ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.46 by root, Sat Nov 3 09:20:12 2007 UTC vs.
Revision 1.55 by root, Sun Nov 4 00:39:24 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31#if EV_USE_CONFIG_H 31#ifndef EV_STANDALONE
32# include "config.h" 32# include "config.h"
33#endif 33#endif
34 34
35#include <math.h> 35#include <math.h>
36#include <stdlib.h> 36#include <stdlib.h>
58 58
59#ifndef EV_USE_SELECT 59#ifndef EV_USE_SELECT
60# define EV_USE_SELECT 1 60# define EV_USE_SELECT 1
61#endif 61#endif
62 62
63#ifndef EV_USE_POLL 63#ifndef EV_USEV_POLL
64# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 64# define EV_USEV_POLL 0 /* poll is usually slower than select, and not as well tested */
65#endif 65#endif
66 66
67#ifndef EV_USE_EPOLL 67#ifndef EV_USE_EPOLL
68# define EV_USE_EPOLL 0 68# define EV_USE_EPOLL 0
69#endif 69#endif
113 113
114typedef struct ev_watcher *W; 114typedef struct ev_watcher *W;
115typedef struct ev_watcher_list *WL; 115typedef struct ev_watcher_list *WL;
116typedef struct ev_watcher_time *WT; 116typedef struct ev_watcher_time *WT;
117 117
118static ev_tstamp now_floor, now, diff; /* monotonic clock */ 118static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
119ev_tstamp ev_now;
120int ev_method;
121
122static int have_monotonic; /* runtime */
123
124static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */
125static void (*method_modify)(int fd, int oev, int nev);
126static void (*method_poll)(ev_tstamp timeout);
127 119
128/*****************************************************************************/ 120/*****************************************************************************/
129 121
130ev_tstamp 122typedef struct
123{
124 struct ev_watcher_list *head;
125 unsigned char events;
126 unsigned char reify;
127} ANFD;
128
129typedef struct
130{
131 W w;
132 int events;
133} ANPENDING;
134
135#if EV_MULTIPLICITY
136
137struct ev_loop
138{
139# define VAR(name,decl) decl;
140# include "ev_vars.h"
141};
142# undef VAR
143# include "ev_wrap.h"
144
145#else
146
147# define VAR(name,decl) static decl;
148# include "ev_vars.h"
149# undef VAR
150
151#endif
152
153/*****************************************************************************/
154
155inline ev_tstamp
131ev_time (void) 156ev_time (void)
132{ 157{
133#if EV_USE_REALTIME 158#if EV_USE_REALTIME
134 struct timespec ts; 159 struct timespec ts;
135 clock_gettime (CLOCK_REALTIME, &ts); 160 clock_gettime (CLOCK_REALTIME, &ts);
139 gettimeofday (&tv, 0); 164 gettimeofday (&tv, 0);
140 return tv.tv_sec + tv.tv_usec * 1e-6; 165 return tv.tv_sec + tv.tv_usec * 1e-6;
141#endif 166#endif
142} 167}
143 168
144static ev_tstamp 169inline ev_tstamp
145get_clock (void) 170get_clock (void)
146{ 171{
147#if EV_USE_MONOTONIC 172#if EV_USE_MONOTONIC
148 if (expect_true (have_monotonic)) 173 if (expect_true (have_monotonic))
149 { 174 {
152 return ts.tv_sec + ts.tv_nsec * 1e-9; 177 return ts.tv_sec + ts.tv_nsec * 1e-9;
153 } 178 }
154#endif 179#endif
155 180
156 return ev_time (); 181 return ev_time ();
182}
183
184ev_tstamp
185ev_now (EV_P)
186{
187 return rt_now;
157} 188}
158 189
159#define array_roundsize(base,n) ((n) | 4 & ~3) 190#define array_roundsize(base,n) ((n) | 4 & ~3)
160 191
161#define array_needsize(base,cur,cnt,init) \ 192#define array_needsize(base,cur,cnt,init) \
173 cur = newcnt; \ 204 cur = newcnt; \
174 } 205 }
175 206
176/*****************************************************************************/ 207/*****************************************************************************/
177 208
178typedef struct
179{
180 struct ev_io *head;
181 unsigned char events;
182 unsigned char reify;
183} ANFD;
184
185static ANFD *anfds;
186static int anfdmax;
187
188static void 209static void
189anfds_init (ANFD *base, int count) 210anfds_init (ANFD *base, int count)
190{ 211{
191 while (count--) 212 while (count--)
192 { 213 {
196 217
197 ++base; 218 ++base;
198 } 219 }
199} 220}
200 221
201typedef struct
202{
203 W w;
204 int events;
205} ANPENDING;
206
207static ANPENDING *pendings [NUMPRI];
208static int pendingmax [NUMPRI], pendingcnt [NUMPRI];
209
210static void 222static void
211event (W w, int events) 223event (EV_P_ W w, int events)
212{ 224{
213 if (w->pending) 225 if (w->pending)
214 { 226 {
215 pendings [ABSPRI (w)][w->pending - 1].events |= events; 227 pendings [ABSPRI (w)][w->pending - 1].events |= events;
216 return; 228 return;
221 pendings [ABSPRI (w)][w->pending - 1].w = w; 233 pendings [ABSPRI (w)][w->pending - 1].w = w;
222 pendings [ABSPRI (w)][w->pending - 1].events = events; 234 pendings [ABSPRI (w)][w->pending - 1].events = events;
223} 235}
224 236
225static void 237static void
226queue_events (W *events, int eventcnt, int type) 238queue_events (EV_P_ W *events, int eventcnt, int type)
227{ 239{
228 int i; 240 int i;
229 241
230 for (i = 0; i < eventcnt; ++i) 242 for (i = 0; i < eventcnt; ++i)
231 event (events [i], type); 243 event (EV_A_ events [i], type);
232} 244}
233 245
234static void 246static void
235fd_event (int fd, int events) 247fd_event (EV_P_ int fd, int events)
236{ 248{
237 ANFD *anfd = anfds + fd; 249 ANFD *anfd = anfds + fd;
238 struct ev_io *w; 250 struct ev_io *w;
239 251
240 for (w = anfd->head; w; w = w->next) 252 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
241 { 253 {
242 int ev = w->events & events; 254 int ev = w->events & events;
243 255
244 if (ev) 256 if (ev)
245 event ((W)w, ev); 257 event (EV_A_ (W)w, ev);
246 } 258 }
247} 259}
248 260
249/*****************************************************************************/ 261/*****************************************************************************/
250 262
251static int *fdchanges;
252static int fdchangemax, fdchangecnt;
253
254static void 263static void
255fd_reify (void) 264fd_reify (EV_P)
256{ 265{
257 int i; 266 int i;
258 267
259 for (i = 0; i < fdchangecnt; ++i) 268 for (i = 0; i < fdchangecnt; ++i)
260 { 269 {
262 ANFD *anfd = anfds + fd; 271 ANFD *anfd = anfds + fd;
263 struct ev_io *w; 272 struct ev_io *w;
264 273
265 int events = 0; 274 int events = 0;
266 275
267 for (w = anfd->head; w; w = w->next) 276 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
268 events |= w->events; 277 events |= w->events;
269 278
270 anfd->reify = 0; 279 anfd->reify = 0;
271 280
272 if (anfd->events != events) 281 if (anfd->events != events)
273 { 282 {
274 method_modify (fd, anfd->events, events); 283 method_modify (EV_A_ fd, anfd->events, events);
275 anfd->events = events; 284 anfd->events = events;
276 } 285 }
277 } 286 }
278 287
279 fdchangecnt = 0; 288 fdchangecnt = 0;
280} 289}
281 290
282static void 291static void
283fd_change (int fd) 292fd_change (EV_P_ int fd)
284{ 293{
285 if (anfds [fd].reify || fdchangecnt < 0) 294 if (anfds [fd].reify || fdchangecnt < 0)
286 return; 295 return;
287 296
288 anfds [fd].reify = 1; 297 anfds [fd].reify = 1;
291 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 300 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
292 fdchanges [fdchangecnt - 1] = fd; 301 fdchanges [fdchangecnt - 1] = fd;
293} 302}
294 303
295static void 304static void
296fd_kill (int fd) 305fd_kill (EV_P_ int fd)
297{ 306{
298 struct ev_io *w; 307 struct ev_io *w;
299 308
300 printf ("killing fd %d\n", fd);//D
301 while ((w = anfds [fd].head)) 309 while ((w = (struct ev_io *)anfds [fd].head))
302 { 310 {
303 ev_io_stop (w); 311 ev_io_stop (EV_A_ w);
304 event ((W)w, EV_ERROR | EV_READ | EV_WRITE); 312 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
305 } 313 }
306} 314}
307 315
308/* called on EBADF to verify fds */ 316/* called on EBADF to verify fds */
309static void 317static void
310fd_ebadf (void) 318fd_ebadf (EV_P)
311{ 319{
312 int fd; 320 int fd;
313 321
314 for (fd = 0; fd < anfdmax; ++fd) 322 for (fd = 0; fd < anfdmax; ++fd)
315 if (anfds [fd].events) 323 if (anfds [fd].events)
316 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 324 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
317 fd_kill (fd); 325 fd_kill (EV_A_ fd);
318} 326}
319 327
320/* called on ENOMEM in select/poll to kill some fds and retry */ 328/* called on ENOMEM in select/poll to kill some fds and retry */
321static void 329static void
322fd_enomem (void) 330fd_enomem (EV_P)
323{ 331{
324 int fd = anfdmax; 332 int fd = anfdmax;
325 333
326 while (fd--) 334 while (fd--)
327 if (anfds [fd].events) 335 if (anfds [fd].events)
328 { 336 {
329 close (fd); 337 close (fd);
330 fd_kill (fd); 338 fd_kill (EV_A_ fd);
331 return; 339 return;
332 } 340 }
333} 341}
334 342
335/*****************************************************************************/ 343/*****************************************************************************/
336 344
337static struct ev_timer **timers;
338static int timermax, timercnt;
339
340static struct ev_periodic **periodics;
341static int periodicmax, periodiccnt;
342
343static void 345static void
344upheap (WT *timers, int k) 346upheap (WT *heap, int k)
345{ 347{
346 WT w = timers [k]; 348 WT w = heap [k];
347 349
348 while (k && timers [k >> 1]->at > w->at) 350 while (k && heap [k >> 1]->at > w->at)
349 { 351 {
350 timers [k] = timers [k >> 1]; 352 heap [k] = heap [k >> 1];
351 timers [k]->active = k + 1; 353 heap [k]->active = k + 1;
352 k >>= 1; 354 k >>= 1;
353 } 355 }
354 356
355 timers [k] = w; 357 heap [k] = w;
356 timers [k]->active = k + 1; 358 heap [k]->active = k + 1;
357 359
358} 360}
359 361
360static void 362static void
361downheap (WT *timers, int N, int k) 363downheap (WT *heap, int N, int k)
362{ 364{
363 WT w = timers [k]; 365 WT w = heap [k];
364 366
365 while (k < (N >> 1)) 367 while (k < (N >> 1))
366 { 368 {
367 int j = k << 1; 369 int j = k << 1;
368 370
369 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 371 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
370 ++j; 372 ++j;
371 373
372 if (w->at <= timers [j]->at) 374 if (w->at <= heap [j]->at)
373 break; 375 break;
374 376
375 timers [k] = timers [j]; 377 heap [k] = heap [j];
376 timers [k]->active = k + 1; 378 heap [k]->active = k + 1;
377 k = j; 379 k = j;
378 } 380 }
379 381
380 timers [k] = w; 382 heap [k] = w;
381 timers [k]->active = k + 1; 383 heap [k]->active = k + 1;
382} 384}
383 385
384/*****************************************************************************/ 386/*****************************************************************************/
385 387
386typedef struct 388typedef struct
387{ 389{
388 struct ev_signal *head; 390 struct ev_watcher_list *head;
389 sig_atomic_t volatile gotsig; 391 sig_atomic_t volatile gotsig;
390} ANSIG; 392} ANSIG;
391 393
392static ANSIG *signals; 394static ANSIG *signals;
393static int signalmax; 395static int signalmax;
394 396
395static int sigpipe [2]; 397static int sigpipe [2];
396static sig_atomic_t volatile gotsig; 398static sig_atomic_t volatile gotsig;
397static struct ev_io sigev;
398 399
399static void 400static void
400signals_init (ANSIG *base, int count) 401signals_init (ANSIG *base, int count)
401{ 402{
402 while (count--) 403 while (count--)
413{ 414{
414 signals [signum - 1].gotsig = 1; 415 signals [signum - 1].gotsig = 1;
415 416
416 if (!gotsig) 417 if (!gotsig)
417 { 418 {
419 int old_errno = errno;
418 gotsig = 1; 420 gotsig = 1;
419 write (sigpipe [1], &signum, 1); 421 write (sigpipe [1], &signum, 1);
422 errno = old_errno;
420 } 423 }
421} 424}
422 425
423static void 426static void
424sigcb (struct ev_io *iow, int revents) 427sigcb (EV_P_ struct ev_io *iow, int revents)
425{ 428{
426 struct ev_signal *w; 429 struct ev_watcher_list *w;
427 int signum; 430 int signum;
428 431
429 read (sigpipe [0], &revents, 1); 432 read (sigpipe [0], &revents, 1);
430 gotsig = 0; 433 gotsig = 0;
431 434
433 if (signals [signum].gotsig) 436 if (signals [signum].gotsig)
434 { 437 {
435 signals [signum].gotsig = 0; 438 signals [signum].gotsig = 0;
436 439
437 for (w = signals [signum].head; w; w = w->next) 440 for (w = signals [signum].head; w; w = w->next)
438 event ((W)w, EV_SIGNAL); 441 event (EV_A_ (W)w, EV_SIGNAL);
439 } 442 }
440} 443}
441 444
442static void 445static void
443siginit (void) 446siginit (EV_P)
444{ 447{
445#ifndef WIN32 448#ifndef WIN32
446 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 449 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
447 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 450 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
448 451
450 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 453 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
451 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 454 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
452#endif 455#endif
453 456
454 ev_io_set (&sigev, sigpipe [0], EV_READ); 457 ev_io_set (&sigev, sigpipe [0], EV_READ);
455 ev_io_start (&sigev); 458 ev_io_start (EV_A_ &sigev);
459 ev_unref (EV_A); /* child watcher should not keep loop alive */
456} 460}
457 461
458/*****************************************************************************/ 462/*****************************************************************************/
459
460static struct ev_idle **idles;
461static int idlemax, idlecnt;
462
463static struct ev_prepare **prepares;
464static int preparemax, preparecnt;
465
466static struct ev_check **checks;
467static int checkmax, checkcnt;
468
469/*****************************************************************************/
470
471static struct ev_child *childs [PID_HASHSIZE];
472static struct ev_signal childev;
473 463
474#ifndef WIN32 464#ifndef WIN32
475 465
476#ifndef WCONTINUED 466#ifndef WCONTINUED
477# define WCONTINUED 0 467# define WCONTINUED 0
478#endif 468#endif
479 469
480static void 470static void
481childcb (struct ev_signal *sw, int revents) 471child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
482{ 472{
483 struct ev_child *w; 473 struct ev_child *w;
474
475 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
476 if (w->pid == pid || !w->pid)
477 {
478 w->priority = sw->priority; /* need to do it *now* */
479 w->rpid = pid;
480 w->rstatus = status;
481 event (EV_A_ (W)w, EV_CHILD);
482 }
483}
484
485static void
486childcb (EV_P_ struct ev_signal *sw, int revents)
487{
484 int pid, status; 488 int pid, status;
485 489
486 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 490 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
487 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 491 {
488 if (w->pid == pid || !w->pid) 492 /* make sure we are called again until all childs have been reaped */
489 { 493 event (EV_A_ (W)sw, EV_SIGNAL);
490 w->rpid = pid; 494
491 w->rstatus = status; 495 child_reap (EV_A_ sw, pid, pid, status);
492 event ((W)w, EV_CHILD); 496 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
493 } 497 }
494} 498}
495 499
496#endif 500#endif
497 501
498/*****************************************************************************/ 502/*****************************************************************************/
501# include "ev_kqueue.c" 505# include "ev_kqueue.c"
502#endif 506#endif
503#if EV_USE_EPOLL 507#if EV_USE_EPOLL
504# include "ev_epoll.c" 508# include "ev_epoll.c"
505#endif 509#endif
506#if EV_USE_POLL 510#if EV_USEV_POLL
507# include "ev_poll.c" 511# include "ev_poll.c"
508#endif 512#endif
509#if EV_USE_SELECT 513#if EV_USE_SELECT
510# include "ev_select.c" 514# include "ev_select.c"
511#endif 515#endif
520ev_version_minor (void) 524ev_version_minor (void)
521{ 525{
522 return EV_VERSION_MINOR; 526 return EV_VERSION_MINOR;
523} 527}
524 528
525/* return true if we are running with elevated privileges and ignore env variables */ 529/* return true if we are running with elevated privileges and should ignore env variables */
526static int 530static int
527enable_secure () 531enable_secure (void)
528{ 532{
533#ifdef WIN32
534 return 0;
535#else
529 return getuid () != geteuid () 536 return getuid () != geteuid ()
530 || getgid () != getegid (); 537 || getgid () != getegid ();
538#endif
531} 539}
532 540
533int ev_init (int methods) 541int
542ev_method (EV_P)
534{ 543{
544 return method;
545}
546
547inline int
548loop_init (EV_P_ int methods)
549{
535 if (!ev_method) 550 if (!method)
536 { 551 {
537#if EV_USE_MONOTONIC 552#if EV_USE_MONOTONIC
538 { 553 {
539 struct timespec ts; 554 struct timespec ts;
540 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 555 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
541 have_monotonic = 1; 556 have_monotonic = 1;
542 } 557 }
543#endif 558#endif
544 559
545 ev_now = ev_time (); 560 rt_now = ev_time ();
546 now = get_clock (); 561 mn_now = get_clock ();
547 now_floor = now; 562 now_floor = mn_now;
548 diff = ev_now - now; 563 rtmn_diff = rt_now - mn_now;
549 564
550 if (pipe (sigpipe)) 565 if (pipe (sigpipe))
551 return 0; 566 return 0;
552 567
553 if (methods == EVMETHOD_AUTO) 568 if (methods == EVMETHOD_AUTO)
554 if (!enable_secure () && getenv ("LIBEV_METHODS")) 569 if (!enable_secure () && getenv ("LIBmethodS"))
555 methods = atoi (getenv ("LIBEV_METHODS")); 570 methods = atoi (getenv ("LIBmethodS"));
556 else 571 else
557 methods = EVMETHOD_ANY; 572 methods = EVMETHOD_ANY;
558 573
559 ev_method = 0; 574 method = 0;
560#if EV_USE_KQUEUE 575#if EV_USE_KQUEUE
561 if (!ev_method && (methods & EVMETHOD_KQUEUE)) kqueue_init (methods); 576 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
562#endif 577#endif
563#if EV_USE_EPOLL 578#if EV_USE_EPOLL
564 if (!ev_method && (methods & EVMETHOD_EPOLL )) epoll_init (methods); 579 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
565#endif 580#endif
566#if EV_USE_POLL 581#if EV_USEV_POLL
567 if (!ev_method && (methods & EVMETHOD_POLL )) poll_init (methods); 582 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
568#endif 583#endif
569#if EV_USE_SELECT 584#if EV_USE_SELECT
570 if (!ev_method && (methods & EVMETHOD_SELECT)) select_init (methods); 585 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
571#endif 586#endif
572 587
573 if (ev_method) 588 if (method)
574 { 589 {
575 ev_watcher_init (&sigev, sigcb); 590 ev_watcher_init (&sigev, sigcb);
591 ev_set_priority (&sigev, EV_MAXPRI);
576 siginit (); 592 siginit (EV_A);
577 593
578#ifndef WIN32 594#ifndef WIN32
579 ev_signal_init (&childev, childcb, SIGCHLD); 595 ev_signal_init (&childev, childcb, SIGCHLD);
596 ev_set_priority (&childev, EV_MAXPRI);
580 ev_signal_start (&childev); 597 ev_signal_start (EV_A_ &childev);
598 ev_unref (EV_A); /* child watcher should not keep loop alive */
581#endif 599#endif
582 } 600 }
583 } 601 }
584 602
585 return ev_method; 603 return method;
586} 604}
605
606#if EV_MULTIPLICITY
607
608struct ev_loop *
609ev_loop_new (int methods)
610{
611 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
612
613 if (loop_init (EV_A_ methods))
614 return loop;
615
616 ev_loop_delete (loop);
617
618 return 0;
619}
620
621void
622ev_loop_delete (EV_P)
623{
624 /*TODO*/
625 free (loop);
626}
627
628#else
629
630int
631ev_init (int methods)
632{
633 return loop_init (methods);
634}
635
636#endif
587 637
588/*****************************************************************************/ 638/*****************************************************************************/
589 639
590void 640void
591ev_fork_prepare (void) 641ev_fork_prepare (void)
600} 650}
601 651
602void 652void
603ev_fork_child (void) 653ev_fork_child (void)
604{ 654{
655 /*TODO*/
656#if !EV_MULTIPLICITY
605#if EV_USE_EPOLL 657#if EV_USE_EPOLL
606 if (ev_method == EVMETHOD_EPOLL) 658 if (method == EVMETHOD_EPOLL)
607 epoll_postfork_child (); 659 epoll_postfork_child (EV_A);
608#endif 660#endif
609 661
610 ev_io_stop (&sigev); 662 ev_io_stop (EV_A_ &sigev);
611 close (sigpipe [0]); 663 close (sigpipe [0]);
612 close (sigpipe [1]); 664 close (sigpipe [1]);
613 pipe (sigpipe); 665 pipe (sigpipe);
614 siginit (); 666 siginit (EV_A);
667#endif
615} 668}
616 669
617/*****************************************************************************/ 670/*****************************************************************************/
618 671
619static void 672static void
620call_pending (void) 673call_pending (EV_P)
621{ 674{
622 int pri; 675 int pri;
623 676
624 for (pri = NUMPRI; pri--; ) 677 for (pri = NUMPRI; pri--; )
625 while (pendingcnt [pri]) 678 while (pendingcnt [pri])
627 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 680 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
628 681
629 if (p->w) 682 if (p->w)
630 { 683 {
631 p->w->pending = 0; 684 p->w->pending = 0;
632 p->w->cb (p->w, p->events); 685 p->w->cb (EV_A_ p->w, p->events);
633 } 686 }
634 } 687 }
635} 688}
636 689
637static void 690static void
638timers_reify (void) 691timers_reify (EV_P)
639{ 692{
640 while (timercnt && timers [0]->at <= now) 693 while (timercnt && timers [0]->at <= mn_now)
641 { 694 {
642 struct ev_timer *w = timers [0]; 695 struct ev_timer *w = timers [0];
643 696
644 /* first reschedule or stop timer */ 697 /* first reschedule or stop timer */
645 if (w->repeat) 698 if (w->repeat)
646 { 699 {
647 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 700 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
648 w->at = now + w->repeat; 701 w->at = mn_now + w->repeat;
649 downheap ((WT *)timers, timercnt, 0); 702 downheap ((WT *)timers, timercnt, 0);
650 } 703 }
651 else 704 else
652 ev_timer_stop (w); /* nonrepeating: stop timer */ 705 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
653 706
654 event ((W)w, EV_TIMEOUT); 707 event (EV_A_ (W)w, EV_TIMEOUT);
655 } 708 }
656} 709}
657 710
658static void 711static void
659periodics_reify (void) 712periodics_reify (EV_P)
660{ 713{
661 while (periodiccnt && periodics [0]->at <= ev_now) 714 while (periodiccnt && periodics [0]->at <= rt_now)
662 { 715 {
663 struct ev_periodic *w = periodics [0]; 716 struct ev_periodic *w = periodics [0];
664 717
665 /* first reschedule or stop timer */ 718 /* first reschedule or stop timer */
666 if (w->interval) 719 if (w->interval)
667 { 720 {
668 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 721 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval;
669 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now)); 722 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now));
670 downheap ((WT *)periodics, periodiccnt, 0); 723 downheap ((WT *)periodics, periodiccnt, 0);
671 } 724 }
672 else 725 else
673 ev_periodic_stop (w); /* nonrepeating: stop timer */ 726 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
674 727
675 event ((W)w, EV_PERIODIC); 728 event (EV_A_ (W)w, EV_PERIODIC);
676 } 729 }
677} 730}
678 731
679static void 732static void
680periodics_reschedule (ev_tstamp diff) 733periodics_reschedule (EV_P)
681{ 734{
682 int i; 735 int i;
683 736
684 /* adjust periodics after time jump */ 737 /* adjust periodics after time jump */
685 for (i = 0; i < periodiccnt; ++i) 738 for (i = 0; i < periodiccnt; ++i)
686 { 739 {
687 struct ev_periodic *w = periodics [i]; 740 struct ev_periodic *w = periodics [i];
688 741
689 if (w->interval) 742 if (w->interval)
690 { 743 {
691 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 744 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval;
692 745
693 if (fabs (diff) >= 1e-4) 746 if (fabs (diff) >= 1e-4)
694 { 747 {
695 ev_periodic_stop (w); 748 ev_periodic_stop (EV_A_ w);
696 ev_periodic_start (w); 749 ev_periodic_start (EV_A_ w);
697 750
698 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 751 i = 0; /* restart loop, inefficient, but time jumps should be rare */
699 } 752 }
700 } 753 }
701 } 754 }
702} 755}
703 756
704static int 757inline int
705time_update_monotonic (void) 758time_update_monotonic (EV_P)
706{ 759{
707 now = get_clock (); 760 mn_now = get_clock ();
708 761
709 if (expect_true (now - now_floor < MIN_TIMEJUMP * .5)) 762 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
710 { 763 {
711 ev_now = now + diff; 764 rt_now = rtmn_diff + mn_now;
712 return 0; 765 return 0;
713 } 766 }
714 else 767 else
715 { 768 {
716 now_floor = now; 769 now_floor = mn_now;
717 ev_now = ev_time (); 770 rt_now = ev_time ();
718 return 1; 771 return 1;
719 } 772 }
720} 773}
721 774
722static void 775static void
723time_update (void) 776time_update (EV_P)
724{ 777{
725 int i; 778 int i;
726 779
727#if EV_USE_MONOTONIC 780#if EV_USE_MONOTONIC
728 if (expect_true (have_monotonic)) 781 if (expect_true (have_monotonic))
729 { 782 {
730 if (time_update_monotonic ()) 783 if (time_update_monotonic (EV_A))
731 { 784 {
732 ev_tstamp odiff = diff; 785 ev_tstamp odiff = rtmn_diff;
733 786
734 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 787 for (i = 4; --i; ) /* loop a few times, before making important decisions */
735 { 788 {
736 diff = ev_now - now; 789 rtmn_diff = rt_now - mn_now;
737 790
738 if (fabs (odiff - diff) < MIN_TIMEJUMP) 791 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
739 return; /* all is well */ 792 return; /* all is well */
740 793
741 ev_now = ev_time (); 794 rt_now = ev_time ();
742 now = get_clock (); 795 mn_now = get_clock ();
743 now_floor = now; 796 now_floor = mn_now;
744 } 797 }
745 798
746 periodics_reschedule (diff - odiff); 799 periodics_reschedule (EV_A);
747 /* no timer adjustment, as the monotonic clock doesn't jump */ 800 /* no timer adjustment, as the monotonic clock doesn't jump */
801 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
748 } 802 }
749 } 803 }
750 else 804 else
751#endif 805#endif
752 { 806 {
753 ev_now = ev_time (); 807 rt_now = ev_time ();
754 808
755 if (expect_false (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 809 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
756 { 810 {
757 periodics_reschedule (ev_now - now); 811 periodics_reschedule (EV_A);
758 812
759 /* adjust timers. this is easy, as the offset is the same for all */ 813 /* adjust timers. this is easy, as the offset is the same for all */
760 for (i = 0; i < timercnt; ++i) 814 for (i = 0; i < timercnt; ++i)
761 timers [i]->at += diff; 815 timers [i]->at += rt_now - mn_now;
762 } 816 }
763 817
764 now = ev_now; 818 mn_now = rt_now;
765 } 819 }
766} 820}
767 821
768int ev_loop_done; 822void
823ev_ref (EV_P)
824{
825 ++activecnt;
826}
769 827
828void
829ev_unref (EV_P)
830{
831 --activecnt;
832}
833
834static int loop_done;
835
836void
770void ev_loop (int flags) 837ev_loop (EV_P_ int flags)
771{ 838{
772 double block; 839 double block;
773 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 840 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
774 841
775 do 842 do
776 { 843 {
777 /* queue check watchers (and execute them) */ 844 /* queue check watchers (and execute them) */
778 if (expect_false (preparecnt)) 845 if (expect_false (preparecnt))
779 { 846 {
780 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 847 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
781 call_pending (); 848 call_pending (EV_A);
782 } 849 }
783 850
784 /* update fd-related kernel structures */ 851 /* update fd-related kernel structures */
785 fd_reify (); 852 fd_reify (EV_A);
786 853
787 /* calculate blocking time */ 854 /* calculate blocking time */
788 855
789 /* we only need this for !monotonic clockor timers, but as we basically 856 /* we only need this for !monotonic clockor timers, but as we basically
790 always have timers, we just calculate it always */ 857 always have timers, we just calculate it always */
791#if EV_USE_MONOTONIC 858#if EV_USE_MONOTONIC
792 if (expect_true (have_monotonic)) 859 if (expect_true (have_monotonic))
793 time_update_monotonic (); 860 time_update_monotonic (EV_A);
794 else 861 else
795#endif 862#endif
796 { 863 {
797 ev_now = ev_time (); 864 rt_now = ev_time ();
798 now = ev_now; 865 mn_now = rt_now;
799 } 866 }
800 867
801 if (flags & EVLOOP_NONBLOCK || idlecnt) 868 if (flags & EVLOOP_NONBLOCK || idlecnt)
802 block = 0.; 869 block = 0.;
803 else 870 else
804 { 871 {
805 block = MAX_BLOCKTIME; 872 block = MAX_BLOCKTIME;
806 873
807 if (timercnt) 874 if (timercnt)
808 { 875 {
809 ev_tstamp to = timers [0]->at - now + method_fudge; 876 ev_tstamp to = timers [0]->at - mn_now + method_fudge;
810 if (block > to) block = to; 877 if (block > to) block = to;
811 } 878 }
812 879
813 if (periodiccnt) 880 if (periodiccnt)
814 { 881 {
815 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 882 ev_tstamp to = periodics [0]->at - rt_now + method_fudge;
816 if (block > to) block = to; 883 if (block > to) block = to;
817 } 884 }
818 885
819 if (block < 0.) block = 0.; 886 if (block < 0.) block = 0.;
820 } 887 }
821 888
822 method_poll (block); 889 method_poll (EV_A_ block);
823 890
824 /* update ev_now, do magic */ 891 /* update rt_now, do magic */
825 time_update (); 892 time_update (EV_A);
826 893
827 /* queue pending timers and reschedule them */ 894 /* queue pending timers and reschedule them */
828 timers_reify (); /* relative timers called last */ 895 timers_reify (EV_A); /* relative timers called last */
829 periodics_reify (); /* absolute timers called first */ 896 periodics_reify (EV_A); /* absolute timers called first */
830 897
831 /* queue idle watchers unless io or timers are pending */ 898 /* queue idle watchers unless io or timers are pending */
832 if (!pendingcnt) 899 if (!pendingcnt)
833 queue_events ((W *)idles, idlecnt, EV_IDLE); 900 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
834 901
835 /* queue check watchers, to be executed first */ 902 /* queue check watchers, to be executed first */
836 if (checkcnt) 903 if (checkcnt)
837 queue_events ((W *)checks, checkcnt, EV_CHECK); 904 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
838 905
839 call_pending (); 906 call_pending (EV_A);
840 } 907 }
841 while (!ev_loop_done); 908 while (activecnt && !loop_done);
842 909
843 if (ev_loop_done != 2) 910 if (loop_done != 2)
844 ev_loop_done = 0; 911 loop_done = 0;
912}
913
914void
915ev_unloop (EV_P_ int how)
916{
917 loop_done = how;
845} 918}
846 919
847/*****************************************************************************/ 920/*****************************************************************************/
848 921
849static void 922inline void
850wlist_add (WL *head, WL elem) 923wlist_add (WL *head, WL elem)
851{ 924{
852 elem->next = *head; 925 elem->next = *head;
853 *head = elem; 926 *head = elem;
854} 927}
855 928
856static void 929inline void
857wlist_del (WL *head, WL elem) 930wlist_del (WL *head, WL elem)
858{ 931{
859 while (*head) 932 while (*head)
860 { 933 {
861 if (*head == elem) 934 if (*head == elem)
866 939
867 head = &(*head)->next; 940 head = &(*head)->next;
868 } 941 }
869} 942}
870 943
871static void 944inline void
872ev_clear_pending (W w) 945ev_clear_pending (EV_P_ W w)
873{ 946{
874 if (w->pending) 947 if (w->pending)
875 { 948 {
876 pendings [ABSPRI (w)][w->pending - 1].w = 0; 949 pendings [ABSPRI (w)][w->pending - 1].w = 0;
877 w->pending = 0; 950 w->pending = 0;
878 } 951 }
879} 952}
880 953
881static void 954inline void
882ev_start (W w, int active) 955ev_start (EV_P_ W w, int active)
883{ 956{
884 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 957 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
885 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI; 958 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
886 959
887 w->active = active; 960 w->active = active;
961 ev_ref (EV_A);
888} 962}
889 963
890static void 964inline void
891ev_stop (W w) 965ev_stop (EV_P_ W w)
892{ 966{
967 ev_unref (EV_A);
893 w->active = 0; 968 w->active = 0;
894} 969}
895 970
896/*****************************************************************************/ 971/*****************************************************************************/
897 972
898void 973void
899ev_io_start (struct ev_io *w) 974ev_io_start (EV_P_ struct ev_io *w)
900{ 975{
901 int fd = w->fd; 976 int fd = w->fd;
902 977
903 if (ev_is_active (w)) 978 if (ev_is_active (w))
904 return; 979 return;
905 980
906 assert (("ev_io_start called with negative fd", fd >= 0)); 981 assert (("ev_io_start called with negative fd", fd >= 0));
907 982
908 ev_start ((W)w, 1); 983 ev_start (EV_A_ (W)w, 1);
909 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 984 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
910 wlist_add ((WL *)&anfds[fd].head, (WL)w); 985 wlist_add ((WL *)&anfds[fd].head, (WL)w);
911 986
912 fd_change (fd); 987 fd_change (EV_A_ fd);
913} 988}
914 989
915void 990void
916ev_io_stop (struct ev_io *w) 991ev_io_stop (EV_P_ struct ev_io *w)
917{ 992{
918 ev_clear_pending ((W)w); 993 ev_clear_pending (EV_A_ (W)w);
919 if (!ev_is_active (w)) 994 if (!ev_is_active (w))
920 return; 995 return;
921 996
922 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 997 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
923 ev_stop ((W)w); 998 ev_stop (EV_A_ (W)w);
924 999
925 fd_change (w->fd); 1000 fd_change (EV_A_ w->fd);
926} 1001}
927 1002
928void 1003void
929ev_timer_start (struct ev_timer *w) 1004ev_timer_start (EV_P_ struct ev_timer *w)
930{ 1005{
931 if (ev_is_active (w)) 1006 if (ev_is_active (w))
932 return; 1007 return;
933 1008
934 w->at += now; 1009 w->at += mn_now;
935 1010
936 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1011 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
937 1012
938 ev_start ((W)w, ++timercnt); 1013 ev_start (EV_A_ (W)w, ++timercnt);
939 array_needsize (timers, timermax, timercnt, ); 1014 array_needsize (timers, timermax, timercnt, );
940 timers [timercnt - 1] = w; 1015 timers [timercnt - 1] = w;
941 upheap ((WT *)timers, timercnt - 1); 1016 upheap ((WT *)timers, timercnt - 1);
942} 1017}
943 1018
944void 1019void
945ev_timer_stop (struct ev_timer *w) 1020ev_timer_stop (EV_P_ struct ev_timer *w)
946{ 1021{
947 ev_clear_pending ((W)w); 1022 ev_clear_pending (EV_A_ (W)w);
948 if (!ev_is_active (w)) 1023 if (!ev_is_active (w))
949 return; 1024 return;
950 1025
951 if (w->active < timercnt--) 1026 if (w->active < timercnt--)
952 { 1027 {
954 downheap ((WT *)timers, timercnt, w->active - 1); 1029 downheap ((WT *)timers, timercnt, w->active - 1);
955 } 1030 }
956 1031
957 w->at = w->repeat; 1032 w->at = w->repeat;
958 1033
959 ev_stop ((W)w); 1034 ev_stop (EV_A_ (W)w);
960} 1035}
961 1036
962void 1037void
963ev_timer_again (struct ev_timer *w) 1038ev_timer_again (EV_P_ struct ev_timer *w)
964{ 1039{
965 if (ev_is_active (w)) 1040 if (ev_is_active (w))
966 { 1041 {
967 if (w->repeat) 1042 if (w->repeat)
968 { 1043 {
969 w->at = now + w->repeat; 1044 w->at = mn_now + w->repeat;
970 downheap ((WT *)timers, timercnt, w->active - 1); 1045 downheap ((WT *)timers, timercnt, w->active - 1);
971 } 1046 }
972 else 1047 else
973 ev_timer_stop (w); 1048 ev_timer_stop (EV_A_ w);
974 } 1049 }
975 else if (w->repeat) 1050 else if (w->repeat)
976 ev_timer_start (w); 1051 ev_timer_start (EV_A_ w);
977} 1052}
978 1053
979void 1054void
980ev_periodic_start (struct ev_periodic *w) 1055ev_periodic_start (EV_P_ struct ev_periodic *w)
981{ 1056{
982 if (ev_is_active (w)) 1057 if (ev_is_active (w))
983 return; 1058 return;
984 1059
985 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1060 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
986 1061
987 /* this formula differs from the one in periodic_reify because we do not always round up */ 1062 /* this formula differs from the one in periodic_reify because we do not always round up */
988 if (w->interval) 1063 if (w->interval)
989 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1064 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval;
990 1065
991 ev_start ((W)w, ++periodiccnt); 1066 ev_start (EV_A_ (W)w, ++periodiccnt);
992 array_needsize (periodics, periodicmax, periodiccnt, ); 1067 array_needsize (periodics, periodicmax, periodiccnt, );
993 periodics [periodiccnt - 1] = w; 1068 periodics [periodiccnt - 1] = w;
994 upheap ((WT *)periodics, periodiccnt - 1); 1069 upheap ((WT *)periodics, periodiccnt - 1);
995} 1070}
996 1071
997void 1072void
998ev_periodic_stop (struct ev_periodic *w) 1073ev_periodic_stop (EV_P_ struct ev_periodic *w)
999{ 1074{
1000 ev_clear_pending ((W)w); 1075 ev_clear_pending (EV_A_ (W)w);
1001 if (!ev_is_active (w)) 1076 if (!ev_is_active (w))
1002 return; 1077 return;
1003 1078
1004 if (w->active < periodiccnt--) 1079 if (w->active < periodiccnt--)
1005 { 1080 {
1006 periodics [w->active - 1] = periodics [periodiccnt]; 1081 periodics [w->active - 1] = periodics [periodiccnt];
1007 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1082 downheap ((WT *)periodics, periodiccnt, w->active - 1);
1008 } 1083 }
1009 1084
1010 ev_stop ((W)w); 1085 ev_stop (EV_A_ (W)w);
1011} 1086}
1012 1087
1088#ifndef SA_RESTART
1089# define SA_RESTART 0
1090#endif
1091
1013void 1092void
1014ev_signal_start (struct ev_signal *w) 1093ev_signal_start (EV_P_ struct ev_signal *w)
1015{ 1094{
1016 if (ev_is_active (w)) 1095 if (ev_is_active (w))
1017 return; 1096 return;
1018 1097
1019 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1098 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1020 1099
1021 ev_start ((W)w, 1); 1100 ev_start (EV_A_ (W)w, 1);
1022 array_needsize (signals, signalmax, w->signum, signals_init); 1101 array_needsize (signals, signalmax, w->signum, signals_init);
1023 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1102 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1024 1103
1025 if (!w->next) 1104 if (!w->next)
1026 { 1105 {
1027 struct sigaction sa; 1106 struct sigaction sa;
1028 sa.sa_handler = sighandler; 1107 sa.sa_handler = sighandler;
1029 sigfillset (&sa.sa_mask); 1108 sigfillset (&sa.sa_mask);
1030 sa.sa_flags = 0; 1109 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1031 sigaction (w->signum, &sa, 0); 1110 sigaction (w->signum, &sa, 0);
1032 } 1111 }
1033} 1112}
1034 1113
1035void 1114void
1036ev_signal_stop (struct ev_signal *w) 1115ev_signal_stop (EV_P_ struct ev_signal *w)
1037{ 1116{
1038 ev_clear_pending ((W)w); 1117 ev_clear_pending (EV_A_ (W)w);
1039 if (!ev_is_active (w)) 1118 if (!ev_is_active (w))
1040 return; 1119 return;
1041 1120
1042 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1121 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1043 ev_stop ((W)w); 1122 ev_stop (EV_A_ (W)w);
1044 1123
1045 if (!signals [w->signum - 1].head) 1124 if (!signals [w->signum - 1].head)
1046 signal (w->signum, SIG_DFL); 1125 signal (w->signum, SIG_DFL);
1047} 1126}
1048 1127
1049void 1128void
1050ev_idle_start (struct ev_idle *w) 1129ev_idle_start (EV_P_ struct ev_idle *w)
1051{ 1130{
1052 if (ev_is_active (w)) 1131 if (ev_is_active (w))
1053 return; 1132 return;
1054 1133
1055 ev_start ((W)w, ++idlecnt); 1134 ev_start (EV_A_ (W)w, ++idlecnt);
1056 array_needsize (idles, idlemax, idlecnt, ); 1135 array_needsize (idles, idlemax, idlecnt, );
1057 idles [idlecnt - 1] = w; 1136 idles [idlecnt - 1] = w;
1058} 1137}
1059 1138
1060void 1139void
1061ev_idle_stop (struct ev_idle *w) 1140ev_idle_stop (EV_P_ struct ev_idle *w)
1062{ 1141{
1063 ev_clear_pending ((W)w); 1142 ev_clear_pending (EV_A_ (W)w);
1064 if (ev_is_active (w)) 1143 if (ev_is_active (w))
1065 return; 1144 return;
1066 1145
1067 idles [w->active - 1] = idles [--idlecnt]; 1146 idles [w->active - 1] = idles [--idlecnt];
1068 ev_stop ((W)w); 1147 ev_stop (EV_A_ (W)w);
1069} 1148}
1070 1149
1071void 1150void
1072ev_prepare_start (struct ev_prepare *w) 1151ev_prepare_start (EV_P_ struct ev_prepare *w)
1073{ 1152{
1074 if (ev_is_active (w)) 1153 if (ev_is_active (w))
1075 return; 1154 return;
1076 1155
1077 ev_start ((W)w, ++preparecnt); 1156 ev_start (EV_A_ (W)w, ++preparecnt);
1078 array_needsize (prepares, preparemax, preparecnt, ); 1157 array_needsize (prepares, preparemax, preparecnt, );
1079 prepares [preparecnt - 1] = w; 1158 prepares [preparecnt - 1] = w;
1080} 1159}
1081 1160
1082void 1161void
1083ev_prepare_stop (struct ev_prepare *w) 1162ev_prepare_stop (EV_P_ struct ev_prepare *w)
1084{ 1163{
1085 ev_clear_pending ((W)w); 1164 ev_clear_pending (EV_A_ (W)w);
1086 if (ev_is_active (w)) 1165 if (ev_is_active (w))
1087 return; 1166 return;
1088 1167
1089 prepares [w->active - 1] = prepares [--preparecnt]; 1168 prepares [w->active - 1] = prepares [--preparecnt];
1090 ev_stop ((W)w); 1169 ev_stop (EV_A_ (W)w);
1091} 1170}
1092 1171
1093void 1172void
1094ev_check_start (struct ev_check *w) 1173ev_check_start (EV_P_ struct ev_check *w)
1095{ 1174{
1096 if (ev_is_active (w)) 1175 if (ev_is_active (w))
1097 return; 1176 return;
1098 1177
1099 ev_start ((W)w, ++checkcnt); 1178 ev_start (EV_A_ (W)w, ++checkcnt);
1100 array_needsize (checks, checkmax, checkcnt, ); 1179 array_needsize (checks, checkmax, checkcnt, );
1101 checks [checkcnt - 1] = w; 1180 checks [checkcnt - 1] = w;
1102} 1181}
1103 1182
1104void 1183void
1105ev_check_stop (struct ev_check *w) 1184ev_check_stop (EV_P_ struct ev_check *w)
1106{ 1185{
1107 ev_clear_pending ((W)w); 1186 ev_clear_pending (EV_A_ (W)w);
1108 if (ev_is_active (w)) 1187 if (ev_is_active (w))
1109 return; 1188 return;
1110 1189
1111 checks [w->active - 1] = checks [--checkcnt]; 1190 checks [w->active - 1] = checks [--checkcnt];
1112 ev_stop ((W)w); 1191 ev_stop (EV_A_ (W)w);
1113} 1192}
1114 1193
1115void 1194void
1116ev_child_start (struct ev_child *w) 1195ev_child_start (EV_P_ struct ev_child *w)
1117{ 1196{
1118 if (ev_is_active (w)) 1197 if (ev_is_active (w))
1119 return; 1198 return;
1120 1199
1121 ev_start ((W)w, 1); 1200 ev_start (EV_A_ (W)w, 1);
1122 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1201 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1123} 1202}
1124 1203
1125void 1204void
1126ev_child_stop (struct ev_child *w) 1205ev_child_stop (EV_P_ struct ev_child *w)
1127{ 1206{
1128 ev_clear_pending ((W)w); 1207 ev_clear_pending (EV_A_ (W)w);
1129 if (ev_is_active (w)) 1208 if (ev_is_active (w))
1130 return; 1209 return;
1131 1210
1132 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1211 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1133 ev_stop ((W)w); 1212 ev_stop (EV_A_ (W)w);
1134} 1213}
1135 1214
1136/*****************************************************************************/ 1215/*****************************************************************************/
1137 1216
1138struct ev_once 1217struct ev_once
1142 void (*cb)(int revents, void *arg); 1221 void (*cb)(int revents, void *arg);
1143 void *arg; 1222 void *arg;
1144}; 1223};
1145 1224
1146static void 1225static void
1147once_cb (struct ev_once *once, int revents) 1226once_cb (EV_P_ struct ev_once *once, int revents)
1148{ 1227{
1149 void (*cb)(int revents, void *arg) = once->cb; 1228 void (*cb)(int revents, void *arg) = once->cb;
1150 void *arg = once->arg; 1229 void *arg = once->arg;
1151 1230
1152 ev_io_stop (&once->io); 1231 ev_io_stop (EV_A_ &once->io);
1153 ev_timer_stop (&once->to); 1232 ev_timer_stop (EV_A_ &once->to);
1154 free (once); 1233 free (once);
1155 1234
1156 cb (revents, arg); 1235 cb (revents, arg);
1157} 1236}
1158 1237
1159static void 1238static void
1160once_cb_io (struct ev_io *w, int revents) 1239once_cb_io (EV_P_ struct ev_io *w, int revents)
1161{ 1240{
1162 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1241 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1163} 1242}
1164 1243
1165static void 1244static void
1166once_cb_to (struct ev_timer *w, int revents) 1245once_cb_to (EV_P_ struct ev_timer *w, int revents)
1167{ 1246{
1168 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1247 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1169} 1248}
1170 1249
1171void 1250void
1172ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1251ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1173{ 1252{
1174 struct ev_once *once = malloc (sizeof (struct ev_once)); 1253 struct ev_once *once = malloc (sizeof (struct ev_once));
1175 1254
1176 if (!once) 1255 if (!once)
1177 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1256 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1182 1261
1183 ev_watcher_init (&once->io, once_cb_io); 1262 ev_watcher_init (&once->io, once_cb_io);
1184 if (fd >= 0) 1263 if (fd >= 0)
1185 { 1264 {
1186 ev_io_set (&once->io, fd, events); 1265 ev_io_set (&once->io, fd, events);
1187 ev_io_start (&once->io); 1266 ev_io_start (EV_A_ &once->io);
1188 } 1267 }
1189 1268
1190 ev_watcher_init (&once->to, once_cb_to); 1269 ev_watcher_init (&once->to, once_cb_to);
1191 if (timeout >= 0.) 1270 if (timeout >= 0.)
1192 { 1271 {
1193 ev_timer_set (&once->to, timeout, 0.); 1272 ev_timer_set (&once->to, timeout, 0.);
1194 ev_timer_start (&once->to); 1273 ev_timer_start (EV_A_ &once->to);
1195 } 1274 }
1196 } 1275 }
1197} 1276}
1198 1277
1199/*****************************************************************************/ 1278/*****************************************************************************/

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines