ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.245 by root, Wed May 21 00:26:01 2008 UTC vs.
Revision 1.457 by root, Thu Sep 5 18:45:29 2013 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
52# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
55# endif 71# endif
56# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
58# endif 74# endif
59# else 75# else
60# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
62# endif 78# endif
63# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
65# endif 81# endif
66# endif 82# endif
67 83
84# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
71# else 88# else
89# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
74# endif 100# endif
75 101
102# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 105# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 106# else
107# undef EV_USE_POLL
88# define EV_USE_POLL 0 108# define EV_USE_POLL 0
89# endif
90# endif 109# endif
91 110
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
95# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
98# endif 118# endif
99 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
106# endif 127# endif
107 128
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
111# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
114# endif 136# endif
115 137
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
122# endif 145# endif
123 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 148# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 149# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
130# endif 154# endif
131 155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
132#endif 163# endif
164
165#endif
133 166
134#include <math.h>
135#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
136#include <fcntl.h> 169#include <fcntl.h>
137#include <stddef.h> 170#include <stddef.h>
138 171
139#include <stdio.h> 172#include <stdio.h>
140 173
141#include <assert.h> 174#include <assert.h>
142#include <errno.h> 175#include <errno.h>
143#include <sys/types.h> 176#include <sys/types.h>
144#include <time.h> 177#include <time.h>
178#include <limits.h>
145 179
146#include <signal.h> 180#include <signal.h>
147 181
148#ifdef EV_H 182#ifdef EV_H
149# include EV_H 183# include EV_H
150#else 184#else
151# include "ev.h" 185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
152#endif 197#endif
153 198
154#ifndef _WIN32 199#ifndef _WIN32
155# include <sys/time.h> 200# include <sys/time.h>
156# include <sys/wait.h> 201# include <sys/wait.h>
157# include <unistd.h> 202# include <unistd.h>
158#else 203#else
204# include <io.h>
159# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
160# include <windows.h> 207# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 208# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 209# define EV_SELECT_IS_WINSOCKET 1
163# endif 210# endif
211# undef EV_AVOID_STDIO
164#endif 212#endif
213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
165 221
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 222/* this block tries to deduce configuration from header-defined symbols and defaults */
167 223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# error "unable to find value for NSIG, please report"
247/* to make it compile regardless, just remove the above line, */
248/* but consider reporting it, too! :) */
249# define EV_NSIG 65
250#endif
251
252#ifndef EV_USE_FLOOR
253# define EV_USE_FLOOR 0
254#endif
255
256#ifndef EV_USE_CLOCK_SYSCALL
257# if __linux && __GLIBC__ >= 2
258# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
259# else
260# define EV_USE_CLOCK_SYSCALL 0
261# endif
262#endif
263
168#ifndef EV_USE_MONOTONIC 264#ifndef EV_USE_MONOTONIC
265# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
266# define EV_USE_MONOTONIC EV_FEATURE_OS
267# else
169# define EV_USE_MONOTONIC 0 268# define EV_USE_MONOTONIC 0
269# endif
170#endif 270#endif
171 271
172#ifndef EV_USE_REALTIME 272#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 273# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 274#endif
175 275
176#ifndef EV_USE_NANOSLEEP 276#ifndef EV_USE_NANOSLEEP
277# if _POSIX_C_SOURCE >= 199309L
278# define EV_USE_NANOSLEEP EV_FEATURE_OS
279# else
177# define EV_USE_NANOSLEEP 0 280# define EV_USE_NANOSLEEP 0
281# endif
178#endif 282#endif
179 283
180#ifndef EV_USE_SELECT 284#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 285# define EV_USE_SELECT EV_FEATURE_BACKENDS
182#endif 286#endif
183 287
184#ifndef EV_USE_POLL 288#ifndef EV_USE_POLL
185# ifdef _WIN32 289# ifdef _WIN32
186# define EV_USE_POLL 0 290# define EV_USE_POLL 0
187# else 291# else
188# define EV_USE_POLL 1 292# define EV_USE_POLL EV_FEATURE_BACKENDS
189# endif 293# endif
190#endif 294#endif
191 295
192#ifndef EV_USE_EPOLL 296#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 297# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1 298# define EV_USE_EPOLL EV_FEATURE_BACKENDS
195# else 299# else
196# define EV_USE_EPOLL 0 300# define EV_USE_EPOLL 0
197# endif 301# endif
198#endif 302#endif
199 303
205# define EV_USE_PORT 0 309# define EV_USE_PORT 0
206#endif 310#endif
207 311
208#ifndef EV_USE_INOTIFY 312#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 313# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1 314# define EV_USE_INOTIFY EV_FEATURE_OS
211# else 315# else
212# define EV_USE_INOTIFY 0 316# define EV_USE_INOTIFY 0
213# endif 317# endif
214#endif 318#endif
215 319
216#ifndef EV_PID_HASHSIZE 320#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL 321# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif 322#endif
223 323
224#ifndef EV_INOTIFY_HASHSIZE 324#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL 325# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif 326#endif
231 327
232#ifndef EV_USE_EVENTFD 328#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 329# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 330# define EV_USE_EVENTFD EV_FEATURE_OS
235# else 331# else
236# define EV_USE_EVENTFD 0 332# define EV_USE_EVENTFD 0
237# endif 333# endif
238#endif 334#endif
239 335
336#ifndef EV_USE_SIGNALFD
337# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
338# define EV_USE_SIGNALFD EV_FEATURE_OS
339# else
340# define EV_USE_SIGNALFD 0
341# endif
342#endif
343
344#if 0 /* debugging */
345# define EV_VERIFY 3
346# define EV_USE_4HEAP 1
347# define EV_HEAP_CACHE_AT 1
348#endif
349
350#ifndef EV_VERIFY
351# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
352#endif
353
240#ifndef EV_USE_4HEAP 354#ifndef EV_USE_4HEAP
241# define EV_USE_4HEAP !EV_MINIMAL 355# define EV_USE_4HEAP EV_FEATURE_DATA
242#endif 356#endif
243 357
244#ifndef EV_HEAP_CACHE_AT 358#ifndef EV_HEAP_CACHE_AT
245# define EV_HEAP_CACHE_AT !EV_MINIMAL 359# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
360#endif
361
362#ifdef ANDROID
363/* supposedly, android doesn't typedef fd_mask */
364# undef EV_USE_SELECT
365# define EV_USE_SELECT 0
366/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
367# undef EV_USE_CLOCK_SYSCALL
368# define EV_USE_CLOCK_SYSCALL 0
369#endif
370
371/* aix's poll.h seems to cause lots of trouble */
372#ifdef _AIX
373/* AIX has a completely broken poll.h header */
374# undef EV_USE_POLL
375# define EV_USE_POLL 0
376#endif
377
378/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
379/* which makes programs even slower. might work on other unices, too. */
380#if EV_USE_CLOCK_SYSCALL
381# include <sys/syscall.h>
382# ifdef SYS_clock_gettime
383# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
384# undef EV_USE_MONOTONIC
385# define EV_USE_MONOTONIC 1
386# else
387# undef EV_USE_CLOCK_SYSCALL
388# define EV_USE_CLOCK_SYSCALL 0
389# endif
246#endif 390#endif
247 391
248/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 392/* this block fixes any misconfiguration where we know we run into trouble otherwise */
249 393
250#ifndef CLOCK_MONOTONIC 394#ifndef CLOCK_MONOTONIC
261# undef EV_USE_INOTIFY 405# undef EV_USE_INOTIFY
262# define EV_USE_INOTIFY 0 406# define EV_USE_INOTIFY 0
263#endif 407#endif
264 408
265#if !EV_USE_NANOSLEEP 409#if !EV_USE_NANOSLEEP
266# ifndef _WIN32 410/* hp-ux has it in sys/time.h, which we unconditionally include above */
411# if !defined _WIN32 && !defined __hpux
267# include <sys/select.h> 412# include <sys/select.h>
268# endif 413# endif
269#endif 414#endif
270 415
271#if EV_USE_INOTIFY 416#if EV_USE_INOTIFY
417# include <sys/statfs.h>
272# include <sys/inotify.h> 418# include <sys/inotify.h>
419/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
420# ifndef IN_DONT_FOLLOW
421# undef EV_USE_INOTIFY
422# define EV_USE_INOTIFY 0
273#endif 423# endif
274
275#if EV_SELECT_IS_WINSOCKET
276# include <winsock.h>
277#endif 424#endif
278 425
279#if EV_USE_EVENTFD 426#if EV_USE_EVENTFD
280/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 427/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
281# include <stdint.h> 428# include <stdint.h>
282# ifdef __cplusplus 429# ifndef EFD_NONBLOCK
283extern "C" { 430# define EFD_NONBLOCK O_NONBLOCK
284# endif 431# endif
285int eventfd (unsigned int initval, int flags); 432# ifndef EFD_CLOEXEC
286# ifdef __cplusplus 433# ifdef O_CLOEXEC
287} 434# define EFD_CLOEXEC O_CLOEXEC
435# else
436# define EFD_CLOEXEC 02000000
437# endif
288# endif 438# endif
439EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
440#endif
441
442#if EV_USE_SIGNALFD
443/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
444# include <stdint.h>
445# ifndef SFD_NONBLOCK
446# define SFD_NONBLOCK O_NONBLOCK
447# endif
448# ifndef SFD_CLOEXEC
449# ifdef O_CLOEXEC
450# define SFD_CLOEXEC O_CLOEXEC
451# else
452# define SFD_CLOEXEC 02000000
453# endif
454# endif
455EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
456
457struct signalfd_siginfo
458{
459 uint32_t ssi_signo;
460 char pad[128 - sizeof (uint32_t)];
461};
289#endif 462#endif
290 463
291/**/ 464/**/
292 465
466#if EV_VERIFY >= 3
467# define EV_FREQUENT_CHECK ev_verify (EV_A)
468#else
469# define EV_FREQUENT_CHECK do { } while (0)
470#endif
471
293/* 472/*
294 * This is used to avoid floating point rounding problems. 473 * This is used to work around floating point rounding problems.
295 * It is added to ev_rt_now when scheduling periodics
296 * to ensure progress, time-wise, even when rounding
297 * errors are against us.
298 * This value is good at least till the year 4000. 474 * This value is good at least till the year 4000.
299 * Better solutions welcome.
300 */ 475 */
301#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 476#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
477/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
302 478
303#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 479#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
304#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 480#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
305/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
306 481
482#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
483#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
484
485/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
486/* ECB.H BEGIN */
487/*
488 * libecb - http://software.schmorp.de/pkg/libecb
489 *
490 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
491 * Copyright (©) 2011 Emanuele Giaquinta
492 * All rights reserved.
493 *
494 * Redistribution and use in source and binary forms, with or without modifica-
495 * tion, are permitted provided that the following conditions are met:
496 *
497 * 1. Redistributions of source code must retain the above copyright notice,
498 * this list of conditions and the following disclaimer.
499 *
500 * 2. Redistributions in binary form must reproduce the above copyright
501 * notice, this list of conditions and the following disclaimer in the
502 * documentation and/or other materials provided with the distribution.
503 *
504 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
505 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
506 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
507 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
508 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
509 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
510 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
511 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
512 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
513 * OF THE POSSIBILITY OF SUCH DAMAGE.
514 */
515
516#ifndef ECB_H
517#define ECB_H
518
519/* 16 bits major, 16 bits minor */
520#define ECB_VERSION 0x00010003
521
522#ifdef _WIN32
523 typedef signed char int8_t;
524 typedef unsigned char uint8_t;
525 typedef signed short int16_t;
526 typedef unsigned short uint16_t;
527 typedef signed int int32_t;
528 typedef unsigned int uint32_t;
307#if __GNUC__ >= 4 529 #if __GNUC__
308# define expect(expr,value) __builtin_expect ((expr),(value)) 530 typedef signed long long int64_t;
309# define noinline __attribute__ ((noinline)) 531 typedef unsigned long long uint64_t;
532 #else /* _MSC_VER || __BORLANDC__ */
533 typedef signed __int64 int64_t;
534 typedef unsigned __int64 uint64_t;
535 #endif
536 #ifdef _WIN64
537 #define ECB_PTRSIZE 8
538 typedef uint64_t uintptr_t;
539 typedef int64_t intptr_t;
540 #else
541 #define ECB_PTRSIZE 4
542 typedef uint32_t uintptr_t;
543 typedef int32_t intptr_t;
544 #endif
310#else 545#else
311# define expect(expr,value) (expr) 546 #include <inttypes.h>
312# define noinline 547 #if UINTMAX_MAX > 0xffffffffU
313# if __STDC_VERSION__ < 199901L && __GNUC__ < 2 548 #define ECB_PTRSIZE 8
314# define inline 549 #else
550 #define ECB_PTRSIZE 4
551 #endif
315# endif 552#endif
553
554/* work around x32 idiocy by defining proper macros */
555#if __x86_64 || _M_AMD64
556 #if __ILP32
557 #define ECB_AMD64_X32 1
558 #else
559 #define ECB_AMD64 1
316#endif 560 #endif
561#endif
317 562
563/* many compilers define _GNUC_ to some versions but then only implement
564 * what their idiot authors think are the "more important" extensions,
565 * causing enormous grief in return for some better fake benchmark numbers.
566 * or so.
567 * we try to detect these and simply assume they are not gcc - if they have
568 * an issue with that they should have done it right in the first place.
569 */
570#ifndef ECB_GCC_VERSION
571 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
572 #define ECB_GCC_VERSION(major,minor) 0
573 #else
574 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
575 #endif
576#endif
577
578#define ECB_C (__STDC__+0) /* this assumes that __STDC__ is either empty or a number */
579#define ECB_C99 (__STDC_VERSION__ >= 199901L)
580#define ECB_C11 (__STDC_VERSION__ >= 201112L)
581#define ECB_CPP (__cplusplus+0)
582#define ECB_CPP11 (__cplusplus >= 201103L)
583
584#if ECB_CPP
585 #define ECB_EXTERN_C extern "C"
586 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
587 #define ECB_EXTERN_C_END }
588#else
589 #define ECB_EXTERN_C extern
590 #define ECB_EXTERN_C_BEG
591 #define ECB_EXTERN_C_END
592#endif
593
594/*****************************************************************************/
595
596/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
597/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
598
599#if ECB_NO_THREADS
600 #define ECB_NO_SMP 1
601#endif
602
603#if ECB_NO_SMP
604 #define ECB_MEMORY_FENCE do { } while (0)
605#endif
606
607#ifndef ECB_MEMORY_FENCE
608 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
609 #if __i386 || __i386__
610 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
611 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
612 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
613 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
614 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
615 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
616 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
617 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
618 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
619 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
620 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
621 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
622 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
623 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
624 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
625 #elif __sparc || __sparc__
626 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
627 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
628 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
629 #elif defined __s390__ || defined __s390x__
630 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
631 #elif defined __mips__
632 /* GNU/Linux emulates sync on mips1 architectures, so we force it's use */
633 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
634 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
635 #elif defined __alpha__
636 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
637 #elif defined __hppa__
638 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
639 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
640 #elif defined __ia64__
641 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
642 #elif defined __m68k__
643 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
644 #elif defined __m88k__
645 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
646 #elif defined __sh__
647 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
648 #endif
649 #endif
650#endif
651
652#ifndef ECB_MEMORY_FENCE
653 #if ECB_GCC_VERSION(4,7)
654 /* see comment below (stdatomic.h) about the C11 memory model. */
655 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
656
657 /* The __has_feature syntax from clang is so misdesigned that we cannot use it
658 * without risking compile time errors with other compilers. We *could*
659 * define our own ecb_clang_has_feature, but I just can't be bothered to work
660 * around this shit time and again.
661 * #elif defined __clang && __has_feature (cxx_atomic)
662 * // see comment below (stdatomic.h) about the C11 memory model.
663 * #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
664 */
665
666 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
667 #define ECB_MEMORY_FENCE __sync_synchronize ()
668 #elif _MSC_VER >= 1400 /* VC++ 2005 */
669 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
670 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
671 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
672 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
673 #elif defined _WIN32
674 #include <WinNT.h>
675 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
676 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
677 #include <mbarrier.h>
678 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
679 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
680 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
681 #elif __xlC__
682 #define ECB_MEMORY_FENCE __sync ()
683 #endif
684#endif
685
686#ifndef ECB_MEMORY_FENCE
687 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
688 /* we assume that these memory fences work on all variables/all memory accesses, */
689 /* not just C11 atomics and atomic accesses */
690 #include <stdatomic.h>
691 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
692 /* any fence other than seq_cst, which isn't very efficient for us. */
693 /* Why that is, we don't know - either the C11 memory model is quite useless */
694 /* for most usages, or gcc and clang have a bug */
695 /* I *currently* lean towards the latter, and inefficiently implement */
696 /* all three of ecb's fences as a seq_cst fence */
697 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
698 #endif
699#endif
700
701#ifndef ECB_MEMORY_FENCE
702 #if !ECB_AVOID_PTHREADS
703 /*
704 * if you get undefined symbol references to pthread_mutex_lock,
705 * or failure to find pthread.h, then you should implement
706 * the ECB_MEMORY_FENCE operations for your cpu/compiler
707 * OR provide pthread.h and link against the posix thread library
708 * of your system.
709 */
710 #include <pthread.h>
711 #define ECB_NEEDS_PTHREADS 1
712 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
713
714 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
715 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
716 #endif
717#endif
718
719#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
720 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
721#endif
722
723#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
724 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
725#endif
726
727/*****************************************************************************/
728
729#if __cplusplus
730 #define ecb_inline static inline
731#elif ECB_GCC_VERSION(2,5)
732 #define ecb_inline static __inline__
733#elif ECB_C99
734 #define ecb_inline static inline
735#else
736 #define ecb_inline static
737#endif
738
739#if ECB_GCC_VERSION(3,3)
740 #define ecb_restrict __restrict__
741#elif ECB_C99
742 #define ecb_restrict restrict
743#else
744 #define ecb_restrict
745#endif
746
747typedef int ecb_bool;
748
749#define ECB_CONCAT_(a, b) a ## b
750#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
751#define ECB_STRINGIFY_(a) # a
752#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
753
754#define ecb_function_ ecb_inline
755
756#if ECB_GCC_VERSION(3,1)
757 #define ecb_attribute(attrlist) __attribute__(attrlist)
758 #define ecb_is_constant(expr) __builtin_constant_p (expr)
759 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
760 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
761#else
762 #define ecb_attribute(attrlist)
763 #define ecb_is_constant(expr) 0
764 #define ecb_expect(expr,value) (expr)
765 #define ecb_prefetch(addr,rw,locality)
766#endif
767
768/* no emulation for ecb_decltype */
769#if ECB_GCC_VERSION(4,5)
770 #define ecb_decltype(x) __decltype(x)
771#elif ECB_GCC_VERSION(3,0)
772 #define ecb_decltype(x) __typeof(x)
773#endif
774
775#define ecb_noinline ecb_attribute ((__noinline__))
776#define ecb_unused ecb_attribute ((__unused__))
777#define ecb_const ecb_attribute ((__const__))
778#define ecb_pure ecb_attribute ((__pure__))
779
780#if ECB_C11
781 #define ecb_noreturn _Noreturn
782#else
783 #define ecb_noreturn ecb_attribute ((__noreturn__))
784#endif
785
786#if ECB_GCC_VERSION(4,3)
787 #define ecb_artificial ecb_attribute ((__artificial__))
788 #define ecb_hot ecb_attribute ((__hot__))
789 #define ecb_cold ecb_attribute ((__cold__))
790#else
791 #define ecb_artificial
792 #define ecb_hot
793 #define ecb_cold
794#endif
795
796/* put around conditional expressions if you are very sure that the */
797/* expression is mostly true or mostly false. note that these return */
798/* booleans, not the expression. */
318#define expect_false(expr) expect ((expr) != 0, 0) 799#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
319#define expect_true(expr) expect ((expr) != 0, 1) 800#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
801/* for compatibility to the rest of the world */
802#define ecb_likely(expr) ecb_expect_true (expr)
803#define ecb_unlikely(expr) ecb_expect_false (expr)
804
805/* count trailing zero bits and count # of one bits */
806#if ECB_GCC_VERSION(3,4)
807 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
808 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
809 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
810 #define ecb_ctz32(x) __builtin_ctz (x)
811 #define ecb_ctz64(x) __builtin_ctzll (x)
812 #define ecb_popcount32(x) __builtin_popcount (x)
813 /* no popcountll */
814#else
815 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
816 ecb_function_ int
817 ecb_ctz32 (uint32_t x)
818 {
819 int r = 0;
820
821 x &= ~x + 1; /* this isolates the lowest bit */
822
823#if ECB_branchless_on_i386
824 r += !!(x & 0xaaaaaaaa) << 0;
825 r += !!(x & 0xcccccccc) << 1;
826 r += !!(x & 0xf0f0f0f0) << 2;
827 r += !!(x & 0xff00ff00) << 3;
828 r += !!(x & 0xffff0000) << 4;
829#else
830 if (x & 0xaaaaaaaa) r += 1;
831 if (x & 0xcccccccc) r += 2;
832 if (x & 0xf0f0f0f0) r += 4;
833 if (x & 0xff00ff00) r += 8;
834 if (x & 0xffff0000) r += 16;
835#endif
836
837 return r;
838 }
839
840 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
841 ecb_function_ int
842 ecb_ctz64 (uint64_t x)
843 {
844 int shift = x & 0xffffffffU ? 0 : 32;
845 return ecb_ctz32 (x >> shift) + shift;
846 }
847
848 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
849 ecb_function_ int
850 ecb_popcount32 (uint32_t x)
851 {
852 x -= (x >> 1) & 0x55555555;
853 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
854 x = ((x >> 4) + x) & 0x0f0f0f0f;
855 x *= 0x01010101;
856
857 return x >> 24;
858 }
859
860 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
861 ecb_function_ int ecb_ld32 (uint32_t x)
862 {
863 int r = 0;
864
865 if (x >> 16) { x >>= 16; r += 16; }
866 if (x >> 8) { x >>= 8; r += 8; }
867 if (x >> 4) { x >>= 4; r += 4; }
868 if (x >> 2) { x >>= 2; r += 2; }
869 if (x >> 1) { r += 1; }
870
871 return r;
872 }
873
874 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
875 ecb_function_ int ecb_ld64 (uint64_t x)
876 {
877 int r = 0;
878
879 if (x >> 32) { x >>= 32; r += 32; }
880
881 return r + ecb_ld32 (x);
882 }
883#endif
884
885ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
886ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
887ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
888ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
889
890ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
891ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
892{
893 return ( (x * 0x0802U & 0x22110U)
894 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
895}
896
897ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
898ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
899{
900 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
901 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
902 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
903 x = ( x >> 8 ) | ( x << 8);
904
905 return x;
906}
907
908ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
909ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
910{
911 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
912 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
913 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
914 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
915 x = ( x >> 16 ) | ( x << 16);
916
917 return x;
918}
919
920/* popcount64 is only available on 64 bit cpus as gcc builtin */
921/* so for this version we are lazy */
922ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
923ecb_function_ int
924ecb_popcount64 (uint64_t x)
925{
926 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
927}
928
929ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
930ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
931ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
932ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
933ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
934ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
935ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
936ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
937
938ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
939ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
940ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
941ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
942ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
943ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
944ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
945ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
946
947#if ECB_GCC_VERSION(4,3)
948 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
949 #define ecb_bswap32(x) __builtin_bswap32 (x)
950 #define ecb_bswap64(x) __builtin_bswap64 (x)
951#else
952 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
953 ecb_function_ uint16_t
954 ecb_bswap16 (uint16_t x)
955 {
956 return ecb_rotl16 (x, 8);
957 }
958
959 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
960 ecb_function_ uint32_t
961 ecb_bswap32 (uint32_t x)
962 {
963 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
964 }
965
966 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
967 ecb_function_ uint64_t
968 ecb_bswap64 (uint64_t x)
969 {
970 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
971 }
972#endif
973
974#if ECB_GCC_VERSION(4,5)
975 #define ecb_unreachable() __builtin_unreachable ()
976#else
977 /* this seems to work fine, but gcc always emits a warning for it :/ */
978 ecb_inline void ecb_unreachable (void) ecb_noreturn;
979 ecb_inline void ecb_unreachable (void) { }
980#endif
981
982/* try to tell the compiler that some condition is definitely true */
983#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
984
985ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
986ecb_inline unsigned char
987ecb_byteorder_helper (void)
988{
989 /* the union code still generates code under pressure in gcc, */
990 /* but less than using pointers, and always seems to */
991 /* successfully return a constant. */
992 /* the reason why we have this horrible preprocessor mess */
993 /* is to avoid it in all cases, at least on common architectures */
994 /* or when using a recent enough gcc version (>= 4.6) */
995#if __i386 || __i386__ || _M_X86 || __amd64 || __amd64__ || _M_X64
996 return 0x44;
997#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
998 return 0x44;
999#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1000 return 0x11;
1001#else
1002 union
1003 {
1004 uint32_t i;
1005 uint8_t c;
1006 } u = { 0x11223344 };
1007 return u.c;
1008#endif
1009}
1010
1011ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
1012ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
1013ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
1014ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
1015
1016#if ECB_GCC_VERSION(3,0) || ECB_C99
1017 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1018#else
1019 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1020#endif
1021
1022#if __cplusplus
1023 template<typename T>
1024 static inline T ecb_div_rd (T val, T div)
1025 {
1026 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1027 }
1028 template<typename T>
1029 static inline T ecb_div_ru (T val, T div)
1030 {
1031 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1032 }
1033#else
1034 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1035 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1036#endif
1037
1038#if ecb_cplusplus_does_not_suck
1039 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1040 template<typename T, int N>
1041 static inline int ecb_array_length (const T (&arr)[N])
1042 {
1043 return N;
1044 }
1045#else
1046 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1047#endif
1048
1049/*******************************************************************************/
1050/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1051
1052/* basically, everything uses "ieee pure-endian" floating point numbers */
1053/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1054#if 0 \
1055 || __i386 || __i386__ \
1056 || __amd64 || __amd64__ || __x86_64 || __x86_64__ \
1057 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1058 || defined __arm__ && defined __ARM_EABI__ \
1059 || defined __s390__ || defined __s390x__ \
1060 || defined __mips__ \
1061 || defined __alpha__ \
1062 || defined __hppa__ \
1063 || defined __ia64__ \
1064 || defined __m68k__ \
1065 || defined __m88k__ \
1066 || defined __sh__ \
1067 || defined _M_IX86 || defined _M_AMD64 || defined _M_IA64
1068 #define ECB_STDFP 1
1069 #include <string.h> /* for memcpy */
1070#else
1071 #define ECB_STDFP 0
1072 #include <math.h> /* for frexp*, ldexp* */
1073#endif
1074
1075#ifndef ECB_NO_LIBM
1076
1077 /* convert a float to ieee single/binary32 */
1078 ecb_function_ uint32_t ecb_float_to_binary32 (float x) ecb_const;
1079 ecb_function_ uint32_t
1080 ecb_float_to_binary32 (float x)
1081 {
1082 uint32_t r;
1083
1084 #if ECB_STDFP
1085 memcpy (&r, &x, 4);
1086 #else
1087 /* slow emulation, works for anything but -0 */
1088 uint32_t m;
1089 int e;
1090
1091 if (x == 0e0f ) return 0x00000000U;
1092 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1093 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1094 if (x != x ) return 0x7fbfffffU;
1095
1096 m = frexpf (x, &e) * 0x1000000U;
1097
1098 r = m & 0x80000000U;
1099
1100 if (r)
1101 m = -m;
1102
1103 if (e <= -126)
1104 {
1105 m &= 0xffffffU;
1106 m >>= (-125 - e);
1107 e = -126;
1108 }
1109
1110 r |= (e + 126) << 23;
1111 r |= m & 0x7fffffU;
1112 #endif
1113
1114 return r;
1115 }
1116
1117 /* converts an ieee single/binary32 to a float */
1118 ecb_function_ float ecb_binary32_to_float (uint32_t x) ecb_const;
1119 ecb_function_ float
1120 ecb_binary32_to_float (uint32_t x)
1121 {
1122 float r;
1123
1124 #if ECB_STDFP
1125 memcpy (&r, &x, 4);
1126 #else
1127 /* emulation, only works for normals and subnormals and +0 */
1128 int neg = x >> 31;
1129 int e = (x >> 23) & 0xffU;
1130
1131 x &= 0x7fffffU;
1132
1133 if (e)
1134 x |= 0x800000U;
1135 else
1136 e = 1;
1137
1138 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1139 r = ldexpf (x * (0.5f / 0x800000U), e - 126);
1140
1141 r = neg ? -r : r;
1142 #endif
1143
1144 return r;
1145 }
1146
1147 /* convert a double to ieee double/binary64 */
1148 ecb_function_ uint64_t ecb_double_to_binary64 (double x) ecb_const;
1149 ecb_function_ uint64_t
1150 ecb_double_to_binary64 (double x)
1151 {
1152 uint64_t r;
1153
1154 #if ECB_STDFP
1155 memcpy (&r, &x, 8);
1156 #else
1157 /* slow emulation, works for anything but -0 */
1158 uint64_t m;
1159 int e;
1160
1161 if (x == 0e0 ) return 0x0000000000000000U;
1162 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1163 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1164 if (x != x ) return 0X7ff7ffffffffffffU;
1165
1166 m = frexp (x, &e) * 0x20000000000000U;
1167
1168 r = m & 0x8000000000000000;;
1169
1170 if (r)
1171 m = -m;
1172
1173 if (e <= -1022)
1174 {
1175 m &= 0x1fffffffffffffU;
1176 m >>= (-1021 - e);
1177 e = -1022;
1178 }
1179
1180 r |= ((uint64_t)(e + 1022)) << 52;
1181 r |= m & 0xfffffffffffffU;
1182 #endif
1183
1184 return r;
1185 }
1186
1187 /* converts an ieee double/binary64 to a double */
1188 ecb_function_ double ecb_binary64_to_double (uint64_t x) ecb_const;
1189 ecb_function_ double
1190 ecb_binary64_to_double (uint64_t x)
1191 {
1192 double r;
1193
1194 #if ECB_STDFP
1195 memcpy (&r, &x, 8);
1196 #else
1197 /* emulation, only works for normals and subnormals and +0 */
1198 int neg = x >> 63;
1199 int e = (x >> 52) & 0x7ffU;
1200
1201 x &= 0xfffffffffffffU;
1202
1203 if (e)
1204 x |= 0x10000000000000U;
1205 else
1206 e = 1;
1207
1208 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1209 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1210
1211 r = neg ? -r : r;
1212 #endif
1213
1214 return r;
1215 }
1216
1217#endif
1218
1219#endif
1220
1221/* ECB.H END */
1222
1223#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1224/* if your architecture doesn't need memory fences, e.g. because it is
1225 * single-cpu/core, or if you use libev in a project that doesn't use libev
1226 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1227 * libev, in which cases the memory fences become nops.
1228 * alternatively, you can remove this #error and link against libpthread,
1229 * which will then provide the memory fences.
1230 */
1231# error "memory fences not defined for your architecture, please report"
1232#endif
1233
1234#ifndef ECB_MEMORY_FENCE
1235# define ECB_MEMORY_FENCE do { } while (0)
1236# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1237# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1238#endif
1239
1240#define expect_false(cond) ecb_expect_false (cond)
1241#define expect_true(cond) ecb_expect_true (cond)
1242#define noinline ecb_noinline
1243
320#define inline_size static inline 1244#define inline_size ecb_inline
321 1245
322#if EV_MINIMAL 1246#if EV_FEATURE_CODE
1247# define inline_speed ecb_inline
1248#else
323# define inline_speed static noinline 1249# define inline_speed static noinline
1250#endif
1251
1252#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1253
1254#if EV_MINPRI == EV_MAXPRI
1255# define ABSPRI(w) (((W)w), 0)
324#else 1256#else
325# define inline_speed static inline
326#endif
327
328#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
329#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1257# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1258#endif
330 1259
331#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1260#define EMPTY /* required for microsofts broken pseudo-c compiler */
332#define EMPTY2(a,b) /* used to suppress some warnings */ 1261#define EMPTY2(a,b) /* used to suppress some warnings */
333 1262
334typedef ev_watcher *W; 1263typedef ev_watcher *W;
336typedef ev_watcher_time *WT; 1265typedef ev_watcher_time *WT;
337 1266
338#define ev_active(w) ((W)(w))->active 1267#define ev_active(w) ((W)(w))->active
339#define ev_at(w) ((WT)(w))->at 1268#define ev_at(w) ((WT)(w))->at
340 1269
1270#if EV_USE_REALTIME
1271/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1272/* giving it a reasonably high chance of working on typical architectures */
1273static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1274#endif
1275
341#if EV_USE_MONOTONIC 1276#if EV_USE_MONOTONIC
342/* sig_atomic_t is used to avoid per-thread variables or locking but still */
343/* giving it a reasonably high chance of working on typical architetcures */
344static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1277static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1278#endif
1279
1280#ifndef EV_FD_TO_WIN32_HANDLE
1281# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1282#endif
1283#ifndef EV_WIN32_HANDLE_TO_FD
1284# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1285#endif
1286#ifndef EV_WIN32_CLOSE_FD
1287# define EV_WIN32_CLOSE_FD(fd) close (fd)
345#endif 1288#endif
346 1289
347#ifdef _WIN32 1290#ifdef _WIN32
348# include "ev_win32.c" 1291# include "ev_win32.c"
349#endif 1292#endif
350 1293
351/*****************************************************************************/ 1294/*****************************************************************************/
352 1295
1296/* define a suitable floor function (only used by periodics atm) */
1297
1298#if EV_USE_FLOOR
1299# include <math.h>
1300# define ev_floor(v) floor (v)
1301#else
1302
1303#include <float.h>
1304
1305/* a floor() replacement function, should be independent of ev_tstamp type */
1306static ev_tstamp noinline
1307ev_floor (ev_tstamp v)
1308{
1309 /* the choice of shift factor is not terribly important */
1310#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1311 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1312#else
1313 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1314#endif
1315
1316 /* argument too large for an unsigned long? */
1317 if (expect_false (v >= shift))
1318 {
1319 ev_tstamp f;
1320
1321 if (v == v - 1.)
1322 return v; /* very large number */
1323
1324 f = shift * ev_floor (v * (1. / shift));
1325 return f + ev_floor (v - f);
1326 }
1327
1328 /* special treatment for negative args? */
1329 if (expect_false (v < 0.))
1330 {
1331 ev_tstamp f = -ev_floor (-v);
1332
1333 return f - (f == v ? 0 : 1);
1334 }
1335
1336 /* fits into an unsigned long */
1337 return (unsigned long)v;
1338}
1339
1340#endif
1341
1342/*****************************************************************************/
1343
1344#ifdef __linux
1345# include <sys/utsname.h>
1346#endif
1347
1348static unsigned int noinline ecb_cold
1349ev_linux_version (void)
1350{
1351#ifdef __linux
1352 unsigned int v = 0;
1353 struct utsname buf;
1354 int i;
1355 char *p = buf.release;
1356
1357 if (uname (&buf))
1358 return 0;
1359
1360 for (i = 3+1; --i; )
1361 {
1362 unsigned int c = 0;
1363
1364 for (;;)
1365 {
1366 if (*p >= '0' && *p <= '9')
1367 c = c * 10 + *p++ - '0';
1368 else
1369 {
1370 p += *p == '.';
1371 break;
1372 }
1373 }
1374
1375 v = (v << 8) | c;
1376 }
1377
1378 return v;
1379#else
1380 return 0;
1381#endif
1382}
1383
1384/*****************************************************************************/
1385
1386#if EV_AVOID_STDIO
1387static void noinline ecb_cold
1388ev_printerr (const char *msg)
1389{
1390 write (STDERR_FILENO, msg, strlen (msg));
1391}
1392#endif
1393
353static void (*syserr_cb)(const char *msg); 1394static void (*syserr_cb)(const char *msg) EV_THROW;
354 1395
355void 1396void ecb_cold
356ev_set_syserr_cb (void (*cb)(const char *msg)) 1397ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
357{ 1398{
358 syserr_cb = cb; 1399 syserr_cb = cb;
359} 1400}
360 1401
361static void noinline 1402static void noinline ecb_cold
362syserr (const char *msg) 1403ev_syserr (const char *msg)
363{ 1404{
364 if (!msg) 1405 if (!msg)
365 msg = "(libev) system error"; 1406 msg = "(libev) system error";
366 1407
367 if (syserr_cb) 1408 if (syserr_cb)
368 syserr_cb (msg); 1409 syserr_cb (msg);
369 else 1410 else
370 { 1411 {
1412#if EV_AVOID_STDIO
1413 ev_printerr (msg);
1414 ev_printerr (": ");
1415 ev_printerr (strerror (errno));
1416 ev_printerr ("\n");
1417#else
371 perror (msg); 1418 perror (msg);
1419#endif
372 abort (); 1420 abort ();
373 } 1421 }
374} 1422}
375 1423
376static void * 1424static void *
377ev_realloc_emul (void *ptr, long size) 1425ev_realloc_emul (void *ptr, long size) EV_THROW
378{ 1426{
379 /* some systems, notably openbsd and darwin, fail to properly 1427 /* some systems, notably openbsd and darwin, fail to properly
380 * implement realloc (x, 0) (as required by both ansi c-98 and 1428 * implement realloc (x, 0) (as required by both ansi c-89 and
381 * the single unix specification, so work around them here. 1429 * the single unix specification, so work around them here.
1430 * recently, also (at least) fedora and debian started breaking it,
1431 * despite documenting it otherwise.
382 */ 1432 */
383 1433
384 if (size) 1434 if (size)
385 return realloc (ptr, size); 1435 return realloc (ptr, size);
386 1436
387 free (ptr); 1437 free (ptr);
388 return 0; 1438 return 0;
389} 1439}
390 1440
391static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 1441static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
392 1442
393void 1443void ecb_cold
394ev_set_allocator (void *(*cb)(void *ptr, long size)) 1444ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
395{ 1445{
396 alloc = cb; 1446 alloc = cb;
397} 1447}
398 1448
399inline_speed void * 1449inline_speed void *
401{ 1451{
402 ptr = alloc (ptr, size); 1452 ptr = alloc (ptr, size);
403 1453
404 if (!ptr && size) 1454 if (!ptr && size)
405 { 1455 {
1456#if EV_AVOID_STDIO
1457 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1458#else
406 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1459 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1460#endif
407 abort (); 1461 abort ();
408 } 1462 }
409 1463
410 return ptr; 1464 return ptr;
411} 1465}
413#define ev_malloc(size) ev_realloc (0, (size)) 1467#define ev_malloc(size) ev_realloc (0, (size))
414#define ev_free(ptr) ev_realloc ((ptr), 0) 1468#define ev_free(ptr) ev_realloc ((ptr), 0)
415 1469
416/*****************************************************************************/ 1470/*****************************************************************************/
417 1471
1472/* set in reify when reification needed */
1473#define EV_ANFD_REIFY 1
1474
1475/* file descriptor info structure */
418typedef struct 1476typedef struct
419{ 1477{
420 WL head; 1478 WL head;
421 unsigned char events; 1479 unsigned char events; /* the events watched for */
1480 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1481 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
422 unsigned char reify; 1482 unsigned char unused;
1483#if EV_USE_EPOLL
1484 unsigned int egen; /* generation counter to counter epoll bugs */
1485#endif
423#if EV_SELECT_IS_WINSOCKET 1486#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
424 SOCKET handle; 1487 SOCKET handle;
425#endif 1488#endif
1489#if EV_USE_IOCP
1490 OVERLAPPED or, ow;
1491#endif
426} ANFD; 1492} ANFD;
427 1493
1494/* stores the pending event set for a given watcher */
428typedef struct 1495typedef struct
429{ 1496{
430 W w; 1497 W w;
431 int events; 1498 int events; /* the pending event set for the given watcher */
432} ANPENDING; 1499} ANPENDING;
433 1500
434#if EV_USE_INOTIFY 1501#if EV_USE_INOTIFY
435/* hash table entry per inotify-id */ 1502/* hash table entry per inotify-id */
436typedef struct 1503typedef struct
439} ANFS; 1506} ANFS;
440#endif 1507#endif
441 1508
442/* Heap Entry */ 1509/* Heap Entry */
443#if EV_HEAP_CACHE_AT 1510#if EV_HEAP_CACHE_AT
1511 /* a heap element */
444 typedef struct { 1512 typedef struct {
445 ev_tstamp at; 1513 ev_tstamp at;
446 WT w; 1514 WT w;
447 } ANHE; 1515 } ANHE;
448 1516
449 #define ANHE_w(he) (he).w /* access watcher, read-write */ 1517 #define ANHE_w(he) (he).w /* access watcher, read-write */
450 #define ANHE_at(he) (he).at /* access cached at, read-only */ 1518 #define ANHE_at(he) (he).at /* access cached at, read-only */
451 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */ 1519 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
452#else 1520#else
1521 /* a heap element */
453 typedef WT ANHE; 1522 typedef WT ANHE;
454 1523
455 #define ANHE_w(he) (he) 1524 #define ANHE_w(he) (he)
456 #define ANHE_at(he) (he)->at 1525 #define ANHE_at(he) (he)->at
457 #define ANHE_at_set(he) 1526 #define ANHE_at_cache(he)
458#endif 1527#endif
459 1528
460#if EV_MULTIPLICITY 1529#if EV_MULTIPLICITY
461 1530
462 struct ev_loop 1531 struct ev_loop
468 #undef VAR 1537 #undef VAR
469 }; 1538 };
470 #include "ev_wrap.h" 1539 #include "ev_wrap.h"
471 1540
472 static struct ev_loop default_loop_struct; 1541 static struct ev_loop default_loop_struct;
473 struct ev_loop *ev_default_loop_ptr; 1542 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
474 1543
475#else 1544#else
476 1545
477 ev_tstamp ev_rt_now; 1546 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
478 #define VAR(name,decl) static decl; 1547 #define VAR(name,decl) static decl;
479 #include "ev_vars.h" 1548 #include "ev_vars.h"
480 #undef VAR 1549 #undef VAR
481 1550
482 static int ev_default_loop_ptr; 1551 static int ev_default_loop_ptr;
483 1552
484#endif 1553#endif
485 1554
1555#if EV_FEATURE_API
1556# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1557# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1558# define EV_INVOKE_PENDING invoke_cb (EV_A)
1559#else
1560# define EV_RELEASE_CB (void)0
1561# define EV_ACQUIRE_CB (void)0
1562# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1563#endif
1564
1565#define EVBREAK_RECURSE 0x80
1566
486/*****************************************************************************/ 1567/*****************************************************************************/
487 1568
1569#ifndef EV_HAVE_EV_TIME
488ev_tstamp 1570ev_tstamp
489ev_time (void) 1571ev_time (void) EV_THROW
490{ 1572{
491#if EV_USE_REALTIME 1573#if EV_USE_REALTIME
1574 if (expect_true (have_realtime))
1575 {
492 struct timespec ts; 1576 struct timespec ts;
493 clock_gettime (CLOCK_REALTIME, &ts); 1577 clock_gettime (CLOCK_REALTIME, &ts);
494 return ts.tv_sec + ts.tv_nsec * 1e-9; 1578 return ts.tv_sec + ts.tv_nsec * 1e-9;
495#else 1579 }
1580#endif
1581
496 struct timeval tv; 1582 struct timeval tv;
497 gettimeofday (&tv, 0); 1583 gettimeofday (&tv, 0);
498 return tv.tv_sec + tv.tv_usec * 1e-6; 1584 return tv.tv_sec + tv.tv_usec * 1e-6;
499#endif
500} 1585}
1586#endif
501 1587
502ev_tstamp inline_size 1588inline_size ev_tstamp
503get_clock (void) 1589get_clock (void)
504{ 1590{
505#if EV_USE_MONOTONIC 1591#if EV_USE_MONOTONIC
506 if (expect_true (have_monotonic)) 1592 if (expect_true (have_monotonic))
507 { 1593 {
514 return ev_time (); 1600 return ev_time ();
515} 1601}
516 1602
517#if EV_MULTIPLICITY 1603#if EV_MULTIPLICITY
518ev_tstamp 1604ev_tstamp
519ev_now (EV_P) 1605ev_now (EV_P) EV_THROW
520{ 1606{
521 return ev_rt_now; 1607 return ev_rt_now;
522} 1608}
523#endif 1609#endif
524 1610
525void 1611void
526ev_sleep (ev_tstamp delay) 1612ev_sleep (ev_tstamp delay) EV_THROW
527{ 1613{
528 if (delay > 0.) 1614 if (delay > 0.)
529 { 1615 {
530#if EV_USE_NANOSLEEP 1616#if EV_USE_NANOSLEEP
531 struct timespec ts; 1617 struct timespec ts;
532 1618
533 ts.tv_sec = (time_t)delay; 1619 EV_TS_SET (ts, delay);
534 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
535
536 nanosleep (&ts, 0); 1620 nanosleep (&ts, 0);
537#elif defined(_WIN32) 1621#elif defined _WIN32
538 Sleep ((unsigned long)(delay * 1e3)); 1622 Sleep ((unsigned long)(delay * 1e3));
539#else 1623#else
540 struct timeval tv; 1624 struct timeval tv;
541 1625
542 tv.tv_sec = (time_t)delay; 1626 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
543 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 1627 /* something not guaranteed by newer posix versions, but guaranteed */
544 1628 /* by older ones */
1629 EV_TV_SET (tv, delay);
545 select (0, 0, 0, 0, &tv); 1630 select (0, 0, 0, 0, &tv);
546#endif 1631#endif
547 } 1632 }
548} 1633}
549 1634
550/*****************************************************************************/ 1635/*****************************************************************************/
551 1636
552#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 1637#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
553 1638
554int inline_size 1639/* find a suitable new size for the given array, */
1640/* hopefully by rounding to a nice-to-malloc size */
1641inline_size int
555array_nextsize (int elem, int cur, int cnt) 1642array_nextsize (int elem, int cur, int cnt)
556{ 1643{
557 int ncur = cur + 1; 1644 int ncur = cur + 1;
558 1645
559 do 1646 do
560 ncur <<= 1; 1647 ncur <<= 1;
561 while (cnt > ncur); 1648 while (cnt > ncur);
562 1649
563 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */ 1650 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
564 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4) 1651 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
565 { 1652 {
566 ncur *= elem; 1653 ncur *= elem;
567 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1); 1654 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
568 ncur = ncur - sizeof (void *) * 4; 1655 ncur = ncur - sizeof (void *) * 4;
570 } 1657 }
571 1658
572 return ncur; 1659 return ncur;
573} 1660}
574 1661
575static noinline void * 1662static void * noinline ecb_cold
576array_realloc (int elem, void *base, int *cur, int cnt) 1663array_realloc (int elem, void *base, int *cur, int cnt)
577{ 1664{
578 *cur = array_nextsize (elem, *cur, cnt); 1665 *cur = array_nextsize (elem, *cur, cnt);
579 return ev_realloc (base, elem * *cur); 1666 return ev_realloc (base, elem * *cur);
580} 1667}
1668
1669#define array_init_zero(base,count) \
1670 memset ((void *)(base), 0, sizeof (*(base)) * (count))
581 1671
582#define array_needsize(type,base,cur,cnt,init) \ 1672#define array_needsize(type,base,cur,cnt,init) \
583 if (expect_false ((cnt) > (cur))) \ 1673 if (expect_false ((cnt) > (cur))) \
584 { \ 1674 { \
585 int ocur_ = (cur); \ 1675 int ecb_unused ocur_ = (cur); \
586 (base) = (type *)array_realloc \ 1676 (base) = (type *)array_realloc \
587 (sizeof (type), (base), &(cur), (cnt)); \ 1677 (sizeof (type), (base), &(cur), (cnt)); \
588 init ((base) + (ocur_), (cur) - ocur_); \ 1678 init ((base) + (ocur_), (cur) - ocur_); \
589 } 1679 }
590 1680
597 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1687 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
598 } 1688 }
599#endif 1689#endif
600 1690
601#define array_free(stem, idx) \ 1691#define array_free(stem, idx) \
602 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1692 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
603 1693
604/*****************************************************************************/ 1694/*****************************************************************************/
605 1695
1696/* dummy callback for pending events */
1697static void noinline
1698pendingcb (EV_P_ ev_prepare *w, int revents)
1699{
1700}
1701
606void noinline 1702void noinline
607ev_feed_event (EV_P_ void *w, int revents) 1703ev_feed_event (EV_P_ void *w, int revents) EV_THROW
608{ 1704{
609 W w_ = (W)w; 1705 W w_ = (W)w;
610 int pri = ABSPRI (w_); 1706 int pri = ABSPRI (w_);
611 1707
612 if (expect_false (w_->pending)) 1708 if (expect_false (w_->pending))
616 w_->pending = ++pendingcnt [pri]; 1712 w_->pending = ++pendingcnt [pri];
617 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 1713 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
618 pendings [pri][w_->pending - 1].w = w_; 1714 pendings [pri][w_->pending - 1].w = w_;
619 pendings [pri][w_->pending - 1].events = revents; 1715 pendings [pri][w_->pending - 1].events = revents;
620 } 1716 }
621}
622 1717
623void inline_speed 1718 pendingpri = NUMPRI - 1;
1719}
1720
1721inline_speed void
1722feed_reverse (EV_P_ W w)
1723{
1724 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1725 rfeeds [rfeedcnt++] = w;
1726}
1727
1728inline_size void
1729feed_reverse_done (EV_P_ int revents)
1730{
1731 do
1732 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1733 while (rfeedcnt);
1734}
1735
1736inline_speed void
624queue_events (EV_P_ W *events, int eventcnt, int type) 1737queue_events (EV_P_ W *events, int eventcnt, int type)
625{ 1738{
626 int i; 1739 int i;
627 1740
628 for (i = 0; i < eventcnt; ++i) 1741 for (i = 0; i < eventcnt; ++i)
629 ev_feed_event (EV_A_ events [i], type); 1742 ev_feed_event (EV_A_ events [i], type);
630} 1743}
631 1744
632/*****************************************************************************/ 1745/*****************************************************************************/
633 1746
634void inline_size 1747inline_speed void
635anfds_init (ANFD *base, int count)
636{
637 while (count--)
638 {
639 base->head = 0;
640 base->events = EV_NONE;
641 base->reify = 0;
642
643 ++base;
644 }
645}
646
647void inline_speed
648fd_event (EV_P_ int fd, int revents) 1748fd_event_nocheck (EV_P_ int fd, int revents)
649{ 1749{
650 ANFD *anfd = anfds + fd; 1750 ANFD *anfd = anfds + fd;
651 ev_io *w; 1751 ev_io *w;
652 1752
653 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1753 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
657 if (ev) 1757 if (ev)
658 ev_feed_event (EV_A_ (W)w, ev); 1758 ev_feed_event (EV_A_ (W)w, ev);
659 } 1759 }
660} 1760}
661 1761
1762/* do not submit kernel events for fds that have reify set */
1763/* because that means they changed while we were polling for new events */
1764inline_speed void
1765fd_event (EV_P_ int fd, int revents)
1766{
1767 ANFD *anfd = anfds + fd;
1768
1769 if (expect_true (!anfd->reify))
1770 fd_event_nocheck (EV_A_ fd, revents);
1771}
1772
662void 1773void
663ev_feed_fd_event (EV_P_ int fd, int revents) 1774ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
664{ 1775{
665 if (fd >= 0 && fd < anfdmax) 1776 if (fd >= 0 && fd < anfdmax)
666 fd_event (EV_A_ fd, revents); 1777 fd_event_nocheck (EV_A_ fd, revents);
667} 1778}
668 1779
669void inline_size 1780/* make sure the external fd watch events are in-sync */
1781/* with the kernel/libev internal state */
1782inline_size void
670fd_reify (EV_P) 1783fd_reify (EV_P)
671{ 1784{
672 int i; 1785 int i;
1786
1787#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1788 for (i = 0; i < fdchangecnt; ++i)
1789 {
1790 int fd = fdchanges [i];
1791 ANFD *anfd = anfds + fd;
1792
1793 if (anfd->reify & EV__IOFDSET && anfd->head)
1794 {
1795 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1796
1797 if (handle != anfd->handle)
1798 {
1799 unsigned long arg;
1800
1801 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1802
1803 /* handle changed, but fd didn't - we need to do it in two steps */
1804 backend_modify (EV_A_ fd, anfd->events, 0);
1805 anfd->events = 0;
1806 anfd->handle = handle;
1807 }
1808 }
1809 }
1810#endif
673 1811
674 for (i = 0; i < fdchangecnt; ++i) 1812 for (i = 0; i < fdchangecnt; ++i)
675 { 1813 {
676 int fd = fdchanges [i]; 1814 int fd = fdchanges [i];
677 ANFD *anfd = anfds + fd; 1815 ANFD *anfd = anfds + fd;
678 ev_io *w; 1816 ev_io *w;
679 1817
680 unsigned char events = 0; 1818 unsigned char o_events = anfd->events;
1819 unsigned char o_reify = anfd->reify;
681 1820
682 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1821 anfd->reify = 0;
683 events |= (unsigned char)w->events;
684 1822
685#if EV_SELECT_IS_WINSOCKET 1823 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
686 if (events)
687 { 1824 {
688 unsigned long argp; 1825 anfd->events = 0;
689 #ifdef EV_FD_TO_WIN32_HANDLE 1826
690 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1827 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
691 #else 1828 anfd->events |= (unsigned char)w->events;
692 anfd->handle = _get_osfhandle (fd); 1829
693 #endif 1830 if (o_events != anfd->events)
694 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1831 o_reify = EV__IOFDSET; /* actually |= */
695 } 1832 }
696#endif
697 1833
698 { 1834 if (o_reify & EV__IOFDSET)
699 unsigned char o_events = anfd->events;
700 unsigned char o_reify = anfd->reify;
701
702 anfd->reify = 0;
703 anfd->events = events;
704
705 if (o_events != events || o_reify & EV_IOFDSET)
706 backend_modify (EV_A_ fd, o_events, events); 1835 backend_modify (EV_A_ fd, o_events, anfd->events);
707 }
708 } 1836 }
709 1837
710 fdchangecnt = 0; 1838 fdchangecnt = 0;
711} 1839}
712 1840
713void inline_size 1841/* something about the given fd changed */
1842inline_size void
714fd_change (EV_P_ int fd, int flags) 1843fd_change (EV_P_ int fd, int flags)
715{ 1844{
716 unsigned char reify = anfds [fd].reify; 1845 unsigned char reify = anfds [fd].reify;
717 anfds [fd].reify |= flags; 1846 anfds [fd].reify |= flags;
718 1847
722 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1851 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
723 fdchanges [fdchangecnt - 1] = fd; 1852 fdchanges [fdchangecnt - 1] = fd;
724 } 1853 }
725} 1854}
726 1855
727void inline_speed 1856/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1857inline_speed void ecb_cold
728fd_kill (EV_P_ int fd) 1858fd_kill (EV_P_ int fd)
729{ 1859{
730 ev_io *w; 1860 ev_io *w;
731 1861
732 while ((w = (ev_io *)anfds [fd].head)) 1862 while ((w = (ev_io *)anfds [fd].head))
734 ev_io_stop (EV_A_ w); 1864 ev_io_stop (EV_A_ w);
735 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1865 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
736 } 1866 }
737} 1867}
738 1868
739int inline_size 1869/* check whether the given fd is actually valid, for error recovery */
1870inline_size int ecb_cold
740fd_valid (int fd) 1871fd_valid (int fd)
741{ 1872{
742#ifdef _WIN32 1873#ifdef _WIN32
743 return _get_osfhandle (fd) != -1; 1874 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
744#else 1875#else
745 return fcntl (fd, F_GETFD) != -1; 1876 return fcntl (fd, F_GETFD) != -1;
746#endif 1877#endif
747} 1878}
748 1879
749/* called on EBADF to verify fds */ 1880/* called on EBADF to verify fds */
750static void noinline 1881static void noinline ecb_cold
751fd_ebadf (EV_P) 1882fd_ebadf (EV_P)
752{ 1883{
753 int fd; 1884 int fd;
754 1885
755 for (fd = 0; fd < anfdmax; ++fd) 1886 for (fd = 0; fd < anfdmax; ++fd)
756 if (anfds [fd].events) 1887 if (anfds [fd].events)
757 if (!fd_valid (fd) == -1 && errno == EBADF) 1888 if (!fd_valid (fd) && errno == EBADF)
758 fd_kill (EV_A_ fd); 1889 fd_kill (EV_A_ fd);
759} 1890}
760 1891
761/* called on ENOMEM in select/poll to kill some fds and retry */ 1892/* called on ENOMEM in select/poll to kill some fds and retry */
762static void noinline 1893static void noinline ecb_cold
763fd_enomem (EV_P) 1894fd_enomem (EV_P)
764{ 1895{
765 int fd; 1896 int fd;
766 1897
767 for (fd = anfdmax; fd--; ) 1898 for (fd = anfdmax; fd--; )
768 if (anfds [fd].events) 1899 if (anfds [fd].events)
769 { 1900 {
770 fd_kill (EV_A_ fd); 1901 fd_kill (EV_A_ fd);
771 return; 1902 break;
772 } 1903 }
773} 1904}
774 1905
775/* usually called after fork if backend needs to re-arm all fds from scratch */ 1906/* usually called after fork if backend needs to re-arm all fds from scratch */
776static void noinline 1907static void noinline
780 1911
781 for (fd = 0; fd < anfdmax; ++fd) 1912 for (fd = 0; fd < anfdmax; ++fd)
782 if (anfds [fd].events) 1913 if (anfds [fd].events)
783 { 1914 {
784 anfds [fd].events = 0; 1915 anfds [fd].events = 0;
1916 anfds [fd].emask = 0;
785 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1917 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
786 } 1918 }
787} 1919}
788 1920
1921/* used to prepare libev internal fd's */
1922/* this is not fork-safe */
1923inline_speed void
1924fd_intern (int fd)
1925{
1926#ifdef _WIN32
1927 unsigned long arg = 1;
1928 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1929#else
1930 fcntl (fd, F_SETFD, FD_CLOEXEC);
1931 fcntl (fd, F_SETFL, O_NONBLOCK);
1932#endif
1933}
1934
789/*****************************************************************************/ 1935/*****************************************************************************/
790 1936
791/* 1937/*
792 * the heap functions want a real array index. array index 0 uis guaranteed to not 1938 * the heap functions want a real array index. array index 0 is guaranteed to not
793 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 1939 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
794 * the branching factor of the d-tree. 1940 * the branching factor of the d-tree.
795 */ 1941 */
796 1942
797/* 1943/*
802 */ 1948 */
803#if EV_USE_4HEAP 1949#if EV_USE_4HEAP
804 1950
805#define DHEAP 4 1951#define DHEAP 4
806#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1952#define HEAP0 (DHEAP - 1) /* index of first element in heap */
807 1953#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
808/* towards the root */ 1954#define UPHEAP_DONE(p,k) ((p) == (k))
809void inline_speed
810upheap (ANHE *heap, int k)
811{
812 ANHE he = heap [k];
813
814 for (;;)
815 {
816 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
817
818 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
819 break;
820
821 heap [k] = heap [p];
822 ev_active (ANHE_w (heap [k])) = k;
823 k = p;
824 }
825
826 ev_active (ANHE_w (he)) = k;
827 heap [k] = he;
828}
829 1955
830/* away from the root */ 1956/* away from the root */
831void inline_speed 1957inline_speed void
832downheap (ANHE *heap, int N, int k) 1958downheap (ANHE *heap, int N, int k)
833{ 1959{
834 ANHE he = heap [k]; 1960 ANHE he = heap [k];
835 ANHE *E = heap + N + HEAP0; 1961 ANHE *E = heap + N + HEAP0;
836 1962
837 for (;;) 1963 for (;;)
838 { 1964 {
839 ev_tstamp minat; 1965 ev_tstamp minat;
840 ANHE *minpos; 1966 ANHE *minpos;
841 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0; 1967 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
842 1968
843 // find minimum child 1969 /* find minimum child */
844 if (expect_true (pos + DHEAP - 1 < E)) 1970 if (expect_true (pos + DHEAP - 1 < E))
845 { 1971 {
846 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 1972 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
847 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 1973 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
848 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); 1974 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
859 break; 1985 break;
860 1986
861 if (ANHE_at (he) <= minat) 1987 if (ANHE_at (he) <= minat)
862 break; 1988 break;
863 1989
1990 heap [k] = *minpos;
864 ev_active (ANHE_w (*minpos)) = k; 1991 ev_active (ANHE_w (*minpos)) = k;
865 heap [k] = *minpos;
866 1992
867 k = minpos - heap; 1993 k = minpos - heap;
868 } 1994 }
869 1995
1996 heap [k] = he;
870 ev_active (ANHE_w (he)) = k; 1997 ev_active (ANHE_w (he)) = k;
871 heap [k] = he;
872} 1998}
873 1999
874#else // 4HEAP 2000#else /* 4HEAP */
875 2001
876#define HEAP0 1 2002#define HEAP0 1
2003#define HPARENT(k) ((k) >> 1)
2004#define UPHEAP_DONE(p,k) (!(p))
877 2005
878/* towards the root */ 2006/* away from the root */
879void inline_speed 2007inline_speed void
880upheap (ANHE *heap, int k) 2008downheap (ANHE *heap, int N, int k)
881{ 2009{
882 ANHE he = heap [k]; 2010 ANHE he = heap [k];
883 2011
884 for (;;) 2012 for (;;)
885 { 2013 {
886 int p = k >> 1; 2014 int c = k << 1;
887 2015
888 /* maybe we could use a dummy element at heap [0]? */ 2016 if (c >= N + HEAP0)
889 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
890 break; 2017 break;
891 2018
892 heap [k] = heap [p];
893 ev_active (ANHE_w (heap [k])) = k;
894 k = p;
895 }
896
897 heap [k] = he;
898 ev_active (ANHE_w (heap [k])) = k;
899}
900
901/* away from the root */
902void inline_speed
903downheap (ANHE *heap, int N, int k)
904{
905 ANHE he = heap [k];
906
907 for (;;)
908 {
909 int c = k << 1;
910
911 if (c > N)
912 break;
913
914 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 2019 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
915 ? 1 : 0; 2020 ? 1 : 0;
916 2021
917 if (ANHE_at (he) <= ANHE_at (heap [c])) 2022 if (ANHE_at (he) <= ANHE_at (heap [c]))
918 break; 2023 break;
919 2024
926 heap [k] = he; 2031 heap [k] = he;
927 ev_active (ANHE_w (he)) = k; 2032 ev_active (ANHE_w (he)) = k;
928} 2033}
929#endif 2034#endif
930 2035
931void inline_size 2036/* towards the root */
2037inline_speed void
2038upheap (ANHE *heap, int k)
2039{
2040 ANHE he = heap [k];
2041
2042 for (;;)
2043 {
2044 int p = HPARENT (k);
2045
2046 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2047 break;
2048
2049 heap [k] = heap [p];
2050 ev_active (ANHE_w (heap [k])) = k;
2051 k = p;
2052 }
2053
2054 heap [k] = he;
2055 ev_active (ANHE_w (he)) = k;
2056}
2057
2058/* move an element suitably so it is in a correct place */
2059inline_size void
932adjustheap (ANHE *heap, int N, int k) 2060adjustheap (ANHE *heap, int N, int k)
933{ 2061{
2062 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
934 upheap (heap, k); 2063 upheap (heap, k);
2064 else
935 downheap (heap, N, k); 2065 downheap (heap, N, k);
2066}
2067
2068/* rebuild the heap: this function is used only once and executed rarely */
2069inline_size void
2070reheap (ANHE *heap, int N)
2071{
2072 int i;
2073
2074 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2075 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2076 for (i = 0; i < N; ++i)
2077 upheap (heap, i + HEAP0);
936} 2078}
937 2079
938/*****************************************************************************/ 2080/*****************************************************************************/
939 2081
2082/* associate signal watchers to a signal signal */
940typedef struct 2083typedef struct
941{ 2084{
2085 EV_ATOMIC_T pending;
2086#if EV_MULTIPLICITY
2087 EV_P;
2088#endif
942 WL head; 2089 WL head;
943 EV_ATOMIC_T gotsig;
944} ANSIG; 2090} ANSIG;
945 2091
946static ANSIG *signals; 2092static ANSIG signals [EV_NSIG - 1];
947static int signalmax;
948
949static EV_ATOMIC_T gotsig;
950
951void inline_size
952signals_init (ANSIG *base, int count)
953{
954 while (count--)
955 {
956 base->head = 0;
957 base->gotsig = 0;
958
959 ++base;
960 }
961}
962 2093
963/*****************************************************************************/ 2094/*****************************************************************************/
964 2095
965void inline_speed 2096#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
966fd_intern (int fd)
967{
968#ifdef _WIN32
969 int arg = 1;
970 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
971#else
972 fcntl (fd, F_SETFD, FD_CLOEXEC);
973 fcntl (fd, F_SETFL, O_NONBLOCK);
974#endif
975}
976 2097
977static void noinline 2098static void noinline ecb_cold
978evpipe_init (EV_P) 2099evpipe_init (EV_P)
979{ 2100{
980 if (!ev_is_active (&pipeev)) 2101 if (!ev_is_active (&pipe_w))
2102 {
2103 int fds [2];
2104
2105# if EV_USE_EVENTFD
2106 fds [0] = -1;
2107 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2108 if (fds [1] < 0 && errno == EINVAL)
2109 fds [1] = eventfd (0, 0);
2110
2111 if (fds [1] < 0)
2112# endif
2113 {
2114 while (pipe (fds))
2115 ev_syserr ("(libev) error creating signal/async pipe");
2116
2117 fd_intern (fds [0]);
2118 }
2119
2120 evpipe [0] = fds [0];
2121
2122 if (evpipe [1] < 0)
2123 evpipe [1] = fds [1]; /* first call, set write fd */
2124 else
2125 {
2126 /* on subsequent calls, do not change evpipe [1] */
2127 /* so that evpipe_write can always rely on its value. */
2128 /* this branch does not do anything sensible on windows, */
2129 /* so must not be executed on windows */
2130
2131 dup2 (fds [1], evpipe [1]);
2132 close (fds [1]);
2133 }
2134
2135 fd_intern (evpipe [1]);
2136
2137 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2138 ev_io_start (EV_A_ &pipe_w);
2139 ev_unref (EV_A); /* watcher should not keep loop alive */
981 { 2140 }
2141}
2142
2143inline_speed void
2144evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2145{
2146 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2147
2148 if (expect_true (*flag))
2149 return;
2150
2151 *flag = 1;
2152 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2153
2154 pipe_write_skipped = 1;
2155
2156 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2157
2158 if (pipe_write_wanted)
2159 {
2160 int old_errno;
2161
2162 pipe_write_skipped = 0;
2163 ECB_MEMORY_FENCE_RELEASE;
2164
2165 old_errno = errno; /* save errno because write will clobber it */
2166
982#if EV_USE_EVENTFD 2167#if EV_USE_EVENTFD
983 if ((evfd = eventfd (0, 0)) >= 0) 2168 if (evpipe [0] < 0)
984 { 2169 {
985 evpipe [0] = -1; 2170 uint64_t counter = 1;
986 fd_intern (evfd); 2171 write (evpipe [1], &counter, sizeof (uint64_t));
987 ev_io_set (&pipeev, evfd, EV_READ);
988 } 2172 }
989 else 2173 else
990#endif 2174#endif
991 { 2175 {
992 while (pipe (evpipe)) 2176#ifdef _WIN32
993 syserr ("(libev) error creating signal/async pipe"); 2177 WSABUF buf;
994 2178 DWORD sent;
995 fd_intern (evpipe [0]); 2179 buf.buf = &buf;
996 fd_intern (evpipe [1]); 2180 buf.len = 1;
997 ev_io_set (&pipeev, evpipe [0], EV_READ); 2181 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2182#else
2183 write (evpipe [1], &(evpipe [1]), 1);
2184#endif
998 } 2185 }
999 2186
1000 ev_io_start (EV_A_ &pipeev); 2187 errno = old_errno;
1001 ev_unref (EV_A); /* watcher should not keep loop alive */
1002 }
1003}
1004
1005void inline_size
1006evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1007{
1008 if (!*flag)
1009 { 2188 }
1010 int old_errno = errno; /* save errno because write might clobber it */ 2189}
1011 2190
1012 *flag = 1; 2191/* called whenever the libev signal pipe */
2192/* got some events (signal, async) */
2193static void
2194pipecb (EV_P_ ev_io *iow, int revents)
2195{
2196 int i;
1013 2197
2198 if (revents & EV_READ)
2199 {
1014#if EV_USE_EVENTFD 2200#if EV_USE_EVENTFD
1015 if (evfd >= 0) 2201 if (evpipe [0] < 0)
1016 { 2202 {
1017 uint64_t counter = 1; 2203 uint64_t counter;
1018 write (evfd, &counter, sizeof (uint64_t)); 2204 read (evpipe [1], &counter, sizeof (uint64_t));
1019 } 2205 }
1020 else 2206 else
1021#endif 2207#endif
1022 write (evpipe [1], &old_errno, 1); 2208 {
1023
1024 errno = old_errno;
1025 }
1026}
1027
1028static void
1029pipecb (EV_P_ ev_io *iow, int revents)
1030{
1031#if EV_USE_EVENTFD
1032 if (evfd >= 0)
1033 {
1034 uint64_t counter;
1035 read (evfd, &counter, sizeof (uint64_t));
1036 }
1037 else
1038#endif
1039 {
1040 char dummy; 2209 char dummy[4];
2210#ifdef _WIN32
2211 WSABUF buf;
2212 DWORD recvd;
2213 DWORD flags = 0;
2214 buf.buf = dummy;
2215 buf.len = sizeof (dummy);
2216 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2217#else
1041 read (evpipe [0], &dummy, 1); 2218 read (evpipe [0], &dummy, sizeof (dummy));
2219#endif
2220 }
2221 }
2222
2223 pipe_write_skipped = 0;
2224
2225 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2226
2227#if EV_SIGNAL_ENABLE
2228 if (sig_pending)
1042 } 2229 {
2230 sig_pending = 0;
1043 2231
1044 if (gotsig && ev_is_default_loop (EV_A)) 2232 ECB_MEMORY_FENCE;
1045 {
1046 int signum;
1047 gotsig = 0;
1048 2233
1049 for (signum = signalmax; signum--; ) 2234 for (i = EV_NSIG - 1; i--; )
1050 if (signals [signum].gotsig) 2235 if (expect_false (signals [i].pending))
1051 ev_feed_signal_event (EV_A_ signum + 1); 2236 ev_feed_signal_event (EV_A_ i + 1);
1052 } 2237 }
2238#endif
1053 2239
1054#if EV_ASYNC_ENABLE 2240#if EV_ASYNC_ENABLE
1055 if (gotasync) 2241 if (async_pending)
1056 { 2242 {
1057 int i; 2243 async_pending = 0;
1058 gotasync = 0; 2244
2245 ECB_MEMORY_FENCE;
1059 2246
1060 for (i = asynccnt; i--; ) 2247 for (i = asynccnt; i--; )
1061 if (asyncs [i]->sent) 2248 if (asyncs [i]->sent)
1062 { 2249 {
1063 asyncs [i]->sent = 0; 2250 asyncs [i]->sent = 0;
2251 ECB_MEMORY_FENCE_RELEASE;
1064 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); 2252 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1065 } 2253 }
1066 } 2254 }
1067#endif 2255#endif
1068} 2256}
1069 2257
1070/*****************************************************************************/ 2258/*****************************************************************************/
1071 2259
2260void
2261ev_feed_signal (int signum) EV_THROW
2262{
2263#if EV_MULTIPLICITY
2264 EV_P;
2265 ECB_MEMORY_FENCE_ACQUIRE;
2266 EV_A = signals [signum - 1].loop;
2267
2268 if (!EV_A)
2269 return;
2270#endif
2271
2272 signals [signum - 1].pending = 1;
2273 evpipe_write (EV_A_ &sig_pending);
2274}
2275
1072static void 2276static void
1073ev_sighandler (int signum) 2277ev_sighandler (int signum)
1074{ 2278{
2279#ifdef _WIN32
2280 signal (signum, ev_sighandler);
2281#endif
2282
2283 ev_feed_signal (signum);
2284}
2285
2286void noinline
2287ev_feed_signal_event (EV_P_ int signum) EV_THROW
2288{
2289 WL w;
2290
2291 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2292 return;
2293
2294 --signum;
2295
1075#if EV_MULTIPLICITY 2296#if EV_MULTIPLICITY
1076 struct ev_loop *loop = &default_loop_struct; 2297 /* it is permissible to try to feed a signal to the wrong loop */
1077#endif 2298 /* or, likely more useful, feeding a signal nobody is waiting for */
1078 2299
1079#if _WIN32 2300 if (expect_false (signals [signum].loop != EV_A))
1080 signal (signum, ev_sighandler);
1081#endif
1082
1083 signals [signum - 1].gotsig = 1;
1084 evpipe_write (EV_A_ &gotsig);
1085}
1086
1087void noinline
1088ev_feed_signal_event (EV_P_ int signum)
1089{
1090 WL w;
1091
1092#if EV_MULTIPLICITY
1093 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1094#endif
1095
1096 --signum;
1097
1098 if (signum < 0 || signum >= signalmax)
1099 return; 2301 return;
2302#endif
1100 2303
1101 signals [signum].gotsig = 0; 2304 signals [signum].pending = 0;
2305 ECB_MEMORY_FENCE_RELEASE;
1102 2306
1103 for (w = signals [signum].head; w; w = w->next) 2307 for (w = signals [signum].head; w; w = w->next)
1104 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2308 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1105} 2309}
1106 2310
2311#if EV_USE_SIGNALFD
2312static void
2313sigfdcb (EV_P_ ev_io *iow, int revents)
2314{
2315 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2316
2317 for (;;)
2318 {
2319 ssize_t res = read (sigfd, si, sizeof (si));
2320
2321 /* not ISO-C, as res might be -1, but works with SuS */
2322 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2323 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2324
2325 if (res < (ssize_t)sizeof (si))
2326 break;
2327 }
2328}
2329#endif
2330
2331#endif
2332
1107/*****************************************************************************/ 2333/*****************************************************************************/
1108 2334
2335#if EV_CHILD_ENABLE
1109static WL childs [EV_PID_HASHSIZE]; 2336static WL childs [EV_PID_HASHSIZE];
1110
1111#ifndef _WIN32
1112 2337
1113static ev_signal childev; 2338static ev_signal childev;
1114 2339
1115#ifndef WIFCONTINUED 2340#ifndef WIFCONTINUED
1116# define WIFCONTINUED(status) 0 2341# define WIFCONTINUED(status) 0
1117#endif 2342#endif
1118 2343
1119void inline_speed 2344/* handle a single child status event */
2345inline_speed void
1120child_reap (EV_P_ int chain, int pid, int status) 2346child_reap (EV_P_ int chain, int pid, int status)
1121{ 2347{
1122 ev_child *w; 2348 ev_child *w;
1123 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2349 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1124 2350
1125 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2351 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1126 { 2352 {
1127 if ((w->pid == pid || !w->pid) 2353 if ((w->pid == pid || !w->pid)
1128 && (!traced || (w->flags & 1))) 2354 && (!traced || (w->flags & 1)))
1129 { 2355 {
1130 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 2356 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1137 2363
1138#ifndef WCONTINUED 2364#ifndef WCONTINUED
1139# define WCONTINUED 0 2365# define WCONTINUED 0
1140#endif 2366#endif
1141 2367
2368/* called on sigchld etc., calls waitpid */
1142static void 2369static void
1143childcb (EV_P_ ev_signal *sw, int revents) 2370childcb (EV_P_ ev_signal *sw, int revents)
1144{ 2371{
1145 int pid, status; 2372 int pid, status;
1146 2373
1154 /* make sure we are called again until all children have been reaped */ 2381 /* make sure we are called again until all children have been reaped */
1155 /* we need to do it this way so that the callback gets called before we continue */ 2382 /* we need to do it this way so that the callback gets called before we continue */
1156 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2383 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1157 2384
1158 child_reap (EV_A_ pid, pid, status); 2385 child_reap (EV_A_ pid, pid, status);
1159 if (EV_PID_HASHSIZE > 1) 2386 if ((EV_PID_HASHSIZE) > 1)
1160 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2387 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1161} 2388}
1162 2389
1163#endif 2390#endif
1164 2391
1165/*****************************************************************************/ 2392/*****************************************************************************/
1166 2393
2394#if EV_USE_IOCP
2395# include "ev_iocp.c"
2396#endif
1167#if EV_USE_PORT 2397#if EV_USE_PORT
1168# include "ev_port.c" 2398# include "ev_port.c"
1169#endif 2399#endif
1170#if EV_USE_KQUEUE 2400#if EV_USE_KQUEUE
1171# include "ev_kqueue.c" 2401# include "ev_kqueue.c"
1178#endif 2408#endif
1179#if EV_USE_SELECT 2409#if EV_USE_SELECT
1180# include "ev_select.c" 2410# include "ev_select.c"
1181#endif 2411#endif
1182 2412
1183int 2413int ecb_cold
1184ev_version_major (void) 2414ev_version_major (void) EV_THROW
1185{ 2415{
1186 return EV_VERSION_MAJOR; 2416 return EV_VERSION_MAJOR;
1187} 2417}
1188 2418
1189int 2419int ecb_cold
1190ev_version_minor (void) 2420ev_version_minor (void) EV_THROW
1191{ 2421{
1192 return EV_VERSION_MINOR; 2422 return EV_VERSION_MINOR;
1193} 2423}
1194 2424
1195/* return true if we are running with elevated privileges and should ignore env variables */ 2425/* return true if we are running with elevated privileges and should ignore env variables */
1196int inline_size 2426int inline_size ecb_cold
1197enable_secure (void) 2427enable_secure (void)
1198{ 2428{
1199#ifdef _WIN32 2429#ifdef _WIN32
1200 return 0; 2430 return 0;
1201#else 2431#else
1202 return getuid () != geteuid () 2432 return getuid () != geteuid ()
1203 || getgid () != getegid (); 2433 || getgid () != getegid ();
1204#endif 2434#endif
1205} 2435}
1206 2436
1207unsigned int 2437unsigned int ecb_cold
1208ev_supported_backends (void) 2438ev_supported_backends (void) EV_THROW
1209{ 2439{
1210 unsigned int flags = 0; 2440 unsigned int flags = 0;
1211 2441
1212 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2442 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1213 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2443 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1216 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2446 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1217 2447
1218 return flags; 2448 return flags;
1219} 2449}
1220 2450
1221unsigned int 2451unsigned int ecb_cold
1222ev_recommended_backends (void) 2452ev_recommended_backends (void) EV_THROW
1223{ 2453{
1224 unsigned int flags = ev_supported_backends (); 2454 unsigned int flags = ev_supported_backends ();
1225 2455
1226#ifndef __NetBSD__ 2456#ifndef __NetBSD__
1227 /* kqueue is borked on everything but netbsd apparently */ 2457 /* kqueue is borked on everything but netbsd apparently */
1228 /* it usually doesn't work correctly on anything but sockets and pipes */ 2458 /* it usually doesn't work correctly on anything but sockets and pipes */
1229 flags &= ~EVBACKEND_KQUEUE; 2459 flags &= ~EVBACKEND_KQUEUE;
1230#endif 2460#endif
1231#ifdef __APPLE__ 2461#ifdef __APPLE__
1232 // flags &= ~EVBACKEND_KQUEUE; for documentation 2462 /* only select works correctly on that "unix-certified" platform */
1233 flags &= ~EVBACKEND_POLL; 2463 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2464 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2465#endif
2466#ifdef __FreeBSD__
2467 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1234#endif 2468#endif
1235 2469
1236 return flags; 2470 return flags;
1237} 2471}
1238 2472
2473unsigned int ecb_cold
2474ev_embeddable_backends (void) EV_THROW
2475{
2476 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2477
2478 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2479 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2480 flags &= ~EVBACKEND_EPOLL;
2481
2482 return flags;
2483}
2484
1239unsigned int 2485unsigned int
1240ev_embeddable_backends (void) 2486ev_backend (EV_P) EV_THROW
1241{ 2487{
1242 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2488 return backend;
1243
1244 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1245 /* please fix it and tell me how to detect the fix */
1246 flags &= ~EVBACKEND_EPOLL;
1247
1248 return flags;
1249} 2489}
1250 2490
2491#if EV_FEATURE_API
1251unsigned int 2492unsigned int
1252ev_backend (EV_P) 2493ev_iteration (EV_P) EV_THROW
1253{ 2494{
1254 return backend; 2495 return loop_count;
1255} 2496}
1256 2497
1257unsigned int 2498unsigned int
1258ev_loop_count (EV_P) 2499ev_depth (EV_P) EV_THROW
1259{ 2500{
1260 return loop_count; 2501 return loop_depth;
1261} 2502}
1262 2503
1263void 2504void
1264ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2505ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1265{ 2506{
1266 io_blocktime = interval; 2507 io_blocktime = interval;
1267} 2508}
1268 2509
1269void 2510void
1270ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2511ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1271{ 2512{
1272 timeout_blocktime = interval; 2513 timeout_blocktime = interval;
1273} 2514}
1274 2515
2516void
2517ev_set_userdata (EV_P_ void *data) EV_THROW
2518{
2519 userdata = data;
2520}
2521
2522void *
2523ev_userdata (EV_P) EV_THROW
2524{
2525 return userdata;
2526}
2527
2528void
2529ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2530{
2531 invoke_cb = invoke_pending_cb;
2532}
2533
2534void
2535ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2536{
2537 release_cb = release;
2538 acquire_cb = acquire;
2539}
2540#endif
2541
2542/* initialise a loop structure, must be zero-initialised */
1275static void noinline 2543static void noinline ecb_cold
1276loop_init (EV_P_ unsigned int flags) 2544loop_init (EV_P_ unsigned int flags) EV_THROW
1277{ 2545{
1278 if (!backend) 2546 if (!backend)
1279 { 2547 {
2548 origflags = flags;
2549
2550#if EV_USE_REALTIME
2551 if (!have_realtime)
2552 {
2553 struct timespec ts;
2554
2555 if (!clock_gettime (CLOCK_REALTIME, &ts))
2556 have_realtime = 1;
2557 }
2558#endif
2559
1280#if EV_USE_MONOTONIC 2560#if EV_USE_MONOTONIC
2561 if (!have_monotonic)
1281 { 2562 {
1282 struct timespec ts; 2563 struct timespec ts;
2564
1283 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2565 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1284 have_monotonic = 1; 2566 have_monotonic = 1;
1285 } 2567 }
1286#endif
1287
1288 ev_rt_now = ev_time ();
1289 mn_now = get_clock ();
1290 now_floor = mn_now;
1291 rtmn_diff = ev_rt_now - mn_now;
1292
1293 io_blocktime = 0.;
1294 timeout_blocktime = 0.;
1295 backend = 0;
1296 backend_fd = -1;
1297 gotasync = 0;
1298#if EV_USE_INOTIFY
1299 fs_fd = -2;
1300#endif 2568#endif
1301 2569
1302 /* pid check not overridable via env */ 2570 /* pid check not overridable via env */
1303#ifndef _WIN32 2571#ifndef _WIN32
1304 if (flags & EVFLAG_FORKCHECK) 2572 if (flags & EVFLAG_FORKCHECK)
1308 if (!(flags & EVFLAG_NOENV) 2576 if (!(flags & EVFLAG_NOENV)
1309 && !enable_secure () 2577 && !enable_secure ()
1310 && getenv ("LIBEV_FLAGS")) 2578 && getenv ("LIBEV_FLAGS"))
1311 flags = atoi (getenv ("LIBEV_FLAGS")); 2579 flags = atoi (getenv ("LIBEV_FLAGS"));
1312 2580
1313 if (!(flags & 0x0000ffffU)) 2581 ev_rt_now = ev_time ();
2582 mn_now = get_clock ();
2583 now_floor = mn_now;
2584 rtmn_diff = ev_rt_now - mn_now;
2585#if EV_FEATURE_API
2586 invoke_cb = ev_invoke_pending;
2587#endif
2588
2589 io_blocktime = 0.;
2590 timeout_blocktime = 0.;
2591 backend = 0;
2592 backend_fd = -1;
2593 sig_pending = 0;
2594#if EV_ASYNC_ENABLE
2595 async_pending = 0;
2596#endif
2597 pipe_write_skipped = 0;
2598 pipe_write_wanted = 0;
2599 evpipe [0] = -1;
2600 evpipe [1] = -1;
2601#if EV_USE_INOTIFY
2602 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2603#endif
2604#if EV_USE_SIGNALFD
2605 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2606#endif
2607
2608 if (!(flags & EVBACKEND_MASK))
1314 flags |= ev_recommended_backends (); 2609 flags |= ev_recommended_backends ();
1315 2610
2611#if EV_USE_IOCP
2612 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2613#endif
1316#if EV_USE_PORT 2614#if EV_USE_PORT
1317 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2615 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1318#endif 2616#endif
1319#if EV_USE_KQUEUE 2617#if EV_USE_KQUEUE
1320 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2618 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1327#endif 2625#endif
1328#if EV_USE_SELECT 2626#if EV_USE_SELECT
1329 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2627 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1330#endif 2628#endif
1331 2629
2630 ev_prepare_init (&pending_w, pendingcb);
2631
2632#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1332 ev_init (&pipeev, pipecb); 2633 ev_init (&pipe_w, pipecb);
1333 ev_set_priority (&pipeev, EV_MAXPRI); 2634 ev_set_priority (&pipe_w, EV_MAXPRI);
2635#endif
1334 } 2636 }
1335} 2637}
1336 2638
1337static void noinline 2639/* free up a loop structure */
2640void ecb_cold
1338loop_destroy (EV_P) 2641ev_loop_destroy (EV_P)
1339{ 2642{
1340 int i; 2643 int i;
1341 2644
2645#if EV_MULTIPLICITY
2646 /* mimic free (0) */
2647 if (!EV_A)
2648 return;
2649#endif
2650
2651#if EV_CLEANUP_ENABLE
2652 /* queue cleanup watchers (and execute them) */
2653 if (expect_false (cleanupcnt))
2654 {
2655 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2656 EV_INVOKE_PENDING;
2657 }
2658#endif
2659
2660#if EV_CHILD_ENABLE
2661 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2662 {
2663 ev_ref (EV_A); /* child watcher */
2664 ev_signal_stop (EV_A_ &childev);
2665 }
2666#endif
2667
1342 if (ev_is_active (&pipeev)) 2668 if (ev_is_active (&pipe_w))
1343 { 2669 {
1344 ev_ref (EV_A); /* signal watcher */ 2670 /*ev_ref (EV_A);*/
1345 ev_io_stop (EV_A_ &pipeev); 2671 /*ev_io_stop (EV_A_ &pipe_w);*/
1346 2672
2673 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2674 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2675 }
2676
1347#if EV_USE_EVENTFD 2677#if EV_USE_SIGNALFD
1348 if (evfd >= 0) 2678 if (ev_is_active (&sigfd_w))
1349 close (evfd); 2679 close (sigfd);
1350#endif 2680#endif
1351
1352 if (evpipe [0] >= 0)
1353 {
1354 close (evpipe [0]);
1355 close (evpipe [1]);
1356 }
1357 }
1358 2681
1359#if EV_USE_INOTIFY 2682#if EV_USE_INOTIFY
1360 if (fs_fd >= 0) 2683 if (fs_fd >= 0)
1361 close (fs_fd); 2684 close (fs_fd);
1362#endif 2685#endif
1363 2686
1364 if (backend_fd >= 0) 2687 if (backend_fd >= 0)
1365 close (backend_fd); 2688 close (backend_fd);
1366 2689
2690#if EV_USE_IOCP
2691 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2692#endif
1367#if EV_USE_PORT 2693#if EV_USE_PORT
1368 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2694 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1369#endif 2695#endif
1370#if EV_USE_KQUEUE 2696#if EV_USE_KQUEUE
1371 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2697 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1386#if EV_IDLE_ENABLE 2712#if EV_IDLE_ENABLE
1387 array_free (idle, [i]); 2713 array_free (idle, [i]);
1388#endif 2714#endif
1389 } 2715 }
1390 2716
1391 ev_free (anfds); anfdmax = 0; 2717 ev_free (anfds); anfds = 0; anfdmax = 0;
1392 2718
1393 /* have to use the microsoft-never-gets-it-right macro */ 2719 /* have to use the microsoft-never-gets-it-right macro */
2720 array_free (rfeed, EMPTY);
1394 array_free (fdchange, EMPTY); 2721 array_free (fdchange, EMPTY);
1395 array_free (timer, EMPTY); 2722 array_free (timer, EMPTY);
1396#if EV_PERIODIC_ENABLE 2723#if EV_PERIODIC_ENABLE
1397 array_free (periodic, EMPTY); 2724 array_free (periodic, EMPTY);
1398#endif 2725#endif
1399#if EV_FORK_ENABLE 2726#if EV_FORK_ENABLE
1400 array_free (fork, EMPTY); 2727 array_free (fork, EMPTY);
1401#endif 2728#endif
2729#if EV_CLEANUP_ENABLE
2730 array_free (cleanup, EMPTY);
2731#endif
1402 array_free (prepare, EMPTY); 2732 array_free (prepare, EMPTY);
1403 array_free (check, EMPTY); 2733 array_free (check, EMPTY);
1404#if EV_ASYNC_ENABLE 2734#if EV_ASYNC_ENABLE
1405 array_free (async, EMPTY); 2735 array_free (async, EMPTY);
1406#endif 2736#endif
1407 2737
1408 backend = 0; 2738 backend = 0;
2739
2740#if EV_MULTIPLICITY
2741 if (ev_is_default_loop (EV_A))
2742#endif
2743 ev_default_loop_ptr = 0;
2744#if EV_MULTIPLICITY
2745 else
2746 ev_free (EV_A);
2747#endif
1409} 2748}
1410 2749
1411#if EV_USE_INOTIFY 2750#if EV_USE_INOTIFY
1412void inline_size infy_fork (EV_P); 2751inline_size void infy_fork (EV_P);
1413#endif 2752#endif
1414 2753
1415void inline_size 2754inline_size void
1416loop_fork (EV_P) 2755loop_fork (EV_P)
1417{ 2756{
1418#if EV_USE_PORT 2757#if EV_USE_PORT
1419 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2758 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1420#endif 2759#endif
1426#endif 2765#endif
1427#if EV_USE_INOTIFY 2766#if EV_USE_INOTIFY
1428 infy_fork (EV_A); 2767 infy_fork (EV_A);
1429#endif 2768#endif
1430 2769
2770#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1431 if (ev_is_active (&pipeev)) 2771 if (ev_is_active (&pipe_w))
2772 {
2773 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2774
2775 ev_ref (EV_A);
2776 ev_io_stop (EV_A_ &pipe_w);
2777
2778 if (evpipe [0] >= 0)
2779 EV_WIN32_CLOSE_FD (evpipe [0]);
2780
2781 evpipe_init (EV_A);
2782 /* iterate over everything, in case we missed something before */
2783 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
1432 { 2784 }
1433 /* this "locks" the handlers against writing to the pipe */ 2785#endif
1434 /* while we modify the fd vars */ 2786
1435 gotsig = 1; 2787 postfork = 0;
2788}
2789
2790#if EV_MULTIPLICITY
2791
2792struct ev_loop * ecb_cold
2793ev_loop_new (unsigned int flags) EV_THROW
2794{
2795 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2796
2797 memset (EV_A, 0, sizeof (struct ev_loop));
2798 loop_init (EV_A_ flags);
2799
2800 if (ev_backend (EV_A))
2801 return EV_A;
2802
2803 ev_free (EV_A);
2804 return 0;
2805}
2806
2807#endif /* multiplicity */
2808
2809#if EV_VERIFY
2810static void noinline ecb_cold
2811verify_watcher (EV_P_ W w)
2812{
2813 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2814
2815 if (w->pending)
2816 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2817}
2818
2819static void noinline ecb_cold
2820verify_heap (EV_P_ ANHE *heap, int N)
2821{
2822 int i;
2823
2824 for (i = HEAP0; i < N + HEAP0; ++i)
2825 {
2826 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2827 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2828 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2829
2830 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2831 }
2832}
2833
2834static void noinline ecb_cold
2835array_verify (EV_P_ W *ws, int cnt)
2836{
2837 while (cnt--)
2838 {
2839 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2840 verify_watcher (EV_A_ ws [cnt]);
2841 }
2842}
2843#endif
2844
2845#if EV_FEATURE_API
2846void ecb_cold
2847ev_verify (EV_P) EV_THROW
2848{
2849#if EV_VERIFY
2850 int i;
2851 WL w, w2;
2852
2853 assert (activecnt >= -1);
2854
2855 assert (fdchangemax >= fdchangecnt);
2856 for (i = 0; i < fdchangecnt; ++i)
2857 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2858
2859 assert (anfdmax >= 0);
2860 for (i = 0; i < anfdmax; ++i)
2861 {
2862 int j = 0;
2863
2864 for (w = w2 = anfds [i].head; w; w = w->next)
2865 {
2866 verify_watcher (EV_A_ (W)w);
2867
2868 if (j++ & 1)
2869 {
2870 assert (("libev: io watcher list contains a loop", w != w2));
2871 w2 = w2->next;
2872 }
2873
2874 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2875 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2876 }
2877 }
2878
2879 assert (timermax >= timercnt);
2880 verify_heap (EV_A_ timers, timercnt);
2881
2882#if EV_PERIODIC_ENABLE
2883 assert (periodicmax >= periodiccnt);
2884 verify_heap (EV_A_ periodics, periodiccnt);
2885#endif
2886
2887 for (i = NUMPRI; i--; )
2888 {
2889 assert (pendingmax [i] >= pendingcnt [i]);
2890#if EV_IDLE_ENABLE
2891 assert (idleall >= 0);
2892 assert (idlemax [i] >= idlecnt [i]);
2893 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2894#endif
2895 }
2896
2897#if EV_FORK_ENABLE
2898 assert (forkmax >= forkcnt);
2899 array_verify (EV_A_ (W *)forks, forkcnt);
2900#endif
2901
2902#if EV_CLEANUP_ENABLE
2903 assert (cleanupmax >= cleanupcnt);
2904 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2905#endif
2906
1436#if EV_ASYNC_ENABLE 2907#if EV_ASYNC_ENABLE
1437 gotasync = 1; 2908 assert (asyncmax >= asynccnt);
2909 array_verify (EV_A_ (W *)asyncs, asynccnt);
2910#endif
2911
2912#if EV_PREPARE_ENABLE
2913 assert (preparemax >= preparecnt);
2914 array_verify (EV_A_ (W *)prepares, preparecnt);
2915#endif
2916
2917#if EV_CHECK_ENABLE
2918 assert (checkmax >= checkcnt);
2919 array_verify (EV_A_ (W *)checks, checkcnt);
2920#endif
2921
2922# if 0
2923#if EV_CHILD_ENABLE
2924 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2925 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2926#endif
1438#endif 2927# endif
1439
1440 ev_ref (EV_A);
1441 ev_io_stop (EV_A_ &pipeev);
1442
1443#if EV_USE_EVENTFD
1444 if (evfd >= 0)
1445 close (evfd);
1446#endif 2928#endif
1447
1448 if (evpipe [0] >= 0)
1449 {
1450 close (evpipe [0]);
1451 close (evpipe [1]);
1452 }
1453
1454 evpipe_init (EV_A);
1455 /* now iterate over everything, in case we missed something */
1456 pipecb (EV_A_ &pipeev, EV_READ);
1457 }
1458
1459 postfork = 0;
1460} 2929}
2930#endif
1461 2931
1462#if EV_MULTIPLICITY 2932#if EV_MULTIPLICITY
1463struct ev_loop * 2933struct ev_loop * ecb_cold
1464ev_loop_new (unsigned int flags)
1465{
1466 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1467
1468 memset (loop, 0, sizeof (struct ev_loop));
1469
1470 loop_init (EV_A_ flags);
1471
1472 if (ev_backend (EV_A))
1473 return loop;
1474
1475 return 0;
1476}
1477
1478void
1479ev_loop_destroy (EV_P)
1480{
1481 loop_destroy (EV_A);
1482 ev_free (loop);
1483}
1484
1485void
1486ev_loop_fork (EV_P)
1487{
1488 postfork = 1; /* must be in line with ev_default_fork */
1489}
1490#endif
1491
1492#if EV_MULTIPLICITY
1493struct ev_loop *
1494ev_default_loop_init (unsigned int flags)
1495#else 2934#else
1496int 2935int
2936#endif
1497ev_default_loop (unsigned int flags) 2937ev_default_loop (unsigned int flags) EV_THROW
1498#endif
1499{ 2938{
1500 if (!ev_default_loop_ptr) 2939 if (!ev_default_loop_ptr)
1501 { 2940 {
1502#if EV_MULTIPLICITY 2941#if EV_MULTIPLICITY
1503 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2942 EV_P = ev_default_loop_ptr = &default_loop_struct;
1504#else 2943#else
1505 ev_default_loop_ptr = 1; 2944 ev_default_loop_ptr = 1;
1506#endif 2945#endif
1507 2946
1508 loop_init (EV_A_ flags); 2947 loop_init (EV_A_ flags);
1509 2948
1510 if (ev_backend (EV_A)) 2949 if (ev_backend (EV_A))
1511 { 2950 {
1512#ifndef _WIN32 2951#if EV_CHILD_ENABLE
1513 ev_signal_init (&childev, childcb, SIGCHLD); 2952 ev_signal_init (&childev, childcb, SIGCHLD);
1514 ev_set_priority (&childev, EV_MAXPRI); 2953 ev_set_priority (&childev, EV_MAXPRI);
1515 ev_signal_start (EV_A_ &childev); 2954 ev_signal_start (EV_A_ &childev);
1516 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2955 ev_unref (EV_A); /* child watcher should not keep loop alive */
1517#endif 2956#endif
1522 2961
1523 return ev_default_loop_ptr; 2962 return ev_default_loop_ptr;
1524} 2963}
1525 2964
1526void 2965void
1527ev_default_destroy (void) 2966ev_loop_fork (EV_P) EV_THROW
1528{ 2967{
1529#if EV_MULTIPLICITY 2968 postfork = 1;
1530 struct ev_loop *loop = ev_default_loop_ptr;
1531#endif
1532
1533#ifndef _WIN32
1534 ev_ref (EV_A); /* child watcher */
1535 ev_signal_stop (EV_A_ &childev);
1536#endif
1537
1538 loop_destroy (EV_A);
1539}
1540
1541void
1542ev_default_fork (void)
1543{
1544#if EV_MULTIPLICITY
1545 struct ev_loop *loop = ev_default_loop_ptr;
1546#endif
1547
1548 if (backend)
1549 postfork = 1; /* must be in line with ev_loop_fork */
1550} 2969}
1551 2970
1552/*****************************************************************************/ 2971/*****************************************************************************/
1553 2972
1554void 2973void
1555ev_invoke (EV_P_ void *w, int revents) 2974ev_invoke (EV_P_ void *w, int revents)
1556{ 2975{
1557 EV_CB_INVOKE ((W)w, revents); 2976 EV_CB_INVOKE ((W)w, revents);
1558} 2977}
1559 2978
1560void inline_speed 2979unsigned int
1561call_pending (EV_P) 2980ev_pending_count (EV_P) EV_THROW
1562{ 2981{
1563 int pri; 2982 int pri;
2983 unsigned int count = 0;
1564 2984
1565 for (pri = NUMPRI; pri--; ) 2985 for (pri = NUMPRI; pri--; )
2986 count += pendingcnt [pri];
2987
2988 return count;
2989}
2990
2991void noinline
2992ev_invoke_pending (EV_P)
2993{
2994 pendingpri = NUMPRI;
2995
2996 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
2997 {
2998 --pendingpri;
2999
1566 while (pendingcnt [pri]) 3000 while (pendingcnt [pendingpri])
1567 {
1568 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1569
1570 if (expect_true (p->w))
1571 { 3001 {
1572 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 3002 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1573 3003
1574 p->w->pending = 0; 3004 p->w->pending = 0;
1575 EV_CB_INVOKE (p->w, p->events); 3005 EV_CB_INVOKE (p->w, p->events);
3006 EV_FREQUENT_CHECK;
1576 } 3007 }
1577 } 3008 }
1578} 3009}
1579 3010
1580#if EV_IDLE_ENABLE 3011#if EV_IDLE_ENABLE
1581void inline_size 3012/* make idle watchers pending. this handles the "call-idle */
3013/* only when higher priorities are idle" logic */
3014inline_size void
1582idle_reify (EV_P) 3015idle_reify (EV_P)
1583{ 3016{
1584 if (expect_false (idleall)) 3017 if (expect_false (idleall))
1585 { 3018 {
1586 int pri; 3019 int pri;
1598 } 3031 }
1599 } 3032 }
1600} 3033}
1601#endif 3034#endif
1602 3035
1603void inline_size 3036/* make timers pending */
3037inline_size void
1604timers_reify (EV_P) 3038timers_reify (EV_P)
1605{ 3039{
3040 EV_FREQUENT_CHECK;
3041
1606 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 3042 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1607 { 3043 {
1608 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 3044 do
1609
1610 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1611
1612 /* first reschedule or stop timer */
1613 if (w->repeat)
1614 { 3045 {
3046 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3047
3048 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3049
3050 /* first reschedule or stop timer */
3051 if (w->repeat)
3052 {
1615 ev_at (w) += w->repeat; 3053 ev_at (w) += w->repeat;
1616 if (ev_at (w) < mn_now) 3054 if (ev_at (w) < mn_now)
1617 ev_at (w) = mn_now; 3055 ev_at (w) = mn_now;
1618 3056
1619 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3057 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1620 3058
1621 ANHE_at_set (timers [HEAP0]); 3059 ANHE_at_cache (timers [HEAP0]);
1622 downheap (timers, timercnt, HEAP0); 3060 downheap (timers, timercnt, HEAP0);
3061 }
3062 else
3063 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3064
3065 EV_FREQUENT_CHECK;
3066 feed_reverse (EV_A_ (W)w);
1623 } 3067 }
1624 else 3068 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1625 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1626 3069
1627 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 3070 feed_reverse_done (EV_A_ EV_TIMER);
1628 } 3071 }
1629} 3072}
1630 3073
1631#if EV_PERIODIC_ENABLE 3074#if EV_PERIODIC_ENABLE
1632void inline_size 3075
3076static void noinline
3077periodic_recalc (EV_P_ ev_periodic *w)
3078{
3079 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3080 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3081
3082 /* the above almost always errs on the low side */
3083 while (at <= ev_rt_now)
3084 {
3085 ev_tstamp nat = at + w->interval;
3086
3087 /* when resolution fails us, we use ev_rt_now */
3088 if (expect_false (nat == at))
3089 {
3090 at = ev_rt_now;
3091 break;
3092 }
3093
3094 at = nat;
3095 }
3096
3097 ev_at (w) = at;
3098}
3099
3100/* make periodics pending */
3101inline_size void
1633periodics_reify (EV_P) 3102periodics_reify (EV_P)
1634{ 3103{
3104 EV_FREQUENT_CHECK;
3105
1635 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 3106 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1636 { 3107 {
1637 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 3108 do
1638
1639 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1640
1641 /* first reschedule or stop timer */
1642 if (w->reschedule_cb)
1643 { 3109 {
3110 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3111
3112 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3113
3114 /* first reschedule or stop timer */
3115 if (w->reschedule_cb)
3116 {
1644 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3117 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1645 3118
1646 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 3119 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1647 3120
1648 ANHE_at_set (periodics [HEAP0]); 3121 ANHE_at_cache (periodics [HEAP0]);
1649 downheap (periodics, periodiccnt, HEAP0); 3122 downheap (periodics, periodiccnt, HEAP0);
3123 }
3124 else if (w->interval)
3125 {
3126 periodic_recalc (EV_A_ w);
3127 ANHE_at_cache (periodics [HEAP0]);
3128 downheap (periodics, periodiccnt, HEAP0);
3129 }
3130 else
3131 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3132
3133 EV_FREQUENT_CHECK;
3134 feed_reverse (EV_A_ (W)w);
1650 } 3135 }
1651 else if (w->interval) 3136 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1652 {
1653 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1654 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1655 3137
1656 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) >= ev_rt_now));
1657
1658 ANHE_at_set (periodics [HEAP0]);
1659 downheap (periodics, periodiccnt, HEAP0);
1660 }
1661 else
1662 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1663
1664 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 3138 feed_reverse_done (EV_A_ EV_PERIODIC);
1665 } 3139 }
1666} 3140}
1667 3141
3142/* simply recalculate all periodics */
3143/* TODO: maybe ensure that at least one event happens when jumping forward? */
1668static void noinline 3144static void noinline ecb_cold
1669periodics_reschedule (EV_P) 3145periodics_reschedule (EV_P)
1670{ 3146{
1671 int i; 3147 int i;
1672 3148
1673 /* adjust periodics after time jump */ 3149 /* adjust periodics after time jump */
1676 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]); 3152 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1677 3153
1678 if (w->reschedule_cb) 3154 if (w->reschedule_cb)
1679 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3155 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1680 else if (w->interval) 3156 else if (w->interval)
1681 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 3157 periodic_recalc (EV_A_ w);
1682 3158
1683 ANHE_at_set (periodics [i]); 3159 ANHE_at_cache (periodics [i]);
1684 } 3160 }
1685 3161
1686 /* we don't use floyds algorithm, uphead is simpler and is more cache-efficient */ 3162 reheap (periodics, periodiccnt);
1687 /* also, this is easy and corretc for both 2-heaps and 4-heaps */ 3163}
3164#endif
3165
3166/* adjust all timers by a given offset */
3167static void noinline ecb_cold
3168timers_reschedule (EV_P_ ev_tstamp adjust)
3169{
3170 int i;
3171
1688 for (i = 0; i < periodiccnt; ++i) 3172 for (i = 0; i < timercnt; ++i)
1689 upheap (periodics, i + HEAP0); 3173 {
3174 ANHE *he = timers + i + HEAP0;
3175 ANHE_w (*he)->at += adjust;
3176 ANHE_at_cache (*he);
3177 }
1690} 3178}
1691#endif
1692 3179
1693void inline_speed 3180/* fetch new monotonic and realtime times from the kernel */
3181/* also detect if there was a timejump, and act accordingly */
3182inline_speed void
1694time_update (EV_P_ ev_tstamp max_block) 3183time_update (EV_P_ ev_tstamp max_block)
1695{ 3184{
1696 int i;
1697
1698#if EV_USE_MONOTONIC 3185#if EV_USE_MONOTONIC
1699 if (expect_true (have_monotonic)) 3186 if (expect_true (have_monotonic))
1700 { 3187 {
3188 int i;
1701 ev_tstamp odiff = rtmn_diff; 3189 ev_tstamp odiff = rtmn_diff;
1702 3190
1703 mn_now = get_clock (); 3191 mn_now = get_clock ();
1704 3192
1705 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 3193 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1721 * doesn't hurt either as we only do this on time-jumps or 3209 * doesn't hurt either as we only do this on time-jumps or
1722 * in the unlikely event of having been preempted here. 3210 * in the unlikely event of having been preempted here.
1723 */ 3211 */
1724 for (i = 4; --i; ) 3212 for (i = 4; --i; )
1725 { 3213 {
3214 ev_tstamp diff;
1726 rtmn_diff = ev_rt_now - mn_now; 3215 rtmn_diff = ev_rt_now - mn_now;
1727 3216
3217 diff = odiff - rtmn_diff;
3218
1728 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)) 3219 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1729 return; /* all is well */ 3220 return; /* all is well */
1730 3221
1731 ev_rt_now = ev_time (); 3222 ev_rt_now = ev_time ();
1732 mn_now = get_clock (); 3223 mn_now = get_clock ();
1733 now_floor = mn_now; 3224 now_floor = mn_now;
1734 } 3225 }
1735 3226
3227 /* no timer adjustment, as the monotonic clock doesn't jump */
3228 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1736# if EV_PERIODIC_ENABLE 3229# if EV_PERIODIC_ENABLE
1737 periodics_reschedule (EV_A); 3230 periodics_reschedule (EV_A);
1738# endif 3231# endif
1739 /* no timer adjustment, as the monotonic clock doesn't jump */
1740 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1741 } 3232 }
1742 else 3233 else
1743#endif 3234#endif
1744 { 3235 {
1745 ev_rt_now = ev_time (); 3236 ev_rt_now = ev_time ();
1746 3237
1747 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 3238 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1748 { 3239 {
3240 /* adjust timers. this is easy, as the offset is the same for all of them */
3241 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1749#if EV_PERIODIC_ENABLE 3242#if EV_PERIODIC_ENABLE
1750 periodics_reschedule (EV_A); 3243 periodics_reschedule (EV_A);
1751#endif 3244#endif
1752 /* adjust timers. this is easy, as the offset is the same for all of them */
1753 for (i = 0; i < timercnt; ++i)
1754 {
1755 ANHE *he = timers + i + HEAP0;
1756 ANHE_w (*he)->at += ev_rt_now - mn_now;
1757 ANHE_at_set (*he);
1758 }
1759 } 3245 }
1760 3246
1761 mn_now = ev_rt_now; 3247 mn_now = ev_rt_now;
1762 } 3248 }
1763} 3249}
1764 3250
1765void 3251int
1766ev_ref (EV_P)
1767{
1768 ++activecnt;
1769}
1770
1771void
1772ev_unref (EV_P)
1773{
1774 --activecnt;
1775}
1776
1777static int loop_done;
1778
1779void
1780ev_loop (EV_P_ int flags) 3252ev_run (EV_P_ int flags)
1781{ 3253{
3254#if EV_FEATURE_API
3255 ++loop_depth;
3256#endif
3257
3258 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3259
1782 loop_done = EVUNLOOP_CANCEL; 3260 loop_done = EVBREAK_CANCEL;
1783 3261
1784 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3262 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1785 3263
1786 do 3264 do
1787 { 3265 {
3266#if EV_VERIFY >= 2
3267 ev_verify (EV_A);
3268#endif
3269
1788#ifndef _WIN32 3270#ifndef _WIN32
1789 if (expect_false (curpid)) /* penalise the forking check even more */ 3271 if (expect_false (curpid)) /* penalise the forking check even more */
1790 if (expect_false (getpid () != curpid)) 3272 if (expect_false (getpid () != curpid))
1791 { 3273 {
1792 curpid = getpid (); 3274 curpid = getpid ();
1798 /* we might have forked, so queue fork handlers */ 3280 /* we might have forked, so queue fork handlers */
1799 if (expect_false (postfork)) 3281 if (expect_false (postfork))
1800 if (forkcnt) 3282 if (forkcnt)
1801 { 3283 {
1802 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3284 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1803 call_pending (EV_A); 3285 EV_INVOKE_PENDING;
1804 } 3286 }
1805#endif 3287#endif
1806 3288
3289#if EV_PREPARE_ENABLE
1807 /* queue prepare watchers (and execute them) */ 3290 /* queue prepare watchers (and execute them) */
1808 if (expect_false (preparecnt)) 3291 if (expect_false (preparecnt))
1809 { 3292 {
1810 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3293 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1811 call_pending (EV_A); 3294 EV_INVOKE_PENDING;
1812 } 3295 }
3296#endif
1813 3297
1814 if (expect_false (!activecnt)) 3298 if (expect_false (loop_done))
1815 break; 3299 break;
1816 3300
1817 /* we might have forked, so reify kernel state if necessary */ 3301 /* we might have forked, so reify kernel state if necessary */
1818 if (expect_false (postfork)) 3302 if (expect_false (postfork))
1819 loop_fork (EV_A); 3303 loop_fork (EV_A);
1824 /* calculate blocking time */ 3308 /* calculate blocking time */
1825 { 3309 {
1826 ev_tstamp waittime = 0.; 3310 ev_tstamp waittime = 0.;
1827 ev_tstamp sleeptime = 0.; 3311 ev_tstamp sleeptime = 0.;
1828 3312
3313 /* remember old timestamp for io_blocktime calculation */
3314 ev_tstamp prev_mn_now = mn_now;
3315
3316 /* update time to cancel out callback processing overhead */
3317 time_update (EV_A_ 1e100);
3318
3319 /* from now on, we want a pipe-wake-up */
3320 pipe_write_wanted = 1;
3321
3322 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3323
1829 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3324 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1830 { 3325 {
1831 /* update time to cancel out callback processing overhead */
1832 time_update (EV_A_ 1e100);
1833
1834 waittime = MAX_BLOCKTIME; 3326 waittime = MAX_BLOCKTIME;
1835 3327
1836 if (timercnt) 3328 if (timercnt)
1837 { 3329 {
1838 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 3330 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1839 if (waittime > to) waittime = to; 3331 if (waittime > to) waittime = to;
1840 } 3332 }
1841 3333
1842#if EV_PERIODIC_ENABLE 3334#if EV_PERIODIC_ENABLE
1843 if (periodiccnt) 3335 if (periodiccnt)
1844 { 3336 {
1845 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 3337 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1846 if (waittime > to) waittime = to; 3338 if (waittime > to) waittime = to;
1847 } 3339 }
1848#endif 3340#endif
1849 3341
3342 /* don't let timeouts decrease the waittime below timeout_blocktime */
1850 if (expect_false (waittime < timeout_blocktime)) 3343 if (expect_false (waittime < timeout_blocktime))
1851 waittime = timeout_blocktime; 3344 waittime = timeout_blocktime;
1852 3345
1853 sleeptime = waittime - backend_fudge; 3346 /* at this point, we NEED to wait, so we have to ensure */
3347 /* to pass a minimum nonzero value to the backend */
3348 if (expect_false (waittime < backend_mintime))
3349 waittime = backend_mintime;
1854 3350
3351 /* extra check because io_blocktime is commonly 0 */
1855 if (expect_true (sleeptime > io_blocktime)) 3352 if (expect_false (io_blocktime))
1856 sleeptime = io_blocktime;
1857
1858 if (sleeptime)
1859 { 3353 {
3354 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3355
3356 if (sleeptime > waittime - backend_mintime)
3357 sleeptime = waittime - backend_mintime;
3358
3359 if (expect_true (sleeptime > 0.))
3360 {
1860 ev_sleep (sleeptime); 3361 ev_sleep (sleeptime);
1861 waittime -= sleeptime; 3362 waittime -= sleeptime;
3363 }
1862 } 3364 }
1863 } 3365 }
1864 3366
3367#if EV_FEATURE_API
1865 ++loop_count; 3368 ++loop_count;
3369#endif
3370 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1866 backend_poll (EV_A_ waittime); 3371 backend_poll (EV_A_ waittime);
3372 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3373
3374 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3375
3376 ECB_MEMORY_FENCE_ACQUIRE;
3377 if (pipe_write_skipped)
3378 {
3379 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3380 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3381 }
3382
1867 3383
1868 /* update ev_rt_now, do magic */ 3384 /* update ev_rt_now, do magic */
1869 time_update (EV_A_ waittime + sleeptime); 3385 time_update (EV_A_ waittime + sleeptime);
1870 } 3386 }
1871 3387
1878#if EV_IDLE_ENABLE 3394#if EV_IDLE_ENABLE
1879 /* queue idle watchers unless other events are pending */ 3395 /* queue idle watchers unless other events are pending */
1880 idle_reify (EV_A); 3396 idle_reify (EV_A);
1881#endif 3397#endif
1882 3398
3399#if EV_CHECK_ENABLE
1883 /* queue check watchers, to be executed first */ 3400 /* queue check watchers, to be executed first */
1884 if (expect_false (checkcnt)) 3401 if (expect_false (checkcnt))
1885 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3402 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3403#endif
1886 3404
1887 call_pending (EV_A); 3405 EV_INVOKE_PENDING;
1888 } 3406 }
1889 while (expect_true ( 3407 while (expect_true (
1890 activecnt 3408 activecnt
1891 && !loop_done 3409 && !loop_done
1892 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 3410 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
1893 )); 3411 ));
1894 3412
1895 if (loop_done == EVUNLOOP_ONE) 3413 if (loop_done == EVBREAK_ONE)
1896 loop_done = EVUNLOOP_CANCEL; 3414 loop_done = EVBREAK_CANCEL;
3415
3416#if EV_FEATURE_API
3417 --loop_depth;
3418#endif
3419
3420 return activecnt;
1897} 3421}
1898 3422
1899void 3423void
1900ev_unloop (EV_P_ int how) 3424ev_break (EV_P_ int how) EV_THROW
1901{ 3425{
1902 loop_done = how; 3426 loop_done = how;
1903} 3427}
1904 3428
3429void
3430ev_ref (EV_P) EV_THROW
3431{
3432 ++activecnt;
3433}
3434
3435void
3436ev_unref (EV_P) EV_THROW
3437{
3438 --activecnt;
3439}
3440
3441void
3442ev_now_update (EV_P) EV_THROW
3443{
3444 time_update (EV_A_ 1e100);
3445}
3446
3447void
3448ev_suspend (EV_P) EV_THROW
3449{
3450 ev_now_update (EV_A);
3451}
3452
3453void
3454ev_resume (EV_P) EV_THROW
3455{
3456 ev_tstamp mn_prev = mn_now;
3457
3458 ev_now_update (EV_A);
3459 timers_reschedule (EV_A_ mn_now - mn_prev);
3460#if EV_PERIODIC_ENABLE
3461 /* TODO: really do this? */
3462 periodics_reschedule (EV_A);
3463#endif
3464}
3465
1905/*****************************************************************************/ 3466/*****************************************************************************/
3467/* singly-linked list management, used when the expected list length is short */
1906 3468
1907void inline_size 3469inline_size void
1908wlist_add (WL *head, WL elem) 3470wlist_add (WL *head, WL elem)
1909{ 3471{
1910 elem->next = *head; 3472 elem->next = *head;
1911 *head = elem; 3473 *head = elem;
1912} 3474}
1913 3475
1914void inline_size 3476inline_size void
1915wlist_del (WL *head, WL elem) 3477wlist_del (WL *head, WL elem)
1916{ 3478{
1917 while (*head) 3479 while (*head)
1918 { 3480 {
1919 if (*head == elem) 3481 if (expect_true (*head == elem))
1920 { 3482 {
1921 *head = elem->next; 3483 *head = elem->next;
1922 return; 3484 break;
1923 } 3485 }
1924 3486
1925 head = &(*head)->next; 3487 head = &(*head)->next;
1926 } 3488 }
1927} 3489}
1928 3490
1929void inline_speed 3491/* internal, faster, version of ev_clear_pending */
3492inline_speed void
1930clear_pending (EV_P_ W w) 3493clear_pending (EV_P_ W w)
1931{ 3494{
1932 if (w->pending) 3495 if (w->pending)
1933 { 3496 {
1934 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3497 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1935 w->pending = 0; 3498 w->pending = 0;
1936 } 3499 }
1937} 3500}
1938 3501
1939int 3502int
1940ev_clear_pending (EV_P_ void *w) 3503ev_clear_pending (EV_P_ void *w) EV_THROW
1941{ 3504{
1942 W w_ = (W)w; 3505 W w_ = (W)w;
1943 int pending = w_->pending; 3506 int pending = w_->pending;
1944 3507
1945 if (expect_true (pending)) 3508 if (expect_true (pending))
1946 { 3509 {
1947 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3510 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3511 p->w = (W)&pending_w;
1948 w_->pending = 0; 3512 w_->pending = 0;
1949 p->w = 0;
1950 return p->events; 3513 return p->events;
1951 } 3514 }
1952 else 3515 else
1953 return 0; 3516 return 0;
1954} 3517}
1955 3518
1956void inline_size 3519inline_size void
1957pri_adjust (EV_P_ W w) 3520pri_adjust (EV_P_ W w)
1958{ 3521{
1959 int pri = w->priority; 3522 int pri = ev_priority (w);
1960 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3523 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1961 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3524 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1962 w->priority = pri; 3525 ev_set_priority (w, pri);
1963} 3526}
1964 3527
1965void inline_speed 3528inline_speed void
1966ev_start (EV_P_ W w, int active) 3529ev_start (EV_P_ W w, int active)
1967{ 3530{
1968 pri_adjust (EV_A_ w); 3531 pri_adjust (EV_A_ w);
1969 w->active = active; 3532 w->active = active;
1970 ev_ref (EV_A); 3533 ev_ref (EV_A);
1971} 3534}
1972 3535
1973void inline_size 3536inline_size void
1974ev_stop (EV_P_ W w) 3537ev_stop (EV_P_ W w)
1975{ 3538{
1976 ev_unref (EV_A); 3539 ev_unref (EV_A);
1977 w->active = 0; 3540 w->active = 0;
1978} 3541}
1979 3542
1980/*****************************************************************************/ 3543/*****************************************************************************/
1981 3544
1982void noinline 3545void noinline
1983ev_io_start (EV_P_ ev_io *w) 3546ev_io_start (EV_P_ ev_io *w) EV_THROW
1984{ 3547{
1985 int fd = w->fd; 3548 int fd = w->fd;
1986 3549
1987 if (expect_false (ev_is_active (w))) 3550 if (expect_false (ev_is_active (w)))
1988 return; 3551 return;
1989 3552
1990 assert (("ev_io_start called with negative fd", fd >= 0)); 3553 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3554 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3555
3556 EV_FREQUENT_CHECK;
1991 3557
1992 ev_start (EV_A_ (W)w, 1); 3558 ev_start (EV_A_ (W)w, 1);
1993 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3559 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1994 wlist_add (&anfds[fd].head, (WL)w); 3560 wlist_add (&anfds[fd].head, (WL)w);
1995 3561
3562 /* common bug, apparently */
3563 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3564
1996 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3565 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1997 w->events &= ~EV_IOFDSET; 3566 w->events &= ~EV__IOFDSET;
3567
3568 EV_FREQUENT_CHECK;
1998} 3569}
1999 3570
2000void noinline 3571void noinline
2001ev_io_stop (EV_P_ ev_io *w) 3572ev_io_stop (EV_P_ ev_io *w) EV_THROW
2002{ 3573{
2003 clear_pending (EV_A_ (W)w); 3574 clear_pending (EV_A_ (W)w);
2004 if (expect_false (!ev_is_active (w))) 3575 if (expect_false (!ev_is_active (w)))
2005 return; 3576 return;
2006 3577
2007 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3578 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3579
3580 EV_FREQUENT_CHECK;
2008 3581
2009 wlist_del (&anfds[w->fd].head, (WL)w); 3582 wlist_del (&anfds[w->fd].head, (WL)w);
2010 ev_stop (EV_A_ (W)w); 3583 ev_stop (EV_A_ (W)w);
2011 3584
2012 fd_change (EV_A_ w->fd, 1); 3585 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3586
3587 EV_FREQUENT_CHECK;
2013} 3588}
2014 3589
2015void noinline 3590void noinline
2016ev_timer_start (EV_P_ ev_timer *w) 3591ev_timer_start (EV_P_ ev_timer *w) EV_THROW
2017{ 3592{
2018 if (expect_false (ev_is_active (w))) 3593 if (expect_false (ev_is_active (w)))
2019 return; 3594 return;
2020 3595
2021 ev_at (w) += mn_now; 3596 ev_at (w) += mn_now;
2022 3597
2023 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3598 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2024 3599
3600 EV_FREQUENT_CHECK;
3601
3602 ++timercnt;
2025 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 3603 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2026 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2); 3604 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2027 ANHE_w (timers [ev_active (w)]) = (WT)w; 3605 ANHE_w (timers [ev_active (w)]) = (WT)w;
2028 ANHE_at_set (timers [ev_active (w)]); 3606 ANHE_at_cache (timers [ev_active (w)]);
2029 upheap (timers, ev_active (w)); 3607 upheap (timers, ev_active (w));
2030 3608
3609 EV_FREQUENT_CHECK;
3610
2031 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 3611 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2032} 3612}
2033 3613
2034void noinline 3614void noinline
2035ev_timer_stop (EV_P_ ev_timer *w) 3615ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
2036{ 3616{
2037 clear_pending (EV_A_ (W)w); 3617 clear_pending (EV_A_ (W)w);
2038 if (expect_false (!ev_is_active (w))) 3618 if (expect_false (!ev_is_active (w)))
2039 return; 3619 return;
2040 3620
3621 EV_FREQUENT_CHECK;
3622
2041 { 3623 {
2042 int active = ev_active (w); 3624 int active = ev_active (w);
2043 3625
2044 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 3626 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2045 3627
3628 --timercnt;
3629
2046 if (expect_true (active < timercnt + HEAP0 - 1)) 3630 if (expect_true (active < timercnt + HEAP0))
2047 { 3631 {
2048 timers [active] = timers [timercnt + HEAP0 - 1]; 3632 timers [active] = timers [timercnt + HEAP0];
2049 adjustheap (timers, timercnt, active); 3633 adjustheap (timers, timercnt, active);
2050 } 3634 }
2051
2052 --timercnt;
2053 } 3635 }
2054 3636
2055 ev_at (w) -= mn_now; 3637 ev_at (w) -= mn_now;
2056 3638
2057 ev_stop (EV_A_ (W)w); 3639 ev_stop (EV_A_ (W)w);
3640
3641 EV_FREQUENT_CHECK;
2058} 3642}
2059 3643
2060void noinline 3644void noinline
2061ev_timer_again (EV_P_ ev_timer *w) 3645ev_timer_again (EV_P_ ev_timer *w) EV_THROW
2062{ 3646{
3647 EV_FREQUENT_CHECK;
3648
3649 clear_pending (EV_A_ (W)w);
3650
2063 if (ev_is_active (w)) 3651 if (ev_is_active (w))
2064 { 3652 {
2065 if (w->repeat) 3653 if (w->repeat)
2066 { 3654 {
2067 ev_at (w) = mn_now + w->repeat; 3655 ev_at (w) = mn_now + w->repeat;
2068 ANHE_at_set (timers [ev_active (w)]); 3656 ANHE_at_cache (timers [ev_active (w)]);
2069 adjustheap (timers, timercnt, ev_active (w)); 3657 adjustheap (timers, timercnt, ev_active (w));
2070 } 3658 }
2071 else 3659 else
2072 ev_timer_stop (EV_A_ w); 3660 ev_timer_stop (EV_A_ w);
2073 } 3661 }
2074 else if (w->repeat) 3662 else if (w->repeat)
2075 { 3663 {
2076 ev_at (w) = w->repeat; 3664 ev_at (w) = w->repeat;
2077 ev_timer_start (EV_A_ w); 3665 ev_timer_start (EV_A_ w);
2078 } 3666 }
3667
3668 EV_FREQUENT_CHECK;
3669}
3670
3671ev_tstamp
3672ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3673{
3674 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2079} 3675}
2080 3676
2081#if EV_PERIODIC_ENABLE 3677#if EV_PERIODIC_ENABLE
2082void noinline 3678void noinline
2083ev_periodic_start (EV_P_ ev_periodic *w) 3679ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
2084{ 3680{
2085 if (expect_false (ev_is_active (w))) 3681 if (expect_false (ev_is_active (w)))
2086 return; 3682 return;
2087 3683
2088 if (w->reschedule_cb) 3684 if (w->reschedule_cb)
2089 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3685 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2090 else if (w->interval) 3686 else if (w->interval)
2091 { 3687 {
2092 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3688 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2093 /* this formula differs from the one in periodic_reify because we do not always round up */ 3689 periodic_recalc (EV_A_ w);
2094 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2095 } 3690 }
2096 else 3691 else
2097 ev_at (w) = w->offset; 3692 ev_at (w) = w->offset;
2098 3693
3694 EV_FREQUENT_CHECK;
3695
3696 ++periodiccnt;
2099 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 3697 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2100 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2); 3698 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2101 ANHE_w (periodics [ev_active (w)]) = (WT)w; 3699 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2102 ANHE_at_set (periodics [ev_active (w)]); 3700 ANHE_at_cache (periodics [ev_active (w)]);
2103 upheap (periodics, ev_active (w)); 3701 upheap (periodics, ev_active (w));
2104 3702
3703 EV_FREQUENT_CHECK;
3704
2105 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 3705 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2106} 3706}
2107 3707
2108void noinline 3708void noinline
2109ev_periodic_stop (EV_P_ ev_periodic *w) 3709ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
2110{ 3710{
2111 clear_pending (EV_A_ (W)w); 3711 clear_pending (EV_A_ (W)w);
2112 if (expect_false (!ev_is_active (w))) 3712 if (expect_false (!ev_is_active (w)))
2113 return; 3713 return;
2114 3714
3715 EV_FREQUENT_CHECK;
3716
2115 { 3717 {
2116 int active = ev_active (w); 3718 int active = ev_active (w);
2117 3719
2118 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 3720 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2119 3721
3722 --periodiccnt;
3723
2120 if (expect_true (active < periodiccnt + HEAP0 - 1)) 3724 if (expect_true (active < periodiccnt + HEAP0))
2121 { 3725 {
2122 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 3726 periodics [active] = periodics [periodiccnt + HEAP0];
2123 adjustheap (periodics, periodiccnt, active); 3727 adjustheap (periodics, periodiccnt, active);
2124 } 3728 }
2125
2126 --periodiccnt;
2127 } 3729 }
2128 3730
2129 ev_stop (EV_A_ (W)w); 3731 ev_stop (EV_A_ (W)w);
3732
3733 EV_FREQUENT_CHECK;
2130} 3734}
2131 3735
2132void noinline 3736void noinline
2133ev_periodic_again (EV_P_ ev_periodic *w) 3737ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
2134{ 3738{
2135 /* TODO: use adjustheap and recalculation */ 3739 /* TODO: use adjustheap and recalculation */
2136 ev_periodic_stop (EV_A_ w); 3740 ev_periodic_stop (EV_A_ w);
2137 ev_periodic_start (EV_A_ w); 3741 ev_periodic_start (EV_A_ w);
2138} 3742}
2140 3744
2141#ifndef SA_RESTART 3745#ifndef SA_RESTART
2142# define SA_RESTART 0 3746# define SA_RESTART 0
2143#endif 3747#endif
2144 3748
3749#if EV_SIGNAL_ENABLE
3750
2145void noinline 3751void noinline
2146ev_signal_start (EV_P_ ev_signal *w) 3752ev_signal_start (EV_P_ ev_signal *w) EV_THROW
2147{ 3753{
2148#if EV_MULTIPLICITY
2149 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2150#endif
2151 if (expect_false (ev_is_active (w))) 3754 if (expect_false (ev_is_active (w)))
2152 return; 3755 return;
2153 3756
2154 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3757 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2155 3758
2156 evpipe_init (EV_A); 3759#if EV_MULTIPLICITY
3760 assert (("libev: a signal must not be attached to two different loops",
3761 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2157 3762
3763 signals [w->signum - 1].loop = EV_A;
3764 ECB_MEMORY_FENCE_RELEASE;
3765#endif
3766
3767 EV_FREQUENT_CHECK;
3768
3769#if EV_USE_SIGNALFD
3770 if (sigfd == -2)
2158 { 3771 {
2159#ifndef _WIN32 3772 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2160 sigset_t full, prev; 3773 if (sigfd < 0 && errno == EINVAL)
2161 sigfillset (&full); 3774 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2162 sigprocmask (SIG_SETMASK, &full, &prev);
2163#endif
2164 3775
2165 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3776 if (sigfd >= 0)
3777 {
3778 fd_intern (sigfd); /* doing it twice will not hurt */
2166 3779
2167#ifndef _WIN32 3780 sigemptyset (&sigfd_set);
2168 sigprocmask (SIG_SETMASK, &prev, 0); 3781
2169#endif 3782 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3783 ev_set_priority (&sigfd_w, EV_MAXPRI);
3784 ev_io_start (EV_A_ &sigfd_w);
3785 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3786 }
2170 } 3787 }
3788
3789 if (sigfd >= 0)
3790 {
3791 /* TODO: check .head */
3792 sigaddset (&sigfd_set, w->signum);
3793 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3794
3795 signalfd (sigfd, &sigfd_set, 0);
3796 }
3797#endif
2171 3798
2172 ev_start (EV_A_ (W)w, 1); 3799 ev_start (EV_A_ (W)w, 1);
2173 wlist_add (&signals [w->signum - 1].head, (WL)w); 3800 wlist_add (&signals [w->signum - 1].head, (WL)w);
2174 3801
2175 if (!((WL)w)->next) 3802 if (!((WL)w)->next)
3803# if EV_USE_SIGNALFD
3804 if (sigfd < 0) /*TODO*/
3805# endif
2176 { 3806 {
2177#if _WIN32 3807# ifdef _WIN32
3808 evpipe_init (EV_A);
3809
2178 signal (w->signum, ev_sighandler); 3810 signal (w->signum, ev_sighandler);
2179#else 3811# else
2180 struct sigaction sa; 3812 struct sigaction sa;
3813
3814 evpipe_init (EV_A);
3815
2181 sa.sa_handler = ev_sighandler; 3816 sa.sa_handler = ev_sighandler;
2182 sigfillset (&sa.sa_mask); 3817 sigfillset (&sa.sa_mask);
2183 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3818 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2184 sigaction (w->signum, &sa, 0); 3819 sigaction (w->signum, &sa, 0);
3820
3821 if (origflags & EVFLAG_NOSIGMASK)
3822 {
3823 sigemptyset (&sa.sa_mask);
3824 sigaddset (&sa.sa_mask, w->signum);
3825 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3826 }
2185#endif 3827#endif
2186 } 3828 }
3829
3830 EV_FREQUENT_CHECK;
2187} 3831}
2188 3832
2189void noinline 3833void noinline
2190ev_signal_stop (EV_P_ ev_signal *w) 3834ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
2191{ 3835{
2192 clear_pending (EV_A_ (W)w); 3836 clear_pending (EV_A_ (W)w);
2193 if (expect_false (!ev_is_active (w))) 3837 if (expect_false (!ev_is_active (w)))
2194 return; 3838 return;
2195 3839
3840 EV_FREQUENT_CHECK;
3841
2196 wlist_del (&signals [w->signum - 1].head, (WL)w); 3842 wlist_del (&signals [w->signum - 1].head, (WL)w);
2197 ev_stop (EV_A_ (W)w); 3843 ev_stop (EV_A_ (W)w);
2198 3844
2199 if (!signals [w->signum - 1].head) 3845 if (!signals [w->signum - 1].head)
3846 {
3847#if EV_MULTIPLICITY
3848 signals [w->signum - 1].loop = 0; /* unattach from signal */
3849#endif
3850#if EV_USE_SIGNALFD
3851 if (sigfd >= 0)
3852 {
3853 sigset_t ss;
3854
3855 sigemptyset (&ss);
3856 sigaddset (&ss, w->signum);
3857 sigdelset (&sigfd_set, w->signum);
3858
3859 signalfd (sigfd, &sigfd_set, 0);
3860 sigprocmask (SIG_UNBLOCK, &ss, 0);
3861 }
3862 else
3863#endif
2200 signal (w->signum, SIG_DFL); 3864 signal (w->signum, SIG_DFL);
3865 }
3866
3867 EV_FREQUENT_CHECK;
2201} 3868}
3869
3870#endif
3871
3872#if EV_CHILD_ENABLE
2202 3873
2203void 3874void
2204ev_child_start (EV_P_ ev_child *w) 3875ev_child_start (EV_P_ ev_child *w) EV_THROW
2205{ 3876{
2206#if EV_MULTIPLICITY 3877#if EV_MULTIPLICITY
2207 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3878 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2208#endif 3879#endif
2209 if (expect_false (ev_is_active (w))) 3880 if (expect_false (ev_is_active (w)))
2210 return; 3881 return;
2211 3882
3883 EV_FREQUENT_CHECK;
3884
2212 ev_start (EV_A_ (W)w, 1); 3885 ev_start (EV_A_ (W)w, 1);
2213 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3886 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3887
3888 EV_FREQUENT_CHECK;
2214} 3889}
2215 3890
2216void 3891void
2217ev_child_stop (EV_P_ ev_child *w) 3892ev_child_stop (EV_P_ ev_child *w) EV_THROW
2218{ 3893{
2219 clear_pending (EV_A_ (W)w); 3894 clear_pending (EV_A_ (W)w);
2220 if (expect_false (!ev_is_active (w))) 3895 if (expect_false (!ev_is_active (w)))
2221 return; 3896 return;
2222 3897
3898 EV_FREQUENT_CHECK;
3899
2223 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3900 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2224 ev_stop (EV_A_ (W)w); 3901 ev_stop (EV_A_ (W)w);
3902
3903 EV_FREQUENT_CHECK;
2225} 3904}
3905
3906#endif
2226 3907
2227#if EV_STAT_ENABLE 3908#if EV_STAT_ENABLE
2228 3909
2229# ifdef _WIN32 3910# ifdef _WIN32
2230# undef lstat 3911# undef lstat
2231# define lstat(a,b) _stati64 (a,b) 3912# define lstat(a,b) _stati64 (a,b)
2232# endif 3913# endif
2233 3914
2234#define DEF_STAT_INTERVAL 5.0074891 3915#define DEF_STAT_INTERVAL 5.0074891
3916#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2235#define MIN_STAT_INTERVAL 0.1074891 3917#define MIN_STAT_INTERVAL 0.1074891
2236 3918
2237static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3919static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2238 3920
2239#if EV_USE_INOTIFY 3921#if EV_USE_INOTIFY
2240# define EV_INOTIFY_BUFSIZE 8192 3922
3923/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3924# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2241 3925
2242static void noinline 3926static void noinline
2243infy_add (EV_P_ ev_stat *w) 3927infy_add (EV_P_ ev_stat *w)
2244{ 3928{
2245 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3929 w->wd = inotify_add_watch (fs_fd, w->path,
3930 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
3931 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
3932 | IN_DONT_FOLLOW | IN_MASK_ADD);
2246 3933
2247 if (w->wd < 0) 3934 if (w->wd >= 0)
3935 {
3936 struct statfs sfs;
3937
3938 /* now local changes will be tracked by inotify, but remote changes won't */
3939 /* unless the filesystem is known to be local, we therefore still poll */
3940 /* also do poll on <2.6.25, but with normal frequency */
3941
3942 if (!fs_2625)
3943 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3944 else if (!statfs (w->path, &sfs)
3945 && (sfs.f_type == 0x1373 /* devfs */
3946 || sfs.f_type == 0x4006 /* fat */
3947 || sfs.f_type == 0x4d44 /* msdos */
3948 || sfs.f_type == 0xEF53 /* ext2/3 */
3949 || sfs.f_type == 0x72b6 /* jffs2 */
3950 || sfs.f_type == 0x858458f6 /* ramfs */
3951 || sfs.f_type == 0x5346544e /* ntfs */
3952 || sfs.f_type == 0x3153464a /* jfs */
3953 || sfs.f_type == 0x9123683e /* btrfs */
3954 || sfs.f_type == 0x52654973 /* reiser3 */
3955 || sfs.f_type == 0x01021994 /* tmpfs */
3956 || sfs.f_type == 0x58465342 /* xfs */))
3957 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3958 else
3959 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2248 { 3960 }
2249 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3961 else
3962 {
3963 /* can't use inotify, continue to stat */
3964 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2250 3965
2251 /* monitor some parent directory for speedup hints */ 3966 /* if path is not there, monitor some parent directory for speedup hints */
2252 /* note that exceeding the hardcoded limit is not a correctness issue, */ 3967 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2253 /* but an efficiency issue only */ 3968 /* but an efficiency issue only */
2254 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3969 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2255 { 3970 {
2256 char path [4096]; 3971 char path [4096];
2257 strcpy (path, w->path); 3972 strcpy (path, w->path);
2261 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3976 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2262 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3977 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2263 3978
2264 char *pend = strrchr (path, '/'); 3979 char *pend = strrchr (path, '/');
2265 3980
2266 if (!pend) 3981 if (!pend || pend == path)
2267 break; /* whoops, no '/', complain to your admin */ 3982 break;
2268 3983
2269 *pend = 0; 3984 *pend = 0;
2270 w->wd = inotify_add_watch (fs_fd, path, mask); 3985 w->wd = inotify_add_watch (fs_fd, path, mask);
2271 } 3986 }
2272 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3987 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2273 } 3988 }
2274 } 3989 }
2275 else
2276 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2277 3990
2278 if (w->wd >= 0) 3991 if (w->wd >= 0)
2279 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3992 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3993
3994 /* now re-arm timer, if required */
3995 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3996 ev_timer_again (EV_A_ &w->timer);
3997 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2280} 3998}
2281 3999
2282static void noinline 4000static void noinline
2283infy_del (EV_P_ ev_stat *w) 4001infy_del (EV_P_ ev_stat *w)
2284{ 4002{
2287 4005
2288 if (wd < 0) 4006 if (wd < 0)
2289 return; 4007 return;
2290 4008
2291 w->wd = -2; 4009 w->wd = -2;
2292 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 4010 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2293 wlist_del (&fs_hash [slot].head, (WL)w); 4011 wlist_del (&fs_hash [slot].head, (WL)w);
2294 4012
2295 /* remove this watcher, if others are watching it, they will rearm */ 4013 /* remove this watcher, if others are watching it, they will rearm */
2296 inotify_rm_watch (fs_fd, wd); 4014 inotify_rm_watch (fs_fd, wd);
2297} 4015}
2298 4016
2299static void noinline 4017static void noinline
2300infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 4018infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2301{ 4019{
2302 if (slot < 0) 4020 if (slot < 0)
2303 /* overflow, need to check for all hahs slots */ 4021 /* overflow, need to check for all hash slots */
2304 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4022 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2305 infy_wd (EV_A_ slot, wd, ev); 4023 infy_wd (EV_A_ slot, wd, ev);
2306 else 4024 else
2307 { 4025 {
2308 WL w_; 4026 WL w_;
2309 4027
2310 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 4028 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2311 { 4029 {
2312 ev_stat *w = (ev_stat *)w_; 4030 ev_stat *w = (ev_stat *)w_;
2313 w_ = w_->next; /* lets us remove this watcher and all before it */ 4031 w_ = w_->next; /* lets us remove this watcher and all before it */
2314 4032
2315 if (w->wd == wd || wd == -1) 4033 if (w->wd == wd || wd == -1)
2316 { 4034 {
2317 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 4035 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2318 { 4036 {
4037 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2319 w->wd = -1; 4038 w->wd = -1;
2320 infy_add (EV_A_ w); /* re-add, no matter what */ 4039 infy_add (EV_A_ w); /* re-add, no matter what */
2321 } 4040 }
2322 4041
2323 stat_timer_cb (EV_A_ &w->timer, 0); 4042 stat_timer_cb (EV_A_ &w->timer, 0);
2328 4047
2329static void 4048static void
2330infy_cb (EV_P_ ev_io *w, int revents) 4049infy_cb (EV_P_ ev_io *w, int revents)
2331{ 4050{
2332 char buf [EV_INOTIFY_BUFSIZE]; 4051 char buf [EV_INOTIFY_BUFSIZE];
2333 struct inotify_event *ev = (struct inotify_event *)buf;
2334 int ofs; 4052 int ofs;
2335 int len = read (fs_fd, buf, sizeof (buf)); 4053 int len = read (fs_fd, buf, sizeof (buf));
2336 4054
2337 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 4055 for (ofs = 0; ofs < len; )
4056 {
4057 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2338 infy_wd (EV_A_ ev->wd, ev->wd, ev); 4058 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4059 ofs += sizeof (struct inotify_event) + ev->len;
4060 }
2339} 4061}
2340 4062
2341void inline_size 4063inline_size void ecb_cold
4064ev_check_2625 (EV_P)
4065{
4066 /* kernels < 2.6.25 are borked
4067 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4068 */
4069 if (ev_linux_version () < 0x020619)
4070 return;
4071
4072 fs_2625 = 1;
4073}
4074
4075inline_size int
4076infy_newfd (void)
4077{
4078#if defined IN_CLOEXEC && defined IN_NONBLOCK
4079 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4080 if (fd >= 0)
4081 return fd;
4082#endif
4083 return inotify_init ();
4084}
4085
4086inline_size void
2342infy_init (EV_P) 4087infy_init (EV_P)
2343{ 4088{
2344 if (fs_fd != -2) 4089 if (fs_fd != -2)
2345 return; 4090 return;
2346 4091
4092 fs_fd = -1;
4093
4094 ev_check_2625 (EV_A);
4095
2347 fs_fd = inotify_init (); 4096 fs_fd = infy_newfd ();
2348 4097
2349 if (fs_fd >= 0) 4098 if (fs_fd >= 0)
2350 { 4099 {
4100 fd_intern (fs_fd);
2351 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 4101 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2352 ev_set_priority (&fs_w, EV_MAXPRI); 4102 ev_set_priority (&fs_w, EV_MAXPRI);
2353 ev_io_start (EV_A_ &fs_w); 4103 ev_io_start (EV_A_ &fs_w);
4104 ev_unref (EV_A);
2354 } 4105 }
2355} 4106}
2356 4107
2357void inline_size 4108inline_size void
2358infy_fork (EV_P) 4109infy_fork (EV_P)
2359{ 4110{
2360 int slot; 4111 int slot;
2361 4112
2362 if (fs_fd < 0) 4113 if (fs_fd < 0)
2363 return; 4114 return;
2364 4115
4116 ev_ref (EV_A);
4117 ev_io_stop (EV_A_ &fs_w);
2365 close (fs_fd); 4118 close (fs_fd);
2366 fs_fd = inotify_init (); 4119 fs_fd = infy_newfd ();
2367 4120
4121 if (fs_fd >= 0)
4122 {
4123 fd_intern (fs_fd);
4124 ev_io_set (&fs_w, fs_fd, EV_READ);
4125 ev_io_start (EV_A_ &fs_w);
4126 ev_unref (EV_A);
4127 }
4128
2368 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4129 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2369 { 4130 {
2370 WL w_ = fs_hash [slot].head; 4131 WL w_ = fs_hash [slot].head;
2371 fs_hash [slot].head = 0; 4132 fs_hash [slot].head = 0;
2372 4133
2373 while (w_) 4134 while (w_)
2378 w->wd = -1; 4139 w->wd = -1;
2379 4140
2380 if (fs_fd >= 0) 4141 if (fs_fd >= 0)
2381 infy_add (EV_A_ w); /* re-add, no matter what */ 4142 infy_add (EV_A_ w); /* re-add, no matter what */
2382 else 4143 else
4144 {
4145 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4146 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2383 ev_timer_start (EV_A_ &w->timer); 4147 ev_timer_again (EV_A_ &w->timer);
4148 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4149 }
2384 } 4150 }
2385
2386 } 4151 }
2387} 4152}
2388 4153
4154#endif
4155
4156#ifdef _WIN32
4157# define EV_LSTAT(p,b) _stati64 (p, b)
4158#else
4159# define EV_LSTAT(p,b) lstat (p, b)
2389#endif 4160#endif
2390 4161
2391void 4162void
2392ev_stat_stat (EV_P_ ev_stat *w) 4163ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
2393{ 4164{
2394 if (lstat (w->path, &w->attr) < 0) 4165 if (lstat (w->path, &w->attr) < 0)
2395 w->attr.st_nlink = 0; 4166 w->attr.st_nlink = 0;
2396 else if (!w->attr.st_nlink) 4167 else if (!w->attr.st_nlink)
2397 w->attr.st_nlink = 1; 4168 w->attr.st_nlink = 1;
2400static void noinline 4171static void noinline
2401stat_timer_cb (EV_P_ ev_timer *w_, int revents) 4172stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2402{ 4173{
2403 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 4174 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2404 4175
2405 /* we copy this here each the time so that */ 4176 ev_statdata prev = w->attr;
2406 /* prev has the old value when the callback gets invoked */
2407 w->prev = w->attr;
2408 ev_stat_stat (EV_A_ w); 4177 ev_stat_stat (EV_A_ w);
2409 4178
2410 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 4179 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2411 if ( 4180 if (
2412 w->prev.st_dev != w->attr.st_dev 4181 prev.st_dev != w->attr.st_dev
2413 || w->prev.st_ino != w->attr.st_ino 4182 || prev.st_ino != w->attr.st_ino
2414 || w->prev.st_mode != w->attr.st_mode 4183 || prev.st_mode != w->attr.st_mode
2415 || w->prev.st_nlink != w->attr.st_nlink 4184 || prev.st_nlink != w->attr.st_nlink
2416 || w->prev.st_uid != w->attr.st_uid 4185 || prev.st_uid != w->attr.st_uid
2417 || w->prev.st_gid != w->attr.st_gid 4186 || prev.st_gid != w->attr.st_gid
2418 || w->prev.st_rdev != w->attr.st_rdev 4187 || prev.st_rdev != w->attr.st_rdev
2419 || w->prev.st_size != w->attr.st_size 4188 || prev.st_size != w->attr.st_size
2420 || w->prev.st_atime != w->attr.st_atime 4189 || prev.st_atime != w->attr.st_atime
2421 || w->prev.st_mtime != w->attr.st_mtime 4190 || prev.st_mtime != w->attr.st_mtime
2422 || w->prev.st_ctime != w->attr.st_ctime 4191 || prev.st_ctime != w->attr.st_ctime
2423 ) { 4192 ) {
4193 /* we only update w->prev on actual differences */
4194 /* in case we test more often than invoke the callback, */
4195 /* to ensure that prev is always different to attr */
4196 w->prev = prev;
4197
2424 #if EV_USE_INOTIFY 4198 #if EV_USE_INOTIFY
4199 if (fs_fd >= 0)
4200 {
2425 infy_del (EV_A_ w); 4201 infy_del (EV_A_ w);
2426 infy_add (EV_A_ w); 4202 infy_add (EV_A_ w);
2427 ev_stat_stat (EV_A_ w); /* avoid race... */ 4203 ev_stat_stat (EV_A_ w); /* avoid race... */
4204 }
2428 #endif 4205 #endif
2429 4206
2430 ev_feed_event (EV_A_ w, EV_STAT); 4207 ev_feed_event (EV_A_ w, EV_STAT);
2431 } 4208 }
2432} 4209}
2433 4210
2434void 4211void
2435ev_stat_start (EV_P_ ev_stat *w) 4212ev_stat_start (EV_P_ ev_stat *w) EV_THROW
2436{ 4213{
2437 if (expect_false (ev_is_active (w))) 4214 if (expect_false (ev_is_active (w)))
2438 return; 4215 return;
2439 4216
2440 /* since we use memcmp, we need to clear any padding data etc. */
2441 memset (&w->prev, 0, sizeof (ev_statdata));
2442 memset (&w->attr, 0, sizeof (ev_statdata));
2443
2444 ev_stat_stat (EV_A_ w); 4217 ev_stat_stat (EV_A_ w);
2445 4218
4219 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2446 if (w->interval < MIN_STAT_INTERVAL) 4220 w->interval = MIN_STAT_INTERVAL;
2447 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2448 4221
2449 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 4222 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2450 ev_set_priority (&w->timer, ev_priority (w)); 4223 ev_set_priority (&w->timer, ev_priority (w));
2451 4224
2452#if EV_USE_INOTIFY 4225#if EV_USE_INOTIFY
2453 infy_init (EV_A); 4226 infy_init (EV_A);
2454 4227
2455 if (fs_fd >= 0) 4228 if (fs_fd >= 0)
2456 infy_add (EV_A_ w); 4229 infy_add (EV_A_ w);
2457 else 4230 else
2458#endif 4231#endif
4232 {
2459 ev_timer_start (EV_A_ &w->timer); 4233 ev_timer_again (EV_A_ &w->timer);
4234 ev_unref (EV_A);
4235 }
2460 4236
2461 ev_start (EV_A_ (W)w, 1); 4237 ev_start (EV_A_ (W)w, 1);
4238
4239 EV_FREQUENT_CHECK;
2462} 4240}
2463 4241
2464void 4242void
2465ev_stat_stop (EV_P_ ev_stat *w) 4243ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
2466{ 4244{
2467 clear_pending (EV_A_ (W)w); 4245 clear_pending (EV_A_ (W)w);
2468 if (expect_false (!ev_is_active (w))) 4246 if (expect_false (!ev_is_active (w)))
2469 return; 4247 return;
2470 4248
4249 EV_FREQUENT_CHECK;
4250
2471#if EV_USE_INOTIFY 4251#if EV_USE_INOTIFY
2472 infy_del (EV_A_ w); 4252 infy_del (EV_A_ w);
2473#endif 4253#endif
4254
4255 if (ev_is_active (&w->timer))
4256 {
4257 ev_ref (EV_A);
2474 ev_timer_stop (EV_A_ &w->timer); 4258 ev_timer_stop (EV_A_ &w->timer);
4259 }
2475 4260
2476 ev_stop (EV_A_ (W)w); 4261 ev_stop (EV_A_ (W)w);
4262
4263 EV_FREQUENT_CHECK;
2477} 4264}
2478#endif 4265#endif
2479 4266
2480#if EV_IDLE_ENABLE 4267#if EV_IDLE_ENABLE
2481void 4268void
2482ev_idle_start (EV_P_ ev_idle *w) 4269ev_idle_start (EV_P_ ev_idle *w) EV_THROW
2483{ 4270{
2484 if (expect_false (ev_is_active (w))) 4271 if (expect_false (ev_is_active (w)))
2485 return; 4272 return;
2486 4273
2487 pri_adjust (EV_A_ (W)w); 4274 pri_adjust (EV_A_ (W)w);
4275
4276 EV_FREQUENT_CHECK;
2488 4277
2489 { 4278 {
2490 int active = ++idlecnt [ABSPRI (w)]; 4279 int active = ++idlecnt [ABSPRI (w)];
2491 4280
2492 ++idleall; 4281 ++idleall;
2493 ev_start (EV_A_ (W)w, active); 4282 ev_start (EV_A_ (W)w, active);
2494 4283
2495 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 4284 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2496 idles [ABSPRI (w)][active - 1] = w; 4285 idles [ABSPRI (w)][active - 1] = w;
2497 } 4286 }
4287
4288 EV_FREQUENT_CHECK;
2498} 4289}
2499 4290
2500void 4291void
2501ev_idle_stop (EV_P_ ev_idle *w) 4292ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
2502{ 4293{
2503 clear_pending (EV_A_ (W)w); 4294 clear_pending (EV_A_ (W)w);
2504 if (expect_false (!ev_is_active (w))) 4295 if (expect_false (!ev_is_active (w)))
2505 return; 4296 return;
2506 4297
4298 EV_FREQUENT_CHECK;
4299
2507 { 4300 {
2508 int active = ev_active (w); 4301 int active = ev_active (w);
2509 4302
2510 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 4303 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2511 ev_active (idles [ABSPRI (w)][active - 1]) = active; 4304 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2512 4305
2513 ev_stop (EV_A_ (W)w); 4306 ev_stop (EV_A_ (W)w);
2514 --idleall; 4307 --idleall;
2515 } 4308 }
2516}
2517#endif
2518 4309
4310 EV_FREQUENT_CHECK;
4311}
4312#endif
4313
4314#if EV_PREPARE_ENABLE
2519void 4315void
2520ev_prepare_start (EV_P_ ev_prepare *w) 4316ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
2521{ 4317{
2522 if (expect_false (ev_is_active (w))) 4318 if (expect_false (ev_is_active (w)))
2523 return; 4319 return;
4320
4321 EV_FREQUENT_CHECK;
2524 4322
2525 ev_start (EV_A_ (W)w, ++preparecnt); 4323 ev_start (EV_A_ (W)w, ++preparecnt);
2526 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 4324 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2527 prepares [preparecnt - 1] = w; 4325 prepares [preparecnt - 1] = w;
4326
4327 EV_FREQUENT_CHECK;
2528} 4328}
2529 4329
2530void 4330void
2531ev_prepare_stop (EV_P_ ev_prepare *w) 4331ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
2532{ 4332{
2533 clear_pending (EV_A_ (W)w); 4333 clear_pending (EV_A_ (W)w);
2534 if (expect_false (!ev_is_active (w))) 4334 if (expect_false (!ev_is_active (w)))
2535 return; 4335 return;
2536 4336
4337 EV_FREQUENT_CHECK;
4338
2537 { 4339 {
2538 int active = ev_active (w); 4340 int active = ev_active (w);
2539 4341
2540 prepares [active - 1] = prepares [--preparecnt]; 4342 prepares [active - 1] = prepares [--preparecnt];
2541 ev_active (prepares [active - 1]) = active; 4343 ev_active (prepares [active - 1]) = active;
2542 } 4344 }
2543 4345
2544 ev_stop (EV_A_ (W)w); 4346 ev_stop (EV_A_ (W)w);
2545}
2546 4347
4348 EV_FREQUENT_CHECK;
4349}
4350#endif
4351
4352#if EV_CHECK_ENABLE
2547void 4353void
2548ev_check_start (EV_P_ ev_check *w) 4354ev_check_start (EV_P_ ev_check *w) EV_THROW
2549{ 4355{
2550 if (expect_false (ev_is_active (w))) 4356 if (expect_false (ev_is_active (w)))
2551 return; 4357 return;
4358
4359 EV_FREQUENT_CHECK;
2552 4360
2553 ev_start (EV_A_ (W)w, ++checkcnt); 4361 ev_start (EV_A_ (W)w, ++checkcnt);
2554 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 4362 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2555 checks [checkcnt - 1] = w; 4363 checks [checkcnt - 1] = w;
4364
4365 EV_FREQUENT_CHECK;
2556} 4366}
2557 4367
2558void 4368void
2559ev_check_stop (EV_P_ ev_check *w) 4369ev_check_stop (EV_P_ ev_check *w) EV_THROW
2560{ 4370{
2561 clear_pending (EV_A_ (W)w); 4371 clear_pending (EV_A_ (W)w);
2562 if (expect_false (!ev_is_active (w))) 4372 if (expect_false (!ev_is_active (w)))
2563 return; 4373 return;
2564 4374
4375 EV_FREQUENT_CHECK;
4376
2565 { 4377 {
2566 int active = ev_active (w); 4378 int active = ev_active (w);
2567 4379
2568 checks [active - 1] = checks [--checkcnt]; 4380 checks [active - 1] = checks [--checkcnt];
2569 ev_active (checks [active - 1]) = active; 4381 ev_active (checks [active - 1]) = active;
2570 } 4382 }
2571 4383
2572 ev_stop (EV_A_ (W)w); 4384 ev_stop (EV_A_ (W)w);
4385
4386 EV_FREQUENT_CHECK;
2573} 4387}
4388#endif
2574 4389
2575#if EV_EMBED_ENABLE 4390#if EV_EMBED_ENABLE
2576void noinline 4391void noinline
2577ev_embed_sweep (EV_P_ ev_embed *w) 4392ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
2578{ 4393{
2579 ev_loop (w->other, EVLOOP_NONBLOCK); 4394 ev_run (w->other, EVRUN_NOWAIT);
2580} 4395}
2581 4396
2582static void 4397static void
2583embed_io_cb (EV_P_ ev_io *io, int revents) 4398embed_io_cb (EV_P_ ev_io *io, int revents)
2584{ 4399{
2585 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4400 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2586 4401
2587 if (ev_cb (w)) 4402 if (ev_cb (w))
2588 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4403 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2589 else 4404 else
2590 ev_loop (w->other, EVLOOP_NONBLOCK); 4405 ev_run (w->other, EVRUN_NOWAIT);
2591} 4406}
2592 4407
2593static void 4408static void
2594embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4409embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2595{ 4410{
2596 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4411 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2597 4412
2598 { 4413 {
2599 struct ev_loop *loop = w->other; 4414 EV_P = w->other;
2600 4415
2601 while (fdchangecnt) 4416 while (fdchangecnt)
2602 { 4417 {
2603 fd_reify (EV_A); 4418 fd_reify (EV_A);
2604 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4419 ev_run (EV_A_ EVRUN_NOWAIT);
2605 } 4420 }
2606 } 4421 }
4422}
4423
4424static void
4425embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4426{
4427 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4428
4429 ev_embed_stop (EV_A_ w);
4430
4431 {
4432 EV_P = w->other;
4433
4434 ev_loop_fork (EV_A);
4435 ev_run (EV_A_ EVRUN_NOWAIT);
4436 }
4437
4438 ev_embed_start (EV_A_ w);
2607} 4439}
2608 4440
2609#if 0 4441#if 0
2610static void 4442static void
2611embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4443embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2613 ev_idle_stop (EV_A_ idle); 4445 ev_idle_stop (EV_A_ idle);
2614} 4446}
2615#endif 4447#endif
2616 4448
2617void 4449void
2618ev_embed_start (EV_P_ ev_embed *w) 4450ev_embed_start (EV_P_ ev_embed *w) EV_THROW
2619{ 4451{
2620 if (expect_false (ev_is_active (w))) 4452 if (expect_false (ev_is_active (w)))
2621 return; 4453 return;
2622 4454
2623 { 4455 {
2624 struct ev_loop *loop = w->other; 4456 EV_P = w->other;
2625 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4457 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2626 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4458 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2627 } 4459 }
4460
4461 EV_FREQUENT_CHECK;
2628 4462
2629 ev_set_priority (&w->io, ev_priority (w)); 4463 ev_set_priority (&w->io, ev_priority (w));
2630 ev_io_start (EV_A_ &w->io); 4464 ev_io_start (EV_A_ &w->io);
2631 4465
2632 ev_prepare_init (&w->prepare, embed_prepare_cb); 4466 ev_prepare_init (&w->prepare, embed_prepare_cb);
2633 ev_set_priority (&w->prepare, EV_MINPRI); 4467 ev_set_priority (&w->prepare, EV_MINPRI);
2634 ev_prepare_start (EV_A_ &w->prepare); 4468 ev_prepare_start (EV_A_ &w->prepare);
2635 4469
4470 ev_fork_init (&w->fork, embed_fork_cb);
4471 ev_fork_start (EV_A_ &w->fork);
4472
2636 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 4473 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2637 4474
2638 ev_start (EV_A_ (W)w, 1); 4475 ev_start (EV_A_ (W)w, 1);
4476
4477 EV_FREQUENT_CHECK;
2639} 4478}
2640 4479
2641void 4480void
2642ev_embed_stop (EV_P_ ev_embed *w) 4481ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
2643{ 4482{
2644 clear_pending (EV_A_ (W)w); 4483 clear_pending (EV_A_ (W)w);
2645 if (expect_false (!ev_is_active (w))) 4484 if (expect_false (!ev_is_active (w)))
2646 return; 4485 return;
2647 4486
4487 EV_FREQUENT_CHECK;
4488
2648 ev_io_stop (EV_A_ &w->io); 4489 ev_io_stop (EV_A_ &w->io);
2649 ev_prepare_stop (EV_A_ &w->prepare); 4490 ev_prepare_stop (EV_A_ &w->prepare);
4491 ev_fork_stop (EV_A_ &w->fork);
2650 4492
2651 ev_stop (EV_A_ (W)w); 4493 ev_stop (EV_A_ (W)w);
4494
4495 EV_FREQUENT_CHECK;
2652} 4496}
2653#endif 4497#endif
2654 4498
2655#if EV_FORK_ENABLE 4499#if EV_FORK_ENABLE
2656void 4500void
2657ev_fork_start (EV_P_ ev_fork *w) 4501ev_fork_start (EV_P_ ev_fork *w) EV_THROW
2658{ 4502{
2659 if (expect_false (ev_is_active (w))) 4503 if (expect_false (ev_is_active (w)))
2660 return; 4504 return;
4505
4506 EV_FREQUENT_CHECK;
2661 4507
2662 ev_start (EV_A_ (W)w, ++forkcnt); 4508 ev_start (EV_A_ (W)w, ++forkcnt);
2663 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 4509 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2664 forks [forkcnt - 1] = w; 4510 forks [forkcnt - 1] = w;
4511
4512 EV_FREQUENT_CHECK;
2665} 4513}
2666 4514
2667void 4515void
2668ev_fork_stop (EV_P_ ev_fork *w) 4516ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
2669{ 4517{
2670 clear_pending (EV_A_ (W)w); 4518 clear_pending (EV_A_ (W)w);
2671 if (expect_false (!ev_is_active (w))) 4519 if (expect_false (!ev_is_active (w)))
2672 return; 4520 return;
2673 4521
4522 EV_FREQUENT_CHECK;
4523
2674 { 4524 {
2675 int active = ev_active (w); 4525 int active = ev_active (w);
2676 4526
2677 forks [active - 1] = forks [--forkcnt]; 4527 forks [active - 1] = forks [--forkcnt];
2678 ev_active (forks [active - 1]) = active; 4528 ev_active (forks [active - 1]) = active;
2679 } 4529 }
2680 4530
2681 ev_stop (EV_A_ (W)w); 4531 ev_stop (EV_A_ (W)w);
4532
4533 EV_FREQUENT_CHECK;
4534}
4535#endif
4536
4537#if EV_CLEANUP_ENABLE
4538void
4539ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4540{
4541 if (expect_false (ev_is_active (w)))
4542 return;
4543
4544 EV_FREQUENT_CHECK;
4545
4546 ev_start (EV_A_ (W)w, ++cleanupcnt);
4547 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4548 cleanups [cleanupcnt - 1] = w;
4549
4550 /* cleanup watchers should never keep a refcount on the loop */
4551 ev_unref (EV_A);
4552 EV_FREQUENT_CHECK;
4553}
4554
4555void
4556ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4557{
4558 clear_pending (EV_A_ (W)w);
4559 if (expect_false (!ev_is_active (w)))
4560 return;
4561
4562 EV_FREQUENT_CHECK;
4563 ev_ref (EV_A);
4564
4565 {
4566 int active = ev_active (w);
4567
4568 cleanups [active - 1] = cleanups [--cleanupcnt];
4569 ev_active (cleanups [active - 1]) = active;
4570 }
4571
4572 ev_stop (EV_A_ (W)w);
4573
4574 EV_FREQUENT_CHECK;
2682} 4575}
2683#endif 4576#endif
2684 4577
2685#if EV_ASYNC_ENABLE 4578#if EV_ASYNC_ENABLE
2686void 4579void
2687ev_async_start (EV_P_ ev_async *w) 4580ev_async_start (EV_P_ ev_async *w) EV_THROW
2688{ 4581{
2689 if (expect_false (ev_is_active (w))) 4582 if (expect_false (ev_is_active (w)))
2690 return; 4583 return;
2691 4584
4585 w->sent = 0;
4586
2692 evpipe_init (EV_A); 4587 evpipe_init (EV_A);
4588
4589 EV_FREQUENT_CHECK;
2693 4590
2694 ev_start (EV_A_ (W)w, ++asynccnt); 4591 ev_start (EV_A_ (W)w, ++asynccnt);
2695 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 4592 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2696 asyncs [asynccnt - 1] = w; 4593 asyncs [asynccnt - 1] = w;
4594
4595 EV_FREQUENT_CHECK;
2697} 4596}
2698 4597
2699void 4598void
2700ev_async_stop (EV_P_ ev_async *w) 4599ev_async_stop (EV_P_ ev_async *w) EV_THROW
2701{ 4600{
2702 clear_pending (EV_A_ (W)w); 4601 clear_pending (EV_A_ (W)w);
2703 if (expect_false (!ev_is_active (w))) 4602 if (expect_false (!ev_is_active (w)))
2704 return; 4603 return;
2705 4604
4605 EV_FREQUENT_CHECK;
4606
2706 { 4607 {
2707 int active = ev_active (w); 4608 int active = ev_active (w);
2708 4609
2709 asyncs [active - 1] = asyncs [--asynccnt]; 4610 asyncs [active - 1] = asyncs [--asynccnt];
2710 ev_active (asyncs [active - 1]) = active; 4611 ev_active (asyncs [active - 1]) = active;
2711 } 4612 }
2712 4613
2713 ev_stop (EV_A_ (W)w); 4614 ev_stop (EV_A_ (W)w);
4615
4616 EV_FREQUENT_CHECK;
2714} 4617}
2715 4618
2716void 4619void
2717ev_async_send (EV_P_ ev_async *w) 4620ev_async_send (EV_P_ ev_async *w) EV_THROW
2718{ 4621{
2719 w->sent = 1; 4622 w->sent = 1;
2720 evpipe_write (EV_A_ &gotasync); 4623 evpipe_write (EV_A_ &async_pending);
2721} 4624}
2722#endif 4625#endif
2723 4626
2724/*****************************************************************************/ 4627/*****************************************************************************/
2725 4628
2735once_cb (EV_P_ struct ev_once *once, int revents) 4638once_cb (EV_P_ struct ev_once *once, int revents)
2736{ 4639{
2737 void (*cb)(int revents, void *arg) = once->cb; 4640 void (*cb)(int revents, void *arg) = once->cb;
2738 void *arg = once->arg; 4641 void *arg = once->arg;
2739 4642
2740 ev_io_stop (EV_A_ &once->io); 4643 ev_io_stop (EV_A_ &once->io);
2741 ev_timer_stop (EV_A_ &once->to); 4644 ev_timer_stop (EV_A_ &once->to);
2742 ev_free (once); 4645 ev_free (once);
2743 4646
2744 cb (revents, arg); 4647 cb (revents, arg);
2745} 4648}
2746 4649
2747static void 4650static void
2748once_cb_io (EV_P_ ev_io *w, int revents) 4651once_cb_io (EV_P_ ev_io *w, int revents)
2749{ 4652{
2750 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4653 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4654
4655 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2751} 4656}
2752 4657
2753static void 4658static void
2754once_cb_to (EV_P_ ev_timer *w, int revents) 4659once_cb_to (EV_P_ ev_timer *w, int revents)
2755{ 4660{
2756 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4661 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4662
4663 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2757} 4664}
2758 4665
2759void 4666void
2760ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4667ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
2761{ 4668{
2762 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4669 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2763 4670
2764 if (expect_false (!once)) 4671 if (expect_false (!once))
2765 { 4672 {
2766 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4673 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2767 return; 4674 return;
2768 } 4675 }
2769 4676
2770 once->cb = cb; 4677 once->cb = cb;
2771 once->arg = arg; 4678 once->arg = arg;
2783 ev_timer_set (&once->to, timeout, 0.); 4690 ev_timer_set (&once->to, timeout, 0.);
2784 ev_timer_start (EV_A_ &once->to); 4691 ev_timer_start (EV_A_ &once->to);
2785 } 4692 }
2786} 4693}
2787 4694
4695/*****************************************************************************/
4696
4697#if EV_WALK_ENABLE
4698void ecb_cold
4699ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4700{
4701 int i, j;
4702 ev_watcher_list *wl, *wn;
4703
4704 if (types & (EV_IO | EV_EMBED))
4705 for (i = 0; i < anfdmax; ++i)
4706 for (wl = anfds [i].head; wl; )
4707 {
4708 wn = wl->next;
4709
4710#if EV_EMBED_ENABLE
4711 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4712 {
4713 if (types & EV_EMBED)
4714 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4715 }
4716 else
4717#endif
4718#if EV_USE_INOTIFY
4719 if (ev_cb ((ev_io *)wl) == infy_cb)
4720 ;
4721 else
4722#endif
4723 if ((ev_io *)wl != &pipe_w)
4724 if (types & EV_IO)
4725 cb (EV_A_ EV_IO, wl);
4726
4727 wl = wn;
4728 }
4729
4730 if (types & (EV_TIMER | EV_STAT))
4731 for (i = timercnt + HEAP0; i-- > HEAP0; )
4732#if EV_STAT_ENABLE
4733 /*TODO: timer is not always active*/
4734 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4735 {
4736 if (types & EV_STAT)
4737 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4738 }
4739 else
4740#endif
4741 if (types & EV_TIMER)
4742 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4743
4744#if EV_PERIODIC_ENABLE
4745 if (types & EV_PERIODIC)
4746 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4747 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4748#endif
4749
4750#if EV_IDLE_ENABLE
4751 if (types & EV_IDLE)
4752 for (j = NUMPRI; j--; )
4753 for (i = idlecnt [j]; i--; )
4754 cb (EV_A_ EV_IDLE, idles [j][i]);
4755#endif
4756
4757#if EV_FORK_ENABLE
4758 if (types & EV_FORK)
4759 for (i = forkcnt; i--; )
4760 if (ev_cb (forks [i]) != embed_fork_cb)
4761 cb (EV_A_ EV_FORK, forks [i]);
4762#endif
4763
4764#if EV_ASYNC_ENABLE
4765 if (types & EV_ASYNC)
4766 for (i = asynccnt; i--; )
4767 cb (EV_A_ EV_ASYNC, asyncs [i]);
4768#endif
4769
4770#if EV_PREPARE_ENABLE
4771 if (types & EV_PREPARE)
4772 for (i = preparecnt; i--; )
4773# if EV_EMBED_ENABLE
4774 if (ev_cb (prepares [i]) != embed_prepare_cb)
4775# endif
4776 cb (EV_A_ EV_PREPARE, prepares [i]);
4777#endif
4778
4779#if EV_CHECK_ENABLE
4780 if (types & EV_CHECK)
4781 for (i = checkcnt; i--; )
4782 cb (EV_A_ EV_CHECK, checks [i]);
4783#endif
4784
4785#if EV_SIGNAL_ENABLE
4786 if (types & EV_SIGNAL)
4787 for (i = 0; i < EV_NSIG - 1; ++i)
4788 for (wl = signals [i].head; wl; )
4789 {
4790 wn = wl->next;
4791 cb (EV_A_ EV_SIGNAL, wl);
4792 wl = wn;
4793 }
4794#endif
4795
4796#if EV_CHILD_ENABLE
4797 if (types & EV_CHILD)
4798 for (i = (EV_PID_HASHSIZE); i--; )
4799 for (wl = childs [i]; wl; )
4800 {
4801 wn = wl->next;
4802 cb (EV_A_ EV_CHILD, wl);
4803 wl = wn;
4804 }
4805#endif
4806/* EV_STAT 0x00001000 /* stat data changed */
4807/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4808}
4809#endif
4810
2788#if EV_MULTIPLICITY 4811#if EV_MULTIPLICITY
2789 #include "ev_wrap.h" 4812 #include "ev_wrap.h"
2790#endif 4813#endif
2791 4814
2792#ifdef __cplusplus
2793}
2794#endif
2795

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines