ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.259 by root, Mon Sep 8 13:14:23 2008 UTC vs.
Revision 1.454 by root, Fri Mar 1 11:13:22 2013 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
52# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
55# endif 71# endif
56# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
58# endif 74# endif
59# else 75# else
60# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
62# endif 78# endif
63# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
65# endif 81# endif
66# endif 82# endif
67 83
84# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
71# else 88# else
89# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
74# endif 100# endif
75 101
102# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 105# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 106# else
107# undef EV_USE_POLL
88# define EV_USE_POLL 0 108# define EV_USE_POLL 0
89# endif
90# endif 109# endif
91 110
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
95# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
98# endif 118# endif
99 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
106# endif 127# endif
107 128
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
111# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
114# endif 136# endif
115 137
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
122# endif 145# endif
123 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 148# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 149# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
130# endif 163# endif
131 164
132#endif 165#endif
133 166
134#include <math.h>
135#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
136#include <fcntl.h> 169#include <fcntl.h>
137#include <stddef.h> 170#include <stddef.h>
138 171
139#include <stdio.h> 172#include <stdio.h>
140 173
141#include <assert.h> 174#include <assert.h>
142#include <errno.h> 175#include <errno.h>
143#include <sys/types.h> 176#include <sys/types.h>
144#include <time.h> 177#include <time.h>
178#include <limits.h>
145 179
146#include <signal.h> 180#include <signal.h>
147 181
148#ifdef EV_H 182#ifdef EV_H
149# include EV_H 183# include EV_H
150#else 184#else
151# include "ev.h" 185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
152#endif 197#endif
153 198
154#ifndef _WIN32 199#ifndef _WIN32
155# include <sys/time.h> 200# include <sys/time.h>
156# include <sys/wait.h> 201# include <sys/wait.h>
157# include <unistd.h> 202# include <unistd.h>
158#else 203#else
159# include <io.h> 204# include <io.h>
160# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
161# include <windows.h> 207# include <windows.h>
162# ifndef EV_SELECT_IS_WINSOCKET 208# ifndef EV_SELECT_IS_WINSOCKET
163# define EV_SELECT_IS_WINSOCKET 1 209# define EV_SELECT_IS_WINSOCKET 1
164# endif 210# endif
211# undef EV_AVOID_STDIO
165#endif 212#endif
213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
166 221
167/* this block tries to deduce configuration from header-defined symbols and defaults */ 222/* this block tries to deduce configuration from header-defined symbols and defaults */
168 223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# error "unable to find value for NSIG, please report"
247/* to make it compile regardless, just remove the above line, */
248/* but consider reporting it, too! :) */
249# define EV_NSIG 65
250#endif
251
252#ifndef EV_USE_FLOOR
253# define EV_USE_FLOOR 0
254#endif
255
256#ifndef EV_USE_CLOCK_SYSCALL
257# if __linux && __GLIBC__ >= 2
258# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
259# else
260# define EV_USE_CLOCK_SYSCALL 0
261# endif
262#endif
263
169#ifndef EV_USE_MONOTONIC 264#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0 265# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1 266# define EV_USE_MONOTONIC EV_FEATURE_OS
172# else 267# else
173# define EV_USE_MONOTONIC 0 268# define EV_USE_MONOTONIC 0
174# endif 269# endif
175#endif 270#endif
176 271
177#ifndef EV_USE_REALTIME 272#ifndef EV_USE_REALTIME
178# define EV_USE_REALTIME 0 273# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
179#endif 274#endif
180 275
181#ifndef EV_USE_NANOSLEEP 276#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L 277# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1 278# define EV_USE_NANOSLEEP EV_FEATURE_OS
184# else 279# else
185# define EV_USE_NANOSLEEP 0 280# define EV_USE_NANOSLEEP 0
186# endif 281# endif
187#endif 282#endif
188 283
189#ifndef EV_USE_SELECT 284#ifndef EV_USE_SELECT
190# define EV_USE_SELECT 1 285# define EV_USE_SELECT EV_FEATURE_BACKENDS
191#endif 286#endif
192 287
193#ifndef EV_USE_POLL 288#ifndef EV_USE_POLL
194# ifdef _WIN32 289# ifdef _WIN32
195# define EV_USE_POLL 0 290# define EV_USE_POLL 0
196# else 291# else
197# define EV_USE_POLL 1 292# define EV_USE_POLL EV_FEATURE_BACKENDS
198# endif 293# endif
199#endif 294#endif
200 295
201#ifndef EV_USE_EPOLL 296#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 297# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1 298# define EV_USE_EPOLL EV_FEATURE_BACKENDS
204# else 299# else
205# define EV_USE_EPOLL 0 300# define EV_USE_EPOLL 0
206# endif 301# endif
207#endif 302#endif
208 303
214# define EV_USE_PORT 0 309# define EV_USE_PORT 0
215#endif 310#endif
216 311
217#ifndef EV_USE_INOTIFY 312#ifndef EV_USE_INOTIFY
218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 313# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
219# define EV_USE_INOTIFY 1 314# define EV_USE_INOTIFY EV_FEATURE_OS
220# else 315# else
221# define EV_USE_INOTIFY 0 316# define EV_USE_INOTIFY 0
222# endif 317# endif
223#endif 318#endif
224 319
225#ifndef EV_PID_HASHSIZE 320#ifndef EV_PID_HASHSIZE
226# if EV_MINIMAL 321# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
227# define EV_PID_HASHSIZE 1
228# else
229# define EV_PID_HASHSIZE 16
230# endif
231#endif 322#endif
232 323
233#ifndef EV_INOTIFY_HASHSIZE 324#ifndef EV_INOTIFY_HASHSIZE
234# if EV_MINIMAL 325# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
235# define EV_INOTIFY_HASHSIZE 1
236# else
237# define EV_INOTIFY_HASHSIZE 16
238# endif
239#endif 326#endif
240 327
241#ifndef EV_USE_EVENTFD 328#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 329# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1 330# define EV_USE_EVENTFD EV_FEATURE_OS
244# else 331# else
245# define EV_USE_EVENTFD 0 332# define EV_USE_EVENTFD 0
333# endif
334#endif
335
336#ifndef EV_USE_SIGNALFD
337# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
338# define EV_USE_SIGNALFD EV_FEATURE_OS
339# else
340# define EV_USE_SIGNALFD 0
246# endif 341# endif
247#endif 342#endif
248 343
249#if 0 /* debugging */ 344#if 0 /* debugging */
250# define EV_VERIFY 3 345# define EV_VERIFY 3
251# define EV_USE_4HEAP 1 346# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1 347# define EV_HEAP_CACHE_AT 1
253#endif 348#endif
254 349
255#ifndef EV_VERIFY 350#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL 351# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
257#endif 352#endif
258 353
259#ifndef EV_USE_4HEAP 354#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL 355# define EV_USE_4HEAP EV_FEATURE_DATA
261#endif 356#endif
262 357
263#ifndef EV_HEAP_CACHE_AT 358#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL 359# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
360#endif
361
362#ifdef ANDROID
363/* supposedly, android doesn't typedef fd_mask */
364# undef EV_USE_SELECT
365# define EV_USE_SELECT 0
366/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
367# undef EV_USE_CLOCK_SYSCALL
368# define EV_USE_CLOCK_SYSCALL 0
369#endif
370
371/* aix's poll.h seems to cause lots of trouble */
372#ifdef _AIX
373/* AIX has a completely broken poll.h header */
374# undef EV_USE_POLL
375# define EV_USE_POLL 0
376#endif
377
378/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
379/* which makes programs even slower. might work on other unices, too. */
380#if EV_USE_CLOCK_SYSCALL
381# include <sys/syscall.h>
382# ifdef SYS_clock_gettime
383# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
384# undef EV_USE_MONOTONIC
385# define EV_USE_MONOTONIC 1
386# else
387# undef EV_USE_CLOCK_SYSCALL
388# define EV_USE_CLOCK_SYSCALL 0
389# endif
265#endif 390#endif
266 391
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 392/* this block fixes any misconfiguration where we know we run into trouble otherwise */
268 393
269#ifndef CLOCK_MONOTONIC 394#ifndef CLOCK_MONOTONIC
280# undef EV_USE_INOTIFY 405# undef EV_USE_INOTIFY
281# define EV_USE_INOTIFY 0 406# define EV_USE_INOTIFY 0
282#endif 407#endif
283 408
284#if !EV_USE_NANOSLEEP 409#if !EV_USE_NANOSLEEP
285# ifndef _WIN32 410/* hp-ux has it in sys/time.h, which we unconditionally include above */
411# if !defined _WIN32 && !defined __hpux
286# include <sys/select.h> 412# include <sys/select.h>
287# endif 413# endif
288#endif 414#endif
289 415
290#if EV_USE_INOTIFY 416#if EV_USE_INOTIFY
417# include <sys/statfs.h>
291# include <sys/inotify.h> 418# include <sys/inotify.h>
419/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
420# ifndef IN_DONT_FOLLOW
421# undef EV_USE_INOTIFY
422# define EV_USE_INOTIFY 0
292#endif 423# endif
293
294#if EV_SELECT_IS_WINSOCKET
295# include <winsock.h>
296#endif 424#endif
297 425
298#if EV_USE_EVENTFD 426#if EV_USE_EVENTFD
299/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 427/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
300# include <stdint.h> 428# include <stdint.h>
301# ifdef __cplusplus 429# ifndef EFD_NONBLOCK
302extern "C" { 430# define EFD_NONBLOCK O_NONBLOCK
303# endif 431# endif
304int eventfd (unsigned int initval, int flags); 432# ifndef EFD_CLOEXEC
305# ifdef __cplusplus 433# ifdef O_CLOEXEC
306} 434# define EFD_CLOEXEC O_CLOEXEC
435# else
436# define EFD_CLOEXEC 02000000
437# endif
307# endif 438# endif
439EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
440#endif
441
442#if EV_USE_SIGNALFD
443/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
444# include <stdint.h>
445# ifndef SFD_NONBLOCK
446# define SFD_NONBLOCK O_NONBLOCK
447# endif
448# ifndef SFD_CLOEXEC
449# ifdef O_CLOEXEC
450# define SFD_CLOEXEC O_CLOEXEC
451# else
452# define SFD_CLOEXEC 02000000
453# endif
454# endif
455EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
456
457struct signalfd_siginfo
458{
459 uint32_t ssi_signo;
460 char pad[128 - sizeof (uint32_t)];
461};
308#endif 462#endif
309 463
310/**/ 464/**/
311 465
312#if EV_VERIFY >= 3 466#if EV_VERIFY >= 3
313# define EV_FREQUENT_CHECK ev_loop_verify (EV_A) 467# define EV_FREQUENT_CHECK ev_verify (EV_A)
314#else 468#else
315# define EV_FREQUENT_CHECK do { } while (0) 469# define EV_FREQUENT_CHECK do { } while (0)
316#endif 470#endif
317 471
318/* 472/*
319 * This is used to avoid floating point rounding problems. 473 * This is used to work around floating point rounding problems.
320 * It is added to ev_rt_now when scheduling periodics
321 * to ensure progress, time-wise, even when rounding
322 * errors are against us.
323 * This value is good at least till the year 4000. 474 * This value is good at least till the year 4000.
324 * Better solutions welcome.
325 */ 475 */
326#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 476#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
477/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
327 478
328#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 479#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
329#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 480#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
330/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
331 481
482#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
483#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
484
485/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
486/* ECB.H BEGIN */
487/*
488 * libecb - http://software.schmorp.de/pkg/libecb
489 *
490 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
491 * Copyright (©) 2011 Emanuele Giaquinta
492 * All rights reserved.
493 *
494 * Redistribution and use in source and binary forms, with or without modifica-
495 * tion, are permitted provided that the following conditions are met:
496 *
497 * 1. Redistributions of source code must retain the above copyright notice,
498 * this list of conditions and the following disclaimer.
499 *
500 * 2. Redistributions in binary form must reproduce the above copyright
501 * notice, this list of conditions and the following disclaimer in the
502 * documentation and/or other materials provided with the distribution.
503 *
504 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
505 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
506 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
507 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
508 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
509 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
510 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
511 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
512 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
513 * OF THE POSSIBILITY OF SUCH DAMAGE.
514 */
515
516#ifndef ECB_H
517#define ECB_H
518
519/* 16 bits major, 16 bits minor */
520#define ECB_VERSION 0x00010003
521
522#ifdef _WIN32
523 typedef signed char int8_t;
524 typedef unsigned char uint8_t;
525 typedef signed short int16_t;
526 typedef unsigned short uint16_t;
527 typedef signed int int32_t;
528 typedef unsigned int uint32_t;
332#if __GNUC__ >= 4 529 #if __GNUC__
333# define expect(expr,value) __builtin_expect ((expr),(value)) 530 typedef signed long long int64_t;
334# define noinline __attribute__ ((noinline)) 531 typedef unsigned long long uint64_t;
532 #else /* _MSC_VER || __BORLANDC__ */
533 typedef signed __int64 int64_t;
534 typedef unsigned __int64 uint64_t;
535 #endif
536 #ifdef _WIN64
537 #define ECB_PTRSIZE 8
538 typedef uint64_t uintptr_t;
539 typedef int64_t intptr_t;
540 #else
541 #define ECB_PTRSIZE 4
542 typedef uint32_t uintptr_t;
543 typedef int32_t intptr_t;
544 #endif
335#else 545#else
336# define expect(expr,value) (expr) 546 #include <inttypes.h>
337# define noinline 547 #if UINTMAX_MAX > 0xffffffffU
338# if __STDC_VERSION__ < 199901L && __GNUC__ < 2 548 #define ECB_PTRSIZE 8
339# define inline 549 #else
550 #define ECB_PTRSIZE 4
551 #endif
340# endif 552#endif
553
554/* work around x32 idiocy by defining proper macros */
555#if __x86_64 || _M_AMD64
556 #if __ILP32
557 #define ECB_AMD64_X32 1
558 #else
559 #define ECB_AMD64 1
341#endif 560 #endif
561#endif
342 562
563/* many compilers define _GNUC_ to some versions but then only implement
564 * what their idiot authors think are the "more important" extensions,
565 * causing enormous grief in return for some better fake benchmark numbers.
566 * or so.
567 * we try to detect these and simply assume they are not gcc - if they have
568 * an issue with that they should have done it right in the first place.
569 */
570#ifndef ECB_GCC_VERSION
571 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
572 #define ECB_GCC_VERSION(major,minor) 0
573 #else
574 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
575 #endif
576#endif
577
578#define ECB_C (__STDC__+0) /* this assumes that __STDC__ is either empty or a number */
579#define ECB_C99 (__STDC_VERSION__ >= 199901L)
580#define ECB_C11 (__STDC_VERSION__ >= 201112L)
581#define ECB_CPP (__cplusplus+0)
582#define ECB_CPP11 (__cplusplus >= 201103L)
583
584#if ECB_CPP
585 #define ECB_EXTERN_C extern "C"
586 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
587 #define ECB_EXTERN_C_END }
588#else
589 #define ECB_EXTERN_C extern
590 #define ECB_EXTERN_C_BEG
591 #define ECB_EXTERN_C_END
592#endif
593
594/*****************************************************************************/
595
596/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
597/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
598
599#if ECB_NO_THREADS
600 #define ECB_NO_SMP 1
601#endif
602
603#if ECB_NO_SMP
604 #define ECB_MEMORY_FENCE do { } while (0)
605#endif
606
607#ifndef ECB_MEMORY_FENCE
608 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
609 #if __i386 || __i386__
610 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
611 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
612 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
613 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
614 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
615 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
616 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
617 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
618 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
619 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
620 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
621 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
622 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
623 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
624 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
625 #elif __sparc || __sparc__
626 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
627 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
628 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
629 #elif defined __s390__ || defined __s390x__
630 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
631 #elif defined __mips__
632 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
633 #elif defined __alpha__
634 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
635 #elif defined __hppa__
636 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
637 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
638 #elif defined __ia64__
639 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
640 #endif
641 #endif
642#endif
643
644#ifndef ECB_MEMORY_FENCE
645 #if ECB_GCC_VERSION(4,7)
646 /* see comment below (stdatomic.h) about the C11 memory model. */
647 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
648
649 /* The __has_feature syntax from clang is so misdesigned that we cannot use it
650 * without risking compile time errors with other compilers. We *could*
651 * define our own ecb_clang_has_feature, but I just can't be bothered to work
652 * around this shit time and again.
653 * #elif defined __clang && __has_feature (cxx_atomic)
654 * // see comment below (stdatomic.h) about the C11 memory model.
655 * #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
656 */
657
658 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
659 #define ECB_MEMORY_FENCE __sync_synchronize ()
660 #elif _MSC_VER >= 1400 /* VC++ 2005 */
661 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
662 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
663 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
664 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
665 #elif defined _WIN32
666 #include <WinNT.h>
667 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
668 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
669 #include <mbarrier.h>
670 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
671 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
672 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
673 #elif __xlC__
674 #define ECB_MEMORY_FENCE __sync ()
675 #endif
676#endif
677
678#ifndef ECB_MEMORY_FENCE
679 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
680 /* we assume that these memory fences work on all variables/all memory accesses, */
681 /* not just C11 atomics and atomic accesses */
682 #include <stdatomic.h>
683 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
684 /* any fence other than seq_cst, which isn't very efficient for us. */
685 /* Why that is, we don't know - either the C11 memory model is quite useless */
686 /* for most usages, or gcc and clang have a bug */
687 /* I *currently* lean towards the latter, and inefficiently implement */
688 /* all three of ecb's fences as a seq_cst fence */
689 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
690 #endif
691#endif
692
693#ifndef ECB_MEMORY_FENCE
694 #if !ECB_AVOID_PTHREADS
695 /*
696 * if you get undefined symbol references to pthread_mutex_lock,
697 * or failure to find pthread.h, then you should implement
698 * the ECB_MEMORY_FENCE operations for your cpu/compiler
699 * OR provide pthread.h and link against the posix thread library
700 * of your system.
701 */
702 #include <pthread.h>
703 #define ECB_NEEDS_PTHREADS 1
704 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
705
706 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
707 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
708 #endif
709#endif
710
711#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
712 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
713#endif
714
715#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
716 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
717#endif
718
719/*****************************************************************************/
720
721#if __cplusplus
722 #define ecb_inline static inline
723#elif ECB_GCC_VERSION(2,5)
724 #define ecb_inline static __inline__
725#elif ECB_C99
726 #define ecb_inline static inline
727#else
728 #define ecb_inline static
729#endif
730
731#if ECB_GCC_VERSION(3,3)
732 #define ecb_restrict __restrict__
733#elif ECB_C99
734 #define ecb_restrict restrict
735#else
736 #define ecb_restrict
737#endif
738
739typedef int ecb_bool;
740
741#define ECB_CONCAT_(a, b) a ## b
742#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
743#define ECB_STRINGIFY_(a) # a
744#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
745
746#define ecb_function_ ecb_inline
747
748#if ECB_GCC_VERSION(3,1)
749 #define ecb_attribute(attrlist) __attribute__(attrlist)
750 #define ecb_is_constant(expr) __builtin_constant_p (expr)
751 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
752 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
753#else
754 #define ecb_attribute(attrlist)
755 #define ecb_is_constant(expr) 0
756 #define ecb_expect(expr,value) (expr)
757 #define ecb_prefetch(addr,rw,locality)
758#endif
759
760/* no emulation for ecb_decltype */
761#if ECB_GCC_VERSION(4,5)
762 #define ecb_decltype(x) __decltype(x)
763#elif ECB_GCC_VERSION(3,0)
764 #define ecb_decltype(x) __typeof(x)
765#endif
766
767#define ecb_noinline ecb_attribute ((__noinline__))
768#define ecb_unused ecb_attribute ((__unused__))
769#define ecb_const ecb_attribute ((__const__))
770#define ecb_pure ecb_attribute ((__pure__))
771
772#if ECB_C11
773 #define ecb_noreturn _Noreturn
774#else
775 #define ecb_noreturn ecb_attribute ((__noreturn__))
776#endif
777
778#if ECB_GCC_VERSION(4,3)
779 #define ecb_artificial ecb_attribute ((__artificial__))
780 #define ecb_hot ecb_attribute ((__hot__))
781 #define ecb_cold ecb_attribute ((__cold__))
782#else
783 #define ecb_artificial
784 #define ecb_hot
785 #define ecb_cold
786#endif
787
788/* put around conditional expressions if you are very sure that the */
789/* expression is mostly true or mostly false. note that these return */
790/* booleans, not the expression. */
343#define expect_false(expr) expect ((expr) != 0, 0) 791#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
344#define expect_true(expr) expect ((expr) != 0, 1) 792#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
793/* for compatibility to the rest of the world */
794#define ecb_likely(expr) ecb_expect_true (expr)
795#define ecb_unlikely(expr) ecb_expect_false (expr)
796
797/* count trailing zero bits and count # of one bits */
798#if ECB_GCC_VERSION(3,4)
799 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
800 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
801 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
802 #define ecb_ctz32(x) __builtin_ctz (x)
803 #define ecb_ctz64(x) __builtin_ctzll (x)
804 #define ecb_popcount32(x) __builtin_popcount (x)
805 /* no popcountll */
806#else
807 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
808 ecb_function_ int
809 ecb_ctz32 (uint32_t x)
810 {
811 int r = 0;
812
813 x &= ~x + 1; /* this isolates the lowest bit */
814
815#if ECB_branchless_on_i386
816 r += !!(x & 0xaaaaaaaa) << 0;
817 r += !!(x & 0xcccccccc) << 1;
818 r += !!(x & 0xf0f0f0f0) << 2;
819 r += !!(x & 0xff00ff00) << 3;
820 r += !!(x & 0xffff0000) << 4;
821#else
822 if (x & 0xaaaaaaaa) r += 1;
823 if (x & 0xcccccccc) r += 2;
824 if (x & 0xf0f0f0f0) r += 4;
825 if (x & 0xff00ff00) r += 8;
826 if (x & 0xffff0000) r += 16;
827#endif
828
829 return r;
830 }
831
832 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
833 ecb_function_ int
834 ecb_ctz64 (uint64_t x)
835 {
836 int shift = x & 0xffffffffU ? 0 : 32;
837 return ecb_ctz32 (x >> shift) + shift;
838 }
839
840 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
841 ecb_function_ int
842 ecb_popcount32 (uint32_t x)
843 {
844 x -= (x >> 1) & 0x55555555;
845 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
846 x = ((x >> 4) + x) & 0x0f0f0f0f;
847 x *= 0x01010101;
848
849 return x >> 24;
850 }
851
852 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
853 ecb_function_ int ecb_ld32 (uint32_t x)
854 {
855 int r = 0;
856
857 if (x >> 16) { x >>= 16; r += 16; }
858 if (x >> 8) { x >>= 8; r += 8; }
859 if (x >> 4) { x >>= 4; r += 4; }
860 if (x >> 2) { x >>= 2; r += 2; }
861 if (x >> 1) { r += 1; }
862
863 return r;
864 }
865
866 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
867 ecb_function_ int ecb_ld64 (uint64_t x)
868 {
869 int r = 0;
870
871 if (x >> 32) { x >>= 32; r += 32; }
872
873 return r + ecb_ld32 (x);
874 }
875#endif
876
877ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
878ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
879ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
880ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
881
882ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
883ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
884{
885 return ( (x * 0x0802U & 0x22110U)
886 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
887}
888
889ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
890ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
891{
892 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
893 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
894 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
895 x = ( x >> 8 ) | ( x << 8);
896
897 return x;
898}
899
900ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
901ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
902{
903 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
904 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
905 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
906 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
907 x = ( x >> 16 ) | ( x << 16);
908
909 return x;
910}
911
912/* popcount64 is only available on 64 bit cpus as gcc builtin */
913/* so for this version we are lazy */
914ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
915ecb_function_ int
916ecb_popcount64 (uint64_t x)
917{
918 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
919}
920
921ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
922ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
923ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
924ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
925ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
926ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
927ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
928ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
929
930ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
931ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
932ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
933ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
934ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
935ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
936ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
937ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
938
939#if ECB_GCC_VERSION(4,3)
940 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
941 #define ecb_bswap32(x) __builtin_bswap32 (x)
942 #define ecb_bswap64(x) __builtin_bswap64 (x)
943#else
944 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
945 ecb_function_ uint16_t
946 ecb_bswap16 (uint16_t x)
947 {
948 return ecb_rotl16 (x, 8);
949 }
950
951 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
952 ecb_function_ uint32_t
953 ecb_bswap32 (uint32_t x)
954 {
955 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
956 }
957
958 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
959 ecb_function_ uint64_t
960 ecb_bswap64 (uint64_t x)
961 {
962 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
963 }
964#endif
965
966#if ECB_GCC_VERSION(4,5)
967 #define ecb_unreachable() __builtin_unreachable ()
968#else
969 /* this seems to work fine, but gcc always emits a warning for it :/ */
970 ecb_inline void ecb_unreachable (void) ecb_noreturn;
971 ecb_inline void ecb_unreachable (void) { }
972#endif
973
974/* try to tell the compiler that some condition is definitely true */
975#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
976
977ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
978ecb_inline unsigned char
979ecb_byteorder_helper (void)
980{
981 /* the union code still generates code under pressure in gcc, */
982 /* but less than using pointers, and always seems to */
983 /* successfully return a constant. */
984 /* the reason why we have this horrible preprocessor mess */
985 /* is to avoid it in all cases, at least on common architectures */
986 /* or when using a recent enough gcc version (>= 4.6) */
987#if __i386 || __i386__ || _M_X86 || __amd64 || __amd64__ || _M_X64
988 return 0x44;
989#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
990 return 0x44;
991#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
992 return 0x11;
993#else
994 union
995 {
996 uint32_t i;
997 uint8_t c;
998 } u = { 0x11223344 };
999 return u.c;
1000#endif
1001}
1002
1003ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
1004ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
1005ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
1006ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
1007
1008#if ECB_GCC_VERSION(3,0) || ECB_C99
1009 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1010#else
1011 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1012#endif
1013
1014#if __cplusplus
1015 template<typename T>
1016 static inline T ecb_div_rd (T val, T div)
1017 {
1018 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1019 }
1020 template<typename T>
1021 static inline T ecb_div_ru (T val, T div)
1022 {
1023 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1024 }
1025#else
1026 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1027 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1028#endif
1029
1030#if ecb_cplusplus_does_not_suck
1031 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1032 template<typename T, int N>
1033 static inline int ecb_array_length (const T (&arr)[N])
1034 {
1035 return N;
1036 }
1037#else
1038 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1039#endif
1040
1041/*******************************************************************************/
1042/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1043
1044/* basically, everything uses "ieee pure-endian" floating point numbers */
1045/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1046#if 0 \
1047 || __i386 || __i386__ \
1048 || __amd64 || __amd64__ || __x86_64 || __x86_64__ \
1049 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1050 || defined __arm__ && defined __ARM_EABI__ \
1051 || defined __s390__ || defined __s390x__ \
1052 || defined __mips__ \
1053 || defined __alpha__ \
1054 || defined __hppa__ \
1055 || defined __ia64__ \
1056 || defined _M_IX86 || defined _M_AMD64 || defined _M_IA64
1057 #define ECB_STDFP 1
1058 #include <string.h> /* for memcpy */
1059#else
1060 #define ECB_STDFP 0
1061 #include <math.h> /* for frexp*, ldexp* */
1062#endif
1063
1064#ifndef ECB_NO_LIBM
1065
1066 /* convert a float to ieee single/binary32 */
1067 ecb_function_ uint32_t ecb_float_to_binary32 (float x) ecb_const;
1068 ecb_function_ uint32_t
1069 ecb_float_to_binary32 (float x)
1070 {
1071 uint32_t r;
1072
1073 #if ECB_STDFP
1074 memcpy (&r, &x, 4);
1075 #else
1076 /* slow emulation, works for anything but -0 */
1077 uint32_t m;
1078 int e;
1079
1080 if (x == 0e0f ) return 0x00000000U;
1081 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1082 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1083 if (x != x ) return 0x7fbfffffU;
1084
1085 m = frexpf (x, &e) * 0x1000000U;
1086
1087 r = m & 0x80000000U;
1088
1089 if (r)
1090 m = -m;
1091
1092 if (e <= -126)
1093 {
1094 m &= 0xffffffU;
1095 m >>= (-125 - e);
1096 e = -126;
1097 }
1098
1099 r |= (e + 126) << 23;
1100 r |= m & 0x7fffffU;
1101 #endif
1102
1103 return r;
1104 }
1105
1106 /* converts an ieee single/binary32 to a float */
1107 ecb_function_ float ecb_binary32_to_float (uint32_t x) ecb_const;
1108 ecb_function_ float
1109 ecb_binary32_to_float (uint32_t x)
1110 {
1111 float r;
1112
1113 #if ECB_STDFP
1114 memcpy (&r, &x, 4);
1115 #else
1116 /* emulation, only works for normals and subnormals and +0 */
1117 int neg = x >> 31;
1118 int e = (x >> 23) & 0xffU;
1119
1120 x &= 0x7fffffU;
1121
1122 if (e)
1123 x |= 0x800000U;
1124 else
1125 e = 1;
1126
1127 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1128 r = ldexpf (x * (0.5f / 0x800000U), e - 126);
1129
1130 r = neg ? -r : r;
1131 #endif
1132
1133 return r;
1134 }
1135
1136 /* convert a double to ieee double/binary64 */
1137 ecb_function_ uint64_t ecb_double_to_binary64 (double x) ecb_const;
1138 ecb_function_ uint64_t
1139 ecb_double_to_binary64 (double x)
1140 {
1141 uint64_t r;
1142
1143 #if ECB_STDFP
1144 memcpy (&r, &x, 8);
1145 #else
1146 /* slow emulation, works for anything but -0 */
1147 uint64_t m;
1148 int e;
1149
1150 if (x == 0e0 ) return 0x0000000000000000U;
1151 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1152 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1153 if (x != x ) return 0X7ff7ffffffffffffU;
1154
1155 m = frexp (x, &e) * 0x20000000000000U;
1156
1157 r = m & 0x8000000000000000;;
1158
1159 if (r)
1160 m = -m;
1161
1162 if (e <= -1022)
1163 {
1164 m &= 0x1fffffffffffffU;
1165 m >>= (-1021 - e);
1166 e = -1022;
1167 }
1168
1169 r |= ((uint64_t)(e + 1022)) << 52;
1170 r |= m & 0xfffffffffffffU;
1171 #endif
1172
1173 return r;
1174 }
1175
1176 /* converts an ieee double/binary64 to a double */
1177 ecb_function_ double ecb_binary64_to_double (uint64_t x) ecb_const;
1178 ecb_function_ double
1179 ecb_binary64_to_double (uint64_t x)
1180 {
1181 double r;
1182
1183 #if ECB_STDFP
1184 memcpy (&r, &x, 8);
1185 #else
1186 /* emulation, only works for normals and subnormals and +0 */
1187 int neg = x >> 63;
1188 int e = (x >> 52) & 0x7ffU;
1189
1190 x &= 0xfffffffffffffU;
1191
1192 if (e)
1193 x |= 0x10000000000000U;
1194 else
1195 e = 1;
1196
1197 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1198 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1199
1200 r = neg ? -r : r;
1201 #endif
1202
1203 return r;
1204 }
1205
1206#endif
1207
1208#endif
1209
1210/* ECB.H END */
1211
1212#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1213/* if your architecture doesn't need memory fences, e.g. because it is
1214 * single-cpu/core, or if you use libev in a project that doesn't use libev
1215 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1216 * libev, in which cases the memory fences become nops.
1217 * alternatively, you can remove this #error and link against libpthread,
1218 * which will then provide the memory fences.
1219 */
1220# error "memory fences not defined for your architecture, please report"
1221#endif
1222
1223#ifndef ECB_MEMORY_FENCE
1224# define ECB_MEMORY_FENCE do { } while (0)
1225# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1226# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1227#endif
1228
1229#define expect_false(cond) ecb_expect_false (cond)
1230#define expect_true(cond) ecb_expect_true (cond)
1231#define noinline ecb_noinline
1232
345#define inline_size static inline 1233#define inline_size ecb_inline
346 1234
347#if EV_MINIMAL 1235#if EV_FEATURE_CODE
1236# define inline_speed ecb_inline
1237#else
348# define inline_speed static noinline 1238# define inline_speed static noinline
1239#endif
1240
1241#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1242
1243#if EV_MINPRI == EV_MAXPRI
1244# define ABSPRI(w) (((W)w), 0)
349#else 1245#else
350# define inline_speed static inline
351#endif
352
353#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
354#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1246# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1247#endif
355 1248
356#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1249#define EMPTY /* required for microsofts broken pseudo-c compiler */
357#define EMPTY2(a,b) /* used to suppress some warnings */ 1250#define EMPTY2(a,b) /* used to suppress some warnings */
358 1251
359typedef ev_watcher *W; 1252typedef ev_watcher *W;
361typedef ev_watcher_time *WT; 1254typedef ev_watcher_time *WT;
362 1255
363#define ev_active(w) ((W)(w))->active 1256#define ev_active(w) ((W)(w))->active
364#define ev_at(w) ((WT)(w))->at 1257#define ev_at(w) ((WT)(w))->at
365 1258
1259#if EV_USE_REALTIME
1260/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1261/* giving it a reasonably high chance of working on typical architectures */
1262static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1263#endif
1264
366#if EV_USE_MONOTONIC 1265#if EV_USE_MONOTONIC
367/* sig_atomic_t is used to avoid per-thread variables or locking but still */
368/* giving it a reasonably high chance of working on typical architetcures */
369static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1266static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1267#endif
1268
1269#ifndef EV_FD_TO_WIN32_HANDLE
1270# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1271#endif
1272#ifndef EV_WIN32_HANDLE_TO_FD
1273# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1274#endif
1275#ifndef EV_WIN32_CLOSE_FD
1276# define EV_WIN32_CLOSE_FD(fd) close (fd)
370#endif 1277#endif
371 1278
372#ifdef _WIN32 1279#ifdef _WIN32
373# include "ev_win32.c" 1280# include "ev_win32.c"
374#endif 1281#endif
375 1282
376/*****************************************************************************/ 1283/*****************************************************************************/
377 1284
1285/* define a suitable floor function (only used by periodics atm) */
1286
1287#if EV_USE_FLOOR
1288# include <math.h>
1289# define ev_floor(v) floor (v)
1290#else
1291
1292#include <float.h>
1293
1294/* a floor() replacement function, should be independent of ev_tstamp type */
1295static ev_tstamp noinline
1296ev_floor (ev_tstamp v)
1297{
1298 /* the choice of shift factor is not terribly important */
1299#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1300 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1301#else
1302 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1303#endif
1304
1305 /* argument too large for an unsigned long? */
1306 if (expect_false (v >= shift))
1307 {
1308 ev_tstamp f;
1309
1310 if (v == v - 1.)
1311 return v; /* very large number */
1312
1313 f = shift * ev_floor (v * (1. / shift));
1314 return f + ev_floor (v - f);
1315 }
1316
1317 /* special treatment for negative args? */
1318 if (expect_false (v < 0.))
1319 {
1320 ev_tstamp f = -ev_floor (-v);
1321
1322 return f - (f == v ? 0 : 1);
1323 }
1324
1325 /* fits into an unsigned long */
1326 return (unsigned long)v;
1327}
1328
1329#endif
1330
1331/*****************************************************************************/
1332
1333#ifdef __linux
1334# include <sys/utsname.h>
1335#endif
1336
1337static unsigned int noinline ecb_cold
1338ev_linux_version (void)
1339{
1340#ifdef __linux
1341 unsigned int v = 0;
1342 struct utsname buf;
1343 int i;
1344 char *p = buf.release;
1345
1346 if (uname (&buf))
1347 return 0;
1348
1349 for (i = 3+1; --i; )
1350 {
1351 unsigned int c = 0;
1352
1353 for (;;)
1354 {
1355 if (*p >= '0' && *p <= '9')
1356 c = c * 10 + *p++ - '0';
1357 else
1358 {
1359 p += *p == '.';
1360 break;
1361 }
1362 }
1363
1364 v = (v << 8) | c;
1365 }
1366
1367 return v;
1368#else
1369 return 0;
1370#endif
1371}
1372
1373/*****************************************************************************/
1374
1375#if EV_AVOID_STDIO
1376static void noinline ecb_cold
1377ev_printerr (const char *msg)
1378{
1379 write (STDERR_FILENO, msg, strlen (msg));
1380}
1381#endif
1382
378static void (*syserr_cb)(const char *msg); 1383static void (*syserr_cb)(const char *msg) EV_THROW;
379 1384
380void 1385void ecb_cold
381ev_set_syserr_cb (void (*cb)(const char *msg)) 1386ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
382{ 1387{
383 syserr_cb = cb; 1388 syserr_cb = cb;
384} 1389}
385 1390
386static void noinline 1391static void noinline ecb_cold
387syserr (const char *msg) 1392ev_syserr (const char *msg)
388{ 1393{
389 if (!msg) 1394 if (!msg)
390 msg = "(libev) system error"; 1395 msg = "(libev) system error";
391 1396
392 if (syserr_cb) 1397 if (syserr_cb)
393 syserr_cb (msg); 1398 syserr_cb (msg);
394 else 1399 else
395 { 1400 {
1401#if EV_AVOID_STDIO
1402 ev_printerr (msg);
1403 ev_printerr (": ");
1404 ev_printerr (strerror (errno));
1405 ev_printerr ("\n");
1406#else
396 perror (msg); 1407 perror (msg);
1408#endif
397 abort (); 1409 abort ();
398 } 1410 }
399} 1411}
400 1412
401static void * 1413static void *
402ev_realloc_emul (void *ptr, long size) 1414ev_realloc_emul (void *ptr, long size) EV_THROW
403{ 1415{
404 /* some systems, notably openbsd and darwin, fail to properly 1416 /* some systems, notably openbsd and darwin, fail to properly
405 * implement realloc (x, 0) (as required by both ansi c-98 and 1417 * implement realloc (x, 0) (as required by both ansi c-89 and
406 * the single unix specification, so work around them here. 1418 * the single unix specification, so work around them here.
1419 * recently, also (at least) fedora and debian started breaking it,
1420 * despite documenting it otherwise.
407 */ 1421 */
408 1422
409 if (size) 1423 if (size)
410 return realloc (ptr, size); 1424 return realloc (ptr, size);
411 1425
412 free (ptr); 1426 free (ptr);
413 return 0; 1427 return 0;
414} 1428}
415 1429
416static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 1430static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
417 1431
418void 1432void ecb_cold
419ev_set_allocator (void *(*cb)(void *ptr, long size)) 1433ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
420{ 1434{
421 alloc = cb; 1435 alloc = cb;
422} 1436}
423 1437
424inline_speed void * 1438inline_speed void *
426{ 1440{
427 ptr = alloc (ptr, size); 1441 ptr = alloc (ptr, size);
428 1442
429 if (!ptr && size) 1443 if (!ptr && size)
430 { 1444 {
1445#if EV_AVOID_STDIO
1446 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1447#else
431 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1448 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1449#endif
432 abort (); 1450 abort ();
433 } 1451 }
434 1452
435 return ptr; 1453 return ptr;
436} 1454}
438#define ev_malloc(size) ev_realloc (0, (size)) 1456#define ev_malloc(size) ev_realloc (0, (size))
439#define ev_free(ptr) ev_realloc ((ptr), 0) 1457#define ev_free(ptr) ev_realloc ((ptr), 0)
440 1458
441/*****************************************************************************/ 1459/*****************************************************************************/
442 1460
1461/* set in reify when reification needed */
1462#define EV_ANFD_REIFY 1
1463
1464/* file descriptor info structure */
443typedef struct 1465typedef struct
444{ 1466{
445 WL head; 1467 WL head;
446 unsigned char events; 1468 unsigned char events; /* the events watched for */
1469 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1470 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
447 unsigned char reify; 1471 unsigned char unused;
1472#if EV_USE_EPOLL
1473 unsigned int egen; /* generation counter to counter epoll bugs */
1474#endif
448#if EV_SELECT_IS_WINSOCKET 1475#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
449 SOCKET handle; 1476 SOCKET handle;
450#endif 1477#endif
1478#if EV_USE_IOCP
1479 OVERLAPPED or, ow;
1480#endif
451} ANFD; 1481} ANFD;
452 1482
1483/* stores the pending event set for a given watcher */
453typedef struct 1484typedef struct
454{ 1485{
455 W w; 1486 W w;
456 int events; 1487 int events; /* the pending event set for the given watcher */
457} ANPENDING; 1488} ANPENDING;
458 1489
459#if EV_USE_INOTIFY 1490#if EV_USE_INOTIFY
460/* hash table entry per inotify-id */ 1491/* hash table entry per inotify-id */
461typedef struct 1492typedef struct
464} ANFS; 1495} ANFS;
465#endif 1496#endif
466 1497
467/* Heap Entry */ 1498/* Heap Entry */
468#if EV_HEAP_CACHE_AT 1499#if EV_HEAP_CACHE_AT
1500 /* a heap element */
469 typedef struct { 1501 typedef struct {
470 ev_tstamp at; 1502 ev_tstamp at;
471 WT w; 1503 WT w;
472 } ANHE; 1504 } ANHE;
473 1505
474 #define ANHE_w(he) (he).w /* access watcher, read-write */ 1506 #define ANHE_w(he) (he).w /* access watcher, read-write */
475 #define ANHE_at(he) (he).at /* access cached at, read-only */ 1507 #define ANHE_at(he) (he).at /* access cached at, read-only */
476 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 1508 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
477#else 1509#else
1510 /* a heap element */
478 typedef WT ANHE; 1511 typedef WT ANHE;
479 1512
480 #define ANHE_w(he) (he) 1513 #define ANHE_w(he) (he)
481 #define ANHE_at(he) (he)->at 1514 #define ANHE_at(he) (he)->at
482 #define ANHE_at_cache(he) 1515 #define ANHE_at_cache(he)
493 #undef VAR 1526 #undef VAR
494 }; 1527 };
495 #include "ev_wrap.h" 1528 #include "ev_wrap.h"
496 1529
497 static struct ev_loop default_loop_struct; 1530 static struct ev_loop default_loop_struct;
498 struct ev_loop *ev_default_loop_ptr; 1531 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
499 1532
500#else 1533#else
501 1534
502 ev_tstamp ev_rt_now; 1535 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
503 #define VAR(name,decl) static decl; 1536 #define VAR(name,decl) static decl;
504 #include "ev_vars.h" 1537 #include "ev_vars.h"
505 #undef VAR 1538 #undef VAR
506 1539
507 static int ev_default_loop_ptr; 1540 static int ev_default_loop_ptr;
508 1541
509#endif 1542#endif
510 1543
1544#if EV_FEATURE_API
1545# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1546# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1547# define EV_INVOKE_PENDING invoke_cb (EV_A)
1548#else
1549# define EV_RELEASE_CB (void)0
1550# define EV_ACQUIRE_CB (void)0
1551# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1552#endif
1553
1554#define EVBREAK_RECURSE 0x80
1555
511/*****************************************************************************/ 1556/*****************************************************************************/
512 1557
1558#ifndef EV_HAVE_EV_TIME
513ev_tstamp 1559ev_tstamp
514ev_time (void) 1560ev_time (void) EV_THROW
515{ 1561{
516#if EV_USE_REALTIME 1562#if EV_USE_REALTIME
1563 if (expect_true (have_realtime))
1564 {
517 struct timespec ts; 1565 struct timespec ts;
518 clock_gettime (CLOCK_REALTIME, &ts); 1566 clock_gettime (CLOCK_REALTIME, &ts);
519 return ts.tv_sec + ts.tv_nsec * 1e-9; 1567 return ts.tv_sec + ts.tv_nsec * 1e-9;
520#else 1568 }
1569#endif
1570
521 struct timeval tv; 1571 struct timeval tv;
522 gettimeofday (&tv, 0); 1572 gettimeofday (&tv, 0);
523 return tv.tv_sec + tv.tv_usec * 1e-6; 1573 return tv.tv_sec + tv.tv_usec * 1e-6;
524#endif
525} 1574}
1575#endif
526 1576
527ev_tstamp inline_size 1577inline_size ev_tstamp
528get_clock (void) 1578get_clock (void)
529{ 1579{
530#if EV_USE_MONOTONIC 1580#if EV_USE_MONOTONIC
531 if (expect_true (have_monotonic)) 1581 if (expect_true (have_monotonic))
532 { 1582 {
539 return ev_time (); 1589 return ev_time ();
540} 1590}
541 1591
542#if EV_MULTIPLICITY 1592#if EV_MULTIPLICITY
543ev_tstamp 1593ev_tstamp
544ev_now (EV_P) 1594ev_now (EV_P) EV_THROW
545{ 1595{
546 return ev_rt_now; 1596 return ev_rt_now;
547} 1597}
548#endif 1598#endif
549 1599
550void 1600void
551ev_sleep (ev_tstamp delay) 1601ev_sleep (ev_tstamp delay) EV_THROW
552{ 1602{
553 if (delay > 0.) 1603 if (delay > 0.)
554 { 1604 {
555#if EV_USE_NANOSLEEP 1605#if EV_USE_NANOSLEEP
556 struct timespec ts; 1606 struct timespec ts;
557 1607
558 ts.tv_sec = (time_t)delay; 1608 EV_TS_SET (ts, delay);
559 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
560
561 nanosleep (&ts, 0); 1609 nanosleep (&ts, 0);
562#elif defined(_WIN32) 1610#elif defined _WIN32
563 Sleep ((unsigned long)(delay * 1e3)); 1611 Sleep ((unsigned long)(delay * 1e3));
564#else 1612#else
565 struct timeval tv; 1613 struct timeval tv;
566 1614
567 tv.tv_sec = (time_t)delay;
568 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
569
570 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */ 1615 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
571 /* somehting nto guaranteed by newer posix versions, but guaranteed */ 1616 /* something not guaranteed by newer posix versions, but guaranteed */
572 /* by older ones */ 1617 /* by older ones */
1618 EV_TV_SET (tv, delay);
573 select (0, 0, 0, 0, &tv); 1619 select (0, 0, 0, 0, &tv);
574#endif 1620#endif
575 } 1621 }
576} 1622}
577 1623
578/*****************************************************************************/ 1624/*****************************************************************************/
579 1625
580#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 1626#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
581 1627
582int inline_size 1628/* find a suitable new size for the given array, */
1629/* hopefully by rounding to a nice-to-malloc size */
1630inline_size int
583array_nextsize (int elem, int cur, int cnt) 1631array_nextsize (int elem, int cur, int cnt)
584{ 1632{
585 int ncur = cur + 1; 1633 int ncur = cur + 1;
586 1634
587 do 1635 do
588 ncur <<= 1; 1636 ncur <<= 1;
589 while (cnt > ncur); 1637 while (cnt > ncur);
590 1638
591 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */ 1639 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
592 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4) 1640 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
593 { 1641 {
594 ncur *= elem; 1642 ncur *= elem;
595 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1); 1643 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
596 ncur = ncur - sizeof (void *) * 4; 1644 ncur = ncur - sizeof (void *) * 4;
598 } 1646 }
599 1647
600 return ncur; 1648 return ncur;
601} 1649}
602 1650
603static noinline void * 1651static void * noinline ecb_cold
604array_realloc (int elem, void *base, int *cur, int cnt) 1652array_realloc (int elem, void *base, int *cur, int cnt)
605{ 1653{
606 *cur = array_nextsize (elem, *cur, cnt); 1654 *cur = array_nextsize (elem, *cur, cnt);
607 return ev_realloc (base, elem * *cur); 1655 return ev_realloc (base, elem * *cur);
608} 1656}
1657
1658#define array_init_zero(base,count) \
1659 memset ((void *)(base), 0, sizeof (*(base)) * (count))
609 1660
610#define array_needsize(type,base,cur,cnt,init) \ 1661#define array_needsize(type,base,cur,cnt,init) \
611 if (expect_false ((cnt) > (cur))) \ 1662 if (expect_false ((cnt) > (cur))) \
612 { \ 1663 { \
613 int ocur_ = (cur); \ 1664 int ecb_unused ocur_ = (cur); \
614 (base) = (type *)array_realloc \ 1665 (base) = (type *)array_realloc \
615 (sizeof (type), (base), &(cur), (cnt)); \ 1666 (sizeof (type), (base), &(cur), (cnt)); \
616 init ((base) + (ocur_), (cur) - ocur_); \ 1667 init ((base) + (ocur_), (cur) - ocur_); \
617 } 1668 }
618 1669
625 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1676 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
626 } 1677 }
627#endif 1678#endif
628 1679
629#define array_free(stem, idx) \ 1680#define array_free(stem, idx) \
630 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1681 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
631 1682
632/*****************************************************************************/ 1683/*****************************************************************************/
633 1684
1685/* dummy callback for pending events */
1686static void noinline
1687pendingcb (EV_P_ ev_prepare *w, int revents)
1688{
1689}
1690
634void noinline 1691void noinline
635ev_feed_event (EV_P_ void *w, int revents) 1692ev_feed_event (EV_P_ void *w, int revents) EV_THROW
636{ 1693{
637 W w_ = (W)w; 1694 W w_ = (W)w;
638 int pri = ABSPRI (w_); 1695 int pri = ABSPRI (w_);
639 1696
640 if (expect_false (w_->pending)) 1697 if (expect_false (w_->pending))
644 w_->pending = ++pendingcnt [pri]; 1701 w_->pending = ++pendingcnt [pri];
645 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 1702 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
646 pendings [pri][w_->pending - 1].w = w_; 1703 pendings [pri][w_->pending - 1].w = w_;
647 pendings [pri][w_->pending - 1].events = revents; 1704 pendings [pri][w_->pending - 1].events = revents;
648 } 1705 }
649}
650 1706
651void inline_speed 1707 pendingpri = NUMPRI - 1;
1708}
1709
1710inline_speed void
1711feed_reverse (EV_P_ W w)
1712{
1713 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1714 rfeeds [rfeedcnt++] = w;
1715}
1716
1717inline_size void
1718feed_reverse_done (EV_P_ int revents)
1719{
1720 do
1721 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1722 while (rfeedcnt);
1723}
1724
1725inline_speed void
652queue_events (EV_P_ W *events, int eventcnt, int type) 1726queue_events (EV_P_ W *events, int eventcnt, int type)
653{ 1727{
654 int i; 1728 int i;
655 1729
656 for (i = 0; i < eventcnt; ++i) 1730 for (i = 0; i < eventcnt; ++i)
657 ev_feed_event (EV_A_ events [i], type); 1731 ev_feed_event (EV_A_ events [i], type);
658} 1732}
659 1733
660/*****************************************************************************/ 1734/*****************************************************************************/
661 1735
662void inline_size 1736inline_speed void
663anfds_init (ANFD *base, int count)
664{
665 while (count--)
666 {
667 base->head = 0;
668 base->events = EV_NONE;
669 base->reify = 0;
670
671 ++base;
672 }
673}
674
675void inline_speed
676fd_event (EV_P_ int fd, int revents) 1737fd_event_nocheck (EV_P_ int fd, int revents)
677{ 1738{
678 ANFD *anfd = anfds + fd; 1739 ANFD *anfd = anfds + fd;
679 ev_io *w; 1740 ev_io *w;
680 1741
681 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1742 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
685 if (ev) 1746 if (ev)
686 ev_feed_event (EV_A_ (W)w, ev); 1747 ev_feed_event (EV_A_ (W)w, ev);
687 } 1748 }
688} 1749}
689 1750
1751/* do not submit kernel events for fds that have reify set */
1752/* because that means they changed while we were polling for new events */
1753inline_speed void
1754fd_event (EV_P_ int fd, int revents)
1755{
1756 ANFD *anfd = anfds + fd;
1757
1758 if (expect_true (!anfd->reify))
1759 fd_event_nocheck (EV_A_ fd, revents);
1760}
1761
690void 1762void
691ev_feed_fd_event (EV_P_ int fd, int revents) 1763ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
692{ 1764{
693 if (fd >= 0 && fd < anfdmax) 1765 if (fd >= 0 && fd < anfdmax)
694 fd_event (EV_A_ fd, revents); 1766 fd_event_nocheck (EV_A_ fd, revents);
695} 1767}
696 1768
697void inline_size 1769/* make sure the external fd watch events are in-sync */
1770/* with the kernel/libev internal state */
1771inline_size void
698fd_reify (EV_P) 1772fd_reify (EV_P)
699{ 1773{
700 int i; 1774 int i;
1775
1776#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1777 for (i = 0; i < fdchangecnt; ++i)
1778 {
1779 int fd = fdchanges [i];
1780 ANFD *anfd = anfds + fd;
1781
1782 if (anfd->reify & EV__IOFDSET && anfd->head)
1783 {
1784 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1785
1786 if (handle != anfd->handle)
1787 {
1788 unsigned long arg;
1789
1790 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1791
1792 /* handle changed, but fd didn't - we need to do it in two steps */
1793 backend_modify (EV_A_ fd, anfd->events, 0);
1794 anfd->events = 0;
1795 anfd->handle = handle;
1796 }
1797 }
1798 }
1799#endif
701 1800
702 for (i = 0; i < fdchangecnt; ++i) 1801 for (i = 0; i < fdchangecnt; ++i)
703 { 1802 {
704 int fd = fdchanges [i]; 1803 int fd = fdchanges [i];
705 ANFD *anfd = anfds + fd; 1804 ANFD *anfd = anfds + fd;
706 ev_io *w; 1805 ev_io *w;
707 1806
708 unsigned char events = 0; 1807 unsigned char o_events = anfd->events;
1808 unsigned char o_reify = anfd->reify;
709 1809
710 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1810 anfd->reify = 0;
711 events |= (unsigned char)w->events;
712 1811
713#if EV_SELECT_IS_WINSOCKET 1812 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
714 if (events)
715 { 1813 {
716 unsigned long arg; 1814 anfd->events = 0;
717 #ifdef EV_FD_TO_WIN32_HANDLE 1815
718 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1816 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
719 #else 1817 anfd->events |= (unsigned char)w->events;
720 anfd->handle = _get_osfhandle (fd); 1818
721 #endif 1819 if (o_events != anfd->events)
722 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0)); 1820 o_reify = EV__IOFDSET; /* actually |= */
723 } 1821 }
724#endif
725 1822
726 { 1823 if (o_reify & EV__IOFDSET)
727 unsigned char o_events = anfd->events;
728 unsigned char o_reify = anfd->reify;
729
730 anfd->reify = 0;
731 anfd->events = events;
732
733 if (o_events != events || o_reify & EV_IOFDSET)
734 backend_modify (EV_A_ fd, o_events, events); 1824 backend_modify (EV_A_ fd, o_events, anfd->events);
735 }
736 } 1825 }
737 1826
738 fdchangecnt = 0; 1827 fdchangecnt = 0;
739} 1828}
740 1829
741void inline_size 1830/* something about the given fd changed */
1831inline_size void
742fd_change (EV_P_ int fd, int flags) 1832fd_change (EV_P_ int fd, int flags)
743{ 1833{
744 unsigned char reify = anfds [fd].reify; 1834 unsigned char reify = anfds [fd].reify;
745 anfds [fd].reify |= flags; 1835 anfds [fd].reify |= flags;
746 1836
750 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1840 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
751 fdchanges [fdchangecnt - 1] = fd; 1841 fdchanges [fdchangecnt - 1] = fd;
752 } 1842 }
753} 1843}
754 1844
755void inline_speed 1845/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1846inline_speed void ecb_cold
756fd_kill (EV_P_ int fd) 1847fd_kill (EV_P_ int fd)
757{ 1848{
758 ev_io *w; 1849 ev_io *w;
759 1850
760 while ((w = (ev_io *)anfds [fd].head)) 1851 while ((w = (ev_io *)anfds [fd].head))
762 ev_io_stop (EV_A_ w); 1853 ev_io_stop (EV_A_ w);
763 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1854 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
764 } 1855 }
765} 1856}
766 1857
767int inline_size 1858/* check whether the given fd is actually valid, for error recovery */
1859inline_size int ecb_cold
768fd_valid (int fd) 1860fd_valid (int fd)
769{ 1861{
770#ifdef _WIN32 1862#ifdef _WIN32
771 return _get_osfhandle (fd) != -1; 1863 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
772#else 1864#else
773 return fcntl (fd, F_GETFD) != -1; 1865 return fcntl (fd, F_GETFD) != -1;
774#endif 1866#endif
775} 1867}
776 1868
777/* called on EBADF to verify fds */ 1869/* called on EBADF to verify fds */
778static void noinline 1870static void noinline ecb_cold
779fd_ebadf (EV_P) 1871fd_ebadf (EV_P)
780{ 1872{
781 int fd; 1873 int fd;
782 1874
783 for (fd = 0; fd < anfdmax; ++fd) 1875 for (fd = 0; fd < anfdmax; ++fd)
785 if (!fd_valid (fd) && errno == EBADF) 1877 if (!fd_valid (fd) && errno == EBADF)
786 fd_kill (EV_A_ fd); 1878 fd_kill (EV_A_ fd);
787} 1879}
788 1880
789/* called on ENOMEM in select/poll to kill some fds and retry */ 1881/* called on ENOMEM in select/poll to kill some fds and retry */
790static void noinline 1882static void noinline ecb_cold
791fd_enomem (EV_P) 1883fd_enomem (EV_P)
792{ 1884{
793 int fd; 1885 int fd;
794 1886
795 for (fd = anfdmax; fd--; ) 1887 for (fd = anfdmax; fd--; )
796 if (anfds [fd].events) 1888 if (anfds [fd].events)
797 { 1889 {
798 fd_kill (EV_A_ fd); 1890 fd_kill (EV_A_ fd);
799 return; 1891 break;
800 } 1892 }
801} 1893}
802 1894
803/* usually called after fork if backend needs to re-arm all fds from scratch */ 1895/* usually called after fork if backend needs to re-arm all fds from scratch */
804static void noinline 1896static void noinline
808 1900
809 for (fd = 0; fd < anfdmax; ++fd) 1901 for (fd = 0; fd < anfdmax; ++fd)
810 if (anfds [fd].events) 1902 if (anfds [fd].events)
811 { 1903 {
812 anfds [fd].events = 0; 1904 anfds [fd].events = 0;
1905 anfds [fd].emask = 0;
813 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1906 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
814 } 1907 }
815} 1908}
816 1909
1910/* used to prepare libev internal fd's */
1911/* this is not fork-safe */
1912inline_speed void
1913fd_intern (int fd)
1914{
1915#ifdef _WIN32
1916 unsigned long arg = 1;
1917 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1918#else
1919 fcntl (fd, F_SETFD, FD_CLOEXEC);
1920 fcntl (fd, F_SETFL, O_NONBLOCK);
1921#endif
1922}
1923
817/*****************************************************************************/ 1924/*****************************************************************************/
818 1925
819/* 1926/*
820 * the heap functions want a real array index. array index 0 uis guaranteed to not 1927 * the heap functions want a real array index. array index 0 is guaranteed to not
821 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 1928 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
822 * the branching factor of the d-tree. 1929 * the branching factor of the d-tree.
823 */ 1930 */
824 1931
825/* 1932/*
834#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1941#define HEAP0 (DHEAP - 1) /* index of first element in heap */
835#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 1942#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
836#define UPHEAP_DONE(p,k) ((p) == (k)) 1943#define UPHEAP_DONE(p,k) ((p) == (k))
837 1944
838/* away from the root */ 1945/* away from the root */
839void inline_speed 1946inline_speed void
840downheap (ANHE *heap, int N, int k) 1947downheap (ANHE *heap, int N, int k)
841{ 1948{
842 ANHE he = heap [k]; 1949 ANHE he = heap [k];
843 ANHE *E = heap + N + HEAP0; 1950 ANHE *E = heap + N + HEAP0;
844 1951
884#define HEAP0 1 1991#define HEAP0 1
885#define HPARENT(k) ((k) >> 1) 1992#define HPARENT(k) ((k) >> 1)
886#define UPHEAP_DONE(p,k) (!(p)) 1993#define UPHEAP_DONE(p,k) (!(p))
887 1994
888/* away from the root */ 1995/* away from the root */
889void inline_speed 1996inline_speed void
890downheap (ANHE *heap, int N, int k) 1997downheap (ANHE *heap, int N, int k)
891{ 1998{
892 ANHE he = heap [k]; 1999 ANHE he = heap [k];
893 2000
894 for (;;) 2001 for (;;)
895 { 2002 {
896 int c = k << 1; 2003 int c = k << 1;
897 2004
898 if (c > N + HEAP0 - 1) 2005 if (c >= N + HEAP0)
899 break; 2006 break;
900 2007
901 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 2008 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
902 ? 1 : 0; 2009 ? 1 : 0;
903 2010
914 ev_active (ANHE_w (he)) = k; 2021 ev_active (ANHE_w (he)) = k;
915} 2022}
916#endif 2023#endif
917 2024
918/* towards the root */ 2025/* towards the root */
919void inline_speed 2026inline_speed void
920upheap (ANHE *heap, int k) 2027upheap (ANHE *heap, int k)
921{ 2028{
922 ANHE he = heap [k]; 2029 ANHE he = heap [k];
923 2030
924 for (;;) 2031 for (;;)
935 2042
936 heap [k] = he; 2043 heap [k] = he;
937 ev_active (ANHE_w (he)) = k; 2044 ev_active (ANHE_w (he)) = k;
938} 2045}
939 2046
940void inline_size 2047/* move an element suitably so it is in a correct place */
2048inline_size void
941adjustheap (ANHE *heap, int N, int k) 2049adjustheap (ANHE *heap, int N, int k)
942{ 2050{
943 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 2051 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
944 upheap (heap, k); 2052 upheap (heap, k);
945 else 2053 else
946 downheap (heap, N, k); 2054 downheap (heap, N, k);
947} 2055}
948 2056
949/* rebuild the heap: this function is used only once and executed rarely */ 2057/* rebuild the heap: this function is used only once and executed rarely */
950void inline_size 2058inline_size void
951reheap (ANHE *heap, int N) 2059reheap (ANHE *heap, int N)
952{ 2060{
953 int i; 2061 int i;
954 2062
955 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 2063 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
958 upheap (heap, i + HEAP0); 2066 upheap (heap, i + HEAP0);
959} 2067}
960 2068
961/*****************************************************************************/ 2069/*****************************************************************************/
962 2070
2071/* associate signal watchers to a signal signal */
963typedef struct 2072typedef struct
964{ 2073{
2074 EV_ATOMIC_T pending;
2075#if EV_MULTIPLICITY
2076 EV_P;
2077#endif
965 WL head; 2078 WL head;
966 EV_ATOMIC_T gotsig;
967} ANSIG; 2079} ANSIG;
968 2080
969static ANSIG *signals; 2081static ANSIG signals [EV_NSIG - 1];
970static int signalmax;
971
972static EV_ATOMIC_T gotsig;
973
974void inline_size
975signals_init (ANSIG *base, int count)
976{
977 while (count--)
978 {
979 base->head = 0;
980 base->gotsig = 0;
981
982 ++base;
983 }
984}
985 2082
986/*****************************************************************************/ 2083/*****************************************************************************/
987 2084
988void inline_speed 2085#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
989fd_intern (int fd)
990{
991#ifdef _WIN32
992 unsigned long arg = 1;
993 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
994#else
995 fcntl (fd, F_SETFD, FD_CLOEXEC);
996 fcntl (fd, F_SETFL, O_NONBLOCK);
997#endif
998}
999 2086
1000static void noinline 2087static void noinline ecb_cold
1001evpipe_init (EV_P) 2088evpipe_init (EV_P)
1002{ 2089{
1003 if (!ev_is_active (&pipeev)) 2090 if (!ev_is_active (&pipe_w))
2091 {
2092 int fds [2];
2093
2094# if EV_USE_EVENTFD
2095 fds [0] = -1;
2096 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2097 if (fds [1] < 0 && errno == EINVAL)
2098 fds [1] = eventfd (0, 0);
2099
2100 if (fds [1] < 0)
2101# endif
2102 {
2103 while (pipe (fds))
2104 ev_syserr ("(libev) error creating signal/async pipe");
2105
2106 fd_intern (fds [0]);
2107 }
2108
2109 fd_intern (fds [1]);
2110
2111 evpipe [0] = fds [0];
2112
2113 if (evpipe [1] < 0)
2114 evpipe [1] = fds [1]; /* first call, set write fd */
2115 else
2116 {
2117 /* on subsequent calls, do not change evpipe [1] */
2118 /* so that evpipe_write can always rely on its value. */
2119 /* this branch does not do anything sensible on windows, */
2120 /* so must not be executed on windows */
2121
2122 dup2 (fds [1], evpipe [1]);
2123 close (fds [1]);
2124 }
2125
2126 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2127 ev_io_start (EV_A_ &pipe_w);
2128 ev_unref (EV_A); /* watcher should not keep loop alive */
1004 { 2129 }
2130}
2131
2132inline_speed void
2133evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2134{
2135 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2136
2137 if (expect_true (*flag))
2138 return;
2139
2140 *flag = 1;
2141 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2142
2143 pipe_write_skipped = 1;
2144
2145 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2146
2147 if (pipe_write_wanted)
2148 {
2149 int old_errno;
2150
2151 pipe_write_skipped = 0;
2152 ECB_MEMORY_FENCE_RELEASE;
2153
2154 old_errno = errno; /* save errno because write will clobber it */
2155
1005#if EV_USE_EVENTFD 2156#if EV_USE_EVENTFD
1006 if ((evfd = eventfd (0, 0)) >= 0) 2157 if (evpipe [0] < 0)
1007 { 2158 {
1008 evpipe [0] = -1; 2159 uint64_t counter = 1;
1009 fd_intern (evfd); 2160 write (evpipe [1], &counter, sizeof (uint64_t));
1010 ev_io_set (&pipeev, evfd, EV_READ);
1011 } 2161 }
1012 else 2162 else
1013#endif 2163#endif
1014 { 2164 {
1015 while (pipe (evpipe)) 2165#ifdef _WIN32
1016 syserr ("(libev) error creating signal/async pipe"); 2166 WSABUF buf;
1017 2167 DWORD sent;
1018 fd_intern (evpipe [0]); 2168 buf.buf = &buf;
1019 fd_intern (evpipe [1]); 2169 buf.len = 1;
1020 ev_io_set (&pipeev, evpipe [0], EV_READ); 2170 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2171#else
2172 write (evpipe [1], &(evpipe [1]), 1);
2173#endif
1021 } 2174 }
1022 2175
1023 ev_io_start (EV_A_ &pipeev); 2176 errno = old_errno;
1024 ev_unref (EV_A); /* watcher should not keep loop alive */
1025 }
1026}
1027
1028void inline_size
1029evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1030{
1031 if (!*flag)
1032 { 2177 }
1033 int old_errno = errno; /* save errno because write might clobber it */ 2178}
1034 2179
1035 *flag = 1; 2180/* called whenever the libev signal pipe */
2181/* got some events (signal, async) */
2182static void
2183pipecb (EV_P_ ev_io *iow, int revents)
2184{
2185 int i;
1036 2186
2187 if (revents & EV_READ)
2188 {
1037#if EV_USE_EVENTFD 2189#if EV_USE_EVENTFD
1038 if (evfd >= 0) 2190 if (evpipe [0] < 0)
1039 { 2191 {
1040 uint64_t counter = 1; 2192 uint64_t counter;
1041 write (evfd, &counter, sizeof (uint64_t)); 2193 read (evpipe [1], &counter, sizeof (uint64_t));
1042 } 2194 }
1043 else 2195 else
1044#endif 2196#endif
1045 write (evpipe [1], &old_errno, 1); 2197 {
1046
1047 errno = old_errno;
1048 }
1049}
1050
1051static void
1052pipecb (EV_P_ ev_io *iow, int revents)
1053{
1054#if EV_USE_EVENTFD
1055 if (evfd >= 0)
1056 {
1057 uint64_t counter;
1058 read (evfd, &counter, sizeof (uint64_t));
1059 }
1060 else
1061#endif
1062 {
1063 char dummy; 2198 char dummy[4];
2199#ifdef _WIN32
2200 WSABUF buf;
2201 DWORD recvd;
2202 DWORD flags = 0;
2203 buf.buf = dummy;
2204 buf.len = sizeof (dummy);
2205 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2206#else
1064 read (evpipe [0], &dummy, 1); 2207 read (evpipe [0], &dummy, sizeof (dummy));
2208#endif
2209 }
2210 }
2211
2212 pipe_write_skipped = 0;
2213
2214 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2215
2216#if EV_SIGNAL_ENABLE
2217 if (sig_pending)
1065 } 2218 {
2219 sig_pending = 0;
1066 2220
1067 if (gotsig && ev_is_default_loop (EV_A)) 2221 ECB_MEMORY_FENCE;
1068 {
1069 int signum;
1070 gotsig = 0;
1071 2222
1072 for (signum = signalmax; signum--; ) 2223 for (i = EV_NSIG - 1; i--; )
1073 if (signals [signum].gotsig) 2224 if (expect_false (signals [i].pending))
1074 ev_feed_signal_event (EV_A_ signum + 1); 2225 ev_feed_signal_event (EV_A_ i + 1);
1075 } 2226 }
2227#endif
1076 2228
1077#if EV_ASYNC_ENABLE 2229#if EV_ASYNC_ENABLE
1078 if (gotasync) 2230 if (async_pending)
1079 { 2231 {
1080 int i; 2232 async_pending = 0;
1081 gotasync = 0; 2233
2234 ECB_MEMORY_FENCE;
1082 2235
1083 for (i = asynccnt; i--; ) 2236 for (i = asynccnt; i--; )
1084 if (asyncs [i]->sent) 2237 if (asyncs [i]->sent)
1085 { 2238 {
1086 asyncs [i]->sent = 0; 2239 asyncs [i]->sent = 0;
2240 ECB_MEMORY_FENCE_RELEASE;
1087 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); 2241 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1088 } 2242 }
1089 } 2243 }
1090#endif 2244#endif
1091} 2245}
1092 2246
1093/*****************************************************************************/ 2247/*****************************************************************************/
1094 2248
2249void
2250ev_feed_signal (int signum) EV_THROW
2251{
2252#if EV_MULTIPLICITY
2253 EV_P;
2254 ECB_MEMORY_FENCE_ACQUIRE;
2255 EV_A = signals [signum - 1].loop;
2256
2257 if (!EV_A)
2258 return;
2259#endif
2260
2261 signals [signum - 1].pending = 1;
2262 evpipe_write (EV_A_ &sig_pending);
2263}
2264
1095static void 2265static void
1096ev_sighandler (int signum) 2266ev_sighandler (int signum)
1097{ 2267{
2268#ifdef _WIN32
2269 signal (signum, ev_sighandler);
2270#endif
2271
2272 ev_feed_signal (signum);
2273}
2274
2275void noinline
2276ev_feed_signal_event (EV_P_ int signum) EV_THROW
2277{
2278 WL w;
2279
2280 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2281 return;
2282
2283 --signum;
2284
1098#if EV_MULTIPLICITY 2285#if EV_MULTIPLICITY
1099 struct ev_loop *loop = &default_loop_struct; 2286 /* it is permissible to try to feed a signal to the wrong loop */
1100#endif 2287 /* or, likely more useful, feeding a signal nobody is waiting for */
1101 2288
1102#if _WIN32 2289 if (expect_false (signals [signum].loop != EV_A))
1103 signal (signum, ev_sighandler);
1104#endif
1105
1106 signals [signum - 1].gotsig = 1;
1107 evpipe_write (EV_A_ &gotsig);
1108}
1109
1110void noinline
1111ev_feed_signal_event (EV_P_ int signum)
1112{
1113 WL w;
1114
1115#if EV_MULTIPLICITY
1116 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1117#endif
1118
1119 --signum;
1120
1121 if (signum < 0 || signum >= signalmax)
1122 return; 2290 return;
2291#endif
1123 2292
1124 signals [signum].gotsig = 0; 2293 signals [signum].pending = 0;
2294 ECB_MEMORY_FENCE_RELEASE;
1125 2295
1126 for (w = signals [signum].head; w; w = w->next) 2296 for (w = signals [signum].head; w; w = w->next)
1127 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2297 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1128} 2298}
1129 2299
2300#if EV_USE_SIGNALFD
2301static void
2302sigfdcb (EV_P_ ev_io *iow, int revents)
2303{
2304 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2305
2306 for (;;)
2307 {
2308 ssize_t res = read (sigfd, si, sizeof (si));
2309
2310 /* not ISO-C, as res might be -1, but works with SuS */
2311 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2312 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2313
2314 if (res < (ssize_t)sizeof (si))
2315 break;
2316 }
2317}
2318#endif
2319
2320#endif
2321
1130/*****************************************************************************/ 2322/*****************************************************************************/
1131 2323
2324#if EV_CHILD_ENABLE
1132static WL childs [EV_PID_HASHSIZE]; 2325static WL childs [EV_PID_HASHSIZE];
1133
1134#ifndef _WIN32
1135 2326
1136static ev_signal childev; 2327static ev_signal childev;
1137 2328
1138#ifndef WIFCONTINUED 2329#ifndef WIFCONTINUED
1139# define WIFCONTINUED(status) 0 2330# define WIFCONTINUED(status) 0
1140#endif 2331#endif
1141 2332
1142void inline_speed 2333/* handle a single child status event */
2334inline_speed void
1143child_reap (EV_P_ int chain, int pid, int status) 2335child_reap (EV_P_ int chain, int pid, int status)
1144{ 2336{
1145 ev_child *w; 2337 ev_child *w;
1146 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2338 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1147 2339
1148 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2340 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1149 { 2341 {
1150 if ((w->pid == pid || !w->pid) 2342 if ((w->pid == pid || !w->pid)
1151 && (!traced || (w->flags & 1))) 2343 && (!traced || (w->flags & 1)))
1152 { 2344 {
1153 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 2345 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1160 2352
1161#ifndef WCONTINUED 2353#ifndef WCONTINUED
1162# define WCONTINUED 0 2354# define WCONTINUED 0
1163#endif 2355#endif
1164 2356
2357/* called on sigchld etc., calls waitpid */
1165static void 2358static void
1166childcb (EV_P_ ev_signal *sw, int revents) 2359childcb (EV_P_ ev_signal *sw, int revents)
1167{ 2360{
1168 int pid, status; 2361 int pid, status;
1169 2362
1177 /* make sure we are called again until all children have been reaped */ 2370 /* make sure we are called again until all children have been reaped */
1178 /* we need to do it this way so that the callback gets called before we continue */ 2371 /* we need to do it this way so that the callback gets called before we continue */
1179 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2372 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1180 2373
1181 child_reap (EV_A_ pid, pid, status); 2374 child_reap (EV_A_ pid, pid, status);
1182 if (EV_PID_HASHSIZE > 1) 2375 if ((EV_PID_HASHSIZE) > 1)
1183 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2376 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1184} 2377}
1185 2378
1186#endif 2379#endif
1187 2380
1188/*****************************************************************************/ 2381/*****************************************************************************/
1189 2382
2383#if EV_USE_IOCP
2384# include "ev_iocp.c"
2385#endif
1190#if EV_USE_PORT 2386#if EV_USE_PORT
1191# include "ev_port.c" 2387# include "ev_port.c"
1192#endif 2388#endif
1193#if EV_USE_KQUEUE 2389#if EV_USE_KQUEUE
1194# include "ev_kqueue.c" 2390# include "ev_kqueue.c"
1201#endif 2397#endif
1202#if EV_USE_SELECT 2398#if EV_USE_SELECT
1203# include "ev_select.c" 2399# include "ev_select.c"
1204#endif 2400#endif
1205 2401
1206int 2402int ecb_cold
1207ev_version_major (void) 2403ev_version_major (void) EV_THROW
1208{ 2404{
1209 return EV_VERSION_MAJOR; 2405 return EV_VERSION_MAJOR;
1210} 2406}
1211 2407
1212int 2408int ecb_cold
1213ev_version_minor (void) 2409ev_version_minor (void) EV_THROW
1214{ 2410{
1215 return EV_VERSION_MINOR; 2411 return EV_VERSION_MINOR;
1216} 2412}
1217 2413
1218/* return true if we are running with elevated privileges and should ignore env variables */ 2414/* return true if we are running with elevated privileges and should ignore env variables */
1219int inline_size 2415int inline_size ecb_cold
1220enable_secure (void) 2416enable_secure (void)
1221{ 2417{
1222#ifdef _WIN32 2418#ifdef _WIN32
1223 return 0; 2419 return 0;
1224#else 2420#else
1225 return getuid () != geteuid () 2421 return getuid () != geteuid ()
1226 || getgid () != getegid (); 2422 || getgid () != getegid ();
1227#endif 2423#endif
1228} 2424}
1229 2425
1230unsigned int 2426unsigned int ecb_cold
1231ev_supported_backends (void) 2427ev_supported_backends (void) EV_THROW
1232{ 2428{
1233 unsigned int flags = 0; 2429 unsigned int flags = 0;
1234 2430
1235 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2431 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1236 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2432 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1239 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2435 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1240 2436
1241 return flags; 2437 return flags;
1242} 2438}
1243 2439
1244unsigned int 2440unsigned int ecb_cold
1245ev_recommended_backends (void) 2441ev_recommended_backends (void) EV_THROW
1246{ 2442{
1247 unsigned int flags = ev_supported_backends (); 2443 unsigned int flags = ev_supported_backends ();
1248 2444
1249#ifndef __NetBSD__ 2445#ifndef __NetBSD__
1250 /* kqueue is borked on everything but netbsd apparently */ 2446 /* kqueue is borked on everything but netbsd apparently */
1251 /* it usually doesn't work correctly on anything but sockets and pipes */ 2447 /* it usually doesn't work correctly on anything but sockets and pipes */
1252 flags &= ~EVBACKEND_KQUEUE; 2448 flags &= ~EVBACKEND_KQUEUE;
1253#endif 2449#endif
1254#ifdef __APPLE__ 2450#ifdef __APPLE__
1255 // flags &= ~EVBACKEND_KQUEUE; for documentation 2451 /* only select works correctly on that "unix-certified" platform */
1256 flags &= ~EVBACKEND_POLL; 2452 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2453 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2454#endif
2455#ifdef __FreeBSD__
2456 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1257#endif 2457#endif
1258 2458
1259 return flags; 2459 return flags;
1260} 2460}
1261 2461
2462unsigned int ecb_cold
2463ev_embeddable_backends (void) EV_THROW
2464{
2465 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2466
2467 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2468 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2469 flags &= ~EVBACKEND_EPOLL;
2470
2471 return flags;
2472}
2473
1262unsigned int 2474unsigned int
1263ev_embeddable_backends (void) 2475ev_backend (EV_P) EV_THROW
1264{ 2476{
1265 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2477 return backend;
1266
1267 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1268 /* please fix it and tell me how to detect the fix */
1269 flags &= ~EVBACKEND_EPOLL;
1270
1271 return flags;
1272} 2478}
1273 2479
2480#if EV_FEATURE_API
1274unsigned int 2481unsigned int
1275ev_backend (EV_P) 2482ev_iteration (EV_P) EV_THROW
1276{ 2483{
1277 return backend; 2484 return loop_count;
1278} 2485}
1279 2486
1280unsigned int 2487unsigned int
1281ev_loop_count (EV_P) 2488ev_depth (EV_P) EV_THROW
1282{ 2489{
1283 return loop_count; 2490 return loop_depth;
1284} 2491}
1285 2492
1286void 2493void
1287ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2494ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1288{ 2495{
1289 io_blocktime = interval; 2496 io_blocktime = interval;
1290} 2497}
1291 2498
1292void 2499void
1293ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2500ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1294{ 2501{
1295 timeout_blocktime = interval; 2502 timeout_blocktime = interval;
1296} 2503}
1297 2504
2505void
2506ev_set_userdata (EV_P_ void *data) EV_THROW
2507{
2508 userdata = data;
2509}
2510
2511void *
2512ev_userdata (EV_P) EV_THROW
2513{
2514 return userdata;
2515}
2516
2517void
2518ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2519{
2520 invoke_cb = invoke_pending_cb;
2521}
2522
2523void
2524ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2525{
2526 release_cb = release;
2527 acquire_cb = acquire;
2528}
2529#endif
2530
2531/* initialise a loop structure, must be zero-initialised */
1298static void noinline 2532static void noinline ecb_cold
1299loop_init (EV_P_ unsigned int flags) 2533loop_init (EV_P_ unsigned int flags) EV_THROW
1300{ 2534{
1301 if (!backend) 2535 if (!backend)
1302 { 2536 {
2537 origflags = flags;
2538
2539#if EV_USE_REALTIME
2540 if (!have_realtime)
2541 {
2542 struct timespec ts;
2543
2544 if (!clock_gettime (CLOCK_REALTIME, &ts))
2545 have_realtime = 1;
2546 }
2547#endif
2548
1303#if EV_USE_MONOTONIC 2549#if EV_USE_MONOTONIC
2550 if (!have_monotonic)
1304 { 2551 {
1305 struct timespec ts; 2552 struct timespec ts;
2553
1306 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2554 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1307 have_monotonic = 1; 2555 have_monotonic = 1;
1308 } 2556 }
1309#endif
1310
1311 ev_rt_now = ev_time ();
1312 mn_now = get_clock ();
1313 now_floor = mn_now;
1314 rtmn_diff = ev_rt_now - mn_now;
1315
1316 io_blocktime = 0.;
1317 timeout_blocktime = 0.;
1318 backend = 0;
1319 backend_fd = -1;
1320 gotasync = 0;
1321#if EV_USE_INOTIFY
1322 fs_fd = -2;
1323#endif 2557#endif
1324 2558
1325 /* pid check not overridable via env */ 2559 /* pid check not overridable via env */
1326#ifndef _WIN32 2560#ifndef _WIN32
1327 if (flags & EVFLAG_FORKCHECK) 2561 if (flags & EVFLAG_FORKCHECK)
1331 if (!(flags & EVFLAG_NOENV) 2565 if (!(flags & EVFLAG_NOENV)
1332 && !enable_secure () 2566 && !enable_secure ()
1333 && getenv ("LIBEV_FLAGS")) 2567 && getenv ("LIBEV_FLAGS"))
1334 flags = atoi (getenv ("LIBEV_FLAGS")); 2568 flags = atoi (getenv ("LIBEV_FLAGS"));
1335 2569
1336 if (!(flags & 0x0000ffffU)) 2570 ev_rt_now = ev_time ();
2571 mn_now = get_clock ();
2572 now_floor = mn_now;
2573 rtmn_diff = ev_rt_now - mn_now;
2574#if EV_FEATURE_API
2575 invoke_cb = ev_invoke_pending;
2576#endif
2577
2578 io_blocktime = 0.;
2579 timeout_blocktime = 0.;
2580 backend = 0;
2581 backend_fd = -1;
2582 sig_pending = 0;
2583#if EV_ASYNC_ENABLE
2584 async_pending = 0;
2585#endif
2586 pipe_write_skipped = 0;
2587 pipe_write_wanted = 0;
2588 evpipe [0] = -1;
2589 evpipe [1] = -1;
2590#if EV_USE_INOTIFY
2591 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2592#endif
2593#if EV_USE_SIGNALFD
2594 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2595#endif
2596
2597 if (!(flags & EVBACKEND_MASK))
1337 flags |= ev_recommended_backends (); 2598 flags |= ev_recommended_backends ();
1338 2599
2600#if EV_USE_IOCP
2601 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2602#endif
1339#if EV_USE_PORT 2603#if EV_USE_PORT
1340 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2604 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1341#endif 2605#endif
1342#if EV_USE_KQUEUE 2606#if EV_USE_KQUEUE
1343 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2607 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1350#endif 2614#endif
1351#if EV_USE_SELECT 2615#if EV_USE_SELECT
1352 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2616 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1353#endif 2617#endif
1354 2618
2619 ev_prepare_init (&pending_w, pendingcb);
2620
2621#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1355 ev_init (&pipeev, pipecb); 2622 ev_init (&pipe_w, pipecb);
1356 ev_set_priority (&pipeev, EV_MAXPRI); 2623 ev_set_priority (&pipe_w, EV_MAXPRI);
2624#endif
1357 } 2625 }
1358} 2626}
1359 2627
1360static void noinline 2628/* free up a loop structure */
2629void ecb_cold
1361loop_destroy (EV_P) 2630ev_loop_destroy (EV_P)
1362{ 2631{
1363 int i; 2632 int i;
1364 2633
2634#if EV_MULTIPLICITY
2635 /* mimic free (0) */
2636 if (!EV_A)
2637 return;
2638#endif
2639
2640#if EV_CLEANUP_ENABLE
2641 /* queue cleanup watchers (and execute them) */
2642 if (expect_false (cleanupcnt))
2643 {
2644 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2645 EV_INVOKE_PENDING;
2646 }
2647#endif
2648
2649#if EV_CHILD_ENABLE
2650 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2651 {
2652 ev_ref (EV_A); /* child watcher */
2653 ev_signal_stop (EV_A_ &childev);
2654 }
2655#endif
2656
1365 if (ev_is_active (&pipeev)) 2657 if (ev_is_active (&pipe_w))
1366 { 2658 {
1367 ev_ref (EV_A); /* signal watcher */ 2659 /*ev_ref (EV_A);*/
1368 ev_io_stop (EV_A_ &pipeev); 2660 /*ev_io_stop (EV_A_ &pipe_w);*/
1369 2661
2662 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2663 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2664 }
2665
1370#if EV_USE_EVENTFD 2666#if EV_USE_SIGNALFD
1371 if (evfd >= 0) 2667 if (ev_is_active (&sigfd_w))
1372 close (evfd); 2668 close (sigfd);
1373#endif 2669#endif
1374
1375 if (evpipe [0] >= 0)
1376 {
1377 close (evpipe [0]);
1378 close (evpipe [1]);
1379 }
1380 }
1381 2670
1382#if EV_USE_INOTIFY 2671#if EV_USE_INOTIFY
1383 if (fs_fd >= 0) 2672 if (fs_fd >= 0)
1384 close (fs_fd); 2673 close (fs_fd);
1385#endif 2674#endif
1386 2675
1387 if (backend_fd >= 0) 2676 if (backend_fd >= 0)
1388 close (backend_fd); 2677 close (backend_fd);
1389 2678
2679#if EV_USE_IOCP
2680 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2681#endif
1390#if EV_USE_PORT 2682#if EV_USE_PORT
1391 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2683 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1392#endif 2684#endif
1393#if EV_USE_KQUEUE 2685#if EV_USE_KQUEUE
1394 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2686 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1409#if EV_IDLE_ENABLE 2701#if EV_IDLE_ENABLE
1410 array_free (idle, [i]); 2702 array_free (idle, [i]);
1411#endif 2703#endif
1412 } 2704 }
1413 2705
1414 ev_free (anfds); anfdmax = 0; 2706 ev_free (anfds); anfds = 0; anfdmax = 0;
1415 2707
1416 /* have to use the microsoft-never-gets-it-right macro */ 2708 /* have to use the microsoft-never-gets-it-right macro */
2709 array_free (rfeed, EMPTY);
1417 array_free (fdchange, EMPTY); 2710 array_free (fdchange, EMPTY);
1418 array_free (timer, EMPTY); 2711 array_free (timer, EMPTY);
1419#if EV_PERIODIC_ENABLE 2712#if EV_PERIODIC_ENABLE
1420 array_free (periodic, EMPTY); 2713 array_free (periodic, EMPTY);
1421#endif 2714#endif
1422#if EV_FORK_ENABLE 2715#if EV_FORK_ENABLE
1423 array_free (fork, EMPTY); 2716 array_free (fork, EMPTY);
1424#endif 2717#endif
2718#if EV_CLEANUP_ENABLE
2719 array_free (cleanup, EMPTY);
2720#endif
1425 array_free (prepare, EMPTY); 2721 array_free (prepare, EMPTY);
1426 array_free (check, EMPTY); 2722 array_free (check, EMPTY);
1427#if EV_ASYNC_ENABLE 2723#if EV_ASYNC_ENABLE
1428 array_free (async, EMPTY); 2724 array_free (async, EMPTY);
1429#endif 2725#endif
1430 2726
1431 backend = 0; 2727 backend = 0;
2728
2729#if EV_MULTIPLICITY
2730 if (ev_is_default_loop (EV_A))
2731#endif
2732 ev_default_loop_ptr = 0;
2733#if EV_MULTIPLICITY
2734 else
2735 ev_free (EV_A);
2736#endif
1432} 2737}
1433 2738
1434#if EV_USE_INOTIFY 2739#if EV_USE_INOTIFY
1435void inline_size infy_fork (EV_P); 2740inline_size void infy_fork (EV_P);
1436#endif 2741#endif
1437 2742
1438void inline_size 2743inline_size void
1439loop_fork (EV_P) 2744loop_fork (EV_P)
1440{ 2745{
1441#if EV_USE_PORT 2746#if EV_USE_PORT
1442 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2747 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1443#endif 2748#endif
1449#endif 2754#endif
1450#if EV_USE_INOTIFY 2755#if EV_USE_INOTIFY
1451 infy_fork (EV_A); 2756 infy_fork (EV_A);
1452#endif 2757#endif
1453 2758
2759#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1454 if (ev_is_active (&pipeev)) 2760 if (ev_is_active (&pipe_w))
1455 { 2761 {
1456 /* this "locks" the handlers against writing to the pipe */ 2762 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1457 /* while we modify the fd vars */
1458 gotsig = 1;
1459#if EV_ASYNC_ENABLE
1460 gotasync = 1;
1461#endif
1462 2763
1463 ev_ref (EV_A); 2764 ev_ref (EV_A);
1464 ev_io_stop (EV_A_ &pipeev); 2765 ev_io_stop (EV_A_ &pipe_w);
1465
1466#if EV_USE_EVENTFD
1467 if (evfd >= 0)
1468 close (evfd);
1469#endif
1470 2766
1471 if (evpipe [0] >= 0) 2767 if (evpipe [0] >= 0)
1472 { 2768 EV_WIN32_CLOSE_FD (evpipe [0]);
1473 close (evpipe [0]);
1474 close (evpipe [1]);
1475 }
1476 2769
1477 evpipe_init (EV_A); 2770 evpipe_init (EV_A);
1478 /* now iterate over everything, in case we missed something */ 2771 /* iterate over everything, in case we missed something before */
1479 pipecb (EV_A_ &pipeev, EV_READ); 2772 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
1480 } 2773 }
2774#endif
1481 2775
1482 postfork = 0; 2776 postfork = 0;
1483} 2777}
1484 2778
1485#if EV_MULTIPLICITY 2779#if EV_MULTIPLICITY
1486 2780
1487struct ev_loop * 2781struct ev_loop * ecb_cold
1488ev_loop_new (unsigned int flags) 2782ev_loop_new (unsigned int flags) EV_THROW
1489{ 2783{
1490 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2784 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1491 2785
1492 memset (loop, 0, sizeof (struct ev_loop)); 2786 memset (EV_A, 0, sizeof (struct ev_loop));
1493
1494 loop_init (EV_A_ flags); 2787 loop_init (EV_A_ flags);
1495 2788
1496 if (ev_backend (EV_A)) 2789 if (ev_backend (EV_A))
1497 return loop; 2790 return EV_A;
1498 2791
2792 ev_free (EV_A);
1499 return 0; 2793 return 0;
1500} 2794}
1501 2795
1502void 2796#endif /* multiplicity */
1503ev_loop_destroy (EV_P)
1504{
1505 loop_destroy (EV_A);
1506 ev_free (loop);
1507}
1508
1509void
1510ev_loop_fork (EV_P)
1511{
1512 postfork = 1; /* must be in line with ev_default_fork */
1513}
1514 2797
1515#if EV_VERIFY 2798#if EV_VERIFY
1516static void noinline 2799static void noinline ecb_cold
1517verify_watcher (EV_P_ W w) 2800verify_watcher (EV_P_ W w)
1518{ 2801{
1519 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI)); 2802 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1520 2803
1521 if (w->pending) 2804 if (w->pending)
1522 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w)); 2805 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1523} 2806}
1524 2807
1525static void noinline 2808static void noinline ecb_cold
1526verify_heap (EV_P_ ANHE *heap, int N) 2809verify_heap (EV_P_ ANHE *heap, int N)
1527{ 2810{
1528 int i; 2811 int i;
1529 2812
1530 for (i = HEAP0; i < N + HEAP0; ++i) 2813 for (i = HEAP0; i < N + HEAP0; ++i)
1531 { 2814 {
1532 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i)); 2815 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1533 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i]))); 2816 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1534 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i])))); 2817 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1535 2818
1536 verify_watcher (EV_A_ (W)ANHE_w (heap [i])); 2819 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1537 } 2820 }
1538} 2821}
1539 2822
1540static void noinline 2823static void noinline ecb_cold
1541array_verify (EV_P_ W *ws, int cnt) 2824array_verify (EV_P_ W *ws, int cnt)
1542{ 2825{
1543 while (cnt--) 2826 while (cnt--)
1544 { 2827 {
1545 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1)); 2828 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1546 verify_watcher (EV_A_ ws [cnt]); 2829 verify_watcher (EV_A_ ws [cnt]);
1547 } 2830 }
1548} 2831}
1549#endif 2832#endif
1550 2833
1551void 2834#if EV_FEATURE_API
1552ev_loop_verify (EV_P) 2835void ecb_cold
2836ev_verify (EV_P) EV_THROW
1553{ 2837{
1554#if EV_VERIFY 2838#if EV_VERIFY
1555 int i; 2839 int i;
1556 WL w; 2840 WL w, w2;
1557 2841
1558 assert (activecnt >= -1); 2842 assert (activecnt >= -1);
1559 2843
1560 assert (fdchangemax >= fdchangecnt); 2844 assert (fdchangemax >= fdchangecnt);
1561 for (i = 0; i < fdchangecnt; ++i) 2845 for (i = 0; i < fdchangecnt; ++i)
1562 assert (("negative fd in fdchanges", fdchanges [i] >= 0)); 2846 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1563 2847
1564 assert (anfdmax >= 0); 2848 assert (anfdmax >= 0);
1565 for (i = 0; i < anfdmax; ++i) 2849 for (i = 0; i < anfdmax; ++i)
2850 {
2851 int j = 0;
2852
1566 for (w = anfds [i].head; w; w = w->next) 2853 for (w = w2 = anfds [i].head; w; w = w->next)
1567 { 2854 {
1568 verify_watcher (EV_A_ (W)w); 2855 verify_watcher (EV_A_ (W)w);
2856
2857 if (j++ & 1)
2858 {
2859 assert (("libev: io watcher list contains a loop", w != w2));
2860 w2 = w2->next;
2861 }
2862
1569 assert (("inactive fd watcher on anfd list", ev_active (w) == 1)); 2863 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1570 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i)); 2864 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1571 } 2865 }
2866 }
1572 2867
1573 assert (timermax >= timercnt); 2868 assert (timermax >= timercnt);
1574 verify_heap (EV_A_ timers, timercnt); 2869 verify_heap (EV_A_ timers, timercnt);
1575 2870
1576#if EV_PERIODIC_ENABLE 2871#if EV_PERIODIC_ENABLE
1591#if EV_FORK_ENABLE 2886#if EV_FORK_ENABLE
1592 assert (forkmax >= forkcnt); 2887 assert (forkmax >= forkcnt);
1593 array_verify (EV_A_ (W *)forks, forkcnt); 2888 array_verify (EV_A_ (W *)forks, forkcnt);
1594#endif 2889#endif
1595 2890
2891#if EV_CLEANUP_ENABLE
2892 assert (cleanupmax >= cleanupcnt);
2893 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2894#endif
2895
1596#if EV_ASYNC_ENABLE 2896#if EV_ASYNC_ENABLE
1597 assert (asyncmax >= asynccnt); 2897 assert (asyncmax >= asynccnt);
1598 array_verify (EV_A_ (W *)asyncs, asynccnt); 2898 array_verify (EV_A_ (W *)asyncs, asynccnt);
1599#endif 2899#endif
1600 2900
2901#if EV_PREPARE_ENABLE
1601 assert (preparemax >= preparecnt); 2902 assert (preparemax >= preparecnt);
1602 array_verify (EV_A_ (W *)prepares, preparecnt); 2903 array_verify (EV_A_ (W *)prepares, preparecnt);
2904#endif
1603 2905
2906#if EV_CHECK_ENABLE
1604 assert (checkmax >= checkcnt); 2907 assert (checkmax >= checkcnt);
1605 array_verify (EV_A_ (W *)checks, checkcnt); 2908 array_verify (EV_A_ (W *)checks, checkcnt);
2909#endif
1606 2910
1607# if 0 2911# if 0
2912#if EV_CHILD_ENABLE
1608 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2913 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1609 for (signum = signalmax; signum--; ) if (signals [signum].gotsig) 2914 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2915#endif
1610# endif 2916# endif
1611#endif 2917#endif
1612} 2918}
1613 2919#endif
1614#endif /* multiplicity */
1615 2920
1616#if EV_MULTIPLICITY 2921#if EV_MULTIPLICITY
1617struct ev_loop * 2922struct ev_loop * ecb_cold
1618ev_default_loop_init (unsigned int flags)
1619#else 2923#else
1620int 2924int
2925#endif
1621ev_default_loop (unsigned int flags) 2926ev_default_loop (unsigned int flags) EV_THROW
1622#endif
1623{ 2927{
1624 if (!ev_default_loop_ptr) 2928 if (!ev_default_loop_ptr)
1625 { 2929 {
1626#if EV_MULTIPLICITY 2930#if EV_MULTIPLICITY
1627 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2931 EV_P = ev_default_loop_ptr = &default_loop_struct;
1628#else 2932#else
1629 ev_default_loop_ptr = 1; 2933 ev_default_loop_ptr = 1;
1630#endif 2934#endif
1631 2935
1632 loop_init (EV_A_ flags); 2936 loop_init (EV_A_ flags);
1633 2937
1634 if (ev_backend (EV_A)) 2938 if (ev_backend (EV_A))
1635 { 2939 {
1636#ifndef _WIN32 2940#if EV_CHILD_ENABLE
1637 ev_signal_init (&childev, childcb, SIGCHLD); 2941 ev_signal_init (&childev, childcb, SIGCHLD);
1638 ev_set_priority (&childev, EV_MAXPRI); 2942 ev_set_priority (&childev, EV_MAXPRI);
1639 ev_signal_start (EV_A_ &childev); 2943 ev_signal_start (EV_A_ &childev);
1640 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2944 ev_unref (EV_A); /* child watcher should not keep loop alive */
1641#endif 2945#endif
1646 2950
1647 return ev_default_loop_ptr; 2951 return ev_default_loop_ptr;
1648} 2952}
1649 2953
1650void 2954void
1651ev_default_destroy (void) 2955ev_loop_fork (EV_P) EV_THROW
1652{ 2956{
1653#if EV_MULTIPLICITY 2957 postfork = 1;
1654 struct ev_loop *loop = ev_default_loop_ptr;
1655#endif
1656
1657#ifndef _WIN32
1658 ev_ref (EV_A); /* child watcher */
1659 ev_signal_stop (EV_A_ &childev);
1660#endif
1661
1662 loop_destroy (EV_A);
1663}
1664
1665void
1666ev_default_fork (void)
1667{
1668#if EV_MULTIPLICITY
1669 struct ev_loop *loop = ev_default_loop_ptr;
1670#endif
1671
1672 if (backend)
1673 postfork = 1; /* must be in line with ev_loop_fork */
1674} 2958}
1675 2959
1676/*****************************************************************************/ 2960/*****************************************************************************/
1677 2961
1678void 2962void
1679ev_invoke (EV_P_ void *w, int revents) 2963ev_invoke (EV_P_ void *w, int revents)
1680{ 2964{
1681 EV_CB_INVOKE ((W)w, revents); 2965 EV_CB_INVOKE ((W)w, revents);
1682} 2966}
1683 2967
1684void inline_speed 2968unsigned int
1685call_pending (EV_P) 2969ev_pending_count (EV_P) EV_THROW
1686{ 2970{
1687 int pri; 2971 int pri;
2972 unsigned int count = 0;
1688 2973
1689 for (pri = NUMPRI; pri--; ) 2974 for (pri = NUMPRI; pri--; )
2975 count += pendingcnt [pri];
2976
2977 return count;
2978}
2979
2980void noinline
2981ev_invoke_pending (EV_P)
2982{
2983 pendingpri = NUMPRI;
2984
2985 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
2986 {
2987 --pendingpri;
2988
1690 while (pendingcnt [pri]) 2989 while (pendingcnt [pendingpri])
1691 {
1692 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1693
1694 if (expect_true (p->w))
1695 { 2990 {
1696 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 2991 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1697 2992
1698 p->w->pending = 0; 2993 p->w->pending = 0;
1699 EV_CB_INVOKE (p->w, p->events); 2994 EV_CB_INVOKE (p->w, p->events);
1700 EV_FREQUENT_CHECK; 2995 EV_FREQUENT_CHECK;
1701 } 2996 }
1702 } 2997 }
1703} 2998}
1704 2999
1705#if EV_IDLE_ENABLE 3000#if EV_IDLE_ENABLE
1706void inline_size 3001/* make idle watchers pending. this handles the "call-idle */
3002/* only when higher priorities are idle" logic */
3003inline_size void
1707idle_reify (EV_P) 3004idle_reify (EV_P)
1708{ 3005{
1709 if (expect_false (idleall)) 3006 if (expect_false (idleall))
1710 { 3007 {
1711 int pri; 3008 int pri;
1723 } 3020 }
1724 } 3021 }
1725} 3022}
1726#endif 3023#endif
1727 3024
1728void inline_size 3025/* make timers pending */
3026inline_size void
1729timers_reify (EV_P) 3027timers_reify (EV_P)
1730{ 3028{
1731 EV_FREQUENT_CHECK; 3029 EV_FREQUENT_CHECK;
1732 3030
1733 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 3031 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1734 { 3032 {
1735 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 3033 do
1736
1737 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1738
1739 /* first reschedule or stop timer */
1740 if (w->repeat)
1741 { 3034 {
3035 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3036
3037 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3038
3039 /* first reschedule or stop timer */
3040 if (w->repeat)
3041 {
1742 ev_at (w) += w->repeat; 3042 ev_at (w) += w->repeat;
1743 if (ev_at (w) < mn_now) 3043 if (ev_at (w) < mn_now)
1744 ev_at (w) = mn_now; 3044 ev_at (w) = mn_now;
1745 3045
1746 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3046 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1747 3047
1748 ANHE_at_cache (timers [HEAP0]); 3048 ANHE_at_cache (timers [HEAP0]);
1749 downheap (timers, timercnt, HEAP0); 3049 downheap (timers, timercnt, HEAP0);
3050 }
3051 else
3052 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3053
3054 EV_FREQUENT_CHECK;
3055 feed_reverse (EV_A_ (W)w);
1750 } 3056 }
1751 else 3057 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1752 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1753 3058
1754 EV_FREQUENT_CHECK; 3059 feed_reverse_done (EV_A_ EV_TIMER);
1755 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1756 } 3060 }
1757} 3061}
1758 3062
1759#if EV_PERIODIC_ENABLE 3063#if EV_PERIODIC_ENABLE
1760void inline_size 3064
3065static void noinline
3066periodic_recalc (EV_P_ ev_periodic *w)
3067{
3068 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3069 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3070
3071 /* the above almost always errs on the low side */
3072 while (at <= ev_rt_now)
3073 {
3074 ev_tstamp nat = at + w->interval;
3075
3076 /* when resolution fails us, we use ev_rt_now */
3077 if (expect_false (nat == at))
3078 {
3079 at = ev_rt_now;
3080 break;
3081 }
3082
3083 at = nat;
3084 }
3085
3086 ev_at (w) = at;
3087}
3088
3089/* make periodics pending */
3090inline_size void
1761periodics_reify (EV_P) 3091periodics_reify (EV_P)
1762{ 3092{
1763 EV_FREQUENT_CHECK; 3093 EV_FREQUENT_CHECK;
1764 3094
1765 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 3095 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1766 { 3096 {
1767 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 3097 do
1768
1769 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1770
1771 /* first reschedule or stop timer */
1772 if (w->reschedule_cb)
1773 { 3098 {
3099 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3100
3101 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3102
3103 /* first reschedule or stop timer */
3104 if (w->reschedule_cb)
3105 {
1774 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3106 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1775 3107
1776 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 3108 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1777 3109
1778 ANHE_at_cache (periodics [HEAP0]); 3110 ANHE_at_cache (periodics [HEAP0]);
1779 downheap (periodics, periodiccnt, HEAP0); 3111 downheap (periodics, periodiccnt, HEAP0);
3112 }
3113 else if (w->interval)
3114 {
3115 periodic_recalc (EV_A_ w);
3116 ANHE_at_cache (periodics [HEAP0]);
3117 downheap (periodics, periodiccnt, HEAP0);
3118 }
3119 else
3120 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3121
3122 EV_FREQUENT_CHECK;
3123 feed_reverse (EV_A_ (W)w);
1780 } 3124 }
1781 else if (w->interval) 3125 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1782 {
1783 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1784 /* if next trigger time is not sufficiently in the future, put it there */
1785 /* this might happen because of floating point inexactness */
1786 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1787 {
1788 ev_at (w) += w->interval;
1789 3126
1790 /* if interval is unreasonably low we might still have a time in the past */
1791 /* so correct this. this will make the periodic very inexact, but the user */
1792 /* has effectively asked to get triggered more often than possible */
1793 if (ev_at (w) < ev_rt_now)
1794 ev_at (w) = ev_rt_now;
1795 }
1796
1797 ANHE_at_cache (periodics [HEAP0]);
1798 downheap (periodics, periodiccnt, HEAP0);
1799 }
1800 else
1801 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1802
1803 EV_FREQUENT_CHECK;
1804 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 3127 feed_reverse_done (EV_A_ EV_PERIODIC);
1805 } 3128 }
1806} 3129}
1807 3130
3131/* simply recalculate all periodics */
3132/* TODO: maybe ensure that at least one event happens when jumping forward? */
1808static void noinline 3133static void noinline ecb_cold
1809periodics_reschedule (EV_P) 3134periodics_reschedule (EV_P)
1810{ 3135{
1811 int i; 3136 int i;
1812 3137
1813 /* adjust periodics after time jump */ 3138 /* adjust periodics after time jump */
1816 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]); 3141 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1817 3142
1818 if (w->reschedule_cb) 3143 if (w->reschedule_cb)
1819 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3144 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1820 else if (w->interval) 3145 else if (w->interval)
1821 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 3146 periodic_recalc (EV_A_ w);
1822 3147
1823 ANHE_at_cache (periodics [i]); 3148 ANHE_at_cache (periodics [i]);
1824 } 3149 }
1825 3150
1826 reheap (periodics, periodiccnt); 3151 reheap (periodics, periodiccnt);
1827} 3152}
1828#endif 3153#endif
1829 3154
1830void inline_speed 3155/* adjust all timers by a given offset */
3156static void noinline ecb_cold
3157timers_reschedule (EV_P_ ev_tstamp adjust)
3158{
3159 int i;
3160
3161 for (i = 0; i < timercnt; ++i)
3162 {
3163 ANHE *he = timers + i + HEAP0;
3164 ANHE_w (*he)->at += adjust;
3165 ANHE_at_cache (*he);
3166 }
3167}
3168
3169/* fetch new monotonic and realtime times from the kernel */
3170/* also detect if there was a timejump, and act accordingly */
3171inline_speed void
1831time_update (EV_P_ ev_tstamp max_block) 3172time_update (EV_P_ ev_tstamp max_block)
1832{ 3173{
1833 int i;
1834
1835#if EV_USE_MONOTONIC 3174#if EV_USE_MONOTONIC
1836 if (expect_true (have_monotonic)) 3175 if (expect_true (have_monotonic))
1837 { 3176 {
3177 int i;
1838 ev_tstamp odiff = rtmn_diff; 3178 ev_tstamp odiff = rtmn_diff;
1839 3179
1840 mn_now = get_clock (); 3180 mn_now = get_clock ();
1841 3181
1842 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 3182 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1858 * doesn't hurt either as we only do this on time-jumps or 3198 * doesn't hurt either as we only do this on time-jumps or
1859 * in the unlikely event of having been preempted here. 3199 * in the unlikely event of having been preempted here.
1860 */ 3200 */
1861 for (i = 4; --i; ) 3201 for (i = 4; --i; )
1862 { 3202 {
3203 ev_tstamp diff;
1863 rtmn_diff = ev_rt_now - mn_now; 3204 rtmn_diff = ev_rt_now - mn_now;
1864 3205
3206 diff = odiff - rtmn_diff;
3207
1865 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)) 3208 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1866 return; /* all is well */ 3209 return; /* all is well */
1867 3210
1868 ev_rt_now = ev_time (); 3211 ev_rt_now = ev_time ();
1869 mn_now = get_clock (); 3212 mn_now = get_clock ();
1870 now_floor = mn_now; 3213 now_floor = mn_now;
1871 } 3214 }
1872 3215
3216 /* no timer adjustment, as the monotonic clock doesn't jump */
3217 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1873# if EV_PERIODIC_ENABLE 3218# if EV_PERIODIC_ENABLE
1874 periodics_reschedule (EV_A); 3219 periodics_reschedule (EV_A);
1875# endif 3220# endif
1876 /* no timer adjustment, as the monotonic clock doesn't jump */
1877 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1878 } 3221 }
1879 else 3222 else
1880#endif 3223#endif
1881 { 3224 {
1882 ev_rt_now = ev_time (); 3225 ev_rt_now = ev_time ();
1883 3226
1884 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 3227 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1885 { 3228 {
3229 /* adjust timers. this is easy, as the offset is the same for all of them */
3230 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1886#if EV_PERIODIC_ENABLE 3231#if EV_PERIODIC_ENABLE
1887 periodics_reschedule (EV_A); 3232 periodics_reschedule (EV_A);
1888#endif 3233#endif
1889 /* adjust timers. this is easy, as the offset is the same for all of them */
1890 for (i = 0; i < timercnt; ++i)
1891 {
1892 ANHE *he = timers + i + HEAP0;
1893 ANHE_w (*he)->at += ev_rt_now - mn_now;
1894 ANHE_at_cache (*he);
1895 }
1896 } 3234 }
1897 3235
1898 mn_now = ev_rt_now; 3236 mn_now = ev_rt_now;
1899 } 3237 }
1900} 3238}
1901 3239
1902void 3240int
1903ev_ref (EV_P)
1904{
1905 ++activecnt;
1906}
1907
1908void
1909ev_unref (EV_P)
1910{
1911 --activecnt;
1912}
1913
1914static int loop_done;
1915
1916void
1917ev_loop (EV_P_ int flags) 3241ev_run (EV_P_ int flags)
1918{ 3242{
3243#if EV_FEATURE_API
3244 ++loop_depth;
3245#endif
3246
3247 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3248
1919 loop_done = EVUNLOOP_CANCEL; 3249 loop_done = EVBREAK_CANCEL;
1920 3250
1921 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3251 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1922 3252
1923 do 3253 do
1924 { 3254 {
1925#if EV_VERIFY >= 2 3255#if EV_VERIFY >= 2
1926 ev_loop_verify (EV_A); 3256 ev_verify (EV_A);
1927#endif 3257#endif
1928 3258
1929#ifndef _WIN32 3259#ifndef _WIN32
1930 if (expect_false (curpid)) /* penalise the forking check even more */ 3260 if (expect_false (curpid)) /* penalise the forking check even more */
1931 if (expect_false (getpid () != curpid)) 3261 if (expect_false (getpid () != curpid))
1939 /* we might have forked, so queue fork handlers */ 3269 /* we might have forked, so queue fork handlers */
1940 if (expect_false (postfork)) 3270 if (expect_false (postfork))
1941 if (forkcnt) 3271 if (forkcnt)
1942 { 3272 {
1943 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3273 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1944 call_pending (EV_A); 3274 EV_INVOKE_PENDING;
1945 } 3275 }
1946#endif 3276#endif
1947 3277
3278#if EV_PREPARE_ENABLE
1948 /* queue prepare watchers (and execute them) */ 3279 /* queue prepare watchers (and execute them) */
1949 if (expect_false (preparecnt)) 3280 if (expect_false (preparecnt))
1950 { 3281 {
1951 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3282 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1952 call_pending (EV_A); 3283 EV_INVOKE_PENDING;
1953 } 3284 }
3285#endif
1954 3286
1955 if (expect_false (!activecnt)) 3287 if (expect_false (loop_done))
1956 break; 3288 break;
1957 3289
1958 /* we might have forked, so reify kernel state if necessary */ 3290 /* we might have forked, so reify kernel state if necessary */
1959 if (expect_false (postfork)) 3291 if (expect_false (postfork))
1960 loop_fork (EV_A); 3292 loop_fork (EV_A);
1965 /* calculate blocking time */ 3297 /* calculate blocking time */
1966 { 3298 {
1967 ev_tstamp waittime = 0.; 3299 ev_tstamp waittime = 0.;
1968 ev_tstamp sleeptime = 0.; 3300 ev_tstamp sleeptime = 0.;
1969 3301
3302 /* remember old timestamp for io_blocktime calculation */
3303 ev_tstamp prev_mn_now = mn_now;
3304
3305 /* update time to cancel out callback processing overhead */
3306 time_update (EV_A_ 1e100);
3307
3308 /* from now on, we want a pipe-wake-up */
3309 pipe_write_wanted = 1;
3310
3311 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3312
1970 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3313 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1971 { 3314 {
1972 /* update time to cancel out callback processing overhead */
1973 time_update (EV_A_ 1e100);
1974
1975 waittime = MAX_BLOCKTIME; 3315 waittime = MAX_BLOCKTIME;
1976 3316
1977 if (timercnt) 3317 if (timercnt)
1978 { 3318 {
1979 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 3319 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1980 if (waittime > to) waittime = to; 3320 if (waittime > to) waittime = to;
1981 } 3321 }
1982 3322
1983#if EV_PERIODIC_ENABLE 3323#if EV_PERIODIC_ENABLE
1984 if (periodiccnt) 3324 if (periodiccnt)
1985 { 3325 {
1986 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 3326 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1987 if (waittime > to) waittime = to; 3327 if (waittime > to) waittime = to;
1988 } 3328 }
1989#endif 3329#endif
1990 3330
3331 /* don't let timeouts decrease the waittime below timeout_blocktime */
1991 if (expect_false (waittime < timeout_blocktime)) 3332 if (expect_false (waittime < timeout_blocktime))
1992 waittime = timeout_blocktime; 3333 waittime = timeout_blocktime;
1993 3334
1994 sleeptime = waittime - backend_fudge; 3335 /* at this point, we NEED to wait, so we have to ensure */
3336 /* to pass a minimum nonzero value to the backend */
3337 if (expect_false (waittime < backend_mintime))
3338 waittime = backend_mintime;
1995 3339
3340 /* extra check because io_blocktime is commonly 0 */
1996 if (expect_true (sleeptime > io_blocktime)) 3341 if (expect_false (io_blocktime))
1997 sleeptime = io_blocktime;
1998
1999 if (sleeptime)
2000 { 3342 {
3343 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3344
3345 if (sleeptime > waittime - backend_mintime)
3346 sleeptime = waittime - backend_mintime;
3347
3348 if (expect_true (sleeptime > 0.))
3349 {
2001 ev_sleep (sleeptime); 3350 ev_sleep (sleeptime);
2002 waittime -= sleeptime; 3351 waittime -= sleeptime;
3352 }
2003 } 3353 }
2004 } 3354 }
2005 3355
3356#if EV_FEATURE_API
2006 ++loop_count; 3357 ++loop_count;
3358#endif
3359 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2007 backend_poll (EV_A_ waittime); 3360 backend_poll (EV_A_ waittime);
3361 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3362
3363 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3364
3365 ECB_MEMORY_FENCE_ACQUIRE;
3366 if (pipe_write_skipped)
3367 {
3368 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3369 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3370 }
3371
2008 3372
2009 /* update ev_rt_now, do magic */ 3373 /* update ev_rt_now, do magic */
2010 time_update (EV_A_ waittime + sleeptime); 3374 time_update (EV_A_ waittime + sleeptime);
2011 } 3375 }
2012 3376
2019#if EV_IDLE_ENABLE 3383#if EV_IDLE_ENABLE
2020 /* queue idle watchers unless other events are pending */ 3384 /* queue idle watchers unless other events are pending */
2021 idle_reify (EV_A); 3385 idle_reify (EV_A);
2022#endif 3386#endif
2023 3387
3388#if EV_CHECK_ENABLE
2024 /* queue check watchers, to be executed first */ 3389 /* queue check watchers, to be executed first */
2025 if (expect_false (checkcnt)) 3390 if (expect_false (checkcnt))
2026 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3391 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3392#endif
2027 3393
2028 call_pending (EV_A); 3394 EV_INVOKE_PENDING;
2029 } 3395 }
2030 while (expect_true ( 3396 while (expect_true (
2031 activecnt 3397 activecnt
2032 && !loop_done 3398 && !loop_done
2033 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 3399 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2034 )); 3400 ));
2035 3401
2036 if (loop_done == EVUNLOOP_ONE) 3402 if (loop_done == EVBREAK_ONE)
2037 loop_done = EVUNLOOP_CANCEL; 3403 loop_done = EVBREAK_CANCEL;
3404
3405#if EV_FEATURE_API
3406 --loop_depth;
3407#endif
3408
3409 return activecnt;
2038} 3410}
2039 3411
2040void 3412void
2041ev_unloop (EV_P_ int how) 3413ev_break (EV_P_ int how) EV_THROW
2042{ 3414{
2043 loop_done = how; 3415 loop_done = how;
2044} 3416}
2045 3417
3418void
3419ev_ref (EV_P) EV_THROW
3420{
3421 ++activecnt;
3422}
3423
3424void
3425ev_unref (EV_P) EV_THROW
3426{
3427 --activecnt;
3428}
3429
3430void
3431ev_now_update (EV_P) EV_THROW
3432{
3433 time_update (EV_A_ 1e100);
3434}
3435
3436void
3437ev_suspend (EV_P) EV_THROW
3438{
3439 ev_now_update (EV_A);
3440}
3441
3442void
3443ev_resume (EV_P) EV_THROW
3444{
3445 ev_tstamp mn_prev = mn_now;
3446
3447 ev_now_update (EV_A);
3448 timers_reschedule (EV_A_ mn_now - mn_prev);
3449#if EV_PERIODIC_ENABLE
3450 /* TODO: really do this? */
3451 periodics_reschedule (EV_A);
3452#endif
3453}
3454
2046/*****************************************************************************/ 3455/*****************************************************************************/
3456/* singly-linked list management, used when the expected list length is short */
2047 3457
2048void inline_size 3458inline_size void
2049wlist_add (WL *head, WL elem) 3459wlist_add (WL *head, WL elem)
2050{ 3460{
2051 elem->next = *head; 3461 elem->next = *head;
2052 *head = elem; 3462 *head = elem;
2053} 3463}
2054 3464
2055void inline_size 3465inline_size void
2056wlist_del (WL *head, WL elem) 3466wlist_del (WL *head, WL elem)
2057{ 3467{
2058 while (*head) 3468 while (*head)
2059 { 3469 {
2060 if (*head == elem) 3470 if (expect_true (*head == elem))
2061 { 3471 {
2062 *head = elem->next; 3472 *head = elem->next;
2063 return; 3473 break;
2064 } 3474 }
2065 3475
2066 head = &(*head)->next; 3476 head = &(*head)->next;
2067 } 3477 }
2068} 3478}
2069 3479
2070void inline_speed 3480/* internal, faster, version of ev_clear_pending */
3481inline_speed void
2071clear_pending (EV_P_ W w) 3482clear_pending (EV_P_ W w)
2072{ 3483{
2073 if (w->pending) 3484 if (w->pending)
2074 { 3485 {
2075 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3486 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2076 w->pending = 0; 3487 w->pending = 0;
2077 } 3488 }
2078} 3489}
2079 3490
2080int 3491int
2081ev_clear_pending (EV_P_ void *w) 3492ev_clear_pending (EV_P_ void *w) EV_THROW
2082{ 3493{
2083 W w_ = (W)w; 3494 W w_ = (W)w;
2084 int pending = w_->pending; 3495 int pending = w_->pending;
2085 3496
2086 if (expect_true (pending)) 3497 if (expect_true (pending))
2087 { 3498 {
2088 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3499 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3500 p->w = (W)&pending_w;
2089 w_->pending = 0; 3501 w_->pending = 0;
2090 p->w = 0;
2091 return p->events; 3502 return p->events;
2092 } 3503 }
2093 else 3504 else
2094 return 0; 3505 return 0;
2095} 3506}
2096 3507
2097void inline_size 3508inline_size void
2098pri_adjust (EV_P_ W w) 3509pri_adjust (EV_P_ W w)
2099{ 3510{
2100 int pri = w->priority; 3511 int pri = ev_priority (w);
2101 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3512 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2102 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3513 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2103 w->priority = pri; 3514 ev_set_priority (w, pri);
2104} 3515}
2105 3516
2106void inline_speed 3517inline_speed void
2107ev_start (EV_P_ W w, int active) 3518ev_start (EV_P_ W w, int active)
2108{ 3519{
2109 pri_adjust (EV_A_ w); 3520 pri_adjust (EV_A_ w);
2110 w->active = active; 3521 w->active = active;
2111 ev_ref (EV_A); 3522 ev_ref (EV_A);
2112} 3523}
2113 3524
2114void inline_size 3525inline_size void
2115ev_stop (EV_P_ W w) 3526ev_stop (EV_P_ W w)
2116{ 3527{
2117 ev_unref (EV_A); 3528 ev_unref (EV_A);
2118 w->active = 0; 3529 w->active = 0;
2119} 3530}
2120 3531
2121/*****************************************************************************/ 3532/*****************************************************************************/
2122 3533
2123void noinline 3534void noinline
2124ev_io_start (EV_P_ ev_io *w) 3535ev_io_start (EV_P_ ev_io *w) EV_THROW
2125{ 3536{
2126 int fd = w->fd; 3537 int fd = w->fd;
2127 3538
2128 if (expect_false (ev_is_active (w))) 3539 if (expect_false (ev_is_active (w)))
2129 return; 3540 return;
2130 3541
2131 assert (("ev_io_start called with negative fd", fd >= 0)); 3542 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3543 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2132 3544
2133 EV_FREQUENT_CHECK; 3545 EV_FREQUENT_CHECK;
2134 3546
2135 ev_start (EV_A_ (W)w, 1); 3547 ev_start (EV_A_ (W)w, 1);
2136 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3548 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2137 wlist_add (&anfds[fd].head, (WL)w); 3549 wlist_add (&anfds[fd].head, (WL)w);
2138 3550
3551 /* common bug, apparently */
3552 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3553
2139 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3554 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2140 w->events &= ~EV_IOFDSET; 3555 w->events &= ~EV__IOFDSET;
2141 3556
2142 EV_FREQUENT_CHECK; 3557 EV_FREQUENT_CHECK;
2143} 3558}
2144 3559
2145void noinline 3560void noinline
2146ev_io_stop (EV_P_ ev_io *w) 3561ev_io_stop (EV_P_ ev_io *w) EV_THROW
2147{ 3562{
2148 clear_pending (EV_A_ (W)w); 3563 clear_pending (EV_A_ (W)w);
2149 if (expect_false (!ev_is_active (w))) 3564 if (expect_false (!ev_is_active (w)))
2150 return; 3565 return;
2151 3566
2152 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3567 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2153 3568
2154 EV_FREQUENT_CHECK; 3569 EV_FREQUENT_CHECK;
2155 3570
2156 wlist_del (&anfds[w->fd].head, (WL)w); 3571 wlist_del (&anfds[w->fd].head, (WL)w);
2157 ev_stop (EV_A_ (W)w); 3572 ev_stop (EV_A_ (W)w);
2158 3573
2159 fd_change (EV_A_ w->fd, 1); 3574 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2160 3575
2161 EV_FREQUENT_CHECK; 3576 EV_FREQUENT_CHECK;
2162} 3577}
2163 3578
2164void noinline 3579void noinline
2165ev_timer_start (EV_P_ ev_timer *w) 3580ev_timer_start (EV_P_ ev_timer *w) EV_THROW
2166{ 3581{
2167 if (expect_false (ev_is_active (w))) 3582 if (expect_false (ev_is_active (w)))
2168 return; 3583 return;
2169 3584
2170 ev_at (w) += mn_now; 3585 ev_at (w) += mn_now;
2171 3586
2172 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3587 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2173 3588
2174 EV_FREQUENT_CHECK; 3589 EV_FREQUENT_CHECK;
2175 3590
2176 ++timercnt; 3591 ++timercnt;
2177 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1); 3592 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2180 ANHE_at_cache (timers [ev_active (w)]); 3595 ANHE_at_cache (timers [ev_active (w)]);
2181 upheap (timers, ev_active (w)); 3596 upheap (timers, ev_active (w));
2182 3597
2183 EV_FREQUENT_CHECK; 3598 EV_FREQUENT_CHECK;
2184 3599
2185 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 3600 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2186} 3601}
2187 3602
2188void noinline 3603void noinline
2189ev_timer_stop (EV_P_ ev_timer *w) 3604ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
2190{ 3605{
2191 clear_pending (EV_A_ (W)w); 3606 clear_pending (EV_A_ (W)w);
2192 if (expect_false (!ev_is_active (w))) 3607 if (expect_false (!ev_is_active (w)))
2193 return; 3608 return;
2194 3609
2195 EV_FREQUENT_CHECK; 3610 EV_FREQUENT_CHECK;
2196 3611
2197 { 3612 {
2198 int active = ev_active (w); 3613 int active = ev_active (w);
2199 3614
2200 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 3615 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2201 3616
2202 --timercnt; 3617 --timercnt;
2203 3618
2204 if (expect_true (active < timercnt + HEAP0)) 3619 if (expect_true (active < timercnt + HEAP0))
2205 { 3620 {
2206 timers [active] = timers [timercnt + HEAP0]; 3621 timers [active] = timers [timercnt + HEAP0];
2207 adjustheap (timers, timercnt, active); 3622 adjustheap (timers, timercnt, active);
2208 } 3623 }
2209 } 3624 }
2210 3625
2211 EV_FREQUENT_CHECK;
2212
2213 ev_at (w) -= mn_now; 3626 ev_at (w) -= mn_now;
2214 3627
2215 ev_stop (EV_A_ (W)w); 3628 ev_stop (EV_A_ (W)w);
3629
3630 EV_FREQUENT_CHECK;
2216} 3631}
2217 3632
2218void noinline 3633void noinline
2219ev_timer_again (EV_P_ ev_timer *w) 3634ev_timer_again (EV_P_ ev_timer *w) EV_THROW
2220{ 3635{
2221 EV_FREQUENT_CHECK; 3636 EV_FREQUENT_CHECK;
3637
3638 clear_pending (EV_A_ (W)w);
2222 3639
2223 if (ev_is_active (w)) 3640 if (ev_is_active (w))
2224 { 3641 {
2225 if (w->repeat) 3642 if (w->repeat)
2226 { 3643 {
2238 } 3655 }
2239 3656
2240 EV_FREQUENT_CHECK; 3657 EV_FREQUENT_CHECK;
2241} 3658}
2242 3659
3660ev_tstamp
3661ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3662{
3663 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3664}
3665
2243#if EV_PERIODIC_ENABLE 3666#if EV_PERIODIC_ENABLE
2244void noinline 3667void noinline
2245ev_periodic_start (EV_P_ ev_periodic *w) 3668ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
2246{ 3669{
2247 if (expect_false (ev_is_active (w))) 3670 if (expect_false (ev_is_active (w)))
2248 return; 3671 return;
2249 3672
2250 if (w->reschedule_cb) 3673 if (w->reschedule_cb)
2251 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3674 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2252 else if (w->interval) 3675 else if (w->interval)
2253 { 3676 {
2254 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3677 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2255 /* this formula differs from the one in periodic_reify because we do not always round up */ 3678 periodic_recalc (EV_A_ w);
2256 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2257 } 3679 }
2258 else 3680 else
2259 ev_at (w) = w->offset; 3681 ev_at (w) = w->offset;
2260 3682
2261 EV_FREQUENT_CHECK; 3683 EV_FREQUENT_CHECK;
2267 ANHE_at_cache (periodics [ev_active (w)]); 3689 ANHE_at_cache (periodics [ev_active (w)]);
2268 upheap (periodics, ev_active (w)); 3690 upheap (periodics, ev_active (w));
2269 3691
2270 EV_FREQUENT_CHECK; 3692 EV_FREQUENT_CHECK;
2271 3693
2272 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 3694 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2273} 3695}
2274 3696
2275void noinline 3697void noinline
2276ev_periodic_stop (EV_P_ ev_periodic *w) 3698ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
2277{ 3699{
2278 clear_pending (EV_A_ (W)w); 3700 clear_pending (EV_A_ (W)w);
2279 if (expect_false (!ev_is_active (w))) 3701 if (expect_false (!ev_is_active (w)))
2280 return; 3702 return;
2281 3703
2282 EV_FREQUENT_CHECK; 3704 EV_FREQUENT_CHECK;
2283 3705
2284 { 3706 {
2285 int active = ev_active (w); 3707 int active = ev_active (w);
2286 3708
2287 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 3709 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2288 3710
2289 --periodiccnt; 3711 --periodiccnt;
2290 3712
2291 if (expect_true (active < periodiccnt + HEAP0)) 3713 if (expect_true (active < periodiccnt + HEAP0))
2292 { 3714 {
2293 periodics [active] = periodics [periodiccnt + HEAP0]; 3715 periodics [active] = periodics [periodiccnt + HEAP0];
2294 adjustheap (periodics, periodiccnt, active); 3716 adjustheap (periodics, periodiccnt, active);
2295 } 3717 }
2296 } 3718 }
2297 3719
2298 EV_FREQUENT_CHECK;
2299
2300 ev_stop (EV_A_ (W)w); 3720 ev_stop (EV_A_ (W)w);
3721
3722 EV_FREQUENT_CHECK;
2301} 3723}
2302 3724
2303void noinline 3725void noinline
2304ev_periodic_again (EV_P_ ev_periodic *w) 3726ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
2305{ 3727{
2306 /* TODO: use adjustheap and recalculation */ 3728 /* TODO: use adjustheap and recalculation */
2307 ev_periodic_stop (EV_A_ w); 3729 ev_periodic_stop (EV_A_ w);
2308 ev_periodic_start (EV_A_ w); 3730 ev_periodic_start (EV_A_ w);
2309} 3731}
2311 3733
2312#ifndef SA_RESTART 3734#ifndef SA_RESTART
2313# define SA_RESTART 0 3735# define SA_RESTART 0
2314#endif 3736#endif
2315 3737
3738#if EV_SIGNAL_ENABLE
3739
2316void noinline 3740void noinline
2317ev_signal_start (EV_P_ ev_signal *w) 3741ev_signal_start (EV_P_ ev_signal *w) EV_THROW
2318{ 3742{
2319#if EV_MULTIPLICITY
2320 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2321#endif
2322 if (expect_false (ev_is_active (w))) 3743 if (expect_false (ev_is_active (w)))
2323 return; 3744 return;
2324 3745
2325 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3746 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2326 3747
2327 evpipe_init (EV_A); 3748#if EV_MULTIPLICITY
3749 assert (("libev: a signal must not be attached to two different loops",
3750 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2328 3751
2329 EV_FREQUENT_CHECK; 3752 signals [w->signum - 1].loop = EV_A;
3753 ECB_MEMORY_FENCE_RELEASE;
3754#endif
2330 3755
3756 EV_FREQUENT_CHECK;
3757
3758#if EV_USE_SIGNALFD
3759 if (sigfd == -2)
2331 { 3760 {
2332#ifndef _WIN32 3761 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2333 sigset_t full, prev; 3762 if (sigfd < 0 && errno == EINVAL)
2334 sigfillset (&full); 3763 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2335 sigprocmask (SIG_SETMASK, &full, &prev);
2336#endif
2337 3764
2338 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3765 if (sigfd >= 0)
3766 {
3767 fd_intern (sigfd); /* doing it twice will not hurt */
2339 3768
2340#ifndef _WIN32 3769 sigemptyset (&sigfd_set);
2341 sigprocmask (SIG_SETMASK, &prev, 0); 3770
2342#endif 3771 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3772 ev_set_priority (&sigfd_w, EV_MAXPRI);
3773 ev_io_start (EV_A_ &sigfd_w);
3774 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3775 }
2343 } 3776 }
3777
3778 if (sigfd >= 0)
3779 {
3780 /* TODO: check .head */
3781 sigaddset (&sigfd_set, w->signum);
3782 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3783
3784 signalfd (sigfd, &sigfd_set, 0);
3785 }
3786#endif
2344 3787
2345 ev_start (EV_A_ (W)w, 1); 3788 ev_start (EV_A_ (W)w, 1);
2346 wlist_add (&signals [w->signum - 1].head, (WL)w); 3789 wlist_add (&signals [w->signum - 1].head, (WL)w);
2347 3790
2348 if (!((WL)w)->next) 3791 if (!((WL)w)->next)
3792# if EV_USE_SIGNALFD
3793 if (sigfd < 0) /*TODO*/
3794# endif
2349 { 3795 {
2350#if _WIN32 3796# ifdef _WIN32
3797 evpipe_init (EV_A);
3798
2351 signal (w->signum, ev_sighandler); 3799 signal (w->signum, ev_sighandler);
2352#else 3800# else
2353 struct sigaction sa; 3801 struct sigaction sa;
3802
3803 evpipe_init (EV_A);
3804
2354 sa.sa_handler = ev_sighandler; 3805 sa.sa_handler = ev_sighandler;
2355 sigfillset (&sa.sa_mask); 3806 sigfillset (&sa.sa_mask);
2356 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3807 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2357 sigaction (w->signum, &sa, 0); 3808 sigaction (w->signum, &sa, 0);
3809
3810 if (origflags & EVFLAG_NOSIGMASK)
3811 {
3812 sigemptyset (&sa.sa_mask);
3813 sigaddset (&sa.sa_mask, w->signum);
3814 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3815 }
2358#endif 3816#endif
2359 } 3817 }
2360 3818
2361 EV_FREQUENT_CHECK; 3819 EV_FREQUENT_CHECK;
2362} 3820}
2363 3821
2364void noinline 3822void noinline
2365ev_signal_stop (EV_P_ ev_signal *w) 3823ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
2366{ 3824{
2367 clear_pending (EV_A_ (W)w); 3825 clear_pending (EV_A_ (W)w);
2368 if (expect_false (!ev_is_active (w))) 3826 if (expect_false (!ev_is_active (w)))
2369 return; 3827 return;
2370 3828
2372 3830
2373 wlist_del (&signals [w->signum - 1].head, (WL)w); 3831 wlist_del (&signals [w->signum - 1].head, (WL)w);
2374 ev_stop (EV_A_ (W)w); 3832 ev_stop (EV_A_ (W)w);
2375 3833
2376 if (!signals [w->signum - 1].head) 3834 if (!signals [w->signum - 1].head)
3835 {
3836#if EV_MULTIPLICITY
3837 signals [w->signum - 1].loop = 0; /* unattach from signal */
3838#endif
3839#if EV_USE_SIGNALFD
3840 if (sigfd >= 0)
3841 {
3842 sigset_t ss;
3843
3844 sigemptyset (&ss);
3845 sigaddset (&ss, w->signum);
3846 sigdelset (&sigfd_set, w->signum);
3847
3848 signalfd (sigfd, &sigfd_set, 0);
3849 sigprocmask (SIG_UNBLOCK, &ss, 0);
3850 }
3851 else
3852#endif
2377 signal (w->signum, SIG_DFL); 3853 signal (w->signum, SIG_DFL);
3854 }
2378 3855
2379 EV_FREQUENT_CHECK; 3856 EV_FREQUENT_CHECK;
2380} 3857}
3858
3859#endif
3860
3861#if EV_CHILD_ENABLE
2381 3862
2382void 3863void
2383ev_child_start (EV_P_ ev_child *w) 3864ev_child_start (EV_P_ ev_child *w) EV_THROW
2384{ 3865{
2385#if EV_MULTIPLICITY 3866#if EV_MULTIPLICITY
2386 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3867 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2387#endif 3868#endif
2388 if (expect_false (ev_is_active (w))) 3869 if (expect_false (ev_is_active (w)))
2389 return; 3870 return;
2390 3871
2391 EV_FREQUENT_CHECK; 3872 EV_FREQUENT_CHECK;
2392 3873
2393 ev_start (EV_A_ (W)w, 1); 3874 ev_start (EV_A_ (W)w, 1);
2394 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3875 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2395 3876
2396 EV_FREQUENT_CHECK; 3877 EV_FREQUENT_CHECK;
2397} 3878}
2398 3879
2399void 3880void
2400ev_child_stop (EV_P_ ev_child *w) 3881ev_child_stop (EV_P_ ev_child *w) EV_THROW
2401{ 3882{
2402 clear_pending (EV_A_ (W)w); 3883 clear_pending (EV_A_ (W)w);
2403 if (expect_false (!ev_is_active (w))) 3884 if (expect_false (!ev_is_active (w)))
2404 return; 3885 return;
2405 3886
2406 EV_FREQUENT_CHECK; 3887 EV_FREQUENT_CHECK;
2407 3888
2408 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3889 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2409 ev_stop (EV_A_ (W)w); 3890 ev_stop (EV_A_ (W)w);
2410 3891
2411 EV_FREQUENT_CHECK; 3892 EV_FREQUENT_CHECK;
2412} 3893}
3894
3895#endif
2413 3896
2414#if EV_STAT_ENABLE 3897#if EV_STAT_ENABLE
2415 3898
2416# ifdef _WIN32 3899# ifdef _WIN32
2417# undef lstat 3900# undef lstat
2418# define lstat(a,b) _stati64 (a,b) 3901# define lstat(a,b) _stati64 (a,b)
2419# endif 3902# endif
2420 3903
2421#define DEF_STAT_INTERVAL 5.0074891 3904#define DEF_STAT_INTERVAL 5.0074891
3905#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2422#define MIN_STAT_INTERVAL 0.1074891 3906#define MIN_STAT_INTERVAL 0.1074891
2423 3907
2424static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3908static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2425 3909
2426#if EV_USE_INOTIFY 3910#if EV_USE_INOTIFY
2427# define EV_INOTIFY_BUFSIZE 8192 3911
3912/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3913# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2428 3914
2429static void noinline 3915static void noinline
2430infy_add (EV_P_ ev_stat *w) 3916infy_add (EV_P_ ev_stat *w)
2431{ 3917{
2432 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3918 w->wd = inotify_add_watch (fs_fd, w->path,
3919 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
3920 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
3921 | IN_DONT_FOLLOW | IN_MASK_ADD);
2433 3922
2434 if (w->wd < 0) 3923 if (w->wd >= 0)
3924 {
3925 struct statfs sfs;
3926
3927 /* now local changes will be tracked by inotify, but remote changes won't */
3928 /* unless the filesystem is known to be local, we therefore still poll */
3929 /* also do poll on <2.6.25, but with normal frequency */
3930
3931 if (!fs_2625)
3932 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3933 else if (!statfs (w->path, &sfs)
3934 && (sfs.f_type == 0x1373 /* devfs */
3935 || sfs.f_type == 0x4006 /* fat */
3936 || sfs.f_type == 0x4d44 /* msdos */
3937 || sfs.f_type == 0xEF53 /* ext2/3 */
3938 || sfs.f_type == 0x72b6 /* jffs2 */
3939 || sfs.f_type == 0x858458f6 /* ramfs */
3940 || sfs.f_type == 0x5346544e /* ntfs */
3941 || sfs.f_type == 0x3153464a /* jfs */
3942 || sfs.f_type == 0x9123683e /* btrfs */
3943 || sfs.f_type == 0x52654973 /* reiser3 */
3944 || sfs.f_type == 0x01021994 /* tmpfs */
3945 || sfs.f_type == 0x58465342 /* xfs */))
3946 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3947 else
3948 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2435 { 3949 }
2436 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3950 else
3951 {
3952 /* can't use inotify, continue to stat */
3953 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2437 3954
2438 /* monitor some parent directory for speedup hints */ 3955 /* if path is not there, monitor some parent directory for speedup hints */
2439 /* note that exceeding the hardcoded limit is not a correctness issue, */ 3956 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2440 /* but an efficiency issue only */ 3957 /* but an efficiency issue only */
2441 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3958 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2442 { 3959 {
2443 char path [4096]; 3960 char path [4096];
2444 strcpy (path, w->path); 3961 strcpy (path, w->path);
2448 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3965 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2449 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3966 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2450 3967
2451 char *pend = strrchr (path, '/'); 3968 char *pend = strrchr (path, '/');
2452 3969
2453 if (!pend) 3970 if (!pend || pend == path)
2454 break; /* whoops, no '/', complain to your admin */ 3971 break;
2455 3972
2456 *pend = 0; 3973 *pend = 0;
2457 w->wd = inotify_add_watch (fs_fd, path, mask); 3974 w->wd = inotify_add_watch (fs_fd, path, mask);
2458 } 3975 }
2459 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3976 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2460 } 3977 }
2461 } 3978 }
2462 else
2463 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2464 3979
2465 if (w->wd >= 0) 3980 if (w->wd >= 0)
2466 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3981 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3982
3983 /* now re-arm timer, if required */
3984 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3985 ev_timer_again (EV_A_ &w->timer);
3986 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2467} 3987}
2468 3988
2469static void noinline 3989static void noinline
2470infy_del (EV_P_ ev_stat *w) 3990infy_del (EV_P_ ev_stat *w)
2471{ 3991{
2474 3994
2475 if (wd < 0) 3995 if (wd < 0)
2476 return; 3996 return;
2477 3997
2478 w->wd = -2; 3998 w->wd = -2;
2479 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3999 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2480 wlist_del (&fs_hash [slot].head, (WL)w); 4000 wlist_del (&fs_hash [slot].head, (WL)w);
2481 4001
2482 /* remove this watcher, if others are watching it, they will rearm */ 4002 /* remove this watcher, if others are watching it, they will rearm */
2483 inotify_rm_watch (fs_fd, wd); 4003 inotify_rm_watch (fs_fd, wd);
2484} 4004}
2485 4005
2486static void noinline 4006static void noinline
2487infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 4007infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2488{ 4008{
2489 if (slot < 0) 4009 if (slot < 0)
2490 /* overflow, need to check for all hahs slots */ 4010 /* overflow, need to check for all hash slots */
2491 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4011 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2492 infy_wd (EV_A_ slot, wd, ev); 4012 infy_wd (EV_A_ slot, wd, ev);
2493 else 4013 else
2494 { 4014 {
2495 WL w_; 4015 WL w_;
2496 4016
2497 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 4017 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2498 { 4018 {
2499 ev_stat *w = (ev_stat *)w_; 4019 ev_stat *w = (ev_stat *)w_;
2500 w_ = w_->next; /* lets us remove this watcher and all before it */ 4020 w_ = w_->next; /* lets us remove this watcher and all before it */
2501 4021
2502 if (w->wd == wd || wd == -1) 4022 if (w->wd == wd || wd == -1)
2503 { 4023 {
2504 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 4024 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2505 { 4025 {
4026 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2506 w->wd = -1; 4027 w->wd = -1;
2507 infy_add (EV_A_ w); /* re-add, no matter what */ 4028 infy_add (EV_A_ w); /* re-add, no matter what */
2508 } 4029 }
2509 4030
2510 stat_timer_cb (EV_A_ &w->timer, 0); 4031 stat_timer_cb (EV_A_ &w->timer, 0);
2515 4036
2516static void 4037static void
2517infy_cb (EV_P_ ev_io *w, int revents) 4038infy_cb (EV_P_ ev_io *w, int revents)
2518{ 4039{
2519 char buf [EV_INOTIFY_BUFSIZE]; 4040 char buf [EV_INOTIFY_BUFSIZE];
2520 struct inotify_event *ev = (struct inotify_event *)buf;
2521 int ofs; 4041 int ofs;
2522 int len = read (fs_fd, buf, sizeof (buf)); 4042 int len = read (fs_fd, buf, sizeof (buf));
2523 4043
2524 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 4044 for (ofs = 0; ofs < len; )
4045 {
4046 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2525 infy_wd (EV_A_ ev->wd, ev->wd, ev); 4047 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4048 ofs += sizeof (struct inotify_event) + ev->len;
4049 }
2526} 4050}
2527 4051
2528void inline_size 4052inline_size void ecb_cold
4053ev_check_2625 (EV_P)
4054{
4055 /* kernels < 2.6.25 are borked
4056 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4057 */
4058 if (ev_linux_version () < 0x020619)
4059 return;
4060
4061 fs_2625 = 1;
4062}
4063
4064inline_size int
4065infy_newfd (void)
4066{
4067#if defined IN_CLOEXEC && defined IN_NONBLOCK
4068 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4069 if (fd >= 0)
4070 return fd;
4071#endif
4072 return inotify_init ();
4073}
4074
4075inline_size void
2529infy_init (EV_P) 4076infy_init (EV_P)
2530{ 4077{
2531 if (fs_fd != -2) 4078 if (fs_fd != -2)
2532 return; 4079 return;
2533 4080
4081 fs_fd = -1;
4082
4083 ev_check_2625 (EV_A);
4084
2534 fs_fd = inotify_init (); 4085 fs_fd = infy_newfd ();
2535 4086
2536 if (fs_fd >= 0) 4087 if (fs_fd >= 0)
2537 { 4088 {
4089 fd_intern (fs_fd);
2538 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 4090 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2539 ev_set_priority (&fs_w, EV_MAXPRI); 4091 ev_set_priority (&fs_w, EV_MAXPRI);
2540 ev_io_start (EV_A_ &fs_w); 4092 ev_io_start (EV_A_ &fs_w);
4093 ev_unref (EV_A);
2541 } 4094 }
2542} 4095}
2543 4096
2544void inline_size 4097inline_size void
2545infy_fork (EV_P) 4098infy_fork (EV_P)
2546{ 4099{
2547 int slot; 4100 int slot;
2548 4101
2549 if (fs_fd < 0) 4102 if (fs_fd < 0)
2550 return; 4103 return;
2551 4104
4105 ev_ref (EV_A);
4106 ev_io_stop (EV_A_ &fs_w);
2552 close (fs_fd); 4107 close (fs_fd);
2553 fs_fd = inotify_init (); 4108 fs_fd = infy_newfd ();
2554 4109
4110 if (fs_fd >= 0)
4111 {
4112 fd_intern (fs_fd);
4113 ev_io_set (&fs_w, fs_fd, EV_READ);
4114 ev_io_start (EV_A_ &fs_w);
4115 ev_unref (EV_A);
4116 }
4117
2555 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4118 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2556 { 4119 {
2557 WL w_ = fs_hash [slot].head; 4120 WL w_ = fs_hash [slot].head;
2558 fs_hash [slot].head = 0; 4121 fs_hash [slot].head = 0;
2559 4122
2560 while (w_) 4123 while (w_)
2565 w->wd = -1; 4128 w->wd = -1;
2566 4129
2567 if (fs_fd >= 0) 4130 if (fs_fd >= 0)
2568 infy_add (EV_A_ w); /* re-add, no matter what */ 4131 infy_add (EV_A_ w); /* re-add, no matter what */
2569 else 4132 else
4133 {
4134 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4135 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2570 ev_timer_start (EV_A_ &w->timer); 4136 ev_timer_again (EV_A_ &w->timer);
4137 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4138 }
2571 } 4139 }
2572
2573 } 4140 }
2574} 4141}
2575 4142
2576#endif 4143#endif
2577 4144
2580#else 4147#else
2581# define EV_LSTAT(p,b) lstat (p, b) 4148# define EV_LSTAT(p,b) lstat (p, b)
2582#endif 4149#endif
2583 4150
2584void 4151void
2585ev_stat_stat (EV_P_ ev_stat *w) 4152ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
2586{ 4153{
2587 if (lstat (w->path, &w->attr) < 0) 4154 if (lstat (w->path, &w->attr) < 0)
2588 w->attr.st_nlink = 0; 4155 w->attr.st_nlink = 0;
2589 else if (!w->attr.st_nlink) 4156 else if (!w->attr.st_nlink)
2590 w->attr.st_nlink = 1; 4157 w->attr.st_nlink = 1;
2593static void noinline 4160static void noinline
2594stat_timer_cb (EV_P_ ev_timer *w_, int revents) 4161stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2595{ 4162{
2596 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 4163 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2597 4164
2598 /* we copy this here each the time so that */ 4165 ev_statdata prev = w->attr;
2599 /* prev has the old value when the callback gets invoked */
2600 w->prev = w->attr;
2601 ev_stat_stat (EV_A_ w); 4166 ev_stat_stat (EV_A_ w);
2602 4167
2603 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 4168 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2604 if ( 4169 if (
2605 w->prev.st_dev != w->attr.st_dev 4170 prev.st_dev != w->attr.st_dev
2606 || w->prev.st_ino != w->attr.st_ino 4171 || prev.st_ino != w->attr.st_ino
2607 || w->prev.st_mode != w->attr.st_mode 4172 || prev.st_mode != w->attr.st_mode
2608 || w->prev.st_nlink != w->attr.st_nlink 4173 || prev.st_nlink != w->attr.st_nlink
2609 || w->prev.st_uid != w->attr.st_uid 4174 || prev.st_uid != w->attr.st_uid
2610 || w->prev.st_gid != w->attr.st_gid 4175 || prev.st_gid != w->attr.st_gid
2611 || w->prev.st_rdev != w->attr.st_rdev 4176 || prev.st_rdev != w->attr.st_rdev
2612 || w->prev.st_size != w->attr.st_size 4177 || prev.st_size != w->attr.st_size
2613 || w->prev.st_atime != w->attr.st_atime 4178 || prev.st_atime != w->attr.st_atime
2614 || w->prev.st_mtime != w->attr.st_mtime 4179 || prev.st_mtime != w->attr.st_mtime
2615 || w->prev.st_ctime != w->attr.st_ctime 4180 || prev.st_ctime != w->attr.st_ctime
2616 ) { 4181 ) {
4182 /* we only update w->prev on actual differences */
4183 /* in case we test more often than invoke the callback, */
4184 /* to ensure that prev is always different to attr */
4185 w->prev = prev;
4186
2617 #if EV_USE_INOTIFY 4187 #if EV_USE_INOTIFY
4188 if (fs_fd >= 0)
4189 {
2618 infy_del (EV_A_ w); 4190 infy_del (EV_A_ w);
2619 infy_add (EV_A_ w); 4191 infy_add (EV_A_ w);
2620 ev_stat_stat (EV_A_ w); /* avoid race... */ 4192 ev_stat_stat (EV_A_ w); /* avoid race... */
4193 }
2621 #endif 4194 #endif
2622 4195
2623 ev_feed_event (EV_A_ w, EV_STAT); 4196 ev_feed_event (EV_A_ w, EV_STAT);
2624 } 4197 }
2625} 4198}
2626 4199
2627void 4200void
2628ev_stat_start (EV_P_ ev_stat *w) 4201ev_stat_start (EV_P_ ev_stat *w) EV_THROW
2629{ 4202{
2630 if (expect_false (ev_is_active (w))) 4203 if (expect_false (ev_is_active (w)))
2631 return; 4204 return;
2632 4205
2633 /* since we use memcmp, we need to clear any padding data etc. */
2634 memset (&w->prev, 0, sizeof (ev_statdata));
2635 memset (&w->attr, 0, sizeof (ev_statdata));
2636
2637 ev_stat_stat (EV_A_ w); 4206 ev_stat_stat (EV_A_ w);
2638 4207
4208 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2639 if (w->interval < MIN_STAT_INTERVAL) 4209 w->interval = MIN_STAT_INTERVAL;
2640 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2641 4210
2642 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 4211 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2643 ev_set_priority (&w->timer, ev_priority (w)); 4212 ev_set_priority (&w->timer, ev_priority (w));
2644 4213
2645#if EV_USE_INOTIFY 4214#if EV_USE_INOTIFY
2646 infy_init (EV_A); 4215 infy_init (EV_A);
2647 4216
2648 if (fs_fd >= 0) 4217 if (fs_fd >= 0)
2649 infy_add (EV_A_ w); 4218 infy_add (EV_A_ w);
2650 else 4219 else
2651#endif 4220#endif
4221 {
2652 ev_timer_start (EV_A_ &w->timer); 4222 ev_timer_again (EV_A_ &w->timer);
4223 ev_unref (EV_A);
4224 }
2653 4225
2654 ev_start (EV_A_ (W)w, 1); 4226 ev_start (EV_A_ (W)w, 1);
2655 4227
2656 EV_FREQUENT_CHECK; 4228 EV_FREQUENT_CHECK;
2657} 4229}
2658 4230
2659void 4231void
2660ev_stat_stop (EV_P_ ev_stat *w) 4232ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
2661{ 4233{
2662 clear_pending (EV_A_ (W)w); 4234 clear_pending (EV_A_ (W)w);
2663 if (expect_false (!ev_is_active (w))) 4235 if (expect_false (!ev_is_active (w)))
2664 return; 4236 return;
2665 4237
2666 EV_FREQUENT_CHECK; 4238 EV_FREQUENT_CHECK;
2667 4239
2668#if EV_USE_INOTIFY 4240#if EV_USE_INOTIFY
2669 infy_del (EV_A_ w); 4241 infy_del (EV_A_ w);
2670#endif 4242#endif
4243
4244 if (ev_is_active (&w->timer))
4245 {
4246 ev_ref (EV_A);
2671 ev_timer_stop (EV_A_ &w->timer); 4247 ev_timer_stop (EV_A_ &w->timer);
4248 }
2672 4249
2673 ev_stop (EV_A_ (W)w); 4250 ev_stop (EV_A_ (W)w);
2674 4251
2675 EV_FREQUENT_CHECK; 4252 EV_FREQUENT_CHECK;
2676} 4253}
2677#endif 4254#endif
2678 4255
2679#if EV_IDLE_ENABLE 4256#if EV_IDLE_ENABLE
2680void 4257void
2681ev_idle_start (EV_P_ ev_idle *w) 4258ev_idle_start (EV_P_ ev_idle *w) EV_THROW
2682{ 4259{
2683 if (expect_false (ev_is_active (w))) 4260 if (expect_false (ev_is_active (w)))
2684 return; 4261 return;
2685 4262
2686 pri_adjust (EV_A_ (W)w); 4263 pri_adjust (EV_A_ (W)w);
2699 4276
2700 EV_FREQUENT_CHECK; 4277 EV_FREQUENT_CHECK;
2701} 4278}
2702 4279
2703void 4280void
2704ev_idle_stop (EV_P_ ev_idle *w) 4281ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
2705{ 4282{
2706 clear_pending (EV_A_ (W)w); 4283 clear_pending (EV_A_ (W)w);
2707 if (expect_false (!ev_is_active (w))) 4284 if (expect_false (!ev_is_active (w)))
2708 return; 4285 return;
2709 4286
2721 4298
2722 EV_FREQUENT_CHECK; 4299 EV_FREQUENT_CHECK;
2723} 4300}
2724#endif 4301#endif
2725 4302
4303#if EV_PREPARE_ENABLE
2726void 4304void
2727ev_prepare_start (EV_P_ ev_prepare *w) 4305ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
2728{ 4306{
2729 if (expect_false (ev_is_active (w))) 4307 if (expect_false (ev_is_active (w)))
2730 return; 4308 return;
2731 4309
2732 EV_FREQUENT_CHECK; 4310 EV_FREQUENT_CHECK;
2737 4315
2738 EV_FREQUENT_CHECK; 4316 EV_FREQUENT_CHECK;
2739} 4317}
2740 4318
2741void 4319void
2742ev_prepare_stop (EV_P_ ev_prepare *w) 4320ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
2743{ 4321{
2744 clear_pending (EV_A_ (W)w); 4322 clear_pending (EV_A_ (W)w);
2745 if (expect_false (!ev_is_active (w))) 4323 if (expect_false (!ev_is_active (w)))
2746 return; 4324 return;
2747 4325
2756 4334
2757 ev_stop (EV_A_ (W)w); 4335 ev_stop (EV_A_ (W)w);
2758 4336
2759 EV_FREQUENT_CHECK; 4337 EV_FREQUENT_CHECK;
2760} 4338}
4339#endif
2761 4340
4341#if EV_CHECK_ENABLE
2762void 4342void
2763ev_check_start (EV_P_ ev_check *w) 4343ev_check_start (EV_P_ ev_check *w) EV_THROW
2764{ 4344{
2765 if (expect_false (ev_is_active (w))) 4345 if (expect_false (ev_is_active (w)))
2766 return; 4346 return;
2767 4347
2768 EV_FREQUENT_CHECK; 4348 EV_FREQUENT_CHECK;
2773 4353
2774 EV_FREQUENT_CHECK; 4354 EV_FREQUENT_CHECK;
2775} 4355}
2776 4356
2777void 4357void
2778ev_check_stop (EV_P_ ev_check *w) 4358ev_check_stop (EV_P_ ev_check *w) EV_THROW
2779{ 4359{
2780 clear_pending (EV_A_ (W)w); 4360 clear_pending (EV_A_ (W)w);
2781 if (expect_false (!ev_is_active (w))) 4361 if (expect_false (!ev_is_active (w)))
2782 return; 4362 return;
2783 4363
2792 4372
2793 ev_stop (EV_A_ (W)w); 4373 ev_stop (EV_A_ (W)w);
2794 4374
2795 EV_FREQUENT_CHECK; 4375 EV_FREQUENT_CHECK;
2796} 4376}
4377#endif
2797 4378
2798#if EV_EMBED_ENABLE 4379#if EV_EMBED_ENABLE
2799void noinline 4380void noinline
2800ev_embed_sweep (EV_P_ ev_embed *w) 4381ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
2801{ 4382{
2802 ev_loop (w->other, EVLOOP_NONBLOCK); 4383 ev_run (w->other, EVRUN_NOWAIT);
2803} 4384}
2804 4385
2805static void 4386static void
2806embed_io_cb (EV_P_ ev_io *io, int revents) 4387embed_io_cb (EV_P_ ev_io *io, int revents)
2807{ 4388{
2808 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4389 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2809 4390
2810 if (ev_cb (w)) 4391 if (ev_cb (w))
2811 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4392 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2812 else 4393 else
2813 ev_loop (w->other, EVLOOP_NONBLOCK); 4394 ev_run (w->other, EVRUN_NOWAIT);
2814} 4395}
2815 4396
2816static void 4397static void
2817embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4398embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2818{ 4399{
2819 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4400 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2820 4401
2821 { 4402 {
2822 struct ev_loop *loop = w->other; 4403 EV_P = w->other;
2823 4404
2824 while (fdchangecnt) 4405 while (fdchangecnt)
2825 { 4406 {
2826 fd_reify (EV_A); 4407 fd_reify (EV_A);
2827 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4408 ev_run (EV_A_ EVRUN_NOWAIT);
2828 } 4409 }
2829 } 4410 }
4411}
4412
4413static void
4414embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4415{
4416 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4417
4418 ev_embed_stop (EV_A_ w);
4419
4420 {
4421 EV_P = w->other;
4422
4423 ev_loop_fork (EV_A);
4424 ev_run (EV_A_ EVRUN_NOWAIT);
4425 }
4426
4427 ev_embed_start (EV_A_ w);
2830} 4428}
2831 4429
2832#if 0 4430#if 0
2833static void 4431static void
2834embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4432embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2836 ev_idle_stop (EV_A_ idle); 4434 ev_idle_stop (EV_A_ idle);
2837} 4435}
2838#endif 4436#endif
2839 4437
2840void 4438void
2841ev_embed_start (EV_P_ ev_embed *w) 4439ev_embed_start (EV_P_ ev_embed *w) EV_THROW
2842{ 4440{
2843 if (expect_false (ev_is_active (w))) 4441 if (expect_false (ev_is_active (w)))
2844 return; 4442 return;
2845 4443
2846 { 4444 {
2847 struct ev_loop *loop = w->other; 4445 EV_P = w->other;
2848 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4446 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2849 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4447 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2850 } 4448 }
2851 4449
2852 EV_FREQUENT_CHECK; 4450 EV_FREQUENT_CHECK;
2853 4451
2856 4454
2857 ev_prepare_init (&w->prepare, embed_prepare_cb); 4455 ev_prepare_init (&w->prepare, embed_prepare_cb);
2858 ev_set_priority (&w->prepare, EV_MINPRI); 4456 ev_set_priority (&w->prepare, EV_MINPRI);
2859 ev_prepare_start (EV_A_ &w->prepare); 4457 ev_prepare_start (EV_A_ &w->prepare);
2860 4458
4459 ev_fork_init (&w->fork, embed_fork_cb);
4460 ev_fork_start (EV_A_ &w->fork);
4461
2861 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 4462 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2862 4463
2863 ev_start (EV_A_ (W)w, 1); 4464 ev_start (EV_A_ (W)w, 1);
2864 4465
2865 EV_FREQUENT_CHECK; 4466 EV_FREQUENT_CHECK;
2866} 4467}
2867 4468
2868void 4469void
2869ev_embed_stop (EV_P_ ev_embed *w) 4470ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
2870{ 4471{
2871 clear_pending (EV_A_ (W)w); 4472 clear_pending (EV_A_ (W)w);
2872 if (expect_false (!ev_is_active (w))) 4473 if (expect_false (!ev_is_active (w)))
2873 return; 4474 return;
2874 4475
2875 EV_FREQUENT_CHECK; 4476 EV_FREQUENT_CHECK;
2876 4477
2877 ev_io_stop (EV_A_ &w->io); 4478 ev_io_stop (EV_A_ &w->io);
2878 ev_prepare_stop (EV_A_ &w->prepare); 4479 ev_prepare_stop (EV_A_ &w->prepare);
4480 ev_fork_stop (EV_A_ &w->fork);
2879 4481
2880 ev_stop (EV_A_ (W)w); 4482 ev_stop (EV_A_ (W)w);
2881 4483
2882 EV_FREQUENT_CHECK; 4484 EV_FREQUENT_CHECK;
2883} 4485}
2884#endif 4486#endif
2885 4487
2886#if EV_FORK_ENABLE 4488#if EV_FORK_ENABLE
2887void 4489void
2888ev_fork_start (EV_P_ ev_fork *w) 4490ev_fork_start (EV_P_ ev_fork *w) EV_THROW
2889{ 4491{
2890 if (expect_false (ev_is_active (w))) 4492 if (expect_false (ev_is_active (w)))
2891 return; 4493 return;
2892 4494
2893 EV_FREQUENT_CHECK; 4495 EV_FREQUENT_CHECK;
2898 4500
2899 EV_FREQUENT_CHECK; 4501 EV_FREQUENT_CHECK;
2900} 4502}
2901 4503
2902void 4504void
2903ev_fork_stop (EV_P_ ev_fork *w) 4505ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
2904{ 4506{
2905 clear_pending (EV_A_ (W)w); 4507 clear_pending (EV_A_ (W)w);
2906 if (expect_false (!ev_is_active (w))) 4508 if (expect_false (!ev_is_active (w)))
2907 return; 4509 return;
2908 4510
2919 4521
2920 EV_FREQUENT_CHECK; 4522 EV_FREQUENT_CHECK;
2921} 4523}
2922#endif 4524#endif
2923 4525
4526#if EV_CLEANUP_ENABLE
4527void
4528ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4529{
4530 if (expect_false (ev_is_active (w)))
4531 return;
4532
4533 EV_FREQUENT_CHECK;
4534
4535 ev_start (EV_A_ (W)w, ++cleanupcnt);
4536 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4537 cleanups [cleanupcnt - 1] = w;
4538
4539 /* cleanup watchers should never keep a refcount on the loop */
4540 ev_unref (EV_A);
4541 EV_FREQUENT_CHECK;
4542}
4543
4544void
4545ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4546{
4547 clear_pending (EV_A_ (W)w);
4548 if (expect_false (!ev_is_active (w)))
4549 return;
4550
4551 EV_FREQUENT_CHECK;
4552 ev_ref (EV_A);
4553
4554 {
4555 int active = ev_active (w);
4556
4557 cleanups [active - 1] = cleanups [--cleanupcnt];
4558 ev_active (cleanups [active - 1]) = active;
4559 }
4560
4561 ev_stop (EV_A_ (W)w);
4562
4563 EV_FREQUENT_CHECK;
4564}
4565#endif
4566
2924#if EV_ASYNC_ENABLE 4567#if EV_ASYNC_ENABLE
2925void 4568void
2926ev_async_start (EV_P_ ev_async *w) 4569ev_async_start (EV_P_ ev_async *w) EV_THROW
2927{ 4570{
2928 if (expect_false (ev_is_active (w))) 4571 if (expect_false (ev_is_active (w)))
2929 return; 4572 return;
4573
4574 w->sent = 0;
2930 4575
2931 evpipe_init (EV_A); 4576 evpipe_init (EV_A);
2932 4577
2933 EV_FREQUENT_CHECK; 4578 EV_FREQUENT_CHECK;
2934 4579
2938 4583
2939 EV_FREQUENT_CHECK; 4584 EV_FREQUENT_CHECK;
2940} 4585}
2941 4586
2942void 4587void
2943ev_async_stop (EV_P_ ev_async *w) 4588ev_async_stop (EV_P_ ev_async *w) EV_THROW
2944{ 4589{
2945 clear_pending (EV_A_ (W)w); 4590 clear_pending (EV_A_ (W)w);
2946 if (expect_false (!ev_is_active (w))) 4591 if (expect_false (!ev_is_active (w)))
2947 return; 4592 return;
2948 4593
2959 4604
2960 EV_FREQUENT_CHECK; 4605 EV_FREQUENT_CHECK;
2961} 4606}
2962 4607
2963void 4608void
2964ev_async_send (EV_P_ ev_async *w) 4609ev_async_send (EV_P_ ev_async *w) EV_THROW
2965{ 4610{
2966 w->sent = 1; 4611 w->sent = 1;
2967 evpipe_write (EV_A_ &gotasync); 4612 evpipe_write (EV_A_ &async_pending);
2968} 4613}
2969#endif 4614#endif
2970 4615
2971/*****************************************************************************/ 4616/*****************************************************************************/
2972 4617
2992} 4637}
2993 4638
2994static void 4639static void
2995once_cb_io (EV_P_ ev_io *w, int revents) 4640once_cb_io (EV_P_ ev_io *w, int revents)
2996{ 4641{
2997 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4642 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4643
4644 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2998} 4645}
2999 4646
3000static void 4647static void
3001once_cb_to (EV_P_ ev_timer *w, int revents) 4648once_cb_to (EV_P_ ev_timer *w, int revents)
3002{ 4649{
3003 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4650 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4651
4652 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3004} 4653}
3005 4654
3006void 4655void
3007ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4656ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
3008{ 4657{
3009 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4658 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3010 4659
3011 if (expect_false (!once)) 4660 if (expect_false (!once))
3012 { 4661 {
3013 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4662 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
3014 return; 4663 return;
3015 } 4664 }
3016 4665
3017 once->cb = cb; 4666 once->cb = cb;
3018 once->arg = arg; 4667 once->arg = arg;
3030 ev_timer_set (&once->to, timeout, 0.); 4679 ev_timer_set (&once->to, timeout, 0.);
3031 ev_timer_start (EV_A_ &once->to); 4680 ev_timer_start (EV_A_ &once->to);
3032 } 4681 }
3033} 4682}
3034 4683
4684/*****************************************************************************/
4685
4686#if EV_WALK_ENABLE
4687void ecb_cold
4688ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4689{
4690 int i, j;
4691 ev_watcher_list *wl, *wn;
4692
4693 if (types & (EV_IO | EV_EMBED))
4694 for (i = 0; i < anfdmax; ++i)
4695 for (wl = anfds [i].head; wl; )
4696 {
4697 wn = wl->next;
4698
4699#if EV_EMBED_ENABLE
4700 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4701 {
4702 if (types & EV_EMBED)
4703 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4704 }
4705 else
4706#endif
4707#if EV_USE_INOTIFY
4708 if (ev_cb ((ev_io *)wl) == infy_cb)
4709 ;
4710 else
4711#endif
4712 if ((ev_io *)wl != &pipe_w)
4713 if (types & EV_IO)
4714 cb (EV_A_ EV_IO, wl);
4715
4716 wl = wn;
4717 }
4718
4719 if (types & (EV_TIMER | EV_STAT))
4720 for (i = timercnt + HEAP0; i-- > HEAP0; )
4721#if EV_STAT_ENABLE
4722 /*TODO: timer is not always active*/
4723 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4724 {
4725 if (types & EV_STAT)
4726 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4727 }
4728 else
4729#endif
4730 if (types & EV_TIMER)
4731 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4732
4733#if EV_PERIODIC_ENABLE
4734 if (types & EV_PERIODIC)
4735 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4736 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4737#endif
4738
4739#if EV_IDLE_ENABLE
4740 if (types & EV_IDLE)
4741 for (j = NUMPRI; j--; )
4742 for (i = idlecnt [j]; i--; )
4743 cb (EV_A_ EV_IDLE, idles [j][i]);
4744#endif
4745
4746#if EV_FORK_ENABLE
4747 if (types & EV_FORK)
4748 for (i = forkcnt; i--; )
4749 if (ev_cb (forks [i]) != embed_fork_cb)
4750 cb (EV_A_ EV_FORK, forks [i]);
4751#endif
4752
4753#if EV_ASYNC_ENABLE
4754 if (types & EV_ASYNC)
4755 for (i = asynccnt; i--; )
4756 cb (EV_A_ EV_ASYNC, asyncs [i]);
4757#endif
4758
4759#if EV_PREPARE_ENABLE
4760 if (types & EV_PREPARE)
4761 for (i = preparecnt; i--; )
4762# if EV_EMBED_ENABLE
4763 if (ev_cb (prepares [i]) != embed_prepare_cb)
4764# endif
4765 cb (EV_A_ EV_PREPARE, prepares [i]);
4766#endif
4767
4768#if EV_CHECK_ENABLE
4769 if (types & EV_CHECK)
4770 for (i = checkcnt; i--; )
4771 cb (EV_A_ EV_CHECK, checks [i]);
4772#endif
4773
4774#if EV_SIGNAL_ENABLE
4775 if (types & EV_SIGNAL)
4776 for (i = 0; i < EV_NSIG - 1; ++i)
4777 for (wl = signals [i].head; wl; )
4778 {
4779 wn = wl->next;
4780 cb (EV_A_ EV_SIGNAL, wl);
4781 wl = wn;
4782 }
4783#endif
4784
4785#if EV_CHILD_ENABLE
4786 if (types & EV_CHILD)
4787 for (i = (EV_PID_HASHSIZE); i--; )
4788 for (wl = childs [i]; wl; )
4789 {
4790 wn = wl->next;
4791 cb (EV_A_ EV_CHILD, wl);
4792 wl = wn;
4793 }
4794#endif
4795/* EV_STAT 0x00001000 /* stat data changed */
4796/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4797}
4798#endif
4799
3035#if EV_MULTIPLICITY 4800#if EV_MULTIPLICITY
3036 #include "ev_wrap.h" 4801 #include "ev_wrap.h"
3037#endif 4802#endif
3038 4803
3039#ifdef __cplusplus
3040}
3041#endif
3042

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines