ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.221 by root, Sun Apr 6 12:44:49 2008 UTC vs.
Revision 1.459 by root, Tue Oct 29 12:13:37 2013 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
52# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
55# endif 71# endif
56# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
58# endif 74# endif
59# else 75# else
60# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
62# endif 78# endif
63# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
65# endif 81# endif
66# endif 82# endif
67 83
84# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
71# else 88# else
89# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
74# endif 100# endif
75 101
102# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 105# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 106# else
107# undef EV_USE_POLL
88# define EV_USE_POLL 0 108# define EV_USE_POLL 0
89# endif
90# endif 109# endif
91 110
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
95# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
98# endif 118# endif
99 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
106# endif 127# endif
107 128
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
111# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
114# endif 136# endif
115 137
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
122# endif 145# endif
123 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 148# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 149# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
130# endif 154# endif
131 155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
132#endif 163# endif
164
165#endif
133 166
134#include <math.h>
135#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
136#include <fcntl.h> 169#include <fcntl.h>
137#include <stddef.h> 170#include <stddef.h>
138 171
139#include <stdio.h> 172#include <stdio.h>
140 173
141#include <assert.h> 174#include <assert.h>
142#include <errno.h> 175#include <errno.h>
143#include <sys/types.h> 176#include <sys/types.h>
144#include <time.h> 177#include <time.h>
178#include <limits.h>
145 179
146#include <signal.h> 180#include <signal.h>
147 181
148#ifdef EV_H 182#ifdef EV_H
149# include EV_H 183# include EV_H
150#else 184#else
151# include "ev.h" 185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
152#endif 197#endif
153 198
154#ifndef _WIN32 199#ifndef _WIN32
155# include <sys/time.h> 200# include <sys/time.h>
156# include <sys/wait.h> 201# include <sys/wait.h>
157# include <unistd.h> 202# include <unistd.h>
158#else 203#else
204# include <io.h>
159# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
160# include <windows.h> 207# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 208# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 209# define EV_SELECT_IS_WINSOCKET 1
163# endif 210# endif
211# undef EV_AVOID_STDIO
164#endif 212#endif
213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
165 221
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 222/* this block tries to deduce configuration from header-defined symbols and defaults */
167 223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# define EV_NSIG (8 * sizeof (sigset_t) + 1)
247#endif
248
249#ifndef EV_USE_FLOOR
250# define EV_USE_FLOOR 0
251#endif
252
253#ifndef EV_USE_CLOCK_SYSCALL
254# if __linux && __GLIBC__ >= 2
255# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
256# else
257# define EV_USE_CLOCK_SYSCALL 0
258# endif
259#endif
260
168#ifndef EV_USE_MONOTONIC 261#ifndef EV_USE_MONOTONIC
262# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
263# define EV_USE_MONOTONIC EV_FEATURE_OS
264# else
169# define EV_USE_MONOTONIC 0 265# define EV_USE_MONOTONIC 0
266# endif
170#endif 267#endif
171 268
172#ifndef EV_USE_REALTIME 269#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 270# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 271#endif
175 272
176#ifndef EV_USE_NANOSLEEP 273#ifndef EV_USE_NANOSLEEP
274# if _POSIX_C_SOURCE >= 199309L
275# define EV_USE_NANOSLEEP EV_FEATURE_OS
276# else
177# define EV_USE_NANOSLEEP 0 277# define EV_USE_NANOSLEEP 0
278# endif
178#endif 279#endif
179 280
180#ifndef EV_USE_SELECT 281#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 282# define EV_USE_SELECT EV_FEATURE_BACKENDS
182#endif 283#endif
183 284
184#ifndef EV_USE_POLL 285#ifndef EV_USE_POLL
185# ifdef _WIN32 286# ifdef _WIN32
186# define EV_USE_POLL 0 287# define EV_USE_POLL 0
187# else 288# else
188# define EV_USE_POLL 1 289# define EV_USE_POLL EV_FEATURE_BACKENDS
189# endif 290# endif
190#endif 291#endif
191 292
192#ifndef EV_USE_EPOLL 293#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 294# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1 295# define EV_USE_EPOLL EV_FEATURE_BACKENDS
195# else 296# else
196# define EV_USE_EPOLL 0 297# define EV_USE_EPOLL 0
197# endif 298# endif
198#endif 299#endif
199 300
205# define EV_USE_PORT 0 306# define EV_USE_PORT 0
206#endif 307#endif
207 308
208#ifndef EV_USE_INOTIFY 309#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1 311# define EV_USE_INOTIFY EV_FEATURE_OS
211# else 312# else
212# define EV_USE_INOTIFY 0 313# define EV_USE_INOTIFY 0
213# endif 314# endif
214#endif 315#endif
215 316
216#ifndef EV_PID_HASHSIZE 317#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL 318# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif 319#endif
223 320
224#ifndef EV_INOTIFY_HASHSIZE 321#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL 322# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif 323#endif
231 324
232#ifndef EV_USE_EVENTFD 325#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 326# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 327# define EV_USE_EVENTFD EV_FEATURE_OS
235# else 328# else
236# define EV_USE_EVENTFD 0 329# define EV_USE_EVENTFD 0
237# endif 330# endif
238#endif 331#endif
239 332
333#ifndef EV_USE_SIGNALFD
334# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
335# define EV_USE_SIGNALFD EV_FEATURE_OS
336# else
337# define EV_USE_SIGNALFD 0
338# endif
339#endif
340
341#if 0 /* debugging */
342# define EV_VERIFY 3
343# define EV_USE_4HEAP 1
344# define EV_HEAP_CACHE_AT 1
345#endif
346
347#ifndef EV_VERIFY
348# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
349#endif
350
351#ifndef EV_USE_4HEAP
352# define EV_USE_4HEAP EV_FEATURE_DATA
353#endif
354
355#ifndef EV_HEAP_CACHE_AT
356# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
357#endif
358
359#ifdef ANDROID
360/* supposedly, android doesn't typedef fd_mask */
361# undef EV_USE_SELECT
362# define EV_USE_SELECT 0
363/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
364# undef EV_USE_CLOCK_SYSCALL
365# define EV_USE_CLOCK_SYSCALL 0
366#endif
367
368/* aix's poll.h seems to cause lots of trouble */
369#ifdef _AIX
370/* AIX has a completely broken poll.h header */
371# undef EV_USE_POLL
372# define EV_USE_POLL 0
373#endif
374
375/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
376/* which makes programs even slower. might work on other unices, too. */
377#if EV_USE_CLOCK_SYSCALL
378# include <sys/syscall.h>
379# ifdef SYS_clock_gettime
380# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
381# undef EV_USE_MONOTONIC
382# define EV_USE_MONOTONIC 1
383# else
384# undef EV_USE_CLOCK_SYSCALL
385# define EV_USE_CLOCK_SYSCALL 0
386# endif
387#endif
388
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 389/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 390
242#ifndef CLOCK_MONOTONIC 391#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 392# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 393# define EV_USE_MONOTONIC 0
253# undef EV_USE_INOTIFY 402# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0 403# define EV_USE_INOTIFY 0
255#endif 404#endif
256 405
257#if !EV_USE_NANOSLEEP 406#if !EV_USE_NANOSLEEP
258# ifndef _WIN32 407/* hp-ux has it in sys/time.h, which we unconditionally include above */
408# if !defined _WIN32 && !defined __hpux
259# include <sys/select.h> 409# include <sys/select.h>
260# endif 410# endif
261#endif 411#endif
262 412
263#if EV_USE_INOTIFY 413#if EV_USE_INOTIFY
414# include <sys/statfs.h>
264# include <sys/inotify.h> 415# include <sys/inotify.h>
416/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
417# ifndef IN_DONT_FOLLOW
418# undef EV_USE_INOTIFY
419# define EV_USE_INOTIFY 0
265#endif 420# endif
266
267#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h>
269#endif 421#endif
270 422
271#if EV_USE_EVENTFD 423#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 424/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h> 425# include <stdint.h>
426# ifndef EFD_NONBLOCK
427# define EFD_NONBLOCK O_NONBLOCK
428# endif
429# ifndef EFD_CLOEXEC
430# ifdef O_CLOEXEC
431# define EFD_CLOEXEC O_CLOEXEC
432# else
433# define EFD_CLOEXEC 02000000
434# endif
435# endif
274int eventfd (unsigned int initval, int flags); 436EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
437#endif
438
439#if EV_USE_SIGNALFD
440/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
441# include <stdint.h>
442# ifndef SFD_NONBLOCK
443# define SFD_NONBLOCK O_NONBLOCK
444# endif
445# ifndef SFD_CLOEXEC
446# ifdef O_CLOEXEC
447# define SFD_CLOEXEC O_CLOEXEC
448# else
449# define SFD_CLOEXEC 02000000
450# endif
451# endif
452EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
453
454struct signalfd_siginfo
455{
456 uint32_t ssi_signo;
457 char pad[128 - sizeof (uint32_t)];
458};
275#endif 459#endif
276 460
277/**/ 461/**/
278 462
463#if EV_VERIFY >= 3
464# define EV_FREQUENT_CHECK ev_verify (EV_A)
465#else
466# define EV_FREQUENT_CHECK do { } while (0)
467#endif
468
279/* 469/*
280 * This is used to avoid floating point rounding problems. 470 * This is used to work around floating point rounding problems.
281 * It is added to ev_rt_now when scheduling periodics
282 * to ensure progress, time-wise, even when rounding
283 * errors are against us.
284 * This value is good at least till the year 4000. 471 * This value is good at least till the year 4000.
285 * Better solutions welcome.
286 */ 472 */
287#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 473#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
474/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
288 475
289#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 476#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
290#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 477#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
291/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
292 478
479#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
480#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
481
482/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
483/* ECB.H BEGIN */
484/*
485 * libecb - http://software.schmorp.de/pkg/libecb
486 *
487 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
488 * Copyright (©) 2011 Emanuele Giaquinta
489 * All rights reserved.
490 *
491 * Redistribution and use in source and binary forms, with or without modifica-
492 * tion, are permitted provided that the following conditions are met:
493 *
494 * 1. Redistributions of source code must retain the above copyright notice,
495 * this list of conditions and the following disclaimer.
496 *
497 * 2. Redistributions in binary form must reproduce the above copyright
498 * notice, this list of conditions and the following disclaimer in the
499 * documentation and/or other materials provided with the distribution.
500 *
501 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
502 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
503 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
504 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
505 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
506 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
507 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
508 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
509 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
510 * OF THE POSSIBILITY OF SUCH DAMAGE.
511 */
512
513#ifndef ECB_H
514#define ECB_H
515
516/* 16 bits major, 16 bits minor */
517#define ECB_VERSION 0x00010003
518
519#ifdef _WIN32
520 typedef signed char int8_t;
521 typedef unsigned char uint8_t;
522 typedef signed short int16_t;
523 typedef unsigned short uint16_t;
524 typedef signed int int32_t;
525 typedef unsigned int uint32_t;
293#if __GNUC__ >= 4 526 #if __GNUC__
294# define expect(expr,value) __builtin_expect ((expr),(value)) 527 typedef signed long long int64_t;
295# define noinline __attribute__ ((noinline)) 528 typedef unsigned long long uint64_t;
529 #else /* _MSC_VER || __BORLANDC__ */
530 typedef signed __int64 int64_t;
531 typedef unsigned __int64 uint64_t;
532 #endif
533 #ifdef _WIN64
534 #define ECB_PTRSIZE 8
535 typedef uint64_t uintptr_t;
536 typedef int64_t intptr_t;
537 #else
538 #define ECB_PTRSIZE 4
539 typedef uint32_t uintptr_t;
540 typedef int32_t intptr_t;
541 #endif
296#else 542#else
297# define expect(expr,value) (expr) 543 #include <inttypes.h>
298# define noinline 544 #if UINTMAX_MAX > 0xffffffffU
299# if __STDC_VERSION__ < 199901L 545 #define ECB_PTRSIZE 8
300# define inline 546 #else
547 #define ECB_PTRSIZE 4
548 #endif
301# endif 549#endif
550
551/* work around x32 idiocy by defining proper macros */
552#if __x86_64 || _M_AMD64
553 #if _ILP32
554 #define ECB_AMD64_X32 1
555 #else
556 #define ECB_AMD64 1
302#endif 557 #endif
558#endif
303 559
560/* many compilers define _GNUC_ to some versions but then only implement
561 * what their idiot authors think are the "more important" extensions,
562 * causing enormous grief in return for some better fake benchmark numbers.
563 * or so.
564 * we try to detect these and simply assume they are not gcc - if they have
565 * an issue with that they should have done it right in the first place.
566 */
567#ifndef ECB_GCC_VERSION
568 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
569 #define ECB_GCC_VERSION(major,minor) 0
570 #else
571 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
572 #endif
573#endif
574
575#define ECB_C (__STDC__+0) /* this assumes that __STDC__ is either empty or a number */
576#define ECB_C99 (__STDC_VERSION__ >= 199901L)
577#define ECB_C11 (__STDC_VERSION__ >= 201112L)
578#define ECB_CPP (__cplusplus+0)
579#define ECB_CPP11 (__cplusplus >= 201103L)
580
581#if ECB_CPP
582 #define ECB_EXTERN_C extern "C"
583 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
584 #define ECB_EXTERN_C_END }
585#else
586 #define ECB_EXTERN_C extern
587 #define ECB_EXTERN_C_BEG
588 #define ECB_EXTERN_C_END
589#endif
590
591/*****************************************************************************/
592
593/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
594/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
595
596#if ECB_NO_THREADS
597 #define ECB_NO_SMP 1
598#endif
599
600#if ECB_NO_SMP
601 #define ECB_MEMORY_FENCE do { } while (0)
602#endif
603
604#ifndef ECB_MEMORY_FENCE
605 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
606 #if __i386 || __i386__
607 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
608 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
609 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
610 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
611 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
612 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
613 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
614 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
615 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
616 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
617 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
618 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
619 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
620 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
621 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
622 #elif __sparc || __sparc__
623 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
624 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
625 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
626 #elif defined __s390__ || defined __s390x__
627 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
628 #elif defined __mips__
629 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
630 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
631 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
632 #elif defined __alpha__
633 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
634 #elif defined __hppa__
635 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
636 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
637 #elif defined __ia64__
638 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
639 #elif defined __m68k__
640 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
641 #elif defined __m88k__
642 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
643 #elif defined __sh__
644 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
645 #endif
646 #endif
647#endif
648
649#ifndef ECB_MEMORY_FENCE
650 #if ECB_GCC_VERSION(4,7)
651 /* see comment below (stdatomic.h) about the C11 memory model. */
652 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
653
654 /* The __has_feature syntax from clang is so misdesigned that we cannot use it
655 * without risking compile time errors with other compilers. We *could*
656 * define our own ecb_clang_has_feature, but I just can't be bothered to work
657 * around this shit time and again.
658 * #elif defined __clang && __has_feature (cxx_atomic)
659 * // see comment below (stdatomic.h) about the C11 memory model.
660 * #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
661 */
662
663 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
664 #define ECB_MEMORY_FENCE __sync_synchronize ()
665 #elif _MSC_VER >= 1400 /* VC++ 2005 */
666 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
667 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
668 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
669 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
670 #elif defined _WIN32
671 #include <WinNT.h>
672 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
673 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
674 #include <mbarrier.h>
675 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
676 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
677 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
678 #elif __xlC__
679 #define ECB_MEMORY_FENCE __sync ()
680 #endif
681#endif
682
683#ifndef ECB_MEMORY_FENCE
684 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
685 /* we assume that these memory fences work on all variables/all memory accesses, */
686 /* not just C11 atomics and atomic accesses */
687 #include <stdatomic.h>
688 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
689 /* any fence other than seq_cst, which isn't very efficient for us. */
690 /* Why that is, we don't know - either the C11 memory model is quite useless */
691 /* for most usages, or gcc and clang have a bug */
692 /* I *currently* lean towards the latter, and inefficiently implement */
693 /* all three of ecb's fences as a seq_cst fence */
694 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
695 #endif
696#endif
697
698#ifndef ECB_MEMORY_FENCE
699 #if !ECB_AVOID_PTHREADS
700 /*
701 * if you get undefined symbol references to pthread_mutex_lock,
702 * or failure to find pthread.h, then you should implement
703 * the ECB_MEMORY_FENCE operations for your cpu/compiler
704 * OR provide pthread.h and link against the posix thread library
705 * of your system.
706 */
707 #include <pthread.h>
708 #define ECB_NEEDS_PTHREADS 1
709 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
710
711 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
712 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
713 #endif
714#endif
715
716#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
717 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
718#endif
719
720#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
721 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
722#endif
723
724/*****************************************************************************/
725
726#if __cplusplus
727 #define ecb_inline static inline
728#elif ECB_GCC_VERSION(2,5)
729 #define ecb_inline static __inline__
730#elif ECB_C99
731 #define ecb_inline static inline
732#else
733 #define ecb_inline static
734#endif
735
736#if ECB_GCC_VERSION(3,3)
737 #define ecb_restrict __restrict__
738#elif ECB_C99
739 #define ecb_restrict restrict
740#else
741 #define ecb_restrict
742#endif
743
744typedef int ecb_bool;
745
746#define ECB_CONCAT_(a, b) a ## b
747#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
748#define ECB_STRINGIFY_(a) # a
749#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
750
751#define ecb_function_ ecb_inline
752
753#if ECB_GCC_VERSION(3,1)
754 #define ecb_attribute(attrlist) __attribute__(attrlist)
755 #define ecb_is_constant(expr) __builtin_constant_p (expr)
756 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
757 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
758#else
759 #define ecb_attribute(attrlist)
760 #define ecb_is_constant(expr) 0
761 #define ecb_expect(expr,value) (expr)
762 #define ecb_prefetch(addr,rw,locality)
763#endif
764
765/* no emulation for ecb_decltype */
766#if ECB_GCC_VERSION(4,5)
767 #define ecb_decltype(x) __decltype(x)
768#elif ECB_GCC_VERSION(3,0)
769 #define ecb_decltype(x) __typeof(x)
770#endif
771
772#define ecb_noinline ecb_attribute ((__noinline__))
773#define ecb_unused ecb_attribute ((__unused__))
774#define ecb_const ecb_attribute ((__const__))
775#define ecb_pure ecb_attribute ((__pure__))
776
777#if ECB_C11
778 #define ecb_noreturn _Noreturn
779#else
780 #define ecb_noreturn ecb_attribute ((__noreturn__))
781#endif
782
783#if ECB_GCC_VERSION(4,3)
784 #define ecb_artificial ecb_attribute ((__artificial__))
785 #define ecb_hot ecb_attribute ((__hot__))
786 #define ecb_cold ecb_attribute ((__cold__))
787#else
788 #define ecb_artificial
789 #define ecb_hot
790 #define ecb_cold
791#endif
792
793/* put around conditional expressions if you are very sure that the */
794/* expression is mostly true or mostly false. note that these return */
795/* booleans, not the expression. */
304#define expect_false(expr) expect ((expr) != 0, 0) 796#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
305#define expect_true(expr) expect ((expr) != 0, 1) 797#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
798/* for compatibility to the rest of the world */
799#define ecb_likely(expr) ecb_expect_true (expr)
800#define ecb_unlikely(expr) ecb_expect_false (expr)
801
802/* count trailing zero bits and count # of one bits */
803#if ECB_GCC_VERSION(3,4)
804 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
805 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
806 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
807 #define ecb_ctz32(x) __builtin_ctz (x)
808 #define ecb_ctz64(x) __builtin_ctzll (x)
809 #define ecb_popcount32(x) __builtin_popcount (x)
810 /* no popcountll */
811#else
812 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
813 ecb_function_ int
814 ecb_ctz32 (uint32_t x)
815 {
816 int r = 0;
817
818 x &= ~x + 1; /* this isolates the lowest bit */
819
820#if ECB_branchless_on_i386
821 r += !!(x & 0xaaaaaaaa) << 0;
822 r += !!(x & 0xcccccccc) << 1;
823 r += !!(x & 0xf0f0f0f0) << 2;
824 r += !!(x & 0xff00ff00) << 3;
825 r += !!(x & 0xffff0000) << 4;
826#else
827 if (x & 0xaaaaaaaa) r += 1;
828 if (x & 0xcccccccc) r += 2;
829 if (x & 0xf0f0f0f0) r += 4;
830 if (x & 0xff00ff00) r += 8;
831 if (x & 0xffff0000) r += 16;
832#endif
833
834 return r;
835 }
836
837 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
838 ecb_function_ int
839 ecb_ctz64 (uint64_t x)
840 {
841 int shift = x & 0xffffffffU ? 0 : 32;
842 return ecb_ctz32 (x >> shift) + shift;
843 }
844
845 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
846 ecb_function_ int
847 ecb_popcount32 (uint32_t x)
848 {
849 x -= (x >> 1) & 0x55555555;
850 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
851 x = ((x >> 4) + x) & 0x0f0f0f0f;
852 x *= 0x01010101;
853
854 return x >> 24;
855 }
856
857 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
858 ecb_function_ int ecb_ld32 (uint32_t x)
859 {
860 int r = 0;
861
862 if (x >> 16) { x >>= 16; r += 16; }
863 if (x >> 8) { x >>= 8; r += 8; }
864 if (x >> 4) { x >>= 4; r += 4; }
865 if (x >> 2) { x >>= 2; r += 2; }
866 if (x >> 1) { r += 1; }
867
868 return r;
869 }
870
871 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
872 ecb_function_ int ecb_ld64 (uint64_t x)
873 {
874 int r = 0;
875
876 if (x >> 32) { x >>= 32; r += 32; }
877
878 return r + ecb_ld32 (x);
879 }
880#endif
881
882ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
883ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
884ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
885ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
886
887ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
888ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
889{
890 return ( (x * 0x0802U & 0x22110U)
891 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
892}
893
894ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
895ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
896{
897 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
898 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
899 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
900 x = ( x >> 8 ) | ( x << 8);
901
902 return x;
903}
904
905ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
906ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
907{
908 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
909 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
910 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
911 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
912 x = ( x >> 16 ) | ( x << 16);
913
914 return x;
915}
916
917/* popcount64 is only available on 64 bit cpus as gcc builtin */
918/* so for this version we are lazy */
919ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
920ecb_function_ int
921ecb_popcount64 (uint64_t x)
922{
923 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
924}
925
926ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
927ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
928ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
929ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
930ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
931ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
932ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
933ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
934
935ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
936ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
937ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
938ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
939ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
940ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
941ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
942ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
943
944#if ECB_GCC_VERSION(4,3)
945 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
946 #define ecb_bswap32(x) __builtin_bswap32 (x)
947 #define ecb_bswap64(x) __builtin_bswap64 (x)
948#else
949 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
950 ecb_function_ uint16_t
951 ecb_bswap16 (uint16_t x)
952 {
953 return ecb_rotl16 (x, 8);
954 }
955
956 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
957 ecb_function_ uint32_t
958 ecb_bswap32 (uint32_t x)
959 {
960 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
961 }
962
963 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
964 ecb_function_ uint64_t
965 ecb_bswap64 (uint64_t x)
966 {
967 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
968 }
969#endif
970
971#if ECB_GCC_VERSION(4,5)
972 #define ecb_unreachable() __builtin_unreachable ()
973#else
974 /* this seems to work fine, but gcc always emits a warning for it :/ */
975 ecb_inline void ecb_unreachable (void) ecb_noreturn;
976 ecb_inline void ecb_unreachable (void) { }
977#endif
978
979/* try to tell the compiler that some condition is definitely true */
980#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
981
982ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
983ecb_inline unsigned char
984ecb_byteorder_helper (void)
985{
986 /* the union code still generates code under pressure in gcc, */
987 /* but less than using pointers, and always seems to */
988 /* successfully return a constant. */
989 /* the reason why we have this horrible preprocessor mess */
990 /* is to avoid it in all cases, at least on common architectures */
991 /* or when using a recent enough gcc version (>= 4.6) */
992#if __i386 || __i386__ || _M_X86 || __amd64 || __amd64__ || _M_X64
993 return 0x44;
994#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
995 return 0x44;
996#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
997 return 0x11;
998#else
999 union
1000 {
1001 uint32_t i;
1002 uint8_t c;
1003 } u = { 0x11223344 };
1004 return u.c;
1005#endif
1006}
1007
1008ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
1009ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
1010ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
1011ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
1012
1013#if ECB_GCC_VERSION(3,0) || ECB_C99
1014 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1015#else
1016 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1017#endif
1018
1019#if __cplusplus
1020 template<typename T>
1021 static inline T ecb_div_rd (T val, T div)
1022 {
1023 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1024 }
1025 template<typename T>
1026 static inline T ecb_div_ru (T val, T div)
1027 {
1028 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1029 }
1030#else
1031 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1032 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1033#endif
1034
1035#if ecb_cplusplus_does_not_suck
1036 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1037 template<typename T, int N>
1038 static inline int ecb_array_length (const T (&arr)[N])
1039 {
1040 return N;
1041 }
1042#else
1043 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1044#endif
1045
1046/*******************************************************************************/
1047/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1048
1049/* basically, everything uses "ieee pure-endian" floating point numbers */
1050/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1051#if 0 \
1052 || __i386 || __i386__ \
1053 || __amd64 || __amd64__ || __x86_64 || __x86_64__ \
1054 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1055 || defined __arm__ && defined __ARM_EABI__ \
1056 || defined __s390__ || defined __s390x__ \
1057 || defined __mips__ \
1058 || defined __alpha__ \
1059 || defined __hppa__ \
1060 || defined __ia64__ \
1061 || defined __m68k__ \
1062 || defined __m88k__ \
1063 || defined __sh__ \
1064 || defined _M_IX86 || defined _M_AMD64 || defined _M_IA64
1065 #define ECB_STDFP 1
1066 #include <string.h> /* for memcpy */
1067#else
1068 #define ECB_STDFP 0
1069#endif
1070
1071#ifndef ECB_NO_LIBM
1072
1073 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1074
1075 #ifdef NEN
1076 #define ECB_NAN NAN
1077 #else
1078 #define ECB_NAN INFINITY
1079 #endif
1080
1081 /* converts an ieee half/binary16 to a float */
1082 ecb_function_ float ecb_binary16_to_float (uint16_t x) ecb_const;
1083 ecb_function_ float
1084 ecb_binary16_to_float (uint16_t x)
1085 {
1086 int e = (x >> 10) & 0x1f;
1087 int m = x & 0x3ff;
1088 float r;
1089
1090 if (!e ) r = ldexpf (m , -24);
1091 else if (e != 31) r = ldexpf (m + 0x400, e - 25);
1092 else if (m ) r = ECB_NAN;
1093 else r = INFINITY;
1094
1095 return x & 0x8000 ? -r : r;
1096 }
1097
1098 /* convert a float to ieee single/binary32 */
1099 ecb_function_ uint32_t ecb_float_to_binary32 (float x) ecb_const;
1100 ecb_function_ uint32_t
1101 ecb_float_to_binary32 (float x)
1102 {
1103 uint32_t r;
1104
1105 #if ECB_STDFP
1106 memcpy (&r, &x, 4);
1107 #else
1108 /* slow emulation, works for anything but -0 */
1109 uint32_t m;
1110 int e;
1111
1112 if (x == 0e0f ) return 0x00000000U;
1113 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1114 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1115 if (x != x ) return 0x7fbfffffU;
1116
1117 m = frexpf (x, &e) * 0x1000000U;
1118
1119 r = m & 0x80000000U;
1120
1121 if (r)
1122 m = -m;
1123
1124 if (e <= -126)
1125 {
1126 m &= 0xffffffU;
1127 m >>= (-125 - e);
1128 e = -126;
1129 }
1130
1131 r |= (e + 126) << 23;
1132 r |= m & 0x7fffffU;
1133 #endif
1134
1135 return r;
1136 }
1137
1138 /* converts an ieee single/binary32 to a float */
1139 ecb_function_ float ecb_binary32_to_float (uint32_t x) ecb_const;
1140 ecb_function_ float
1141 ecb_binary32_to_float (uint32_t x)
1142 {
1143 float r;
1144
1145 #if ECB_STDFP
1146 memcpy (&r, &x, 4);
1147 #else
1148 /* emulation, only works for normals and subnormals and +0 */
1149 int neg = x >> 31;
1150 int e = (x >> 23) & 0xffU;
1151
1152 x &= 0x7fffffU;
1153
1154 if (e)
1155 x |= 0x800000U;
1156 else
1157 e = 1;
1158
1159 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1160 r = ldexpf (x * (0.5f / 0x800000U), e - 126);
1161
1162 r = neg ? -r : r;
1163 #endif
1164
1165 return r;
1166 }
1167
1168 /* convert a double to ieee double/binary64 */
1169 ecb_function_ uint64_t ecb_double_to_binary64 (double x) ecb_const;
1170 ecb_function_ uint64_t
1171 ecb_double_to_binary64 (double x)
1172 {
1173 uint64_t r;
1174
1175 #if ECB_STDFP
1176 memcpy (&r, &x, 8);
1177 #else
1178 /* slow emulation, works for anything but -0 */
1179 uint64_t m;
1180 int e;
1181
1182 if (x == 0e0 ) return 0x0000000000000000U;
1183 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1184 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1185 if (x != x ) return 0X7ff7ffffffffffffU;
1186
1187 m = frexp (x, &e) * 0x20000000000000U;
1188
1189 r = m & 0x8000000000000000;;
1190
1191 if (r)
1192 m = -m;
1193
1194 if (e <= -1022)
1195 {
1196 m &= 0x1fffffffffffffU;
1197 m >>= (-1021 - e);
1198 e = -1022;
1199 }
1200
1201 r |= ((uint64_t)(e + 1022)) << 52;
1202 r |= m & 0xfffffffffffffU;
1203 #endif
1204
1205 return r;
1206 }
1207
1208 /* converts an ieee double/binary64 to a double */
1209 ecb_function_ double ecb_binary64_to_double (uint64_t x) ecb_const;
1210 ecb_function_ double
1211 ecb_binary64_to_double (uint64_t x)
1212 {
1213 double r;
1214
1215 #if ECB_STDFP
1216 memcpy (&r, &x, 8);
1217 #else
1218 /* emulation, only works for normals and subnormals and +0 */
1219 int neg = x >> 63;
1220 int e = (x >> 52) & 0x7ffU;
1221
1222 x &= 0xfffffffffffffU;
1223
1224 if (e)
1225 x |= 0x10000000000000U;
1226 else
1227 e = 1;
1228
1229 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1230 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1231
1232 r = neg ? -r : r;
1233 #endif
1234
1235 return r;
1236 }
1237
1238#endif
1239
1240#endif
1241
1242/* ECB.H END */
1243
1244#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1245/* if your architecture doesn't need memory fences, e.g. because it is
1246 * single-cpu/core, or if you use libev in a project that doesn't use libev
1247 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1248 * libev, in which cases the memory fences become nops.
1249 * alternatively, you can remove this #error and link against libpthread,
1250 * which will then provide the memory fences.
1251 */
1252# error "memory fences not defined for your architecture, please report"
1253#endif
1254
1255#ifndef ECB_MEMORY_FENCE
1256# define ECB_MEMORY_FENCE do { } while (0)
1257# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1258# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1259#endif
1260
1261#define expect_false(cond) ecb_expect_false (cond)
1262#define expect_true(cond) ecb_expect_true (cond)
1263#define noinline ecb_noinline
1264
306#define inline_size static inline 1265#define inline_size ecb_inline
307 1266
308#if EV_MINIMAL 1267#if EV_FEATURE_CODE
1268# define inline_speed ecb_inline
1269#else
309# define inline_speed static noinline 1270# define inline_speed static noinline
1271#endif
1272
1273#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1274
1275#if EV_MINPRI == EV_MAXPRI
1276# define ABSPRI(w) (((W)w), 0)
310#else 1277#else
311# define inline_speed static inline
312#endif
313
314#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
315#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1278# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1279#endif
316 1280
317#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1281#define EMPTY /* required for microsofts broken pseudo-c compiler */
318#define EMPTY2(a,b) /* used to suppress some warnings */ 1282#define EMPTY2(a,b) /* used to suppress some warnings */
319 1283
320typedef ev_watcher *W; 1284typedef ev_watcher *W;
321typedef ev_watcher_list *WL; 1285typedef ev_watcher_list *WL;
322typedef ev_watcher_time *WT; 1286typedef ev_watcher_time *WT;
323 1287
1288#define ev_active(w) ((W)(w))->active
1289#define ev_at(w) ((WT)(w))->at
1290
1291#if EV_USE_REALTIME
1292/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1293/* giving it a reasonably high chance of working on typical architectures */
1294static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1295#endif
1296
324#if EV_USE_MONOTONIC 1297#if EV_USE_MONOTONIC
325/* sig_atomic_t is used to avoid per-thread variables or locking but still */
326/* giving it a reasonably high chance of working on typical architetcures */
327static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1298static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1299#endif
1300
1301#ifndef EV_FD_TO_WIN32_HANDLE
1302# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1303#endif
1304#ifndef EV_WIN32_HANDLE_TO_FD
1305# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1306#endif
1307#ifndef EV_WIN32_CLOSE_FD
1308# define EV_WIN32_CLOSE_FD(fd) close (fd)
328#endif 1309#endif
329 1310
330#ifdef _WIN32 1311#ifdef _WIN32
331# include "ev_win32.c" 1312# include "ev_win32.c"
332#endif 1313#endif
333 1314
334/*****************************************************************************/ 1315/*****************************************************************************/
335 1316
1317/* define a suitable floor function (only used by periodics atm) */
1318
1319#if EV_USE_FLOOR
1320# include <math.h>
1321# define ev_floor(v) floor (v)
1322#else
1323
1324#include <float.h>
1325
1326/* a floor() replacement function, should be independent of ev_tstamp type */
1327static ev_tstamp noinline
1328ev_floor (ev_tstamp v)
1329{
1330 /* the choice of shift factor is not terribly important */
1331#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1332 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1333#else
1334 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1335#endif
1336
1337 /* argument too large for an unsigned long? */
1338 if (expect_false (v >= shift))
1339 {
1340 ev_tstamp f;
1341
1342 if (v == v - 1.)
1343 return v; /* very large number */
1344
1345 f = shift * ev_floor (v * (1. / shift));
1346 return f + ev_floor (v - f);
1347 }
1348
1349 /* special treatment for negative args? */
1350 if (expect_false (v < 0.))
1351 {
1352 ev_tstamp f = -ev_floor (-v);
1353
1354 return f - (f == v ? 0 : 1);
1355 }
1356
1357 /* fits into an unsigned long */
1358 return (unsigned long)v;
1359}
1360
1361#endif
1362
1363/*****************************************************************************/
1364
1365#ifdef __linux
1366# include <sys/utsname.h>
1367#endif
1368
1369static unsigned int noinline ecb_cold
1370ev_linux_version (void)
1371{
1372#ifdef __linux
1373 unsigned int v = 0;
1374 struct utsname buf;
1375 int i;
1376 char *p = buf.release;
1377
1378 if (uname (&buf))
1379 return 0;
1380
1381 for (i = 3+1; --i; )
1382 {
1383 unsigned int c = 0;
1384
1385 for (;;)
1386 {
1387 if (*p >= '0' && *p <= '9')
1388 c = c * 10 + *p++ - '0';
1389 else
1390 {
1391 p += *p == '.';
1392 break;
1393 }
1394 }
1395
1396 v = (v << 8) | c;
1397 }
1398
1399 return v;
1400#else
1401 return 0;
1402#endif
1403}
1404
1405/*****************************************************************************/
1406
1407#if EV_AVOID_STDIO
1408static void noinline ecb_cold
1409ev_printerr (const char *msg)
1410{
1411 write (STDERR_FILENO, msg, strlen (msg));
1412}
1413#endif
1414
336static void (*syserr_cb)(const char *msg); 1415static void (*syserr_cb)(const char *msg) EV_THROW;
337 1416
338void 1417void ecb_cold
339ev_set_syserr_cb (void (*cb)(const char *msg)) 1418ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
340{ 1419{
341 syserr_cb = cb; 1420 syserr_cb = cb;
342} 1421}
343 1422
344static void noinline 1423static void noinline ecb_cold
345syserr (const char *msg) 1424ev_syserr (const char *msg)
346{ 1425{
347 if (!msg) 1426 if (!msg)
348 msg = "(libev) system error"; 1427 msg = "(libev) system error";
349 1428
350 if (syserr_cb) 1429 if (syserr_cb)
351 syserr_cb (msg); 1430 syserr_cb (msg);
352 else 1431 else
353 { 1432 {
1433#if EV_AVOID_STDIO
1434 ev_printerr (msg);
1435 ev_printerr (": ");
1436 ev_printerr (strerror (errno));
1437 ev_printerr ("\n");
1438#else
354 perror (msg); 1439 perror (msg);
1440#endif
355 abort (); 1441 abort ();
356 } 1442 }
357} 1443}
358 1444
1445static void *
1446ev_realloc_emul (void *ptr, long size) EV_THROW
1447{
1448 /* some systems, notably openbsd and darwin, fail to properly
1449 * implement realloc (x, 0) (as required by both ansi c-89 and
1450 * the single unix specification, so work around them here.
1451 * recently, also (at least) fedora and debian started breaking it,
1452 * despite documenting it otherwise.
1453 */
1454
1455 if (size)
1456 return realloc (ptr, size);
1457
1458 free (ptr);
1459 return 0;
1460}
1461
359static void *(*alloc)(void *ptr, long size); 1462static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
360 1463
361void 1464void ecb_cold
362ev_set_allocator (void *(*cb)(void *ptr, long size)) 1465ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
363{ 1466{
364 alloc = cb; 1467 alloc = cb;
365} 1468}
366 1469
367inline_speed void * 1470inline_speed void *
368ev_realloc (void *ptr, long size) 1471ev_realloc (void *ptr, long size)
369{ 1472{
370 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1473 ptr = alloc (ptr, size);
371 1474
372 if (!ptr && size) 1475 if (!ptr && size)
373 { 1476 {
1477#if EV_AVOID_STDIO
1478 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1479#else
374 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1480 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1481#endif
375 abort (); 1482 abort ();
376 } 1483 }
377 1484
378 return ptr; 1485 return ptr;
379} 1486}
381#define ev_malloc(size) ev_realloc (0, (size)) 1488#define ev_malloc(size) ev_realloc (0, (size))
382#define ev_free(ptr) ev_realloc ((ptr), 0) 1489#define ev_free(ptr) ev_realloc ((ptr), 0)
383 1490
384/*****************************************************************************/ 1491/*****************************************************************************/
385 1492
1493/* set in reify when reification needed */
1494#define EV_ANFD_REIFY 1
1495
1496/* file descriptor info structure */
386typedef struct 1497typedef struct
387{ 1498{
388 WL head; 1499 WL head;
389 unsigned char events; 1500 unsigned char events; /* the events watched for */
1501 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1502 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
390 unsigned char reify; 1503 unsigned char unused;
1504#if EV_USE_EPOLL
1505 unsigned int egen; /* generation counter to counter epoll bugs */
1506#endif
391#if EV_SELECT_IS_WINSOCKET 1507#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
392 SOCKET handle; 1508 SOCKET handle;
393#endif 1509#endif
1510#if EV_USE_IOCP
1511 OVERLAPPED or, ow;
1512#endif
394} ANFD; 1513} ANFD;
395 1514
1515/* stores the pending event set for a given watcher */
396typedef struct 1516typedef struct
397{ 1517{
398 W w; 1518 W w;
399 int events; 1519 int events; /* the pending event set for the given watcher */
400} ANPENDING; 1520} ANPENDING;
401 1521
402#if EV_USE_INOTIFY 1522#if EV_USE_INOTIFY
1523/* hash table entry per inotify-id */
403typedef struct 1524typedef struct
404{ 1525{
405 WL head; 1526 WL head;
406} ANFS; 1527} ANFS;
1528#endif
1529
1530/* Heap Entry */
1531#if EV_HEAP_CACHE_AT
1532 /* a heap element */
1533 typedef struct {
1534 ev_tstamp at;
1535 WT w;
1536 } ANHE;
1537
1538 #define ANHE_w(he) (he).w /* access watcher, read-write */
1539 #define ANHE_at(he) (he).at /* access cached at, read-only */
1540 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1541#else
1542 /* a heap element */
1543 typedef WT ANHE;
1544
1545 #define ANHE_w(he) (he)
1546 #define ANHE_at(he) (he)->at
1547 #define ANHE_at_cache(he)
407#endif 1548#endif
408 1549
409#if EV_MULTIPLICITY 1550#if EV_MULTIPLICITY
410 1551
411 struct ev_loop 1552 struct ev_loop
417 #undef VAR 1558 #undef VAR
418 }; 1559 };
419 #include "ev_wrap.h" 1560 #include "ev_wrap.h"
420 1561
421 static struct ev_loop default_loop_struct; 1562 static struct ev_loop default_loop_struct;
422 struct ev_loop *ev_default_loop_ptr; 1563 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
423 1564
424#else 1565#else
425 1566
426 ev_tstamp ev_rt_now; 1567 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
427 #define VAR(name,decl) static decl; 1568 #define VAR(name,decl) static decl;
428 #include "ev_vars.h" 1569 #include "ev_vars.h"
429 #undef VAR 1570 #undef VAR
430 1571
431 static int ev_default_loop_ptr; 1572 static int ev_default_loop_ptr;
432 1573
433#endif 1574#endif
434 1575
1576#if EV_FEATURE_API
1577# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1578# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1579# define EV_INVOKE_PENDING invoke_cb (EV_A)
1580#else
1581# define EV_RELEASE_CB (void)0
1582# define EV_ACQUIRE_CB (void)0
1583# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1584#endif
1585
1586#define EVBREAK_RECURSE 0x80
1587
435/*****************************************************************************/ 1588/*****************************************************************************/
436 1589
1590#ifndef EV_HAVE_EV_TIME
437ev_tstamp 1591ev_tstamp
438ev_time (void) 1592ev_time (void) EV_THROW
439{ 1593{
440#if EV_USE_REALTIME 1594#if EV_USE_REALTIME
1595 if (expect_true (have_realtime))
1596 {
441 struct timespec ts; 1597 struct timespec ts;
442 clock_gettime (CLOCK_REALTIME, &ts); 1598 clock_gettime (CLOCK_REALTIME, &ts);
443 return ts.tv_sec + ts.tv_nsec * 1e-9; 1599 return ts.tv_sec + ts.tv_nsec * 1e-9;
444#else 1600 }
1601#endif
1602
445 struct timeval tv; 1603 struct timeval tv;
446 gettimeofday (&tv, 0); 1604 gettimeofday (&tv, 0);
447 return tv.tv_sec + tv.tv_usec * 1e-6; 1605 return tv.tv_sec + tv.tv_usec * 1e-6;
448#endif
449} 1606}
1607#endif
450 1608
451ev_tstamp inline_size 1609inline_size ev_tstamp
452get_clock (void) 1610get_clock (void)
453{ 1611{
454#if EV_USE_MONOTONIC 1612#if EV_USE_MONOTONIC
455 if (expect_true (have_monotonic)) 1613 if (expect_true (have_monotonic))
456 { 1614 {
463 return ev_time (); 1621 return ev_time ();
464} 1622}
465 1623
466#if EV_MULTIPLICITY 1624#if EV_MULTIPLICITY
467ev_tstamp 1625ev_tstamp
468ev_now (EV_P) 1626ev_now (EV_P) EV_THROW
469{ 1627{
470 return ev_rt_now; 1628 return ev_rt_now;
471} 1629}
472#endif 1630#endif
473 1631
474void 1632void
475ev_sleep (ev_tstamp delay) 1633ev_sleep (ev_tstamp delay) EV_THROW
476{ 1634{
477 if (delay > 0.) 1635 if (delay > 0.)
478 { 1636 {
479#if EV_USE_NANOSLEEP 1637#if EV_USE_NANOSLEEP
480 struct timespec ts; 1638 struct timespec ts;
481 1639
482 ts.tv_sec = (time_t)delay; 1640 EV_TS_SET (ts, delay);
483 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
484
485 nanosleep (&ts, 0); 1641 nanosleep (&ts, 0);
486#elif defined(_WIN32) 1642#elif defined _WIN32
487 Sleep ((unsigned long)(delay * 1e3)); 1643 Sleep ((unsigned long)(delay * 1e3));
488#else 1644#else
489 struct timeval tv; 1645 struct timeval tv;
490 1646
491 tv.tv_sec = (time_t)delay; 1647 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
492 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 1648 /* something not guaranteed by newer posix versions, but guaranteed */
493 1649 /* by older ones */
1650 EV_TV_SET (tv, delay);
494 select (0, 0, 0, 0, &tv); 1651 select (0, 0, 0, 0, &tv);
495#endif 1652#endif
496 } 1653 }
497} 1654}
498 1655
499/*****************************************************************************/ 1656/*****************************************************************************/
500 1657
501int inline_size 1658#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1659
1660/* find a suitable new size for the given array, */
1661/* hopefully by rounding to a nice-to-malloc size */
1662inline_size int
502array_nextsize (int elem, int cur, int cnt) 1663array_nextsize (int elem, int cur, int cnt)
503{ 1664{
504 int ncur = cur + 1; 1665 int ncur = cur + 1;
505 1666
506 do 1667 do
507 ncur <<= 1; 1668 ncur <<= 1;
508 while (cnt > ncur); 1669 while (cnt > ncur);
509 1670
510 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 1671 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
511 if (elem * ncur > 4096) 1672 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
512 { 1673 {
513 ncur *= elem; 1674 ncur *= elem;
514 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 1675 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
515 ncur = ncur - sizeof (void *) * 4; 1676 ncur = ncur - sizeof (void *) * 4;
516 ncur /= elem; 1677 ncur /= elem;
517 } 1678 }
518 1679
519 return ncur; 1680 return ncur;
520} 1681}
521 1682
522static noinline void * 1683static void * noinline ecb_cold
523array_realloc (int elem, void *base, int *cur, int cnt) 1684array_realloc (int elem, void *base, int *cur, int cnt)
524{ 1685{
525 *cur = array_nextsize (elem, *cur, cnt); 1686 *cur = array_nextsize (elem, *cur, cnt);
526 return ev_realloc (base, elem * *cur); 1687 return ev_realloc (base, elem * *cur);
527} 1688}
1689
1690#define array_init_zero(base,count) \
1691 memset ((void *)(base), 0, sizeof (*(base)) * (count))
528 1692
529#define array_needsize(type,base,cur,cnt,init) \ 1693#define array_needsize(type,base,cur,cnt,init) \
530 if (expect_false ((cnt) > (cur))) \ 1694 if (expect_false ((cnt) > (cur))) \
531 { \ 1695 { \
532 int ocur_ = (cur); \ 1696 int ecb_unused ocur_ = (cur); \
533 (base) = (type *)array_realloc \ 1697 (base) = (type *)array_realloc \
534 (sizeof (type), (base), &(cur), (cnt)); \ 1698 (sizeof (type), (base), &(cur), (cnt)); \
535 init ((base) + (ocur_), (cur) - ocur_); \ 1699 init ((base) + (ocur_), (cur) - ocur_); \
536 } 1700 }
537 1701
544 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1708 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
545 } 1709 }
546#endif 1710#endif
547 1711
548#define array_free(stem, idx) \ 1712#define array_free(stem, idx) \
549 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1713 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
550 1714
551/*****************************************************************************/ 1715/*****************************************************************************/
552 1716
1717/* dummy callback for pending events */
1718static void noinline
1719pendingcb (EV_P_ ev_prepare *w, int revents)
1720{
1721}
1722
553void noinline 1723void noinline
554ev_feed_event (EV_P_ void *w, int revents) 1724ev_feed_event (EV_P_ void *w, int revents) EV_THROW
555{ 1725{
556 W w_ = (W)w; 1726 W w_ = (W)w;
557 int pri = ABSPRI (w_); 1727 int pri = ABSPRI (w_);
558 1728
559 if (expect_false (w_->pending)) 1729 if (expect_false (w_->pending))
563 w_->pending = ++pendingcnt [pri]; 1733 w_->pending = ++pendingcnt [pri];
564 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 1734 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
565 pendings [pri][w_->pending - 1].w = w_; 1735 pendings [pri][w_->pending - 1].w = w_;
566 pendings [pri][w_->pending - 1].events = revents; 1736 pendings [pri][w_->pending - 1].events = revents;
567 } 1737 }
568}
569 1738
570void inline_speed 1739 pendingpri = NUMPRI - 1;
1740}
1741
1742inline_speed void
1743feed_reverse (EV_P_ W w)
1744{
1745 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1746 rfeeds [rfeedcnt++] = w;
1747}
1748
1749inline_size void
1750feed_reverse_done (EV_P_ int revents)
1751{
1752 do
1753 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1754 while (rfeedcnt);
1755}
1756
1757inline_speed void
571queue_events (EV_P_ W *events, int eventcnt, int type) 1758queue_events (EV_P_ W *events, int eventcnt, int type)
572{ 1759{
573 int i; 1760 int i;
574 1761
575 for (i = 0; i < eventcnt; ++i) 1762 for (i = 0; i < eventcnt; ++i)
576 ev_feed_event (EV_A_ events [i], type); 1763 ev_feed_event (EV_A_ events [i], type);
577} 1764}
578 1765
579/*****************************************************************************/ 1766/*****************************************************************************/
580 1767
581void inline_size 1768inline_speed void
582anfds_init (ANFD *base, int count)
583{
584 while (count--)
585 {
586 base->head = 0;
587 base->events = EV_NONE;
588 base->reify = 0;
589
590 ++base;
591 }
592}
593
594void inline_speed
595fd_event (EV_P_ int fd, int revents) 1769fd_event_nocheck (EV_P_ int fd, int revents)
596{ 1770{
597 ANFD *anfd = anfds + fd; 1771 ANFD *anfd = anfds + fd;
598 ev_io *w; 1772 ev_io *w;
599 1773
600 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1774 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
604 if (ev) 1778 if (ev)
605 ev_feed_event (EV_A_ (W)w, ev); 1779 ev_feed_event (EV_A_ (W)w, ev);
606 } 1780 }
607} 1781}
608 1782
1783/* do not submit kernel events for fds that have reify set */
1784/* because that means they changed while we were polling for new events */
1785inline_speed void
1786fd_event (EV_P_ int fd, int revents)
1787{
1788 ANFD *anfd = anfds + fd;
1789
1790 if (expect_true (!anfd->reify))
1791 fd_event_nocheck (EV_A_ fd, revents);
1792}
1793
609void 1794void
610ev_feed_fd_event (EV_P_ int fd, int revents) 1795ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
611{ 1796{
612 if (fd >= 0 && fd < anfdmax) 1797 if (fd >= 0 && fd < anfdmax)
613 fd_event (EV_A_ fd, revents); 1798 fd_event_nocheck (EV_A_ fd, revents);
614} 1799}
615 1800
616void inline_size 1801/* make sure the external fd watch events are in-sync */
1802/* with the kernel/libev internal state */
1803inline_size void
617fd_reify (EV_P) 1804fd_reify (EV_P)
618{ 1805{
619 int i; 1806 int i;
1807
1808#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1809 for (i = 0; i < fdchangecnt; ++i)
1810 {
1811 int fd = fdchanges [i];
1812 ANFD *anfd = anfds + fd;
1813
1814 if (anfd->reify & EV__IOFDSET && anfd->head)
1815 {
1816 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1817
1818 if (handle != anfd->handle)
1819 {
1820 unsigned long arg;
1821
1822 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1823
1824 /* handle changed, but fd didn't - we need to do it in two steps */
1825 backend_modify (EV_A_ fd, anfd->events, 0);
1826 anfd->events = 0;
1827 anfd->handle = handle;
1828 }
1829 }
1830 }
1831#endif
620 1832
621 for (i = 0; i < fdchangecnt; ++i) 1833 for (i = 0; i < fdchangecnt; ++i)
622 { 1834 {
623 int fd = fdchanges [i]; 1835 int fd = fdchanges [i];
624 ANFD *anfd = anfds + fd; 1836 ANFD *anfd = anfds + fd;
625 ev_io *w; 1837 ev_io *w;
626 1838
627 unsigned char events = 0; 1839 unsigned char o_events = anfd->events;
1840 unsigned char o_reify = anfd->reify;
628 1841
629 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1842 anfd->reify = 0;
630 events |= (unsigned char)w->events;
631 1843
632#if EV_SELECT_IS_WINSOCKET 1844 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
633 if (events)
634 { 1845 {
635 unsigned long argp; 1846 anfd->events = 0;
636 #ifdef EV_FD_TO_WIN32_HANDLE 1847
637 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1848 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
638 #else 1849 anfd->events |= (unsigned char)w->events;
639 anfd->handle = _get_osfhandle (fd); 1850
640 #endif 1851 if (o_events != anfd->events)
641 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1852 o_reify = EV__IOFDSET; /* actually |= */
642 } 1853 }
643#endif
644 1854
645 { 1855 if (o_reify & EV__IOFDSET)
646 unsigned char o_events = anfd->events;
647 unsigned char o_reify = anfd->reify;
648
649 anfd->reify = 0;
650 anfd->events = events;
651
652 if (o_events != events || o_reify & EV_IOFDSET)
653 backend_modify (EV_A_ fd, o_events, events); 1856 backend_modify (EV_A_ fd, o_events, anfd->events);
654 }
655 } 1857 }
656 1858
657 fdchangecnt = 0; 1859 fdchangecnt = 0;
658} 1860}
659 1861
660void inline_size 1862/* something about the given fd changed */
1863inline_size void
661fd_change (EV_P_ int fd, int flags) 1864fd_change (EV_P_ int fd, int flags)
662{ 1865{
663 unsigned char reify = anfds [fd].reify; 1866 unsigned char reify = anfds [fd].reify;
664 anfds [fd].reify |= flags; 1867 anfds [fd].reify |= flags;
665 1868
669 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1872 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
670 fdchanges [fdchangecnt - 1] = fd; 1873 fdchanges [fdchangecnt - 1] = fd;
671 } 1874 }
672} 1875}
673 1876
674void inline_speed 1877/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1878inline_speed void ecb_cold
675fd_kill (EV_P_ int fd) 1879fd_kill (EV_P_ int fd)
676{ 1880{
677 ev_io *w; 1881 ev_io *w;
678 1882
679 while ((w = (ev_io *)anfds [fd].head)) 1883 while ((w = (ev_io *)anfds [fd].head))
681 ev_io_stop (EV_A_ w); 1885 ev_io_stop (EV_A_ w);
682 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1886 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
683 } 1887 }
684} 1888}
685 1889
686int inline_size 1890/* check whether the given fd is actually valid, for error recovery */
1891inline_size int ecb_cold
687fd_valid (int fd) 1892fd_valid (int fd)
688{ 1893{
689#ifdef _WIN32 1894#ifdef _WIN32
690 return _get_osfhandle (fd) != -1; 1895 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
691#else 1896#else
692 return fcntl (fd, F_GETFD) != -1; 1897 return fcntl (fd, F_GETFD) != -1;
693#endif 1898#endif
694} 1899}
695 1900
696/* called on EBADF to verify fds */ 1901/* called on EBADF to verify fds */
697static void noinline 1902static void noinline ecb_cold
698fd_ebadf (EV_P) 1903fd_ebadf (EV_P)
699{ 1904{
700 int fd; 1905 int fd;
701 1906
702 for (fd = 0; fd < anfdmax; ++fd) 1907 for (fd = 0; fd < anfdmax; ++fd)
703 if (anfds [fd].events) 1908 if (anfds [fd].events)
704 if (!fd_valid (fd) == -1 && errno == EBADF) 1909 if (!fd_valid (fd) && errno == EBADF)
705 fd_kill (EV_A_ fd); 1910 fd_kill (EV_A_ fd);
706} 1911}
707 1912
708/* called on ENOMEM in select/poll to kill some fds and retry */ 1913/* called on ENOMEM in select/poll to kill some fds and retry */
709static void noinline 1914static void noinline ecb_cold
710fd_enomem (EV_P) 1915fd_enomem (EV_P)
711{ 1916{
712 int fd; 1917 int fd;
713 1918
714 for (fd = anfdmax; fd--; ) 1919 for (fd = anfdmax; fd--; )
715 if (anfds [fd].events) 1920 if (anfds [fd].events)
716 { 1921 {
717 fd_kill (EV_A_ fd); 1922 fd_kill (EV_A_ fd);
718 return; 1923 break;
719 } 1924 }
720} 1925}
721 1926
722/* usually called after fork if backend needs to re-arm all fds from scratch */ 1927/* usually called after fork if backend needs to re-arm all fds from scratch */
723static void noinline 1928static void noinline
727 1932
728 for (fd = 0; fd < anfdmax; ++fd) 1933 for (fd = 0; fd < anfdmax; ++fd)
729 if (anfds [fd].events) 1934 if (anfds [fd].events)
730 { 1935 {
731 anfds [fd].events = 0; 1936 anfds [fd].events = 0;
1937 anfds [fd].emask = 0;
732 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1938 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
733 } 1939 }
734} 1940}
735 1941
736/*****************************************************************************/ 1942/* used to prepare libev internal fd's */
737 1943/* this is not fork-safe */
738void inline_speed 1944inline_speed void
739upheap (WT *heap, int k)
740{
741 WT w = heap [k];
742
743 while (k)
744 {
745 int p = (k - 1) >> 1;
746
747 if (heap [p]->at <= w->at)
748 break;
749
750 heap [k] = heap [p];
751 ((W)heap [k])->active = k + 1;
752 k = p;
753 }
754
755 heap [k] = w;
756 ((W)heap [k])->active = k + 1;
757}
758
759void inline_speed
760downheap (WT *heap, int N, int k)
761{
762 WT w = heap [k];
763
764 for (;;)
765 {
766 int c = (k << 1) + 1;
767
768 if (c >= N)
769 break;
770
771 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
772 ? 1 : 0;
773
774 if (w->at <= heap [c]->at)
775 break;
776
777 heap [k] = heap [c];
778 ((W)heap [k])->active = k + 1;
779
780 k = c;
781 }
782
783 heap [k] = w;
784 ((W)heap [k])->active = k + 1;
785}
786
787void inline_size
788adjustheap (WT *heap, int N, int k)
789{
790 upheap (heap, k);
791 downheap (heap, N, k);
792}
793
794/*****************************************************************************/
795
796typedef struct
797{
798 WL head;
799 EV_ATOMIC_T gotsig;
800} ANSIG;
801
802static ANSIG *signals;
803static int signalmax;
804
805static EV_ATOMIC_T gotsig;
806
807void inline_size
808signals_init (ANSIG *base, int count)
809{
810 while (count--)
811 {
812 base->head = 0;
813 base->gotsig = 0;
814
815 ++base;
816 }
817}
818
819/*****************************************************************************/
820
821void inline_speed
822fd_intern (int fd) 1945fd_intern (int fd)
823{ 1946{
824#ifdef _WIN32 1947#ifdef _WIN32
825 int arg = 1; 1948 unsigned long arg = 1;
826 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1949 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
827#else 1950#else
828 fcntl (fd, F_SETFD, FD_CLOEXEC); 1951 fcntl (fd, F_SETFD, FD_CLOEXEC);
829 fcntl (fd, F_SETFL, O_NONBLOCK); 1952 fcntl (fd, F_SETFL, O_NONBLOCK);
830#endif 1953#endif
831} 1954}
832 1955
833static void noinline 1956/*****************************************************************************/
834evpipe_init (EV_P) 1957
1958/*
1959 * the heap functions want a real array index. array index 0 is guaranteed to not
1960 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1961 * the branching factor of the d-tree.
1962 */
1963
1964/*
1965 * at the moment we allow libev the luxury of two heaps,
1966 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1967 * which is more cache-efficient.
1968 * the difference is about 5% with 50000+ watchers.
1969 */
1970#if EV_USE_4HEAP
1971
1972#define DHEAP 4
1973#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1974#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1975#define UPHEAP_DONE(p,k) ((p) == (k))
1976
1977/* away from the root */
1978inline_speed void
1979downheap (ANHE *heap, int N, int k)
835{ 1980{
836 if (!ev_is_active (&pipeev)) 1981 ANHE he = heap [k];
1982 ANHE *E = heap + N + HEAP0;
1983
1984 for (;;)
837 { 1985 {
838#if EV_USE_EVENTFD 1986 ev_tstamp minat;
839 if ((evfd = eventfd (0, 0)) >= 0) 1987 ANHE *minpos;
1988 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1989
1990 /* find minimum child */
1991 if (expect_true (pos + DHEAP - 1 < E))
840 { 1992 {
841 evpipe [0] = -1; 1993 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
842 fd_intern (evfd); 1994 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
843 ev_io_set (&pipeev, evfd, EV_READ); 1995 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1996 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1997 }
1998 else if (pos < E)
1999 {
2000 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2001 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2002 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2003 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
844 } 2004 }
845 else 2005 else
2006 break;
2007
2008 if (ANHE_at (he) <= minat)
2009 break;
2010
2011 heap [k] = *minpos;
2012 ev_active (ANHE_w (*minpos)) = k;
2013
2014 k = minpos - heap;
2015 }
2016
2017 heap [k] = he;
2018 ev_active (ANHE_w (he)) = k;
2019}
2020
2021#else /* 4HEAP */
2022
2023#define HEAP0 1
2024#define HPARENT(k) ((k) >> 1)
2025#define UPHEAP_DONE(p,k) (!(p))
2026
2027/* away from the root */
2028inline_speed void
2029downheap (ANHE *heap, int N, int k)
2030{
2031 ANHE he = heap [k];
2032
2033 for (;;)
2034 {
2035 int c = k << 1;
2036
2037 if (c >= N + HEAP0)
2038 break;
2039
2040 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2041 ? 1 : 0;
2042
2043 if (ANHE_at (he) <= ANHE_at (heap [c]))
2044 break;
2045
2046 heap [k] = heap [c];
2047 ev_active (ANHE_w (heap [k])) = k;
2048
2049 k = c;
2050 }
2051
2052 heap [k] = he;
2053 ev_active (ANHE_w (he)) = k;
2054}
2055#endif
2056
2057/* towards the root */
2058inline_speed void
2059upheap (ANHE *heap, int k)
2060{
2061 ANHE he = heap [k];
2062
2063 for (;;)
2064 {
2065 int p = HPARENT (k);
2066
2067 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2068 break;
2069
2070 heap [k] = heap [p];
2071 ev_active (ANHE_w (heap [k])) = k;
2072 k = p;
2073 }
2074
2075 heap [k] = he;
2076 ev_active (ANHE_w (he)) = k;
2077}
2078
2079/* move an element suitably so it is in a correct place */
2080inline_size void
2081adjustheap (ANHE *heap, int N, int k)
2082{
2083 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2084 upheap (heap, k);
2085 else
2086 downheap (heap, N, k);
2087}
2088
2089/* rebuild the heap: this function is used only once and executed rarely */
2090inline_size void
2091reheap (ANHE *heap, int N)
2092{
2093 int i;
2094
2095 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2096 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2097 for (i = 0; i < N; ++i)
2098 upheap (heap, i + HEAP0);
2099}
2100
2101/*****************************************************************************/
2102
2103/* associate signal watchers to a signal signal */
2104typedef struct
2105{
2106 EV_ATOMIC_T pending;
2107#if EV_MULTIPLICITY
2108 EV_P;
2109#endif
2110 WL head;
2111} ANSIG;
2112
2113static ANSIG signals [EV_NSIG - 1];
2114
2115/*****************************************************************************/
2116
2117#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2118
2119static void noinline ecb_cold
2120evpipe_init (EV_P)
2121{
2122 if (!ev_is_active (&pipe_w))
2123 {
2124 int fds [2];
2125
2126# if EV_USE_EVENTFD
2127 fds [0] = -1;
2128 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2129 if (fds [1] < 0 && errno == EINVAL)
2130 fds [1] = eventfd (0, 0);
2131
2132 if (fds [1] < 0)
846#endif 2133# endif
847 { 2134 {
848 while (pipe (evpipe)) 2135 while (pipe (fds))
849 syserr ("(libev) error creating signal/async pipe"); 2136 ev_syserr ("(libev) error creating signal/async pipe");
850 2137
851 fd_intern (evpipe [0]); 2138 fd_intern (fds [0]);
852 fd_intern (evpipe [1]);
853 ev_io_set (&pipeev, evpipe [0], EV_READ);
854 } 2139 }
855 2140
2141 evpipe [0] = fds [0];
2142
2143 if (evpipe [1] < 0)
2144 evpipe [1] = fds [1]; /* first call, set write fd */
2145 else
2146 {
2147 /* on subsequent calls, do not change evpipe [1] */
2148 /* so that evpipe_write can always rely on its value. */
2149 /* this branch does not do anything sensible on windows, */
2150 /* so must not be executed on windows */
2151
2152 dup2 (fds [1], evpipe [1]);
2153 close (fds [1]);
2154 }
2155
2156 fd_intern (evpipe [1]);
2157
2158 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
856 ev_io_start (EV_A_ &pipeev); 2159 ev_io_start (EV_A_ &pipe_w);
857 ev_unref (EV_A); /* watcher should not keep loop alive */ 2160 ev_unref (EV_A); /* watcher should not keep loop alive */
858 } 2161 }
859} 2162}
860 2163
861void inline_size 2164inline_speed void
862evpipe_write (EV_P_ EV_ATOMIC_T *flag) 2165evpipe_write (EV_P_ EV_ATOMIC_T *flag)
863{ 2166{
864 if (!*flag) 2167 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2168
2169 if (expect_true (*flag))
2170 return;
2171
2172 *flag = 1;
2173 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2174
2175 pipe_write_skipped = 1;
2176
2177 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2178
2179 if (pipe_write_wanted)
865 { 2180 {
2181 int old_errno;
2182
2183 pipe_write_skipped = 0;
2184 ECB_MEMORY_FENCE_RELEASE;
2185
866 int old_errno = errno; /* save errno because write might clobber it */ 2186 old_errno = errno; /* save errno because write will clobber it */
867
868 *flag = 1;
869 2187
870#if EV_USE_EVENTFD 2188#if EV_USE_EVENTFD
871 if (evfd >= 0) 2189 if (evpipe [0] < 0)
872 { 2190 {
873 uint64_t counter = 1; 2191 uint64_t counter = 1;
874 write (evfd, &counter, sizeof (uint64_t)); 2192 write (evpipe [1], &counter, sizeof (uint64_t));
875 } 2193 }
876 else 2194 else
877#endif 2195#endif
2196 {
2197#ifdef _WIN32
2198 WSABUF buf;
2199 DWORD sent;
2200 buf.buf = &buf;
2201 buf.len = 1;
2202 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2203#else
878 write (evpipe [1], &old_errno, 1); 2204 write (evpipe [1], &(evpipe [1]), 1);
2205#endif
2206 }
879 2207
880 errno = old_errno; 2208 errno = old_errno;
881 } 2209 }
882} 2210}
883 2211
2212/* called whenever the libev signal pipe */
2213/* got some events (signal, async) */
884static void 2214static void
885pipecb (EV_P_ ev_io *iow, int revents) 2215pipecb (EV_P_ ev_io *iow, int revents)
886{ 2216{
2217 int i;
2218
2219 if (revents & EV_READ)
2220 {
887#if EV_USE_EVENTFD 2221#if EV_USE_EVENTFD
888 if (evfd >= 0) 2222 if (evpipe [0] < 0)
889 { 2223 {
890 uint64_t counter = 1; 2224 uint64_t counter;
891 read (evfd, &counter, sizeof (uint64_t)); 2225 read (evpipe [1], &counter, sizeof (uint64_t));
892 } 2226 }
893 else 2227 else
894#endif 2228#endif
895 { 2229 {
896 char dummy; 2230 char dummy[4];
2231#ifdef _WIN32
2232 WSABUF buf;
2233 DWORD recvd;
2234 DWORD flags = 0;
2235 buf.buf = dummy;
2236 buf.len = sizeof (dummy);
2237 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2238#else
897 read (evpipe [0], &dummy, 1); 2239 read (evpipe [0], &dummy, sizeof (dummy));
2240#endif
2241 }
2242 }
2243
2244 pipe_write_skipped = 0;
2245
2246 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2247
2248#if EV_SIGNAL_ENABLE
2249 if (sig_pending)
898 } 2250 {
2251 sig_pending = 0;
899 2252
900 if (gotsig && ev_is_default_loop (EV_A)) 2253 ECB_MEMORY_FENCE;
901 {
902 int signum;
903 gotsig = 0;
904 2254
905 for (signum = signalmax; signum--; ) 2255 for (i = EV_NSIG - 1; i--; )
906 if (signals [signum].gotsig) 2256 if (expect_false (signals [i].pending))
907 ev_feed_signal_event (EV_A_ signum + 1); 2257 ev_feed_signal_event (EV_A_ i + 1);
908 } 2258 }
2259#endif
909 2260
910#if EV_ASYNC_ENABLE 2261#if EV_ASYNC_ENABLE
911 if (gotasync) 2262 if (async_pending)
912 { 2263 {
913 int i; 2264 async_pending = 0;
914 gotasync = 0; 2265
2266 ECB_MEMORY_FENCE;
915 2267
916 for (i = asynccnt; i--; ) 2268 for (i = asynccnt; i--; )
917 if (asyncs [i]->sent) 2269 if (asyncs [i]->sent)
918 { 2270 {
919 asyncs [i]->sent = 0; 2271 asyncs [i]->sent = 0;
2272 ECB_MEMORY_FENCE_RELEASE;
920 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); 2273 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
921 } 2274 }
922 } 2275 }
923#endif 2276#endif
924} 2277}
925 2278
926/*****************************************************************************/ 2279/*****************************************************************************/
927 2280
2281void
2282ev_feed_signal (int signum) EV_THROW
2283{
2284#if EV_MULTIPLICITY
2285 EV_P;
2286 ECB_MEMORY_FENCE_ACQUIRE;
2287 EV_A = signals [signum - 1].loop;
2288
2289 if (!EV_A)
2290 return;
2291#endif
2292
2293 signals [signum - 1].pending = 1;
2294 evpipe_write (EV_A_ &sig_pending);
2295}
2296
928static void 2297static void
929ev_sighandler (int signum) 2298ev_sighandler (int signum)
930{ 2299{
2300#ifdef _WIN32
2301 signal (signum, ev_sighandler);
2302#endif
2303
2304 ev_feed_signal (signum);
2305}
2306
2307void noinline
2308ev_feed_signal_event (EV_P_ int signum) EV_THROW
2309{
2310 WL w;
2311
2312 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2313 return;
2314
2315 --signum;
2316
931#if EV_MULTIPLICITY 2317#if EV_MULTIPLICITY
932 struct ev_loop *loop = &default_loop_struct; 2318 /* it is permissible to try to feed a signal to the wrong loop */
933#endif 2319 /* or, likely more useful, feeding a signal nobody is waiting for */
934 2320
935#if _WIN32 2321 if (expect_false (signals [signum].loop != EV_A))
936 signal (signum, ev_sighandler);
937#endif
938
939 signals [signum - 1].gotsig = 1;
940 evpipe_write (EV_A_ &gotsig);
941}
942
943void noinline
944ev_feed_signal_event (EV_P_ int signum)
945{
946 WL w;
947
948#if EV_MULTIPLICITY
949 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
950#endif
951
952 --signum;
953
954 if (signum < 0 || signum >= signalmax)
955 return; 2322 return;
2323#endif
956 2324
957 signals [signum].gotsig = 0; 2325 signals [signum].pending = 0;
2326 ECB_MEMORY_FENCE_RELEASE;
958 2327
959 for (w = signals [signum].head; w; w = w->next) 2328 for (w = signals [signum].head; w; w = w->next)
960 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2329 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
961} 2330}
962 2331
2332#if EV_USE_SIGNALFD
2333static void
2334sigfdcb (EV_P_ ev_io *iow, int revents)
2335{
2336 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2337
2338 for (;;)
2339 {
2340 ssize_t res = read (sigfd, si, sizeof (si));
2341
2342 /* not ISO-C, as res might be -1, but works with SuS */
2343 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2344 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2345
2346 if (res < (ssize_t)sizeof (si))
2347 break;
2348 }
2349}
2350#endif
2351
2352#endif
2353
963/*****************************************************************************/ 2354/*****************************************************************************/
964 2355
2356#if EV_CHILD_ENABLE
965static WL childs [EV_PID_HASHSIZE]; 2357static WL childs [EV_PID_HASHSIZE];
966
967#ifndef _WIN32
968 2358
969static ev_signal childev; 2359static ev_signal childev;
970 2360
971#ifndef WIFCONTINUED 2361#ifndef WIFCONTINUED
972# define WIFCONTINUED(status) 0 2362# define WIFCONTINUED(status) 0
973#endif 2363#endif
974 2364
975void inline_speed 2365/* handle a single child status event */
2366inline_speed void
976child_reap (EV_P_ int chain, int pid, int status) 2367child_reap (EV_P_ int chain, int pid, int status)
977{ 2368{
978 ev_child *w; 2369 ev_child *w;
979 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2370 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
980 2371
981 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2372 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
982 { 2373 {
983 if ((w->pid == pid || !w->pid) 2374 if ((w->pid == pid || !w->pid)
984 && (!traced || (w->flags & 1))) 2375 && (!traced || (w->flags & 1)))
985 { 2376 {
986 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 2377 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
993 2384
994#ifndef WCONTINUED 2385#ifndef WCONTINUED
995# define WCONTINUED 0 2386# define WCONTINUED 0
996#endif 2387#endif
997 2388
2389/* called on sigchld etc., calls waitpid */
998static void 2390static void
999childcb (EV_P_ ev_signal *sw, int revents) 2391childcb (EV_P_ ev_signal *sw, int revents)
1000{ 2392{
1001 int pid, status; 2393 int pid, status;
1002 2394
1010 /* make sure we are called again until all children have been reaped */ 2402 /* make sure we are called again until all children have been reaped */
1011 /* we need to do it this way so that the callback gets called before we continue */ 2403 /* we need to do it this way so that the callback gets called before we continue */
1012 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2404 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1013 2405
1014 child_reap (EV_A_ pid, pid, status); 2406 child_reap (EV_A_ pid, pid, status);
1015 if (EV_PID_HASHSIZE > 1) 2407 if ((EV_PID_HASHSIZE) > 1)
1016 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2408 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1017} 2409}
1018 2410
1019#endif 2411#endif
1020 2412
1021/*****************************************************************************/ 2413/*****************************************************************************/
1022 2414
2415#if EV_USE_IOCP
2416# include "ev_iocp.c"
2417#endif
1023#if EV_USE_PORT 2418#if EV_USE_PORT
1024# include "ev_port.c" 2419# include "ev_port.c"
1025#endif 2420#endif
1026#if EV_USE_KQUEUE 2421#if EV_USE_KQUEUE
1027# include "ev_kqueue.c" 2422# include "ev_kqueue.c"
1034#endif 2429#endif
1035#if EV_USE_SELECT 2430#if EV_USE_SELECT
1036# include "ev_select.c" 2431# include "ev_select.c"
1037#endif 2432#endif
1038 2433
1039int 2434int ecb_cold
1040ev_version_major (void) 2435ev_version_major (void) EV_THROW
1041{ 2436{
1042 return EV_VERSION_MAJOR; 2437 return EV_VERSION_MAJOR;
1043} 2438}
1044 2439
1045int 2440int ecb_cold
1046ev_version_minor (void) 2441ev_version_minor (void) EV_THROW
1047{ 2442{
1048 return EV_VERSION_MINOR; 2443 return EV_VERSION_MINOR;
1049} 2444}
1050 2445
1051/* return true if we are running with elevated privileges and should ignore env variables */ 2446/* return true if we are running with elevated privileges and should ignore env variables */
1052int inline_size 2447int inline_size ecb_cold
1053enable_secure (void) 2448enable_secure (void)
1054{ 2449{
1055#ifdef _WIN32 2450#ifdef _WIN32
1056 return 0; 2451 return 0;
1057#else 2452#else
1058 return getuid () != geteuid () 2453 return getuid () != geteuid ()
1059 || getgid () != getegid (); 2454 || getgid () != getegid ();
1060#endif 2455#endif
1061} 2456}
1062 2457
1063unsigned int 2458unsigned int ecb_cold
1064ev_supported_backends (void) 2459ev_supported_backends (void) EV_THROW
1065{ 2460{
1066 unsigned int flags = 0; 2461 unsigned int flags = 0;
1067 2462
1068 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2463 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1069 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2464 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1072 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2467 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1073 2468
1074 return flags; 2469 return flags;
1075} 2470}
1076 2471
1077unsigned int 2472unsigned int ecb_cold
1078ev_recommended_backends (void) 2473ev_recommended_backends (void) EV_THROW
1079{ 2474{
1080 unsigned int flags = ev_supported_backends (); 2475 unsigned int flags = ev_supported_backends ();
1081 2476
1082#ifndef __NetBSD__ 2477#ifndef __NetBSD__
1083 /* kqueue is borked on everything but netbsd apparently */ 2478 /* kqueue is borked on everything but netbsd apparently */
1084 /* it usually doesn't work correctly on anything but sockets and pipes */ 2479 /* it usually doesn't work correctly on anything but sockets and pipes */
1085 flags &= ~EVBACKEND_KQUEUE; 2480 flags &= ~EVBACKEND_KQUEUE;
1086#endif 2481#endif
1087#ifdef __APPLE__ 2482#ifdef __APPLE__
1088 // flags &= ~EVBACKEND_KQUEUE; for documentation 2483 /* only select works correctly on that "unix-certified" platform */
1089 flags &= ~EVBACKEND_POLL; 2484 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2485 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2486#endif
2487#ifdef __FreeBSD__
2488 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1090#endif 2489#endif
1091 2490
1092 return flags; 2491 return flags;
1093} 2492}
1094 2493
2494unsigned int ecb_cold
2495ev_embeddable_backends (void) EV_THROW
2496{
2497 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2498
2499 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2500 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2501 flags &= ~EVBACKEND_EPOLL;
2502
2503 return flags;
2504}
2505
1095unsigned int 2506unsigned int
1096ev_embeddable_backends (void) 2507ev_backend (EV_P) EV_THROW
1097{ 2508{
1098 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2509 return backend;
1099
1100 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1101 /* please fix it and tell me how to detect the fix */
1102 flags &= ~EVBACKEND_EPOLL;
1103
1104 return flags;
1105} 2510}
1106 2511
2512#if EV_FEATURE_API
1107unsigned int 2513unsigned int
1108ev_backend (EV_P) 2514ev_iteration (EV_P) EV_THROW
1109{ 2515{
1110 return backend; 2516 return loop_count;
1111} 2517}
1112 2518
1113unsigned int 2519unsigned int
1114ev_loop_count (EV_P) 2520ev_depth (EV_P) EV_THROW
1115{ 2521{
1116 return loop_count; 2522 return loop_depth;
1117} 2523}
1118 2524
1119void 2525void
1120ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2526ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1121{ 2527{
1122 io_blocktime = interval; 2528 io_blocktime = interval;
1123} 2529}
1124 2530
1125void 2531void
1126ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2532ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1127{ 2533{
1128 timeout_blocktime = interval; 2534 timeout_blocktime = interval;
1129} 2535}
1130 2536
2537void
2538ev_set_userdata (EV_P_ void *data) EV_THROW
2539{
2540 userdata = data;
2541}
2542
2543void *
2544ev_userdata (EV_P) EV_THROW
2545{
2546 return userdata;
2547}
2548
2549void
2550ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2551{
2552 invoke_cb = invoke_pending_cb;
2553}
2554
2555void
2556ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2557{
2558 release_cb = release;
2559 acquire_cb = acquire;
2560}
2561#endif
2562
2563/* initialise a loop structure, must be zero-initialised */
1131static void noinline 2564static void noinline ecb_cold
1132loop_init (EV_P_ unsigned int flags) 2565loop_init (EV_P_ unsigned int flags) EV_THROW
1133{ 2566{
1134 if (!backend) 2567 if (!backend)
1135 { 2568 {
2569 origflags = flags;
2570
2571#if EV_USE_REALTIME
2572 if (!have_realtime)
2573 {
2574 struct timespec ts;
2575
2576 if (!clock_gettime (CLOCK_REALTIME, &ts))
2577 have_realtime = 1;
2578 }
2579#endif
2580
1136#if EV_USE_MONOTONIC 2581#if EV_USE_MONOTONIC
2582 if (!have_monotonic)
1137 { 2583 {
1138 struct timespec ts; 2584 struct timespec ts;
2585
1139 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2586 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1140 have_monotonic = 1; 2587 have_monotonic = 1;
1141 } 2588 }
1142#endif
1143
1144 ev_rt_now = ev_time ();
1145 mn_now = get_clock ();
1146 now_floor = mn_now;
1147 rtmn_diff = ev_rt_now - mn_now;
1148
1149 io_blocktime = 0.;
1150 timeout_blocktime = 0.;
1151 backend = 0;
1152 backend_fd = -1;
1153 gotasync = 0;
1154#if EV_USE_INOTIFY
1155 fs_fd = -2;
1156#endif 2589#endif
1157 2590
1158 /* pid check not overridable via env */ 2591 /* pid check not overridable via env */
1159#ifndef _WIN32 2592#ifndef _WIN32
1160 if (flags & EVFLAG_FORKCHECK) 2593 if (flags & EVFLAG_FORKCHECK)
1164 if (!(flags & EVFLAG_NOENV) 2597 if (!(flags & EVFLAG_NOENV)
1165 && !enable_secure () 2598 && !enable_secure ()
1166 && getenv ("LIBEV_FLAGS")) 2599 && getenv ("LIBEV_FLAGS"))
1167 flags = atoi (getenv ("LIBEV_FLAGS")); 2600 flags = atoi (getenv ("LIBEV_FLAGS"));
1168 2601
1169 if (!(flags & 0x0000ffffUL)) 2602 ev_rt_now = ev_time ();
2603 mn_now = get_clock ();
2604 now_floor = mn_now;
2605 rtmn_diff = ev_rt_now - mn_now;
2606#if EV_FEATURE_API
2607 invoke_cb = ev_invoke_pending;
2608#endif
2609
2610 io_blocktime = 0.;
2611 timeout_blocktime = 0.;
2612 backend = 0;
2613 backend_fd = -1;
2614 sig_pending = 0;
2615#if EV_ASYNC_ENABLE
2616 async_pending = 0;
2617#endif
2618 pipe_write_skipped = 0;
2619 pipe_write_wanted = 0;
2620 evpipe [0] = -1;
2621 evpipe [1] = -1;
2622#if EV_USE_INOTIFY
2623 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2624#endif
2625#if EV_USE_SIGNALFD
2626 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2627#endif
2628
2629 if (!(flags & EVBACKEND_MASK))
1170 flags |= ev_recommended_backends (); 2630 flags |= ev_recommended_backends ();
1171 2631
2632#if EV_USE_IOCP
2633 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2634#endif
1172#if EV_USE_PORT 2635#if EV_USE_PORT
1173 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2636 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1174#endif 2637#endif
1175#if EV_USE_KQUEUE 2638#if EV_USE_KQUEUE
1176 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2639 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1183#endif 2646#endif
1184#if EV_USE_SELECT 2647#if EV_USE_SELECT
1185 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2648 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1186#endif 2649#endif
1187 2650
2651 ev_prepare_init (&pending_w, pendingcb);
2652
2653#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1188 ev_init (&pipeev, pipecb); 2654 ev_init (&pipe_w, pipecb);
1189 ev_set_priority (&pipeev, EV_MAXPRI); 2655 ev_set_priority (&pipe_w, EV_MAXPRI);
2656#endif
1190 } 2657 }
1191} 2658}
1192 2659
1193static void noinline 2660/* free up a loop structure */
2661void ecb_cold
1194loop_destroy (EV_P) 2662ev_loop_destroy (EV_P)
1195{ 2663{
1196 int i; 2664 int i;
1197 2665
2666#if EV_MULTIPLICITY
2667 /* mimic free (0) */
2668 if (!EV_A)
2669 return;
2670#endif
2671
2672#if EV_CLEANUP_ENABLE
2673 /* queue cleanup watchers (and execute them) */
2674 if (expect_false (cleanupcnt))
2675 {
2676 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2677 EV_INVOKE_PENDING;
2678 }
2679#endif
2680
2681#if EV_CHILD_ENABLE
2682 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2683 {
2684 ev_ref (EV_A); /* child watcher */
2685 ev_signal_stop (EV_A_ &childev);
2686 }
2687#endif
2688
1198 if (ev_is_active (&pipeev)) 2689 if (ev_is_active (&pipe_w))
1199 { 2690 {
1200 ev_ref (EV_A); /* signal watcher */ 2691 /*ev_ref (EV_A);*/
1201 ev_io_stop (EV_A_ &pipeev); 2692 /*ev_io_stop (EV_A_ &pipe_w);*/
1202 2693
2694 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2695 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2696 }
2697
1203#if EV_USE_EVENTFD 2698#if EV_USE_SIGNALFD
1204 if (evfd >= 0) 2699 if (ev_is_active (&sigfd_w))
1205 close (evfd); 2700 close (sigfd);
1206#endif 2701#endif
1207
1208 if (evpipe [0] >= 0)
1209 {
1210 close (evpipe [0]);
1211 close (evpipe [1]);
1212 }
1213 }
1214 2702
1215#if EV_USE_INOTIFY 2703#if EV_USE_INOTIFY
1216 if (fs_fd >= 0) 2704 if (fs_fd >= 0)
1217 close (fs_fd); 2705 close (fs_fd);
1218#endif 2706#endif
1219 2707
1220 if (backend_fd >= 0) 2708 if (backend_fd >= 0)
1221 close (backend_fd); 2709 close (backend_fd);
1222 2710
2711#if EV_USE_IOCP
2712 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2713#endif
1223#if EV_USE_PORT 2714#if EV_USE_PORT
1224 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2715 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1225#endif 2716#endif
1226#if EV_USE_KQUEUE 2717#if EV_USE_KQUEUE
1227 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2718 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1242#if EV_IDLE_ENABLE 2733#if EV_IDLE_ENABLE
1243 array_free (idle, [i]); 2734 array_free (idle, [i]);
1244#endif 2735#endif
1245 } 2736 }
1246 2737
1247 ev_free (anfds); anfdmax = 0; 2738 ev_free (anfds); anfds = 0; anfdmax = 0;
1248 2739
1249 /* have to use the microsoft-never-gets-it-right macro */ 2740 /* have to use the microsoft-never-gets-it-right macro */
2741 array_free (rfeed, EMPTY);
1250 array_free (fdchange, EMPTY); 2742 array_free (fdchange, EMPTY);
1251 array_free (timer, EMPTY); 2743 array_free (timer, EMPTY);
1252#if EV_PERIODIC_ENABLE 2744#if EV_PERIODIC_ENABLE
1253 array_free (periodic, EMPTY); 2745 array_free (periodic, EMPTY);
1254#endif 2746#endif
1255#if EV_FORK_ENABLE 2747#if EV_FORK_ENABLE
1256 array_free (fork, EMPTY); 2748 array_free (fork, EMPTY);
1257#endif 2749#endif
2750#if EV_CLEANUP_ENABLE
2751 array_free (cleanup, EMPTY);
2752#endif
1258 array_free (prepare, EMPTY); 2753 array_free (prepare, EMPTY);
1259 array_free (check, EMPTY); 2754 array_free (check, EMPTY);
1260#if EV_ASYNC_ENABLE 2755#if EV_ASYNC_ENABLE
1261 array_free (async, EMPTY); 2756 array_free (async, EMPTY);
1262#endif 2757#endif
1263 2758
1264 backend = 0; 2759 backend = 0;
1265}
1266 2760
2761#if EV_MULTIPLICITY
2762 if (ev_is_default_loop (EV_A))
2763#endif
2764 ev_default_loop_ptr = 0;
2765#if EV_MULTIPLICITY
2766 else
2767 ev_free (EV_A);
2768#endif
2769}
2770
2771#if EV_USE_INOTIFY
1267void inline_size infy_fork (EV_P); 2772inline_size void infy_fork (EV_P);
2773#endif
1268 2774
1269void inline_size 2775inline_size void
1270loop_fork (EV_P) 2776loop_fork (EV_P)
1271{ 2777{
1272#if EV_USE_PORT 2778#if EV_USE_PORT
1273 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2779 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1274#endif 2780#endif
1280#endif 2786#endif
1281#if EV_USE_INOTIFY 2787#if EV_USE_INOTIFY
1282 infy_fork (EV_A); 2788 infy_fork (EV_A);
1283#endif 2789#endif
1284 2790
2791#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1285 if (ev_is_active (&pipeev)) 2792 if (ev_is_active (&pipe_w))
2793 {
2794 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2795
2796 ev_ref (EV_A);
2797 ev_io_stop (EV_A_ &pipe_w);
2798
2799 if (evpipe [0] >= 0)
2800 EV_WIN32_CLOSE_FD (evpipe [0]);
2801
2802 evpipe_init (EV_A);
2803 /* iterate over everything, in case we missed something before */
2804 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
1286 { 2805 }
1287 /* this "locks" the handlers against writing to the pipe */ 2806#endif
1288 /* while we modify the fd vars */ 2807
1289 gotsig = 1; 2808 postfork = 0;
2809}
2810
2811#if EV_MULTIPLICITY
2812
2813struct ev_loop * ecb_cold
2814ev_loop_new (unsigned int flags) EV_THROW
2815{
2816 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2817
2818 memset (EV_A, 0, sizeof (struct ev_loop));
2819 loop_init (EV_A_ flags);
2820
2821 if (ev_backend (EV_A))
2822 return EV_A;
2823
2824 ev_free (EV_A);
2825 return 0;
2826}
2827
2828#endif /* multiplicity */
2829
2830#if EV_VERIFY
2831static void noinline ecb_cold
2832verify_watcher (EV_P_ W w)
2833{
2834 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2835
2836 if (w->pending)
2837 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2838}
2839
2840static void noinline ecb_cold
2841verify_heap (EV_P_ ANHE *heap, int N)
2842{
2843 int i;
2844
2845 for (i = HEAP0; i < N + HEAP0; ++i)
2846 {
2847 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2848 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2849 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2850
2851 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2852 }
2853}
2854
2855static void noinline ecb_cold
2856array_verify (EV_P_ W *ws, int cnt)
2857{
2858 while (cnt--)
2859 {
2860 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2861 verify_watcher (EV_A_ ws [cnt]);
2862 }
2863}
2864#endif
2865
2866#if EV_FEATURE_API
2867void ecb_cold
2868ev_verify (EV_P) EV_THROW
2869{
2870#if EV_VERIFY
2871 int i;
2872 WL w, w2;
2873
2874 assert (activecnt >= -1);
2875
2876 assert (fdchangemax >= fdchangecnt);
2877 for (i = 0; i < fdchangecnt; ++i)
2878 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2879
2880 assert (anfdmax >= 0);
2881 for (i = 0; i < anfdmax; ++i)
2882 {
2883 int j = 0;
2884
2885 for (w = w2 = anfds [i].head; w; w = w->next)
2886 {
2887 verify_watcher (EV_A_ (W)w);
2888
2889 if (j++ & 1)
2890 {
2891 assert (("libev: io watcher list contains a loop", w != w2));
2892 w2 = w2->next;
2893 }
2894
2895 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2896 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2897 }
2898 }
2899
2900 assert (timermax >= timercnt);
2901 verify_heap (EV_A_ timers, timercnt);
2902
2903#if EV_PERIODIC_ENABLE
2904 assert (periodicmax >= periodiccnt);
2905 verify_heap (EV_A_ periodics, periodiccnt);
2906#endif
2907
2908 for (i = NUMPRI; i--; )
2909 {
2910 assert (pendingmax [i] >= pendingcnt [i]);
2911#if EV_IDLE_ENABLE
2912 assert (idleall >= 0);
2913 assert (idlemax [i] >= idlecnt [i]);
2914 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2915#endif
2916 }
2917
2918#if EV_FORK_ENABLE
2919 assert (forkmax >= forkcnt);
2920 array_verify (EV_A_ (W *)forks, forkcnt);
2921#endif
2922
2923#if EV_CLEANUP_ENABLE
2924 assert (cleanupmax >= cleanupcnt);
2925 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2926#endif
2927
1290#if EV_ASYNC_ENABLE 2928#if EV_ASYNC_ENABLE
1291 gotasync = 1; 2929 assert (asyncmax >= asynccnt);
2930 array_verify (EV_A_ (W *)asyncs, asynccnt);
2931#endif
2932
2933#if EV_PREPARE_ENABLE
2934 assert (preparemax >= preparecnt);
2935 array_verify (EV_A_ (W *)prepares, preparecnt);
2936#endif
2937
2938#if EV_CHECK_ENABLE
2939 assert (checkmax >= checkcnt);
2940 array_verify (EV_A_ (W *)checks, checkcnt);
2941#endif
2942
2943# if 0
2944#if EV_CHILD_ENABLE
2945 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2946 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2947#endif
1292#endif 2948# endif
1293
1294 ev_ref (EV_A);
1295 ev_io_stop (EV_A_ &pipeev);
1296
1297#if EV_USE_EVENTFD
1298 if (evfd >= 0)
1299 close (evfd);
1300#endif 2949#endif
1301
1302 if (evpipe [0] >= 0)
1303 {
1304 close (evpipe [0]);
1305 close (evpipe [1]);
1306 }
1307
1308 evpipe_init (EV_A);
1309 /* now iterate over everything, in case we missed something */
1310 pipecb (EV_A_ &pipeev, EV_READ);
1311 }
1312
1313 postfork = 0;
1314} 2950}
2951#endif
1315 2952
1316#if EV_MULTIPLICITY 2953#if EV_MULTIPLICITY
1317struct ev_loop * 2954struct ev_loop * ecb_cold
1318ev_loop_new (unsigned int flags)
1319{
1320 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1321
1322 memset (loop, 0, sizeof (struct ev_loop));
1323
1324 loop_init (EV_A_ flags);
1325
1326 if (ev_backend (EV_A))
1327 return loop;
1328
1329 return 0;
1330}
1331
1332void
1333ev_loop_destroy (EV_P)
1334{
1335 loop_destroy (EV_A);
1336 ev_free (loop);
1337}
1338
1339void
1340ev_loop_fork (EV_P)
1341{
1342 postfork = 1; /* must be in line with ev_default_fork */
1343}
1344
1345#endif
1346
1347#if EV_MULTIPLICITY
1348struct ev_loop *
1349ev_default_loop_init (unsigned int flags)
1350#else 2955#else
1351int 2956int
2957#endif
1352ev_default_loop (unsigned int flags) 2958ev_default_loop (unsigned int flags) EV_THROW
1353#endif
1354{ 2959{
1355 if (!ev_default_loop_ptr) 2960 if (!ev_default_loop_ptr)
1356 { 2961 {
1357#if EV_MULTIPLICITY 2962#if EV_MULTIPLICITY
1358 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2963 EV_P = ev_default_loop_ptr = &default_loop_struct;
1359#else 2964#else
1360 ev_default_loop_ptr = 1; 2965 ev_default_loop_ptr = 1;
1361#endif 2966#endif
1362 2967
1363 loop_init (EV_A_ flags); 2968 loop_init (EV_A_ flags);
1364 2969
1365 if (ev_backend (EV_A)) 2970 if (ev_backend (EV_A))
1366 { 2971 {
1367#ifndef _WIN32 2972#if EV_CHILD_ENABLE
1368 ev_signal_init (&childev, childcb, SIGCHLD); 2973 ev_signal_init (&childev, childcb, SIGCHLD);
1369 ev_set_priority (&childev, EV_MAXPRI); 2974 ev_set_priority (&childev, EV_MAXPRI);
1370 ev_signal_start (EV_A_ &childev); 2975 ev_signal_start (EV_A_ &childev);
1371 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2976 ev_unref (EV_A); /* child watcher should not keep loop alive */
1372#endif 2977#endif
1377 2982
1378 return ev_default_loop_ptr; 2983 return ev_default_loop_ptr;
1379} 2984}
1380 2985
1381void 2986void
1382ev_default_destroy (void) 2987ev_loop_fork (EV_P) EV_THROW
1383{ 2988{
1384#if EV_MULTIPLICITY 2989 postfork = 1;
1385 struct ev_loop *loop = ev_default_loop_ptr;
1386#endif
1387
1388#ifndef _WIN32
1389 ev_ref (EV_A); /* child watcher */
1390 ev_signal_stop (EV_A_ &childev);
1391#endif
1392
1393 loop_destroy (EV_A);
1394}
1395
1396void
1397ev_default_fork (void)
1398{
1399#if EV_MULTIPLICITY
1400 struct ev_loop *loop = ev_default_loop_ptr;
1401#endif
1402
1403 if (backend)
1404 postfork = 1; /* must be in line with ev_loop_fork */
1405} 2990}
1406 2991
1407/*****************************************************************************/ 2992/*****************************************************************************/
1408 2993
1409void 2994void
1410ev_invoke (EV_P_ void *w, int revents) 2995ev_invoke (EV_P_ void *w, int revents)
1411{ 2996{
1412 EV_CB_INVOKE ((W)w, revents); 2997 EV_CB_INVOKE ((W)w, revents);
1413} 2998}
1414 2999
1415void inline_speed 3000unsigned int
1416call_pending (EV_P) 3001ev_pending_count (EV_P) EV_THROW
1417{ 3002{
1418 int pri; 3003 int pri;
3004 unsigned int count = 0;
1419 3005
1420 for (pri = NUMPRI; pri--; ) 3006 for (pri = NUMPRI; pri--; )
3007 count += pendingcnt [pri];
3008
3009 return count;
3010}
3011
3012void noinline
3013ev_invoke_pending (EV_P)
3014{
3015 pendingpri = NUMPRI;
3016
3017 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
3018 {
3019 --pendingpri;
3020
1421 while (pendingcnt [pri]) 3021 while (pendingcnt [pendingpri])
1422 {
1423 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1424
1425 if (expect_true (p->w))
1426 {
1427 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1428
1429 p->w->pending = 0;
1430 EV_CB_INVOKE (p->w, p->events);
1431 }
1432 }
1433}
1434
1435void inline_size
1436timers_reify (EV_P)
1437{
1438 while (timercnt && ((WT)timers [0])->at <= mn_now)
1439 {
1440 ev_timer *w = (ev_timer *)timers [0];
1441
1442 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1443
1444 /* first reschedule or stop timer */
1445 if (w->repeat)
1446 { 3022 {
1447 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3023 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1448 3024
1449 ((WT)w)->at += w->repeat; 3025 p->w->pending = 0;
1450 if (((WT)w)->at < mn_now) 3026 EV_CB_INVOKE (p->w, p->events);
1451 ((WT)w)->at = mn_now; 3027 EV_FREQUENT_CHECK;
1452
1453 downheap (timers, timercnt, 0);
1454 } 3028 }
1455 else
1456 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1457
1458 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1459 }
1460}
1461
1462#if EV_PERIODIC_ENABLE
1463void inline_size
1464periodics_reify (EV_P)
1465{
1466 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1467 { 3029 }
1468 ev_periodic *w = (ev_periodic *)periodics [0];
1469
1470 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1471
1472 /* first reschedule or stop timer */
1473 if (w->reschedule_cb)
1474 {
1475 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1476 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1477 downheap (periodics, periodiccnt, 0);
1478 }
1479 else if (w->interval)
1480 {
1481 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1482 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1483 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1484 downheap (periodics, periodiccnt, 0);
1485 }
1486 else
1487 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1488
1489 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1490 }
1491} 3030}
1492
1493static void noinline
1494periodics_reschedule (EV_P)
1495{
1496 int i;
1497
1498 /* adjust periodics after time jump */
1499 for (i = 0; i < periodiccnt; ++i)
1500 {
1501 ev_periodic *w = (ev_periodic *)periodics [i];
1502
1503 if (w->reschedule_cb)
1504 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1505 else if (w->interval)
1506 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1507 }
1508
1509 /* now rebuild the heap */
1510 for (i = periodiccnt >> 1; i--; )
1511 downheap (periodics, periodiccnt, i);
1512}
1513#endif
1514 3031
1515#if EV_IDLE_ENABLE 3032#if EV_IDLE_ENABLE
1516void inline_size 3033/* make idle watchers pending. this handles the "call-idle */
3034/* only when higher priorities are idle" logic */
3035inline_size void
1517idle_reify (EV_P) 3036idle_reify (EV_P)
1518{ 3037{
1519 if (expect_false (idleall)) 3038 if (expect_false (idleall))
1520 { 3039 {
1521 int pri; 3040 int pri;
1533 } 3052 }
1534 } 3053 }
1535} 3054}
1536#endif 3055#endif
1537 3056
1538void inline_speed 3057/* make timers pending */
3058inline_size void
3059timers_reify (EV_P)
3060{
3061 EV_FREQUENT_CHECK;
3062
3063 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3064 {
3065 do
3066 {
3067 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3068
3069 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3070
3071 /* first reschedule or stop timer */
3072 if (w->repeat)
3073 {
3074 ev_at (w) += w->repeat;
3075 if (ev_at (w) < mn_now)
3076 ev_at (w) = mn_now;
3077
3078 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3079
3080 ANHE_at_cache (timers [HEAP0]);
3081 downheap (timers, timercnt, HEAP0);
3082 }
3083 else
3084 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3085
3086 EV_FREQUENT_CHECK;
3087 feed_reverse (EV_A_ (W)w);
3088 }
3089 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3090
3091 feed_reverse_done (EV_A_ EV_TIMER);
3092 }
3093}
3094
3095#if EV_PERIODIC_ENABLE
3096
3097static void noinline
3098periodic_recalc (EV_P_ ev_periodic *w)
3099{
3100 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3101 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3102
3103 /* the above almost always errs on the low side */
3104 while (at <= ev_rt_now)
3105 {
3106 ev_tstamp nat = at + w->interval;
3107
3108 /* when resolution fails us, we use ev_rt_now */
3109 if (expect_false (nat == at))
3110 {
3111 at = ev_rt_now;
3112 break;
3113 }
3114
3115 at = nat;
3116 }
3117
3118 ev_at (w) = at;
3119}
3120
3121/* make periodics pending */
3122inline_size void
3123periodics_reify (EV_P)
3124{
3125 EV_FREQUENT_CHECK;
3126
3127 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3128 {
3129 do
3130 {
3131 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3132
3133 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3134
3135 /* first reschedule or stop timer */
3136 if (w->reschedule_cb)
3137 {
3138 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3139
3140 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3141
3142 ANHE_at_cache (periodics [HEAP0]);
3143 downheap (periodics, periodiccnt, HEAP0);
3144 }
3145 else if (w->interval)
3146 {
3147 periodic_recalc (EV_A_ w);
3148 ANHE_at_cache (periodics [HEAP0]);
3149 downheap (periodics, periodiccnt, HEAP0);
3150 }
3151 else
3152 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3153
3154 EV_FREQUENT_CHECK;
3155 feed_reverse (EV_A_ (W)w);
3156 }
3157 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3158
3159 feed_reverse_done (EV_A_ EV_PERIODIC);
3160 }
3161}
3162
3163/* simply recalculate all periodics */
3164/* TODO: maybe ensure that at least one event happens when jumping forward? */
3165static void noinline ecb_cold
3166periodics_reschedule (EV_P)
3167{
3168 int i;
3169
3170 /* adjust periodics after time jump */
3171 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3172 {
3173 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3174
3175 if (w->reschedule_cb)
3176 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3177 else if (w->interval)
3178 periodic_recalc (EV_A_ w);
3179
3180 ANHE_at_cache (periodics [i]);
3181 }
3182
3183 reheap (periodics, periodiccnt);
3184}
3185#endif
3186
3187/* adjust all timers by a given offset */
3188static void noinline ecb_cold
3189timers_reschedule (EV_P_ ev_tstamp adjust)
3190{
3191 int i;
3192
3193 for (i = 0; i < timercnt; ++i)
3194 {
3195 ANHE *he = timers + i + HEAP0;
3196 ANHE_w (*he)->at += adjust;
3197 ANHE_at_cache (*he);
3198 }
3199}
3200
3201/* fetch new monotonic and realtime times from the kernel */
3202/* also detect if there was a timejump, and act accordingly */
3203inline_speed void
1539time_update (EV_P_ ev_tstamp max_block) 3204time_update (EV_P_ ev_tstamp max_block)
1540{ 3205{
1541 int i;
1542
1543#if EV_USE_MONOTONIC 3206#if EV_USE_MONOTONIC
1544 if (expect_true (have_monotonic)) 3207 if (expect_true (have_monotonic))
1545 { 3208 {
3209 int i;
1546 ev_tstamp odiff = rtmn_diff; 3210 ev_tstamp odiff = rtmn_diff;
1547 3211
1548 mn_now = get_clock (); 3212 mn_now = get_clock ();
1549 3213
1550 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 3214 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1566 * doesn't hurt either as we only do this on time-jumps or 3230 * doesn't hurt either as we only do this on time-jumps or
1567 * in the unlikely event of having been preempted here. 3231 * in the unlikely event of having been preempted here.
1568 */ 3232 */
1569 for (i = 4; --i; ) 3233 for (i = 4; --i; )
1570 { 3234 {
3235 ev_tstamp diff;
1571 rtmn_diff = ev_rt_now - mn_now; 3236 rtmn_diff = ev_rt_now - mn_now;
1572 3237
1573 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 3238 diff = odiff - rtmn_diff;
3239
3240 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1574 return; /* all is well */ 3241 return; /* all is well */
1575 3242
1576 ev_rt_now = ev_time (); 3243 ev_rt_now = ev_time ();
1577 mn_now = get_clock (); 3244 mn_now = get_clock ();
1578 now_floor = mn_now; 3245 now_floor = mn_now;
1579 } 3246 }
1580 3247
3248 /* no timer adjustment, as the monotonic clock doesn't jump */
3249 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1581# if EV_PERIODIC_ENABLE 3250# if EV_PERIODIC_ENABLE
1582 periodics_reschedule (EV_A); 3251 periodics_reschedule (EV_A);
1583# endif 3252# endif
1584 /* no timer adjustment, as the monotonic clock doesn't jump */
1585 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1586 } 3253 }
1587 else 3254 else
1588#endif 3255#endif
1589 { 3256 {
1590 ev_rt_now = ev_time (); 3257 ev_rt_now = ev_time ();
1591 3258
1592 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 3259 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1593 { 3260 {
3261 /* adjust timers. this is easy, as the offset is the same for all of them */
3262 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1594#if EV_PERIODIC_ENABLE 3263#if EV_PERIODIC_ENABLE
1595 periodics_reschedule (EV_A); 3264 periodics_reschedule (EV_A);
1596#endif 3265#endif
1597 /* adjust timers. this is easy, as the offset is the same for all of them */
1598 for (i = 0; i < timercnt; ++i)
1599 ((WT)timers [i])->at += ev_rt_now - mn_now;
1600 } 3266 }
1601 3267
1602 mn_now = ev_rt_now; 3268 mn_now = ev_rt_now;
1603 } 3269 }
1604} 3270}
1605 3271
1606void 3272int
1607ev_ref (EV_P)
1608{
1609 ++activecnt;
1610}
1611
1612void
1613ev_unref (EV_P)
1614{
1615 --activecnt;
1616}
1617
1618static int loop_done;
1619
1620void
1621ev_loop (EV_P_ int flags) 3273ev_run (EV_P_ int flags)
1622{ 3274{
3275#if EV_FEATURE_API
3276 ++loop_depth;
3277#endif
3278
3279 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3280
1623 loop_done = EVUNLOOP_CANCEL; 3281 loop_done = EVBREAK_CANCEL;
1624 3282
1625 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3283 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1626 3284
1627 do 3285 do
1628 { 3286 {
3287#if EV_VERIFY >= 2
3288 ev_verify (EV_A);
3289#endif
3290
1629#ifndef _WIN32 3291#ifndef _WIN32
1630 if (expect_false (curpid)) /* penalise the forking check even more */ 3292 if (expect_false (curpid)) /* penalise the forking check even more */
1631 if (expect_false (getpid () != curpid)) 3293 if (expect_false (getpid () != curpid))
1632 { 3294 {
1633 curpid = getpid (); 3295 curpid = getpid ();
1639 /* we might have forked, so queue fork handlers */ 3301 /* we might have forked, so queue fork handlers */
1640 if (expect_false (postfork)) 3302 if (expect_false (postfork))
1641 if (forkcnt) 3303 if (forkcnt)
1642 { 3304 {
1643 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3305 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1644 call_pending (EV_A); 3306 EV_INVOKE_PENDING;
1645 } 3307 }
1646#endif 3308#endif
1647 3309
3310#if EV_PREPARE_ENABLE
1648 /* queue prepare watchers (and execute them) */ 3311 /* queue prepare watchers (and execute them) */
1649 if (expect_false (preparecnt)) 3312 if (expect_false (preparecnt))
1650 { 3313 {
1651 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3314 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1652 call_pending (EV_A); 3315 EV_INVOKE_PENDING;
1653 } 3316 }
3317#endif
1654 3318
1655 if (expect_false (!activecnt)) 3319 if (expect_false (loop_done))
1656 break; 3320 break;
1657 3321
1658 /* we might have forked, so reify kernel state if necessary */ 3322 /* we might have forked, so reify kernel state if necessary */
1659 if (expect_false (postfork)) 3323 if (expect_false (postfork))
1660 loop_fork (EV_A); 3324 loop_fork (EV_A);
1665 /* calculate blocking time */ 3329 /* calculate blocking time */
1666 { 3330 {
1667 ev_tstamp waittime = 0.; 3331 ev_tstamp waittime = 0.;
1668 ev_tstamp sleeptime = 0.; 3332 ev_tstamp sleeptime = 0.;
1669 3333
3334 /* remember old timestamp for io_blocktime calculation */
3335 ev_tstamp prev_mn_now = mn_now;
3336
3337 /* update time to cancel out callback processing overhead */
3338 time_update (EV_A_ 1e100);
3339
3340 /* from now on, we want a pipe-wake-up */
3341 pipe_write_wanted = 1;
3342
3343 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3344
1670 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3345 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1671 { 3346 {
1672 /* update time to cancel out callback processing overhead */
1673 time_update (EV_A_ 1e100);
1674
1675 waittime = MAX_BLOCKTIME; 3347 waittime = MAX_BLOCKTIME;
1676 3348
1677 if (timercnt) 3349 if (timercnt)
1678 { 3350 {
1679 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 3351 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1680 if (waittime > to) waittime = to; 3352 if (waittime > to) waittime = to;
1681 } 3353 }
1682 3354
1683#if EV_PERIODIC_ENABLE 3355#if EV_PERIODIC_ENABLE
1684 if (periodiccnt) 3356 if (periodiccnt)
1685 { 3357 {
1686 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 3358 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1687 if (waittime > to) waittime = to; 3359 if (waittime > to) waittime = to;
1688 } 3360 }
1689#endif 3361#endif
1690 3362
3363 /* don't let timeouts decrease the waittime below timeout_blocktime */
1691 if (expect_false (waittime < timeout_blocktime)) 3364 if (expect_false (waittime < timeout_blocktime))
1692 waittime = timeout_blocktime; 3365 waittime = timeout_blocktime;
1693 3366
1694 sleeptime = waittime - backend_fudge; 3367 /* at this point, we NEED to wait, so we have to ensure */
3368 /* to pass a minimum nonzero value to the backend */
3369 if (expect_false (waittime < backend_mintime))
3370 waittime = backend_mintime;
1695 3371
3372 /* extra check because io_blocktime is commonly 0 */
1696 if (expect_true (sleeptime > io_blocktime)) 3373 if (expect_false (io_blocktime))
1697 sleeptime = io_blocktime;
1698
1699 if (sleeptime)
1700 { 3374 {
3375 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3376
3377 if (sleeptime > waittime - backend_mintime)
3378 sleeptime = waittime - backend_mintime;
3379
3380 if (expect_true (sleeptime > 0.))
3381 {
1701 ev_sleep (sleeptime); 3382 ev_sleep (sleeptime);
1702 waittime -= sleeptime; 3383 waittime -= sleeptime;
3384 }
1703 } 3385 }
1704 } 3386 }
1705 3387
3388#if EV_FEATURE_API
1706 ++loop_count; 3389 ++loop_count;
3390#endif
3391 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1707 backend_poll (EV_A_ waittime); 3392 backend_poll (EV_A_ waittime);
3393 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3394
3395 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3396
3397 ECB_MEMORY_FENCE_ACQUIRE;
3398 if (pipe_write_skipped)
3399 {
3400 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3401 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3402 }
3403
1708 3404
1709 /* update ev_rt_now, do magic */ 3405 /* update ev_rt_now, do magic */
1710 time_update (EV_A_ waittime + sleeptime); 3406 time_update (EV_A_ waittime + sleeptime);
1711 } 3407 }
1712 3408
1719#if EV_IDLE_ENABLE 3415#if EV_IDLE_ENABLE
1720 /* queue idle watchers unless other events are pending */ 3416 /* queue idle watchers unless other events are pending */
1721 idle_reify (EV_A); 3417 idle_reify (EV_A);
1722#endif 3418#endif
1723 3419
3420#if EV_CHECK_ENABLE
1724 /* queue check watchers, to be executed first */ 3421 /* queue check watchers, to be executed first */
1725 if (expect_false (checkcnt)) 3422 if (expect_false (checkcnt))
1726 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3423 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3424#endif
1727 3425
1728 call_pending (EV_A); 3426 EV_INVOKE_PENDING;
1729 } 3427 }
1730 while (expect_true ( 3428 while (expect_true (
1731 activecnt 3429 activecnt
1732 && !loop_done 3430 && !loop_done
1733 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 3431 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
1734 )); 3432 ));
1735 3433
1736 if (loop_done == EVUNLOOP_ONE) 3434 if (loop_done == EVBREAK_ONE)
1737 loop_done = EVUNLOOP_CANCEL; 3435 loop_done = EVBREAK_CANCEL;
3436
3437#if EV_FEATURE_API
3438 --loop_depth;
3439#endif
3440
3441 return activecnt;
1738} 3442}
1739 3443
1740void 3444void
1741ev_unloop (EV_P_ int how) 3445ev_break (EV_P_ int how) EV_THROW
1742{ 3446{
1743 loop_done = how; 3447 loop_done = how;
1744} 3448}
1745 3449
3450void
3451ev_ref (EV_P) EV_THROW
3452{
3453 ++activecnt;
3454}
3455
3456void
3457ev_unref (EV_P) EV_THROW
3458{
3459 --activecnt;
3460}
3461
3462void
3463ev_now_update (EV_P) EV_THROW
3464{
3465 time_update (EV_A_ 1e100);
3466}
3467
3468void
3469ev_suspend (EV_P) EV_THROW
3470{
3471 ev_now_update (EV_A);
3472}
3473
3474void
3475ev_resume (EV_P) EV_THROW
3476{
3477 ev_tstamp mn_prev = mn_now;
3478
3479 ev_now_update (EV_A);
3480 timers_reschedule (EV_A_ mn_now - mn_prev);
3481#if EV_PERIODIC_ENABLE
3482 /* TODO: really do this? */
3483 periodics_reschedule (EV_A);
3484#endif
3485}
3486
1746/*****************************************************************************/ 3487/*****************************************************************************/
3488/* singly-linked list management, used when the expected list length is short */
1747 3489
1748void inline_size 3490inline_size void
1749wlist_add (WL *head, WL elem) 3491wlist_add (WL *head, WL elem)
1750{ 3492{
1751 elem->next = *head; 3493 elem->next = *head;
1752 *head = elem; 3494 *head = elem;
1753} 3495}
1754 3496
1755void inline_size 3497inline_size void
1756wlist_del (WL *head, WL elem) 3498wlist_del (WL *head, WL elem)
1757{ 3499{
1758 while (*head) 3500 while (*head)
1759 { 3501 {
1760 if (*head == elem) 3502 if (expect_true (*head == elem))
1761 { 3503 {
1762 *head = elem->next; 3504 *head = elem->next;
1763 return; 3505 break;
1764 } 3506 }
1765 3507
1766 head = &(*head)->next; 3508 head = &(*head)->next;
1767 } 3509 }
1768} 3510}
1769 3511
1770void inline_speed 3512/* internal, faster, version of ev_clear_pending */
3513inline_speed void
1771clear_pending (EV_P_ W w) 3514clear_pending (EV_P_ W w)
1772{ 3515{
1773 if (w->pending) 3516 if (w->pending)
1774 { 3517 {
1775 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3518 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1776 w->pending = 0; 3519 w->pending = 0;
1777 } 3520 }
1778} 3521}
1779 3522
1780int 3523int
1781ev_clear_pending (EV_P_ void *w) 3524ev_clear_pending (EV_P_ void *w) EV_THROW
1782{ 3525{
1783 W w_ = (W)w; 3526 W w_ = (W)w;
1784 int pending = w_->pending; 3527 int pending = w_->pending;
1785 3528
1786 if (expect_true (pending)) 3529 if (expect_true (pending))
1787 { 3530 {
1788 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3531 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3532 p->w = (W)&pending_w;
1789 w_->pending = 0; 3533 w_->pending = 0;
1790 p->w = 0;
1791 return p->events; 3534 return p->events;
1792 } 3535 }
1793 else 3536 else
1794 return 0; 3537 return 0;
1795} 3538}
1796 3539
1797void inline_size 3540inline_size void
1798pri_adjust (EV_P_ W w) 3541pri_adjust (EV_P_ W w)
1799{ 3542{
1800 int pri = w->priority; 3543 int pri = ev_priority (w);
1801 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3544 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1802 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3545 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1803 w->priority = pri; 3546 ev_set_priority (w, pri);
1804} 3547}
1805 3548
1806void inline_speed 3549inline_speed void
1807ev_start (EV_P_ W w, int active) 3550ev_start (EV_P_ W w, int active)
1808{ 3551{
1809 pri_adjust (EV_A_ w); 3552 pri_adjust (EV_A_ w);
1810 w->active = active; 3553 w->active = active;
1811 ev_ref (EV_A); 3554 ev_ref (EV_A);
1812} 3555}
1813 3556
1814void inline_size 3557inline_size void
1815ev_stop (EV_P_ W w) 3558ev_stop (EV_P_ W w)
1816{ 3559{
1817 ev_unref (EV_A); 3560 ev_unref (EV_A);
1818 w->active = 0; 3561 w->active = 0;
1819} 3562}
1820 3563
1821/*****************************************************************************/ 3564/*****************************************************************************/
1822 3565
1823void noinline 3566void noinline
1824ev_io_start (EV_P_ ev_io *w) 3567ev_io_start (EV_P_ ev_io *w) EV_THROW
1825{ 3568{
1826 int fd = w->fd; 3569 int fd = w->fd;
1827 3570
1828 if (expect_false (ev_is_active (w))) 3571 if (expect_false (ev_is_active (w)))
1829 return; 3572 return;
1830 3573
1831 assert (("ev_io_start called with negative fd", fd >= 0)); 3574 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3575 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3576
3577 EV_FREQUENT_CHECK;
1832 3578
1833 ev_start (EV_A_ (W)w, 1); 3579 ev_start (EV_A_ (W)w, 1);
1834 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3580 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1835 wlist_add (&anfds[fd].head, (WL)w); 3581 wlist_add (&anfds[fd].head, (WL)w);
1836 3582
3583 /* common bug, apparently */
3584 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3585
1837 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3586 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1838 w->events &= ~EV_IOFDSET; 3587 w->events &= ~EV__IOFDSET;
3588
3589 EV_FREQUENT_CHECK;
1839} 3590}
1840 3591
1841void noinline 3592void noinline
1842ev_io_stop (EV_P_ ev_io *w) 3593ev_io_stop (EV_P_ ev_io *w) EV_THROW
1843{ 3594{
1844 clear_pending (EV_A_ (W)w); 3595 clear_pending (EV_A_ (W)w);
1845 if (expect_false (!ev_is_active (w))) 3596 if (expect_false (!ev_is_active (w)))
1846 return; 3597 return;
1847 3598
1848 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3599 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3600
3601 EV_FREQUENT_CHECK;
1849 3602
1850 wlist_del (&anfds[w->fd].head, (WL)w); 3603 wlist_del (&anfds[w->fd].head, (WL)w);
1851 ev_stop (EV_A_ (W)w); 3604 ev_stop (EV_A_ (W)w);
1852 3605
1853 fd_change (EV_A_ w->fd, 1); 3606 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3607
3608 EV_FREQUENT_CHECK;
1854} 3609}
1855 3610
1856void noinline 3611void noinline
1857ev_timer_start (EV_P_ ev_timer *w) 3612ev_timer_start (EV_P_ ev_timer *w) EV_THROW
1858{ 3613{
1859 if (expect_false (ev_is_active (w))) 3614 if (expect_false (ev_is_active (w)))
1860 return; 3615 return;
1861 3616
1862 ((WT)w)->at += mn_now; 3617 ev_at (w) += mn_now;
1863 3618
1864 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3619 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1865 3620
3621 EV_FREQUENT_CHECK;
3622
3623 ++timercnt;
1866 ev_start (EV_A_ (W)w, ++timercnt); 3624 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1867 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 3625 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1868 timers [timercnt - 1] = (WT)w; 3626 ANHE_w (timers [ev_active (w)]) = (WT)w;
1869 upheap (timers, timercnt - 1); 3627 ANHE_at_cache (timers [ev_active (w)]);
3628 upheap (timers, ev_active (w));
1870 3629
3630 EV_FREQUENT_CHECK;
3631
1871 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 3632 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1872} 3633}
1873 3634
1874void noinline 3635void noinline
1875ev_timer_stop (EV_P_ ev_timer *w) 3636ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
1876{ 3637{
1877 clear_pending (EV_A_ (W)w); 3638 clear_pending (EV_A_ (W)w);
1878 if (expect_false (!ev_is_active (w))) 3639 if (expect_false (!ev_is_active (w)))
1879 return; 3640 return;
1880 3641
1881 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 3642 EV_FREQUENT_CHECK;
1882 3643
1883 { 3644 {
1884 int active = ((W)w)->active; 3645 int active = ev_active (w);
1885 3646
3647 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3648
3649 --timercnt;
3650
1886 if (expect_true (--active < --timercnt)) 3651 if (expect_true (active < timercnt + HEAP0))
1887 { 3652 {
1888 timers [active] = timers [timercnt]; 3653 timers [active] = timers [timercnt + HEAP0];
1889 adjustheap (timers, timercnt, active); 3654 adjustheap (timers, timercnt, active);
1890 } 3655 }
1891 } 3656 }
1892 3657
1893 ((WT)w)->at -= mn_now; 3658 ev_at (w) -= mn_now;
1894 3659
1895 ev_stop (EV_A_ (W)w); 3660 ev_stop (EV_A_ (W)w);
3661
3662 EV_FREQUENT_CHECK;
1896} 3663}
1897 3664
1898void noinline 3665void noinline
1899ev_timer_again (EV_P_ ev_timer *w) 3666ev_timer_again (EV_P_ ev_timer *w) EV_THROW
1900{ 3667{
3668 EV_FREQUENT_CHECK;
3669
3670 clear_pending (EV_A_ (W)w);
3671
1901 if (ev_is_active (w)) 3672 if (ev_is_active (w))
1902 { 3673 {
1903 if (w->repeat) 3674 if (w->repeat)
1904 { 3675 {
1905 ((WT)w)->at = mn_now + w->repeat; 3676 ev_at (w) = mn_now + w->repeat;
3677 ANHE_at_cache (timers [ev_active (w)]);
1906 adjustheap (timers, timercnt, ((W)w)->active - 1); 3678 adjustheap (timers, timercnt, ev_active (w));
1907 } 3679 }
1908 else 3680 else
1909 ev_timer_stop (EV_A_ w); 3681 ev_timer_stop (EV_A_ w);
1910 } 3682 }
1911 else if (w->repeat) 3683 else if (w->repeat)
1912 { 3684 {
1913 w->at = w->repeat; 3685 ev_at (w) = w->repeat;
1914 ev_timer_start (EV_A_ w); 3686 ev_timer_start (EV_A_ w);
1915 } 3687 }
3688
3689 EV_FREQUENT_CHECK;
3690}
3691
3692ev_tstamp
3693ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3694{
3695 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1916} 3696}
1917 3697
1918#if EV_PERIODIC_ENABLE 3698#if EV_PERIODIC_ENABLE
1919void noinline 3699void noinline
1920ev_periodic_start (EV_P_ ev_periodic *w) 3700ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
1921{ 3701{
1922 if (expect_false (ev_is_active (w))) 3702 if (expect_false (ev_is_active (w)))
1923 return; 3703 return;
1924 3704
1925 if (w->reschedule_cb) 3705 if (w->reschedule_cb)
1926 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 3706 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1927 else if (w->interval) 3707 else if (w->interval)
1928 { 3708 {
1929 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3709 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1930 /* this formula differs from the one in periodic_reify because we do not always round up */ 3710 periodic_recalc (EV_A_ w);
1931 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1932 } 3711 }
1933 else 3712 else
1934 ((WT)w)->at = w->offset; 3713 ev_at (w) = w->offset;
1935 3714
3715 EV_FREQUENT_CHECK;
3716
3717 ++periodiccnt;
1936 ev_start (EV_A_ (W)w, ++periodiccnt); 3718 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1937 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 3719 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1938 periodics [periodiccnt - 1] = (WT)w; 3720 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1939 upheap (periodics, periodiccnt - 1); 3721 ANHE_at_cache (periodics [ev_active (w)]);
3722 upheap (periodics, ev_active (w));
1940 3723
3724 EV_FREQUENT_CHECK;
3725
1941 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 3726 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1942} 3727}
1943 3728
1944void noinline 3729void noinline
1945ev_periodic_stop (EV_P_ ev_periodic *w) 3730ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
1946{ 3731{
1947 clear_pending (EV_A_ (W)w); 3732 clear_pending (EV_A_ (W)w);
1948 if (expect_false (!ev_is_active (w))) 3733 if (expect_false (!ev_is_active (w)))
1949 return; 3734 return;
1950 3735
1951 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 3736 EV_FREQUENT_CHECK;
1952 3737
1953 { 3738 {
1954 int active = ((W)w)->active; 3739 int active = ev_active (w);
1955 3740
3741 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3742
3743 --periodiccnt;
3744
1956 if (expect_true (--active < --periodiccnt)) 3745 if (expect_true (active < periodiccnt + HEAP0))
1957 { 3746 {
1958 periodics [active] = periodics [periodiccnt]; 3747 periodics [active] = periodics [periodiccnt + HEAP0];
1959 adjustheap (periodics, periodiccnt, active); 3748 adjustheap (periodics, periodiccnt, active);
1960 } 3749 }
1961 } 3750 }
1962 3751
1963 ev_stop (EV_A_ (W)w); 3752 ev_stop (EV_A_ (W)w);
3753
3754 EV_FREQUENT_CHECK;
1964} 3755}
1965 3756
1966void noinline 3757void noinline
1967ev_periodic_again (EV_P_ ev_periodic *w) 3758ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
1968{ 3759{
1969 /* TODO: use adjustheap and recalculation */ 3760 /* TODO: use adjustheap and recalculation */
1970 ev_periodic_stop (EV_A_ w); 3761 ev_periodic_stop (EV_A_ w);
1971 ev_periodic_start (EV_A_ w); 3762 ev_periodic_start (EV_A_ w);
1972} 3763}
1974 3765
1975#ifndef SA_RESTART 3766#ifndef SA_RESTART
1976# define SA_RESTART 0 3767# define SA_RESTART 0
1977#endif 3768#endif
1978 3769
3770#if EV_SIGNAL_ENABLE
3771
1979void noinline 3772void noinline
1980ev_signal_start (EV_P_ ev_signal *w) 3773ev_signal_start (EV_P_ ev_signal *w) EV_THROW
1981{ 3774{
1982#if EV_MULTIPLICITY
1983 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1984#endif
1985 if (expect_false (ev_is_active (w))) 3775 if (expect_false (ev_is_active (w)))
1986 return; 3776 return;
1987 3777
1988 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3778 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
1989 3779
1990 evpipe_init (EV_A); 3780#if EV_MULTIPLICITY
3781 assert (("libev: a signal must not be attached to two different loops",
3782 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
1991 3783
3784 signals [w->signum - 1].loop = EV_A;
3785 ECB_MEMORY_FENCE_RELEASE;
3786#endif
3787
3788 EV_FREQUENT_CHECK;
3789
3790#if EV_USE_SIGNALFD
3791 if (sigfd == -2)
1992 { 3792 {
1993#ifndef _WIN32 3793 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
1994 sigset_t full, prev; 3794 if (sigfd < 0 && errno == EINVAL)
1995 sigfillset (&full); 3795 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
1996 sigprocmask (SIG_SETMASK, &full, &prev);
1997#endif
1998 3796
1999 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3797 if (sigfd >= 0)
3798 {
3799 fd_intern (sigfd); /* doing it twice will not hurt */
2000 3800
2001#ifndef _WIN32 3801 sigemptyset (&sigfd_set);
2002 sigprocmask (SIG_SETMASK, &prev, 0); 3802
2003#endif 3803 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3804 ev_set_priority (&sigfd_w, EV_MAXPRI);
3805 ev_io_start (EV_A_ &sigfd_w);
3806 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3807 }
2004 } 3808 }
3809
3810 if (sigfd >= 0)
3811 {
3812 /* TODO: check .head */
3813 sigaddset (&sigfd_set, w->signum);
3814 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3815
3816 signalfd (sigfd, &sigfd_set, 0);
3817 }
3818#endif
2005 3819
2006 ev_start (EV_A_ (W)w, 1); 3820 ev_start (EV_A_ (W)w, 1);
2007 wlist_add (&signals [w->signum - 1].head, (WL)w); 3821 wlist_add (&signals [w->signum - 1].head, (WL)w);
2008 3822
2009 if (!((WL)w)->next) 3823 if (!((WL)w)->next)
3824# if EV_USE_SIGNALFD
3825 if (sigfd < 0) /*TODO*/
3826# endif
2010 { 3827 {
2011#if _WIN32 3828# ifdef _WIN32
3829 evpipe_init (EV_A);
3830
2012 signal (w->signum, ev_sighandler); 3831 signal (w->signum, ev_sighandler);
2013#else 3832# else
2014 struct sigaction sa; 3833 struct sigaction sa;
3834
3835 evpipe_init (EV_A);
3836
2015 sa.sa_handler = ev_sighandler; 3837 sa.sa_handler = ev_sighandler;
2016 sigfillset (&sa.sa_mask); 3838 sigfillset (&sa.sa_mask);
2017 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3839 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2018 sigaction (w->signum, &sa, 0); 3840 sigaction (w->signum, &sa, 0);
3841
3842 if (origflags & EVFLAG_NOSIGMASK)
3843 {
3844 sigemptyset (&sa.sa_mask);
3845 sigaddset (&sa.sa_mask, w->signum);
3846 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3847 }
2019#endif 3848#endif
2020 } 3849 }
3850
3851 EV_FREQUENT_CHECK;
2021} 3852}
2022 3853
2023void noinline 3854void noinline
2024ev_signal_stop (EV_P_ ev_signal *w) 3855ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
2025{ 3856{
2026 clear_pending (EV_A_ (W)w); 3857 clear_pending (EV_A_ (W)w);
2027 if (expect_false (!ev_is_active (w))) 3858 if (expect_false (!ev_is_active (w)))
2028 return; 3859 return;
2029 3860
3861 EV_FREQUENT_CHECK;
3862
2030 wlist_del (&signals [w->signum - 1].head, (WL)w); 3863 wlist_del (&signals [w->signum - 1].head, (WL)w);
2031 ev_stop (EV_A_ (W)w); 3864 ev_stop (EV_A_ (W)w);
2032 3865
2033 if (!signals [w->signum - 1].head) 3866 if (!signals [w->signum - 1].head)
3867 {
3868#if EV_MULTIPLICITY
3869 signals [w->signum - 1].loop = 0; /* unattach from signal */
3870#endif
3871#if EV_USE_SIGNALFD
3872 if (sigfd >= 0)
3873 {
3874 sigset_t ss;
3875
3876 sigemptyset (&ss);
3877 sigaddset (&ss, w->signum);
3878 sigdelset (&sigfd_set, w->signum);
3879
3880 signalfd (sigfd, &sigfd_set, 0);
3881 sigprocmask (SIG_UNBLOCK, &ss, 0);
3882 }
3883 else
3884#endif
2034 signal (w->signum, SIG_DFL); 3885 signal (w->signum, SIG_DFL);
3886 }
3887
3888 EV_FREQUENT_CHECK;
2035} 3889}
3890
3891#endif
3892
3893#if EV_CHILD_ENABLE
2036 3894
2037void 3895void
2038ev_child_start (EV_P_ ev_child *w) 3896ev_child_start (EV_P_ ev_child *w) EV_THROW
2039{ 3897{
2040#if EV_MULTIPLICITY 3898#if EV_MULTIPLICITY
2041 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3899 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2042#endif 3900#endif
2043 if (expect_false (ev_is_active (w))) 3901 if (expect_false (ev_is_active (w)))
2044 return; 3902 return;
2045 3903
3904 EV_FREQUENT_CHECK;
3905
2046 ev_start (EV_A_ (W)w, 1); 3906 ev_start (EV_A_ (W)w, 1);
2047 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3907 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3908
3909 EV_FREQUENT_CHECK;
2048} 3910}
2049 3911
2050void 3912void
2051ev_child_stop (EV_P_ ev_child *w) 3913ev_child_stop (EV_P_ ev_child *w) EV_THROW
2052{ 3914{
2053 clear_pending (EV_A_ (W)w); 3915 clear_pending (EV_A_ (W)w);
2054 if (expect_false (!ev_is_active (w))) 3916 if (expect_false (!ev_is_active (w)))
2055 return; 3917 return;
2056 3918
3919 EV_FREQUENT_CHECK;
3920
2057 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3921 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2058 ev_stop (EV_A_ (W)w); 3922 ev_stop (EV_A_ (W)w);
3923
3924 EV_FREQUENT_CHECK;
2059} 3925}
3926
3927#endif
2060 3928
2061#if EV_STAT_ENABLE 3929#if EV_STAT_ENABLE
2062 3930
2063# ifdef _WIN32 3931# ifdef _WIN32
2064# undef lstat 3932# undef lstat
2065# define lstat(a,b) _stati64 (a,b) 3933# define lstat(a,b) _stati64 (a,b)
2066# endif 3934# endif
2067 3935
2068#define DEF_STAT_INTERVAL 5.0074891 3936#define DEF_STAT_INTERVAL 5.0074891
3937#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2069#define MIN_STAT_INTERVAL 0.1074891 3938#define MIN_STAT_INTERVAL 0.1074891
2070 3939
2071static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3940static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2072 3941
2073#if EV_USE_INOTIFY 3942#if EV_USE_INOTIFY
2074# define EV_INOTIFY_BUFSIZE 8192 3943
3944/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3945# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2075 3946
2076static void noinline 3947static void noinline
2077infy_add (EV_P_ ev_stat *w) 3948infy_add (EV_P_ ev_stat *w)
2078{ 3949{
2079 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3950 w->wd = inotify_add_watch (fs_fd, w->path,
3951 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
3952 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
3953 | IN_DONT_FOLLOW | IN_MASK_ADD);
2080 3954
2081 if (w->wd < 0) 3955 if (w->wd >= 0)
3956 {
3957 struct statfs sfs;
3958
3959 /* now local changes will be tracked by inotify, but remote changes won't */
3960 /* unless the filesystem is known to be local, we therefore still poll */
3961 /* also do poll on <2.6.25, but with normal frequency */
3962
3963 if (!fs_2625)
3964 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3965 else if (!statfs (w->path, &sfs)
3966 && (sfs.f_type == 0x1373 /* devfs */
3967 || sfs.f_type == 0x4006 /* fat */
3968 || sfs.f_type == 0x4d44 /* msdos */
3969 || sfs.f_type == 0xEF53 /* ext2/3 */
3970 || sfs.f_type == 0x72b6 /* jffs2 */
3971 || sfs.f_type == 0x858458f6 /* ramfs */
3972 || sfs.f_type == 0x5346544e /* ntfs */
3973 || sfs.f_type == 0x3153464a /* jfs */
3974 || sfs.f_type == 0x9123683e /* btrfs */
3975 || sfs.f_type == 0x52654973 /* reiser3 */
3976 || sfs.f_type == 0x01021994 /* tmpfs */
3977 || sfs.f_type == 0x58465342 /* xfs */))
3978 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3979 else
3980 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2082 { 3981 }
2083 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3982 else
3983 {
3984 /* can't use inotify, continue to stat */
3985 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2084 3986
2085 /* monitor some parent directory for speedup hints */ 3987 /* if path is not there, monitor some parent directory for speedup hints */
3988 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3989 /* but an efficiency issue only */
2086 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3990 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2087 { 3991 {
2088 char path [4096]; 3992 char path [4096];
2089 strcpy (path, w->path); 3993 strcpy (path, w->path);
2090 3994
2093 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3997 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2094 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3998 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2095 3999
2096 char *pend = strrchr (path, '/'); 4000 char *pend = strrchr (path, '/');
2097 4001
2098 if (!pend) 4002 if (!pend || pend == path)
2099 break; /* whoops, no '/', complain to your admin */ 4003 break;
2100 4004
2101 *pend = 0; 4005 *pend = 0;
2102 w->wd = inotify_add_watch (fs_fd, path, mask); 4006 w->wd = inotify_add_watch (fs_fd, path, mask);
2103 } 4007 }
2104 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 4008 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2105 } 4009 }
2106 } 4010 }
2107 else
2108 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2109 4011
2110 if (w->wd >= 0) 4012 if (w->wd >= 0)
2111 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 4013 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4014
4015 /* now re-arm timer, if required */
4016 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4017 ev_timer_again (EV_A_ &w->timer);
4018 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2112} 4019}
2113 4020
2114static void noinline 4021static void noinline
2115infy_del (EV_P_ ev_stat *w) 4022infy_del (EV_P_ ev_stat *w)
2116{ 4023{
2119 4026
2120 if (wd < 0) 4027 if (wd < 0)
2121 return; 4028 return;
2122 4029
2123 w->wd = -2; 4030 w->wd = -2;
2124 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 4031 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2125 wlist_del (&fs_hash [slot].head, (WL)w); 4032 wlist_del (&fs_hash [slot].head, (WL)w);
2126 4033
2127 /* remove this watcher, if others are watching it, they will rearm */ 4034 /* remove this watcher, if others are watching it, they will rearm */
2128 inotify_rm_watch (fs_fd, wd); 4035 inotify_rm_watch (fs_fd, wd);
2129} 4036}
2130 4037
2131static void noinline 4038static void noinline
2132infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 4039infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2133{ 4040{
2134 if (slot < 0) 4041 if (slot < 0)
2135 /* overflow, need to check for all hahs slots */ 4042 /* overflow, need to check for all hash slots */
2136 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4043 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2137 infy_wd (EV_A_ slot, wd, ev); 4044 infy_wd (EV_A_ slot, wd, ev);
2138 else 4045 else
2139 { 4046 {
2140 WL w_; 4047 WL w_;
2141 4048
2142 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 4049 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2143 { 4050 {
2144 ev_stat *w = (ev_stat *)w_; 4051 ev_stat *w = (ev_stat *)w_;
2145 w_ = w_->next; /* lets us remove this watcher and all before it */ 4052 w_ = w_->next; /* lets us remove this watcher and all before it */
2146 4053
2147 if (w->wd == wd || wd == -1) 4054 if (w->wd == wd || wd == -1)
2148 { 4055 {
2149 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 4056 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2150 { 4057 {
4058 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2151 w->wd = -1; 4059 w->wd = -1;
2152 infy_add (EV_A_ w); /* re-add, no matter what */ 4060 infy_add (EV_A_ w); /* re-add, no matter what */
2153 } 4061 }
2154 4062
2155 stat_timer_cb (EV_A_ &w->timer, 0); 4063 stat_timer_cb (EV_A_ &w->timer, 0);
2160 4068
2161static void 4069static void
2162infy_cb (EV_P_ ev_io *w, int revents) 4070infy_cb (EV_P_ ev_io *w, int revents)
2163{ 4071{
2164 char buf [EV_INOTIFY_BUFSIZE]; 4072 char buf [EV_INOTIFY_BUFSIZE];
2165 struct inotify_event *ev = (struct inotify_event *)buf;
2166 int ofs; 4073 int ofs;
2167 int len = read (fs_fd, buf, sizeof (buf)); 4074 int len = read (fs_fd, buf, sizeof (buf));
2168 4075
2169 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 4076 for (ofs = 0; ofs < len; )
4077 {
4078 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2170 infy_wd (EV_A_ ev->wd, ev->wd, ev); 4079 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4080 ofs += sizeof (struct inotify_event) + ev->len;
4081 }
2171} 4082}
2172 4083
2173void inline_size 4084inline_size void ecb_cold
4085ev_check_2625 (EV_P)
4086{
4087 /* kernels < 2.6.25 are borked
4088 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4089 */
4090 if (ev_linux_version () < 0x020619)
4091 return;
4092
4093 fs_2625 = 1;
4094}
4095
4096inline_size int
4097infy_newfd (void)
4098{
4099#if defined IN_CLOEXEC && defined IN_NONBLOCK
4100 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4101 if (fd >= 0)
4102 return fd;
4103#endif
4104 return inotify_init ();
4105}
4106
4107inline_size void
2174infy_init (EV_P) 4108infy_init (EV_P)
2175{ 4109{
2176 if (fs_fd != -2) 4110 if (fs_fd != -2)
2177 return; 4111 return;
2178 4112
4113 fs_fd = -1;
4114
4115 ev_check_2625 (EV_A);
4116
2179 fs_fd = inotify_init (); 4117 fs_fd = infy_newfd ();
2180 4118
2181 if (fs_fd >= 0) 4119 if (fs_fd >= 0)
2182 { 4120 {
4121 fd_intern (fs_fd);
2183 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 4122 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2184 ev_set_priority (&fs_w, EV_MAXPRI); 4123 ev_set_priority (&fs_w, EV_MAXPRI);
2185 ev_io_start (EV_A_ &fs_w); 4124 ev_io_start (EV_A_ &fs_w);
4125 ev_unref (EV_A);
2186 } 4126 }
2187} 4127}
2188 4128
2189void inline_size 4129inline_size void
2190infy_fork (EV_P) 4130infy_fork (EV_P)
2191{ 4131{
2192 int slot; 4132 int slot;
2193 4133
2194 if (fs_fd < 0) 4134 if (fs_fd < 0)
2195 return; 4135 return;
2196 4136
4137 ev_ref (EV_A);
4138 ev_io_stop (EV_A_ &fs_w);
2197 close (fs_fd); 4139 close (fs_fd);
2198 fs_fd = inotify_init (); 4140 fs_fd = infy_newfd ();
2199 4141
4142 if (fs_fd >= 0)
4143 {
4144 fd_intern (fs_fd);
4145 ev_io_set (&fs_w, fs_fd, EV_READ);
4146 ev_io_start (EV_A_ &fs_w);
4147 ev_unref (EV_A);
4148 }
4149
2200 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4150 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2201 { 4151 {
2202 WL w_ = fs_hash [slot].head; 4152 WL w_ = fs_hash [slot].head;
2203 fs_hash [slot].head = 0; 4153 fs_hash [slot].head = 0;
2204 4154
2205 while (w_) 4155 while (w_)
2210 w->wd = -1; 4160 w->wd = -1;
2211 4161
2212 if (fs_fd >= 0) 4162 if (fs_fd >= 0)
2213 infy_add (EV_A_ w); /* re-add, no matter what */ 4163 infy_add (EV_A_ w); /* re-add, no matter what */
2214 else 4164 else
4165 {
4166 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4167 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2215 ev_timer_start (EV_A_ &w->timer); 4168 ev_timer_again (EV_A_ &w->timer);
4169 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4170 }
2216 } 4171 }
2217
2218 } 4172 }
2219} 4173}
2220 4174
4175#endif
4176
4177#ifdef _WIN32
4178# define EV_LSTAT(p,b) _stati64 (p, b)
4179#else
4180# define EV_LSTAT(p,b) lstat (p, b)
2221#endif 4181#endif
2222 4182
2223void 4183void
2224ev_stat_stat (EV_P_ ev_stat *w) 4184ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
2225{ 4185{
2226 if (lstat (w->path, &w->attr) < 0) 4186 if (lstat (w->path, &w->attr) < 0)
2227 w->attr.st_nlink = 0; 4187 w->attr.st_nlink = 0;
2228 else if (!w->attr.st_nlink) 4188 else if (!w->attr.st_nlink)
2229 w->attr.st_nlink = 1; 4189 w->attr.st_nlink = 1;
2232static void noinline 4192static void noinline
2233stat_timer_cb (EV_P_ ev_timer *w_, int revents) 4193stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2234{ 4194{
2235 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 4195 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2236 4196
2237 /* we copy this here each the time so that */ 4197 ev_statdata prev = w->attr;
2238 /* prev has the old value when the callback gets invoked */
2239 w->prev = w->attr;
2240 ev_stat_stat (EV_A_ w); 4198 ev_stat_stat (EV_A_ w);
2241 4199
2242 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 4200 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2243 if ( 4201 if (
2244 w->prev.st_dev != w->attr.st_dev 4202 prev.st_dev != w->attr.st_dev
2245 || w->prev.st_ino != w->attr.st_ino 4203 || prev.st_ino != w->attr.st_ino
2246 || w->prev.st_mode != w->attr.st_mode 4204 || prev.st_mode != w->attr.st_mode
2247 || w->prev.st_nlink != w->attr.st_nlink 4205 || prev.st_nlink != w->attr.st_nlink
2248 || w->prev.st_uid != w->attr.st_uid 4206 || prev.st_uid != w->attr.st_uid
2249 || w->prev.st_gid != w->attr.st_gid 4207 || prev.st_gid != w->attr.st_gid
2250 || w->prev.st_rdev != w->attr.st_rdev 4208 || prev.st_rdev != w->attr.st_rdev
2251 || w->prev.st_size != w->attr.st_size 4209 || prev.st_size != w->attr.st_size
2252 || w->prev.st_atime != w->attr.st_atime 4210 || prev.st_atime != w->attr.st_atime
2253 || w->prev.st_mtime != w->attr.st_mtime 4211 || prev.st_mtime != w->attr.st_mtime
2254 || w->prev.st_ctime != w->attr.st_ctime 4212 || prev.st_ctime != w->attr.st_ctime
2255 ) { 4213 ) {
4214 /* we only update w->prev on actual differences */
4215 /* in case we test more often than invoke the callback, */
4216 /* to ensure that prev is always different to attr */
4217 w->prev = prev;
4218
2256 #if EV_USE_INOTIFY 4219 #if EV_USE_INOTIFY
4220 if (fs_fd >= 0)
4221 {
2257 infy_del (EV_A_ w); 4222 infy_del (EV_A_ w);
2258 infy_add (EV_A_ w); 4223 infy_add (EV_A_ w);
2259 ev_stat_stat (EV_A_ w); /* avoid race... */ 4224 ev_stat_stat (EV_A_ w); /* avoid race... */
4225 }
2260 #endif 4226 #endif
2261 4227
2262 ev_feed_event (EV_A_ w, EV_STAT); 4228 ev_feed_event (EV_A_ w, EV_STAT);
2263 } 4229 }
2264} 4230}
2265 4231
2266void 4232void
2267ev_stat_start (EV_P_ ev_stat *w) 4233ev_stat_start (EV_P_ ev_stat *w) EV_THROW
2268{ 4234{
2269 if (expect_false (ev_is_active (w))) 4235 if (expect_false (ev_is_active (w)))
2270 return; 4236 return;
2271 4237
2272 /* since we use memcmp, we need to clear any padding data etc. */
2273 memset (&w->prev, 0, sizeof (ev_statdata));
2274 memset (&w->attr, 0, sizeof (ev_statdata));
2275
2276 ev_stat_stat (EV_A_ w); 4238 ev_stat_stat (EV_A_ w);
2277 4239
4240 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2278 if (w->interval < MIN_STAT_INTERVAL) 4241 w->interval = MIN_STAT_INTERVAL;
2279 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2280 4242
2281 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 4243 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2282 ev_set_priority (&w->timer, ev_priority (w)); 4244 ev_set_priority (&w->timer, ev_priority (w));
2283 4245
2284#if EV_USE_INOTIFY 4246#if EV_USE_INOTIFY
2285 infy_init (EV_A); 4247 infy_init (EV_A);
2286 4248
2287 if (fs_fd >= 0) 4249 if (fs_fd >= 0)
2288 infy_add (EV_A_ w); 4250 infy_add (EV_A_ w);
2289 else 4251 else
2290#endif 4252#endif
4253 {
2291 ev_timer_start (EV_A_ &w->timer); 4254 ev_timer_again (EV_A_ &w->timer);
4255 ev_unref (EV_A);
4256 }
2292 4257
2293 ev_start (EV_A_ (W)w, 1); 4258 ev_start (EV_A_ (W)w, 1);
4259
4260 EV_FREQUENT_CHECK;
2294} 4261}
2295 4262
2296void 4263void
2297ev_stat_stop (EV_P_ ev_stat *w) 4264ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
2298{ 4265{
2299 clear_pending (EV_A_ (W)w); 4266 clear_pending (EV_A_ (W)w);
2300 if (expect_false (!ev_is_active (w))) 4267 if (expect_false (!ev_is_active (w)))
2301 return; 4268 return;
2302 4269
4270 EV_FREQUENT_CHECK;
4271
2303#if EV_USE_INOTIFY 4272#if EV_USE_INOTIFY
2304 infy_del (EV_A_ w); 4273 infy_del (EV_A_ w);
2305#endif 4274#endif
4275
4276 if (ev_is_active (&w->timer))
4277 {
4278 ev_ref (EV_A);
2306 ev_timer_stop (EV_A_ &w->timer); 4279 ev_timer_stop (EV_A_ &w->timer);
4280 }
2307 4281
2308 ev_stop (EV_A_ (W)w); 4282 ev_stop (EV_A_ (W)w);
4283
4284 EV_FREQUENT_CHECK;
2309} 4285}
2310#endif 4286#endif
2311 4287
2312#if EV_IDLE_ENABLE 4288#if EV_IDLE_ENABLE
2313void 4289void
2314ev_idle_start (EV_P_ ev_idle *w) 4290ev_idle_start (EV_P_ ev_idle *w) EV_THROW
2315{ 4291{
2316 if (expect_false (ev_is_active (w))) 4292 if (expect_false (ev_is_active (w)))
2317 return; 4293 return;
2318 4294
2319 pri_adjust (EV_A_ (W)w); 4295 pri_adjust (EV_A_ (W)w);
4296
4297 EV_FREQUENT_CHECK;
2320 4298
2321 { 4299 {
2322 int active = ++idlecnt [ABSPRI (w)]; 4300 int active = ++idlecnt [ABSPRI (w)];
2323 4301
2324 ++idleall; 4302 ++idleall;
2325 ev_start (EV_A_ (W)w, active); 4303 ev_start (EV_A_ (W)w, active);
2326 4304
2327 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 4305 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2328 idles [ABSPRI (w)][active - 1] = w; 4306 idles [ABSPRI (w)][active - 1] = w;
2329 } 4307 }
4308
4309 EV_FREQUENT_CHECK;
2330} 4310}
2331 4311
2332void 4312void
2333ev_idle_stop (EV_P_ ev_idle *w) 4313ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
2334{ 4314{
2335 clear_pending (EV_A_ (W)w); 4315 clear_pending (EV_A_ (W)w);
2336 if (expect_false (!ev_is_active (w))) 4316 if (expect_false (!ev_is_active (w)))
2337 return; 4317 return;
2338 4318
4319 EV_FREQUENT_CHECK;
4320
2339 { 4321 {
2340 int active = ((W)w)->active; 4322 int active = ev_active (w);
2341 4323
2342 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 4324 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2343 ((W)idles [ABSPRI (w)][active - 1])->active = active; 4325 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2344 4326
2345 ev_stop (EV_A_ (W)w); 4327 ev_stop (EV_A_ (W)w);
2346 --idleall; 4328 --idleall;
2347 } 4329 }
2348}
2349#endif
2350 4330
4331 EV_FREQUENT_CHECK;
4332}
4333#endif
4334
4335#if EV_PREPARE_ENABLE
2351void 4336void
2352ev_prepare_start (EV_P_ ev_prepare *w) 4337ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
2353{ 4338{
2354 if (expect_false (ev_is_active (w))) 4339 if (expect_false (ev_is_active (w)))
2355 return; 4340 return;
4341
4342 EV_FREQUENT_CHECK;
2356 4343
2357 ev_start (EV_A_ (W)w, ++preparecnt); 4344 ev_start (EV_A_ (W)w, ++preparecnt);
2358 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 4345 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2359 prepares [preparecnt - 1] = w; 4346 prepares [preparecnt - 1] = w;
4347
4348 EV_FREQUENT_CHECK;
2360} 4349}
2361 4350
2362void 4351void
2363ev_prepare_stop (EV_P_ ev_prepare *w) 4352ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
2364{ 4353{
2365 clear_pending (EV_A_ (W)w); 4354 clear_pending (EV_A_ (W)w);
2366 if (expect_false (!ev_is_active (w))) 4355 if (expect_false (!ev_is_active (w)))
2367 return; 4356 return;
2368 4357
4358 EV_FREQUENT_CHECK;
4359
2369 { 4360 {
2370 int active = ((W)w)->active; 4361 int active = ev_active (w);
4362
2371 prepares [active - 1] = prepares [--preparecnt]; 4363 prepares [active - 1] = prepares [--preparecnt];
2372 ((W)prepares [active - 1])->active = active; 4364 ev_active (prepares [active - 1]) = active;
2373 } 4365 }
2374 4366
2375 ev_stop (EV_A_ (W)w); 4367 ev_stop (EV_A_ (W)w);
2376}
2377 4368
4369 EV_FREQUENT_CHECK;
4370}
4371#endif
4372
4373#if EV_CHECK_ENABLE
2378void 4374void
2379ev_check_start (EV_P_ ev_check *w) 4375ev_check_start (EV_P_ ev_check *w) EV_THROW
2380{ 4376{
2381 if (expect_false (ev_is_active (w))) 4377 if (expect_false (ev_is_active (w)))
2382 return; 4378 return;
4379
4380 EV_FREQUENT_CHECK;
2383 4381
2384 ev_start (EV_A_ (W)w, ++checkcnt); 4382 ev_start (EV_A_ (W)w, ++checkcnt);
2385 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 4383 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2386 checks [checkcnt - 1] = w; 4384 checks [checkcnt - 1] = w;
4385
4386 EV_FREQUENT_CHECK;
2387} 4387}
2388 4388
2389void 4389void
2390ev_check_stop (EV_P_ ev_check *w) 4390ev_check_stop (EV_P_ ev_check *w) EV_THROW
2391{ 4391{
2392 clear_pending (EV_A_ (W)w); 4392 clear_pending (EV_A_ (W)w);
2393 if (expect_false (!ev_is_active (w))) 4393 if (expect_false (!ev_is_active (w)))
2394 return; 4394 return;
2395 4395
4396 EV_FREQUENT_CHECK;
4397
2396 { 4398 {
2397 int active = ((W)w)->active; 4399 int active = ev_active (w);
4400
2398 checks [active - 1] = checks [--checkcnt]; 4401 checks [active - 1] = checks [--checkcnt];
2399 ((W)checks [active - 1])->active = active; 4402 ev_active (checks [active - 1]) = active;
2400 } 4403 }
2401 4404
2402 ev_stop (EV_A_ (W)w); 4405 ev_stop (EV_A_ (W)w);
4406
4407 EV_FREQUENT_CHECK;
2403} 4408}
4409#endif
2404 4410
2405#if EV_EMBED_ENABLE 4411#if EV_EMBED_ENABLE
2406void noinline 4412void noinline
2407ev_embed_sweep (EV_P_ ev_embed *w) 4413ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
2408{ 4414{
2409 ev_loop (w->other, EVLOOP_NONBLOCK); 4415 ev_run (w->other, EVRUN_NOWAIT);
2410} 4416}
2411 4417
2412static void 4418static void
2413embed_io_cb (EV_P_ ev_io *io, int revents) 4419embed_io_cb (EV_P_ ev_io *io, int revents)
2414{ 4420{
2415 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4421 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2416 4422
2417 if (ev_cb (w)) 4423 if (ev_cb (w))
2418 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4424 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2419 else 4425 else
2420 ev_loop (w->other, EVLOOP_NONBLOCK); 4426 ev_run (w->other, EVRUN_NOWAIT);
2421} 4427}
2422 4428
2423static void 4429static void
2424embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4430embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2425{ 4431{
2426 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4432 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2427 4433
2428 { 4434 {
2429 struct ev_loop *loop = w->other; 4435 EV_P = w->other;
2430 4436
2431 while (fdchangecnt) 4437 while (fdchangecnt)
2432 { 4438 {
2433 fd_reify (EV_A); 4439 fd_reify (EV_A);
2434 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4440 ev_run (EV_A_ EVRUN_NOWAIT);
2435 } 4441 }
2436 } 4442 }
4443}
4444
4445static void
4446embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4447{
4448 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4449
4450 ev_embed_stop (EV_A_ w);
4451
4452 {
4453 EV_P = w->other;
4454
4455 ev_loop_fork (EV_A);
4456 ev_run (EV_A_ EVRUN_NOWAIT);
4457 }
4458
4459 ev_embed_start (EV_A_ w);
2437} 4460}
2438 4461
2439#if 0 4462#if 0
2440static void 4463static void
2441embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4464embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2443 ev_idle_stop (EV_A_ idle); 4466 ev_idle_stop (EV_A_ idle);
2444} 4467}
2445#endif 4468#endif
2446 4469
2447void 4470void
2448ev_embed_start (EV_P_ ev_embed *w) 4471ev_embed_start (EV_P_ ev_embed *w) EV_THROW
2449{ 4472{
2450 if (expect_false (ev_is_active (w))) 4473 if (expect_false (ev_is_active (w)))
2451 return; 4474 return;
2452 4475
2453 { 4476 {
2454 struct ev_loop *loop = w->other; 4477 EV_P = w->other;
2455 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4478 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2456 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4479 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2457 } 4480 }
4481
4482 EV_FREQUENT_CHECK;
2458 4483
2459 ev_set_priority (&w->io, ev_priority (w)); 4484 ev_set_priority (&w->io, ev_priority (w));
2460 ev_io_start (EV_A_ &w->io); 4485 ev_io_start (EV_A_ &w->io);
2461 4486
2462 ev_prepare_init (&w->prepare, embed_prepare_cb); 4487 ev_prepare_init (&w->prepare, embed_prepare_cb);
2463 ev_set_priority (&w->prepare, EV_MINPRI); 4488 ev_set_priority (&w->prepare, EV_MINPRI);
2464 ev_prepare_start (EV_A_ &w->prepare); 4489 ev_prepare_start (EV_A_ &w->prepare);
2465 4490
4491 ev_fork_init (&w->fork, embed_fork_cb);
4492 ev_fork_start (EV_A_ &w->fork);
4493
2466 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 4494 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2467 4495
2468 ev_start (EV_A_ (W)w, 1); 4496 ev_start (EV_A_ (W)w, 1);
4497
4498 EV_FREQUENT_CHECK;
2469} 4499}
2470 4500
2471void 4501void
2472ev_embed_stop (EV_P_ ev_embed *w) 4502ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
2473{ 4503{
2474 clear_pending (EV_A_ (W)w); 4504 clear_pending (EV_A_ (W)w);
2475 if (expect_false (!ev_is_active (w))) 4505 if (expect_false (!ev_is_active (w)))
2476 return; 4506 return;
2477 4507
4508 EV_FREQUENT_CHECK;
4509
2478 ev_io_stop (EV_A_ &w->io); 4510 ev_io_stop (EV_A_ &w->io);
2479 ev_prepare_stop (EV_A_ &w->prepare); 4511 ev_prepare_stop (EV_A_ &w->prepare);
4512 ev_fork_stop (EV_A_ &w->fork);
2480 4513
2481 ev_stop (EV_A_ (W)w); 4514 ev_stop (EV_A_ (W)w);
4515
4516 EV_FREQUENT_CHECK;
2482} 4517}
2483#endif 4518#endif
2484 4519
2485#if EV_FORK_ENABLE 4520#if EV_FORK_ENABLE
2486void 4521void
2487ev_fork_start (EV_P_ ev_fork *w) 4522ev_fork_start (EV_P_ ev_fork *w) EV_THROW
2488{ 4523{
2489 if (expect_false (ev_is_active (w))) 4524 if (expect_false (ev_is_active (w)))
2490 return; 4525 return;
4526
4527 EV_FREQUENT_CHECK;
2491 4528
2492 ev_start (EV_A_ (W)w, ++forkcnt); 4529 ev_start (EV_A_ (W)w, ++forkcnt);
2493 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 4530 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2494 forks [forkcnt - 1] = w; 4531 forks [forkcnt - 1] = w;
4532
4533 EV_FREQUENT_CHECK;
2495} 4534}
2496 4535
2497void 4536void
2498ev_fork_stop (EV_P_ ev_fork *w) 4537ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
2499{ 4538{
2500 clear_pending (EV_A_ (W)w); 4539 clear_pending (EV_A_ (W)w);
2501 if (expect_false (!ev_is_active (w))) 4540 if (expect_false (!ev_is_active (w)))
2502 return; 4541 return;
2503 4542
4543 EV_FREQUENT_CHECK;
4544
2504 { 4545 {
2505 int active = ((W)w)->active; 4546 int active = ev_active (w);
4547
2506 forks [active - 1] = forks [--forkcnt]; 4548 forks [active - 1] = forks [--forkcnt];
2507 ((W)forks [active - 1])->active = active; 4549 ev_active (forks [active - 1]) = active;
2508 } 4550 }
2509 4551
2510 ev_stop (EV_A_ (W)w); 4552 ev_stop (EV_A_ (W)w);
4553
4554 EV_FREQUENT_CHECK;
4555}
4556#endif
4557
4558#if EV_CLEANUP_ENABLE
4559void
4560ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4561{
4562 if (expect_false (ev_is_active (w)))
4563 return;
4564
4565 EV_FREQUENT_CHECK;
4566
4567 ev_start (EV_A_ (W)w, ++cleanupcnt);
4568 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4569 cleanups [cleanupcnt - 1] = w;
4570
4571 /* cleanup watchers should never keep a refcount on the loop */
4572 ev_unref (EV_A);
4573 EV_FREQUENT_CHECK;
4574}
4575
4576void
4577ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4578{
4579 clear_pending (EV_A_ (W)w);
4580 if (expect_false (!ev_is_active (w)))
4581 return;
4582
4583 EV_FREQUENT_CHECK;
4584 ev_ref (EV_A);
4585
4586 {
4587 int active = ev_active (w);
4588
4589 cleanups [active - 1] = cleanups [--cleanupcnt];
4590 ev_active (cleanups [active - 1]) = active;
4591 }
4592
4593 ev_stop (EV_A_ (W)w);
4594
4595 EV_FREQUENT_CHECK;
2511} 4596}
2512#endif 4597#endif
2513 4598
2514#if EV_ASYNC_ENABLE 4599#if EV_ASYNC_ENABLE
2515void 4600void
2516ev_async_start (EV_P_ ev_async *w) 4601ev_async_start (EV_P_ ev_async *w) EV_THROW
2517{ 4602{
2518 if (expect_false (ev_is_active (w))) 4603 if (expect_false (ev_is_active (w)))
2519 return; 4604 return;
2520 4605
4606 w->sent = 0;
4607
2521 evpipe_init (EV_A); 4608 evpipe_init (EV_A);
4609
4610 EV_FREQUENT_CHECK;
2522 4611
2523 ev_start (EV_A_ (W)w, ++asynccnt); 4612 ev_start (EV_A_ (W)w, ++asynccnt);
2524 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 4613 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2525 asyncs [asynccnt - 1] = w; 4614 asyncs [asynccnt - 1] = w;
4615
4616 EV_FREQUENT_CHECK;
2526} 4617}
2527 4618
2528void 4619void
2529ev_async_stop (EV_P_ ev_async *w) 4620ev_async_stop (EV_P_ ev_async *w) EV_THROW
2530{ 4621{
2531 clear_pending (EV_A_ (W)w); 4622 clear_pending (EV_A_ (W)w);
2532 if (expect_false (!ev_is_active (w))) 4623 if (expect_false (!ev_is_active (w)))
2533 return; 4624 return;
2534 4625
4626 EV_FREQUENT_CHECK;
4627
2535 { 4628 {
2536 int active = ((W)w)->active; 4629 int active = ev_active (w);
4630
2537 asyncs [active - 1] = asyncs [--asynccnt]; 4631 asyncs [active - 1] = asyncs [--asynccnt];
2538 ((W)asyncs [active - 1])->active = active; 4632 ev_active (asyncs [active - 1]) = active;
2539 } 4633 }
2540 4634
2541 ev_stop (EV_A_ (W)w); 4635 ev_stop (EV_A_ (W)w);
4636
4637 EV_FREQUENT_CHECK;
2542} 4638}
2543 4639
2544void 4640void
2545ev_async_send (EV_P_ ev_async *w) 4641ev_async_send (EV_P_ ev_async *w) EV_THROW
2546{ 4642{
2547 w->sent = 1; 4643 w->sent = 1;
2548 evpipe_write (EV_A_ &gotasync); 4644 evpipe_write (EV_A_ &async_pending);
2549} 4645}
2550#endif 4646#endif
2551 4647
2552/*****************************************************************************/ 4648/*****************************************************************************/
2553 4649
2563once_cb (EV_P_ struct ev_once *once, int revents) 4659once_cb (EV_P_ struct ev_once *once, int revents)
2564{ 4660{
2565 void (*cb)(int revents, void *arg) = once->cb; 4661 void (*cb)(int revents, void *arg) = once->cb;
2566 void *arg = once->arg; 4662 void *arg = once->arg;
2567 4663
2568 ev_io_stop (EV_A_ &once->io); 4664 ev_io_stop (EV_A_ &once->io);
2569 ev_timer_stop (EV_A_ &once->to); 4665 ev_timer_stop (EV_A_ &once->to);
2570 ev_free (once); 4666 ev_free (once);
2571 4667
2572 cb (revents, arg); 4668 cb (revents, arg);
2573} 4669}
2574 4670
2575static void 4671static void
2576once_cb_io (EV_P_ ev_io *w, int revents) 4672once_cb_io (EV_P_ ev_io *w, int revents)
2577{ 4673{
2578 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4674 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4675
4676 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2579} 4677}
2580 4678
2581static void 4679static void
2582once_cb_to (EV_P_ ev_timer *w, int revents) 4680once_cb_to (EV_P_ ev_timer *w, int revents)
2583{ 4681{
2584 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4682 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4683
4684 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2585} 4685}
2586 4686
2587void 4687void
2588ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4688ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
2589{ 4689{
2590 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4690 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2591 4691
2592 if (expect_false (!once)) 4692 if (expect_false (!once))
2593 { 4693 {
2594 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4694 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2595 return; 4695 return;
2596 } 4696 }
2597 4697
2598 once->cb = cb; 4698 once->cb = cb;
2599 once->arg = arg; 4699 once->arg = arg;
2611 ev_timer_set (&once->to, timeout, 0.); 4711 ev_timer_set (&once->to, timeout, 0.);
2612 ev_timer_start (EV_A_ &once->to); 4712 ev_timer_start (EV_A_ &once->to);
2613 } 4713 }
2614} 4714}
2615 4715
4716/*****************************************************************************/
4717
4718#if EV_WALK_ENABLE
4719void ecb_cold
4720ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4721{
4722 int i, j;
4723 ev_watcher_list *wl, *wn;
4724
4725 if (types & (EV_IO | EV_EMBED))
4726 for (i = 0; i < anfdmax; ++i)
4727 for (wl = anfds [i].head; wl; )
4728 {
4729 wn = wl->next;
4730
4731#if EV_EMBED_ENABLE
4732 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4733 {
4734 if (types & EV_EMBED)
4735 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4736 }
4737 else
4738#endif
4739#if EV_USE_INOTIFY
4740 if (ev_cb ((ev_io *)wl) == infy_cb)
4741 ;
4742 else
4743#endif
4744 if ((ev_io *)wl != &pipe_w)
4745 if (types & EV_IO)
4746 cb (EV_A_ EV_IO, wl);
4747
4748 wl = wn;
4749 }
4750
4751 if (types & (EV_TIMER | EV_STAT))
4752 for (i = timercnt + HEAP0; i-- > HEAP0; )
4753#if EV_STAT_ENABLE
4754 /*TODO: timer is not always active*/
4755 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4756 {
4757 if (types & EV_STAT)
4758 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4759 }
4760 else
4761#endif
4762 if (types & EV_TIMER)
4763 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4764
4765#if EV_PERIODIC_ENABLE
4766 if (types & EV_PERIODIC)
4767 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4768 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4769#endif
4770
4771#if EV_IDLE_ENABLE
4772 if (types & EV_IDLE)
4773 for (j = NUMPRI; j--; )
4774 for (i = idlecnt [j]; i--; )
4775 cb (EV_A_ EV_IDLE, idles [j][i]);
4776#endif
4777
4778#if EV_FORK_ENABLE
4779 if (types & EV_FORK)
4780 for (i = forkcnt; i--; )
4781 if (ev_cb (forks [i]) != embed_fork_cb)
4782 cb (EV_A_ EV_FORK, forks [i]);
4783#endif
4784
4785#if EV_ASYNC_ENABLE
4786 if (types & EV_ASYNC)
4787 for (i = asynccnt; i--; )
4788 cb (EV_A_ EV_ASYNC, asyncs [i]);
4789#endif
4790
4791#if EV_PREPARE_ENABLE
4792 if (types & EV_PREPARE)
4793 for (i = preparecnt; i--; )
4794# if EV_EMBED_ENABLE
4795 if (ev_cb (prepares [i]) != embed_prepare_cb)
4796# endif
4797 cb (EV_A_ EV_PREPARE, prepares [i]);
4798#endif
4799
4800#if EV_CHECK_ENABLE
4801 if (types & EV_CHECK)
4802 for (i = checkcnt; i--; )
4803 cb (EV_A_ EV_CHECK, checks [i]);
4804#endif
4805
4806#if EV_SIGNAL_ENABLE
4807 if (types & EV_SIGNAL)
4808 for (i = 0; i < EV_NSIG - 1; ++i)
4809 for (wl = signals [i].head; wl; )
4810 {
4811 wn = wl->next;
4812 cb (EV_A_ EV_SIGNAL, wl);
4813 wl = wn;
4814 }
4815#endif
4816
4817#if EV_CHILD_ENABLE
4818 if (types & EV_CHILD)
4819 for (i = (EV_PID_HASHSIZE); i--; )
4820 for (wl = childs [i]; wl; )
4821 {
4822 wn = wl->next;
4823 cb (EV_A_ EV_CHILD, wl);
4824 wl = wn;
4825 }
4826#endif
4827/* EV_STAT 0x00001000 /* stat data changed */
4828/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4829}
4830#endif
4831
2616#if EV_MULTIPLICITY 4832#if EV_MULTIPLICITY
2617 #include "ev_wrap.h" 4833 #include "ev_wrap.h"
2618#endif 4834#endif
2619 4835
2620#ifdef __cplusplus
2621}
2622#endif
2623

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines