value) __builtin_expect ((expr),(value)) 520 typedef signed long long int64_t;
135# define inline inline 521 typedef unsigned long long uint64_t;
522 #else /* _MSC_VER || __BORLANDC__ */
523 typedef signed __int64 int64_t;
524 typedef unsigned __int64 uint64_t;
525 #endif
526 #ifdef _WIN64
527 #define ECB_PTRSIZE 8
528 typedef uint64_t uintptr_t;
529 typedef int64_t intptr_t;
530 #else
531 #define ECB_PTRSIZE 4
532 typedef uint32_t uintptr_t;
533 typedef int32_t intptr_t;
534 #endif
136#else 535#else
137# define expect(expr,value) (expr) 536 #include <inttypes.h>
138# define inline static 537 #if UINTMAX_MAX > 0xffffffffU
538 #define ECB_PTRSIZE 8
539 #else
540 #define ECB_PTRSIZE 4
139#endif 541 #endif
542#endif
140 543
141#define expect_false(expr) expect ((expr) != 0, 0) 544/* many compilers define _GNUC_ to some versions but then only implement
142#define expect_true(expr) expect ((expr) != 0, 1) 545 * what their idiot authors think are the "more important" extensions,
546 * causing enormous grief in return for some better fake benchmark numbers.
547 * or so.
548 * we try to detect these and simply assume they are not gcc - if they have
549 * an issue with that they should have done it right in the first place.
550 */
551#ifndef ECB_GCC_VERSION
552 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
553 #define ECB_GCC_VERSION(major,minor) 0
554 #else
555 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
556 #endif
557#endif
143 558
144#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 559#define ECB_C (__STDC__+0) /* this assumes that __STDC__ is either empty or a number */
145#define ABSPRI(w) ((w)->priority - EV_MINPRI) 560#define ECB_C99 (__STDC_VERSION__ >= 199901L)
561#define ECB_C11 (__STDC_VERSION__ >= 201112L)
562#define ECB_CPP (__cplusplus+0)
563#define ECB_CPP11 (__cplusplus >= 201103L)
146 564
147typedef struct ev_watcher *W; 565#if ECB_CPP
148typedef struct ev_watcher_list *WL; 566 #define ECB_EXTERN_C extern "C"
149typedef struct ev_watcher_time *WT; 567 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
150 568 #define ECB_EXTERN_C_END }
151static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 569#else
152 570 #define ECB_EXTERN_C extern
153#include "ev_win32.c" 571 #define ECB_EXTERN_C_BEG
572 #define ECB_EXTERN_C_END
573#endif
154 574
155/*****************************************************************************/ 575/*****************************************************************************/
156 576
577/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
578/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
579
580#if ECB_NO_THREADS
581 #define ECB_NO_SMP 1
582#endif
583
584#if ECB_NO_SMP
585 #define ECB_MEMORY_FENCE do { } while (0)
586#endif
587
588#ifndef ECB_MEMORY_FENCE
589 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
590 #if __i386 || __i386__
591 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
592 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
593 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
594 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
595 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
596 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
597 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
598 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
599 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
600 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
601 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
602 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
603 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
604 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
605 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
606 #elif __sparc || __sparc__
607 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
608 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
609 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
610 #elif defined __s390__ || defined __s390x__
611 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
612 #elif defined __mips__
613 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
614 #elif defined __alpha__
615 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
616 #elif defined __hppa__
617 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
618 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
619 #elif defined __ia64__
620 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
621 #endif
622 #endif
623#endif
624
625#ifndef ECB_MEMORY_FENCE
626 #if ECB_GCC_VERSION(4,7)
627 /* see comment below (stdatomic.h) about the C11 memory model. */
628 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
629
630 /* The __has_feature syntax from clang is so misdesigned that we cannot use it
631 * without risking compile time errors with other compilers. We *could*
632 * define our own ecb_clang_has_feature, but I just can't be bothered to work
633 * around this shit time and again.
634 * #elif defined __clang && __has_feature (cxx_atomic)
635 * // see comment below (stdatomic.h) about the C11 memory model.
636 * #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
637 */
638
639 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
640 #define ECB_MEMORY_FENCE __sync_synchronize ()
641 #elif _MSC_VER >= 1400 /* VC++ 2005 */
642 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
643 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
644 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
645 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
646 #elif defined _WIN32
647 #include <WinNT.h>
648 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
649 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
650 #include <mbarrier.h>
651 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
652 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
653 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
654 #elif __xlC__
655 #define ECB_MEMORY_FENCE __sync ()
656 #endif
657#endif
658
659#ifndef ECB_MEMORY_FENCE
660 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
661 /* we assume that these memory fences work on all variables/all memory accesses, */
662 /* not just C11 atomics and atomic accesses */
663 #include <stdatomic.h>
664 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
665 /* any fence other than seq_cst, which isn't very efficient for us. */
666 /* Why that is, we don't know - either the C11 memory model is quite useless */
667 /* for most usages, or gcc and clang have a bug */
668 /* I *currently* lean towards the latter, and inefficiently implement */
669 /* all three of ecb's fences as a seq_cst fence */
670 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
671 #endif
672#endif
673
674#ifndef ECB_MEMORY_FENCE
675 #if !ECB_AVOID_PTHREADS
676 /*
677 * if you get undefined symbol references to pthread_mutex_lock,
678 * or failure to find pthread.h, then you should implement
679 * the ECB_MEMORY_FENCE operations for your cpu/compiler
680 * OR provide pthread.h and link against the posix thread library
681 * of your system.
682 */
683 #include <pthread.h>
684 #define ECB_NEEDS_PTHREADS 1
685 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
686
687 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
688 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
689 #endif
690#endif
691
692#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
693 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
694#endif
695
696#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
697 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
698#endif
699
700/*****************************************************************************/
701
702#if __cplusplus
703 #define ecb_inline static inline
704#elif ECB_GCC_VERSION(2,5)
705 #define ecb_inline static __inline__
706#elif ECB_C99
707 #define ecb_inline static inline
708#else
709 #define ecb_inline static
710#endif
711
712#if ECB_GCC_VERSION(3,3)
713 #define ecb_restrict __restrict__
714#elif ECB_C99
715 #define ecb_restrict restrict
716#else
717 #define ecb_restrict
718#endif
719
720typedef int ecb_bool;
721
722#define ECB_CONCAT_(a, b) a ## b
723#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
724#define ECB_STRINGIFY_(a) # a
725#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
726
727#define ecb_function_ ecb_inline
728
729#if ECB_GCC_VERSION(3,1)
730 #define ecb_attribute(attrlist) __attribute__(attrlist)
731 #define ecb_is_constant(expr) __builtin_constant_p (expr)
732 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
733 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
734#else
735 #define ecb_attribute(attrlist)
736 #define ecb_is_constant(expr) 0
737 #define ecb_expect(expr,value) (expr)
738 #define ecb_prefetch(addr,rw,locality)
739#endif
740
741/* no emulation for ecb_decltype */
742#if ECB_GCC_VERSION(4,5)
743 #define ecb_decltype(x) __decltype(x)
744#elif ECB_GCC_VERSION(3,0)
745 #define ecb_decltype(x) __typeof(x)
746#endif
747
748#define ecb_noinline ecb_attribute ((__noinline__))
749#define ecb_unused ecb_attribute ((__unused__))
750#define ecb_const ecb_attribute ((__const__))
751#define ecb_pure ecb_attribute ((__pure__))
752
753#if ECB_C11
754 #define ecb_noreturn _Noreturn
755#else
756 #define ecb_noreturn ecb_attribute ((__noreturn__))
757#endif
758
759#if ECB_GCC_VERSION(4,3)
760 #define ecb_artificial ecb_attribute ((__artificial__))
761 #define ecb_hot ecb_attribute ((__hot__))
762 #define ecb_cold ecb_attribute ((__cold__))
763#else
764 #define ecb_artificial
765 #define ecb_hot
766 #define ecb_cold
767#endif
768
769/* put around conditional expressions if you are very sure that the */
770/* expression is mostly true or mostly false. note that these return */
771/* booleans, not the expression. */
772#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
773#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
774/* for compatibility to the rest of the world */
775#define ecb_likely(expr) ecb_expect_true (expr)
776#define ecb_unlikely(expr) ecb_expect_false (expr)
777
778/* count trailing zero bits and count # of one bits */
779#if ECB_GCC_VERSION(3,4)
780 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
781 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
782 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
783 #define ecb_ctz32(x) __builtin_ctz (x)
784 #define ecb_ctz64(x) __builtin_ctzll (x)
785 #define ecb_popcount32(x) __builtin_popcount (x)
786 /* no popcountll */
787#else
788 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
789 ecb_function_ int
790 ecb_ctz32 (uint32_t x)
791 {
792 int r = 0;
793
794 x &= ~x + 1; /* this isolates the lowest bit */
795
796#if ECB_branchless_on_i386
797 r += !!(x & 0xaaaaaaaa) << 0;
798 r += !!(x & 0xcccccccc) << 1;
799 r += !!(x & 0xf0f0f0f0) << 2;
800 r += !!(x & 0xff00ff00) << 3;
801 r += !!(x & 0xffff0000) << 4;
802#else
803 if (x & 0xaaaaaaaa) r += 1;
804 if (x & 0xcccccccc) r += 2;
805 if (x & 0xf0f0f0f0) r += 4;
806 if (x & 0xff00ff00) r += 8;
807 if (x & 0xffff0000) r += 16;
808#endif
809
810 return r;
811 }
812
813 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
814 ecb_function_ int
815 ecb_ctz64 (uint64_t x)
816 {
817 int shift = x & 0xffffffffU ? 0 : 32;
818 return ecb_ctz32 (x >> shift) + shift;
819 }
820
821 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
822 ecb_function_ int
823 ecb_popcount32 (uint32_t x)
824 {
825 x -= (x >> 1) & 0x55555555;
826 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
827 x = ((x >> 4) + x) & 0x0f0f0f0f;
828 x *= 0x01010101;
829
830 return x >> 24;
831 }
832
833 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
834 ecb_function_ int ecb_ld32 (uint32_t x)
835 {
836 int r = 0;
837
838 if (x >> 16) { x >>= 16; r += 16; }
839 if (x >> 8) { x >>= 8; r += 8; }
840 if (x >> 4) { x >>= 4; r += 4; }
841 if (x >> 2) { x >>= 2; r += 2; }
842 if (x >> 1) { r += 1; }
843
844 return r;
845 }
846
847 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
848 ecb_function_ int ecb_ld64 (uint64_t x)
849 {
850 int r = 0;
851
852 if (x >> 32) { x >>= 32; r += 32; }
853
854 return r + ecb_ld32 (x);
855 }
856#endif
857
858ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
859ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
860ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
861ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
862
863ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
864ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
865{
866 return ( (x * 0x0802U & 0x22110U)
867 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
868}
869
870ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
871ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
872{
873 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
874 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
875 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
876 x = ( x >> 8 ) | ( x << 8);
877
878 return x;
879}
880
881ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
882ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
883{
884 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
885 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
886 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
887 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
888 x = ( x >> 16 ) | ( x << 16);
889
890 return x;
891}
892
893/* popcount64 is only available on 64 bit cpus as gcc builtin */
894/* so for this version we are lazy */
895ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
896ecb_function_ int
897ecb_popcount64 (uint64_t x)
898{
899 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
900}
901
902ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
903ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
904ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
905ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
906ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
907ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
908ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
909ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
910
911ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
912ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
913ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
914ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
915ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
916ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
917ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
918ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
919
920#if ECB_GCC_VERSION(4,3)
921 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
922 #define ecb_bswap32(x) __builtin_bswap32 (x)
923 #define ecb_bswap64(x) __builtin_bswap64 (x)
924#else
925 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
926 ecb_function_ uint16_t
927 ecb_bswap16 (uint16_t x)
928 {
929 return ecb_rotl16 (x, 8);
930 }
931
932 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
933 ecb_function_ uint32_t
934 ecb_bswap32 (uint32_t x)
935 {
936 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
937 }
938
939 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
940 ecb_function_ uint64_t
941 ecb_bswap64 (uint64_t x)
942 {
943 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
944 }
945#endif
946
947#if ECB_GCC_VERSION(4,5)
948 #define ecb_unreachable() __builtin_unreachable ()
949#else
950 /* this seems to work fine, but gcc always emits a warning for it :/ */
951 ecb_inline void ecb_unreachable (void) ecb_noreturn;
952 ecb_inline void ecb_unreachable (void) { }
953#endif
954
955/* try to tell the compiler that some condition is definitely true */
956#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
957
958ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
959ecb_inline unsigned char
960ecb_byteorder_helper (void)
961{
962 /* the union code still generates code under pressure in gcc, */
963 /* but less than using pointers, and always seems to */
964 /* successfully return a constant. */
965 /* the reason why we have this horrible preprocessor mess */
966 /* is to avoid it in all cases, at least on common architectures */
967 /* or when using a recent enough gcc version (>= 4.6) */
968#if __i386 || __i386__ || _M_X86 || __amd64 || __amd64__ || _M_X64
969 return 0x44;
970#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
971 return 0x44;
972#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
973 return 0x11;
974#else
975 union
976 {
977 uint32_t i;
978 uint8_t c;
979 } u = { 0x11223344 };
980 return u.c;
981#endif
982}
983
984ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
985ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
986ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
987ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
988
989#if ECB_GCC_VERSION(3,0) || ECB_C99
990 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
991#else
992 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
993#endif
994
995#if __cplusplus
996 template<typename T>
997 static inline T ecb_div_rd (T val, T div)
998 {
999 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1000 }
1001 template<typename T>
1002 static inline T ecb_div_ru (T val, T div)
1003 {
1004 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1005 }
1006#else
1007 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1008 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1009#endif
1010
1011#if ecb_cplusplus_does_not_suck
1012 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1013 template<typename T, int N>
1014 static inline int ecb_array_length (const T (&arr)[N])
1015 {
1016 return N;
1017 }
1018#else
1019 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1020#endif
1021
1022/*******************************************************************************/
1023/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1024
1025/* basically, everything uses "ieee pure-endian" floating point numbers */
1026/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1027#if 0 \
1028 || __i386 || __i386__ \
1029 || __amd64 || __amd64__ || __x86_64 || __x86_64__ \
1030 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1031 || defined __arm__ && defined __ARM_EABI__ \
1032 || defined __s390__ || defined __s390x__ \
1033 || defined __mips__ \
1034 || defined __alpha__ \
1035 || defined __hppa__ \
1036 || defined __ia64__ \
1037 || defined _M_IX86 || defined _M_AMD64 || defined _M_IA64
1038 #define ECB_STDFP 1
1039 #include <string.h> /* for memcpy */
1040#else
1041 #define ECB_STDFP 0
1042 #include <math.h> /* for frexp*, ldexp* */
1043#endif
1044
1045#ifndef ECB_NO_LIBM
1046
1047 /* convert a float to ieee single/binary32 */
1048 ecb_function_ uint32_t ecb_float_to_binary32 (float x) ecb_const;
1049 ecb_function_ uint32_t
1050 ecb_float_to_binary32 (float x)
1051 {
1052 uint32_t r;
1053
1054 #if ECB_STDFP
1055 memcpy (&r, &x, 4);
1056 #else
1057 /* slow emulation, works for anything but -0 */
1058 uint32_t m;
1059 int e;
1060
1061 if (x == 0e0f ) return 0x00000000U;
1062 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1063 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1064 if (x != x ) return 0x7fbfffffU;
1065
1066 m = frexpf (x, &e) * 0x1000000U;
1067
1068 r = m & 0x80000000U;
1069
1070 if (r)
1071 m = -m;
1072
1073 if (e <= -126)
1074 {
1075 m &= 0xffffffU;
1076 m >>= (-125 - e);
1077 e = -126;
1078 }
1079
1080 r |= (e + 126) << 23;
1081 r |= m & 0x7fffffU;
1082 #endif
1083
1084 return r;
1085 }
1086
1087 /* converts an ieee single/binary32 to a float */
1088 ecb_function_ float ecb_binary32_to_float (uint32_t x) ecb_const;
1089 ecb_function_ float
1090 ecb_binary32_to_float (uint32_t x)
1091 {
1092 float r;
1093
1094 #if ECB_STDFP
1095 memcpy (&r, &x, 4);
1096 #else
1097 /* emulation, only works for normals and subnormals and +0 */
1098 int neg = x >> 31;
1099 int e = (x >> 23) & 0xffU;
1100
1101 x &= 0x7fffffU;
1102
1103 if (e)
1104 x |= 0x800000U;
1105 else
1106 e = 1;
1107
1108 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1109 r = ldexpf (x * (0.5f / 0x800000U), e - 126);
1110
1111 r = neg ? -r : r;
1112 #endif
1113
1114 return r;
1115 }
1116
1117 /* convert a double to ieee double/binary64 */
1118 ecb_function_ uint64_t ecb_double_to_binary64 (double x) ecb_const;
1119 ecb_function_ uint64_t
1120 ecb_double_to_binary64 (double x)
1121 {
1122 uint64_t r;
1123
1124 #if ECB_STDFP
1125 memcpy (&r, &x, 8);
1126 #else
1127 /* slow emulation, works for anything but -0 */
1128 uint64_t m;
1129 int e;
1130
1131 if (x == 0e0 ) return 0x0000000000000000U;
1132 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1133 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1134 if (x != x ) return 0X7ff7ffffffffffffU;
1135
1136 m = frexp (x, &e) * 0x20000000000000U;
1137
1138 r = m & 0x8000000000000000;;
1139
1140 if (r)
1141 m = -m;
1142
1143 if (e <= -1022)
1144 {
1145 m &= 0x1fffffffffffffU;
1146 m >>= (-1021 - e);
1147 e = -1022;
1148 }
1149
1150 r |= ((uint64_t)(e + 1022)) << 52;
1151 r |= m & 0xfffffffffffffU;
1152 #endif
1153
1154 return r;
1155 }
1156
1157 /* converts an ieee double/binary64 to a double */
1158 ecb_function_ double ecb_binary64_to_double (uint64_t x) ecb_const;
1159 ecb_function_ double
1160 ecb_binary64_to_double (uint64_t x)
1161 {
1162 double r;
1163
1164 #if ECB_STDFP
1165 memcpy (&r, &x, 8);
1166 #else
1167 /* emulation, only works for normals and subnormals and +0 */
1168 int neg = x >> 63;
1169 int e = (x >> 52) & 0x7ffU;
1170
1171 x &= 0xfffffffffffffU;
1172
1173 if (e)
1174 x |= 0x10000000000000U;
1175 else
1176 e = 1;
1177
1178 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1179 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1180
1181 r = neg ? -r : r;
1182 #endif
1183
1184 return r;
1185 }
1186
1187#endif
1188
1189#endif
1190
1191/* ECB.H END */
1192
1193#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1194/* if your architecture doesn't need memory fences, e.g. because it is
1195 * single-cpu/core, or if you use libev in a project that doesn't use libev
1196 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1197 * libev, in which cases the memory fences become nops.
1198 * alternatively, you can remove this #error and link against libpthread,
1199 * which will then provide the memory fences.
1200 */
1201# error "memory fences not defined for your architecture, please report"
1202#endif
1203
1204#ifndef ECB_MEMORY_FENCE
1205# define ECB_MEMORY_FENCE do { } while (0)
1206# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1207# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1208#endif
1209
1210#define expect_false(cond) ecb_expect_false (cond)
1211#define expect_true(cond) ecb_expect_true (cond)
1212#define noinline ecb_noinline
1213
1214#define inline_size ecb_inline
1215
1216#if EV_FEATURE_CODE
1217# define inline_speed ecb_inline
1218#else
1219# define inline_speed static noinline
1220#endif
1221
1222#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1223
1224#if EV_MINPRI == EV_MAXPRI
1225# define ABSPRI(w) (((W)w), 0)
1226#else
1227# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1228#endif
1229
1230#define EMPTY /* required for microsofts broken pseudo-c compiler */
1231#define EMPTY2(a,b) /* used to suppress some warnings */
1232
1233typedef ev_watcher *W;
1234typedef ev_watcher_list *WL;
1235typedef ev_watcher_time *WT;
1236
1237#define ev_active(w) ((W)(w))->active
1238#define ev_at(w) ((WT)(w))->at
1239
1240#if EV_USE_REALTIME
1241/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1242/* giving it a reasonably high chance of working on typical architectures */
1243static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1244#endif
1245
1246#if EV_USE_MONOTONIC
1247static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1248#endif
1249
1250#ifndef EV_FD_TO_WIN32_HANDLE
1251# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1252#endif
1253#ifndef EV_WIN32_HANDLE_TO_FD
1254# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1255#endif
1256#ifndef EV_WIN32_CLOSE_FD
1257# define EV_WIN32_CLOSE_FD(fd) close (fd)
1258#endif
1259
1260#ifdef _WIN32
1261# include "ev_win32.c"
1262#endif
1263
1264/*****************************************************************************/
1265
1266/* define a suitable floor function (only used by periodics atm) */
1267
1268#if EV_USE_FLOOR
1269# include <math.h>
1270# define ev_floor(v) floor (v)
1271#else
1272
1273#include <float.h>
1274
1275/* a floor() replacement function, should be independent of ev_tstamp type */
1276static ev_tstamp noinline
1277ev_floor (ev_tstamp v)
1278{
1279 /* the choice of shift factor is not terribly important */
1280#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1281 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1282#else
1283 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1284#endif
1285
1286 /* argument too large for an unsigned long? */
1287 if (expect_false (v >= shift))
1288 {
1289 ev_tstamp f;
1290
1291 if (v == v - 1.)
1292 return v; /* very large number */
1293
1294 f = shift * ev_floor (v * (1. / shift));
1295 return f + ev_floor (v - f);
1296 }
1297
1298 /* special treatment for negative args? */
1299 if (expect_false (v < 0.))
1300 {
1301 ev_tstamp f = -ev_floor (-v);
1302
1303 return f - (f == v ? 0 : 1);
1304 }
1305
1306 /* fits into an unsigned long */
1307 return (unsigned long)v;
1308}
1309
1310#endif
1311
1312/*****************************************************************************/
1313
1314#ifdef __linux
1315# include <sys/utsname.h>
1316#endif
1317
1318static unsigned int noinline ecb_cold
1319ev_linux_version (void)
1320{
1321#ifdef __linux
1322 unsigned int v = 0;
1323 struct utsname buf;
1324 int i;
1325 char *p = buf.release;
1326
1327 if (uname (&buf))
1328 return 0;
1329
1330 for (i = 3+1; --i; )
1331 {
1332 unsigned int c = 0;
1333
1334 for (;;)
1335 {
1336 if (*p >= '0' && *p <= '9')
1337 c = c * 10 + *p++ - '0';
1338 else
1339 {
1340 p += *p == '.';
1341 break;
1342 }
1343 }
1344
1345 v = (v << 8) | c;
1346 }
1347
1348 return v;
1349#else
1350 return 0;
1351#endif
1352}
1353
1354/*****************************************************************************/
1355
1356#if EV_AVOID_STDIO
1357static void noinline ecb_cold
1358ev_printerr (const char *msg)
1359{
1360 write (STDERR_FILENO, msg, strlen (msg));
1361}
1362#endif
1363
157static void (*syserr_cb)(const char *msg); 1364static void (*syserr_cb)(const char *msg) EV_THROW;
158 1365
1366void ecb_cold
159void ev_set_syserr_cb (void (*cb)(const char *msg)) 1367ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
160{ 1368{
161 syserr_cb = cb; 1369 syserr_cb = cb;
162} 1370}
163 1371
164static void 1372static void noinline ecb_cold
165syserr (const char *msg) 1373ev_syserr (const char *msg)
166{ 1374{
167 if (!msg) 1375 if (!msg)
168 msg = "(libev) system error"; 1376 msg = "(libev) system error";
169 1377
170 if (syserr_cb) 1378 if (syserr_cb)
171 syserr_cb (msg); 1379 syserr_cb (msg);
172 else 1380 else
173 { 1381 {
1382#if EV_AVOID_STDIO
1383 ev_printerr (msg);
1384 ev_printerr (": ");
1385 ev_printerr (strerror (errno));
1386 ev_printerr ("\n");
1387#else
174 perror (msg); 1388 perror (msg);
1389#endif
175 abort (); 1390 abort ();
176 } 1391 }
177} 1392}
178 1393
1394static void *
1395ev_realloc_emul (void *ptr, long size) EV_THROW
1396{
1397 /* some systems, notably openbsd and darwin, fail to properly
1398 * implement realloc (x, 0) (as required by both ansi c-89 and
1399 * the single unix specification, so work around them here.
1400 * recently, also (at least) fedora and debian started breaking it,
1401 * despite documenting it otherwise.
1402 */
1403
1404 if (size)
1405 return realloc (ptr, size);
1406
1407 free (ptr);
1408 return 0;
1409}
1410
179static void *(*alloc)(void *ptr, long size); 1411static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
180 1412
1413void ecb_cold
181void ev_set_allocator (void *(*cb)(void *ptr, long size)) 1414ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
182{ 1415{
183 alloc = cb; 1416 alloc = cb;
184} 1417}
185 1418
186static void * 1419inline_speed void *
187ev_realloc (void *ptr, long size) 1420ev_realloc (void *ptr, long size)
188{ 1421{
189 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1422 ptr = alloc (ptr, size);
190 1423
191 if (!ptr && size) 1424 if (!ptr && size)
192 { 1425 {
1426#if EV_AVOID_STDIO
1427 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1428#else
193 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1429 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1430#endif
194 abort (); 1431 abort ();
195 } 1432 }
196 1433
197 return ptr; 1434 return ptr;
198} 1435}
200#define ev_malloc(size) ev_realloc (0, (size)) 1437#define ev_malloc(size) ev_realloc (0, (size))
201#define ev_free(ptr) ev_realloc ((ptr), 0) 1438#define ev_free(ptr) ev_realloc ((ptr), 0)
202 1439
203/*****************************************************************************/ 1440/*****************************************************************************/
204 1441
1442/* set in reify when reification needed */
1443#define EV_ANFD_REIFY 1
1444
1445/* file descriptor info structure */
205typedef struct 1446typedef struct
206{ 1447{
207 WL head; 1448 WL head;
208 unsigned char events; 1449 unsigned char events; /* the events watched for */
1450 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1451 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
209 unsigned char reify; 1452 unsigned char unused;
1453#if EV_USE_EPOLL
1454 unsigned int egen; /* generation counter to counter epoll bugs */
1455#endif
1456#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1457 SOCKET handle;
1458#endif
1459#if EV_USE_IOCP
1460 OVERLAPPED or, ow;
1461#endif
210} ANFD; 1462} ANFD;
211 1463
1464/* stores the pending event set for a given watcher */
212typedef struct 1465typedef struct
213{ 1466{
214 W w; 1467 W w;
215 int events; 1468 int events; /* the pending event set for the given watcher */
216} ANPENDING; 1469} ANPENDING;
217 1470
1471#if EV_USE_INOTIFY
1472/* hash table entry per inotify-id */
1473typedef struct
1474{
1475 WL head;
1476} ANFS;
1477#endif
1478
1479/* Heap Entry */
1480#if EV_HEAP_CACHE_AT
1481 /* a heap element */
1482 typedef struct {
1483 ev_tstamp at;
1484 WT w;
1485 } ANHE;
1486
1487 #define ANHE_w(he) (he).w /* access watcher, read-write */
1488 #define ANHE_at(he) (he).at /* access cached at, read-only */
1489 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1490#else
1491 /* a heap element */
1492 typedef WT ANHE;
1493
1494 #define ANHE_w(he) (he)
1495 #define ANHE_at(he) (he)->at
1496 #define ANHE_at_cache(he)
1497#endif
1498
218#if EV_MULTIPLICITY 1499#if EV_MULTIPLICITY
219 1500
220struct ev_loop 1501 struct ev_loop
221{ 1502 {
1503 ev_tstamp ev_rt_now;
1504 #define ev_rt_now ((loop)->ev_rt_now)
222# define VAR(name,decl) decl; 1505 #define VAR(name,decl) decl;
223# include "ev_vars.h" 1506 #include "ev_vars.h"
224};
225# undef VAR 1507 #undef VAR
1508 };
226# include "ev_wrap.h" 1509 #include "ev_wrap.h"
1510
1511 static struct ev_loop default_loop_struct;
1512 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
227 1513
228#else 1514#else
229 1515
1516 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
230# define VAR(name,decl) static decl; 1517 #define VAR(name,decl) static decl;
231# include "ev_vars.h" 1518 #include "ev_vars.h"
232# undef VAR 1519 #undef VAR
233 1520
1521 static int ev_default_loop_ptr;
1522
234#endif 1523#endif
1524
1525#if EV_FEATURE_API
1526# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1527# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1528# define EV_INVOKE_PENDING invoke_cb (EV_A)
1529#else
1530# define EV_RELEASE_CB (void)0
1531# define EV_ACQUIRE_CB (void)0
1532# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1533#endif
1534
1535#define EVBREAK_RECURSE 0x80
235 1536
236/*****************************************************************************/ 1537/*****************************************************************************/
237 1538
238inline ev_tstamp 1539#ifndef EV_HAVE_EV_TIME
1540ev_tstamp
239ev_time (void) 1541ev_time (void) EV_THROW
240{ 1542{
241#if EV_USE_REALTIME 1543#if EV_USE_REALTIME
1544 if (expect_true (have_realtime))
1545 {
242 struct timespec ts; 1546 struct timespec ts;
243 clock_gettime (CLOCK_REALTIME, &ts); 1547 clock_gettime (CLOCK_REALTIME, &ts);
244 return ts.tv_sec + ts.tv_nsec * 1e-9; 1548 return ts.tv_sec + ts.tv_nsec * 1e-9;
245#else 1549 }
1550#endif
1551
246 struct timeval tv; 1552 struct timeval tv;
247 gettimeofday (&tv, 0); 1553 gettimeofday (&tv, 0);
248 return tv.tv_sec + tv.tv_usec * 1e-6; 1554 return tv.tv_sec + tv.tv_usec * 1e-6;
249#endif
250} 1555}
1556#endif
251 1557
252inline ev_tstamp 1558inline_size ev_tstamp
253get_clock (void) 1559get_clock (void)
254{ 1560{
255#if EV_USE_MONOTONIC 1561#if EV_USE_MONOTONIC
256 if (expect_true (have_monotonic)) 1562 if (expect_true (have_monotonic))
257 { 1563 {
262#endif 1568#endif
263 1569
264 return ev_time (); 1570 return ev_time ();
265} 1571}
266 1572
1573#if EV_MULTIPLICITY
267ev_tstamp 1574ev_tstamp
268ev_now (EV_P) 1575ev_now (EV_P) EV_THROW
269{ 1576{
270 return rt_now; 1577 return ev_rt_now;
271} 1578}
1579#endif
272 1580
273#define array_roundsize(type,n) ((n) | 4 & ~3) 1581void
1582ev_sleep (ev_tstamp delay) EV_THROW
1583{
1584 if (delay > 0.)
1585 {
1586#if EV_USE_NANOSLEEP
1587 struct timespec ts;
1588
1589 EV_TS_SET (ts, delay);
1590 nanosleep (&ts, 0);
1591#elif defined _WIN32
1592 Sleep ((unsigned long)(delay * 1e3));
1593#else
1594 struct timeval tv;
1595
1596 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1597 /* something not guaranteed by newer posix versions, but guaranteed */
1598 /* by older ones */
1599 EV_TV_SET (tv, delay);
1600 select (0, 0, 0, 0, &tv);
1601#endif
1602 }
1603}
1604
1605/*****************************************************************************/
1606
1607#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1608
1609/* find a suitable new size for the given array, */
1610/* hopefully by rounding to a nice-to-malloc size */
1611inline_size int
1612array_nextsize (int elem, int cur, int cnt)
1613{
1614 int ncur = cur + 1;
1615
1616 do
1617 ncur <<= 1;
1618 while (cnt > ncur);
1619
1620 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1621 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1622 {
1623 ncur *= elem;
1624 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1625 ncur = ncur - sizeof (void *) * 4;
1626 ncur /= elem;
1627 }
1628
1629 return ncur;
1630}
1631
1632static void * noinline ecb_cold
1633array_realloc (int elem, void *base, int *cur, int cnt)
1634{
1635 *cur = array_nextsize (elem, *cur, cnt);
1636 return ev_realloc (base, elem * *cur);
1637}
1638
1639#define array_init_zero(base,count) \
1640 memset ((void *)(base), 0, sizeof (*(base)) * (count))
274 1641
275#define array_needsize(type,base,cur,cnt,init) \ 1642#define array_needsize(type,base,cur,cnt,init) \
276 if (expect_false ((cnt) > cur)) \ 1643 if (expect_false ((cnt) > (cur))) \
277 { \ 1644 { \
278 int newcnt = cur; \ 1645 int ecb_unused ocur_ = (cur); \
279 do \ 1646 (base) = (type *)array_realloc \
280 { \ 1647 (sizeof (type), (base), &(cur), (cnt)); \
281 newcnt = array_roundsize (type, newcnt << 1); \ 1648 init ((base) + (ocur_), (cur) - ocur_); \
282 } \
283 while ((cnt) > newcnt); \
284 \
285 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
286 init (base + cur, newcnt - cur); \
287 cur = newcnt; \
288 } 1649 }
289 1650
1651#if 0
290#define array_slim(type,stem) \ 1652#define array_slim(type,stem) \
291 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 1653 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
292 { \ 1654 { \
293 stem ## max = array_roundsize (stem ## cnt >> 1); \ 1655 stem ## max = array_roundsize (stem ## cnt >> 1); \
294 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 1656 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
295 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1657 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
296 } 1658 }
297 1659#endif
298/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
299/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
300#define array_free_microshit(stem) \
301 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
302 1660
303#define array_free(stem, idx) \ 1661#define array_free(stem, idx) \
304 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1662 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
305 1663
306/*****************************************************************************/ 1664/*****************************************************************************/
307 1665
308static void 1666/* dummy callback for pending events */
309anfds_init (ANFD *base, int count) 1667static void noinline
1668pendingcb (EV_P_ ev_prepare *w, int revents)
310{ 1669{
311 while (count--) 1670}
312 {
313 base->head = 0;
314 base->events = EV_NONE;
315 base->reify = 0;
316 1671
317 ++base; 1672void noinline
1673ev_feed_event (EV_P_ void *w, int revents) EV_THROW
1674{
1675 W w_ = (W)w;
1676 int pri = ABSPRI (w_);
1677
1678 if (expect_false (w_->pending))
1679 pendings [pri][w_->pending - 1].events |= revents;
1680 else
318 } 1681 {
319} 1682 w_->pending = ++pendingcnt [pri];
320 1683 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
321static void 1684 pendings [pri][w_->pending - 1].w = w_;
322event (EV_P_ W w, int events)
323{
324 if (w->pending)
325 {
326 pendings [ABSPRI (w)][w->pending - 1].events |= events; 1685 pendings [pri][w_->pending - 1].events = revents;
327 return;
328 } 1686 }
329 1687
330 w->pending = ++pendingcnt [ABSPRI (w)]; 1688 pendingpri = NUMPRI - 1;
331 array_needsize (ANPENDING, pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], (void));
332 pendings [ABSPRI (w)][w->pending - 1].w = w;
333 pendings [ABSPRI (w)][w->pending - 1].events = events;
334} 1689}
335 1690
336static void 1691inline_speed void
1692feed_reverse (EV_P_ W w)
1693{
1694 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1695 rfeeds [rfeedcnt++] = w;
1696}
1697
1698inline_size void
1699feed_reverse_done (EV_P_ int revents)
1700{
1701 do
1702 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1703 while (rfeedcnt);
1704}
1705
1706inline_speed void
337queue_events (EV_P_ W *events, int eventcnt, int type) 1707queue_events (EV_P_ W *events, int eventcnt, int type)
338{ 1708{
339 int i; 1709 int i;
340 1710
341 for (i = 0; i < eventcnt; ++i) 1711 for (i = 0; i < eventcnt; ++i)
342 event (EV_A_ events [i], type); 1712 ev_feed_event (EV_A_ events [i], type);
343} 1713}
344 1714
345static void 1715/*****************************************************************************/
1716
1717inline_speed void
346fd_event (EV_P_ int fd, int events) 1718fd_event_nocheck (EV_P_ int fd, int revents)
347{ 1719{
348 ANFD *anfd = anfds + fd; 1720 ANFD *anfd = anfds + fd;
349 struct ev_io *w; 1721 ev_io *w;
350 1722
351 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 1723 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
352 { 1724 {
353 int ev = w->events & events; 1725 int ev = w->events & revents;
354 1726
355 if (ev) 1727 if (ev)
356 event (EV_A_ (W)w, ev); 1728 ev_feed_event (EV_A_ (W)w, ev);
357 } 1729 }
358} 1730}
359 1731
360/*****************************************************************************/ 1732/* do not submit kernel events for fds that have reify set */
1733/* because that means they changed while we were polling for new events */
1734inline_speed void
1735fd_event (EV_P_ int fd, int revents)
1736{
1737 ANFD *anfd = anfds + fd;
361 1738
362static void 1739 if (expect_true (!anfd->reify))
1740 fd_event_nocheck (EV_A_ fd, revents);
1741}
1742
1743void
1744ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
1745{
1746 if (fd >= 0 && fd < anfdmax)
1747 fd_event_nocheck (EV_A_ fd, revents);
1748}
1749
1750/* make sure the external fd watch events are in-sync */
1751/* with the kernel/libev internal state */
1752inline_size void
363fd_reify (EV_P) 1753fd_reify (EV_P)
364{ 1754{
365 int i; 1755 int i;
366 1756
1757#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
367 for (i = 0; i < fdchangecnt; ++i) 1758 for (i = 0; i < fdchangecnt; ++i)
368 { 1759 {
369 int fd = fdchanges [i]; 1760 int fd = fdchanges [i];
370 ANFD *anfd = anfds + fd; 1761 ANFD *anfd = anfds + fd;
1762
1763 if (anfd->reify & EV__IOFDSET && anfd->head)
1764 {
1765 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1766
1767 if (handle != anfd->handle)
1768 {
1769 unsigned long arg;
1770
1771 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1772
1773 /* handle changed, but fd didn't - we need to do it in two steps */
1774 backend_modify (EV_A_ fd, anfd->events, 0);
1775 anfd->events = 0;
1776 anfd->handle = handle;
1777 }
1778 }
1779 }
1780#endif
1781
1782 for (i = 0; i < fdchangecnt; ++i)
1783 {
1784 int fd = fdchanges [i];
1785 ANFD *anfd = anfds + fd;
371 struct ev_io *w; 1786 ev_io *w;
372 1787
373 int events = 0; 1788 unsigned char o_events = anfd->events;
1789 unsigned char o_reify = anfd->reify;
374 1790
375 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
376 events |= w->events;
377
378 anfd->reify = 0; 1791 anfd->reify = 0;
379 1792
380 method_modify (EV_A_ fd, anfd->events, events); 1793 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1794 {
381 anfd->events = events; 1795 anfd->events = 0;
1796
1797 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1798 anfd->events |= (unsigned char)w->events;
1799
1800 if (o_events != anfd->events)
1801 o_reify = EV__IOFDSET; /* actually |= */
1802 }
1803
1804 if (o_reify & EV__IOFDSET)
1805 backend_modify (EV_A_ fd, o_events, anfd->events);
382 } 1806 }
383 1807
384 fdchangecnt = 0; 1808 fdchangecnt = 0;
385} 1809}
386 1810
387static void 1811/* something about the given fd changed */
1812inline_size void
388fd_change (EV_P_ int fd) 1813fd_change (EV_P_ int fd, int flags)
389{ 1814{
390 if (anfds [fd].reify) 1815 unsigned char reify = anfds [fd].reify;
391 return;
392
393 anfds [fd].reify = 1; 1816 anfds [fd].reify |= flags;
394 1817
1818 if (expect_true (!reify))
1819 {
395 ++fdchangecnt; 1820 ++fdchangecnt;
396 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 1821 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
397 fdchanges [fdchangecnt - 1] = fd; 1822 fdchanges [fdchangecnt - 1] = fd;
1823 }
398} 1824}
399 1825
400static void 1826/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1827inline_speed void ecb_cold
401fd_kill (EV_P_ int fd) 1828fd_kill (EV_P_ int fd)
402{ 1829{
403 struct ev_io *w; 1830 ev_io *w;
404 1831
405 while ((w = (struct ev_io *)anfds [fd].head)) 1832 while ((w = (ev_io *)anfds [fd].head))
406 { 1833 {
407 ev_io_stop (EV_A_ w); 1834 ev_io_stop (EV_A_ w);
408 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1835 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
409 } 1836 }
410} 1837}
411 1838
412static int 1839/* check whether the given fd is actually valid, for error recovery */
1840inline_size int ecb_cold
413fd_valid (int fd) 1841fd_valid (int fd)
414{ 1842{
415#ifdef WIN32 1843#ifdef _WIN32
416 return !!win32_get_osfhandle (fd); 1844 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
417#else 1845#else
418 return fcntl (fd, F_GETFD) != -1; 1846 return fcntl (fd, F_GETFD) != -1;
419#endif 1847#endif
420} 1848}
421 1849
422/* called on EBADF to verify fds */ 1850/* called on EBADF to verify fds */
423static void 1851static void noinline ecb_cold
424fd_ebadf (EV_P) 1852fd_ebadf (EV_P)
425{ 1853{
426 int fd; 1854 int fd;
427 1855
428 for (fd = 0; fd < anfdmax; ++fd) 1856 for (fd = 0; fd < anfdmax; ++fd)
429 if (anfds [fd].events) 1857 if (anfds [fd].events)
430 if (!fd_valid (fd) == -1 && errno == EBADF) 1858 if (!fd_valid (fd) && errno == EBADF)
431 fd_kill (EV_A_ fd); 1859 fd_kill (EV_A_ fd);
432} 1860}
433 1861
434/* called on ENOMEM in select/poll to kill some fds and retry */ 1862/* called on ENOMEM in select/poll to kill some fds and retry */
435static void 1863static void noinline ecb_cold
436fd_enomem (EV_P) 1864fd_enomem (EV_P)
437{ 1865{
438 int fd; 1866 int fd;
439 1867
440 for (fd = anfdmax; fd--; ) 1868 for (fd = anfdmax; fd--; )
441 if (anfds [fd].events) 1869 if (anfds [fd].events)
442 { 1870 {
443 fd_kill (EV_A_ fd); 1871 fd_kill (EV_A_ fd);
444 return; 1872 break;
445 } 1873 }
446} 1874}
447 1875
448/* usually called after fork if method needs to re-arm all fds from scratch */ 1876/* usually called after fork if backend needs to re-arm all fds from scratch */
449static void 1877static void noinline
450fd_rearm_all (EV_P) 1878fd_rearm_all (EV_P)
451{ 1879{
452 int fd; 1880 int fd;
453 1881
454 /* this should be highly optimised to not do anything but set a flag */
455 for (fd = 0; fd < anfdmax; ++fd) 1882 for (fd = 0; fd < anfdmax; ++fd)
456 if (anfds [fd].events) 1883 if (anfds [fd].events)
457 { 1884 {
458 anfds [fd].events = 0; 1885 anfds [fd].events = 0;
459 fd_change (EV_A_ fd); 1886 anfds [fd].emask = 0;
1887 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
460 } 1888 }
461} 1889}
462 1890
1891/* used to prepare libev internal fd's */
1892/* this is not fork-safe */
1893inline_speed void
1894fd_intern (int fd)
1895{
1896#ifdef _WIN32
1897 unsigned long arg = 1;
1898 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1899#else
1900 fcntl (fd, F_SETFD, FD_CLOEXEC);
1901 fcntl (fd, F_SETFL, O_NONBLOCK);
1902#endif
1903}
1904
463/*****************************************************************************/ 1905/*****************************************************************************/
464 1906
1907/*
1908 * the heap functions want a real array index. array index 0 is guaranteed to not
1909 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1910 * the branching factor of the d-tree.
1911 */
1912
1913/*
1914 * at the moment we allow libev the luxury of two heaps,
1915 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1916 * which is more cache-efficient.
1917 * the difference is about 5% with 50000+ watchers.
1918 */
1919#if EV_USE_4HEAP
1920
1921#define DHEAP 4
1922#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1923#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1924#define UPHEAP_DONE(p,k) ((p) == (k))
1925
1926/* away from the root */
1927inline_speed void
1928downheap (ANHE *heap, int N, int k)
1929{
1930 ANHE he = heap [k];
1931 ANHE *E = heap + N + HEAP0;
1932
1933 for (;;)
1934 {
1935 ev_tstamp minat;
1936 ANHE *minpos;
1937 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1938
1939 /* find minimum child */
1940 if (expect_true (pos + DHEAP - 1 < E))
1941 {
1942 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1943 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1944 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1945 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1946 }
1947 else if (pos < E)
1948 {
1949 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1950 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1951 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1952 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1953 }
1954 else
1955 break;
1956
1957 if (ANHE_at (he) <= minat)
1958 break;
1959
1960 heap [k] = *minpos;
1961 ev_active (ANHE_w (*minpos)) = k;
1962
1963 k = minpos - heap;
1964 }
1965
1966 heap [k] = he;
1967 ev_active (ANHE_w (he)) = k;
1968}
1969
1970#else /* 4HEAP */
1971
1972#define HEAP0 1
1973#define HPARENT(k) ((k) >> 1)
1974#define UPHEAP_DONE(p,k) (!(p))
1975
1976/* away from the root */
1977inline_speed void
1978downheap (ANHE *heap, int N, int k)
1979{
1980 ANHE he = heap [k];
1981
1982 for (;;)
1983 {
1984 int c = k << 1;
1985
1986 if (c >= N + HEAP0)
1987 break;
1988
1989 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1990 ? 1 : 0;
1991
1992 if (ANHE_at (he) <= ANHE_at (heap [c]))
1993 break;
1994
1995 heap [k] = heap [c];
1996 ev_active (ANHE_w (heap [k])) = k;
1997
1998 k = c;
1999 }
2000
2001 heap [k] = he;
2002 ev_active (ANHE_w (he)) = k;
2003}
2004#endif
2005
2006/* towards the root */
2007inline_speed void
2008upheap (ANHE *heap, int k)
2009{
2010 ANHE he = heap [k];
2011
2012 for (;;)
2013 {
2014 int p = HPARENT (k);
2015
2016 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2017 break;
2018
2019 heap [k] = heap [p];
2020 ev_active (ANHE_w (heap [k])) = k;
2021 k = p;
2022 }
2023
2024 heap [k] = he;
2025 ev_active (ANHE_w (he)) = k;
2026}
2027
2028/* move an element suitably so it is in a correct place */
2029inline_size void
2030adjustheap (ANHE *heap, int N, int k)
2031{
2032 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2033 upheap (heap, k);
2034 else
2035 downheap (heap, N, k);
2036}
2037
2038/* rebuild the heap: this function is used only once and executed rarely */
2039inline_size void
2040reheap (ANHE *heap, int N)
2041{
2042 int i;
2043
2044 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2045 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2046 for (i = 0; i < N; ++i)
2047 upheap (heap, i + HEAP0);
2048}
2049
2050/*****************************************************************************/
2051
2052/* associate signal watchers to a signal signal */
2053typedef struct
2054{
2055 EV_ATOMIC_T pending;
2056#if EV_MULTIPLICITY
2057 EV_P;
2058#endif
2059 WL head;
2060} ANSIG;
2061
2062static ANSIG signals [EV_NSIG - 1];
2063
2064/*****************************************************************************/
2065
2066#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2067
2068static void noinline ecb_cold
2069evpipe_init (EV_P)
2070{
2071 if (!ev_is_active (&pipe_w))
2072 {
2073 int fds [2];
2074
2075# if EV_USE_EVENTFD
2076 fds [0] = -1;
2077 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2078 if (fds [1] < 0 && errno == EINVAL)
2079 fds [1] = eventfd (0, 0);
2080
2081 if (fds [1] < 0)
2082# endif
2083 {
2084 while (pipe (fds))
2085 ev_syserr ("(libev) error creating signal/async pipe");
2086
2087 fd_intern (fds [0]);
2088 }
2089
2090 fd_intern (fds [1]);
2091
2092 evpipe [0] = fds [0];
2093
2094 if (evpipe [1] < 0)
2095 evpipe [1] = fds [1]; /* first call, set write fd */
2096 else
2097 {
2098 /* on subsequent calls, do not change evpipe [1] */
2099 /* so that evpipe_write can always rely on its value. */
2100 /* this branch does not do anything sensible on windows, */
2101 /* so must not be executed on windows */
2102
2103 dup2 (fds [1], evpipe [1]);
2104 close (fds [1]);
2105 }
2106
2107 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2108 ev_io_start (EV_A_ &pipe_w);
2109 ev_unref (EV_A); /* watcher should not keep loop alive */
2110 }
2111}
2112
2113inline_speed void
2114evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2115{
2116 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2117
2118 if (expect_true (*flag))
2119 return;
2120
2121 *flag = 1;
2122 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2123
2124 pipe_write_skipped = 1;
2125
2126 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2127
2128 if (pipe_write_wanted)
2129 {
2130 int old_errno;
2131
2132 pipe_write_skipped = 0;
2133 ECB_MEMORY_FENCE_RELEASE;
2134
2135 old_errno = errno; /* save errno because write will clobber it */
2136
2137#if EV_USE_EVENTFD
2138 if (evpipe [0] < 0)
2139 {
2140 uint64_t counter = 1;
2141 write (evpipe [1], &counter, sizeof (uint64_t));
2142 }
2143 else
2144#endif
2145 {
2146#ifdef _WIN32
2147 WSABUF buf;
2148 DWORD sent;
2149 buf.buf = &buf;
2150 buf.len = 1;
2151 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2152#else
2153 write (evpipe [1], &(evpipe [1]), 1);
2154#endif
2155 }
2156
2157 errno = old_errno;
2158 }
2159}
2160
2161/* called whenever the libev signal pipe */
2162/* got some events (signal, async) */
465static void 2163static void
466upheap (WT *heap, int k) 2164pipecb (EV_P_ ev_io *iow, int revents)
467{ 2165{
468 WT w = heap [k]; 2166 int i;
469 2167
470 while (k && heap [k >> 1]->at > w->at) 2168 if (revents & EV_READ)
471 {
472 heap [k] = heap [k >> 1];
473 ((W)heap [k])->active = k + 1;
474 k >>= 1;
475 } 2169 {
2170#if EV_USE_EVENTFD
2171 if (evpipe [0] < 0)
2172 {
2173 uint64_t counter;
2174 read (evpipe [1], &counter, sizeof (uint64_t));
2175 }
2176 else
2177#endif
2178 {
2179 char dummy[4];
2180#ifdef _WIN32
2181 WSABUF buf;
2182 DWORD recvd;
2183 DWORD flags = 0;
2184 buf.buf = dummy;
2185 buf.len = sizeof (dummy);
2186 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2187#else
2188 read (evpipe [0], &dummy, sizeof (dummy));
2189#endif
2190 }
2191 }
476 2192
477 heap [k] = w; 2193 pipe_write_skipped = 0;
478 ((W)heap [k])->active = k + 1;
479 2194
2195 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2196
2197#if EV_SIGNAL_ENABLE
2198 if (sig_pending)
2199 {
2200 sig_pending = 0;
2201
2202 ECB_MEMORY_FENCE;
2203
2204 for (i = EV_NSIG - 1; i--; )
2205 if (expect_false (signals [i].pending))
2206 ev_feed_signal_event (EV_A_ i + 1);
2207 }
2208#endif
2209
2210#if EV_ASYNC_ENABLE
2211 if (async_pending)
2212 {
2213 async_pending = 0;
2214
2215 ECB_MEMORY_FENCE;
2216
2217 for (i = asynccnt; i--; )
2218 if (asyncs [i]->sent)
2219 {
2220 asyncs [i]->sent = 0;
2221 ECB_MEMORY_FENCE_RELEASE;
2222 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2223 }
2224 }
2225#endif
2226}
2227
2228/*****************************************************************************/
2229
2230void
2231ev_feed_signal (int signum) EV_THROW
2232{
2233#if EV_MULTIPLICITY
2234 ECB_MEMORY_FENCE_ACQUIRE;
2235 EV_P = signals [signum - 1].loop;
2236
2237 if (!EV_A)
2238 return;
2239#endif
2240
2241 signals [signum - 1].pending = 1;
2242 evpipe_write (EV_A_ &sig_pending);
480} 2243}
481 2244
482static void 2245static void
483downheap (WT *heap, int N, int k) 2246ev_sighandler (int signum)
484{ 2247{
485 WT w = heap [k]; 2248#ifdef _WIN32
2249 signal (signum, ev_sighandler);
2250#endif
486 2251
487 while (k < (N >> 1)) 2252 ev_feed_signal (signum);
488 { 2253}
489 int j = k << 1;
490 2254
491 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 2255void noinline
492 ++j; 2256ev_feed_signal_event (EV_P_ int signum) EV_THROW
2257{
2258 WL w;
493 2259
494 if (w->at <= heap [j]->at) 2260 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2261 return;
2262
2263 --signum;
2264
2265#if EV_MULTIPLICITY
2266 /* it is permissible to try to feed a signal to the wrong loop */
2267 /* or, likely more useful, feeding a signal nobody is waiting for */
2268
2269 if (expect_false (signals [signum].loop != EV_A))
2270 return;
2271#endif
2272
2273 signals [signum].pending = 0;
2274 ECB_MEMORY_FENCE_RELEASE;
2275
2276 for (w = signals [signum].head; w; w = w->next)
2277 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2278}
2279
2280#if EV_USE_SIGNALFD
2281static void
2282sigfdcb (EV_P_ ev_io *iow, int revents)
2283{
2284 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2285
2286 for (;;)
2287 {
2288 ssize_t res = read (sigfd, si, sizeof (si));
2289
2290 /* not ISO-C, as res might be -1, but works with SuS */
2291 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2292 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2293
2294 if (res < (ssize_t)sizeof (si))
495 break; 2295 break;
496
497 heap [k] = heap [j];
498 ((W)heap [k])->active = k + 1;
499 k = j;
500 } 2296 }
501
502 heap [k] = w;
503 ((W)heap [k])->active = k + 1;
504} 2297}
2298#endif
2299
2300#endif
505 2301
506/*****************************************************************************/ 2302/*****************************************************************************/
507 2303
508typedef struct 2304#if EV_CHILD_ENABLE
509{ 2305static WL childs [EV_PID_HASHSIZE];
510 WL head;
511 sig_atomic_t volatile gotsig;
512} ANSIG;
513 2306
514static ANSIG *signals;
515static int signalmax;
516
517static int sigpipe [2];
518static sig_atomic_t volatile gotsig;
519static struct ev_io sigev;
520
521static void
522signals_init (ANSIG *base, int count)
523{
524 while (count--)
525 {
526 base->head = 0;
527 base->gotsig = 0;
528
529 ++base;
530 }
531}
532
533static void
534sighandler (int signum)
535{
536#if WIN32
537 signal (signum, sighandler);
538#endif
539
540 signals [signum - 1].gotsig = 1;
541
542 if (!gotsig)
543 {
544 int old_errno = errno;
545 gotsig = 1;
546#ifdef WIN32
547 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
548#else
549 write (sigpipe [1], &signum, 1);
550#endif
551 errno = old_errno;
552 }
553}
554
555static void
556sigcb (EV_P_ struct ev_io *iow, int revents)
557{
558 WL w;
559 int signum;
560
561#ifdef WIN32
562 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
563#else
564 read (sigpipe [0], &revents, 1);
565#endif
566 gotsig = 0;
567
568 for (signum = signalmax; signum--; )
569 if (signals [signum].gotsig)
570 {
571 signals [signum].gotsig = 0;
572
573 for (w = signals [signum].head; w; w = w->next)
574 event (EV_A_ (W)w, EV_SIGNAL);
575 }
576}
577
578static void
579siginit (EV_P)
580{
581#ifndef WIN32
582 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
583 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
584
585 /* rather than sort out wether we really need nb, set it */
586 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
587 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
588#endif
589
590 ev_io_set (&sigev, sigpipe [0], EV_READ);
591 ev_io_start (EV_A_ &sigev);
592 ev_unref (EV_A); /* child watcher should not keep loop alive */
593}
594
595/*****************************************************************************/
596
597static struct ev_child *childs [PID_HASHSIZE];
598
599#ifndef WIN32
600
601static struct ev_signal childev; 2307static ev_signal childev;
2308
2309#ifndef WIFCONTINUED
2310# define WIFCONTINUED(status) 0
2311#endif
2312
2313/* handle a single child status event */
2314inline_speed void
2315child_reap (EV_P_ int chain, int pid, int status)
2316{
2317 ev_child *w;
2318 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2319
2320 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2321 {
2322 if ((w->pid == pid || !w->pid)
2323 && (!traced || (w->flags & 1)))
2324 {
2325 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2326 w->rpid = pid;
2327 w->rstatus = status;
2328 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2329 }
2330 }
2331}
602 2332
603#ifndef WCONTINUED 2333#ifndef WCONTINUED
604# define WCONTINUED 0 2334# define WCONTINUED 0
605#endif 2335#endif
606 2336
2337/* called on sigchld etc., calls waitpid */
607static void 2338static void
608child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
609{
610 struct ev_child *w;
611
612 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
613 if (w->pid == pid || !w->pid)
614 {
615 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
616 w->rpid = pid;
617 w->rstatus = status;
618 event (EV_A_ (W)w, EV_CHILD);
619 }
620}
621
622static void
623childcb (EV_P_ struct ev_signal *sw, int revents) 2339childcb (EV_P_ ev_signal *sw, int revents)
624{ 2340{
625 int pid, status; 2341 int pid, status;
626 2342
2343 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
627 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 2344 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
628 { 2345 if (!WCONTINUED
2346 || errno != EINVAL
2347 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2348 return;
2349
629 /* make sure we are called again until all childs have been reaped */ 2350 /* make sure we are called again until all children have been reaped */
2351 /* we need to do it this way so that the callback gets called before we continue */
630 event (EV_A_ (W)sw, EV_SIGNAL); 2352 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
631 2353
632 child_reap (EV_A_ sw, pid, pid, status); 2354 child_reap (EV_A_ pid, pid, status);
2355 if ((EV_PID_HASHSIZE) > 1)
633 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 2356 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
634 }
635} 2357}
636 2358
637#endif 2359#endif
638 2360
639/*****************************************************************************/ 2361/*****************************************************************************/
640 2362
2363#if EV_USE_IOCP
2364# include "ev_iocp.c"
2365#endif
2366#if EV_USE_PORT
2367# include "ev_port.c"
2368#endif
641#if EV_USE_KQUEUE 2369#if EV_USE_KQUEUE
642# include "ev_kqueue.c" 2370# include "ev_kqueue.c"
643#endif 2371#endif
644#if EV_USE_EPOLL 2372#if EV_USE_EPOLL
645# include "ev_epoll.c" 2373# include "ev_epoll.c"
649#endif 2377#endif
650#if EV_USE_SELECT 2378#if EV_USE_SELECT
651# include "ev_select.c" 2379# include "ev_select.c"
652#endif 2380#endif
653 2381
654int 2382int ecb_cold
655ev_version_major (void) 2383ev_version_major (void) EV_THROW
656{ 2384{
657 return EV_VERSION_MAJOR; 2385 return EV_VERSION_MAJOR;
658} 2386}
659 2387
660int 2388int ecb_cold
661ev_version_minor (void) 2389ev_version_minor (void) EV_THROW
662{ 2390{
663 return EV_VERSION_MINOR; 2391 return EV_VERSION_MINOR;
664} 2392}
665 2393
666/* return true if we are running with elevated privileges and should ignore env variables */ 2394/* return true if we are running with elevated privileges and should ignore env variables */
667static int 2395int inline_size ecb_cold
668enable_secure (void) 2396enable_secure (void)
669{ 2397{
670#ifdef WIN32 2398#ifdef _WIN32
671 return 0; 2399 return 0;
672#else 2400#else
673 return getuid () != geteuid () 2401 return getuid () != geteuid ()
674 || getgid () != getegid (); 2402 || getgid () != getegid ();
675#endif 2403#endif
676} 2404}
677 2405
2406unsigned int ecb_cold
2407ev_supported_backends (void) EV_THROW
2408{
2409 unsigned int flags = 0;
2410
2411 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2412 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2413 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2414 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2415 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2416
2417 return flags;
2418}
2419
2420unsigned int ecb_cold
2421ev_recommended_backends (void) EV_THROW
2422{
2423 unsigned int flags = ev_supported_backends ();
2424
2425#ifndef __NetBSD__
2426 /* kqueue is borked on everything but netbsd apparently */
2427 /* it usually doesn't work correctly on anything but sockets and pipes */
2428 flags &= ~EVBACKEND_KQUEUE;
2429#endif
2430#ifdef __APPLE__
2431 /* only select works correctly on that "unix-certified" platform */
2432 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2433 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2434#endif
2435#ifdef __FreeBSD__
2436 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2437#endif
2438
2439 return flags;
2440}
2441
2442unsigned int ecb_cold
2443ev_embeddable_backends (void) EV_THROW
2444{
2445 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2446
2447 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2448 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2449 flags &= ~EVBACKEND_EPOLL;
2450
2451 return flags;
2452}
2453
2454unsigned int
2455ev_backend (EV_P) EV_THROW
2456{
2457 return backend;
2458}
2459
2460#if EV_FEATURE_API
2461unsigned int
2462ev_iteration (EV_P) EV_THROW
2463{
2464 return loop_count;
2465}
2466
2467unsigned int
2468ev_depth (EV_P) EV_THROW
2469{
2470 return loop_depth;
2471}
2472
2473void
2474ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2475{
2476 io_blocktime = interval;
2477}
2478
2479void
2480ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2481{
2482 timeout_blocktime = interval;
2483}
2484
2485void
2486ev_set_userdata (EV_P_ void *data) EV_THROW
2487{
2488 userdata = data;
2489}
2490
2491void *
2492ev_userdata (EV_P) EV_THROW
2493{
2494 return userdata;
2495}
2496
2497void
2498ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2499{
2500 invoke_cb = invoke_pending_cb;
2501}
2502
2503void
2504ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2505{
2506 release_cb = release;
2507 acquire_cb = acquire;
2508}
2509#endif
2510
2511/* initialise a loop structure, must be zero-initialised */
2512static void noinline ecb_cold
2513loop_init (EV_P_ unsigned int flags) EV_THROW
2514{
2515 if (!backend)
2516 {
2517 origflags = flags;
2518
2519#if EV_USE_REALTIME
2520 if (!have_realtime)
2521 {
2522 struct timespec ts;
2523
2524 if (!clock_gettime (CLOCK_REALTIME, &ts))
2525 have_realtime = 1;
2526 }
2527#endif
2528
2529#if EV_USE_MONOTONIC
2530 if (!have_monotonic)
2531 {
2532 struct timespec ts;
2533
2534 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2535 have_monotonic = 1;
2536 }
2537#endif
2538
2539 /* pid check not overridable via env */
2540#ifndef _WIN32
2541 if (flags & EVFLAG_FORKCHECK)
2542 curpid = getpid ();
2543#endif
2544
2545 if (!(flags & EVFLAG_NOENV)
2546 && !enable_secure ()
2547 && getenv ("LIBEV_FLAGS"))
2548 flags = atoi (getenv ("LIBEV_FLAGS"));
2549
2550 ev_rt_now = ev_time ();
2551 mn_now = get_clock ();
2552 now_floor = mn_now;
2553 rtmn_diff = ev_rt_now - mn_now;
2554#if EV_FEATURE_API
2555 invoke_cb = ev_invoke_pending;
2556#endif
2557
2558 io_blocktime = 0.;
2559 timeout_blocktime = 0.;
2560 backend = 0;
2561 backend_fd = -1;
2562 sig_pending = 0;
2563#if EV_ASYNC_ENABLE
2564 async_pending = 0;
2565#endif
2566 pipe_write_skipped = 0;
2567 pipe_write_wanted = 0;
2568 evpipe [0] = -1;
2569 evpipe [1] = -1;
2570#if EV_USE_INOTIFY
2571 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2572#endif
2573#if EV_USE_SIGNALFD
2574 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2575#endif
2576
2577 if (!(flags & EVBACKEND_MASK))
2578 flags |= ev_recommended_backends ();
2579
2580#if EV_USE_IOCP
2581 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2582#endif
2583#if EV_USE_PORT
2584 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2585#endif
2586#if EV_USE_KQUEUE
2587 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2588#endif
2589#if EV_USE_EPOLL
2590 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2591#endif
2592#if EV_USE_POLL
2593 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2594#endif
2595#if EV_USE_SELECT
2596 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2597#endif
2598
2599 ev_prepare_init (&pending_w, pendingcb);
2600
2601#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2602 ev_init (&pipe_w, pipecb);
2603 ev_set_priority (&pipe_w, EV_MAXPRI);
2604#endif
2605 }
2606}
2607
2608/* free up a loop structure */
2609void ecb_cold
2610ev_loop_destroy (EV_P)
2611{
2612 int i;
2613
2614#if EV_MULTIPLICITY
2615 /* mimic free (0) */
2616 if (!EV_A)
2617 return;
2618#endif
2619
2620#if EV_CLEANUP_ENABLE
2621 /* queue cleanup watchers (and execute them) */
2622 if (expect_false (cleanupcnt))
2623 {
2624 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2625 EV_INVOKE_PENDING;
2626 }
2627#endif
2628
2629#if EV_CHILD_ENABLE
2630 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2631 {
2632 ev_ref (EV_A); /* child watcher */
2633 ev_signal_stop (EV_A_ &childev);
2634 }
2635#endif
2636
2637 if (ev_is_active (&pipe_w))
2638 {
2639 /*ev_ref (EV_A);*/
2640 /*ev_io_stop (EV_A_ &pipe_w);*/
2641
2642 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2643 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2644 }
2645
2646#if EV_USE_SIGNALFD
2647 if (ev_is_active (&sigfd_w))
2648 close (sigfd);
2649#endif
2650
2651#if EV_USE_INOTIFY
2652 if (fs_fd >= 0)
2653 close (fs_fd);
2654#endif
2655
2656 if (backend_fd >= 0)
2657 close (backend_fd);
2658
2659#if EV_USE_IOCP
2660 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2661#endif
2662#if EV_USE_PORT
2663 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
2664#endif
2665#if EV_USE_KQUEUE
2666 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
2667#endif
2668#if EV_USE_EPOLL
2669 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
2670#endif
2671#if EV_USE_POLL
2672 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
2673#endif
2674#if EV_USE_SELECT
2675 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
2676#endif
2677
2678 for (i = NUMPRI; i--; )
2679 {
2680 array_free (pending, [i]);
2681#if EV_IDLE_ENABLE
2682 array_free (idle, [i]);
2683#endif
2684 }
2685
2686 ev_free (anfds); anfds = 0; anfdmax = 0;
2687
2688 /* have to use the microsoft-never-gets-it-right macro */
2689 array_free (rfeed, EMPTY);
2690 array_free (fdchange, EMPTY);
2691 array_free (timer, EMPTY);
2692#if EV_PERIODIC_ENABLE
2693 array_free (periodic, EMPTY);
2694#endif
2695#if EV_FORK_ENABLE
2696 array_free (fork, EMPTY);
2697#endif
2698#if EV_CLEANUP_ENABLE
2699 array_free (cleanup, EMPTY);
2700#endif
2701 array_free (prepare, EMPTY);
2702 array_free (check, EMPTY);
2703#if EV_ASYNC_ENABLE
2704 array_free (async, EMPTY);
2705#endif
2706
2707 backend = 0;
2708
2709#if EV_MULTIPLICITY
2710 if (ev_is_default_loop (EV_A))
2711#endif
2712 ev_default_loop_ptr = 0;
2713#if EV_MULTIPLICITY
2714 else
2715 ev_free (EV_A);
2716#endif
2717}
2718
2719#if EV_USE_INOTIFY
2720inline_size void infy_fork (EV_P);
2721#endif
2722
2723inline_size void
2724loop_fork (EV_P)
2725{
2726#if EV_USE_PORT
2727 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
2728#endif
2729#if EV_USE_KQUEUE
2730 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2731#endif
2732#if EV_USE_EPOLL
2733 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
2734#endif
2735#if EV_USE_INOTIFY
2736 infy_fork (EV_A);
2737#endif
2738
2739#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2740 if (ev_is_active (&pipe_w))
2741 {
2742 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2743
2744 ev_ref (EV_A);
2745 ev_io_stop (EV_A_ &pipe_w);
2746
2747 if (evpipe [0] >= 0)
2748 EV_WIN32_CLOSE_FD (evpipe [0]);
2749
2750 evpipe_init (EV_A);
2751 /* iterate over everything, in case we missed something before */
2752 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
2753 }
2754#endif
2755
2756 postfork = 0;
2757}
2758
2759#if EV_MULTIPLICITY
2760
2761struct ev_loop * ecb_cold
2762ev_loop_new (unsigned int flags) EV_THROW
2763{
2764 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2765
2766 memset (EV_A, 0, sizeof (struct ev_loop));
2767 loop_init (EV_A_ flags);
2768
2769 if (ev_backend (EV_A))
2770 return EV_A;
2771
2772 ev_free (EV_A);
2773 return 0;
2774}
2775
2776#endif /* multiplicity */
2777
2778#if EV_VERIFY
2779static void noinline ecb_cold
2780verify_watcher (EV_P_ W w)
2781{
2782 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2783
2784 if (w->pending)
2785 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2786}
2787
2788static void noinline ecb_cold
2789verify_heap (EV_P_ ANHE *heap, int N)
2790{
2791 int i;
2792
2793 for (i = HEAP0; i < N + HEAP0; ++i)
2794 {
2795 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2796 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2797 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2798
2799 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2800 }
2801}
2802
2803static void noinline ecb_cold
2804array_verify (EV_P_ W *ws, int cnt)
2805{
2806 while (cnt--)
2807 {
2808 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2809 verify_watcher (EV_A_ ws [cnt]);
2810 }
2811}
2812#endif
2813
2814#if EV_FEATURE_API
2815void ecb_cold
2816ev_verify (EV_P) EV_THROW
2817{
2818#if EV_VERIFY
2819 int i;
2820 WL w, w2;
2821
2822 assert (activecnt >= -1);
2823
2824 assert (fdchangemax >= fdchangecnt);
2825 for (i = 0; i < fdchangecnt; ++i)
2826 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2827
2828 assert (anfdmax >= 0);
2829 for (i = 0; i < anfdmax; ++i)
2830 {
2831 int j = 0;
2832
2833 for (w = w2 = anfds [i].head; w; w = w->next)
2834 {
2835 verify_watcher (EV_A_ (W)w);
2836
2837 if (j++ & 1)
2838 {
2839 assert (("libev: io watcher list contains a loop", w != w2));
2840 w2 = w2->next;
2841 }
2842
2843 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2844 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2845 }
2846 }
2847
2848 assert (timermax >= timercnt);
2849 verify_heap (EV_A_ timers, timercnt);
2850
2851#if EV_PERIODIC_ENABLE
2852 assert (periodicmax >= periodiccnt);
2853 verify_heap (EV_A_ periodics, periodiccnt);
2854#endif
2855
2856 for (i = NUMPRI; i--; )
2857 {
2858 assert (pendingmax [i] >= pendingcnt [i]);
2859#if EV_IDLE_ENABLE
2860 assert (idleall >= 0);
2861 assert (idlemax [i] >= idlecnt [i]);
2862 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2863#endif
2864 }
2865
2866#if EV_FORK_ENABLE
2867 assert (forkmax >= forkcnt);
2868 array_verify (EV_A_ (W *)forks, forkcnt);
2869#endif
2870
2871#if EV_CLEANUP_ENABLE
2872 assert (cleanupmax >= cleanupcnt);
2873 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2874#endif
2875
2876#if EV_ASYNC_ENABLE
2877 assert (asyncmax >= asynccnt);
2878 array_verify (EV_A_ (W *)asyncs, asynccnt);
2879#endif
2880
2881#if EV_PREPARE_ENABLE
2882 assert (preparemax >= preparecnt);
2883 array_verify (EV_A_ (W *)prepares, preparecnt);
2884#endif
2885
2886#if EV_CHECK_ENABLE
2887 assert (checkmax >= checkcnt);
2888 array_verify (EV_A_ (W *)checks, checkcnt);
2889#endif
2890
2891# if 0
2892#if EV_CHILD_ENABLE
2893 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2894 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2895#endif
2896# endif
2897#endif
2898}
2899#endif
2900
2901#if EV_MULTIPLICITY
2902struct ev_loop * ecb_cold
2903#else
678int 2904int
679ev_method (EV_P) 2905#endif
2906ev_default_loop (unsigned int flags) EV_THROW
680{ 2907{
681 return method; 2908 if (!ev_default_loop_ptr)
682}
683
684static void
685loop_init (EV_P_ int methods)
686{
687 if (!method)
688 {
689#if EV_USE_MONOTONIC
690 { 2909 {
691 struct timespec ts;
692 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
693 have_monotonic = 1;
694 }
695#endif
696
697 rt_now = ev_time ();
698 mn_now = get_clock ();
699 now_floor = mn_now;
700 rtmn_diff = rt_now - mn_now;
701
702 if (methods == EVMETHOD_AUTO)
703 if (!enable_secure () && getenv ("LIBEV_METHODS"))
704 methods = atoi (getenv ("LIBEV_METHODS"));
705 else
706 methods = EVMETHOD_ANY;
707
708 method = 0;
709#if EV_USE_WIN32
710 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
711#endif
712#if EV_USE_KQUEUE
713 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
714#endif
715#if EV_USE_EPOLL
716 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
717#endif
718#if EV_USE_POLL
719 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
720#endif
721#if EV_USE_SELECT
722 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
723#endif
724
725 ev_watcher_init (&sigev, sigcb);
726 ev_set_priority (&sigev, EV_MAXPRI);
727 }
728}
729
730void
731loop_destroy (EV_P)
732{
733 int i;
734
735#if EV_USE_WIN32
736 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
737#endif
738#if EV_USE_KQUEUE
739 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
740#endif
741#if EV_USE_EPOLL
742 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
743#endif
744#if EV_USE_POLL
745 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
746#endif
747#if EV_USE_SELECT
748 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
749#endif
750
751 for (i = NUMPRI; i--; )
752 array_free (pending, [i]);
753
754 /* have to use the microsoft-never-gets-it-right macro */
755 array_free_microshit (fdchange);
756 array_free_microshit (timer);
757 array_free_microshit (periodic);
758 array_free_microshit (idle);
759 array_free_microshit (prepare);
760 array_free_microshit (check);
761
762 method = 0;
763}
764
765static void
766loop_fork (EV_P)
767{
768#if EV_USE_EPOLL
769 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
770#endif
771#if EV_USE_KQUEUE
772 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
773#endif
774
775 if (ev_is_active (&sigev))
776 {
777 /* default loop */
778
779 ev_ref (EV_A);
780 ev_io_stop (EV_A_ &sigev);
781 close (sigpipe [0]);
782 close (sigpipe [1]);
783
784 while (pipe (sigpipe))
785 syserr ("(libev) error creating pipe");
786
787 siginit (EV_A);
788 }
789
790 postfork = 0;
791}
792
793#if EV_MULTIPLICITY 2910#if EV_MULTIPLICITY
794struct ev_loop * 2911 EV_P = ev_default_loop_ptr = &default_loop_struct;
795ev_loop_new (int methods)
796{
797 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
798
799 memset (loop, 0, sizeof (struct ev_loop));
800
801 loop_init (EV_A_ methods);
802
803 if (ev_method (EV_A))
804 return loop;
805
806 return 0;
807}
808
809void
810ev_loop_destroy (EV_P)
811{
812 loop_destroy (EV_A);
813 ev_free (loop);
814}
815
816void
817ev_loop_fork (EV_P)
818{
819 postfork = 1;
820}
821
822#endif
823
824#if EV_MULTIPLICITY
825struct ev_loop default_loop_struct;
826static struct ev_loop *default_loop;
827
828struct ev_loop *
829#else 2912#else
830static int default_loop;
831
832int
833#endif
834ev_default_loop (int methods)
835{
836 if (sigpipe [0] == sigpipe [1])
837 if (pipe (sigpipe))
838 return 0;
839
840 if (!default_loop)
841 {
842#if EV_MULTIPLICITY
843 struct ev_loop *loop = default_loop = &default_loop_struct;
844#else
845 default_loop = 1; 2913 ev_default_loop_ptr = 1;
846#endif 2914#endif
847 2915
848 loop_init (EV_A_ methods); 2916 loop_init (EV_A_ flags);
849 2917
850 if (ev_method (EV_A)) 2918 if (ev_backend (EV_A))
851 { 2919 {
852 siginit (EV_A); 2920#if EV_CHILD_ENABLE
853
854#ifndef WIN32
855 ev_signal_init (&childev, childcb, SIGCHLD); 2921 ev_signal_init (&childev, childcb, SIGCHLD);
856 ev_set_priority (&childev, EV_MAXPRI); 2922 ev_set_priority (&childev, EV_MAXPRI);
857 ev_signal_start (EV_A_ &childev); 2923 ev_signal_start (EV_A_ &childev);
858 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2924 ev_unref (EV_A); /* child watcher should not keep loop alive */
859#endif 2925#endif
860 } 2926 }
861 else 2927 else
862 default_loop = 0; 2928 ev_default_loop_ptr = 0;
863 } 2929 }
864 2930
865 return default_loop; 2931 return ev_default_loop_ptr;
866} 2932}
867 2933
868void 2934void
869ev_default_destroy (void) 2935ev_loop_fork (EV_P) EV_THROW
870{ 2936{
871#if EV_MULTIPLICITY 2937 postfork = 1;
872 struct ev_loop *loop = default_loop;
873#endif
874
875#ifndef WIN32
876 ev_ref (EV_A); /* child watcher */
877 ev_signal_stop (EV_A_ &childev);
878#endif
879
880 ev_ref (EV_A); /* signal watcher */
881 ev_io_stop (EV_A_ &sigev);
882
883 close (sigpipe [0]); sigpipe [0] = 0;
884 close (sigpipe [1]); sigpipe [1] = 0;
885
886 loop_destroy (EV_A);
887} 2938}
2939
2940/*****************************************************************************/
888 2941
889void 2942void
890ev_default_fork (void) 2943ev_invoke (EV_P_ void *w, int revents)
891{ 2944{
892#if EV_MULTIPLICITY 2945 EV_CB_INVOKE ((W)w, revents);
893 struct ev_loop *loop = default_loop;
894#endif
895
896 if (method)
897 postfork = 1;
898} 2946}
899 2947
900/*****************************************************************************/ 2948unsigned int
901 2949ev_pending_count (EV_P) EV_THROW
902static int
903any_pending (EV_P)
904{ 2950{
905 int pri; 2951 int pri;
2952 unsigned int count = 0;
906 2953
907 for (pri = NUMPRI; pri--; ) 2954 for (pri = NUMPRI; pri--; )
908 if (pendingcnt [pri]) 2955 count += pendingcnt [pri];
909 return 1;
910 2956
911 return 0; 2957 return count;
912} 2958}
913 2959
914static void 2960void noinline
915call_pending (EV_P) 2961ev_invoke_pending (EV_P)
916{ 2962{
917 int pri; 2963 pendingpri = NUMPRI;
918 2964
919 for (pri = NUMPRI; pri--; ) 2965 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
2966 {
2967 --pendingpri;
2968
920 while (pendingcnt [pri]) 2969 while (pendingcnt [pendingpri])
921 {
922 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
923
924 if (p->w)
925 { 2970 {
2971 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
2972
926 p->w->pending = 0; 2973 p->w->pending = 0;
927 p->w->cb (EV_A_ p->w, p->events); 2974 EV_CB_INVOKE (p->w, p->events);
2975 EV_FREQUENT_CHECK;
2976 }
2977 }
2978}
2979
2980#if EV_IDLE_ENABLE
2981/* make idle watchers pending. this handles the "call-idle */
2982/* only when higher priorities are idle" logic */
2983inline_size void
2984idle_reify (EV_P)
2985{
2986 if (expect_false (idleall))
2987 {
2988 int pri;
2989
2990 for (pri = NUMPRI; pri--; )
2991 {
2992 if (pendingcnt [pri])
2993 break;
2994
2995 if (idlecnt [pri])
2996 {
2997 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2998 break;
928 } 2999 }
929 } 3000 }
3001 }
930} 3002}
3003#endif
931 3004
932static void 3005/* make timers pending */
3006inline_size void
933timers_reify (EV_P) 3007timers_reify (EV_P)
934{ 3008{
3009 EV_FREQUENT_CHECK;
3010
935 while (timercnt && ((WT)timers [0])->at <= mn_now) 3011 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
936 { 3012 {
937 struct ev_timer *w = timers [0]; 3013 do
938
939 assert (("inactive timer on timer heap detected", ev_is_active (w)));
940
941 /* first reschedule or stop timer */
942 if (w->repeat)
943 { 3014 {
3015 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3016
3017 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3018
3019 /* first reschedule or stop timer */
3020 if (w->repeat)
3021 {
3022 ev_at (w) += w->repeat;
3023 if (ev_at (w) < mn_now)
3024 ev_at (w) = mn_now;
3025
944 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3026 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
945 ((WT)w)->at = mn_now + w->repeat; 3027
3028 ANHE_at_cache (timers [HEAP0]);
946 downheap ((WT *)timers, timercnt, 0); 3029 downheap (timers, timercnt, HEAP0);
3030 }
3031 else
3032 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3033
3034 EV_FREQUENT_CHECK;
3035 feed_reverse (EV_A_ (W)w);
947 } 3036 }
948 else 3037 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
949 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
950 3038
951 event (EV_A_ (W)w, EV_TIMEOUT); 3039 feed_reverse_done (EV_A_ EV_TIMER);
3040 }
3041}
3042
3043#if EV_PERIODIC_ENABLE
3044
3045static void noinline
3046periodic_recalc (EV_P_ ev_periodic *w)
3047{
3048 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3049 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3050
3051 /* the above almost always errs on the low side */
3052 while (at <= ev_rt_now)
952 } 3053 {
953} 3054 ev_tstamp nat = at + w->interval;
954 3055
955static void 3056 /* when resolution fails us, we use ev_rt_now */
3057 if (expect_false (nat == at))
3058 {
3059 at = ev_rt_now;
3060 break;
3061 }
3062
3063 at = nat;
3064 }
3065
3066 ev_at (w) = at;
3067}
3068
3069/* make periodics pending */
3070inline_size void
956periodics_reify (EV_P) 3071periodics_reify (EV_P)
957{ 3072{
3073 EV_FREQUENT_CHECK;
3074
958 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 3075 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
959 { 3076 {
960 struct ev_periodic *w = periodics [0]; 3077 do
3078 {
3079 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
961 3080
962 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 3081 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
963 3082
964 /* first reschedule or stop timer */ 3083 /* first reschedule or stop timer */
3084 if (w->reschedule_cb)
3085 {
3086 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3087
3088 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3089
3090 ANHE_at_cache (periodics [HEAP0]);
3091 downheap (periodics, periodiccnt, HEAP0);
3092 }
3093 else if (w->interval)
3094 {
3095 periodic_recalc (EV_A_ w);
3096 ANHE_at_cache (periodics [HEAP0]);
3097 downheap (periodics, periodiccnt, HEAP0);
3098 }
3099 else
3100 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3101
3102 EV_FREQUENT_CHECK;
3103 feed_reverse (EV_A_ (W)w);
3104 }
3105 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3106
3107 feed_reverse_done (EV_A_ EV_PERIODIC);
3108 }
3109}
3110
3111/* simply recalculate all periodics */
3112/* TODO: maybe ensure that at least one event happens when jumping forward? */
3113static void noinline ecb_cold
3114periodics_reschedule (EV_P)
3115{
3116 int i;
3117
3118 /* adjust periodics after time jump */
3119 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3120 {
3121 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3122
965 if (w->reschedule_cb) 3123 if (w->reschedule_cb)
966 {
967 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, rt_now + 0.0001); 3124 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
968
969 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > rt_now));
970 downheap ((WT *)periodics, periodiccnt, 0);
971 }
972 else if (w->interval) 3125 else if (w->interval)
973 { 3126 periodic_recalc (EV_A_ w);
974 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
975 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
976 downheap ((WT *)periodics, periodiccnt, 0);
977 }
978 else
979 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
980 3127
981 event (EV_A_ (W)w, EV_PERIODIC); 3128 ANHE_at_cache (periodics [i]);
982 } 3129 }
983}
984 3130
985static void 3131 reheap (periodics, periodiccnt);
986periodics_reschedule (EV_P) 3132}
3133#endif
3134
3135/* adjust all timers by a given offset */
3136static void noinline ecb_cold
3137timers_reschedule (EV_P_ ev_tstamp adjust)
987{ 3138{
988 int i; 3139 int i;
989 3140
990 /* adjust periodics after time jump */
991 for (i = 0; i < periodiccnt; ++i) 3141 for (i = 0; i < timercnt; ++i)
992 {
993 struct ev_periodic *w = periodics [i];
994
995 if (w->reschedule_cb)
996 ((WT)w)->at = w->reschedule_cb (w, rt_now);
997 else if (w->interval)
998 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
999 } 3142 {
1000 3143 ANHE *he = timers + i + HEAP0;
1001 /* now rebuild the heap */ 3144 ANHE_w (*he)->at += adjust;
1002 for (i = periodiccnt >> 1; i--; ) 3145 ANHE_at_cache (*he);
1003 downheap ((WT *)periodics, periodiccnt, i);
1004}
1005
1006inline int
1007time_update_monotonic (EV_P)
1008{
1009 mn_now = get_clock ();
1010
1011 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1012 { 3146 }
1013 rt_now = rtmn_diff + mn_now;
1014 return 0;
1015 }
1016 else
1017 {
1018 now_floor = mn_now;
1019 rt_now = ev_time ();
1020 return 1;
1021 }
1022} 3147}
1023 3148
1024static void 3149/* fetch new monotonic and realtime times from the kernel */
1025time_update (EV_P) 3150/* also detect if there was a timejump, and act accordingly */
3151inline_speed void
3152time_update (EV_P_ ev_tstamp max_block)
1026{ 3153{
1027 int i;
1028
1029#if EV_USE_MONOTONIC 3154#if EV_USE_MONOTONIC
1030 if (expect_true (have_monotonic)) 3155 if (expect_true (have_monotonic))
1031 { 3156 {
1032 if (time_update_monotonic (EV_A)) 3157 int i;
3158 ev_tstamp odiff = rtmn_diff;
3159
3160 mn_now = get_clock ();
3161
3162 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3163 /* interpolate in the meantime */
3164 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1033 { 3165 {
1034 ev_tstamp odiff = rtmn_diff; 3166 ev_rt_now = rtmn_diff + mn_now;
3167 return;
3168 }
1035 3169
3170 now_floor = mn_now;
3171 ev_rt_now = ev_time ();
3172
1036 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 3173 /* loop a few times, before making important decisions.
3174 * on the choice of "4": one iteration isn't enough,
3175 * in case we get preempted during the calls to
3176 * ev_time and get_clock. a second call is almost guaranteed
3177 * to succeed in that case, though. and looping a few more times
3178 * doesn't hurt either as we only do this on time-jumps or
3179 * in the unlikely event of having been preempted here.
3180 */
3181 for (i = 4; --i; )
1037 { 3182 {
3183 ev_tstamp diff;
1038 rtmn_diff = rt_now - mn_now; 3184 rtmn_diff = ev_rt_now - mn_now;
1039 3185
1040 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 3186 diff = odiff - rtmn_diff;
3187
3188 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1041 return; /* all is well */ 3189 return; /* all is well */
1042 3190
1043 rt_now = ev_time (); 3191 ev_rt_now = ev_time ();
1044 mn_now = get_clock (); 3192 mn_now = get_clock ();
1045 now_floor = mn_now; 3193 now_floor = mn_now;
1046 } 3194 }
1047 3195
3196 /* no timer adjustment, as the monotonic clock doesn't jump */
3197 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
3198# if EV_PERIODIC_ENABLE
3199 periodics_reschedule (EV_A);
3200# endif
3201 }
3202 else
3203#endif
3204 {
3205 ev_rt_now = ev_time ();
3206
3207 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
3208 {
3209 /* adjust timers. this is easy, as the offset is the same for all of them */
3210 timers_reschedule (EV_A_ ev_rt_now - mn_now);
3211#if EV_PERIODIC_ENABLE
1048 periodics_reschedule (EV_A); 3212 periodics_reschedule (EV_A);
1049 /* no timer adjustment, as the monotonic clock doesn't jump */ 3213#endif
1050 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1051 } 3214 }
1052 }
1053 else
1054#endif
1055 {
1056 rt_now = ev_time ();
1057 3215
1058 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1059 {
1060 periodics_reschedule (EV_A);
1061
1062 /* adjust timers. this is easy, as the offset is the same for all */
1063 for (i = 0; i < timercnt; ++i)
1064 ((WT)timers [i])->at += rt_now - mn_now;
1065 }
1066
1067 mn_now = rt_now; 3216 mn_now = ev_rt_now;
1068 } 3217 }
1069} 3218}
1070 3219
1071void 3220int
1072ev_ref (EV_P)
1073{
1074 ++activecnt;
1075}
1076
1077void
1078ev_unref (EV_P)
1079{
1080 --activecnt;
1081}
1082
1083static int loop_done;
1084
1085void
1086ev_loop (EV_P_ int flags) 3221ev_run (EV_P_ int flags)
1087{ 3222{
1088 double block; 3223#if EV_FEATURE_API
1089 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 3224 ++loop_depth;
3225#endif
3226
3227 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3228
3229 loop_done = EVBREAK_CANCEL;
3230
3231 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1090 3232
1091 do 3233 do
1092 { 3234 {
3235#if EV_VERIFY >= 2
3236 ev_verify (EV_A);
3237#endif
3238
3239#ifndef _WIN32
3240 if (expect_false (curpid)) /* penalise the forking check even more */
3241 if (expect_false (getpid () != curpid))
3242 {
3243 curpid = getpid ();
3244 postfork = 1;
3245 }
3246#endif
3247
3248#if EV_FORK_ENABLE
3249 /* we might have forked, so queue fork handlers */
3250 if (expect_false (postfork))
3251 if (forkcnt)
3252 {
3253 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3254 EV_INVOKE_PENDING;
3255 }
3256#endif
3257
3258#if EV_PREPARE_ENABLE
1093 /* queue check watchers (and execute them) */ 3259 /* queue prepare watchers (and execute them) */
1094 if (expect_false (preparecnt)) 3260 if (expect_false (preparecnt))
1095 { 3261 {
1096 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3262 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1097 call_pending (EV_A); 3263 EV_INVOKE_PENDING;
1098 } 3264 }
3265#endif
3266
3267 if (expect_false (loop_done))
3268 break;
1099 3269
1100 /* we might have forked, so reify kernel state if necessary */ 3270 /* we might have forked, so reify kernel state if necessary */
1101 if (expect_false (postfork)) 3271 if (expect_false (postfork))
1102 loop_fork (EV_A); 3272 loop_fork (EV_A);
1103 3273
1104 /* update fd-related kernel structures */ 3274 /* update fd-related kernel structures */
1105 fd_reify (EV_A); 3275 fd_reify (EV_A);
1106 3276
1107 /* calculate blocking time */ 3277 /* calculate blocking time */
3278 {
3279 ev_tstamp waittime = 0.;
3280 ev_tstamp sleeptime = 0.;
1108 3281
1109 /* we only need this for !monotonic clock or timers, but as we basically 3282 /* remember old timestamp for io_blocktime calculation */
1110 always have timers, we just calculate it always */ 3283 ev_tstamp prev_mn_now = mn_now;
1111#if EV_USE_MONOTONIC 3284
1112 if (expect_true (have_monotonic)) 3285 /* update time to cancel out callback processing overhead */
1113 time_update_monotonic (EV_A); 3286 time_update (EV_A_ 1e100);
1114 else 3287
1115#endif 3288 /* from now on, we want a pipe-wake-up */
3289 pipe_write_wanted = 1;
3290
3291 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3292
3293 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1116 { 3294 {
1117 rt_now = ev_time ();
1118 mn_now = rt_now;
1119 }
1120
1121 if (flags & EVLOOP_NONBLOCK || idlecnt)
1122 block = 0.;
1123 else
1124 {
1125 block = MAX_BLOCKTIME; 3295 waittime = MAX_BLOCKTIME;
1126 3296
1127 if (timercnt) 3297 if (timercnt)
1128 { 3298 {
1129 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 3299 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1130 if (block > to) block = to; 3300 if (waittime > to) waittime = to;
1131 } 3301 }
1132 3302
3303#if EV_PERIODIC_ENABLE
1133 if (periodiccnt) 3304 if (periodiccnt)
1134 { 3305 {
1135 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 3306 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1136 if (block > to) block = to; 3307 if (waittime > to) waittime = to;
1137 } 3308 }
3309#endif
1138 3310
1139 if (block < 0.) block = 0.; 3311 /* don't let timeouts decrease the waittime below timeout_blocktime */
3312 if (expect_false (waittime < timeout_blocktime))
3313 waittime = timeout_blocktime;
3314
3315 /* at this point, we NEED to wait, so we have to ensure */
3316 /* to pass a minimum nonzero value to the backend */
3317 if (expect_false (waittime < backend_mintime))
3318 waittime = backend_mintime;
3319
3320 /* extra check because io_blocktime is commonly 0 */
3321 if (expect_false (io_blocktime))
3322 {
3323 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3324
3325 if (sleeptime > waittime - backend_mintime)
3326 sleeptime = waittime - backend_mintime;
3327
3328 if (expect_true (sleeptime > 0.))
3329 {
3330 ev_sleep (sleeptime);
3331 waittime -= sleeptime;
3332 }
3333 }
1140 } 3334 }
1141 3335
1142 method_poll (EV_A_ block); 3336#if EV_FEATURE_API
3337 ++loop_count;
3338#endif
3339 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3340 backend_poll (EV_A_ waittime);
3341 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1143 3342
3343 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3344
3345 ECB_MEMORY_FENCE_ACQUIRE;
3346 if (pipe_write_skipped)
3347 {
3348 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3349 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3350 }
3351
3352
1144 /* update rt_now, do magic */ 3353 /* update ev_rt_now, do magic */
1145 time_update (EV_A); 3354 time_update (EV_A_ waittime + sleeptime);
3355 }
1146 3356
1147 /* queue pending timers and reschedule them */ 3357 /* queue pending timers and reschedule them */
1148 timers_reify (EV_A); /* relative timers called last */ 3358 timers_reify (EV_A); /* relative timers called last */
3359#if EV_PERIODIC_ENABLE
1149 periodics_reify (EV_A); /* absolute timers called first */ 3360 periodics_reify (EV_A); /* absolute timers called first */
3361#endif
1150 3362
3363#if EV_IDLE_ENABLE
1151 /* queue idle watchers unless io or timers are pending */ 3364 /* queue idle watchers unless other events are pending */
1152 if (idlecnt && !any_pending (EV_A)) 3365 idle_reify (EV_A);
1153 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 3366#endif
1154 3367
3368#if EV_CHECK_ENABLE
1155 /* queue check watchers, to be executed first */ 3369 /* queue check watchers, to be executed first */
1156 if (checkcnt) 3370 if (expect_false (checkcnt))
1157 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3371 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3372#endif
1158 3373
1159 call_pending (EV_A); 3374 EV_INVOKE_PENDING;
1160 } 3375 }
1161 while (activecnt && !loop_done); 3376 while (expect_true (
3377 activecnt
3378 && !loop_done
3379 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3380 ));
1162 3381
1163 if (loop_done != 2) 3382 if (loop_done == EVBREAK_ONE)
1164 loop_done = 0; 3383 loop_done = EVBREAK_CANCEL;
3384
3385#if EV_FEATURE_API
3386 --loop_depth;
3387#endif
3388
3389 return activecnt;
1165} 3390}
1166 3391
1167void 3392void
1168ev_unloop (EV_P_ int how) 3393ev_break (EV_P_ int how) EV_THROW
1169{ 3394{
1170 loop_done = how; 3395 loop_done = how;
1171} 3396}
1172 3397
3398void
3399ev_ref (EV_P) EV_THROW
3400{
3401 ++activecnt;
3402}
3403
3404void
3405ev_unref (EV_P) EV_THROW
3406{
3407 --activecnt;
3408}
3409
3410void
3411ev_now_update (EV_P) EV_THROW
3412{
3413 time_update (EV_A_ 1e100);
3414}
3415
3416void
3417ev_suspend (EV_P) EV_THROW
3418{
3419 ev_now_update (EV_A);
3420}
3421
3422void
3423ev_resume (EV_P) EV_THROW
3424{
3425 ev_tstamp mn_prev = mn_now;
3426
3427 ev_now_update (EV_A);
3428 timers_reschedule (EV_A_ mn_now - mn_prev);
3429#if EV_PERIODIC_ENABLE
3430 /* TODO: really do this? */
3431 periodics_reschedule (EV_A);
3432#endif
3433}
3434
1173/*****************************************************************************/ 3435/*****************************************************************************/
3436/* singly-linked list management, used when the expected list length is short */
1174 3437
1175inline void 3438inline_size void
1176wlist_add (WL *head, WL elem) 3439wlist_add (WL *head, WL elem)
1177{ 3440{
1178 elem->next = *head; 3441 elem->next = *head;
1179 *head = elem; 3442 *head = elem;
1180} 3443}
1181 3444
1182inline void 3445inline_size void
1183wlist_del (WL *head, WL elem) 3446wlist_del (WL *head, WL elem)
1184{ 3447{
1185 while (*head) 3448 while (*head)
1186 { 3449 {
1187 if (*head == elem) 3450 if (expect_true (*head == elem))
1188 { 3451 {
1189 *head = elem->next; 3452 *head = elem->next;
1190 return; 3453 break;
1191 } 3454 }
1192 3455
1193 head = &(*head)->next; 3456 head = &(*head)->next;
1194 } 3457 }
1195} 3458}
1196 3459
3460/* internal, faster, version of ev_clear_pending */
1197inline void 3461inline_speed void
1198ev_clear_pending (EV_P_ W w) 3462clear_pending (EV_P_ W w)
1199{ 3463{
1200 if (w->pending) 3464 if (w->pending)
1201 { 3465 {
1202 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3466 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1203 w->pending = 0; 3467 w->pending = 0;
1204 } 3468 }
1205} 3469}
1206 3470
3471int
3472ev_clear_pending (EV_P_ void *w) EV_THROW
3473{
3474 W w_ = (W)w;
3475 int pending = w_->pending;
3476
3477 if (expect_true (pending))
3478 {
3479 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3480 p->w = (W)&pending_w;
3481 w_->pending = 0;
3482 return p->events;
3483 }
3484 else
3485 return 0;
3486}
3487
1207inline void 3488inline_size void
3489pri_adjust (EV_P_ W w)
3490{
3491 int pri = ev_priority (w);
3492 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3493 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3494 ev_set_priority (w, pri);
3495}
3496
3497inline_speed void
1208ev_start (EV_P_ W w, int active) 3498ev_start (EV_P_ W w, int active)
1209{ 3499{
1210 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 3500 pri_adjust (EV_A_ w);
1211 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1212
1213 w->active = active; 3501 w->active = active;
1214 ev_ref (EV_A); 3502 ev_ref (EV_A);
1215} 3503}
1216 3504
1217inline void 3505inline_size void
1218ev_stop (EV_P_ W w) 3506ev_stop (EV_P_ W w)
1219{ 3507{
1220 ev_unref (EV_A); 3508 ev_unref (EV_A);
1221 w->active = 0; 3509 w->active = 0;
1222} 3510}
1223 3511
1224/*****************************************************************************/ 3512/*****************************************************************************/
1225 3513
1226void 3514void noinline
1227ev_io_start (EV_P_ struct ev_io *w) 3515ev_io_start (EV_P_ ev_io *w) EV_THROW
1228{ 3516{
1229 int fd = w->fd; 3517 int fd = w->fd;
1230 3518
1231 if (ev_is_active (w)) 3519 if (expect_false (ev_is_active (w)))
1232 return; 3520 return;
1233 3521
1234 assert (("ev_io_start called with negative fd", fd >= 0)); 3522 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3523 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3524
3525 EV_FREQUENT_CHECK;
1235 3526
1236 ev_start (EV_A_ (W)w, 1); 3527 ev_start (EV_A_ (W)w, 1);
1237 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3528 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1238 wlist_add ((WL *)&anfds[fd].head, (WL)w); 3529 wlist_add (&anfds[fd].head, (WL)w);
1239 3530
1240 fd_change (EV_A_ fd); 3531 /* common bug, apparently */
1241} 3532 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
1242 3533
1243void 3534 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3535 w->events &= ~EV__IOFDSET;
3536
3537 EV_FREQUENT_CHECK;
3538}
3539
3540void noinline
1244ev_io_stop (EV_P_ struct ev_io *w) 3541ev_io_stop (EV_P_ ev_io *w) EV_THROW
1245{ 3542{
1246 ev_clear_pending (EV_A_ (W)w); 3543 clear_pending (EV_A_ (W)w);
1247 if (!ev_is_active (w)) 3544 if (expect_false (!ev_is_active (w)))
1248 return; 3545 return;
1249 3546
3547 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3548
3549 EV_FREQUENT_CHECK;
3550
1250 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 3551 wlist_del (&anfds[w->fd].head, (WL)w);
1251 ev_stop (EV_A_ (W)w); 3552 ev_stop (EV_A_ (W)w);
1252 3553
1253 fd_change (EV_A_ w->fd); 3554 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1254}
1255 3555
1256void 3556 EV_FREQUENT_CHECK;
3557}
3558
3559void noinline
1257ev_timer_start (EV_P_ struct ev_timer *w) 3560ev_timer_start (EV_P_ ev_timer *w) EV_THROW
1258{ 3561{
1259 if (ev_is_active (w)) 3562 if (expect_false (ev_is_active (w)))
1260 return; 3563 return;
1261 3564
1262 ((WT)w)->at += mn_now; 3565 ev_at (w) += mn_now;
1263 3566
1264 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3567 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1265 3568
3569 EV_FREQUENT_CHECK;
3570
3571 ++timercnt;
1266 ev_start (EV_A_ (W)w, ++timercnt); 3572 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1267 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void)); 3573 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1268 timers [timercnt - 1] = w; 3574 ANHE_w (timers [ev_active (w)]) = (WT)w;
1269 upheap ((WT *)timers, timercnt - 1); 3575 ANHE_at_cache (timers [ev_active (w)]);
3576 upheap (timers, ev_active (w));
1270 3577
3578 EV_FREQUENT_CHECK;
3579
1271 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3580 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1272} 3581}
1273 3582
1274void 3583void noinline
1275ev_timer_stop (EV_P_ struct ev_timer *w) 3584ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
1276{ 3585{
1277 ev_clear_pending (EV_A_ (W)w); 3586 clear_pending (EV_A_ (W)w);
1278 if (!ev_is_active (w)) 3587 if (expect_false (!ev_is_active (w)))
1279 return; 3588 return;
1280 3589
3590 EV_FREQUENT_CHECK;
3591
3592 {
3593 int active = ev_active (w);
3594
1281 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3595 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1282 3596
1283 if (((W)w)->active < timercnt--) 3597 --timercnt;
3598
3599 if (expect_true (active < timercnt + HEAP0))
1284 { 3600 {
1285 timers [((W)w)->active - 1] = timers [timercnt]; 3601 timers [active] = timers [timercnt + HEAP0];
1286 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 3602 adjustheap (timers, timercnt, active);
1287 } 3603 }
3604 }
1288 3605
1289 ((WT)w)->at = w->repeat; 3606 ev_at (w) -= mn_now;
1290 3607
1291 ev_stop (EV_A_ (W)w); 3608 ev_stop (EV_A_ (W)w);
1292}
1293 3609
1294void 3610 EV_FREQUENT_CHECK;
3611}
3612
3613void noinline
1295ev_timer_again (EV_P_ struct ev_timer *w) 3614ev_timer_again (EV_P_ ev_timer *w) EV_THROW
1296{ 3615{
3616 EV_FREQUENT_CHECK;
3617
3618 clear_pending (EV_A_ (W)w);
3619
1297 if (ev_is_active (w)) 3620 if (ev_is_active (w))
1298 { 3621 {
1299 if (w->repeat) 3622 if (w->repeat)
1300 { 3623 {
1301 ((WT)w)->at = mn_now + w->repeat; 3624 ev_at (w) = mn_now + w->repeat;
1302 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 3625 ANHE_at_cache (timers [ev_active (w)]);
3626 adjustheap (timers, timercnt, ev_active (w));
1303 } 3627 }
1304 else 3628 else
1305 ev_timer_stop (EV_A_ w); 3629 ev_timer_stop (EV_A_ w);
1306 } 3630 }
1307 else if (w->repeat) 3631 else if (w->repeat)
3632 {
3633 ev_at (w) = w->repeat;
1308 ev_timer_start (EV_A_ w); 3634 ev_timer_start (EV_A_ w);
1309} 3635 }
1310 3636
1311void 3637 EV_FREQUENT_CHECK;
3638}
3639
3640ev_tstamp
3641ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3642{
3643 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3644}
3645
3646#if EV_PERIODIC_ENABLE
3647void noinline
1312ev_periodic_start (EV_P_ struct ev_periodic *w) 3648ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
1313{ 3649{
1314 if (ev_is_active (w)) 3650 if (expect_false (ev_is_active (w)))
1315 return; 3651 return;
1316 3652
1317 if (w->reschedule_cb) 3653 if (w->reschedule_cb)
1318 ((WT)w)->at = w->reschedule_cb (w, rt_now); 3654 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1319 else if (w->interval) 3655 else if (w->interval)
1320 { 3656 {
1321 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3657 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1322 /* this formula differs from the one in periodic_reify because we do not always round up */ 3658 periodic_recalc (EV_A_ w);
1323 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1324 } 3659 }
3660 else
3661 ev_at (w) = w->offset;
1325 3662
3663 EV_FREQUENT_CHECK;
3664
3665 ++periodiccnt;
1326 ev_start (EV_A_ (W)w, ++periodiccnt); 3666 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1327 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 3667 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1328 periodics [periodiccnt - 1] = w; 3668 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1329 upheap ((WT *)periodics, periodiccnt - 1); 3669 ANHE_at_cache (periodics [ev_active (w)]);
3670 upheap (periodics, ev_active (w));
1330 3671
3672 EV_FREQUENT_CHECK;
3673
1331 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3674 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1332} 3675}
1333 3676
1334void 3677void noinline
1335ev_periodic_stop (EV_P_ struct ev_periodic *w) 3678ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
1336{ 3679{
1337 ev_clear_pending (EV_A_ (W)w); 3680 clear_pending (EV_A_ (W)w);
1338 if (!ev_is_active (w)) 3681 if (expect_false (!ev_is_active (w)))
1339 return; 3682 return;
1340 3683
3684 EV_FREQUENT_CHECK;
3685
3686 {
3687 int active = ev_active (w);
3688
1341 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3689 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1342 3690
1343 if (((W)w)->active < periodiccnt--) 3691 --periodiccnt;
3692
3693 if (expect_true (active < periodiccnt + HEAP0))
1344 { 3694 {
1345 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 3695 periodics [active] = periodics [periodiccnt + HEAP0];
1346 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 3696 adjustheap (periodics, periodiccnt, active);
1347 } 3697 }
3698 }
1348 3699
1349 ev_stop (EV_A_ (W)w); 3700 ev_stop (EV_A_ (W)w);
1350}
1351 3701
1352void 3702 EV_FREQUENT_CHECK;
3703}
3704
3705void noinline
1353ev_periodic_again (EV_P_ struct ev_periodic *w) 3706ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
1354{ 3707{
3708 /* TODO: use adjustheap and recalculation */
1355 ev_periodic_stop (EV_A_ w); 3709 ev_periodic_stop (EV_A_ w);
1356 ev_periodic_start (EV_A_ w); 3710 ev_periodic_start (EV_A_ w);
1357} 3711}
1358 3712#endif
1359void
1360ev_idle_start (EV_P_ struct ev_idle *w)
1361{
1362 if (ev_is_active (w))
1363 return;
1364
1365 ev_start (EV_A_ (W)w, ++idlecnt);
1366 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1367 idles [idlecnt - 1] = w;
1368}
1369
1370void
1371ev_idle_stop (EV_P_ struct ev_idle *w)
1372{
1373 ev_clear_pending (EV_A_ (W)w);
1374 if (ev_is_active (w))
1375 return;
1376
1377 idles [((W)w)->active - 1] = idles [--idlecnt];
1378 ev_stop (EV_A_ (W)w);
1379}
1380
1381void
1382ev_prepare_start (EV_P_ struct ev_prepare *w)
1383{
1384 if (ev_is_active (w))
1385 return;
1386
1387 ev_start (EV_A_ (W)w, ++preparecnt);
1388 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1389 prepares [preparecnt - 1] = w;
1390}
1391
1392void
1393ev_prepare_stop (EV_P_ struct ev_prepare *w)
1394{
1395 ev_clear_pending (EV_A_ (W)w);
1396 if (ev_is_active (w))
1397 return;
1398
1399 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1400 ev_stop (EV_A_ (W)w);
1401}
1402
1403void
1404ev_check_start (EV_P_ struct ev_check *w)
1405{
1406 if (ev_is_active (w))
1407 return;
1408
1409 ev_start (EV_A_ (W)w, ++checkcnt);
1410 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1411 checks [checkcnt - 1] = w;
1412}
1413
1414void
1415ev_check_stop (EV_P_ struct ev_check *w)
1416{
1417 ev_clear_pending (EV_A_ (W)w);
1418 if (ev_is_active (w))
1419 return;
1420
1421 checks [((W)w)->active - 1] = checks [--checkcnt];
1422 ev_stop (EV_A_ (W)w);
1423}
1424 3713
1425#ifndef SA_RESTART 3714#ifndef SA_RESTART
1426# define SA_RESTART 0 3715# define SA_RESTART 0
1427#endif 3716#endif
1428 3717
3718#if EV_SIGNAL_ENABLE
3719
3720void noinline
3721ev_signal_start (EV_P_ ev_signal *w) EV_THROW
3722{
3723 if (expect_false (ev_is_active (w)))
3724 return;
3725
3726 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3727
3728#if EV_MULTIPLICITY
3729 assert (("libev: a signal must not be attached to two different loops",
3730 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3731
3732 signals [w->signum - 1].loop = EV_A;
3733 ECB_MEMORY_FENCE_RELEASE;
3734#endif
3735
3736 EV_FREQUENT_CHECK;
3737
3738#if EV_USE_SIGNALFD
3739 if (sigfd == -2)
3740 {
3741 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3742 if (sigfd < 0 && errno == EINVAL)
3743 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3744
3745 if (sigfd >= 0)
3746 {
3747 fd_intern (sigfd); /* doing it twice will not hurt */
3748
3749 sigemptyset (&sigfd_set);
3750
3751 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3752 ev_set_priority (&sigfd_w, EV_MAXPRI);
3753 ev_io_start (EV_A_ &sigfd_w);
3754 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3755 }
3756 }
3757
3758 if (sigfd >= 0)
3759 {
3760 /* TODO: check .head */
3761 sigaddset (&sigfd_set, w->signum);
3762 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3763
3764 signalfd (sigfd, &sigfd_set, 0);
3765 }
3766#endif
3767
3768 ev_start (EV_A_ (W)w, 1);
3769 wlist_add (&signals [w->signum - 1].head, (WL)w);
3770
3771 if (!((WL)w)->next)
3772# if EV_USE_SIGNALFD
3773 if (sigfd < 0) /*TODO*/
3774# endif
3775 {
3776# ifdef _WIN32
3777 evpipe_init (EV_A);
3778
3779 signal (w->signum, ev_sighandler);
3780# else
3781 struct sigaction sa;
3782
3783 evpipe_init (EV_A);
3784
3785 sa.sa_handler = ev_sighandler;
3786 sigfillset (&sa.sa_mask);
3787 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3788 sigaction (w->signum, &sa, 0);
3789
3790 if (origflags & EVFLAG_NOSIGMASK)
3791 {
3792 sigemptyset (&sa.sa_mask);
3793 sigaddset (&sa.sa_mask, w->signum);
3794 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3795 }
3796#endif
3797 }
3798
3799 EV_FREQUENT_CHECK;
3800}
3801
3802void noinline
3803ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
3804{
3805 clear_pending (EV_A_ (W)w);
3806 if (expect_false (!ev_is_active (w)))
3807 return;
3808
3809 EV_FREQUENT_CHECK;
3810
3811 wlist_del (&signals [w->signum - 1].head, (WL)w);
3812 ev_stop (EV_A_ (W)w);
3813
3814 if (!signals [w->signum - 1].head)
3815 {
3816#if EV_MULTIPLICITY
3817 signals [w->signum - 1].loop = 0; /* unattach from signal */
3818#endif
3819#if EV_USE_SIGNALFD
3820 if (sigfd >= 0)
3821 {
3822 sigset_t ss;
3823
3824 sigemptyset (&ss);
3825 sigaddset (&ss, w->signum);
3826 sigdelset (&sigfd_set, w->signum);
3827
3828 signalfd (sigfd, &sigfd_set, 0);
3829 sigprocmask (SIG_UNBLOCK, &ss, 0);
3830 }
3831 else
3832#endif
3833 signal (w->signum, SIG_DFL);
3834 }
3835
3836 EV_FREQUENT_CHECK;
3837}
3838
3839#endif
3840
3841#if EV_CHILD_ENABLE
3842
1429void 3843void
1430ev_signal_start (EV_P_ struct ev_signal *w) 3844ev_child_start (EV_P_ ev_child *w) EV_THROW
1431{ 3845{
1432#if EV_MULTIPLICITY 3846#if EV_MULTIPLICITY
1433 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 3847 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1434#endif 3848#endif
1435 if (ev_is_active (w)) 3849 if (expect_false (ev_is_active (w)))
1436 return; 3850 return;
1437 3851
1438 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3852 EV_FREQUENT_CHECK;
1439 3853
1440 ev_start (EV_A_ (W)w, 1); 3854 ev_start (EV_A_ (W)w, 1);
1441 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3855 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1442 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1443 3856
1444 if (!((WL)w)->next) 3857 EV_FREQUENT_CHECK;
3858}
3859
3860void
3861ev_child_stop (EV_P_ ev_child *w) EV_THROW
3862{
3863 clear_pending (EV_A_ (W)w);
3864 if (expect_false (!ev_is_active (w)))
3865 return;
3866
3867 EV_FREQUENT_CHECK;
3868
3869 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3870 ev_stop (EV_A_ (W)w);
3871
3872 EV_FREQUENT_CHECK;
3873}
3874
3875#endif
3876
3877#if EV_STAT_ENABLE
3878
3879# ifdef _WIN32
3880# undef lstat
3881# define lstat(a,b) _stati64 (a,b)
3882# endif
3883
3884#define DEF_STAT_INTERVAL 5.0074891
3885#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3886#define MIN_STAT_INTERVAL 0.1074891
3887
3888static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3889
3890#if EV_USE_INOTIFY
3891
3892/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3893# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3894
3895static void noinline
3896infy_add (EV_P_ ev_stat *w)
3897{
3898 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3899
3900 if (w->wd >= 0)
3901 {
3902 struct statfs sfs;
3903
3904 /* now local changes will be tracked by inotify, but remote changes won't */
3905 /* unless the filesystem is known to be local, we therefore still poll */
3906 /* also do poll on <2.6.25, but with normal frequency */
3907
3908 if (!fs_2625)
3909 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3910 else if (!statfs (w->path, &sfs)
3911 && (sfs.f_type == 0x1373 /* devfs */
3912 || sfs.f_type == 0xEF53 /* ext2/3 */
3913 || sfs.f_type == 0x3153464a /* jfs */
3914 || sfs.f_type == 0x52654973 /* reiser3 */
3915 || sfs.f_type == 0x01021994 /* tempfs */
3916 || sfs.f_type == 0x58465342 /* xfs */))
3917 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3918 else
3919 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1445 { 3920 }
1446#if WIN32 3921 else
1447 signal (w->signum, sighandler); 3922 {
3923 /* can't use inotify, continue to stat */
3924 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3925
3926 /* if path is not there, monitor some parent directory for speedup hints */
3927 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3928 /* but an efficiency issue only */
3929 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3930 {
3931 char path [4096];
3932 strcpy (path, w->path);
3933
3934 do
3935 {
3936 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3937 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3938
3939 char *pend = strrchr (path, '/');
3940
3941 if (!pend || pend == path)
3942 break;
3943
3944 *pend = 0;
3945 w->wd = inotify_add_watch (fs_fd, path, mask);
3946 }
3947 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3948 }
3949 }
3950
3951 if (w->wd >= 0)
3952 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3953
3954 /* now re-arm timer, if required */
3955 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3956 ev_timer_again (EV_A_ &w->timer);
3957 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3958}
3959
3960static void noinline
3961infy_del (EV_P_ ev_stat *w)
3962{
3963 int slot;
3964 int wd = w->wd;
3965
3966 if (wd < 0)
3967 return;
3968
3969 w->wd = -2;
3970 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3971 wlist_del (&fs_hash [slot].head, (WL)w);
3972
3973 /* remove this watcher, if others are watching it, they will rearm */
3974 inotify_rm_watch (fs_fd, wd);
3975}
3976
3977static void noinline
3978infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3979{
3980 if (slot < 0)
3981 /* overflow, need to check for all hash slots */
3982 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3983 infy_wd (EV_A_ slot, wd, ev);
3984 else
3985 {
3986 WL w_;
3987
3988 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3989 {
3990 ev_stat *w = (ev_stat *)w_;
3991 w_ = w_->next; /* lets us remove this watcher and all before it */
3992
3993 if (w->wd == wd || wd == -1)
3994 {
3995 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3996 {
3997 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3998 w->wd = -1;
3999 infy_add (EV_A_ w); /* re-add, no matter what */
4000 }
4001
4002 stat_timer_cb (EV_A_ &w->timer, 0);
4003 }
4004 }
4005 }
4006}
4007
4008static void
4009infy_cb (EV_P_ ev_io *w, int revents)
4010{
4011 char buf [EV_INOTIFY_BUFSIZE];
4012 int ofs;
4013 int len = read (fs_fd, buf, sizeof (buf));
4014
4015 for (ofs = 0; ofs < len; )
4016 {
4017 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4018 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4019 ofs += sizeof (struct inotify_event) + ev->len;
4020 }
4021}
4022
4023inline_size void ecb_cold
4024ev_check_2625 (EV_P)
4025{
4026 /* kernels < 2.6.25 are borked
4027 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4028 */
4029 if (ev_linux_version () < 0x020619)
4030 return;
4031
4032 fs_2625 = 1;
4033}
4034
4035inline_size int
4036infy_newfd (void)
4037{
4038#if defined IN_CLOEXEC && defined IN_NONBLOCK
4039 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4040 if (fd >= 0)
4041 return fd;
4042#endif
4043 return inotify_init ();
4044}
4045
4046inline_size void
4047infy_init (EV_P)
4048{
4049 if (fs_fd != -2)
4050 return;
4051
4052 fs_fd = -1;
4053
4054 ev_check_2625 (EV_A);
4055
4056 fs_fd = infy_newfd ();
4057
4058 if (fs_fd >= 0)
4059 {
4060 fd_intern (fs_fd);
4061 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4062 ev_set_priority (&fs_w, EV_MAXPRI);
4063 ev_io_start (EV_A_ &fs_w);
4064 ev_unref (EV_A);
4065 }
4066}
4067
4068inline_size void
4069infy_fork (EV_P)
4070{
4071 int slot;
4072
4073 if (fs_fd < 0)
4074 return;
4075
4076 ev_ref (EV_A);
4077 ev_io_stop (EV_A_ &fs_w);
4078 close (fs_fd);
4079 fs_fd = infy_newfd ();
4080
4081 if (fs_fd >= 0)
4082 {
4083 fd_intern (fs_fd);
4084 ev_io_set (&fs_w, fs_fd, EV_READ);
4085 ev_io_start (EV_A_ &fs_w);
4086 ev_unref (EV_A);
4087 }
4088
4089 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4090 {
4091 WL w_ = fs_hash [slot].head;
4092 fs_hash [slot].head = 0;
4093
4094 while (w_)
4095 {
4096 ev_stat *w = (ev_stat *)w_;
4097 w_ = w_->next; /* lets us add this watcher */
4098
4099 w->wd = -1;
4100
4101 if (fs_fd >= 0)
4102 infy_add (EV_A_ w); /* re-add, no matter what */
4103 else
4104 {
4105 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4106 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4107 ev_timer_again (EV_A_ &w->timer);
4108 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4109 }
4110 }
4111 }
4112}
4113
4114#endif
4115
4116#ifdef _WIN32
4117# define EV_LSTAT(p,b) _stati64 (p, b)
1448#else 4118#else
1449 struct sigaction sa; 4119# define EV_LSTAT(p,b) lstat (p, b)
1450 sa.sa_handler = sighandler;
1451 sigfillset (&sa.sa_mask);
1452 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1453 sigaction (w->signum, &sa, 0);
1454#endif 4120#endif
1455 }
1456}
1457 4121
1458void 4122void
1459ev_signal_stop (EV_P_ struct ev_signal *w) 4123ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
1460{ 4124{
1461 ev_clear_pending (EV_A_ (W)w); 4125 if (lstat (w->path, &w->attr) < 0)
1462 if (!ev_is_active (w)) 4126 w->attr.st_nlink = 0;
4127 else if (!w->attr.st_nlink)
4128 w->attr.st_nlink = 1;
4129}
4130
4131static void noinline
4132stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4133{
4134 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4135
4136 ev_statdata prev = w->attr;
4137 ev_stat_stat (EV_A_ w);
4138
4139 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4140 if (
4141 prev.st_dev != w->attr.st_dev
4142 || prev.st_ino != w->attr.st_ino
4143 || prev.st_mode != w->attr.st_mode
4144 || prev.st_nlink != w->attr.st_nlink
4145 || prev.st_uid != w->attr.st_uid
4146 || prev.st_gid != w->attr.st_gid
4147 || prev.st_rdev != w->attr.st_rdev
4148 || prev.st_size != w->attr.st_size
4149 || prev.st_atime != w->attr.st_atime
4150 || prev.st_mtime != w->attr.st_mtime
4151 || prev.st_ctime != w->attr.st_ctime
4152 ) {
4153 /* we only update w->prev on actual differences */
4154 /* in case we test more often than invoke the callback, */
4155 /* to ensure that prev is always different to attr */
4156 w->prev = prev;
4157
4158 #if EV_USE_INOTIFY
4159 if (fs_fd >= 0)
4160 {
4161 infy_del (EV_A_ w);
4162 infy_add (EV_A_ w);
4163 ev_stat_stat (EV_A_ w); /* avoid race... */
4164 }
4165 #endif
4166
4167 ev_feed_event (EV_A_ w, EV_STAT);
4168 }
4169}
4170
4171void
4172ev_stat_start (EV_P_ ev_stat *w) EV_THROW
4173{
4174 if (expect_false (ev_is_active (w)))
1463 return; 4175 return;
1464 4176
1465 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 4177 ev_stat_stat (EV_A_ w);
4178
4179 if (w->interval < MIN_STAT_INTERVAL && w->interval)
4180 w->interval = MIN_STAT_INTERVAL;
4181
4182 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
4183 ev_set_priority (&w->timer, ev_priority (w));
4184
4185#if EV_USE_INOTIFY
4186 infy_init (EV_A);
4187
4188 if (fs_fd >= 0)
4189 infy_add (EV_A_ w);
4190 else
4191#endif
4192 {
4193 ev_timer_again (EV_A_ &w->timer);
4194 ev_unref (EV_A);
4195 }
4196
4197 ev_start (EV_A_ (W)w, 1);
4198
4199 EV_FREQUENT_CHECK;
4200}
4201
4202void
4203ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
4204{
4205 clear_pending (EV_A_ (W)w);
4206 if (expect_false (!ev_is_active (w)))
4207 return;
4208
4209 EV_FREQUENT_CHECK;
4210
4211#if EV_USE_INOTIFY
4212 infy_del (EV_A_ w);
4213#endif
4214
4215 if (ev_is_active (&w->timer))
4216 {
4217 ev_ref (EV_A);
4218 ev_timer_stop (EV_A_ &w->timer);
4219 }
4220
1466 ev_stop (EV_A_ (W)w); 4221 ev_stop (EV_A_ (W)w);
1467 4222
1468 if (!signals [w->signum - 1].head) 4223 EV_FREQUENT_CHECK;
1469 signal (w->signum, SIG_DFL);
1470} 4224}
4225#endif
1471 4226
4227#if EV_IDLE_ENABLE
1472void 4228void
1473ev_child_start (EV_P_ struct ev_child *w) 4229ev_idle_start (EV_P_ ev_idle *w) EV_THROW
1474{ 4230{
1475#if EV_MULTIPLICITY
1476 assert (("child watchers are only supported in the default loop", loop == default_loop));
1477#endif
1478 if (ev_is_active (w)) 4231 if (expect_false (ev_is_active (w)))
1479 return; 4232 return;
1480 4233
4234 pri_adjust (EV_A_ (W)w);
4235
4236 EV_FREQUENT_CHECK;
4237
4238 {
4239 int active = ++idlecnt [ABSPRI (w)];
4240
4241 ++idleall;
4242 ev_start (EV_A_ (W)w, active);
4243
4244 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
4245 idles [ABSPRI (w)][active - 1] = w;
4246 }
4247
4248 EV_FREQUENT_CHECK;
4249}
4250
4251void
4252ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
4253{
4254 clear_pending (EV_A_ (W)w);
4255 if (expect_false (!ev_is_active (w)))
4256 return;
4257
4258 EV_FREQUENT_CHECK;
4259
4260 {
4261 int active = ev_active (w);
4262
4263 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4264 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4265
4266 ev_stop (EV_A_ (W)w);
4267 --idleall;
4268 }
4269
4270 EV_FREQUENT_CHECK;
4271}
4272#endif
4273
4274#if EV_PREPARE_ENABLE
4275void
4276ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
4277{
4278 if (expect_false (ev_is_active (w)))
4279 return;
4280
4281 EV_FREQUENT_CHECK;
4282
4283 ev_start (EV_A_ (W)w, ++preparecnt);
4284 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
4285 prepares [preparecnt - 1] = w;
4286
4287 EV_FREQUENT_CHECK;
4288}
4289
4290void
4291ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
4292{
4293 clear_pending (EV_A_ (W)w);
4294 if (expect_false (!ev_is_active (w)))
4295 return;
4296
4297 EV_FREQUENT_CHECK;
4298
4299 {
4300 int active = ev_active (w);
4301
4302 prepares [active - 1] = prepares [--preparecnt];
4303 ev_active (prepares [active - 1]) = active;
4304 }
4305
4306 ev_stop (EV_A_ (W)w);
4307
4308 EV_FREQUENT_CHECK;
4309}
4310#endif
4311
4312#if EV_CHECK_ENABLE
4313void
4314ev_check_start (EV_P_ ev_check *w) EV_THROW
4315{
4316 if (expect_false (ev_is_active (w)))
4317 return;
4318
4319 EV_FREQUENT_CHECK;
4320
4321 ev_start (EV_A_ (W)w, ++checkcnt);
4322 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4323 checks [checkcnt - 1] = w;
4324
4325 EV_FREQUENT_CHECK;
4326}
4327
4328void
4329ev_check_stop (EV_P_ ev_check *w) EV_THROW
4330{
4331 clear_pending (EV_A_ (W)w);
4332 if (expect_false (!ev_is_active (w)))
4333 return;
4334
4335 EV_FREQUENT_CHECK;
4336
4337 {
4338 int active = ev_active (w);
4339
4340 checks [active - 1] = checks [--checkcnt];
4341 ev_active (checks [active - 1]) = active;
4342 }
4343
4344 ev_stop (EV_A_ (W)w);
4345
4346 EV_FREQUENT_CHECK;
4347}
4348#endif
4349
4350#if EV_EMBED_ENABLE
4351void noinline
4352ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
4353{
4354 ev_run (w->other, EVRUN_NOWAIT);
4355}
4356
4357static void
4358embed_io_cb (EV_P_ ev_io *io, int revents)
4359{
4360 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4361
4362 if (ev_cb (w))
4363 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4364 else
4365 ev_run (w->other, EVRUN_NOWAIT);
4366}
4367
4368static void
4369embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4370{
4371 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4372
4373 {
4374 EV_P = w->other;
4375
4376 while (fdchangecnt)
4377 {
4378 fd_reify (EV_A);
4379 ev_run (EV_A_ EVRUN_NOWAIT);
4380 }
4381 }
4382}
4383
4384static void
4385embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4386{
4387 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4388
4389 ev_embed_stop (EV_A_ w);
4390
4391 {
4392 EV_P = w->other;
4393
4394 ev_loop_fork (EV_A);
4395 ev_run (EV_A_ EVRUN_NOWAIT);
4396 }
4397
4398 ev_embed_start (EV_A_ w);
4399}
4400
4401#if 0
4402static void
4403embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4404{
4405 ev_idle_stop (EV_A_ idle);
4406}
4407#endif
4408
4409void
4410ev_embed_start (EV_P_ ev_embed *w) EV_THROW
4411{
4412 if (expect_false (ev_is_active (w)))
4413 return;
4414
4415 {
4416 EV_P = w->other;
4417 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4418 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4419 }
4420
4421 EV_FREQUENT_CHECK;
4422
4423 ev_set_priority (&w->io, ev_priority (w));
4424 ev_io_start (EV_A_ &w->io);
4425
4426 ev_prepare_init (&w->prepare, embed_prepare_cb);
4427 ev_set_priority (&w->prepare, EV_MINPRI);
4428 ev_prepare_start (EV_A_ &w->prepare);
4429
4430 ev_fork_init (&w->fork, embed_fork_cb);
4431 ev_fork_start (EV_A_ &w->fork);
4432
4433 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4434
1481 ev_start (EV_A_ (W)w, 1); 4435 ev_start (EV_A_ (W)w, 1);
1482 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 4436
4437 EV_FREQUENT_CHECK;
1483} 4438}
1484 4439
1485void 4440void
1486ev_child_stop (EV_P_ struct ev_child *w) 4441ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
1487{ 4442{
1488 ev_clear_pending (EV_A_ (W)w); 4443 clear_pending (EV_A_ (W)w);
1489 if (ev_is_active (w)) 4444 if (expect_false (!ev_is_active (w)))
1490 return; 4445 return;
1491 4446
1492 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 4447 EV_FREQUENT_CHECK;
4448
4449 ev_io_stop (EV_A_ &w->io);
4450 ev_prepare_stop (EV_A_ &w->prepare);
4451 ev_fork_stop (EV_A_ &w->fork);
4452
1493 ev_stop (EV_A_ (W)w); 4453 ev_stop (EV_A_ (W)w);
4454
4455 EV_FREQUENT_CHECK;
1494} 4456}
4457#endif
4458
4459#if EV_FORK_ENABLE
4460void
4461ev_fork_start (EV_P_ ev_fork *w) EV_THROW
4462{
4463 if (expect_false (ev_is_active (w)))
4464 return;
4465
4466 EV_FREQUENT_CHECK;
4467
4468 ev_start (EV_A_ (W)w, ++forkcnt);
4469 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4470 forks [forkcnt - 1] = w;
4471
4472 EV_FREQUENT_CHECK;
4473}
4474
4475void
4476ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
4477{
4478 clear_pending (EV_A_ (W)w);
4479 if (expect_false (!ev_is_active (w)))
4480 return;
4481
4482 EV_FREQUENT_CHECK;
4483
4484 {
4485 int active = ev_active (w);
4486
4487 forks [active - 1] = forks [--forkcnt];
4488 ev_active (forks [active - 1]) = active;
4489 }
4490
4491 ev_stop (EV_A_ (W)w);
4492
4493 EV_FREQUENT_CHECK;
4494}
4495#endif
4496
4497#if EV_CLEANUP_ENABLE
4498void
4499ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4500{
4501 if (expect_false (ev_is_active (w)))
4502 return;
4503
4504 EV_FREQUENT_CHECK;
4505
4506 ev_start (EV_A_ (W)w, ++cleanupcnt);
4507 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4508 cleanups [cleanupcnt - 1] = w;
4509
4510 /* cleanup watchers should never keep a refcount on the loop */
4511 ev_unref (EV_A);
4512 EV_FREQUENT_CHECK;
4513}
4514
4515void
4516ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4517{
4518 clear_pending (EV_A_ (W)w);
4519 if (expect_false (!ev_is_active (w)))
4520 return;
4521
4522 EV_FREQUENT_CHECK;
4523 ev_ref (EV_A);
4524
4525 {
4526 int active = ev_active (w);
4527
4528 cleanups [active - 1] = cleanups [--cleanupcnt];
4529 ev_active (cleanups [active - 1]) = active;
4530 }
4531
4532 ev_stop (EV_A_ (W)w);
4533
4534 EV_FREQUENT_CHECK;
4535}
4536#endif
4537
4538#if EV_ASYNC_ENABLE
4539void
4540ev_async_start (EV_P_ ev_async *w) EV_THROW
4541{
4542 if (expect_false (ev_is_active (w)))
4543 return;
4544
4545 w->sent = 0;
4546
4547 evpipe_init (EV_A);
4548
4549 EV_FREQUENT_CHECK;
4550
4551 ev_start (EV_A_ (W)w, ++asynccnt);
4552 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4553 asyncs [asynccnt - 1] = w;
4554
4555 EV_FREQUENT_CHECK;
4556}
4557
4558void
4559ev_async_stop (EV_P_ ev_async *w) EV_THROW
4560{
4561 clear_pending (EV_A_ (W)w);
4562 if (expect_false (!ev_is_active (w)))
4563 return;
4564
4565 EV_FREQUENT_CHECK;
4566
4567 {
4568 int active = ev_active (w);
4569
4570 asyncs [active - 1] = asyncs [--asynccnt];
4571 ev_active (asyncs [active - 1]) = active;
4572 }
4573
4574 ev_stop (EV_A_ (W)w);
4575
4576 EV_FREQUENT_CHECK;
4577}
4578
4579void
4580ev_async_send (EV_P_ ev_async *w) EV_THROW
4581{
4582 w->sent = 1;
4583 evpipe_write (EV_A_ &async_pending);
4584}
4585#endif
1495 4586
1496/*****************************************************************************/ 4587/*****************************************************************************/
1497 4588
1498struct ev_once 4589struct ev_once
1499{ 4590{
1500 struct ev_io io; 4591 ev_io io;
1501 struct ev_timer to; 4592 ev_timer to;
1502 void (*cb)(int revents, void *arg); 4593 void (*cb)(int revents, void *arg);
1503 void *arg; 4594 void *arg;
1504}; 4595};
1505 4596
1506static void 4597static void
1507once_cb (EV_P_ struct ev_once *once, int revents) 4598once_cb (EV_P_ struct ev_once *once, int revents)
1508{ 4599{
1509 void (*cb)(int revents, void *arg) = once->cb; 4600 void (*cb)(int revents, void *arg) = once->cb;
1510 void *arg = once->arg; 4601 void *arg = once->arg;
1511 4602
1512 ev_io_stop (EV_A_ &once->io); 4603 ev_io_stop (EV_A_ &once->io);
1513 ev_timer_stop (EV_A_ &once->to); 4604 ev_timer_stop (EV_A_ &once->to);
1514 ev_free (once); 4605 ev_free (once);
1515 4606
1516 cb (revents, arg); 4607 cb (revents, arg);
1517} 4608}
1518 4609
1519static void 4610static void
1520once_cb_io (EV_P_ struct ev_io *w, int revents) 4611once_cb_io (EV_P_ ev_io *w, int revents)
1521{ 4612{
1522 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4613 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4614
4615 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1523} 4616}
1524 4617
1525static void 4618static void
1526once_cb_to (EV_P_ struct ev_timer *w, int revents) 4619once_cb_to (EV_P_ ev_timer *w, int revents)
1527{ 4620{
1528 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4621 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4622
4623 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1529} 4624}
1530 4625
1531void 4626void
1532ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4627ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
1533{ 4628{
1534 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4629 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1535 4630
1536 if (!once) 4631 if (expect_false (!once))
4632 {
1537 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4633 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1538 else 4634 return;
1539 { 4635 }
4636
1540 once->cb = cb; 4637 once->cb = cb;
1541 once->arg = arg; 4638 once->arg = arg;
1542 4639
1543 ev_watcher_init (&once->io, once_cb_io); 4640 ev_init (&once->io, once_cb_io);
1544 if (fd >= 0) 4641 if (fd >= 0)
4642 {
4643 ev_io_set (&once->io, fd, events);
4644 ev_io_start (EV_A_ &once->io);
4645 }
4646
4647 ev_init (&once->to, once_cb_to);
4648 if (timeout >= 0.)
4649 {
4650 ev_timer_set (&once->to, timeout, 0.);
4651 ev_timer_start (EV_A_ &once->to);
4652 }
4653}
4654
4655/*****************************************************************************/
4656
4657#if EV_WALK_ENABLE
4658void ecb_cold
4659ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4660{
4661 int i, j;
4662 ev_watcher_list *wl, *wn;
4663
4664 if (types & (EV_IO | EV_EMBED))
4665 for (i = 0; i < anfdmax; ++i)
4666 for (wl = anfds [i].head; wl; )
1545 { 4667 {
1546 ev_io_set (&once->io, fd, events); 4668 wn = wl->next;
1547 ev_io_start (EV_A_ &once->io); 4669
4670#if EV_EMBED_ENABLE
4671 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4672 {
4673 if (types & EV_EMBED)
4674 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4675 }
4676 else
4677#endif
4678#if EV_USE_INOTIFY
4679 if (ev_cb ((ev_io *)wl) == infy_cb)
4680 ;
4681 else
4682#endif
4683 if ((ev_io *)wl != &pipe_w)
4684 if (types & EV_IO)
4685 cb (EV_A_ EV_IO, wl);
4686
4687 wl = wn;
1548 } 4688 }
1549 4689
1550 ev_watcher_init (&once->to, once_cb_to); 4690 if (types & (EV_TIMER | EV_STAT))
1551 if (timeout >= 0.) 4691 for (i = timercnt + HEAP0; i-- > HEAP0; )
4692#if EV_STAT_ENABLE
4693 /*TODO: timer is not always active*/
4694 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1552 { 4695 {
1553 ev_timer_set (&once->to, timeout, 0.); 4696 if (types & EV_STAT)
1554 ev_timer_start (EV_A_ &once->to); 4697 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1555 } 4698 }
1556 } 4699 else
1557} 4700#endif
4701 if (types & EV_TIMER)
4702 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1558 4703
4704#if EV_PERIODIC_ENABLE
4705 if (types & EV_PERIODIC)
4706 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4707 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4708#endif
4709
4710#if EV_IDLE_ENABLE
4711 if (types & EV_IDLE)
4712 for (j = NUMPRI; j--; )
4713 for (i = idlecnt [j]; i--; )
4714 cb (EV_A_ EV_IDLE, idles [j][i]);
4715#endif
4716
4717#if EV_FORK_ENABLE
4718 if (types & EV_FORK)
4719 for (i = forkcnt; i--; )
4720 if (ev_cb (forks [i]) != embed_fork_cb)
4721 cb (EV_A_ EV_FORK, forks [i]);
4722#endif
4723
4724#if EV_ASYNC_ENABLE
4725 if (types & EV_ASYNC)
4726 for (i = asynccnt; i--; )
4727 cb (EV_A_ EV_ASYNC, asyncs [i]);
4728#endif
4729
4730#if EV_PREPARE_ENABLE
4731 if (types & EV_PREPARE)
4732 for (i = preparecnt; i--; )
4733# if EV_EMBED_ENABLE
4734 if (ev_cb (prepares [i]) != embed_prepare_cb)
4735# endif
4736 cb (EV_A_ EV_PREPARE, prepares [i]);
4737#endif
4738
4739#if EV_CHECK_ENABLE
4740 if (types & EV_CHECK)
4741 for (i = checkcnt; i--; )
4742 cb (EV_A_ EV_CHECK, checks [i]);
4743#endif
4744
4745#if EV_SIGNAL_ENABLE
4746 if (types & EV_SIGNAL)
4747 for (i = 0; i < EV_NSIG - 1; ++i)
4748 for (wl = signals [i].head; wl; )
4749 {
4750 wn = wl->next;
4751 cb (EV_A_ EV_SIGNAL, wl);
4752 wl = wn;
4753 }
4754#endif
4755
4756#if EV_CHILD_ENABLE
4757 if (types & EV_CHILD)
4758 for (i = (EV_PID_HASHSIZE); i--; )
4759 for (wl = childs [i]; wl; )
4760 {
4761 wn = wl->next;
4762 cb (EV_A_ EV_CHILD, wl);
4763 wl = wn;
4764 }
4765#endif
4766/* EV_STAT 0x00001000 /* stat data changed */
4767/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4768}
4769#endif
4770
4771#if EV_MULTIPLICITY
4772 #include "ev_wrap.h"
4773#endif
4774

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines