ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.264 by root, Mon Oct 13 23:20:12 2008 UTC vs.
Revision 1.458 by root, Sun Oct 27 16:26:07 2013 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
52# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
55# endif 71# endif
56# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
58# endif 74# endif
59# else 75# else
60# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
62# endif 78# endif
63# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
65# endif 81# endif
66# endif 82# endif
67 83
84# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
71# else 88# else
89# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
74# endif 100# endif
75 101
102# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 105# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 106# else
107# undef EV_USE_POLL
88# define EV_USE_POLL 0 108# define EV_USE_POLL 0
89# endif
90# endif 109# endif
91 110
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
95# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
98# endif 118# endif
99 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
106# endif 127# endif
107 128
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
111# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
114# endif 136# endif
115 137
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
122# endif 145# endif
123 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 148# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 149# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
130# endif 163# endif
131 164
132#endif 165#endif
133 166
134#include <math.h>
135#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
136#include <fcntl.h> 169#include <fcntl.h>
137#include <stddef.h> 170#include <stddef.h>
138 171
139#include <stdio.h> 172#include <stdio.h>
140 173
141#include <assert.h> 174#include <assert.h>
142#include <errno.h> 175#include <errno.h>
143#include <sys/types.h> 176#include <sys/types.h>
144#include <time.h> 177#include <time.h>
178#include <limits.h>
145 179
146#include <signal.h> 180#include <signal.h>
147 181
148#ifdef EV_H 182#ifdef EV_H
149# include EV_H 183# include EV_H
150#else 184#else
151# include "ev.h" 185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
152#endif 197#endif
153 198
154#ifndef _WIN32 199#ifndef _WIN32
155# include <sys/time.h> 200# include <sys/time.h>
156# include <sys/wait.h> 201# include <sys/wait.h>
157# include <unistd.h> 202# include <unistd.h>
158#else 203#else
159# include <io.h> 204# include <io.h>
160# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
161# include <windows.h> 207# include <windows.h>
162# ifndef EV_SELECT_IS_WINSOCKET 208# ifndef EV_SELECT_IS_WINSOCKET
163# define EV_SELECT_IS_WINSOCKET 1 209# define EV_SELECT_IS_WINSOCKET 1
164# endif 210# endif
211# undef EV_AVOID_STDIO
165#endif 212#endif
213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
166 221
167/* this block tries to deduce configuration from header-defined symbols and defaults */ 222/* this block tries to deduce configuration from header-defined symbols and defaults */
168 223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# error "unable to find value for NSIG, please report"
247/* to make it compile regardless, just remove the above line, */
248/* but consider reporting it, too! :) */
249# define EV_NSIG 65
250#endif
251
252#ifndef EV_USE_FLOOR
253# define EV_USE_FLOOR 0
254#endif
255
256#ifndef EV_USE_CLOCK_SYSCALL
257# if __linux && __GLIBC__ >= 2
258# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
259# else
260# define EV_USE_CLOCK_SYSCALL 0
261# endif
262#endif
263
169#ifndef EV_USE_MONOTONIC 264#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0 265# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1 266# define EV_USE_MONOTONIC EV_FEATURE_OS
172# else 267# else
173# define EV_USE_MONOTONIC 0 268# define EV_USE_MONOTONIC 0
174# endif 269# endif
175#endif 270#endif
176 271
177#ifndef EV_USE_REALTIME 272#ifndef EV_USE_REALTIME
178# define EV_USE_REALTIME 0 273# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
179#endif 274#endif
180 275
181#ifndef EV_USE_NANOSLEEP 276#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L 277# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1 278# define EV_USE_NANOSLEEP EV_FEATURE_OS
184# else 279# else
185# define EV_USE_NANOSLEEP 0 280# define EV_USE_NANOSLEEP 0
186# endif 281# endif
187#endif 282#endif
188 283
189#ifndef EV_USE_SELECT 284#ifndef EV_USE_SELECT
190# define EV_USE_SELECT 1 285# define EV_USE_SELECT EV_FEATURE_BACKENDS
191#endif 286#endif
192 287
193#ifndef EV_USE_POLL 288#ifndef EV_USE_POLL
194# ifdef _WIN32 289# ifdef _WIN32
195# define EV_USE_POLL 0 290# define EV_USE_POLL 0
196# else 291# else
197# define EV_USE_POLL 1 292# define EV_USE_POLL EV_FEATURE_BACKENDS
198# endif 293# endif
199#endif 294#endif
200 295
201#ifndef EV_USE_EPOLL 296#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 297# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1 298# define EV_USE_EPOLL EV_FEATURE_BACKENDS
204# else 299# else
205# define EV_USE_EPOLL 0 300# define EV_USE_EPOLL 0
206# endif 301# endif
207#endif 302#endif
208 303
214# define EV_USE_PORT 0 309# define EV_USE_PORT 0
215#endif 310#endif
216 311
217#ifndef EV_USE_INOTIFY 312#ifndef EV_USE_INOTIFY
218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 313# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
219# define EV_USE_INOTIFY 1 314# define EV_USE_INOTIFY EV_FEATURE_OS
220# else 315# else
221# define EV_USE_INOTIFY 0 316# define EV_USE_INOTIFY 0
222# endif 317# endif
223#endif 318#endif
224 319
225#ifndef EV_PID_HASHSIZE 320#ifndef EV_PID_HASHSIZE
226# if EV_MINIMAL 321# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
227# define EV_PID_HASHSIZE 1
228# else
229# define EV_PID_HASHSIZE 16
230# endif
231#endif 322#endif
232 323
233#ifndef EV_INOTIFY_HASHSIZE 324#ifndef EV_INOTIFY_HASHSIZE
234# if EV_MINIMAL 325# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
235# define EV_INOTIFY_HASHSIZE 1
236# else
237# define EV_INOTIFY_HASHSIZE 16
238# endif
239#endif 326#endif
240 327
241#ifndef EV_USE_EVENTFD 328#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 329# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1 330# define EV_USE_EVENTFD EV_FEATURE_OS
244# else 331# else
245# define EV_USE_EVENTFD 0 332# define EV_USE_EVENTFD 0
333# endif
334#endif
335
336#ifndef EV_USE_SIGNALFD
337# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
338# define EV_USE_SIGNALFD EV_FEATURE_OS
339# else
340# define EV_USE_SIGNALFD 0
246# endif 341# endif
247#endif 342#endif
248 343
249#if 0 /* debugging */ 344#if 0 /* debugging */
250# define EV_VERIFY 3 345# define EV_VERIFY 3
251# define EV_USE_4HEAP 1 346# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1 347# define EV_HEAP_CACHE_AT 1
253#endif 348#endif
254 349
255#ifndef EV_VERIFY 350#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL 351# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
257#endif 352#endif
258 353
259#ifndef EV_USE_4HEAP 354#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL 355# define EV_USE_4HEAP EV_FEATURE_DATA
261#endif 356#endif
262 357
263#ifndef EV_HEAP_CACHE_AT 358#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL 359# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
360#endif
361
362#ifdef ANDROID
363/* supposedly, android doesn't typedef fd_mask */
364# undef EV_USE_SELECT
365# define EV_USE_SELECT 0
366/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
367# undef EV_USE_CLOCK_SYSCALL
368# define EV_USE_CLOCK_SYSCALL 0
369#endif
370
371/* aix's poll.h seems to cause lots of trouble */
372#ifdef _AIX
373/* AIX has a completely broken poll.h header */
374# undef EV_USE_POLL
375# define EV_USE_POLL 0
376#endif
377
378/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
379/* which makes programs even slower. might work on other unices, too. */
380#if EV_USE_CLOCK_SYSCALL
381# include <sys/syscall.h>
382# ifdef SYS_clock_gettime
383# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
384# undef EV_USE_MONOTONIC
385# define EV_USE_MONOTONIC 1
386# else
387# undef EV_USE_CLOCK_SYSCALL
388# define EV_USE_CLOCK_SYSCALL 0
389# endif
265#endif 390#endif
266 391
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 392/* this block fixes any misconfiguration where we know we run into trouble otherwise */
268 393
269#ifndef CLOCK_MONOTONIC 394#ifndef CLOCK_MONOTONIC
280# undef EV_USE_INOTIFY 405# undef EV_USE_INOTIFY
281# define EV_USE_INOTIFY 0 406# define EV_USE_INOTIFY 0
282#endif 407#endif
283 408
284#if !EV_USE_NANOSLEEP 409#if !EV_USE_NANOSLEEP
285# ifndef _WIN32 410/* hp-ux has it in sys/time.h, which we unconditionally include above */
411# if !defined _WIN32 && !defined __hpux
286# include <sys/select.h> 412# include <sys/select.h>
287# endif 413# endif
288#endif 414#endif
289 415
290#if EV_USE_INOTIFY 416#if EV_USE_INOTIFY
291# include <sys/utsname.h> 417# include <sys/statfs.h>
292# include <sys/inotify.h> 418# include <sys/inotify.h>
293/* some very old inotify.h headers don't have IN_DONT_FOLLOW */ 419/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
294# ifndef IN_DONT_FOLLOW 420# ifndef IN_DONT_FOLLOW
295# undef EV_USE_INOTIFY 421# undef EV_USE_INOTIFY
296# define EV_USE_INOTIFY 0 422# define EV_USE_INOTIFY 0
297# endif 423# endif
298#endif 424#endif
299 425
300#if EV_SELECT_IS_WINSOCKET
301# include <winsock.h>
302#endif
303
304#if EV_USE_EVENTFD 426#if EV_USE_EVENTFD
305/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 427/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
306# include <stdint.h> 428# include <stdint.h>
307# ifdef __cplusplus 429# ifndef EFD_NONBLOCK
308extern "C" { 430# define EFD_NONBLOCK O_NONBLOCK
309# endif 431# endif
310int eventfd (unsigned int initval, int flags); 432# ifndef EFD_CLOEXEC
311# ifdef __cplusplus 433# ifdef O_CLOEXEC
312} 434# define EFD_CLOEXEC O_CLOEXEC
435# else
436# define EFD_CLOEXEC 02000000
437# endif
313# endif 438# endif
439EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
440#endif
441
442#if EV_USE_SIGNALFD
443/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
444# include <stdint.h>
445# ifndef SFD_NONBLOCK
446# define SFD_NONBLOCK O_NONBLOCK
447# endif
448# ifndef SFD_CLOEXEC
449# ifdef O_CLOEXEC
450# define SFD_CLOEXEC O_CLOEXEC
451# else
452# define SFD_CLOEXEC 02000000
453# endif
454# endif
455EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
456
457struct signalfd_siginfo
458{
459 uint32_t ssi_signo;
460 char pad[128 - sizeof (uint32_t)];
461};
314#endif 462#endif
315 463
316/**/ 464/**/
317 465
318#if EV_VERIFY >= 3 466#if EV_VERIFY >= 3
319# define EV_FREQUENT_CHECK ev_loop_verify (EV_A) 467# define EV_FREQUENT_CHECK ev_verify (EV_A)
320#else 468#else
321# define EV_FREQUENT_CHECK do { } while (0) 469# define EV_FREQUENT_CHECK do { } while (0)
322#endif 470#endif
323 471
324/* 472/*
325 * This is used to avoid floating point rounding problems. 473 * This is used to work around floating point rounding problems.
326 * It is added to ev_rt_now when scheduling periodics
327 * to ensure progress, time-wise, even when rounding
328 * errors are against us.
329 * This value is good at least till the year 4000. 474 * This value is good at least till the year 4000.
330 * Better solutions welcome.
331 */ 475 */
332#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 476#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
477/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
333 478
334#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 479#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
335#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 480#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
336/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
337 481
482#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
483#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
484
485/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
486/* ECB.H BEGIN */
487/*
488 * libecb - http://software.schmorp.de/pkg/libecb
489 *
490 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
491 * Copyright (©) 2011 Emanuele Giaquinta
492 * All rights reserved.
493 *
494 * Redistribution and use in source and binary forms, with or without modifica-
495 * tion, are permitted provided that the following conditions are met:
496 *
497 * 1. Redistributions of source code must retain the above copyright notice,
498 * this list of conditions and the following disclaimer.
499 *
500 * 2. Redistributions in binary form must reproduce the above copyright
501 * notice, this list of conditions and the following disclaimer in the
502 * documentation and/or other materials provided with the distribution.
503 *
504 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
505 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
506 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
507 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
508 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
509 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
510 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
511 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
512 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
513 * OF THE POSSIBILITY OF SUCH DAMAGE.
514 */
515
516#ifndef ECB_H
517#define ECB_H
518
519/* 16 bits major, 16 bits minor */
520#define ECB_VERSION 0x00010003
521
522#ifdef _WIN32
523 typedef signed char int8_t;
524 typedef unsigned char uint8_t;
525 typedef signed short int16_t;
526 typedef unsigned short uint16_t;
527 typedef signed int int32_t;
528 typedef unsigned int uint32_t;
338#if __GNUC__ >= 4 529 #if __GNUC__
339# define expect(expr,value) __builtin_expect ((expr),(value)) 530 typedef signed long long int64_t;
340# define noinline __attribute__ ((noinline)) 531 typedef unsigned long long uint64_t;
532 #else /* _MSC_VER || __BORLANDC__ */
533 typedef signed __int64 int64_t;
534 typedef unsigned __int64 uint64_t;
535 #endif
536 #ifdef _WIN64
537 #define ECB_PTRSIZE 8
538 typedef uint64_t uintptr_t;
539 typedef int64_t intptr_t;
540 #else
541 #define ECB_PTRSIZE 4
542 typedef uint32_t uintptr_t;
543 typedef int32_t intptr_t;
544 #endif
341#else 545#else
342# define expect(expr,value) (expr) 546 #include <inttypes.h>
343# define noinline 547 #if UINTMAX_MAX > 0xffffffffU
344# if __STDC_VERSION__ < 199901L && __GNUC__ < 2 548 #define ECB_PTRSIZE 8
345# define inline 549 #else
550 #define ECB_PTRSIZE 4
551 #endif
346# endif 552#endif
553
554/* work around x32 idiocy by defining proper macros */
555#if __x86_64 || _M_AMD64
556 #if _ILP32
557 #define ECB_AMD64_X32 1
558 #else
559 #define ECB_AMD64 1
347#endif 560 #endif
561#endif
348 562
563/* many compilers define _GNUC_ to some versions but then only implement
564 * what their idiot authors think are the "more important" extensions,
565 * causing enormous grief in return for some better fake benchmark numbers.
566 * or so.
567 * we try to detect these and simply assume they are not gcc - if they have
568 * an issue with that they should have done it right in the first place.
569 */
570#ifndef ECB_GCC_VERSION
571 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
572 #define ECB_GCC_VERSION(major,minor) 0
573 #else
574 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
575 #endif
576#endif
577
578#define ECB_C (__STDC__+0) /* this assumes that __STDC__ is either empty or a number */
579#define ECB_C99 (__STDC_VERSION__ >= 199901L)
580#define ECB_C11 (__STDC_VERSION__ >= 201112L)
581#define ECB_CPP (__cplusplus+0)
582#define ECB_CPP11 (__cplusplus >= 201103L)
583
584#if ECB_CPP
585 #define ECB_EXTERN_C extern "C"
586 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
587 #define ECB_EXTERN_C_END }
588#else
589 #define ECB_EXTERN_C extern
590 #define ECB_EXTERN_C_BEG
591 #define ECB_EXTERN_C_END
592#endif
593
594/*****************************************************************************/
595
596/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
597/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
598
599#if ECB_NO_THREADS
600 #define ECB_NO_SMP 1
601#endif
602
603#if ECB_NO_SMP
604 #define ECB_MEMORY_FENCE do { } while (0)
605#endif
606
607#ifndef ECB_MEMORY_FENCE
608 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
609 #if __i386 || __i386__
610 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
611 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
612 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
613 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
614 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
615 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
616 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
617 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
618 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
619 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
620 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
621 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
622 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
623 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
624 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
625 #elif __sparc || __sparc__
626 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
627 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
628 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
629 #elif defined __s390__ || defined __s390x__
630 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
631 #elif defined __mips__
632 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
633 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
634 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
635 #elif defined __alpha__
636 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
637 #elif defined __hppa__
638 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
639 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
640 #elif defined __ia64__
641 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
642 #elif defined __m68k__
643 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
644 #elif defined __m88k__
645 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
646 #elif defined __sh__
647 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
648 #endif
649 #endif
650#endif
651
652#ifndef ECB_MEMORY_FENCE
653 #if ECB_GCC_VERSION(4,7)
654 /* see comment below (stdatomic.h) about the C11 memory model. */
655 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
656
657 /* The __has_feature syntax from clang is so misdesigned that we cannot use it
658 * without risking compile time errors with other compilers. We *could*
659 * define our own ecb_clang_has_feature, but I just can't be bothered to work
660 * around this shit time and again.
661 * #elif defined __clang && __has_feature (cxx_atomic)
662 * // see comment below (stdatomic.h) about the C11 memory model.
663 * #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
664 */
665
666 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
667 #define ECB_MEMORY_FENCE __sync_synchronize ()
668 #elif _MSC_VER >= 1400 /* VC++ 2005 */
669 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
670 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
671 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
672 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
673 #elif defined _WIN32
674 #include <WinNT.h>
675 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
676 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
677 #include <mbarrier.h>
678 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
679 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
680 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
681 #elif __xlC__
682 #define ECB_MEMORY_FENCE __sync ()
683 #endif
684#endif
685
686#ifndef ECB_MEMORY_FENCE
687 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
688 /* we assume that these memory fences work on all variables/all memory accesses, */
689 /* not just C11 atomics and atomic accesses */
690 #include <stdatomic.h>
691 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
692 /* any fence other than seq_cst, which isn't very efficient for us. */
693 /* Why that is, we don't know - either the C11 memory model is quite useless */
694 /* for most usages, or gcc and clang have a bug */
695 /* I *currently* lean towards the latter, and inefficiently implement */
696 /* all three of ecb's fences as a seq_cst fence */
697 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
698 #endif
699#endif
700
701#ifndef ECB_MEMORY_FENCE
702 #if !ECB_AVOID_PTHREADS
703 /*
704 * if you get undefined symbol references to pthread_mutex_lock,
705 * or failure to find pthread.h, then you should implement
706 * the ECB_MEMORY_FENCE operations for your cpu/compiler
707 * OR provide pthread.h and link against the posix thread library
708 * of your system.
709 */
710 #include <pthread.h>
711 #define ECB_NEEDS_PTHREADS 1
712 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
713
714 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
715 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
716 #endif
717#endif
718
719#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
720 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
721#endif
722
723#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
724 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
725#endif
726
727/*****************************************************************************/
728
729#if __cplusplus
730 #define ecb_inline static inline
731#elif ECB_GCC_VERSION(2,5)
732 #define ecb_inline static __inline__
733#elif ECB_C99
734 #define ecb_inline static inline
735#else
736 #define ecb_inline static
737#endif
738
739#if ECB_GCC_VERSION(3,3)
740 #define ecb_restrict __restrict__
741#elif ECB_C99
742 #define ecb_restrict restrict
743#else
744 #define ecb_restrict
745#endif
746
747typedef int ecb_bool;
748
749#define ECB_CONCAT_(a, b) a ## b
750#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
751#define ECB_STRINGIFY_(a) # a
752#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
753
754#define ecb_function_ ecb_inline
755
756#if ECB_GCC_VERSION(3,1)
757 #define ecb_attribute(attrlist) __attribute__(attrlist)
758 #define ecb_is_constant(expr) __builtin_constant_p (expr)
759 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
760 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
761#else
762 #define ecb_attribute(attrlist)
763 #define ecb_is_constant(expr) 0
764 #define ecb_expect(expr,value) (expr)
765 #define ecb_prefetch(addr,rw,locality)
766#endif
767
768/* no emulation for ecb_decltype */
769#if ECB_GCC_VERSION(4,5)
770 #define ecb_decltype(x) __decltype(x)
771#elif ECB_GCC_VERSION(3,0)
772 #define ecb_decltype(x) __typeof(x)
773#endif
774
775#define ecb_noinline ecb_attribute ((__noinline__))
776#define ecb_unused ecb_attribute ((__unused__))
777#define ecb_const ecb_attribute ((__const__))
778#define ecb_pure ecb_attribute ((__pure__))
779
780#if ECB_C11
781 #define ecb_noreturn _Noreturn
782#else
783 #define ecb_noreturn ecb_attribute ((__noreturn__))
784#endif
785
786#if ECB_GCC_VERSION(4,3)
787 #define ecb_artificial ecb_attribute ((__artificial__))
788 #define ecb_hot ecb_attribute ((__hot__))
789 #define ecb_cold ecb_attribute ((__cold__))
790#else
791 #define ecb_artificial
792 #define ecb_hot
793 #define ecb_cold
794#endif
795
796/* put around conditional expressions if you are very sure that the */
797/* expression is mostly true or mostly false. note that these return */
798/* booleans, not the expression. */
349#define expect_false(expr) expect ((expr) != 0, 0) 799#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
350#define expect_true(expr) expect ((expr) != 0, 1) 800#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
801/* for compatibility to the rest of the world */
802#define ecb_likely(expr) ecb_expect_true (expr)
803#define ecb_unlikely(expr) ecb_expect_false (expr)
804
805/* count trailing zero bits and count # of one bits */
806#if ECB_GCC_VERSION(3,4)
807 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
808 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
809 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
810 #define ecb_ctz32(x) __builtin_ctz (x)
811 #define ecb_ctz64(x) __builtin_ctzll (x)
812 #define ecb_popcount32(x) __builtin_popcount (x)
813 /* no popcountll */
814#else
815 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
816 ecb_function_ int
817 ecb_ctz32 (uint32_t x)
818 {
819 int r = 0;
820
821 x &= ~x + 1; /* this isolates the lowest bit */
822
823#if ECB_branchless_on_i386
824 r += !!(x & 0xaaaaaaaa) << 0;
825 r += !!(x & 0xcccccccc) << 1;
826 r += !!(x & 0xf0f0f0f0) << 2;
827 r += !!(x & 0xff00ff00) << 3;
828 r += !!(x & 0xffff0000) << 4;
829#else
830 if (x & 0xaaaaaaaa) r += 1;
831 if (x & 0xcccccccc) r += 2;
832 if (x & 0xf0f0f0f0) r += 4;
833 if (x & 0xff00ff00) r += 8;
834 if (x & 0xffff0000) r += 16;
835#endif
836
837 return r;
838 }
839
840 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
841 ecb_function_ int
842 ecb_ctz64 (uint64_t x)
843 {
844 int shift = x & 0xffffffffU ? 0 : 32;
845 return ecb_ctz32 (x >> shift) + shift;
846 }
847
848 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
849 ecb_function_ int
850 ecb_popcount32 (uint32_t x)
851 {
852 x -= (x >> 1) & 0x55555555;
853 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
854 x = ((x >> 4) + x) & 0x0f0f0f0f;
855 x *= 0x01010101;
856
857 return x >> 24;
858 }
859
860 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
861 ecb_function_ int ecb_ld32 (uint32_t x)
862 {
863 int r = 0;
864
865 if (x >> 16) { x >>= 16; r += 16; }
866 if (x >> 8) { x >>= 8; r += 8; }
867 if (x >> 4) { x >>= 4; r += 4; }
868 if (x >> 2) { x >>= 2; r += 2; }
869 if (x >> 1) { r += 1; }
870
871 return r;
872 }
873
874 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
875 ecb_function_ int ecb_ld64 (uint64_t x)
876 {
877 int r = 0;
878
879 if (x >> 32) { x >>= 32; r += 32; }
880
881 return r + ecb_ld32 (x);
882 }
883#endif
884
885ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
886ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
887ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
888ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
889
890ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
891ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
892{
893 return ( (x * 0x0802U & 0x22110U)
894 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
895}
896
897ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
898ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
899{
900 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
901 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
902 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
903 x = ( x >> 8 ) | ( x << 8);
904
905 return x;
906}
907
908ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
909ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
910{
911 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
912 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
913 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
914 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
915 x = ( x >> 16 ) | ( x << 16);
916
917 return x;
918}
919
920/* popcount64 is only available on 64 bit cpus as gcc builtin */
921/* so for this version we are lazy */
922ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
923ecb_function_ int
924ecb_popcount64 (uint64_t x)
925{
926 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
927}
928
929ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
930ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
931ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
932ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
933ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
934ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
935ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
936ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
937
938ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
939ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
940ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
941ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
942ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
943ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
944ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
945ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
946
947#if ECB_GCC_VERSION(4,3)
948 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
949 #define ecb_bswap32(x) __builtin_bswap32 (x)
950 #define ecb_bswap64(x) __builtin_bswap64 (x)
951#else
952 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
953 ecb_function_ uint16_t
954 ecb_bswap16 (uint16_t x)
955 {
956 return ecb_rotl16 (x, 8);
957 }
958
959 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
960 ecb_function_ uint32_t
961 ecb_bswap32 (uint32_t x)
962 {
963 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
964 }
965
966 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
967 ecb_function_ uint64_t
968 ecb_bswap64 (uint64_t x)
969 {
970 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
971 }
972#endif
973
974#if ECB_GCC_VERSION(4,5)
975 #define ecb_unreachable() __builtin_unreachable ()
976#else
977 /* this seems to work fine, but gcc always emits a warning for it :/ */
978 ecb_inline void ecb_unreachable (void) ecb_noreturn;
979 ecb_inline void ecb_unreachable (void) { }
980#endif
981
982/* try to tell the compiler that some condition is definitely true */
983#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
984
985ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
986ecb_inline unsigned char
987ecb_byteorder_helper (void)
988{
989 /* the union code still generates code under pressure in gcc, */
990 /* but less than using pointers, and always seems to */
991 /* successfully return a constant. */
992 /* the reason why we have this horrible preprocessor mess */
993 /* is to avoid it in all cases, at least on common architectures */
994 /* or when using a recent enough gcc version (>= 4.6) */
995#if __i386 || __i386__ || _M_X86 || __amd64 || __amd64__ || _M_X64
996 return 0x44;
997#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
998 return 0x44;
999#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1000 return 0x11;
1001#else
1002 union
1003 {
1004 uint32_t i;
1005 uint8_t c;
1006 } u = { 0x11223344 };
1007 return u.c;
1008#endif
1009}
1010
1011ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
1012ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
1013ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
1014ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
1015
1016#if ECB_GCC_VERSION(3,0) || ECB_C99
1017 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1018#else
1019 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1020#endif
1021
1022#if __cplusplus
1023 template<typename T>
1024 static inline T ecb_div_rd (T val, T div)
1025 {
1026 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1027 }
1028 template<typename T>
1029 static inline T ecb_div_ru (T val, T div)
1030 {
1031 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1032 }
1033#else
1034 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1035 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1036#endif
1037
1038#if ecb_cplusplus_does_not_suck
1039 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1040 template<typename T, int N>
1041 static inline int ecb_array_length (const T (&arr)[N])
1042 {
1043 return N;
1044 }
1045#else
1046 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1047#endif
1048
1049/*******************************************************************************/
1050/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1051
1052/* basically, everything uses "ieee pure-endian" floating point numbers */
1053/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1054#if 0 \
1055 || __i386 || __i386__ \
1056 || __amd64 || __amd64__ || __x86_64 || __x86_64__ \
1057 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1058 || defined __arm__ && defined __ARM_EABI__ \
1059 || defined __s390__ || defined __s390x__ \
1060 || defined __mips__ \
1061 || defined __alpha__ \
1062 || defined __hppa__ \
1063 || defined __ia64__ \
1064 || defined __m68k__ \
1065 || defined __m88k__ \
1066 || defined __sh__ \
1067 || defined _M_IX86 || defined _M_AMD64 || defined _M_IA64
1068 #define ECB_STDFP 1
1069 #include <string.h> /* for memcpy */
1070#else
1071 #define ECB_STDFP 0
1072#endif
1073
1074#ifndef ECB_NO_LIBM
1075
1076 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1077
1078 #ifdef NEN
1079 #define ECB_NAN NAN
1080 #else
1081 #define ECB_NAN INFINITY
1082 #endif
1083
1084 /* converts an ieee half/binary16 to a float */
1085 ecb_function_ float ecb_binary16_to_float (uint16_t x) ecb_const;
1086 ecb_function_ float
1087 ecb_binary16_to_float (uint16_t x)
1088 {
1089 int e = (x >> 10) & 0x1f;
1090 int m = x & 0x3ff;
1091 float r;
1092
1093 if (!e ) r = ldexpf (m , -24);
1094 else if (e != 31) r = ldexpf (m + 0x400, e - 25);
1095 else if (m ) r = ECB_NAN;
1096 else r = INFINITY;
1097
1098 return x & 0x8000 ? -r : r;
1099 }
1100
1101 /* convert a float to ieee single/binary32 */
1102 ecb_function_ uint32_t ecb_float_to_binary32 (float x) ecb_const;
1103 ecb_function_ uint32_t
1104 ecb_float_to_binary32 (float x)
1105 {
1106 uint32_t r;
1107
1108 #if ECB_STDFP
1109 memcpy (&r, &x, 4);
1110 #else
1111 /* slow emulation, works for anything but -0 */
1112 uint32_t m;
1113 int e;
1114
1115 if (x == 0e0f ) return 0x00000000U;
1116 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1117 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1118 if (x != x ) return 0x7fbfffffU;
1119
1120 m = frexpf (x, &e) * 0x1000000U;
1121
1122 r = m & 0x80000000U;
1123
1124 if (r)
1125 m = -m;
1126
1127 if (e <= -126)
1128 {
1129 m &= 0xffffffU;
1130 m >>= (-125 - e);
1131 e = -126;
1132 }
1133
1134 r |= (e + 126) << 23;
1135 r |= m & 0x7fffffU;
1136 #endif
1137
1138 return r;
1139 }
1140
1141 /* converts an ieee single/binary32 to a float */
1142 ecb_function_ float ecb_binary32_to_float (uint32_t x) ecb_const;
1143 ecb_function_ float
1144 ecb_binary32_to_float (uint32_t x)
1145 {
1146 float r;
1147
1148 #if ECB_STDFP
1149 memcpy (&r, &x, 4);
1150 #else
1151 /* emulation, only works for normals and subnormals and +0 */
1152 int neg = x >> 31;
1153 int e = (x >> 23) & 0xffU;
1154
1155 x &= 0x7fffffU;
1156
1157 if (e)
1158 x |= 0x800000U;
1159 else
1160 e = 1;
1161
1162 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1163 r = ldexpf (x * (0.5f / 0x800000U), e - 126);
1164
1165 r = neg ? -r : r;
1166 #endif
1167
1168 return r;
1169 }
1170
1171 /* convert a double to ieee double/binary64 */
1172 ecb_function_ uint64_t ecb_double_to_binary64 (double x) ecb_const;
1173 ecb_function_ uint64_t
1174 ecb_double_to_binary64 (double x)
1175 {
1176 uint64_t r;
1177
1178 #if ECB_STDFP
1179 memcpy (&r, &x, 8);
1180 #else
1181 /* slow emulation, works for anything but -0 */
1182 uint64_t m;
1183 int e;
1184
1185 if (x == 0e0 ) return 0x0000000000000000U;
1186 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1187 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1188 if (x != x ) return 0X7ff7ffffffffffffU;
1189
1190 m = frexp (x, &e) * 0x20000000000000U;
1191
1192 r = m & 0x8000000000000000;;
1193
1194 if (r)
1195 m = -m;
1196
1197 if (e <= -1022)
1198 {
1199 m &= 0x1fffffffffffffU;
1200 m >>= (-1021 - e);
1201 e = -1022;
1202 }
1203
1204 r |= ((uint64_t)(e + 1022)) << 52;
1205 r |= m & 0xfffffffffffffU;
1206 #endif
1207
1208 return r;
1209 }
1210
1211 /* converts an ieee double/binary64 to a double */
1212 ecb_function_ double ecb_binary64_to_double (uint64_t x) ecb_const;
1213 ecb_function_ double
1214 ecb_binary64_to_double (uint64_t x)
1215 {
1216 double r;
1217
1218 #if ECB_STDFP
1219 memcpy (&r, &x, 8);
1220 #else
1221 /* emulation, only works for normals and subnormals and +0 */
1222 int neg = x >> 63;
1223 int e = (x >> 52) & 0x7ffU;
1224
1225 x &= 0xfffffffffffffU;
1226
1227 if (e)
1228 x |= 0x10000000000000U;
1229 else
1230 e = 1;
1231
1232 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1233 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1234
1235 r = neg ? -r : r;
1236 #endif
1237
1238 return r;
1239 }
1240
1241#endif
1242
1243#endif
1244
1245/* ECB.H END */
1246
1247#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1248/* if your architecture doesn't need memory fences, e.g. because it is
1249 * single-cpu/core, or if you use libev in a project that doesn't use libev
1250 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1251 * libev, in which cases the memory fences become nops.
1252 * alternatively, you can remove this #error and link against libpthread,
1253 * which will then provide the memory fences.
1254 */
1255# error "memory fences not defined for your architecture, please report"
1256#endif
1257
1258#ifndef ECB_MEMORY_FENCE
1259# define ECB_MEMORY_FENCE do { } while (0)
1260# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1261# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1262#endif
1263
1264#define expect_false(cond) ecb_expect_false (cond)
1265#define expect_true(cond) ecb_expect_true (cond)
1266#define noinline ecb_noinline
1267
351#define inline_size static inline 1268#define inline_size ecb_inline
352 1269
353#if EV_MINIMAL 1270#if EV_FEATURE_CODE
1271# define inline_speed ecb_inline
1272#else
354# define inline_speed static noinline 1273# define inline_speed static noinline
1274#endif
1275
1276#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1277
1278#if EV_MINPRI == EV_MAXPRI
1279# define ABSPRI(w) (((W)w), 0)
355#else 1280#else
356# define inline_speed static inline
357#endif
358
359#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
360#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1281# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1282#endif
361 1283
362#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1284#define EMPTY /* required for microsofts broken pseudo-c compiler */
363#define EMPTY2(a,b) /* used to suppress some warnings */ 1285#define EMPTY2(a,b) /* used to suppress some warnings */
364 1286
365typedef ev_watcher *W; 1287typedef ev_watcher *W;
367typedef ev_watcher_time *WT; 1289typedef ev_watcher_time *WT;
368 1290
369#define ev_active(w) ((W)(w))->active 1291#define ev_active(w) ((W)(w))->active
370#define ev_at(w) ((WT)(w))->at 1292#define ev_at(w) ((WT)(w))->at
371 1293
1294#if EV_USE_REALTIME
1295/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1296/* giving it a reasonably high chance of working on typical architectures */
1297static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1298#endif
1299
372#if EV_USE_MONOTONIC 1300#if EV_USE_MONOTONIC
373/* sig_atomic_t is used to avoid per-thread variables or locking but still */
374/* giving it a reasonably high chance of working on typical architetcures */
375static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1301static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1302#endif
1303
1304#ifndef EV_FD_TO_WIN32_HANDLE
1305# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1306#endif
1307#ifndef EV_WIN32_HANDLE_TO_FD
1308# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1309#endif
1310#ifndef EV_WIN32_CLOSE_FD
1311# define EV_WIN32_CLOSE_FD(fd) close (fd)
376#endif 1312#endif
377 1313
378#ifdef _WIN32 1314#ifdef _WIN32
379# include "ev_win32.c" 1315# include "ev_win32.c"
380#endif 1316#endif
381 1317
382/*****************************************************************************/ 1318/*****************************************************************************/
383 1319
1320/* define a suitable floor function (only used by periodics atm) */
1321
1322#if EV_USE_FLOOR
1323# include <math.h>
1324# define ev_floor(v) floor (v)
1325#else
1326
1327#include <float.h>
1328
1329/* a floor() replacement function, should be independent of ev_tstamp type */
1330static ev_tstamp noinline
1331ev_floor (ev_tstamp v)
1332{
1333 /* the choice of shift factor is not terribly important */
1334#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1335 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1336#else
1337 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1338#endif
1339
1340 /* argument too large for an unsigned long? */
1341 if (expect_false (v >= shift))
1342 {
1343 ev_tstamp f;
1344
1345 if (v == v - 1.)
1346 return v; /* very large number */
1347
1348 f = shift * ev_floor (v * (1. / shift));
1349 return f + ev_floor (v - f);
1350 }
1351
1352 /* special treatment for negative args? */
1353 if (expect_false (v < 0.))
1354 {
1355 ev_tstamp f = -ev_floor (-v);
1356
1357 return f - (f == v ? 0 : 1);
1358 }
1359
1360 /* fits into an unsigned long */
1361 return (unsigned long)v;
1362}
1363
1364#endif
1365
1366/*****************************************************************************/
1367
1368#ifdef __linux
1369# include <sys/utsname.h>
1370#endif
1371
1372static unsigned int noinline ecb_cold
1373ev_linux_version (void)
1374{
1375#ifdef __linux
1376 unsigned int v = 0;
1377 struct utsname buf;
1378 int i;
1379 char *p = buf.release;
1380
1381 if (uname (&buf))
1382 return 0;
1383
1384 for (i = 3+1; --i; )
1385 {
1386 unsigned int c = 0;
1387
1388 for (;;)
1389 {
1390 if (*p >= '0' && *p <= '9')
1391 c = c * 10 + *p++ - '0';
1392 else
1393 {
1394 p += *p == '.';
1395 break;
1396 }
1397 }
1398
1399 v = (v << 8) | c;
1400 }
1401
1402 return v;
1403#else
1404 return 0;
1405#endif
1406}
1407
1408/*****************************************************************************/
1409
1410#if EV_AVOID_STDIO
1411static void noinline ecb_cold
1412ev_printerr (const char *msg)
1413{
1414 write (STDERR_FILENO, msg, strlen (msg));
1415}
1416#endif
1417
384static void (*syserr_cb)(const char *msg); 1418static void (*syserr_cb)(const char *msg) EV_THROW;
385 1419
386void 1420void ecb_cold
387ev_set_syserr_cb (void (*cb)(const char *msg)) 1421ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
388{ 1422{
389 syserr_cb = cb; 1423 syserr_cb = cb;
390} 1424}
391 1425
392static void noinline 1426static void noinline ecb_cold
393syserr (const char *msg) 1427ev_syserr (const char *msg)
394{ 1428{
395 if (!msg) 1429 if (!msg)
396 msg = "(libev) system error"; 1430 msg = "(libev) system error";
397 1431
398 if (syserr_cb) 1432 if (syserr_cb)
399 syserr_cb (msg); 1433 syserr_cb (msg);
400 else 1434 else
401 { 1435 {
1436#if EV_AVOID_STDIO
1437 ev_printerr (msg);
1438 ev_printerr (": ");
1439 ev_printerr (strerror (errno));
1440 ev_printerr ("\n");
1441#else
402 perror (msg); 1442 perror (msg);
1443#endif
403 abort (); 1444 abort ();
404 } 1445 }
405} 1446}
406 1447
407static void * 1448static void *
408ev_realloc_emul (void *ptr, long size) 1449ev_realloc_emul (void *ptr, long size) EV_THROW
409{ 1450{
410 /* some systems, notably openbsd and darwin, fail to properly 1451 /* some systems, notably openbsd and darwin, fail to properly
411 * implement realloc (x, 0) (as required by both ansi c-98 and 1452 * implement realloc (x, 0) (as required by both ansi c-89 and
412 * the single unix specification, so work around them here. 1453 * the single unix specification, so work around them here.
1454 * recently, also (at least) fedora and debian started breaking it,
1455 * despite documenting it otherwise.
413 */ 1456 */
414 1457
415 if (size) 1458 if (size)
416 return realloc (ptr, size); 1459 return realloc (ptr, size);
417 1460
418 free (ptr); 1461 free (ptr);
419 return 0; 1462 return 0;
420} 1463}
421 1464
422static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 1465static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
423 1466
424void 1467void ecb_cold
425ev_set_allocator (void *(*cb)(void *ptr, long size)) 1468ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
426{ 1469{
427 alloc = cb; 1470 alloc = cb;
428} 1471}
429 1472
430inline_speed void * 1473inline_speed void *
432{ 1475{
433 ptr = alloc (ptr, size); 1476 ptr = alloc (ptr, size);
434 1477
435 if (!ptr && size) 1478 if (!ptr && size)
436 { 1479 {
1480#if EV_AVOID_STDIO
1481 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1482#else
437 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1483 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1484#endif
438 abort (); 1485 abort ();
439 } 1486 }
440 1487
441 return ptr; 1488 return ptr;
442} 1489}
444#define ev_malloc(size) ev_realloc (0, (size)) 1491#define ev_malloc(size) ev_realloc (0, (size))
445#define ev_free(ptr) ev_realloc ((ptr), 0) 1492#define ev_free(ptr) ev_realloc ((ptr), 0)
446 1493
447/*****************************************************************************/ 1494/*****************************************************************************/
448 1495
1496/* set in reify when reification needed */
1497#define EV_ANFD_REIFY 1
1498
1499/* file descriptor info structure */
449typedef struct 1500typedef struct
450{ 1501{
451 WL head; 1502 WL head;
452 unsigned char events; 1503 unsigned char events; /* the events watched for */
1504 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1505 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
453 unsigned char reify; 1506 unsigned char unused;
1507#if EV_USE_EPOLL
1508 unsigned int egen; /* generation counter to counter epoll bugs */
1509#endif
454#if EV_SELECT_IS_WINSOCKET 1510#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
455 SOCKET handle; 1511 SOCKET handle;
456#endif 1512#endif
1513#if EV_USE_IOCP
1514 OVERLAPPED or, ow;
1515#endif
457} ANFD; 1516} ANFD;
458 1517
1518/* stores the pending event set for a given watcher */
459typedef struct 1519typedef struct
460{ 1520{
461 W w; 1521 W w;
462 int events; 1522 int events; /* the pending event set for the given watcher */
463} ANPENDING; 1523} ANPENDING;
464 1524
465#if EV_USE_INOTIFY 1525#if EV_USE_INOTIFY
466/* hash table entry per inotify-id */ 1526/* hash table entry per inotify-id */
467typedef struct 1527typedef struct
470} ANFS; 1530} ANFS;
471#endif 1531#endif
472 1532
473/* Heap Entry */ 1533/* Heap Entry */
474#if EV_HEAP_CACHE_AT 1534#if EV_HEAP_CACHE_AT
1535 /* a heap element */
475 typedef struct { 1536 typedef struct {
476 ev_tstamp at; 1537 ev_tstamp at;
477 WT w; 1538 WT w;
478 } ANHE; 1539 } ANHE;
479 1540
480 #define ANHE_w(he) (he).w /* access watcher, read-write */ 1541 #define ANHE_w(he) (he).w /* access watcher, read-write */
481 #define ANHE_at(he) (he).at /* access cached at, read-only */ 1542 #define ANHE_at(he) (he).at /* access cached at, read-only */
482 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 1543 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
483#else 1544#else
1545 /* a heap element */
484 typedef WT ANHE; 1546 typedef WT ANHE;
485 1547
486 #define ANHE_w(he) (he) 1548 #define ANHE_w(he) (he)
487 #define ANHE_at(he) (he)->at 1549 #define ANHE_at(he) (he)->at
488 #define ANHE_at_cache(he) 1550 #define ANHE_at_cache(he)
499 #undef VAR 1561 #undef VAR
500 }; 1562 };
501 #include "ev_wrap.h" 1563 #include "ev_wrap.h"
502 1564
503 static struct ev_loop default_loop_struct; 1565 static struct ev_loop default_loop_struct;
504 struct ev_loop *ev_default_loop_ptr; 1566 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
505 1567
506#else 1568#else
507 1569
508 ev_tstamp ev_rt_now; 1570 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
509 #define VAR(name,decl) static decl; 1571 #define VAR(name,decl) static decl;
510 #include "ev_vars.h" 1572 #include "ev_vars.h"
511 #undef VAR 1573 #undef VAR
512 1574
513 static int ev_default_loop_ptr; 1575 static int ev_default_loop_ptr;
514 1576
515#endif 1577#endif
516 1578
1579#if EV_FEATURE_API
1580# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1581# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1582# define EV_INVOKE_PENDING invoke_cb (EV_A)
1583#else
1584# define EV_RELEASE_CB (void)0
1585# define EV_ACQUIRE_CB (void)0
1586# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1587#endif
1588
1589#define EVBREAK_RECURSE 0x80
1590
517/*****************************************************************************/ 1591/*****************************************************************************/
518 1592
1593#ifndef EV_HAVE_EV_TIME
519ev_tstamp 1594ev_tstamp
520ev_time (void) 1595ev_time (void) EV_THROW
521{ 1596{
522#if EV_USE_REALTIME 1597#if EV_USE_REALTIME
1598 if (expect_true (have_realtime))
1599 {
523 struct timespec ts; 1600 struct timespec ts;
524 clock_gettime (CLOCK_REALTIME, &ts); 1601 clock_gettime (CLOCK_REALTIME, &ts);
525 return ts.tv_sec + ts.tv_nsec * 1e-9; 1602 return ts.tv_sec + ts.tv_nsec * 1e-9;
526#else 1603 }
1604#endif
1605
527 struct timeval tv; 1606 struct timeval tv;
528 gettimeofday (&tv, 0); 1607 gettimeofday (&tv, 0);
529 return tv.tv_sec + tv.tv_usec * 1e-6; 1608 return tv.tv_sec + tv.tv_usec * 1e-6;
530#endif
531} 1609}
1610#endif
532 1611
533ev_tstamp inline_size 1612inline_size ev_tstamp
534get_clock (void) 1613get_clock (void)
535{ 1614{
536#if EV_USE_MONOTONIC 1615#if EV_USE_MONOTONIC
537 if (expect_true (have_monotonic)) 1616 if (expect_true (have_monotonic))
538 { 1617 {
545 return ev_time (); 1624 return ev_time ();
546} 1625}
547 1626
548#if EV_MULTIPLICITY 1627#if EV_MULTIPLICITY
549ev_tstamp 1628ev_tstamp
550ev_now (EV_P) 1629ev_now (EV_P) EV_THROW
551{ 1630{
552 return ev_rt_now; 1631 return ev_rt_now;
553} 1632}
554#endif 1633#endif
555 1634
556void 1635void
557ev_sleep (ev_tstamp delay) 1636ev_sleep (ev_tstamp delay) EV_THROW
558{ 1637{
559 if (delay > 0.) 1638 if (delay > 0.)
560 { 1639 {
561#if EV_USE_NANOSLEEP 1640#if EV_USE_NANOSLEEP
562 struct timespec ts; 1641 struct timespec ts;
563 1642
564 ts.tv_sec = (time_t)delay; 1643 EV_TS_SET (ts, delay);
565 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
566
567 nanosleep (&ts, 0); 1644 nanosleep (&ts, 0);
568#elif defined(_WIN32) 1645#elif defined _WIN32
569 Sleep ((unsigned long)(delay * 1e3)); 1646 Sleep ((unsigned long)(delay * 1e3));
570#else 1647#else
571 struct timeval tv; 1648 struct timeval tv;
572 1649
573 tv.tv_sec = (time_t)delay;
574 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
575
576 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */ 1650 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
577 /* somehting nto guaranteed by newer posix versions, but guaranteed */ 1651 /* something not guaranteed by newer posix versions, but guaranteed */
578 /* by older ones */ 1652 /* by older ones */
1653 EV_TV_SET (tv, delay);
579 select (0, 0, 0, 0, &tv); 1654 select (0, 0, 0, 0, &tv);
580#endif 1655#endif
581 } 1656 }
582} 1657}
583 1658
584/*****************************************************************************/ 1659/*****************************************************************************/
585 1660
586#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 1661#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
587 1662
588int inline_size 1663/* find a suitable new size for the given array, */
1664/* hopefully by rounding to a nice-to-malloc size */
1665inline_size int
589array_nextsize (int elem, int cur, int cnt) 1666array_nextsize (int elem, int cur, int cnt)
590{ 1667{
591 int ncur = cur + 1; 1668 int ncur = cur + 1;
592 1669
593 do 1670 do
594 ncur <<= 1; 1671 ncur <<= 1;
595 while (cnt > ncur); 1672 while (cnt > ncur);
596 1673
597 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */ 1674 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
598 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4) 1675 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
599 { 1676 {
600 ncur *= elem; 1677 ncur *= elem;
601 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1); 1678 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
602 ncur = ncur - sizeof (void *) * 4; 1679 ncur = ncur - sizeof (void *) * 4;
604 } 1681 }
605 1682
606 return ncur; 1683 return ncur;
607} 1684}
608 1685
609static noinline void * 1686static void * noinline ecb_cold
610array_realloc (int elem, void *base, int *cur, int cnt) 1687array_realloc (int elem, void *base, int *cur, int cnt)
611{ 1688{
612 *cur = array_nextsize (elem, *cur, cnt); 1689 *cur = array_nextsize (elem, *cur, cnt);
613 return ev_realloc (base, elem * *cur); 1690 return ev_realloc (base, elem * *cur);
614} 1691}
1692
1693#define array_init_zero(base,count) \
1694 memset ((void *)(base), 0, sizeof (*(base)) * (count))
615 1695
616#define array_needsize(type,base,cur,cnt,init) \ 1696#define array_needsize(type,base,cur,cnt,init) \
617 if (expect_false ((cnt) > (cur))) \ 1697 if (expect_false ((cnt) > (cur))) \
618 { \ 1698 { \
619 int ocur_ = (cur); \ 1699 int ecb_unused ocur_ = (cur); \
620 (base) = (type *)array_realloc \ 1700 (base) = (type *)array_realloc \
621 (sizeof (type), (base), &(cur), (cnt)); \ 1701 (sizeof (type), (base), &(cur), (cnt)); \
622 init ((base) + (ocur_), (cur) - ocur_); \ 1702 init ((base) + (ocur_), (cur) - ocur_); \
623 } 1703 }
624 1704
631 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1711 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
632 } 1712 }
633#endif 1713#endif
634 1714
635#define array_free(stem, idx) \ 1715#define array_free(stem, idx) \
636 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1716 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
637 1717
638/*****************************************************************************/ 1718/*****************************************************************************/
639 1719
1720/* dummy callback for pending events */
1721static void noinline
1722pendingcb (EV_P_ ev_prepare *w, int revents)
1723{
1724}
1725
640void noinline 1726void noinline
641ev_feed_event (EV_P_ void *w, int revents) 1727ev_feed_event (EV_P_ void *w, int revents) EV_THROW
642{ 1728{
643 W w_ = (W)w; 1729 W w_ = (W)w;
644 int pri = ABSPRI (w_); 1730 int pri = ABSPRI (w_);
645 1731
646 if (expect_false (w_->pending)) 1732 if (expect_false (w_->pending))
650 w_->pending = ++pendingcnt [pri]; 1736 w_->pending = ++pendingcnt [pri];
651 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 1737 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
652 pendings [pri][w_->pending - 1].w = w_; 1738 pendings [pri][w_->pending - 1].w = w_;
653 pendings [pri][w_->pending - 1].events = revents; 1739 pendings [pri][w_->pending - 1].events = revents;
654 } 1740 }
655}
656 1741
657void inline_speed 1742 pendingpri = NUMPRI - 1;
1743}
1744
1745inline_speed void
1746feed_reverse (EV_P_ W w)
1747{
1748 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1749 rfeeds [rfeedcnt++] = w;
1750}
1751
1752inline_size void
1753feed_reverse_done (EV_P_ int revents)
1754{
1755 do
1756 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1757 while (rfeedcnt);
1758}
1759
1760inline_speed void
658queue_events (EV_P_ W *events, int eventcnt, int type) 1761queue_events (EV_P_ W *events, int eventcnt, int type)
659{ 1762{
660 int i; 1763 int i;
661 1764
662 for (i = 0; i < eventcnt; ++i) 1765 for (i = 0; i < eventcnt; ++i)
663 ev_feed_event (EV_A_ events [i], type); 1766 ev_feed_event (EV_A_ events [i], type);
664} 1767}
665 1768
666/*****************************************************************************/ 1769/*****************************************************************************/
667 1770
668void inline_size 1771inline_speed void
669anfds_init (ANFD *base, int count)
670{
671 while (count--)
672 {
673 base->head = 0;
674 base->events = EV_NONE;
675 base->reify = 0;
676
677 ++base;
678 }
679}
680
681void inline_speed
682fd_event (EV_P_ int fd, int revents) 1772fd_event_nocheck (EV_P_ int fd, int revents)
683{ 1773{
684 ANFD *anfd = anfds + fd; 1774 ANFD *anfd = anfds + fd;
685 ev_io *w; 1775 ev_io *w;
686 1776
687 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1777 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
691 if (ev) 1781 if (ev)
692 ev_feed_event (EV_A_ (W)w, ev); 1782 ev_feed_event (EV_A_ (W)w, ev);
693 } 1783 }
694} 1784}
695 1785
1786/* do not submit kernel events for fds that have reify set */
1787/* because that means they changed while we were polling for new events */
1788inline_speed void
1789fd_event (EV_P_ int fd, int revents)
1790{
1791 ANFD *anfd = anfds + fd;
1792
1793 if (expect_true (!anfd->reify))
1794 fd_event_nocheck (EV_A_ fd, revents);
1795}
1796
696void 1797void
697ev_feed_fd_event (EV_P_ int fd, int revents) 1798ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
698{ 1799{
699 if (fd >= 0 && fd < anfdmax) 1800 if (fd >= 0 && fd < anfdmax)
700 fd_event (EV_A_ fd, revents); 1801 fd_event_nocheck (EV_A_ fd, revents);
701} 1802}
702 1803
703void inline_size 1804/* make sure the external fd watch events are in-sync */
1805/* with the kernel/libev internal state */
1806inline_size void
704fd_reify (EV_P) 1807fd_reify (EV_P)
705{ 1808{
706 int i; 1809 int i;
1810
1811#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1812 for (i = 0; i < fdchangecnt; ++i)
1813 {
1814 int fd = fdchanges [i];
1815 ANFD *anfd = anfds + fd;
1816
1817 if (anfd->reify & EV__IOFDSET && anfd->head)
1818 {
1819 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1820
1821 if (handle != anfd->handle)
1822 {
1823 unsigned long arg;
1824
1825 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1826
1827 /* handle changed, but fd didn't - we need to do it in two steps */
1828 backend_modify (EV_A_ fd, anfd->events, 0);
1829 anfd->events = 0;
1830 anfd->handle = handle;
1831 }
1832 }
1833 }
1834#endif
707 1835
708 for (i = 0; i < fdchangecnt; ++i) 1836 for (i = 0; i < fdchangecnt; ++i)
709 { 1837 {
710 int fd = fdchanges [i]; 1838 int fd = fdchanges [i];
711 ANFD *anfd = anfds + fd; 1839 ANFD *anfd = anfds + fd;
712 ev_io *w; 1840 ev_io *w;
713 1841
714 unsigned char events = 0; 1842 unsigned char o_events = anfd->events;
1843 unsigned char o_reify = anfd->reify;
715 1844
716 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1845 anfd->reify = 0;
717 events |= (unsigned char)w->events;
718 1846
719#if EV_SELECT_IS_WINSOCKET 1847 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
720 if (events)
721 { 1848 {
722 unsigned long arg; 1849 anfd->events = 0;
723 #ifdef EV_FD_TO_WIN32_HANDLE 1850
724 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1851 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
725 #else 1852 anfd->events |= (unsigned char)w->events;
726 anfd->handle = _get_osfhandle (fd); 1853
727 #endif 1854 if (o_events != anfd->events)
728 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0)); 1855 o_reify = EV__IOFDSET; /* actually |= */
729 } 1856 }
730#endif
731 1857
732 { 1858 if (o_reify & EV__IOFDSET)
733 unsigned char o_events = anfd->events;
734 unsigned char o_reify = anfd->reify;
735
736 anfd->reify = 0;
737 anfd->events = events;
738
739 if (o_events != events || o_reify & EV_IOFDSET)
740 backend_modify (EV_A_ fd, o_events, events); 1859 backend_modify (EV_A_ fd, o_events, anfd->events);
741 }
742 } 1860 }
743 1861
744 fdchangecnt = 0; 1862 fdchangecnt = 0;
745} 1863}
746 1864
747void inline_size 1865/* something about the given fd changed */
1866inline_size void
748fd_change (EV_P_ int fd, int flags) 1867fd_change (EV_P_ int fd, int flags)
749{ 1868{
750 unsigned char reify = anfds [fd].reify; 1869 unsigned char reify = anfds [fd].reify;
751 anfds [fd].reify |= flags; 1870 anfds [fd].reify |= flags;
752 1871
756 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1875 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
757 fdchanges [fdchangecnt - 1] = fd; 1876 fdchanges [fdchangecnt - 1] = fd;
758 } 1877 }
759} 1878}
760 1879
761void inline_speed 1880/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1881inline_speed void ecb_cold
762fd_kill (EV_P_ int fd) 1882fd_kill (EV_P_ int fd)
763{ 1883{
764 ev_io *w; 1884 ev_io *w;
765 1885
766 while ((w = (ev_io *)anfds [fd].head)) 1886 while ((w = (ev_io *)anfds [fd].head))
768 ev_io_stop (EV_A_ w); 1888 ev_io_stop (EV_A_ w);
769 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1889 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
770 } 1890 }
771} 1891}
772 1892
773int inline_size 1893/* check whether the given fd is actually valid, for error recovery */
1894inline_size int ecb_cold
774fd_valid (int fd) 1895fd_valid (int fd)
775{ 1896{
776#ifdef _WIN32 1897#ifdef _WIN32
777 return _get_osfhandle (fd) != -1; 1898 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
778#else 1899#else
779 return fcntl (fd, F_GETFD) != -1; 1900 return fcntl (fd, F_GETFD) != -1;
780#endif 1901#endif
781} 1902}
782 1903
783/* called on EBADF to verify fds */ 1904/* called on EBADF to verify fds */
784static void noinline 1905static void noinline ecb_cold
785fd_ebadf (EV_P) 1906fd_ebadf (EV_P)
786{ 1907{
787 int fd; 1908 int fd;
788 1909
789 for (fd = 0; fd < anfdmax; ++fd) 1910 for (fd = 0; fd < anfdmax; ++fd)
791 if (!fd_valid (fd) && errno == EBADF) 1912 if (!fd_valid (fd) && errno == EBADF)
792 fd_kill (EV_A_ fd); 1913 fd_kill (EV_A_ fd);
793} 1914}
794 1915
795/* called on ENOMEM in select/poll to kill some fds and retry */ 1916/* called on ENOMEM in select/poll to kill some fds and retry */
796static void noinline 1917static void noinline ecb_cold
797fd_enomem (EV_P) 1918fd_enomem (EV_P)
798{ 1919{
799 int fd; 1920 int fd;
800 1921
801 for (fd = anfdmax; fd--; ) 1922 for (fd = anfdmax; fd--; )
802 if (anfds [fd].events) 1923 if (anfds [fd].events)
803 { 1924 {
804 fd_kill (EV_A_ fd); 1925 fd_kill (EV_A_ fd);
805 return; 1926 break;
806 } 1927 }
807} 1928}
808 1929
809/* usually called after fork if backend needs to re-arm all fds from scratch */ 1930/* usually called after fork if backend needs to re-arm all fds from scratch */
810static void noinline 1931static void noinline
814 1935
815 for (fd = 0; fd < anfdmax; ++fd) 1936 for (fd = 0; fd < anfdmax; ++fd)
816 if (anfds [fd].events) 1937 if (anfds [fd].events)
817 { 1938 {
818 anfds [fd].events = 0; 1939 anfds [fd].events = 0;
1940 anfds [fd].emask = 0;
819 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1941 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
820 } 1942 }
821} 1943}
822 1944
1945/* used to prepare libev internal fd's */
1946/* this is not fork-safe */
1947inline_speed void
1948fd_intern (int fd)
1949{
1950#ifdef _WIN32
1951 unsigned long arg = 1;
1952 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1953#else
1954 fcntl (fd, F_SETFD, FD_CLOEXEC);
1955 fcntl (fd, F_SETFL, O_NONBLOCK);
1956#endif
1957}
1958
823/*****************************************************************************/ 1959/*****************************************************************************/
824 1960
825/* 1961/*
826 * the heap functions want a real array index. array index 0 uis guaranteed to not 1962 * the heap functions want a real array index. array index 0 is guaranteed to not
827 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 1963 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
828 * the branching factor of the d-tree. 1964 * the branching factor of the d-tree.
829 */ 1965 */
830 1966
831/* 1967/*
840#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1976#define HEAP0 (DHEAP - 1) /* index of first element in heap */
841#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 1977#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
842#define UPHEAP_DONE(p,k) ((p) == (k)) 1978#define UPHEAP_DONE(p,k) ((p) == (k))
843 1979
844/* away from the root */ 1980/* away from the root */
845void inline_speed 1981inline_speed void
846downheap (ANHE *heap, int N, int k) 1982downheap (ANHE *heap, int N, int k)
847{ 1983{
848 ANHE he = heap [k]; 1984 ANHE he = heap [k];
849 ANHE *E = heap + N + HEAP0; 1985 ANHE *E = heap + N + HEAP0;
850 1986
890#define HEAP0 1 2026#define HEAP0 1
891#define HPARENT(k) ((k) >> 1) 2027#define HPARENT(k) ((k) >> 1)
892#define UPHEAP_DONE(p,k) (!(p)) 2028#define UPHEAP_DONE(p,k) (!(p))
893 2029
894/* away from the root */ 2030/* away from the root */
895void inline_speed 2031inline_speed void
896downheap (ANHE *heap, int N, int k) 2032downheap (ANHE *heap, int N, int k)
897{ 2033{
898 ANHE he = heap [k]; 2034 ANHE he = heap [k];
899 2035
900 for (;;) 2036 for (;;)
901 { 2037 {
902 int c = k << 1; 2038 int c = k << 1;
903 2039
904 if (c > N + HEAP0 - 1) 2040 if (c >= N + HEAP0)
905 break; 2041 break;
906 2042
907 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 2043 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
908 ? 1 : 0; 2044 ? 1 : 0;
909 2045
920 ev_active (ANHE_w (he)) = k; 2056 ev_active (ANHE_w (he)) = k;
921} 2057}
922#endif 2058#endif
923 2059
924/* towards the root */ 2060/* towards the root */
925void inline_speed 2061inline_speed void
926upheap (ANHE *heap, int k) 2062upheap (ANHE *heap, int k)
927{ 2063{
928 ANHE he = heap [k]; 2064 ANHE he = heap [k];
929 2065
930 for (;;) 2066 for (;;)
941 2077
942 heap [k] = he; 2078 heap [k] = he;
943 ev_active (ANHE_w (he)) = k; 2079 ev_active (ANHE_w (he)) = k;
944} 2080}
945 2081
946void inline_size 2082/* move an element suitably so it is in a correct place */
2083inline_size void
947adjustheap (ANHE *heap, int N, int k) 2084adjustheap (ANHE *heap, int N, int k)
948{ 2085{
949 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 2086 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
950 upheap (heap, k); 2087 upheap (heap, k);
951 else 2088 else
952 downheap (heap, N, k); 2089 downheap (heap, N, k);
953} 2090}
954 2091
955/* rebuild the heap: this function is used only once and executed rarely */ 2092/* rebuild the heap: this function is used only once and executed rarely */
956void inline_size 2093inline_size void
957reheap (ANHE *heap, int N) 2094reheap (ANHE *heap, int N)
958{ 2095{
959 int i; 2096 int i;
960 2097
961 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 2098 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
964 upheap (heap, i + HEAP0); 2101 upheap (heap, i + HEAP0);
965} 2102}
966 2103
967/*****************************************************************************/ 2104/*****************************************************************************/
968 2105
2106/* associate signal watchers to a signal signal */
969typedef struct 2107typedef struct
970{ 2108{
2109 EV_ATOMIC_T pending;
2110#if EV_MULTIPLICITY
2111 EV_P;
2112#endif
971 WL head; 2113 WL head;
972 EV_ATOMIC_T gotsig;
973} ANSIG; 2114} ANSIG;
974 2115
975static ANSIG *signals; 2116static ANSIG signals [EV_NSIG - 1];
976static int signalmax;
977
978static EV_ATOMIC_T gotsig;
979
980void inline_size
981signals_init (ANSIG *base, int count)
982{
983 while (count--)
984 {
985 base->head = 0;
986 base->gotsig = 0;
987
988 ++base;
989 }
990}
991 2117
992/*****************************************************************************/ 2118/*****************************************************************************/
993 2119
994void inline_speed 2120#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
995fd_intern (int fd)
996{
997#ifdef _WIN32
998 unsigned long arg = 1;
999 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1000#else
1001 fcntl (fd, F_SETFD, FD_CLOEXEC);
1002 fcntl (fd, F_SETFL, O_NONBLOCK);
1003#endif
1004}
1005 2121
1006static void noinline 2122static void noinline ecb_cold
1007evpipe_init (EV_P) 2123evpipe_init (EV_P)
1008{ 2124{
1009 if (!ev_is_active (&pipeev)) 2125 if (!ev_is_active (&pipe_w))
2126 {
2127 int fds [2];
2128
2129# if EV_USE_EVENTFD
2130 fds [0] = -1;
2131 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2132 if (fds [1] < 0 && errno == EINVAL)
2133 fds [1] = eventfd (0, 0);
2134
2135 if (fds [1] < 0)
2136# endif
2137 {
2138 while (pipe (fds))
2139 ev_syserr ("(libev) error creating signal/async pipe");
2140
2141 fd_intern (fds [0]);
2142 }
2143
2144 evpipe [0] = fds [0];
2145
2146 if (evpipe [1] < 0)
2147 evpipe [1] = fds [1]; /* first call, set write fd */
2148 else
2149 {
2150 /* on subsequent calls, do not change evpipe [1] */
2151 /* so that evpipe_write can always rely on its value. */
2152 /* this branch does not do anything sensible on windows, */
2153 /* so must not be executed on windows */
2154
2155 dup2 (fds [1], evpipe [1]);
2156 close (fds [1]);
2157 }
2158
2159 fd_intern (evpipe [1]);
2160
2161 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2162 ev_io_start (EV_A_ &pipe_w);
2163 ev_unref (EV_A); /* watcher should not keep loop alive */
1010 { 2164 }
2165}
2166
2167inline_speed void
2168evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2169{
2170 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2171
2172 if (expect_true (*flag))
2173 return;
2174
2175 *flag = 1;
2176 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2177
2178 pipe_write_skipped = 1;
2179
2180 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2181
2182 if (pipe_write_wanted)
2183 {
2184 int old_errno;
2185
2186 pipe_write_skipped = 0;
2187 ECB_MEMORY_FENCE_RELEASE;
2188
2189 old_errno = errno; /* save errno because write will clobber it */
2190
1011#if EV_USE_EVENTFD 2191#if EV_USE_EVENTFD
1012 if ((evfd = eventfd (0, 0)) >= 0) 2192 if (evpipe [0] < 0)
1013 { 2193 {
1014 evpipe [0] = -1; 2194 uint64_t counter = 1;
1015 fd_intern (evfd); 2195 write (evpipe [1], &counter, sizeof (uint64_t));
1016 ev_io_set (&pipeev, evfd, EV_READ);
1017 } 2196 }
1018 else 2197 else
1019#endif 2198#endif
1020 { 2199 {
1021 while (pipe (evpipe)) 2200#ifdef _WIN32
1022 syserr ("(libev) error creating signal/async pipe"); 2201 WSABUF buf;
1023 2202 DWORD sent;
1024 fd_intern (evpipe [0]); 2203 buf.buf = &buf;
1025 fd_intern (evpipe [1]); 2204 buf.len = 1;
1026 ev_io_set (&pipeev, evpipe [0], EV_READ); 2205 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2206#else
2207 write (evpipe [1], &(evpipe [1]), 1);
2208#endif
1027 } 2209 }
1028 2210
1029 ev_io_start (EV_A_ &pipeev); 2211 errno = old_errno;
1030 ev_unref (EV_A); /* watcher should not keep loop alive */
1031 }
1032}
1033
1034void inline_size
1035evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1036{
1037 if (!*flag)
1038 { 2212 }
1039 int old_errno = errno; /* save errno because write might clobber it */ 2213}
1040 2214
1041 *flag = 1; 2215/* called whenever the libev signal pipe */
2216/* got some events (signal, async) */
2217static void
2218pipecb (EV_P_ ev_io *iow, int revents)
2219{
2220 int i;
1042 2221
2222 if (revents & EV_READ)
2223 {
1043#if EV_USE_EVENTFD 2224#if EV_USE_EVENTFD
1044 if (evfd >= 0) 2225 if (evpipe [0] < 0)
1045 { 2226 {
1046 uint64_t counter = 1; 2227 uint64_t counter;
1047 write (evfd, &counter, sizeof (uint64_t)); 2228 read (evpipe [1], &counter, sizeof (uint64_t));
1048 } 2229 }
1049 else 2230 else
1050#endif 2231#endif
1051 write (evpipe [1], &old_errno, 1); 2232 {
1052
1053 errno = old_errno;
1054 }
1055}
1056
1057static void
1058pipecb (EV_P_ ev_io *iow, int revents)
1059{
1060#if EV_USE_EVENTFD
1061 if (evfd >= 0)
1062 {
1063 uint64_t counter;
1064 read (evfd, &counter, sizeof (uint64_t));
1065 }
1066 else
1067#endif
1068 {
1069 char dummy; 2233 char dummy[4];
2234#ifdef _WIN32
2235 WSABUF buf;
2236 DWORD recvd;
2237 DWORD flags = 0;
2238 buf.buf = dummy;
2239 buf.len = sizeof (dummy);
2240 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2241#else
1070 read (evpipe [0], &dummy, 1); 2242 read (evpipe [0], &dummy, sizeof (dummy));
2243#endif
2244 }
2245 }
2246
2247 pipe_write_skipped = 0;
2248
2249 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2250
2251#if EV_SIGNAL_ENABLE
2252 if (sig_pending)
1071 } 2253 {
2254 sig_pending = 0;
1072 2255
1073 if (gotsig && ev_is_default_loop (EV_A)) 2256 ECB_MEMORY_FENCE;
1074 {
1075 int signum;
1076 gotsig = 0;
1077 2257
1078 for (signum = signalmax; signum--; ) 2258 for (i = EV_NSIG - 1; i--; )
1079 if (signals [signum].gotsig) 2259 if (expect_false (signals [i].pending))
1080 ev_feed_signal_event (EV_A_ signum + 1); 2260 ev_feed_signal_event (EV_A_ i + 1);
1081 } 2261 }
2262#endif
1082 2263
1083#if EV_ASYNC_ENABLE 2264#if EV_ASYNC_ENABLE
1084 if (gotasync) 2265 if (async_pending)
1085 { 2266 {
1086 int i; 2267 async_pending = 0;
1087 gotasync = 0; 2268
2269 ECB_MEMORY_FENCE;
1088 2270
1089 for (i = asynccnt; i--; ) 2271 for (i = asynccnt; i--; )
1090 if (asyncs [i]->sent) 2272 if (asyncs [i]->sent)
1091 { 2273 {
1092 asyncs [i]->sent = 0; 2274 asyncs [i]->sent = 0;
2275 ECB_MEMORY_FENCE_RELEASE;
1093 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); 2276 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1094 } 2277 }
1095 } 2278 }
1096#endif 2279#endif
1097} 2280}
1098 2281
1099/*****************************************************************************/ 2282/*****************************************************************************/
1100 2283
2284void
2285ev_feed_signal (int signum) EV_THROW
2286{
2287#if EV_MULTIPLICITY
2288 EV_P;
2289 ECB_MEMORY_FENCE_ACQUIRE;
2290 EV_A = signals [signum - 1].loop;
2291
2292 if (!EV_A)
2293 return;
2294#endif
2295
2296 signals [signum - 1].pending = 1;
2297 evpipe_write (EV_A_ &sig_pending);
2298}
2299
1101static void 2300static void
1102ev_sighandler (int signum) 2301ev_sighandler (int signum)
1103{ 2302{
2303#ifdef _WIN32
2304 signal (signum, ev_sighandler);
2305#endif
2306
2307 ev_feed_signal (signum);
2308}
2309
2310void noinline
2311ev_feed_signal_event (EV_P_ int signum) EV_THROW
2312{
2313 WL w;
2314
2315 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2316 return;
2317
2318 --signum;
2319
1104#if EV_MULTIPLICITY 2320#if EV_MULTIPLICITY
1105 struct ev_loop *loop = &default_loop_struct; 2321 /* it is permissible to try to feed a signal to the wrong loop */
1106#endif 2322 /* or, likely more useful, feeding a signal nobody is waiting for */
1107 2323
1108#if _WIN32 2324 if (expect_false (signals [signum].loop != EV_A))
1109 signal (signum, ev_sighandler);
1110#endif
1111
1112 signals [signum - 1].gotsig = 1;
1113 evpipe_write (EV_A_ &gotsig);
1114}
1115
1116void noinline
1117ev_feed_signal_event (EV_P_ int signum)
1118{
1119 WL w;
1120
1121#if EV_MULTIPLICITY
1122 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1123#endif
1124
1125 --signum;
1126
1127 if (signum < 0 || signum >= signalmax)
1128 return; 2325 return;
2326#endif
1129 2327
1130 signals [signum].gotsig = 0; 2328 signals [signum].pending = 0;
2329 ECB_MEMORY_FENCE_RELEASE;
1131 2330
1132 for (w = signals [signum].head; w; w = w->next) 2331 for (w = signals [signum].head; w; w = w->next)
1133 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2332 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1134} 2333}
1135 2334
2335#if EV_USE_SIGNALFD
2336static void
2337sigfdcb (EV_P_ ev_io *iow, int revents)
2338{
2339 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2340
2341 for (;;)
2342 {
2343 ssize_t res = read (sigfd, si, sizeof (si));
2344
2345 /* not ISO-C, as res might be -1, but works with SuS */
2346 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2347 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2348
2349 if (res < (ssize_t)sizeof (si))
2350 break;
2351 }
2352}
2353#endif
2354
2355#endif
2356
1136/*****************************************************************************/ 2357/*****************************************************************************/
1137 2358
2359#if EV_CHILD_ENABLE
1138static WL childs [EV_PID_HASHSIZE]; 2360static WL childs [EV_PID_HASHSIZE];
1139
1140#ifndef _WIN32
1141 2361
1142static ev_signal childev; 2362static ev_signal childev;
1143 2363
1144#ifndef WIFCONTINUED 2364#ifndef WIFCONTINUED
1145# define WIFCONTINUED(status) 0 2365# define WIFCONTINUED(status) 0
1146#endif 2366#endif
1147 2367
1148void inline_speed 2368/* handle a single child status event */
2369inline_speed void
1149child_reap (EV_P_ int chain, int pid, int status) 2370child_reap (EV_P_ int chain, int pid, int status)
1150{ 2371{
1151 ev_child *w; 2372 ev_child *w;
1152 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2373 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1153 2374
1154 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2375 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1155 { 2376 {
1156 if ((w->pid == pid || !w->pid) 2377 if ((w->pid == pid || !w->pid)
1157 && (!traced || (w->flags & 1))) 2378 && (!traced || (w->flags & 1)))
1158 { 2379 {
1159 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 2380 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1166 2387
1167#ifndef WCONTINUED 2388#ifndef WCONTINUED
1168# define WCONTINUED 0 2389# define WCONTINUED 0
1169#endif 2390#endif
1170 2391
2392/* called on sigchld etc., calls waitpid */
1171static void 2393static void
1172childcb (EV_P_ ev_signal *sw, int revents) 2394childcb (EV_P_ ev_signal *sw, int revents)
1173{ 2395{
1174 int pid, status; 2396 int pid, status;
1175 2397
1183 /* make sure we are called again until all children have been reaped */ 2405 /* make sure we are called again until all children have been reaped */
1184 /* we need to do it this way so that the callback gets called before we continue */ 2406 /* we need to do it this way so that the callback gets called before we continue */
1185 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2407 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1186 2408
1187 child_reap (EV_A_ pid, pid, status); 2409 child_reap (EV_A_ pid, pid, status);
1188 if (EV_PID_HASHSIZE > 1) 2410 if ((EV_PID_HASHSIZE) > 1)
1189 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2411 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1190} 2412}
1191 2413
1192#endif 2414#endif
1193 2415
1194/*****************************************************************************/ 2416/*****************************************************************************/
1195 2417
2418#if EV_USE_IOCP
2419# include "ev_iocp.c"
2420#endif
1196#if EV_USE_PORT 2421#if EV_USE_PORT
1197# include "ev_port.c" 2422# include "ev_port.c"
1198#endif 2423#endif
1199#if EV_USE_KQUEUE 2424#if EV_USE_KQUEUE
1200# include "ev_kqueue.c" 2425# include "ev_kqueue.c"
1207#endif 2432#endif
1208#if EV_USE_SELECT 2433#if EV_USE_SELECT
1209# include "ev_select.c" 2434# include "ev_select.c"
1210#endif 2435#endif
1211 2436
1212int 2437int ecb_cold
1213ev_version_major (void) 2438ev_version_major (void) EV_THROW
1214{ 2439{
1215 return EV_VERSION_MAJOR; 2440 return EV_VERSION_MAJOR;
1216} 2441}
1217 2442
1218int 2443int ecb_cold
1219ev_version_minor (void) 2444ev_version_minor (void) EV_THROW
1220{ 2445{
1221 return EV_VERSION_MINOR; 2446 return EV_VERSION_MINOR;
1222} 2447}
1223 2448
1224/* return true if we are running with elevated privileges and should ignore env variables */ 2449/* return true if we are running with elevated privileges and should ignore env variables */
1225int inline_size 2450int inline_size ecb_cold
1226enable_secure (void) 2451enable_secure (void)
1227{ 2452{
1228#ifdef _WIN32 2453#ifdef _WIN32
1229 return 0; 2454 return 0;
1230#else 2455#else
1231 return getuid () != geteuid () 2456 return getuid () != geteuid ()
1232 || getgid () != getegid (); 2457 || getgid () != getegid ();
1233#endif 2458#endif
1234} 2459}
1235 2460
1236unsigned int 2461unsigned int ecb_cold
1237ev_supported_backends (void) 2462ev_supported_backends (void) EV_THROW
1238{ 2463{
1239 unsigned int flags = 0; 2464 unsigned int flags = 0;
1240 2465
1241 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2466 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1242 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2467 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1245 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2470 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1246 2471
1247 return flags; 2472 return flags;
1248} 2473}
1249 2474
1250unsigned int 2475unsigned int ecb_cold
1251ev_recommended_backends (void) 2476ev_recommended_backends (void) EV_THROW
1252{ 2477{
1253 unsigned int flags = ev_supported_backends (); 2478 unsigned int flags = ev_supported_backends ();
1254 2479
1255#ifndef __NetBSD__ 2480#ifndef __NetBSD__
1256 /* kqueue is borked on everything but netbsd apparently */ 2481 /* kqueue is borked on everything but netbsd apparently */
1257 /* it usually doesn't work correctly on anything but sockets and pipes */ 2482 /* it usually doesn't work correctly on anything but sockets and pipes */
1258 flags &= ~EVBACKEND_KQUEUE; 2483 flags &= ~EVBACKEND_KQUEUE;
1259#endif 2484#endif
1260#ifdef __APPLE__ 2485#ifdef __APPLE__
1261 // flags &= ~EVBACKEND_KQUEUE; for documentation 2486 /* only select works correctly on that "unix-certified" platform */
1262 flags &= ~EVBACKEND_POLL; 2487 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2488 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2489#endif
2490#ifdef __FreeBSD__
2491 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1263#endif 2492#endif
1264 2493
1265 return flags; 2494 return flags;
1266} 2495}
1267 2496
2497unsigned int ecb_cold
2498ev_embeddable_backends (void) EV_THROW
2499{
2500 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2501
2502 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2503 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2504 flags &= ~EVBACKEND_EPOLL;
2505
2506 return flags;
2507}
2508
1268unsigned int 2509unsigned int
1269ev_embeddable_backends (void) 2510ev_backend (EV_P) EV_THROW
1270{ 2511{
1271 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2512 return backend;
1272
1273 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1274 /* please fix it and tell me how to detect the fix */
1275 flags &= ~EVBACKEND_EPOLL;
1276
1277 return flags;
1278} 2513}
1279 2514
2515#if EV_FEATURE_API
1280unsigned int 2516unsigned int
1281ev_backend (EV_P) 2517ev_iteration (EV_P) EV_THROW
1282{ 2518{
1283 return backend; 2519 return loop_count;
1284} 2520}
1285 2521
1286unsigned int 2522unsigned int
1287ev_loop_count (EV_P) 2523ev_depth (EV_P) EV_THROW
1288{ 2524{
1289 return loop_count; 2525 return loop_depth;
1290} 2526}
1291 2527
1292void 2528void
1293ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2529ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1294{ 2530{
1295 io_blocktime = interval; 2531 io_blocktime = interval;
1296} 2532}
1297 2533
1298void 2534void
1299ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2535ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1300{ 2536{
1301 timeout_blocktime = interval; 2537 timeout_blocktime = interval;
1302} 2538}
1303 2539
2540void
2541ev_set_userdata (EV_P_ void *data) EV_THROW
2542{
2543 userdata = data;
2544}
2545
2546void *
2547ev_userdata (EV_P) EV_THROW
2548{
2549 return userdata;
2550}
2551
2552void
2553ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2554{
2555 invoke_cb = invoke_pending_cb;
2556}
2557
2558void
2559ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2560{
2561 release_cb = release;
2562 acquire_cb = acquire;
2563}
2564#endif
2565
2566/* initialise a loop structure, must be zero-initialised */
1304static void noinline 2567static void noinline ecb_cold
1305loop_init (EV_P_ unsigned int flags) 2568loop_init (EV_P_ unsigned int flags) EV_THROW
1306{ 2569{
1307 if (!backend) 2570 if (!backend)
1308 { 2571 {
2572 origflags = flags;
2573
2574#if EV_USE_REALTIME
2575 if (!have_realtime)
2576 {
2577 struct timespec ts;
2578
2579 if (!clock_gettime (CLOCK_REALTIME, &ts))
2580 have_realtime = 1;
2581 }
2582#endif
2583
1309#if EV_USE_MONOTONIC 2584#if EV_USE_MONOTONIC
2585 if (!have_monotonic)
1310 { 2586 {
1311 struct timespec ts; 2587 struct timespec ts;
2588
1312 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2589 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1313 have_monotonic = 1; 2590 have_monotonic = 1;
1314 } 2591 }
1315#endif
1316
1317 ev_rt_now = ev_time ();
1318 mn_now = get_clock ();
1319 now_floor = mn_now;
1320 rtmn_diff = ev_rt_now - mn_now;
1321
1322 io_blocktime = 0.;
1323 timeout_blocktime = 0.;
1324 backend = 0;
1325 backend_fd = -1;
1326 gotasync = 0;
1327#if EV_USE_INOTIFY
1328 fs_fd = -2;
1329#endif 2592#endif
1330 2593
1331 /* pid check not overridable via env */ 2594 /* pid check not overridable via env */
1332#ifndef _WIN32 2595#ifndef _WIN32
1333 if (flags & EVFLAG_FORKCHECK) 2596 if (flags & EVFLAG_FORKCHECK)
1337 if (!(flags & EVFLAG_NOENV) 2600 if (!(flags & EVFLAG_NOENV)
1338 && !enable_secure () 2601 && !enable_secure ()
1339 && getenv ("LIBEV_FLAGS")) 2602 && getenv ("LIBEV_FLAGS"))
1340 flags = atoi (getenv ("LIBEV_FLAGS")); 2603 flags = atoi (getenv ("LIBEV_FLAGS"));
1341 2604
1342 if (!(flags & 0x0000ffffU)) 2605 ev_rt_now = ev_time ();
2606 mn_now = get_clock ();
2607 now_floor = mn_now;
2608 rtmn_diff = ev_rt_now - mn_now;
2609#if EV_FEATURE_API
2610 invoke_cb = ev_invoke_pending;
2611#endif
2612
2613 io_blocktime = 0.;
2614 timeout_blocktime = 0.;
2615 backend = 0;
2616 backend_fd = -1;
2617 sig_pending = 0;
2618#if EV_ASYNC_ENABLE
2619 async_pending = 0;
2620#endif
2621 pipe_write_skipped = 0;
2622 pipe_write_wanted = 0;
2623 evpipe [0] = -1;
2624 evpipe [1] = -1;
2625#if EV_USE_INOTIFY
2626 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2627#endif
2628#if EV_USE_SIGNALFD
2629 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2630#endif
2631
2632 if (!(flags & EVBACKEND_MASK))
1343 flags |= ev_recommended_backends (); 2633 flags |= ev_recommended_backends ();
1344 2634
2635#if EV_USE_IOCP
2636 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2637#endif
1345#if EV_USE_PORT 2638#if EV_USE_PORT
1346 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2639 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1347#endif 2640#endif
1348#if EV_USE_KQUEUE 2641#if EV_USE_KQUEUE
1349 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2642 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1356#endif 2649#endif
1357#if EV_USE_SELECT 2650#if EV_USE_SELECT
1358 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2651 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1359#endif 2652#endif
1360 2653
2654 ev_prepare_init (&pending_w, pendingcb);
2655
2656#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1361 ev_init (&pipeev, pipecb); 2657 ev_init (&pipe_w, pipecb);
1362 ev_set_priority (&pipeev, EV_MAXPRI); 2658 ev_set_priority (&pipe_w, EV_MAXPRI);
2659#endif
1363 } 2660 }
1364} 2661}
1365 2662
1366static void noinline 2663/* free up a loop structure */
2664void ecb_cold
1367loop_destroy (EV_P) 2665ev_loop_destroy (EV_P)
1368{ 2666{
1369 int i; 2667 int i;
1370 2668
2669#if EV_MULTIPLICITY
2670 /* mimic free (0) */
2671 if (!EV_A)
2672 return;
2673#endif
2674
2675#if EV_CLEANUP_ENABLE
2676 /* queue cleanup watchers (and execute them) */
2677 if (expect_false (cleanupcnt))
2678 {
2679 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2680 EV_INVOKE_PENDING;
2681 }
2682#endif
2683
2684#if EV_CHILD_ENABLE
2685 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2686 {
2687 ev_ref (EV_A); /* child watcher */
2688 ev_signal_stop (EV_A_ &childev);
2689 }
2690#endif
2691
1371 if (ev_is_active (&pipeev)) 2692 if (ev_is_active (&pipe_w))
1372 { 2693 {
1373 ev_ref (EV_A); /* signal watcher */ 2694 /*ev_ref (EV_A);*/
1374 ev_io_stop (EV_A_ &pipeev); 2695 /*ev_io_stop (EV_A_ &pipe_w);*/
1375 2696
2697 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2698 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2699 }
2700
1376#if EV_USE_EVENTFD 2701#if EV_USE_SIGNALFD
1377 if (evfd >= 0) 2702 if (ev_is_active (&sigfd_w))
1378 close (evfd); 2703 close (sigfd);
1379#endif 2704#endif
1380
1381 if (evpipe [0] >= 0)
1382 {
1383 close (evpipe [0]);
1384 close (evpipe [1]);
1385 }
1386 }
1387 2705
1388#if EV_USE_INOTIFY 2706#if EV_USE_INOTIFY
1389 if (fs_fd >= 0) 2707 if (fs_fd >= 0)
1390 close (fs_fd); 2708 close (fs_fd);
1391#endif 2709#endif
1392 2710
1393 if (backend_fd >= 0) 2711 if (backend_fd >= 0)
1394 close (backend_fd); 2712 close (backend_fd);
1395 2713
2714#if EV_USE_IOCP
2715 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2716#endif
1396#if EV_USE_PORT 2717#if EV_USE_PORT
1397 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2718 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1398#endif 2719#endif
1399#if EV_USE_KQUEUE 2720#if EV_USE_KQUEUE
1400 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2721 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1415#if EV_IDLE_ENABLE 2736#if EV_IDLE_ENABLE
1416 array_free (idle, [i]); 2737 array_free (idle, [i]);
1417#endif 2738#endif
1418 } 2739 }
1419 2740
1420 ev_free (anfds); anfdmax = 0; 2741 ev_free (anfds); anfds = 0; anfdmax = 0;
1421 2742
1422 /* have to use the microsoft-never-gets-it-right macro */ 2743 /* have to use the microsoft-never-gets-it-right macro */
2744 array_free (rfeed, EMPTY);
1423 array_free (fdchange, EMPTY); 2745 array_free (fdchange, EMPTY);
1424 array_free (timer, EMPTY); 2746 array_free (timer, EMPTY);
1425#if EV_PERIODIC_ENABLE 2747#if EV_PERIODIC_ENABLE
1426 array_free (periodic, EMPTY); 2748 array_free (periodic, EMPTY);
1427#endif 2749#endif
1428#if EV_FORK_ENABLE 2750#if EV_FORK_ENABLE
1429 array_free (fork, EMPTY); 2751 array_free (fork, EMPTY);
1430#endif 2752#endif
2753#if EV_CLEANUP_ENABLE
2754 array_free (cleanup, EMPTY);
2755#endif
1431 array_free (prepare, EMPTY); 2756 array_free (prepare, EMPTY);
1432 array_free (check, EMPTY); 2757 array_free (check, EMPTY);
1433#if EV_ASYNC_ENABLE 2758#if EV_ASYNC_ENABLE
1434 array_free (async, EMPTY); 2759 array_free (async, EMPTY);
1435#endif 2760#endif
1436 2761
1437 backend = 0; 2762 backend = 0;
2763
2764#if EV_MULTIPLICITY
2765 if (ev_is_default_loop (EV_A))
2766#endif
2767 ev_default_loop_ptr = 0;
2768#if EV_MULTIPLICITY
2769 else
2770 ev_free (EV_A);
2771#endif
1438} 2772}
1439 2773
1440#if EV_USE_INOTIFY 2774#if EV_USE_INOTIFY
1441void inline_size infy_fork (EV_P); 2775inline_size void infy_fork (EV_P);
1442#endif 2776#endif
1443 2777
1444void inline_size 2778inline_size void
1445loop_fork (EV_P) 2779loop_fork (EV_P)
1446{ 2780{
1447#if EV_USE_PORT 2781#if EV_USE_PORT
1448 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2782 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1449#endif 2783#endif
1455#endif 2789#endif
1456#if EV_USE_INOTIFY 2790#if EV_USE_INOTIFY
1457 infy_fork (EV_A); 2791 infy_fork (EV_A);
1458#endif 2792#endif
1459 2793
2794#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1460 if (ev_is_active (&pipeev)) 2795 if (ev_is_active (&pipe_w))
1461 { 2796 {
1462 /* this "locks" the handlers against writing to the pipe */ 2797 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1463 /* while we modify the fd vars */
1464 gotsig = 1;
1465#if EV_ASYNC_ENABLE
1466 gotasync = 1;
1467#endif
1468 2798
1469 ev_ref (EV_A); 2799 ev_ref (EV_A);
1470 ev_io_stop (EV_A_ &pipeev); 2800 ev_io_stop (EV_A_ &pipe_w);
1471
1472#if EV_USE_EVENTFD
1473 if (evfd >= 0)
1474 close (evfd);
1475#endif
1476 2801
1477 if (evpipe [0] >= 0) 2802 if (evpipe [0] >= 0)
1478 { 2803 EV_WIN32_CLOSE_FD (evpipe [0]);
1479 close (evpipe [0]);
1480 close (evpipe [1]);
1481 }
1482 2804
1483 evpipe_init (EV_A); 2805 evpipe_init (EV_A);
1484 /* now iterate over everything, in case we missed something */ 2806 /* iterate over everything, in case we missed something before */
1485 pipecb (EV_A_ &pipeev, EV_READ); 2807 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
1486 } 2808 }
2809#endif
1487 2810
1488 postfork = 0; 2811 postfork = 0;
1489} 2812}
1490 2813
1491#if EV_MULTIPLICITY 2814#if EV_MULTIPLICITY
1492 2815
1493struct ev_loop * 2816struct ev_loop * ecb_cold
1494ev_loop_new (unsigned int flags) 2817ev_loop_new (unsigned int flags) EV_THROW
1495{ 2818{
1496 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2819 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1497 2820
1498 memset (loop, 0, sizeof (struct ev_loop)); 2821 memset (EV_A, 0, sizeof (struct ev_loop));
1499
1500 loop_init (EV_A_ flags); 2822 loop_init (EV_A_ flags);
1501 2823
1502 if (ev_backend (EV_A)) 2824 if (ev_backend (EV_A))
1503 return loop; 2825 return EV_A;
1504 2826
2827 ev_free (EV_A);
1505 return 0; 2828 return 0;
1506} 2829}
1507 2830
1508void 2831#endif /* multiplicity */
1509ev_loop_destroy (EV_P)
1510{
1511 loop_destroy (EV_A);
1512 ev_free (loop);
1513}
1514
1515void
1516ev_loop_fork (EV_P)
1517{
1518 postfork = 1; /* must be in line with ev_default_fork */
1519}
1520 2832
1521#if EV_VERIFY 2833#if EV_VERIFY
1522static void noinline 2834static void noinline ecb_cold
1523verify_watcher (EV_P_ W w) 2835verify_watcher (EV_P_ W w)
1524{ 2836{
1525 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI)); 2837 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1526 2838
1527 if (w->pending) 2839 if (w->pending)
1528 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w)); 2840 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1529} 2841}
1530 2842
1531static void noinline 2843static void noinline ecb_cold
1532verify_heap (EV_P_ ANHE *heap, int N) 2844verify_heap (EV_P_ ANHE *heap, int N)
1533{ 2845{
1534 int i; 2846 int i;
1535 2847
1536 for (i = HEAP0; i < N + HEAP0; ++i) 2848 for (i = HEAP0; i < N + HEAP0; ++i)
1537 { 2849 {
1538 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i)); 2850 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1539 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i]))); 2851 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1540 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i])))); 2852 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1541 2853
1542 verify_watcher (EV_A_ (W)ANHE_w (heap [i])); 2854 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1543 } 2855 }
1544} 2856}
1545 2857
1546static void noinline 2858static void noinline ecb_cold
1547array_verify (EV_P_ W *ws, int cnt) 2859array_verify (EV_P_ W *ws, int cnt)
1548{ 2860{
1549 while (cnt--) 2861 while (cnt--)
1550 { 2862 {
1551 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1)); 2863 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1552 verify_watcher (EV_A_ ws [cnt]); 2864 verify_watcher (EV_A_ ws [cnt]);
1553 } 2865 }
1554} 2866}
1555#endif 2867#endif
1556 2868
1557void 2869#if EV_FEATURE_API
1558ev_loop_verify (EV_P) 2870void ecb_cold
2871ev_verify (EV_P) EV_THROW
1559{ 2872{
1560#if EV_VERIFY 2873#if EV_VERIFY
1561 int i; 2874 int i;
1562 WL w; 2875 WL w, w2;
1563 2876
1564 assert (activecnt >= -1); 2877 assert (activecnt >= -1);
1565 2878
1566 assert (fdchangemax >= fdchangecnt); 2879 assert (fdchangemax >= fdchangecnt);
1567 for (i = 0; i < fdchangecnt; ++i) 2880 for (i = 0; i < fdchangecnt; ++i)
1568 assert (("negative fd in fdchanges", fdchanges [i] >= 0)); 2881 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1569 2882
1570 assert (anfdmax >= 0); 2883 assert (anfdmax >= 0);
1571 for (i = 0; i < anfdmax; ++i) 2884 for (i = 0; i < anfdmax; ++i)
2885 {
2886 int j = 0;
2887
1572 for (w = anfds [i].head; w; w = w->next) 2888 for (w = w2 = anfds [i].head; w; w = w->next)
1573 { 2889 {
1574 verify_watcher (EV_A_ (W)w); 2890 verify_watcher (EV_A_ (W)w);
2891
2892 if (j++ & 1)
2893 {
2894 assert (("libev: io watcher list contains a loop", w != w2));
2895 w2 = w2->next;
2896 }
2897
1575 assert (("inactive fd watcher on anfd list", ev_active (w) == 1)); 2898 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1576 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i)); 2899 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1577 } 2900 }
2901 }
1578 2902
1579 assert (timermax >= timercnt); 2903 assert (timermax >= timercnt);
1580 verify_heap (EV_A_ timers, timercnt); 2904 verify_heap (EV_A_ timers, timercnt);
1581 2905
1582#if EV_PERIODIC_ENABLE 2906#if EV_PERIODIC_ENABLE
1597#if EV_FORK_ENABLE 2921#if EV_FORK_ENABLE
1598 assert (forkmax >= forkcnt); 2922 assert (forkmax >= forkcnt);
1599 array_verify (EV_A_ (W *)forks, forkcnt); 2923 array_verify (EV_A_ (W *)forks, forkcnt);
1600#endif 2924#endif
1601 2925
2926#if EV_CLEANUP_ENABLE
2927 assert (cleanupmax >= cleanupcnt);
2928 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2929#endif
2930
1602#if EV_ASYNC_ENABLE 2931#if EV_ASYNC_ENABLE
1603 assert (asyncmax >= asynccnt); 2932 assert (asyncmax >= asynccnt);
1604 array_verify (EV_A_ (W *)asyncs, asynccnt); 2933 array_verify (EV_A_ (W *)asyncs, asynccnt);
1605#endif 2934#endif
1606 2935
2936#if EV_PREPARE_ENABLE
1607 assert (preparemax >= preparecnt); 2937 assert (preparemax >= preparecnt);
1608 array_verify (EV_A_ (W *)prepares, preparecnt); 2938 array_verify (EV_A_ (W *)prepares, preparecnt);
2939#endif
1609 2940
2941#if EV_CHECK_ENABLE
1610 assert (checkmax >= checkcnt); 2942 assert (checkmax >= checkcnt);
1611 array_verify (EV_A_ (W *)checks, checkcnt); 2943 array_verify (EV_A_ (W *)checks, checkcnt);
2944#endif
1612 2945
1613# if 0 2946# if 0
2947#if EV_CHILD_ENABLE
1614 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2948 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1615 for (signum = signalmax; signum--; ) if (signals [signum].gotsig) 2949 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2950#endif
1616# endif 2951# endif
1617#endif 2952#endif
1618} 2953}
1619 2954#endif
1620#endif /* multiplicity */
1621 2955
1622#if EV_MULTIPLICITY 2956#if EV_MULTIPLICITY
1623struct ev_loop * 2957struct ev_loop * ecb_cold
1624ev_default_loop_init (unsigned int flags)
1625#else 2958#else
1626int 2959int
2960#endif
1627ev_default_loop (unsigned int flags) 2961ev_default_loop (unsigned int flags) EV_THROW
1628#endif
1629{ 2962{
1630 if (!ev_default_loop_ptr) 2963 if (!ev_default_loop_ptr)
1631 { 2964 {
1632#if EV_MULTIPLICITY 2965#if EV_MULTIPLICITY
1633 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2966 EV_P = ev_default_loop_ptr = &default_loop_struct;
1634#else 2967#else
1635 ev_default_loop_ptr = 1; 2968 ev_default_loop_ptr = 1;
1636#endif 2969#endif
1637 2970
1638 loop_init (EV_A_ flags); 2971 loop_init (EV_A_ flags);
1639 2972
1640 if (ev_backend (EV_A)) 2973 if (ev_backend (EV_A))
1641 { 2974 {
1642#ifndef _WIN32 2975#if EV_CHILD_ENABLE
1643 ev_signal_init (&childev, childcb, SIGCHLD); 2976 ev_signal_init (&childev, childcb, SIGCHLD);
1644 ev_set_priority (&childev, EV_MAXPRI); 2977 ev_set_priority (&childev, EV_MAXPRI);
1645 ev_signal_start (EV_A_ &childev); 2978 ev_signal_start (EV_A_ &childev);
1646 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2979 ev_unref (EV_A); /* child watcher should not keep loop alive */
1647#endif 2980#endif
1652 2985
1653 return ev_default_loop_ptr; 2986 return ev_default_loop_ptr;
1654} 2987}
1655 2988
1656void 2989void
1657ev_default_destroy (void) 2990ev_loop_fork (EV_P) EV_THROW
1658{ 2991{
1659#if EV_MULTIPLICITY 2992 postfork = 1;
1660 struct ev_loop *loop = ev_default_loop_ptr;
1661#endif
1662
1663#ifndef _WIN32
1664 ev_ref (EV_A); /* child watcher */
1665 ev_signal_stop (EV_A_ &childev);
1666#endif
1667
1668 loop_destroy (EV_A);
1669}
1670
1671void
1672ev_default_fork (void)
1673{
1674#if EV_MULTIPLICITY
1675 struct ev_loop *loop = ev_default_loop_ptr;
1676#endif
1677
1678 if (backend)
1679 postfork = 1; /* must be in line with ev_loop_fork */
1680} 2993}
1681 2994
1682/*****************************************************************************/ 2995/*****************************************************************************/
1683 2996
1684void 2997void
1685ev_invoke (EV_P_ void *w, int revents) 2998ev_invoke (EV_P_ void *w, int revents)
1686{ 2999{
1687 EV_CB_INVOKE ((W)w, revents); 3000 EV_CB_INVOKE ((W)w, revents);
1688} 3001}
1689 3002
1690void inline_speed 3003unsigned int
1691call_pending (EV_P) 3004ev_pending_count (EV_P) EV_THROW
1692{ 3005{
1693 int pri; 3006 int pri;
3007 unsigned int count = 0;
1694 3008
1695 for (pri = NUMPRI; pri--; ) 3009 for (pri = NUMPRI; pri--; )
3010 count += pendingcnt [pri];
3011
3012 return count;
3013}
3014
3015void noinline
3016ev_invoke_pending (EV_P)
3017{
3018 pendingpri = NUMPRI;
3019
3020 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
3021 {
3022 --pendingpri;
3023
1696 while (pendingcnt [pri]) 3024 while (pendingcnt [pendingpri])
1697 {
1698 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1699
1700 if (expect_true (p->w))
1701 { 3025 {
1702 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 3026 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1703 3027
1704 p->w->pending = 0; 3028 p->w->pending = 0;
1705 EV_CB_INVOKE (p->w, p->events); 3029 EV_CB_INVOKE (p->w, p->events);
1706 EV_FREQUENT_CHECK; 3030 EV_FREQUENT_CHECK;
1707 } 3031 }
1708 } 3032 }
1709} 3033}
1710 3034
1711#if EV_IDLE_ENABLE 3035#if EV_IDLE_ENABLE
1712void inline_size 3036/* make idle watchers pending. this handles the "call-idle */
3037/* only when higher priorities are idle" logic */
3038inline_size void
1713idle_reify (EV_P) 3039idle_reify (EV_P)
1714{ 3040{
1715 if (expect_false (idleall)) 3041 if (expect_false (idleall))
1716 { 3042 {
1717 int pri; 3043 int pri;
1729 } 3055 }
1730 } 3056 }
1731} 3057}
1732#endif 3058#endif
1733 3059
1734void inline_size 3060/* make timers pending */
3061inline_size void
1735timers_reify (EV_P) 3062timers_reify (EV_P)
1736{ 3063{
1737 EV_FREQUENT_CHECK; 3064 EV_FREQUENT_CHECK;
1738 3065
1739 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 3066 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1740 { 3067 {
1741 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 3068 do
1742
1743 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1744
1745 /* first reschedule or stop timer */
1746 if (w->repeat)
1747 { 3069 {
3070 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3071
3072 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3073
3074 /* first reschedule or stop timer */
3075 if (w->repeat)
3076 {
1748 ev_at (w) += w->repeat; 3077 ev_at (w) += w->repeat;
1749 if (ev_at (w) < mn_now) 3078 if (ev_at (w) < mn_now)
1750 ev_at (w) = mn_now; 3079 ev_at (w) = mn_now;
1751 3080
1752 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3081 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1753 3082
1754 ANHE_at_cache (timers [HEAP0]); 3083 ANHE_at_cache (timers [HEAP0]);
1755 downheap (timers, timercnt, HEAP0); 3084 downheap (timers, timercnt, HEAP0);
3085 }
3086 else
3087 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3088
3089 EV_FREQUENT_CHECK;
3090 feed_reverse (EV_A_ (W)w);
1756 } 3091 }
1757 else 3092 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1758 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1759 3093
1760 EV_FREQUENT_CHECK; 3094 feed_reverse_done (EV_A_ EV_TIMER);
1761 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1762 } 3095 }
1763} 3096}
1764 3097
1765#if EV_PERIODIC_ENABLE 3098#if EV_PERIODIC_ENABLE
1766void inline_size 3099
3100static void noinline
3101periodic_recalc (EV_P_ ev_periodic *w)
3102{
3103 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3104 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3105
3106 /* the above almost always errs on the low side */
3107 while (at <= ev_rt_now)
3108 {
3109 ev_tstamp nat = at + w->interval;
3110
3111 /* when resolution fails us, we use ev_rt_now */
3112 if (expect_false (nat == at))
3113 {
3114 at = ev_rt_now;
3115 break;
3116 }
3117
3118 at = nat;
3119 }
3120
3121 ev_at (w) = at;
3122}
3123
3124/* make periodics pending */
3125inline_size void
1767periodics_reify (EV_P) 3126periodics_reify (EV_P)
1768{ 3127{
1769 EV_FREQUENT_CHECK; 3128 EV_FREQUENT_CHECK;
1770 3129
1771 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 3130 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1772 { 3131 {
1773 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 3132 do
1774
1775 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1776
1777 /* first reschedule or stop timer */
1778 if (w->reschedule_cb)
1779 { 3133 {
3134 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3135
3136 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3137
3138 /* first reschedule or stop timer */
3139 if (w->reschedule_cb)
3140 {
1780 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3141 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1781 3142
1782 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 3143 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1783 3144
1784 ANHE_at_cache (periodics [HEAP0]); 3145 ANHE_at_cache (periodics [HEAP0]);
1785 downheap (periodics, periodiccnt, HEAP0); 3146 downheap (periodics, periodiccnt, HEAP0);
3147 }
3148 else if (w->interval)
3149 {
3150 periodic_recalc (EV_A_ w);
3151 ANHE_at_cache (periodics [HEAP0]);
3152 downheap (periodics, periodiccnt, HEAP0);
3153 }
3154 else
3155 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3156
3157 EV_FREQUENT_CHECK;
3158 feed_reverse (EV_A_ (W)w);
1786 } 3159 }
1787 else if (w->interval) 3160 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1788 {
1789 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1790 /* if next trigger time is not sufficiently in the future, put it there */
1791 /* this might happen because of floating point inexactness */
1792 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1793 {
1794 ev_at (w) += w->interval;
1795 3161
1796 /* if interval is unreasonably low we might still have a time in the past */
1797 /* so correct this. this will make the periodic very inexact, but the user */
1798 /* has effectively asked to get triggered more often than possible */
1799 if (ev_at (w) < ev_rt_now)
1800 ev_at (w) = ev_rt_now;
1801 }
1802
1803 ANHE_at_cache (periodics [HEAP0]);
1804 downheap (periodics, periodiccnt, HEAP0);
1805 }
1806 else
1807 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1808
1809 EV_FREQUENT_CHECK;
1810 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 3162 feed_reverse_done (EV_A_ EV_PERIODIC);
1811 } 3163 }
1812} 3164}
1813 3165
3166/* simply recalculate all periodics */
3167/* TODO: maybe ensure that at least one event happens when jumping forward? */
1814static void noinline 3168static void noinline ecb_cold
1815periodics_reschedule (EV_P) 3169periodics_reschedule (EV_P)
1816{ 3170{
1817 int i; 3171 int i;
1818 3172
1819 /* adjust periodics after time jump */ 3173 /* adjust periodics after time jump */
1822 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]); 3176 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1823 3177
1824 if (w->reschedule_cb) 3178 if (w->reschedule_cb)
1825 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3179 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1826 else if (w->interval) 3180 else if (w->interval)
1827 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 3181 periodic_recalc (EV_A_ w);
1828 3182
1829 ANHE_at_cache (periodics [i]); 3183 ANHE_at_cache (periodics [i]);
1830 } 3184 }
1831 3185
1832 reheap (periodics, periodiccnt); 3186 reheap (periodics, periodiccnt);
1833} 3187}
1834#endif 3188#endif
1835 3189
1836void inline_speed 3190/* adjust all timers by a given offset */
3191static void noinline ecb_cold
3192timers_reschedule (EV_P_ ev_tstamp adjust)
3193{
3194 int i;
3195
3196 for (i = 0; i < timercnt; ++i)
3197 {
3198 ANHE *he = timers + i + HEAP0;
3199 ANHE_w (*he)->at += adjust;
3200 ANHE_at_cache (*he);
3201 }
3202}
3203
3204/* fetch new monotonic and realtime times from the kernel */
3205/* also detect if there was a timejump, and act accordingly */
3206inline_speed void
1837time_update (EV_P_ ev_tstamp max_block) 3207time_update (EV_P_ ev_tstamp max_block)
1838{ 3208{
1839 int i;
1840
1841#if EV_USE_MONOTONIC 3209#if EV_USE_MONOTONIC
1842 if (expect_true (have_monotonic)) 3210 if (expect_true (have_monotonic))
1843 { 3211 {
3212 int i;
1844 ev_tstamp odiff = rtmn_diff; 3213 ev_tstamp odiff = rtmn_diff;
1845 3214
1846 mn_now = get_clock (); 3215 mn_now = get_clock ();
1847 3216
1848 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 3217 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1864 * doesn't hurt either as we only do this on time-jumps or 3233 * doesn't hurt either as we only do this on time-jumps or
1865 * in the unlikely event of having been preempted here. 3234 * in the unlikely event of having been preempted here.
1866 */ 3235 */
1867 for (i = 4; --i; ) 3236 for (i = 4; --i; )
1868 { 3237 {
3238 ev_tstamp diff;
1869 rtmn_diff = ev_rt_now - mn_now; 3239 rtmn_diff = ev_rt_now - mn_now;
1870 3240
3241 diff = odiff - rtmn_diff;
3242
1871 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)) 3243 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1872 return; /* all is well */ 3244 return; /* all is well */
1873 3245
1874 ev_rt_now = ev_time (); 3246 ev_rt_now = ev_time ();
1875 mn_now = get_clock (); 3247 mn_now = get_clock ();
1876 now_floor = mn_now; 3248 now_floor = mn_now;
1877 } 3249 }
1878 3250
3251 /* no timer adjustment, as the monotonic clock doesn't jump */
3252 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1879# if EV_PERIODIC_ENABLE 3253# if EV_PERIODIC_ENABLE
1880 periodics_reschedule (EV_A); 3254 periodics_reschedule (EV_A);
1881# endif 3255# endif
1882 /* no timer adjustment, as the monotonic clock doesn't jump */
1883 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1884 } 3256 }
1885 else 3257 else
1886#endif 3258#endif
1887 { 3259 {
1888 ev_rt_now = ev_time (); 3260 ev_rt_now = ev_time ();
1889 3261
1890 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 3262 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1891 { 3263 {
3264 /* adjust timers. this is easy, as the offset is the same for all of them */
3265 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1892#if EV_PERIODIC_ENABLE 3266#if EV_PERIODIC_ENABLE
1893 periodics_reschedule (EV_A); 3267 periodics_reschedule (EV_A);
1894#endif 3268#endif
1895 /* adjust timers. this is easy, as the offset is the same for all of them */
1896 for (i = 0; i < timercnt; ++i)
1897 {
1898 ANHE *he = timers + i + HEAP0;
1899 ANHE_w (*he)->at += ev_rt_now - mn_now;
1900 ANHE_at_cache (*he);
1901 }
1902 } 3269 }
1903 3270
1904 mn_now = ev_rt_now; 3271 mn_now = ev_rt_now;
1905 } 3272 }
1906} 3273}
1907 3274
1908void 3275int
1909ev_ref (EV_P)
1910{
1911 ++activecnt;
1912}
1913
1914void
1915ev_unref (EV_P)
1916{
1917 --activecnt;
1918}
1919
1920void
1921ev_now_update (EV_P)
1922{
1923 time_update (EV_A_ 1e100);
1924}
1925
1926static int loop_done;
1927
1928void
1929ev_loop (EV_P_ int flags) 3276ev_run (EV_P_ int flags)
1930{ 3277{
3278#if EV_FEATURE_API
3279 ++loop_depth;
3280#endif
3281
3282 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3283
1931 loop_done = EVUNLOOP_CANCEL; 3284 loop_done = EVBREAK_CANCEL;
1932 3285
1933 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3286 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1934 3287
1935 do 3288 do
1936 { 3289 {
1937#if EV_VERIFY >= 2 3290#if EV_VERIFY >= 2
1938 ev_loop_verify (EV_A); 3291 ev_verify (EV_A);
1939#endif 3292#endif
1940 3293
1941#ifndef _WIN32 3294#ifndef _WIN32
1942 if (expect_false (curpid)) /* penalise the forking check even more */ 3295 if (expect_false (curpid)) /* penalise the forking check even more */
1943 if (expect_false (getpid () != curpid)) 3296 if (expect_false (getpid () != curpid))
1951 /* we might have forked, so queue fork handlers */ 3304 /* we might have forked, so queue fork handlers */
1952 if (expect_false (postfork)) 3305 if (expect_false (postfork))
1953 if (forkcnt) 3306 if (forkcnt)
1954 { 3307 {
1955 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3308 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1956 call_pending (EV_A); 3309 EV_INVOKE_PENDING;
1957 } 3310 }
1958#endif 3311#endif
1959 3312
3313#if EV_PREPARE_ENABLE
1960 /* queue prepare watchers (and execute them) */ 3314 /* queue prepare watchers (and execute them) */
1961 if (expect_false (preparecnt)) 3315 if (expect_false (preparecnt))
1962 { 3316 {
1963 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3317 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1964 call_pending (EV_A); 3318 EV_INVOKE_PENDING;
1965 } 3319 }
3320#endif
1966 3321
1967 if (expect_false (!activecnt)) 3322 if (expect_false (loop_done))
1968 break; 3323 break;
1969 3324
1970 /* we might have forked, so reify kernel state if necessary */ 3325 /* we might have forked, so reify kernel state if necessary */
1971 if (expect_false (postfork)) 3326 if (expect_false (postfork))
1972 loop_fork (EV_A); 3327 loop_fork (EV_A);
1977 /* calculate blocking time */ 3332 /* calculate blocking time */
1978 { 3333 {
1979 ev_tstamp waittime = 0.; 3334 ev_tstamp waittime = 0.;
1980 ev_tstamp sleeptime = 0.; 3335 ev_tstamp sleeptime = 0.;
1981 3336
3337 /* remember old timestamp for io_blocktime calculation */
3338 ev_tstamp prev_mn_now = mn_now;
3339
3340 /* update time to cancel out callback processing overhead */
3341 time_update (EV_A_ 1e100);
3342
3343 /* from now on, we want a pipe-wake-up */
3344 pipe_write_wanted = 1;
3345
3346 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3347
1982 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3348 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1983 { 3349 {
1984 /* update time to cancel out callback processing overhead */
1985 time_update (EV_A_ 1e100);
1986
1987 waittime = MAX_BLOCKTIME; 3350 waittime = MAX_BLOCKTIME;
1988 3351
1989 if (timercnt) 3352 if (timercnt)
1990 { 3353 {
1991 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 3354 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1992 if (waittime > to) waittime = to; 3355 if (waittime > to) waittime = to;
1993 } 3356 }
1994 3357
1995#if EV_PERIODIC_ENABLE 3358#if EV_PERIODIC_ENABLE
1996 if (periodiccnt) 3359 if (periodiccnt)
1997 { 3360 {
1998 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 3361 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1999 if (waittime > to) waittime = to; 3362 if (waittime > to) waittime = to;
2000 } 3363 }
2001#endif 3364#endif
2002 3365
3366 /* don't let timeouts decrease the waittime below timeout_blocktime */
2003 if (expect_false (waittime < timeout_blocktime)) 3367 if (expect_false (waittime < timeout_blocktime))
2004 waittime = timeout_blocktime; 3368 waittime = timeout_blocktime;
2005 3369
2006 sleeptime = waittime - backend_fudge; 3370 /* at this point, we NEED to wait, so we have to ensure */
3371 /* to pass a minimum nonzero value to the backend */
3372 if (expect_false (waittime < backend_mintime))
3373 waittime = backend_mintime;
2007 3374
3375 /* extra check because io_blocktime is commonly 0 */
2008 if (expect_true (sleeptime > io_blocktime)) 3376 if (expect_false (io_blocktime))
2009 sleeptime = io_blocktime;
2010
2011 if (sleeptime)
2012 { 3377 {
3378 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3379
3380 if (sleeptime > waittime - backend_mintime)
3381 sleeptime = waittime - backend_mintime;
3382
3383 if (expect_true (sleeptime > 0.))
3384 {
2013 ev_sleep (sleeptime); 3385 ev_sleep (sleeptime);
2014 waittime -= sleeptime; 3386 waittime -= sleeptime;
3387 }
2015 } 3388 }
2016 } 3389 }
2017 3390
3391#if EV_FEATURE_API
2018 ++loop_count; 3392 ++loop_count;
3393#endif
3394 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2019 backend_poll (EV_A_ waittime); 3395 backend_poll (EV_A_ waittime);
3396 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3397
3398 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3399
3400 ECB_MEMORY_FENCE_ACQUIRE;
3401 if (pipe_write_skipped)
3402 {
3403 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3404 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3405 }
3406
2020 3407
2021 /* update ev_rt_now, do magic */ 3408 /* update ev_rt_now, do magic */
2022 time_update (EV_A_ waittime + sleeptime); 3409 time_update (EV_A_ waittime + sleeptime);
2023 } 3410 }
2024 3411
2031#if EV_IDLE_ENABLE 3418#if EV_IDLE_ENABLE
2032 /* queue idle watchers unless other events are pending */ 3419 /* queue idle watchers unless other events are pending */
2033 idle_reify (EV_A); 3420 idle_reify (EV_A);
2034#endif 3421#endif
2035 3422
3423#if EV_CHECK_ENABLE
2036 /* queue check watchers, to be executed first */ 3424 /* queue check watchers, to be executed first */
2037 if (expect_false (checkcnt)) 3425 if (expect_false (checkcnt))
2038 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3426 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3427#endif
2039 3428
2040 call_pending (EV_A); 3429 EV_INVOKE_PENDING;
2041 } 3430 }
2042 while (expect_true ( 3431 while (expect_true (
2043 activecnt 3432 activecnt
2044 && !loop_done 3433 && !loop_done
2045 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 3434 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2046 )); 3435 ));
2047 3436
2048 if (loop_done == EVUNLOOP_ONE) 3437 if (loop_done == EVBREAK_ONE)
2049 loop_done = EVUNLOOP_CANCEL; 3438 loop_done = EVBREAK_CANCEL;
3439
3440#if EV_FEATURE_API
3441 --loop_depth;
3442#endif
3443
3444 return activecnt;
2050} 3445}
2051 3446
2052void 3447void
2053ev_unloop (EV_P_ int how) 3448ev_break (EV_P_ int how) EV_THROW
2054{ 3449{
2055 loop_done = how; 3450 loop_done = how;
2056} 3451}
2057 3452
3453void
3454ev_ref (EV_P) EV_THROW
3455{
3456 ++activecnt;
3457}
3458
3459void
3460ev_unref (EV_P) EV_THROW
3461{
3462 --activecnt;
3463}
3464
3465void
3466ev_now_update (EV_P) EV_THROW
3467{
3468 time_update (EV_A_ 1e100);
3469}
3470
3471void
3472ev_suspend (EV_P) EV_THROW
3473{
3474 ev_now_update (EV_A);
3475}
3476
3477void
3478ev_resume (EV_P) EV_THROW
3479{
3480 ev_tstamp mn_prev = mn_now;
3481
3482 ev_now_update (EV_A);
3483 timers_reschedule (EV_A_ mn_now - mn_prev);
3484#if EV_PERIODIC_ENABLE
3485 /* TODO: really do this? */
3486 periodics_reschedule (EV_A);
3487#endif
3488}
3489
2058/*****************************************************************************/ 3490/*****************************************************************************/
3491/* singly-linked list management, used when the expected list length is short */
2059 3492
2060void inline_size 3493inline_size void
2061wlist_add (WL *head, WL elem) 3494wlist_add (WL *head, WL elem)
2062{ 3495{
2063 elem->next = *head; 3496 elem->next = *head;
2064 *head = elem; 3497 *head = elem;
2065} 3498}
2066 3499
2067void inline_size 3500inline_size void
2068wlist_del (WL *head, WL elem) 3501wlist_del (WL *head, WL elem)
2069{ 3502{
2070 while (*head) 3503 while (*head)
2071 { 3504 {
2072 if (*head == elem) 3505 if (expect_true (*head == elem))
2073 { 3506 {
2074 *head = elem->next; 3507 *head = elem->next;
2075 return; 3508 break;
2076 } 3509 }
2077 3510
2078 head = &(*head)->next; 3511 head = &(*head)->next;
2079 } 3512 }
2080} 3513}
2081 3514
2082void inline_speed 3515/* internal, faster, version of ev_clear_pending */
3516inline_speed void
2083clear_pending (EV_P_ W w) 3517clear_pending (EV_P_ W w)
2084{ 3518{
2085 if (w->pending) 3519 if (w->pending)
2086 { 3520 {
2087 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3521 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2088 w->pending = 0; 3522 w->pending = 0;
2089 } 3523 }
2090} 3524}
2091 3525
2092int 3526int
2093ev_clear_pending (EV_P_ void *w) 3527ev_clear_pending (EV_P_ void *w) EV_THROW
2094{ 3528{
2095 W w_ = (W)w; 3529 W w_ = (W)w;
2096 int pending = w_->pending; 3530 int pending = w_->pending;
2097 3531
2098 if (expect_true (pending)) 3532 if (expect_true (pending))
2099 { 3533 {
2100 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3534 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3535 p->w = (W)&pending_w;
2101 w_->pending = 0; 3536 w_->pending = 0;
2102 p->w = 0;
2103 return p->events; 3537 return p->events;
2104 } 3538 }
2105 else 3539 else
2106 return 0; 3540 return 0;
2107} 3541}
2108 3542
2109void inline_size 3543inline_size void
2110pri_adjust (EV_P_ W w) 3544pri_adjust (EV_P_ W w)
2111{ 3545{
2112 int pri = w->priority; 3546 int pri = ev_priority (w);
2113 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3547 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2114 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3548 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2115 w->priority = pri; 3549 ev_set_priority (w, pri);
2116} 3550}
2117 3551
2118void inline_speed 3552inline_speed void
2119ev_start (EV_P_ W w, int active) 3553ev_start (EV_P_ W w, int active)
2120{ 3554{
2121 pri_adjust (EV_A_ w); 3555 pri_adjust (EV_A_ w);
2122 w->active = active; 3556 w->active = active;
2123 ev_ref (EV_A); 3557 ev_ref (EV_A);
2124} 3558}
2125 3559
2126void inline_size 3560inline_size void
2127ev_stop (EV_P_ W w) 3561ev_stop (EV_P_ W w)
2128{ 3562{
2129 ev_unref (EV_A); 3563 ev_unref (EV_A);
2130 w->active = 0; 3564 w->active = 0;
2131} 3565}
2132 3566
2133/*****************************************************************************/ 3567/*****************************************************************************/
2134 3568
2135void noinline 3569void noinline
2136ev_io_start (EV_P_ ev_io *w) 3570ev_io_start (EV_P_ ev_io *w) EV_THROW
2137{ 3571{
2138 int fd = w->fd; 3572 int fd = w->fd;
2139 3573
2140 if (expect_false (ev_is_active (w))) 3574 if (expect_false (ev_is_active (w)))
2141 return; 3575 return;
2142 3576
2143 assert (("ev_io_start called with negative fd", fd >= 0)); 3577 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3578 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2144 3579
2145 EV_FREQUENT_CHECK; 3580 EV_FREQUENT_CHECK;
2146 3581
2147 ev_start (EV_A_ (W)w, 1); 3582 ev_start (EV_A_ (W)w, 1);
2148 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3583 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2149 wlist_add (&anfds[fd].head, (WL)w); 3584 wlist_add (&anfds[fd].head, (WL)w);
2150 3585
3586 /* common bug, apparently */
3587 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3588
2151 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3589 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2152 w->events &= ~EV_IOFDSET; 3590 w->events &= ~EV__IOFDSET;
2153 3591
2154 EV_FREQUENT_CHECK; 3592 EV_FREQUENT_CHECK;
2155} 3593}
2156 3594
2157void noinline 3595void noinline
2158ev_io_stop (EV_P_ ev_io *w) 3596ev_io_stop (EV_P_ ev_io *w) EV_THROW
2159{ 3597{
2160 clear_pending (EV_A_ (W)w); 3598 clear_pending (EV_A_ (W)w);
2161 if (expect_false (!ev_is_active (w))) 3599 if (expect_false (!ev_is_active (w)))
2162 return; 3600 return;
2163 3601
2164 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3602 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2165 3603
2166 EV_FREQUENT_CHECK; 3604 EV_FREQUENT_CHECK;
2167 3605
2168 wlist_del (&anfds[w->fd].head, (WL)w); 3606 wlist_del (&anfds[w->fd].head, (WL)w);
2169 ev_stop (EV_A_ (W)w); 3607 ev_stop (EV_A_ (W)w);
2170 3608
2171 fd_change (EV_A_ w->fd, 1); 3609 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2172 3610
2173 EV_FREQUENT_CHECK; 3611 EV_FREQUENT_CHECK;
2174} 3612}
2175 3613
2176void noinline 3614void noinline
2177ev_timer_start (EV_P_ ev_timer *w) 3615ev_timer_start (EV_P_ ev_timer *w) EV_THROW
2178{ 3616{
2179 if (expect_false (ev_is_active (w))) 3617 if (expect_false (ev_is_active (w)))
2180 return; 3618 return;
2181 3619
2182 ev_at (w) += mn_now; 3620 ev_at (w) += mn_now;
2183 3621
2184 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3622 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2185 3623
2186 EV_FREQUENT_CHECK; 3624 EV_FREQUENT_CHECK;
2187 3625
2188 ++timercnt; 3626 ++timercnt;
2189 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1); 3627 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2192 ANHE_at_cache (timers [ev_active (w)]); 3630 ANHE_at_cache (timers [ev_active (w)]);
2193 upheap (timers, ev_active (w)); 3631 upheap (timers, ev_active (w));
2194 3632
2195 EV_FREQUENT_CHECK; 3633 EV_FREQUENT_CHECK;
2196 3634
2197 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 3635 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2198} 3636}
2199 3637
2200void noinline 3638void noinline
2201ev_timer_stop (EV_P_ ev_timer *w) 3639ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
2202{ 3640{
2203 clear_pending (EV_A_ (W)w); 3641 clear_pending (EV_A_ (W)w);
2204 if (expect_false (!ev_is_active (w))) 3642 if (expect_false (!ev_is_active (w)))
2205 return; 3643 return;
2206 3644
2207 EV_FREQUENT_CHECK; 3645 EV_FREQUENT_CHECK;
2208 3646
2209 { 3647 {
2210 int active = ev_active (w); 3648 int active = ev_active (w);
2211 3649
2212 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 3650 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2213 3651
2214 --timercnt; 3652 --timercnt;
2215 3653
2216 if (expect_true (active < timercnt + HEAP0)) 3654 if (expect_true (active < timercnt + HEAP0))
2217 { 3655 {
2218 timers [active] = timers [timercnt + HEAP0]; 3656 timers [active] = timers [timercnt + HEAP0];
2219 adjustheap (timers, timercnt, active); 3657 adjustheap (timers, timercnt, active);
2220 } 3658 }
2221 } 3659 }
2222 3660
2223 EV_FREQUENT_CHECK;
2224
2225 ev_at (w) -= mn_now; 3661 ev_at (w) -= mn_now;
2226 3662
2227 ev_stop (EV_A_ (W)w); 3663 ev_stop (EV_A_ (W)w);
3664
3665 EV_FREQUENT_CHECK;
2228} 3666}
2229 3667
2230void noinline 3668void noinline
2231ev_timer_again (EV_P_ ev_timer *w) 3669ev_timer_again (EV_P_ ev_timer *w) EV_THROW
2232{ 3670{
2233 EV_FREQUENT_CHECK; 3671 EV_FREQUENT_CHECK;
3672
3673 clear_pending (EV_A_ (W)w);
2234 3674
2235 if (ev_is_active (w)) 3675 if (ev_is_active (w))
2236 { 3676 {
2237 if (w->repeat) 3677 if (w->repeat)
2238 { 3678 {
2250 } 3690 }
2251 3691
2252 EV_FREQUENT_CHECK; 3692 EV_FREQUENT_CHECK;
2253} 3693}
2254 3694
3695ev_tstamp
3696ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3697{
3698 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3699}
3700
2255#if EV_PERIODIC_ENABLE 3701#if EV_PERIODIC_ENABLE
2256void noinline 3702void noinline
2257ev_periodic_start (EV_P_ ev_periodic *w) 3703ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
2258{ 3704{
2259 if (expect_false (ev_is_active (w))) 3705 if (expect_false (ev_is_active (w)))
2260 return; 3706 return;
2261 3707
2262 if (w->reschedule_cb) 3708 if (w->reschedule_cb)
2263 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3709 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2264 else if (w->interval) 3710 else if (w->interval)
2265 { 3711 {
2266 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3712 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2267 /* this formula differs from the one in periodic_reify because we do not always round up */ 3713 periodic_recalc (EV_A_ w);
2268 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2269 } 3714 }
2270 else 3715 else
2271 ev_at (w) = w->offset; 3716 ev_at (w) = w->offset;
2272 3717
2273 EV_FREQUENT_CHECK; 3718 EV_FREQUENT_CHECK;
2279 ANHE_at_cache (periodics [ev_active (w)]); 3724 ANHE_at_cache (periodics [ev_active (w)]);
2280 upheap (periodics, ev_active (w)); 3725 upheap (periodics, ev_active (w));
2281 3726
2282 EV_FREQUENT_CHECK; 3727 EV_FREQUENT_CHECK;
2283 3728
2284 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 3729 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2285} 3730}
2286 3731
2287void noinline 3732void noinline
2288ev_periodic_stop (EV_P_ ev_periodic *w) 3733ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
2289{ 3734{
2290 clear_pending (EV_A_ (W)w); 3735 clear_pending (EV_A_ (W)w);
2291 if (expect_false (!ev_is_active (w))) 3736 if (expect_false (!ev_is_active (w)))
2292 return; 3737 return;
2293 3738
2294 EV_FREQUENT_CHECK; 3739 EV_FREQUENT_CHECK;
2295 3740
2296 { 3741 {
2297 int active = ev_active (w); 3742 int active = ev_active (w);
2298 3743
2299 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 3744 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2300 3745
2301 --periodiccnt; 3746 --periodiccnt;
2302 3747
2303 if (expect_true (active < periodiccnt + HEAP0)) 3748 if (expect_true (active < periodiccnt + HEAP0))
2304 { 3749 {
2305 periodics [active] = periodics [periodiccnt + HEAP0]; 3750 periodics [active] = periodics [periodiccnt + HEAP0];
2306 adjustheap (periodics, periodiccnt, active); 3751 adjustheap (periodics, periodiccnt, active);
2307 } 3752 }
2308 } 3753 }
2309 3754
2310 EV_FREQUENT_CHECK;
2311
2312 ev_stop (EV_A_ (W)w); 3755 ev_stop (EV_A_ (W)w);
3756
3757 EV_FREQUENT_CHECK;
2313} 3758}
2314 3759
2315void noinline 3760void noinline
2316ev_periodic_again (EV_P_ ev_periodic *w) 3761ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
2317{ 3762{
2318 /* TODO: use adjustheap and recalculation */ 3763 /* TODO: use adjustheap and recalculation */
2319 ev_periodic_stop (EV_A_ w); 3764 ev_periodic_stop (EV_A_ w);
2320 ev_periodic_start (EV_A_ w); 3765 ev_periodic_start (EV_A_ w);
2321} 3766}
2323 3768
2324#ifndef SA_RESTART 3769#ifndef SA_RESTART
2325# define SA_RESTART 0 3770# define SA_RESTART 0
2326#endif 3771#endif
2327 3772
3773#if EV_SIGNAL_ENABLE
3774
2328void noinline 3775void noinline
2329ev_signal_start (EV_P_ ev_signal *w) 3776ev_signal_start (EV_P_ ev_signal *w) EV_THROW
2330{ 3777{
2331#if EV_MULTIPLICITY
2332 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2333#endif
2334 if (expect_false (ev_is_active (w))) 3778 if (expect_false (ev_is_active (w)))
2335 return; 3779 return;
2336 3780
2337 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3781 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2338 3782
2339 evpipe_init (EV_A); 3783#if EV_MULTIPLICITY
3784 assert (("libev: a signal must not be attached to two different loops",
3785 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2340 3786
2341 EV_FREQUENT_CHECK; 3787 signals [w->signum - 1].loop = EV_A;
3788 ECB_MEMORY_FENCE_RELEASE;
3789#endif
2342 3790
3791 EV_FREQUENT_CHECK;
3792
3793#if EV_USE_SIGNALFD
3794 if (sigfd == -2)
2343 { 3795 {
2344#ifndef _WIN32 3796 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2345 sigset_t full, prev; 3797 if (sigfd < 0 && errno == EINVAL)
2346 sigfillset (&full); 3798 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2347 sigprocmask (SIG_SETMASK, &full, &prev);
2348#endif
2349 3799
2350 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3800 if (sigfd >= 0)
3801 {
3802 fd_intern (sigfd); /* doing it twice will not hurt */
2351 3803
2352#ifndef _WIN32 3804 sigemptyset (&sigfd_set);
2353 sigprocmask (SIG_SETMASK, &prev, 0); 3805
2354#endif 3806 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3807 ev_set_priority (&sigfd_w, EV_MAXPRI);
3808 ev_io_start (EV_A_ &sigfd_w);
3809 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3810 }
2355 } 3811 }
3812
3813 if (sigfd >= 0)
3814 {
3815 /* TODO: check .head */
3816 sigaddset (&sigfd_set, w->signum);
3817 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3818
3819 signalfd (sigfd, &sigfd_set, 0);
3820 }
3821#endif
2356 3822
2357 ev_start (EV_A_ (W)w, 1); 3823 ev_start (EV_A_ (W)w, 1);
2358 wlist_add (&signals [w->signum - 1].head, (WL)w); 3824 wlist_add (&signals [w->signum - 1].head, (WL)w);
2359 3825
2360 if (!((WL)w)->next) 3826 if (!((WL)w)->next)
3827# if EV_USE_SIGNALFD
3828 if (sigfd < 0) /*TODO*/
3829# endif
2361 { 3830 {
2362#if _WIN32 3831# ifdef _WIN32
3832 evpipe_init (EV_A);
3833
2363 signal (w->signum, ev_sighandler); 3834 signal (w->signum, ev_sighandler);
2364#else 3835# else
2365 struct sigaction sa; 3836 struct sigaction sa;
3837
3838 evpipe_init (EV_A);
3839
2366 sa.sa_handler = ev_sighandler; 3840 sa.sa_handler = ev_sighandler;
2367 sigfillset (&sa.sa_mask); 3841 sigfillset (&sa.sa_mask);
2368 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3842 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2369 sigaction (w->signum, &sa, 0); 3843 sigaction (w->signum, &sa, 0);
3844
3845 if (origflags & EVFLAG_NOSIGMASK)
3846 {
3847 sigemptyset (&sa.sa_mask);
3848 sigaddset (&sa.sa_mask, w->signum);
3849 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3850 }
2370#endif 3851#endif
2371 } 3852 }
2372 3853
2373 EV_FREQUENT_CHECK; 3854 EV_FREQUENT_CHECK;
2374} 3855}
2375 3856
2376void noinline 3857void noinline
2377ev_signal_stop (EV_P_ ev_signal *w) 3858ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
2378{ 3859{
2379 clear_pending (EV_A_ (W)w); 3860 clear_pending (EV_A_ (W)w);
2380 if (expect_false (!ev_is_active (w))) 3861 if (expect_false (!ev_is_active (w)))
2381 return; 3862 return;
2382 3863
2384 3865
2385 wlist_del (&signals [w->signum - 1].head, (WL)w); 3866 wlist_del (&signals [w->signum - 1].head, (WL)w);
2386 ev_stop (EV_A_ (W)w); 3867 ev_stop (EV_A_ (W)w);
2387 3868
2388 if (!signals [w->signum - 1].head) 3869 if (!signals [w->signum - 1].head)
3870 {
3871#if EV_MULTIPLICITY
3872 signals [w->signum - 1].loop = 0; /* unattach from signal */
3873#endif
3874#if EV_USE_SIGNALFD
3875 if (sigfd >= 0)
3876 {
3877 sigset_t ss;
3878
3879 sigemptyset (&ss);
3880 sigaddset (&ss, w->signum);
3881 sigdelset (&sigfd_set, w->signum);
3882
3883 signalfd (sigfd, &sigfd_set, 0);
3884 sigprocmask (SIG_UNBLOCK, &ss, 0);
3885 }
3886 else
3887#endif
2389 signal (w->signum, SIG_DFL); 3888 signal (w->signum, SIG_DFL);
3889 }
2390 3890
2391 EV_FREQUENT_CHECK; 3891 EV_FREQUENT_CHECK;
2392} 3892}
3893
3894#endif
3895
3896#if EV_CHILD_ENABLE
2393 3897
2394void 3898void
2395ev_child_start (EV_P_ ev_child *w) 3899ev_child_start (EV_P_ ev_child *w) EV_THROW
2396{ 3900{
2397#if EV_MULTIPLICITY 3901#if EV_MULTIPLICITY
2398 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3902 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2399#endif 3903#endif
2400 if (expect_false (ev_is_active (w))) 3904 if (expect_false (ev_is_active (w)))
2401 return; 3905 return;
2402 3906
2403 EV_FREQUENT_CHECK; 3907 EV_FREQUENT_CHECK;
2404 3908
2405 ev_start (EV_A_ (W)w, 1); 3909 ev_start (EV_A_ (W)w, 1);
2406 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3910 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2407 3911
2408 EV_FREQUENT_CHECK; 3912 EV_FREQUENT_CHECK;
2409} 3913}
2410 3914
2411void 3915void
2412ev_child_stop (EV_P_ ev_child *w) 3916ev_child_stop (EV_P_ ev_child *w) EV_THROW
2413{ 3917{
2414 clear_pending (EV_A_ (W)w); 3918 clear_pending (EV_A_ (W)w);
2415 if (expect_false (!ev_is_active (w))) 3919 if (expect_false (!ev_is_active (w)))
2416 return; 3920 return;
2417 3921
2418 EV_FREQUENT_CHECK; 3922 EV_FREQUENT_CHECK;
2419 3923
2420 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3924 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2421 ev_stop (EV_A_ (W)w); 3925 ev_stop (EV_A_ (W)w);
2422 3926
2423 EV_FREQUENT_CHECK; 3927 EV_FREQUENT_CHECK;
2424} 3928}
3929
3930#endif
2425 3931
2426#if EV_STAT_ENABLE 3932#if EV_STAT_ENABLE
2427 3933
2428# ifdef _WIN32 3934# ifdef _WIN32
2429# undef lstat 3935# undef lstat
2430# define lstat(a,b) _stati64 (a,b) 3936# define lstat(a,b) _stati64 (a,b)
2431# endif 3937# endif
2432 3938
2433#define DEF_STAT_INTERVAL 5.0074891 3939#define DEF_STAT_INTERVAL 5.0074891
3940#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2434#define MIN_STAT_INTERVAL 0.1074891 3941#define MIN_STAT_INTERVAL 0.1074891
2435 3942
2436static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3943static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2437 3944
2438#if EV_USE_INOTIFY 3945#if EV_USE_INOTIFY
2439# define EV_INOTIFY_BUFSIZE 8192 3946
3947/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3948# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2440 3949
2441static void noinline 3950static void noinline
2442infy_add (EV_P_ ev_stat *w) 3951infy_add (EV_P_ ev_stat *w)
2443{ 3952{
2444 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3953 w->wd = inotify_add_watch (fs_fd, w->path,
3954 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
3955 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
3956 | IN_DONT_FOLLOW | IN_MASK_ADD);
2445 3957
2446 if (w->wd < 0) 3958 if (w->wd >= 0)
3959 {
3960 struct statfs sfs;
3961
3962 /* now local changes will be tracked by inotify, but remote changes won't */
3963 /* unless the filesystem is known to be local, we therefore still poll */
3964 /* also do poll on <2.6.25, but with normal frequency */
3965
3966 if (!fs_2625)
3967 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3968 else if (!statfs (w->path, &sfs)
3969 && (sfs.f_type == 0x1373 /* devfs */
3970 || sfs.f_type == 0x4006 /* fat */
3971 || sfs.f_type == 0x4d44 /* msdos */
3972 || sfs.f_type == 0xEF53 /* ext2/3 */
3973 || sfs.f_type == 0x72b6 /* jffs2 */
3974 || sfs.f_type == 0x858458f6 /* ramfs */
3975 || sfs.f_type == 0x5346544e /* ntfs */
3976 || sfs.f_type == 0x3153464a /* jfs */
3977 || sfs.f_type == 0x9123683e /* btrfs */
3978 || sfs.f_type == 0x52654973 /* reiser3 */
3979 || sfs.f_type == 0x01021994 /* tmpfs */
3980 || sfs.f_type == 0x58465342 /* xfs */))
3981 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3982 else
3983 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2447 { 3984 }
2448 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3985 else
3986 {
3987 /* can't use inotify, continue to stat */
3988 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2449 3989
2450 /* monitor some parent directory for speedup hints */ 3990 /* if path is not there, monitor some parent directory for speedup hints */
2451 /* note that exceeding the hardcoded limit is not a correctness issue, */ 3991 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2452 /* but an efficiency issue only */ 3992 /* but an efficiency issue only */
2453 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3993 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2454 { 3994 {
2455 char path [4096]; 3995 char path [4096];
2456 strcpy (path, w->path); 3996 strcpy (path, w->path);
2460 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 4000 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2461 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 4001 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2462 4002
2463 char *pend = strrchr (path, '/'); 4003 char *pend = strrchr (path, '/');
2464 4004
2465 if (!pend) 4005 if (!pend || pend == path)
2466 break; /* whoops, no '/', complain to your admin */ 4006 break;
2467 4007
2468 *pend = 0; 4008 *pend = 0;
2469 w->wd = inotify_add_watch (fs_fd, path, mask); 4009 w->wd = inotify_add_watch (fs_fd, path, mask);
2470 } 4010 }
2471 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 4011 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2472 } 4012 }
2473 } 4013 }
2474 else
2475 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2476 4014
2477 if (w->wd >= 0) 4015 if (w->wd >= 0)
2478 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 4016 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4017
4018 /* now re-arm timer, if required */
4019 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4020 ev_timer_again (EV_A_ &w->timer);
4021 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2479} 4022}
2480 4023
2481static void noinline 4024static void noinline
2482infy_del (EV_P_ ev_stat *w) 4025infy_del (EV_P_ ev_stat *w)
2483{ 4026{
2486 4029
2487 if (wd < 0) 4030 if (wd < 0)
2488 return; 4031 return;
2489 4032
2490 w->wd = -2; 4033 w->wd = -2;
2491 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 4034 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2492 wlist_del (&fs_hash [slot].head, (WL)w); 4035 wlist_del (&fs_hash [slot].head, (WL)w);
2493 4036
2494 /* remove this watcher, if others are watching it, they will rearm */ 4037 /* remove this watcher, if others are watching it, they will rearm */
2495 inotify_rm_watch (fs_fd, wd); 4038 inotify_rm_watch (fs_fd, wd);
2496} 4039}
2498static void noinline 4041static void noinline
2499infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 4042infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2500{ 4043{
2501 if (slot < 0) 4044 if (slot < 0)
2502 /* overflow, need to check for all hash slots */ 4045 /* overflow, need to check for all hash slots */
2503 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4046 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2504 infy_wd (EV_A_ slot, wd, ev); 4047 infy_wd (EV_A_ slot, wd, ev);
2505 else 4048 else
2506 { 4049 {
2507 WL w_; 4050 WL w_;
2508 4051
2509 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 4052 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2510 { 4053 {
2511 ev_stat *w = (ev_stat *)w_; 4054 ev_stat *w = (ev_stat *)w_;
2512 w_ = w_->next; /* lets us remove this watcher and all before it */ 4055 w_ = w_->next; /* lets us remove this watcher and all before it */
2513 4056
2514 if (w->wd == wd || wd == -1) 4057 if (w->wd == wd || wd == -1)
2515 { 4058 {
2516 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 4059 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2517 { 4060 {
4061 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2518 w->wd = -1; 4062 w->wd = -1;
2519 infy_add (EV_A_ w); /* re-add, no matter what */ 4063 infy_add (EV_A_ w); /* re-add, no matter what */
2520 } 4064 }
2521 4065
2522 stat_timer_cb (EV_A_ &w->timer, 0); 4066 stat_timer_cb (EV_A_ &w->timer, 0);
2527 4071
2528static void 4072static void
2529infy_cb (EV_P_ ev_io *w, int revents) 4073infy_cb (EV_P_ ev_io *w, int revents)
2530{ 4074{
2531 char buf [EV_INOTIFY_BUFSIZE]; 4075 char buf [EV_INOTIFY_BUFSIZE];
2532 struct inotify_event *ev = (struct inotify_event *)buf;
2533 int ofs; 4076 int ofs;
2534 int len = read (fs_fd, buf, sizeof (buf)); 4077 int len = read (fs_fd, buf, sizeof (buf));
2535 4078
2536 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 4079 for (ofs = 0; ofs < len; )
4080 {
4081 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2537 infy_wd (EV_A_ ev->wd, ev->wd, ev); 4082 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4083 ofs += sizeof (struct inotify_event) + ev->len;
4084 }
2538} 4085}
2539 4086
2540void inline_size 4087inline_size void ecb_cold
2541infy_init (EV_P) 4088ev_check_2625 (EV_P)
2542{ 4089{
2543 if (fs_fd != -2)
2544 return;
2545
2546 /* kernels < 2.6.25 are borked 4090 /* kernels < 2.6.25 are borked
2547 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html 4091 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2548 */ 4092 */
2549 { 4093 if (ev_linux_version () < 0x020619)
2550 struct utsname buf; 4094 return;
2551 int major, minor, micro;
2552 4095
4096 fs_2625 = 1;
4097}
4098
4099inline_size int
4100infy_newfd (void)
4101{
4102#if defined IN_CLOEXEC && defined IN_NONBLOCK
4103 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4104 if (fd >= 0)
4105 return fd;
4106#endif
4107 return inotify_init ();
4108}
4109
4110inline_size void
4111infy_init (EV_P)
4112{
4113 if (fs_fd != -2)
4114 return;
4115
2553 fs_fd = -1; 4116 fs_fd = -1;
2554 4117
2555 if (uname (&buf)) 4118 ev_check_2625 (EV_A);
2556 return;
2557 4119
2558 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2559 return;
2560
2561 if (major < 2
2562 || (major == 2 && minor < 6)
2563 || (major == 2 && minor == 6 && micro < 25))
2564 return;
2565 }
2566
2567 fs_fd = inotify_init (); 4120 fs_fd = infy_newfd ();
2568 4121
2569 if (fs_fd >= 0) 4122 if (fs_fd >= 0)
2570 { 4123 {
4124 fd_intern (fs_fd);
2571 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 4125 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2572 ev_set_priority (&fs_w, EV_MAXPRI); 4126 ev_set_priority (&fs_w, EV_MAXPRI);
2573 ev_io_start (EV_A_ &fs_w); 4127 ev_io_start (EV_A_ &fs_w);
4128 ev_unref (EV_A);
2574 } 4129 }
2575} 4130}
2576 4131
2577void inline_size 4132inline_size void
2578infy_fork (EV_P) 4133infy_fork (EV_P)
2579{ 4134{
2580 int slot; 4135 int slot;
2581 4136
2582 if (fs_fd < 0) 4137 if (fs_fd < 0)
2583 return; 4138 return;
2584 4139
4140 ev_ref (EV_A);
4141 ev_io_stop (EV_A_ &fs_w);
2585 close (fs_fd); 4142 close (fs_fd);
2586 fs_fd = inotify_init (); 4143 fs_fd = infy_newfd ();
2587 4144
4145 if (fs_fd >= 0)
4146 {
4147 fd_intern (fs_fd);
4148 ev_io_set (&fs_w, fs_fd, EV_READ);
4149 ev_io_start (EV_A_ &fs_w);
4150 ev_unref (EV_A);
4151 }
4152
2588 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4153 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2589 { 4154 {
2590 WL w_ = fs_hash [slot].head; 4155 WL w_ = fs_hash [slot].head;
2591 fs_hash [slot].head = 0; 4156 fs_hash [slot].head = 0;
2592 4157
2593 while (w_) 4158 while (w_)
2598 w->wd = -1; 4163 w->wd = -1;
2599 4164
2600 if (fs_fd >= 0) 4165 if (fs_fd >= 0)
2601 infy_add (EV_A_ w); /* re-add, no matter what */ 4166 infy_add (EV_A_ w); /* re-add, no matter what */
2602 else 4167 else
4168 {
4169 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4170 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2603 ev_timer_start (EV_A_ &w->timer); 4171 ev_timer_again (EV_A_ &w->timer);
4172 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4173 }
2604 } 4174 }
2605 } 4175 }
2606} 4176}
2607 4177
2608#endif 4178#endif
2612#else 4182#else
2613# define EV_LSTAT(p,b) lstat (p, b) 4183# define EV_LSTAT(p,b) lstat (p, b)
2614#endif 4184#endif
2615 4185
2616void 4186void
2617ev_stat_stat (EV_P_ ev_stat *w) 4187ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
2618{ 4188{
2619 if (lstat (w->path, &w->attr) < 0) 4189 if (lstat (w->path, &w->attr) < 0)
2620 w->attr.st_nlink = 0; 4190 w->attr.st_nlink = 0;
2621 else if (!w->attr.st_nlink) 4191 else if (!w->attr.st_nlink)
2622 w->attr.st_nlink = 1; 4192 w->attr.st_nlink = 1;
2625static void noinline 4195static void noinline
2626stat_timer_cb (EV_P_ ev_timer *w_, int revents) 4196stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2627{ 4197{
2628 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 4198 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2629 4199
2630 /* we copy this here each the time so that */ 4200 ev_statdata prev = w->attr;
2631 /* prev has the old value when the callback gets invoked */
2632 w->prev = w->attr;
2633 ev_stat_stat (EV_A_ w); 4201 ev_stat_stat (EV_A_ w);
2634 4202
2635 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 4203 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2636 if ( 4204 if (
2637 w->prev.st_dev != w->attr.st_dev 4205 prev.st_dev != w->attr.st_dev
2638 || w->prev.st_ino != w->attr.st_ino 4206 || prev.st_ino != w->attr.st_ino
2639 || w->prev.st_mode != w->attr.st_mode 4207 || prev.st_mode != w->attr.st_mode
2640 || w->prev.st_nlink != w->attr.st_nlink 4208 || prev.st_nlink != w->attr.st_nlink
2641 || w->prev.st_uid != w->attr.st_uid 4209 || prev.st_uid != w->attr.st_uid
2642 || w->prev.st_gid != w->attr.st_gid 4210 || prev.st_gid != w->attr.st_gid
2643 || w->prev.st_rdev != w->attr.st_rdev 4211 || prev.st_rdev != w->attr.st_rdev
2644 || w->prev.st_size != w->attr.st_size 4212 || prev.st_size != w->attr.st_size
2645 || w->prev.st_atime != w->attr.st_atime 4213 || prev.st_atime != w->attr.st_atime
2646 || w->prev.st_mtime != w->attr.st_mtime 4214 || prev.st_mtime != w->attr.st_mtime
2647 || w->prev.st_ctime != w->attr.st_ctime 4215 || prev.st_ctime != w->attr.st_ctime
2648 ) { 4216 ) {
4217 /* we only update w->prev on actual differences */
4218 /* in case we test more often than invoke the callback, */
4219 /* to ensure that prev is always different to attr */
4220 w->prev = prev;
4221
2649 #if EV_USE_INOTIFY 4222 #if EV_USE_INOTIFY
2650 if (fs_fd >= 0) 4223 if (fs_fd >= 0)
2651 { 4224 {
2652 infy_del (EV_A_ w); 4225 infy_del (EV_A_ w);
2653 infy_add (EV_A_ w); 4226 infy_add (EV_A_ w);
2658 ev_feed_event (EV_A_ w, EV_STAT); 4231 ev_feed_event (EV_A_ w, EV_STAT);
2659 } 4232 }
2660} 4233}
2661 4234
2662void 4235void
2663ev_stat_start (EV_P_ ev_stat *w) 4236ev_stat_start (EV_P_ ev_stat *w) EV_THROW
2664{ 4237{
2665 if (expect_false (ev_is_active (w))) 4238 if (expect_false (ev_is_active (w)))
2666 return; 4239 return;
2667 4240
2668 /* since we use memcmp, we need to clear any padding data etc. */
2669 memset (&w->prev, 0, sizeof (ev_statdata));
2670 memset (&w->attr, 0, sizeof (ev_statdata));
2671
2672 ev_stat_stat (EV_A_ w); 4241 ev_stat_stat (EV_A_ w);
2673 4242
4243 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2674 if (w->interval < MIN_STAT_INTERVAL) 4244 w->interval = MIN_STAT_INTERVAL;
2675 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2676 4245
2677 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 4246 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2678 ev_set_priority (&w->timer, ev_priority (w)); 4247 ev_set_priority (&w->timer, ev_priority (w));
2679 4248
2680#if EV_USE_INOTIFY 4249#if EV_USE_INOTIFY
2681 infy_init (EV_A); 4250 infy_init (EV_A);
2682 4251
2683 if (fs_fd >= 0) 4252 if (fs_fd >= 0)
2684 infy_add (EV_A_ w); 4253 infy_add (EV_A_ w);
2685 else 4254 else
2686#endif 4255#endif
4256 {
2687 ev_timer_start (EV_A_ &w->timer); 4257 ev_timer_again (EV_A_ &w->timer);
4258 ev_unref (EV_A);
4259 }
2688 4260
2689 ev_start (EV_A_ (W)w, 1); 4261 ev_start (EV_A_ (W)w, 1);
2690 4262
2691 EV_FREQUENT_CHECK; 4263 EV_FREQUENT_CHECK;
2692} 4264}
2693 4265
2694void 4266void
2695ev_stat_stop (EV_P_ ev_stat *w) 4267ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
2696{ 4268{
2697 clear_pending (EV_A_ (W)w); 4269 clear_pending (EV_A_ (W)w);
2698 if (expect_false (!ev_is_active (w))) 4270 if (expect_false (!ev_is_active (w)))
2699 return; 4271 return;
2700 4272
2701 EV_FREQUENT_CHECK; 4273 EV_FREQUENT_CHECK;
2702 4274
2703#if EV_USE_INOTIFY 4275#if EV_USE_INOTIFY
2704 infy_del (EV_A_ w); 4276 infy_del (EV_A_ w);
2705#endif 4277#endif
4278
4279 if (ev_is_active (&w->timer))
4280 {
4281 ev_ref (EV_A);
2706 ev_timer_stop (EV_A_ &w->timer); 4282 ev_timer_stop (EV_A_ &w->timer);
4283 }
2707 4284
2708 ev_stop (EV_A_ (W)w); 4285 ev_stop (EV_A_ (W)w);
2709 4286
2710 EV_FREQUENT_CHECK; 4287 EV_FREQUENT_CHECK;
2711} 4288}
2712#endif 4289#endif
2713 4290
2714#if EV_IDLE_ENABLE 4291#if EV_IDLE_ENABLE
2715void 4292void
2716ev_idle_start (EV_P_ ev_idle *w) 4293ev_idle_start (EV_P_ ev_idle *w) EV_THROW
2717{ 4294{
2718 if (expect_false (ev_is_active (w))) 4295 if (expect_false (ev_is_active (w)))
2719 return; 4296 return;
2720 4297
2721 pri_adjust (EV_A_ (W)w); 4298 pri_adjust (EV_A_ (W)w);
2734 4311
2735 EV_FREQUENT_CHECK; 4312 EV_FREQUENT_CHECK;
2736} 4313}
2737 4314
2738void 4315void
2739ev_idle_stop (EV_P_ ev_idle *w) 4316ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
2740{ 4317{
2741 clear_pending (EV_A_ (W)w); 4318 clear_pending (EV_A_ (W)w);
2742 if (expect_false (!ev_is_active (w))) 4319 if (expect_false (!ev_is_active (w)))
2743 return; 4320 return;
2744 4321
2756 4333
2757 EV_FREQUENT_CHECK; 4334 EV_FREQUENT_CHECK;
2758} 4335}
2759#endif 4336#endif
2760 4337
4338#if EV_PREPARE_ENABLE
2761void 4339void
2762ev_prepare_start (EV_P_ ev_prepare *w) 4340ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
2763{ 4341{
2764 if (expect_false (ev_is_active (w))) 4342 if (expect_false (ev_is_active (w)))
2765 return; 4343 return;
2766 4344
2767 EV_FREQUENT_CHECK; 4345 EV_FREQUENT_CHECK;
2772 4350
2773 EV_FREQUENT_CHECK; 4351 EV_FREQUENT_CHECK;
2774} 4352}
2775 4353
2776void 4354void
2777ev_prepare_stop (EV_P_ ev_prepare *w) 4355ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
2778{ 4356{
2779 clear_pending (EV_A_ (W)w); 4357 clear_pending (EV_A_ (W)w);
2780 if (expect_false (!ev_is_active (w))) 4358 if (expect_false (!ev_is_active (w)))
2781 return; 4359 return;
2782 4360
2791 4369
2792 ev_stop (EV_A_ (W)w); 4370 ev_stop (EV_A_ (W)w);
2793 4371
2794 EV_FREQUENT_CHECK; 4372 EV_FREQUENT_CHECK;
2795} 4373}
4374#endif
2796 4375
4376#if EV_CHECK_ENABLE
2797void 4377void
2798ev_check_start (EV_P_ ev_check *w) 4378ev_check_start (EV_P_ ev_check *w) EV_THROW
2799{ 4379{
2800 if (expect_false (ev_is_active (w))) 4380 if (expect_false (ev_is_active (w)))
2801 return; 4381 return;
2802 4382
2803 EV_FREQUENT_CHECK; 4383 EV_FREQUENT_CHECK;
2808 4388
2809 EV_FREQUENT_CHECK; 4389 EV_FREQUENT_CHECK;
2810} 4390}
2811 4391
2812void 4392void
2813ev_check_stop (EV_P_ ev_check *w) 4393ev_check_stop (EV_P_ ev_check *w) EV_THROW
2814{ 4394{
2815 clear_pending (EV_A_ (W)w); 4395 clear_pending (EV_A_ (W)w);
2816 if (expect_false (!ev_is_active (w))) 4396 if (expect_false (!ev_is_active (w)))
2817 return; 4397 return;
2818 4398
2827 4407
2828 ev_stop (EV_A_ (W)w); 4408 ev_stop (EV_A_ (W)w);
2829 4409
2830 EV_FREQUENT_CHECK; 4410 EV_FREQUENT_CHECK;
2831} 4411}
4412#endif
2832 4413
2833#if EV_EMBED_ENABLE 4414#if EV_EMBED_ENABLE
2834void noinline 4415void noinline
2835ev_embed_sweep (EV_P_ ev_embed *w) 4416ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
2836{ 4417{
2837 ev_loop (w->other, EVLOOP_NONBLOCK); 4418 ev_run (w->other, EVRUN_NOWAIT);
2838} 4419}
2839 4420
2840static void 4421static void
2841embed_io_cb (EV_P_ ev_io *io, int revents) 4422embed_io_cb (EV_P_ ev_io *io, int revents)
2842{ 4423{
2843 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4424 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2844 4425
2845 if (ev_cb (w)) 4426 if (ev_cb (w))
2846 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4427 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2847 else 4428 else
2848 ev_loop (w->other, EVLOOP_NONBLOCK); 4429 ev_run (w->other, EVRUN_NOWAIT);
2849} 4430}
2850 4431
2851static void 4432static void
2852embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4433embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2853{ 4434{
2854 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4435 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2855 4436
2856 { 4437 {
2857 struct ev_loop *loop = w->other; 4438 EV_P = w->other;
2858 4439
2859 while (fdchangecnt) 4440 while (fdchangecnt)
2860 { 4441 {
2861 fd_reify (EV_A); 4442 fd_reify (EV_A);
2862 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4443 ev_run (EV_A_ EVRUN_NOWAIT);
2863 } 4444 }
2864 } 4445 }
2865} 4446}
2866 4447
2867static void 4448static void
2868embed_fork_cb (EV_P_ ev_fork *fork_w, int revents) 4449embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2869{ 4450{
2870 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork)); 4451 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2871 4452
4453 ev_embed_stop (EV_A_ w);
4454
2872 { 4455 {
2873 struct ev_loop *loop = w->other; 4456 EV_P = w->other;
2874 4457
2875 ev_loop_fork (EV_A); 4458 ev_loop_fork (EV_A);
4459 ev_run (EV_A_ EVRUN_NOWAIT);
2876 } 4460 }
4461
4462 ev_embed_start (EV_A_ w);
2877} 4463}
2878 4464
2879#if 0 4465#if 0
2880static void 4466static void
2881embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4467embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2883 ev_idle_stop (EV_A_ idle); 4469 ev_idle_stop (EV_A_ idle);
2884} 4470}
2885#endif 4471#endif
2886 4472
2887void 4473void
2888ev_embed_start (EV_P_ ev_embed *w) 4474ev_embed_start (EV_P_ ev_embed *w) EV_THROW
2889{ 4475{
2890 if (expect_false (ev_is_active (w))) 4476 if (expect_false (ev_is_active (w)))
2891 return; 4477 return;
2892 4478
2893 { 4479 {
2894 struct ev_loop *loop = w->other; 4480 EV_P = w->other;
2895 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4481 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2896 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4482 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2897 } 4483 }
2898 4484
2899 EV_FREQUENT_CHECK; 4485 EV_FREQUENT_CHECK;
2900 4486
2914 4500
2915 EV_FREQUENT_CHECK; 4501 EV_FREQUENT_CHECK;
2916} 4502}
2917 4503
2918void 4504void
2919ev_embed_stop (EV_P_ ev_embed *w) 4505ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
2920{ 4506{
2921 clear_pending (EV_A_ (W)w); 4507 clear_pending (EV_A_ (W)w);
2922 if (expect_false (!ev_is_active (w))) 4508 if (expect_false (!ev_is_active (w)))
2923 return; 4509 return;
2924 4510
2926 4512
2927 ev_io_stop (EV_A_ &w->io); 4513 ev_io_stop (EV_A_ &w->io);
2928 ev_prepare_stop (EV_A_ &w->prepare); 4514 ev_prepare_stop (EV_A_ &w->prepare);
2929 ev_fork_stop (EV_A_ &w->fork); 4515 ev_fork_stop (EV_A_ &w->fork);
2930 4516
4517 ev_stop (EV_A_ (W)w);
4518
2931 EV_FREQUENT_CHECK; 4519 EV_FREQUENT_CHECK;
2932} 4520}
2933#endif 4521#endif
2934 4522
2935#if EV_FORK_ENABLE 4523#if EV_FORK_ENABLE
2936void 4524void
2937ev_fork_start (EV_P_ ev_fork *w) 4525ev_fork_start (EV_P_ ev_fork *w) EV_THROW
2938{ 4526{
2939 if (expect_false (ev_is_active (w))) 4527 if (expect_false (ev_is_active (w)))
2940 return; 4528 return;
2941 4529
2942 EV_FREQUENT_CHECK; 4530 EV_FREQUENT_CHECK;
2947 4535
2948 EV_FREQUENT_CHECK; 4536 EV_FREQUENT_CHECK;
2949} 4537}
2950 4538
2951void 4539void
2952ev_fork_stop (EV_P_ ev_fork *w) 4540ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
2953{ 4541{
2954 clear_pending (EV_A_ (W)w); 4542 clear_pending (EV_A_ (W)w);
2955 if (expect_false (!ev_is_active (w))) 4543 if (expect_false (!ev_is_active (w)))
2956 return; 4544 return;
2957 4545
2968 4556
2969 EV_FREQUENT_CHECK; 4557 EV_FREQUENT_CHECK;
2970} 4558}
2971#endif 4559#endif
2972 4560
4561#if EV_CLEANUP_ENABLE
4562void
4563ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4564{
4565 if (expect_false (ev_is_active (w)))
4566 return;
4567
4568 EV_FREQUENT_CHECK;
4569
4570 ev_start (EV_A_ (W)w, ++cleanupcnt);
4571 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4572 cleanups [cleanupcnt - 1] = w;
4573
4574 /* cleanup watchers should never keep a refcount on the loop */
4575 ev_unref (EV_A);
4576 EV_FREQUENT_CHECK;
4577}
4578
4579void
4580ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4581{
4582 clear_pending (EV_A_ (W)w);
4583 if (expect_false (!ev_is_active (w)))
4584 return;
4585
4586 EV_FREQUENT_CHECK;
4587 ev_ref (EV_A);
4588
4589 {
4590 int active = ev_active (w);
4591
4592 cleanups [active - 1] = cleanups [--cleanupcnt];
4593 ev_active (cleanups [active - 1]) = active;
4594 }
4595
4596 ev_stop (EV_A_ (W)w);
4597
4598 EV_FREQUENT_CHECK;
4599}
4600#endif
4601
2973#if EV_ASYNC_ENABLE 4602#if EV_ASYNC_ENABLE
2974void 4603void
2975ev_async_start (EV_P_ ev_async *w) 4604ev_async_start (EV_P_ ev_async *w) EV_THROW
2976{ 4605{
2977 if (expect_false (ev_is_active (w))) 4606 if (expect_false (ev_is_active (w)))
2978 return; 4607 return;
4608
4609 w->sent = 0;
2979 4610
2980 evpipe_init (EV_A); 4611 evpipe_init (EV_A);
2981 4612
2982 EV_FREQUENT_CHECK; 4613 EV_FREQUENT_CHECK;
2983 4614
2987 4618
2988 EV_FREQUENT_CHECK; 4619 EV_FREQUENT_CHECK;
2989} 4620}
2990 4621
2991void 4622void
2992ev_async_stop (EV_P_ ev_async *w) 4623ev_async_stop (EV_P_ ev_async *w) EV_THROW
2993{ 4624{
2994 clear_pending (EV_A_ (W)w); 4625 clear_pending (EV_A_ (W)w);
2995 if (expect_false (!ev_is_active (w))) 4626 if (expect_false (!ev_is_active (w)))
2996 return; 4627 return;
2997 4628
3008 4639
3009 EV_FREQUENT_CHECK; 4640 EV_FREQUENT_CHECK;
3010} 4641}
3011 4642
3012void 4643void
3013ev_async_send (EV_P_ ev_async *w) 4644ev_async_send (EV_P_ ev_async *w) EV_THROW
3014{ 4645{
3015 w->sent = 1; 4646 w->sent = 1;
3016 evpipe_write (EV_A_ &gotasync); 4647 evpipe_write (EV_A_ &async_pending);
3017} 4648}
3018#endif 4649#endif
3019 4650
3020/*****************************************************************************/ 4651/*****************************************************************************/
3021 4652
3055 4686
3056 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io)); 4687 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3057} 4688}
3058 4689
3059void 4690void
3060ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4691ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
3061{ 4692{
3062 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4693 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3063 4694
3064 if (expect_false (!once)) 4695 if (expect_false (!once))
3065 { 4696 {
3066 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4697 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
3067 return; 4698 return;
3068 } 4699 }
3069 4700
3070 once->cb = cb; 4701 once->cb = cb;
3071 once->arg = arg; 4702 once->arg = arg;
3083 ev_timer_set (&once->to, timeout, 0.); 4714 ev_timer_set (&once->to, timeout, 0.);
3084 ev_timer_start (EV_A_ &once->to); 4715 ev_timer_start (EV_A_ &once->to);
3085 } 4716 }
3086} 4717}
3087 4718
4719/*****************************************************************************/
4720
4721#if EV_WALK_ENABLE
4722void ecb_cold
4723ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4724{
4725 int i, j;
4726 ev_watcher_list *wl, *wn;
4727
4728 if (types & (EV_IO | EV_EMBED))
4729 for (i = 0; i < anfdmax; ++i)
4730 for (wl = anfds [i].head; wl; )
4731 {
4732 wn = wl->next;
4733
4734#if EV_EMBED_ENABLE
4735 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4736 {
4737 if (types & EV_EMBED)
4738 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4739 }
4740 else
4741#endif
4742#if EV_USE_INOTIFY
4743 if (ev_cb ((ev_io *)wl) == infy_cb)
4744 ;
4745 else
4746#endif
4747 if ((ev_io *)wl != &pipe_w)
4748 if (types & EV_IO)
4749 cb (EV_A_ EV_IO, wl);
4750
4751 wl = wn;
4752 }
4753
4754 if (types & (EV_TIMER | EV_STAT))
4755 for (i = timercnt + HEAP0; i-- > HEAP0; )
4756#if EV_STAT_ENABLE
4757 /*TODO: timer is not always active*/
4758 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4759 {
4760 if (types & EV_STAT)
4761 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4762 }
4763 else
4764#endif
4765 if (types & EV_TIMER)
4766 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4767
4768#if EV_PERIODIC_ENABLE
4769 if (types & EV_PERIODIC)
4770 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4771 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4772#endif
4773
4774#if EV_IDLE_ENABLE
4775 if (types & EV_IDLE)
4776 for (j = NUMPRI; j--; )
4777 for (i = idlecnt [j]; i--; )
4778 cb (EV_A_ EV_IDLE, idles [j][i]);
4779#endif
4780
4781#if EV_FORK_ENABLE
4782 if (types & EV_FORK)
4783 for (i = forkcnt; i--; )
4784 if (ev_cb (forks [i]) != embed_fork_cb)
4785 cb (EV_A_ EV_FORK, forks [i]);
4786#endif
4787
4788#if EV_ASYNC_ENABLE
4789 if (types & EV_ASYNC)
4790 for (i = asynccnt; i--; )
4791 cb (EV_A_ EV_ASYNC, asyncs [i]);
4792#endif
4793
4794#if EV_PREPARE_ENABLE
4795 if (types & EV_PREPARE)
4796 for (i = preparecnt; i--; )
4797# if EV_EMBED_ENABLE
4798 if (ev_cb (prepares [i]) != embed_prepare_cb)
4799# endif
4800 cb (EV_A_ EV_PREPARE, prepares [i]);
4801#endif
4802
4803#if EV_CHECK_ENABLE
4804 if (types & EV_CHECK)
4805 for (i = checkcnt; i--; )
4806 cb (EV_A_ EV_CHECK, checks [i]);
4807#endif
4808
4809#if EV_SIGNAL_ENABLE
4810 if (types & EV_SIGNAL)
4811 for (i = 0; i < EV_NSIG - 1; ++i)
4812 for (wl = signals [i].head; wl; )
4813 {
4814 wn = wl->next;
4815 cb (EV_A_ EV_SIGNAL, wl);
4816 wl = wn;
4817 }
4818#endif
4819
4820#if EV_CHILD_ENABLE
4821 if (types & EV_CHILD)
4822 for (i = (EV_PID_HASHSIZE); i--; )
4823 for (wl = childs [i]; wl; )
4824 {
4825 wn = wl->next;
4826 cb (EV_A_ EV_CHILD, wl);
4827 wl = wn;
4828 }
4829#endif
4830/* EV_STAT 0x00001000 /* stat data changed */
4831/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4832}
4833#endif
4834
3088#if EV_MULTIPLICITY 4835#if EV_MULTIPLICITY
3089 #include "ev_wrap.h" 4836 #include "ev_wrap.h"
3090#endif 4837#endif
3091 4838
3092#ifdef __cplusplus
3093}
3094#endif
3095

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines