ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.129 by root, Fri Nov 23 05:00:44 2007 UTC vs.
Revision 1.460 by root, Tue Oct 29 12:53:38 2013 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
37# include "config.h" 45# include "config.h"
46# endif
47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
38 67
39# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
42# endif 71# endif
43# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
45# endif 74# endif
46# else 75# else
47# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
48# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
49# endif 78# endif
50# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
51# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
52# endif 81# endif
53# endif 82# endif
54 83
84# if HAVE_NANOSLEEP
55# ifndef EV_USE_SELECT 85# ifndef EV_USE_NANOSLEEP
56# if HAVE_SELECT && HAVE_SYS_SELECT_H 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
57# define EV_USE_SELECT 1
58# else
59# define EV_USE_SELECT 0
60# endif 87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
61# endif 91# endif
62 92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
63# ifndef EV_USE_POLL 94# ifndef EV_USE_SELECT
64# if HAVE_POLL && HAVE_POLL_H 95# define EV_USE_SELECT EV_FEATURE_BACKENDS
65# define EV_USE_POLL 1
66# else
67# define EV_USE_POLL 0
68# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
100# endif
101
102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
108# define EV_USE_POLL 0
69# endif 109# endif
70 110
71# ifndef EV_USE_EPOLL
72# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
73# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
74# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
75# define EV_USE_EPOLL 0
76# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
77# endif 118# endif
78 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
79# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
80# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
81# define EV_USE_KQUEUE 1
82# else
83# define EV_USE_KQUEUE 0
84# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
85# endif 127# endif
86 128
87# ifndef EV_USE_PORT
88# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
89# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
90# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
91# define EV_USE_PORT 0
92# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
93# endif 136# endif
94 137
138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139# ifndef EV_USE_INOTIFY
140# define EV_USE_INOTIFY EV_FEATURE_OS
141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
95#endif 145# endif
96 146
97#include <math.h> 147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
98#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
99#include <fcntl.h> 169#include <fcntl.h>
100#include <stddef.h> 170#include <stddef.h>
101 171
102#include <stdio.h> 172#include <stdio.h>
103 173
104#include <assert.h> 174#include <assert.h>
105#include <errno.h> 175#include <errno.h>
106#include <sys/types.h> 176#include <sys/types.h>
107#include <time.h> 177#include <time.h>
178#include <limits.h>
108 179
109#include <signal.h> 180#include <signal.h>
110 181
182#ifdef EV_H
183# include EV_H
184#else
185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
197#endif
198
111#ifndef _WIN32 199#ifndef _WIN32
112# include <unistd.h>
113# include <sys/time.h> 200# include <sys/time.h>
114# include <sys/wait.h> 201# include <sys/wait.h>
202# include <unistd.h>
115#else 203#else
204# include <io.h>
116# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
117# include <windows.h> 207# include <windows.h>
118# ifndef EV_SELECT_IS_WINSOCKET 208# ifndef EV_SELECT_IS_WINSOCKET
119# define EV_SELECT_IS_WINSOCKET 1 209# define EV_SELECT_IS_WINSOCKET 1
120# endif 210# endif
211# undef EV_AVOID_STDIO
212#endif
213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
221
222/* this block tries to deduce configuration from header-defined symbols and defaults */
223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# define EV_NSIG (8 * sizeof (sigset_t) + 1)
247#endif
248
249#ifndef EV_USE_FLOOR
250# define EV_USE_FLOOR 0
251#endif
252
253#ifndef EV_USE_CLOCK_SYSCALL
254# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
255# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
256# else
257# define EV_USE_CLOCK_SYSCALL 0
121#endif 258# endif
122 259#endif
123/**/
124 260
125#ifndef EV_USE_MONOTONIC 261#ifndef EV_USE_MONOTONIC
262# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
263# define EV_USE_MONOTONIC EV_FEATURE_OS
264# else
126# define EV_USE_MONOTONIC 0 265# define EV_USE_MONOTONIC 0
266# endif
127#endif 267#endif
128 268
129#ifndef EV_USE_REALTIME 269#ifndef EV_USE_REALTIME
130# define EV_USE_REALTIME 0 270# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
271#endif
272
273#ifndef EV_USE_NANOSLEEP
274# if _POSIX_C_SOURCE >= 199309L
275# define EV_USE_NANOSLEEP EV_FEATURE_OS
276# else
277# define EV_USE_NANOSLEEP 0
278# endif
131#endif 279#endif
132 280
133#ifndef EV_USE_SELECT 281#ifndef EV_USE_SELECT
134# define EV_USE_SELECT 1 282# define EV_USE_SELECT EV_FEATURE_BACKENDS
135#endif 283#endif
136 284
137#ifndef EV_USE_POLL 285#ifndef EV_USE_POLL
138# ifdef _WIN32 286# ifdef _WIN32
139# define EV_USE_POLL 0 287# define EV_USE_POLL 0
140# else 288# else
141# define EV_USE_POLL 1 289# define EV_USE_POLL EV_FEATURE_BACKENDS
142# endif 290# endif
143#endif 291#endif
144 292
145#ifndef EV_USE_EPOLL 293#ifndef EV_USE_EPOLL
294# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
295# define EV_USE_EPOLL EV_FEATURE_BACKENDS
296# else
146# define EV_USE_EPOLL 0 297# define EV_USE_EPOLL 0
298# endif
147#endif 299#endif
148 300
149#ifndef EV_USE_KQUEUE 301#ifndef EV_USE_KQUEUE
150# define EV_USE_KQUEUE 0 302# define EV_USE_KQUEUE 0
151#endif 303#endif
152 304
153#ifndef EV_USE_PORT 305#ifndef EV_USE_PORT
154# define EV_USE_PORT 0 306# define EV_USE_PORT 0
155#endif 307#endif
156 308
157/**/ 309#ifndef EV_USE_INOTIFY
310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
311# define EV_USE_INOTIFY EV_FEATURE_OS
312# else
313# define EV_USE_INOTIFY 0
314# endif
315#endif
316
317#ifndef EV_PID_HASHSIZE
318# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
319#endif
320
321#ifndef EV_INOTIFY_HASHSIZE
322# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
323#endif
324
325#ifndef EV_USE_EVENTFD
326# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
327# define EV_USE_EVENTFD EV_FEATURE_OS
328# else
329# define EV_USE_EVENTFD 0
330# endif
331#endif
332
333#ifndef EV_USE_SIGNALFD
334# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
335# define EV_USE_SIGNALFD EV_FEATURE_OS
336# else
337# define EV_USE_SIGNALFD 0
338# endif
339#endif
340
341#if 0 /* debugging */
342# define EV_VERIFY 3
343# define EV_USE_4HEAP 1
344# define EV_HEAP_CACHE_AT 1
345#endif
346
347#ifndef EV_VERIFY
348# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
349#endif
350
351#ifndef EV_USE_4HEAP
352# define EV_USE_4HEAP EV_FEATURE_DATA
353#endif
354
355#ifndef EV_HEAP_CACHE_AT
356# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
357#endif
358
359#ifdef ANDROID
360/* supposedly, android doesn't typedef fd_mask */
361# undef EV_USE_SELECT
362# define EV_USE_SELECT 0
363/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
364# undef EV_USE_CLOCK_SYSCALL
365# define EV_USE_CLOCK_SYSCALL 0
366#endif
367
368/* aix's poll.h seems to cause lots of trouble */
369#ifdef _AIX
370/* AIX has a completely broken poll.h header */
371# undef EV_USE_POLL
372# define EV_USE_POLL 0
373#endif
374
375/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
376/* which makes programs even slower. might work on other unices, too. */
377#if EV_USE_CLOCK_SYSCALL
378# include <sys/syscall.h>
379# ifdef SYS_clock_gettime
380# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
381# undef EV_USE_MONOTONIC
382# define EV_USE_MONOTONIC 1
383# else
384# undef EV_USE_CLOCK_SYSCALL
385# define EV_USE_CLOCK_SYSCALL 0
386# endif
387#endif
388
389/* this block fixes any misconfiguration where we know we run into trouble otherwise */
158 390
159#ifndef CLOCK_MONOTONIC 391#ifndef CLOCK_MONOTONIC
160# undef EV_USE_MONOTONIC 392# undef EV_USE_MONOTONIC
161# define EV_USE_MONOTONIC 0 393# define EV_USE_MONOTONIC 0
162#endif 394#endif
164#ifndef CLOCK_REALTIME 396#ifndef CLOCK_REALTIME
165# undef EV_USE_REALTIME 397# undef EV_USE_REALTIME
166# define EV_USE_REALTIME 0 398# define EV_USE_REALTIME 0
167#endif 399#endif
168 400
169#if EV_SELECT_IS_WINSOCKET 401#if !EV_STAT_ENABLE
402# undef EV_USE_INOTIFY
403# define EV_USE_INOTIFY 0
404#endif
405
406#if !EV_USE_NANOSLEEP
407/* hp-ux has it in sys/time.h, which we unconditionally include above */
408# if !defined _WIN32 && !defined __hpux
409# include <sys/select.h>
410# endif
411#endif
412
413#if EV_USE_INOTIFY
414# include <sys/statfs.h>
415# include <sys/inotify.h>
416/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
417# ifndef IN_DONT_FOLLOW
418# undef EV_USE_INOTIFY
419# define EV_USE_INOTIFY 0
420# endif
421#endif
422
423#if EV_USE_EVENTFD
424/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
170# include <winsock.h> 425# include <stdint.h>
426# ifndef EFD_NONBLOCK
427# define EFD_NONBLOCK O_NONBLOCK
428# endif
429# ifndef EFD_CLOEXEC
430# ifdef O_CLOEXEC
431# define EFD_CLOEXEC O_CLOEXEC
432# else
433# define EFD_CLOEXEC 02000000
434# endif
435# endif
436EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
437#endif
438
439#if EV_USE_SIGNALFD
440/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
441# include <stdint.h>
442# ifndef SFD_NONBLOCK
443# define SFD_NONBLOCK O_NONBLOCK
444# endif
445# ifndef SFD_CLOEXEC
446# ifdef O_CLOEXEC
447# define SFD_CLOEXEC O_CLOEXEC
448# else
449# define SFD_CLOEXEC 02000000
450# endif
451# endif
452EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
453
454struct signalfd_siginfo
455{
456 uint32_t ssi_signo;
457 char pad[128 - sizeof (uint32_t)];
458};
171#endif 459#endif
172 460
173/**/ 461/**/
462
463#if EV_VERIFY >= 3
464# define EV_FREQUENT_CHECK ev_verify (EV_A)
465#else
466# define EV_FREQUENT_CHECK do { } while (0)
467#endif
468
469/*
470 * This is used to work around floating point rounding problems.
471 * This value is good at least till the year 4000.
472 */
473#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
474/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
174 475
175#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 476#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
176#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 477#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
177#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
178/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
179 478
479#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
480#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
481
482/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
483/* ECB.H BEGIN */
484/*
485 * libecb - http://software.schmorp.de/pkg/libecb
486 *
487 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
488 * Copyright (©) 2011 Emanuele Giaquinta
489 * All rights reserved.
490 *
491 * Redistribution and use in source and binary forms, with or without modifica-
492 * tion, are permitted provided that the following conditions are met:
493 *
494 * 1. Redistributions of source code must retain the above copyright notice,
495 * this list of conditions and the following disclaimer.
496 *
497 * 2. Redistributions in binary form must reproduce the above copyright
498 * notice, this list of conditions and the following disclaimer in the
499 * documentation and/or other materials provided with the distribution.
500 *
501 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
502 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
503 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
504 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
505 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
506 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
507 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
508 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
509 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
510 * OF THE POSSIBILITY OF SUCH DAMAGE.
511 */
512
180#ifdef EV_H 513#ifndef ECB_H
181# include EV_H 514#define ECB_H
515
516/* 16 bits major, 16 bits minor */
517#define ECB_VERSION 0x00010003
518
519#ifdef _WIN32
520 typedef signed char int8_t;
521 typedef unsigned char uint8_t;
522 typedef signed short int16_t;
523 typedef unsigned short uint16_t;
524 typedef signed int int32_t;
525 typedef unsigned int uint32_t;
526 #if __GNUC__
527 typedef signed long long int64_t;
528 typedef unsigned long long uint64_t;
529 #else /* _MSC_VER || __BORLANDC__ */
530 typedef signed __int64 int64_t;
531 typedef unsigned __int64 uint64_t;
532 #endif
533 #ifdef _WIN64
534 #define ECB_PTRSIZE 8
535 typedef uint64_t uintptr_t;
536 typedef int64_t intptr_t;
537 #else
538 #define ECB_PTRSIZE 4
539 typedef uint32_t uintptr_t;
540 typedef int32_t intptr_t;
541 #endif
182#else 542#else
183# include "ev.h" 543 #include <inttypes.h>
544 #if UINTMAX_MAX > 0xffffffffU
545 #define ECB_PTRSIZE 8
546 #else
547 #define ECB_PTRSIZE 4
184#endif 548 #endif
549#endif
185 550
186#if __GNUC__ >= 3 551/* work around x32 idiocy by defining proper macros */
187# define expect(expr,value) __builtin_expect ((expr),(value)) 552#if __x86_64 || _M_AMD64
188# define inline static inline 553 #if _ILP32
554 #define ECB_AMD64_X32 1
555 #else
556 #define ECB_AMD64 1
557 #endif
558#endif
559
560/* many compilers define _GNUC_ to some versions but then only implement
561 * what their idiot authors think are the "more important" extensions,
562 * causing enormous grief in return for some better fake benchmark numbers.
563 * or so.
564 * we try to detect these and simply assume they are not gcc - if they have
565 * an issue with that they should have done it right in the first place.
566 */
567#ifndef ECB_GCC_VERSION
568 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
569 #define ECB_GCC_VERSION(major,minor) 0
570 #else
571 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
572 #endif
573#endif
574
575#define ECB_C (__STDC__+0) /* this assumes that __STDC__ is either empty or a number */
576#define ECB_C99 (__STDC_VERSION__ >= 199901L)
577#define ECB_C11 (__STDC_VERSION__ >= 201112L)
578#define ECB_CPP (__cplusplus+0)
579#define ECB_CPP11 (__cplusplus >= 201103L)
580
581#if ECB_CPP
582 #define ECB_EXTERN_C extern "C"
583 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
584 #define ECB_EXTERN_C_END }
189#else 585#else
586 #define ECB_EXTERN_C extern
587 #define ECB_EXTERN_C_BEG
588 #define ECB_EXTERN_C_END
589#endif
590
591/*****************************************************************************/
592
593/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
594/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
595
596#if ECB_NO_THREADS
597 #define ECB_NO_SMP 1
598#endif
599
600#if ECB_NO_SMP
601 #define ECB_MEMORY_FENCE do { } while (0)
602#endif
603
604#ifndef ECB_MEMORY_FENCE
605 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
606 #if __i386 || __i386__
607 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
608 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
609 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
610 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
611 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
612 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
613 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
614 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
615 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
616 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
617 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
618 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
619 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
620 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
621 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
622 #elif __sparc || __sparc__
623 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
624 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
625 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
626 #elif defined __s390__ || defined __s390x__
627 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
628 #elif defined __mips__
629 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
630 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
631 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
632 #elif defined __alpha__
633 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
634 #elif defined __hppa__
635 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
636 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
637 #elif defined __ia64__
638 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
639 #elif defined __m68k__
640 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
641 #elif defined __m88k__
642 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
643 #elif defined __sh__
644 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
645 #endif
646 #endif
647#endif
648
649#ifndef ECB_MEMORY_FENCE
650 #if ECB_GCC_VERSION(4,7)
651 /* see comment below (stdatomic.h) about the C11 memory model. */
652 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
653
654 /* The __has_feature syntax from clang is so misdesigned that we cannot use it
655 * without risking compile time errors with other compilers. We *could*
656 * define our own ecb_clang_has_feature, but I just can't be bothered to work
657 * around this shit time and again.
658 * #elif defined __clang && __has_feature (cxx_atomic)
659 * // see comment below (stdatomic.h) about the C11 memory model.
660 * #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
661 */
662
663 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
664 #define ECB_MEMORY_FENCE __sync_synchronize ()
665 #elif _MSC_VER >= 1400 /* VC++ 2005 */
666 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
667 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
668 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
669 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
670 #elif defined _WIN32
671 #include <WinNT.h>
672 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
673 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
674 #include <mbarrier.h>
675 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
676 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
677 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
678 #elif __xlC__
679 #define ECB_MEMORY_FENCE __sync ()
680 #endif
681#endif
682
683#ifndef ECB_MEMORY_FENCE
684 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
685 /* we assume that these memory fences work on all variables/all memory accesses, */
686 /* not just C11 atomics and atomic accesses */
687 #include <stdatomic.h>
688 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
689 /* any fence other than seq_cst, which isn't very efficient for us. */
690 /* Why that is, we don't know - either the C11 memory model is quite useless */
691 /* for most usages, or gcc and clang have a bug */
692 /* I *currently* lean towards the latter, and inefficiently implement */
693 /* all three of ecb's fences as a seq_cst fence */
694 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
695 #endif
696#endif
697
698#ifndef ECB_MEMORY_FENCE
699 #if !ECB_AVOID_PTHREADS
700 /*
701 * if you get undefined symbol references to pthread_mutex_lock,
702 * or failure to find pthread.h, then you should implement
703 * the ECB_MEMORY_FENCE operations for your cpu/compiler
704 * OR provide pthread.h and link against the posix thread library
705 * of your system.
706 */
707 #include <pthread.h>
708 #define ECB_NEEDS_PTHREADS 1
709 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
710
711 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
712 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
713 #endif
714#endif
715
716#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
717 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
718#endif
719
720#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
721 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
722#endif
723
724/*****************************************************************************/
725
726#if __cplusplus
727 #define ecb_inline static inline
728#elif ECB_GCC_VERSION(2,5)
729 #define ecb_inline static __inline__
730#elif ECB_C99
731 #define ecb_inline static inline
732#else
733 #define ecb_inline static
734#endif
735
736#if ECB_GCC_VERSION(3,3)
737 #define ecb_restrict __restrict__
738#elif ECB_C99
739 #define ecb_restrict restrict
740#else
741 #define ecb_restrict
742#endif
743
744typedef int ecb_bool;
745
746#define ECB_CONCAT_(a, b) a ## b
747#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
748#define ECB_STRINGIFY_(a) # a
749#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
750
751#define ecb_function_ ecb_inline
752
753#if ECB_GCC_VERSION(3,1)
754 #define ecb_attribute(attrlist) __attribute__(attrlist)
755 #define ecb_is_constant(expr) __builtin_constant_p (expr)
756 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
757 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
758#else
759 #define ecb_attribute(attrlist)
760 #define ecb_is_constant(expr) 0
190# define expect(expr,value) (expr) 761 #define ecb_expect(expr,value) (expr)
191# define inline static 762 #define ecb_prefetch(addr,rw,locality)
192#endif 763#endif
193 764
765/* no emulation for ecb_decltype */
766#if ECB_GCC_VERSION(4,5)
767 #define ecb_decltype(x) __decltype(x)
768#elif ECB_GCC_VERSION(3,0)
769 #define ecb_decltype(x) __typeof(x)
770#endif
771
772#define ecb_noinline ecb_attribute ((__noinline__))
773#define ecb_unused ecb_attribute ((__unused__))
774#define ecb_const ecb_attribute ((__const__))
775#define ecb_pure ecb_attribute ((__pure__))
776
777#if ECB_C11
778 #define ecb_noreturn _Noreturn
779#else
780 #define ecb_noreturn ecb_attribute ((__noreturn__))
781#endif
782
783#if ECB_GCC_VERSION(4,3)
784 #define ecb_artificial ecb_attribute ((__artificial__))
785 #define ecb_hot ecb_attribute ((__hot__))
786 #define ecb_cold ecb_attribute ((__cold__))
787#else
788 #define ecb_artificial
789 #define ecb_hot
790 #define ecb_cold
791#endif
792
793/* put around conditional expressions if you are very sure that the */
794/* expression is mostly true or mostly false. note that these return */
795/* booleans, not the expression. */
194#define expect_false(expr) expect ((expr) != 0, 0) 796#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
195#define expect_true(expr) expect ((expr) != 0, 1) 797#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
798/* for compatibility to the rest of the world */
799#define ecb_likely(expr) ecb_expect_true (expr)
800#define ecb_unlikely(expr) ecb_expect_false (expr)
196 801
802/* count trailing zero bits and count # of one bits */
803#if ECB_GCC_VERSION(3,4)
804 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
805 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
806 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
807 #define ecb_ctz32(x) __builtin_ctz (x)
808 #define ecb_ctz64(x) __builtin_ctzll (x)
809 #define ecb_popcount32(x) __builtin_popcount (x)
810 /* no popcountll */
811#else
812 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
813 ecb_function_ int
814 ecb_ctz32 (uint32_t x)
815 {
816 int r = 0;
817
818 x &= ~x + 1; /* this isolates the lowest bit */
819
820#if ECB_branchless_on_i386
821 r += !!(x & 0xaaaaaaaa) << 0;
822 r += !!(x & 0xcccccccc) << 1;
823 r += !!(x & 0xf0f0f0f0) << 2;
824 r += !!(x & 0xff00ff00) << 3;
825 r += !!(x & 0xffff0000) << 4;
826#else
827 if (x & 0xaaaaaaaa) r += 1;
828 if (x & 0xcccccccc) r += 2;
829 if (x & 0xf0f0f0f0) r += 4;
830 if (x & 0xff00ff00) r += 8;
831 if (x & 0xffff0000) r += 16;
832#endif
833
834 return r;
835 }
836
837 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
838 ecb_function_ int
839 ecb_ctz64 (uint64_t x)
840 {
841 int shift = x & 0xffffffffU ? 0 : 32;
842 return ecb_ctz32 (x >> shift) + shift;
843 }
844
845 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
846 ecb_function_ int
847 ecb_popcount32 (uint32_t x)
848 {
849 x -= (x >> 1) & 0x55555555;
850 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
851 x = ((x >> 4) + x) & 0x0f0f0f0f;
852 x *= 0x01010101;
853
854 return x >> 24;
855 }
856
857 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
858 ecb_function_ int ecb_ld32 (uint32_t x)
859 {
860 int r = 0;
861
862 if (x >> 16) { x >>= 16; r += 16; }
863 if (x >> 8) { x >>= 8; r += 8; }
864 if (x >> 4) { x >>= 4; r += 4; }
865 if (x >> 2) { x >>= 2; r += 2; }
866 if (x >> 1) { r += 1; }
867
868 return r;
869 }
870
871 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
872 ecb_function_ int ecb_ld64 (uint64_t x)
873 {
874 int r = 0;
875
876 if (x >> 32) { x >>= 32; r += 32; }
877
878 return r + ecb_ld32 (x);
879 }
880#endif
881
882ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
883ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
884ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
885ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
886
887ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
888ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
889{
890 return ( (x * 0x0802U & 0x22110U)
891 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
892}
893
894ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
895ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
896{
897 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
898 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
899 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
900 x = ( x >> 8 ) | ( x << 8);
901
902 return x;
903}
904
905ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
906ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
907{
908 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
909 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
910 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
911 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
912 x = ( x >> 16 ) | ( x << 16);
913
914 return x;
915}
916
917/* popcount64 is only available on 64 bit cpus as gcc builtin */
918/* so for this version we are lazy */
919ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
920ecb_function_ int
921ecb_popcount64 (uint64_t x)
922{
923 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
924}
925
926ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
927ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
928ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
929ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
930ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
931ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
932ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
933ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
934
935ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
936ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
937ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
938ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
939ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
940ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
941ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
942ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
943
944#if ECB_GCC_VERSION(4,3)
945 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
946 #define ecb_bswap32(x) __builtin_bswap32 (x)
947 #define ecb_bswap64(x) __builtin_bswap64 (x)
948#else
949 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
950 ecb_function_ uint16_t
951 ecb_bswap16 (uint16_t x)
952 {
953 return ecb_rotl16 (x, 8);
954 }
955
956 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
957 ecb_function_ uint32_t
958 ecb_bswap32 (uint32_t x)
959 {
960 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
961 }
962
963 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
964 ecb_function_ uint64_t
965 ecb_bswap64 (uint64_t x)
966 {
967 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
968 }
969#endif
970
971#if ECB_GCC_VERSION(4,5)
972 #define ecb_unreachable() __builtin_unreachable ()
973#else
974 /* this seems to work fine, but gcc always emits a warning for it :/ */
975 ecb_inline void ecb_unreachable (void) ecb_noreturn;
976 ecb_inline void ecb_unreachable (void) { }
977#endif
978
979/* try to tell the compiler that some condition is definitely true */
980#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
981
982ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
983ecb_inline unsigned char
984ecb_byteorder_helper (void)
985{
986 /* the union code still generates code under pressure in gcc, */
987 /* but less than using pointers, and always seems to */
988 /* successfully return a constant. */
989 /* the reason why we have this horrible preprocessor mess */
990 /* is to avoid it in all cases, at least on common architectures */
991 /* or when using a recent enough gcc version (>= 4.6) */
992#if __i386 || __i386__ || _M_X86 || __amd64 || __amd64__ || _M_X64
993 return 0x44;
994#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
995 return 0x44;
996#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
997 return 0x11;
998#else
999 union
1000 {
1001 uint32_t i;
1002 uint8_t c;
1003 } u = { 0x11223344 };
1004 return u.c;
1005#endif
1006}
1007
1008ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
1009ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
1010ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
1011ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
1012
1013#if ECB_GCC_VERSION(3,0) || ECB_C99
1014 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1015#else
1016 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1017#endif
1018
1019#if __cplusplus
1020 template<typename T>
1021 static inline T ecb_div_rd (T val, T div)
1022 {
1023 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1024 }
1025 template<typename T>
1026 static inline T ecb_div_ru (T val, T div)
1027 {
1028 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1029 }
1030#else
1031 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1032 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1033#endif
1034
1035#if ecb_cplusplus_does_not_suck
1036 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1037 template<typename T, int N>
1038 static inline int ecb_array_length (const T (&arr)[N])
1039 {
1040 return N;
1041 }
1042#else
1043 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1044#endif
1045
1046/*******************************************************************************/
1047/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1048
1049/* basically, everything uses "ieee pure-endian" floating point numbers */
1050/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1051#if 0 \
1052 || __i386 || __i386__ \
1053 || __amd64 || __amd64__ || __x86_64 || __x86_64__ \
1054 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1055 || defined __arm__ && defined __ARM_EABI__ \
1056 || defined __s390__ || defined __s390x__ \
1057 || defined __mips__ \
1058 || defined __alpha__ \
1059 || defined __hppa__ \
1060 || defined __ia64__ \
1061 || defined __m68k__ \
1062 || defined __m88k__ \
1063 || defined __sh__ \
1064 || defined _M_IX86 || defined _M_AMD64 || defined _M_IA64
1065 #define ECB_STDFP 1
1066 #include <string.h> /* for memcpy */
1067#else
1068 #define ECB_STDFP 0
1069#endif
1070
1071#ifndef ECB_NO_LIBM
1072
1073 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1074
1075 #ifdef NEN
1076 #define ECB_NAN NAN
1077 #else
1078 #define ECB_NAN INFINITY
1079 #endif
1080
1081 /* converts an ieee half/binary16 to a float */
1082 ecb_function_ float ecb_binary16_to_float (uint16_t x) ecb_const;
1083 ecb_function_ float
1084 ecb_binary16_to_float (uint16_t x)
1085 {
1086 int e = (x >> 10) & 0x1f;
1087 int m = x & 0x3ff;
1088 float r;
1089
1090 if (!e ) r = ldexpf (m , -24);
1091 else if (e != 31) r = ldexpf (m + 0x400, e - 25);
1092 else if (m ) r = ECB_NAN;
1093 else r = INFINITY;
1094
1095 return x & 0x8000 ? -r : r;
1096 }
1097
1098 /* convert a float to ieee single/binary32 */
1099 ecb_function_ uint32_t ecb_float_to_binary32 (float x) ecb_const;
1100 ecb_function_ uint32_t
1101 ecb_float_to_binary32 (float x)
1102 {
1103 uint32_t r;
1104
1105 #if ECB_STDFP
1106 memcpy (&r, &x, 4);
1107 #else
1108 /* slow emulation, works for anything but -0 */
1109 uint32_t m;
1110 int e;
1111
1112 if (x == 0e0f ) return 0x00000000U;
1113 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1114 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1115 if (x != x ) return 0x7fbfffffU;
1116
1117 m = frexpf (x, &e) * 0x1000000U;
1118
1119 r = m & 0x80000000U;
1120
1121 if (r)
1122 m = -m;
1123
1124 if (e <= -126)
1125 {
1126 m &= 0xffffffU;
1127 m >>= (-125 - e);
1128 e = -126;
1129 }
1130
1131 r |= (e + 126) << 23;
1132 r |= m & 0x7fffffU;
1133 #endif
1134
1135 return r;
1136 }
1137
1138 /* converts an ieee single/binary32 to a float */
1139 ecb_function_ float ecb_binary32_to_float (uint32_t x) ecb_const;
1140 ecb_function_ float
1141 ecb_binary32_to_float (uint32_t x)
1142 {
1143 float r;
1144
1145 #if ECB_STDFP
1146 memcpy (&r, &x, 4);
1147 #else
1148 /* emulation, only works for normals and subnormals and +0 */
1149 int neg = x >> 31;
1150 int e = (x >> 23) & 0xffU;
1151
1152 x &= 0x7fffffU;
1153
1154 if (e)
1155 x |= 0x800000U;
1156 else
1157 e = 1;
1158
1159 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1160 r = ldexpf (x * (0.5f / 0x800000U), e - 126);
1161
1162 r = neg ? -r : r;
1163 #endif
1164
1165 return r;
1166 }
1167
1168 /* convert a double to ieee double/binary64 */
1169 ecb_function_ uint64_t ecb_double_to_binary64 (double x) ecb_const;
1170 ecb_function_ uint64_t
1171 ecb_double_to_binary64 (double x)
1172 {
1173 uint64_t r;
1174
1175 #if ECB_STDFP
1176 memcpy (&r, &x, 8);
1177 #else
1178 /* slow emulation, works for anything but -0 */
1179 uint64_t m;
1180 int e;
1181
1182 if (x == 0e0 ) return 0x0000000000000000U;
1183 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1184 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1185 if (x != x ) return 0X7ff7ffffffffffffU;
1186
1187 m = frexp (x, &e) * 0x20000000000000U;
1188
1189 r = m & 0x8000000000000000;;
1190
1191 if (r)
1192 m = -m;
1193
1194 if (e <= -1022)
1195 {
1196 m &= 0x1fffffffffffffU;
1197 m >>= (-1021 - e);
1198 e = -1022;
1199 }
1200
1201 r |= ((uint64_t)(e + 1022)) << 52;
1202 r |= m & 0xfffffffffffffU;
1203 #endif
1204
1205 return r;
1206 }
1207
1208 /* converts an ieee double/binary64 to a double */
1209 ecb_function_ double ecb_binary64_to_double (uint64_t x) ecb_const;
1210 ecb_function_ double
1211 ecb_binary64_to_double (uint64_t x)
1212 {
1213 double r;
1214
1215 #if ECB_STDFP
1216 memcpy (&r, &x, 8);
1217 #else
1218 /* emulation, only works for normals and subnormals and +0 */
1219 int neg = x >> 63;
1220 int e = (x >> 52) & 0x7ffU;
1221
1222 x &= 0xfffffffffffffU;
1223
1224 if (e)
1225 x |= 0x10000000000000U;
1226 else
1227 e = 1;
1228
1229 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1230 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1231
1232 r = neg ? -r : r;
1233 #endif
1234
1235 return r;
1236 }
1237
1238#endif
1239
1240#endif
1241
1242/* ECB.H END */
1243
1244#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1245/* if your architecture doesn't need memory fences, e.g. because it is
1246 * single-cpu/core, or if you use libev in a project that doesn't use libev
1247 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1248 * libev, in which cases the memory fences become nops.
1249 * alternatively, you can remove this #error and link against libpthread,
1250 * which will then provide the memory fences.
1251 */
1252# error "memory fences not defined for your architecture, please report"
1253#endif
1254
1255#ifndef ECB_MEMORY_FENCE
1256# define ECB_MEMORY_FENCE do { } while (0)
1257# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1258# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1259#endif
1260
1261#define expect_false(cond) ecb_expect_false (cond)
1262#define expect_true(cond) ecb_expect_true (cond)
1263#define noinline ecb_noinline
1264
1265#define inline_size ecb_inline
1266
1267#if EV_FEATURE_CODE
1268# define inline_speed ecb_inline
1269#else
1270# define inline_speed static noinline
1271#endif
1272
197#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 1273#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1274
1275#if EV_MINPRI == EV_MAXPRI
1276# define ABSPRI(w) (((W)w), 0)
1277#else
198#define ABSPRI(w) ((w)->priority - EV_MINPRI) 1278# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1279#endif
199 1280
200#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 1281#define EMPTY /* required for microsofts broken pseudo-c compiler */
201#define EMPTY2(a,b) /* used to suppress some warnings */ 1282#define EMPTY2(a,b) /* used to suppress some warnings */
202 1283
203typedef struct ev_watcher *W; 1284typedef ev_watcher *W;
204typedef struct ev_watcher_list *WL; 1285typedef ev_watcher_list *WL;
205typedef struct ev_watcher_time *WT; 1286typedef ev_watcher_time *WT;
206 1287
1288#define ev_active(w) ((W)(w))->active
1289#define ev_at(w) ((WT)(w))->at
1290
1291#if EV_USE_REALTIME
1292/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1293/* giving it a reasonably high chance of working on typical architectures */
1294static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1295#endif
1296
1297#if EV_USE_MONOTONIC
207static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1298static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1299#endif
1300
1301#ifndef EV_FD_TO_WIN32_HANDLE
1302# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1303#endif
1304#ifndef EV_WIN32_HANDLE_TO_FD
1305# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1306#endif
1307#ifndef EV_WIN32_CLOSE_FD
1308# define EV_WIN32_CLOSE_FD(fd) close (fd)
1309#endif
208 1310
209#ifdef _WIN32 1311#ifdef _WIN32
210# include "ev_win32.c" 1312# include "ev_win32.c"
211#endif 1313#endif
212 1314
213/*****************************************************************************/ 1315/*****************************************************************************/
214 1316
1317/* define a suitable floor function (only used by periodics atm) */
1318
1319#if EV_USE_FLOOR
1320# include <math.h>
1321# define ev_floor(v) floor (v)
1322#else
1323
1324#include <float.h>
1325
1326/* a floor() replacement function, should be independent of ev_tstamp type */
1327static ev_tstamp noinline
1328ev_floor (ev_tstamp v)
1329{
1330 /* the choice of shift factor is not terribly important */
1331#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1332 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1333#else
1334 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1335#endif
1336
1337 /* argument too large for an unsigned long? */
1338 if (expect_false (v >= shift))
1339 {
1340 ev_tstamp f;
1341
1342 if (v == v - 1.)
1343 return v; /* very large number */
1344
1345 f = shift * ev_floor (v * (1. / shift));
1346 return f + ev_floor (v - f);
1347 }
1348
1349 /* special treatment for negative args? */
1350 if (expect_false (v < 0.))
1351 {
1352 ev_tstamp f = -ev_floor (-v);
1353
1354 return f - (f == v ? 0 : 1);
1355 }
1356
1357 /* fits into an unsigned long */
1358 return (unsigned long)v;
1359}
1360
1361#endif
1362
1363/*****************************************************************************/
1364
1365#ifdef __linux
1366# include <sys/utsname.h>
1367#endif
1368
1369static unsigned int noinline ecb_cold
1370ev_linux_version (void)
1371{
1372#ifdef __linux
1373 unsigned int v = 0;
1374 struct utsname buf;
1375 int i;
1376 char *p = buf.release;
1377
1378 if (uname (&buf))
1379 return 0;
1380
1381 for (i = 3+1; --i; )
1382 {
1383 unsigned int c = 0;
1384
1385 for (;;)
1386 {
1387 if (*p >= '0' && *p <= '9')
1388 c = c * 10 + *p++ - '0';
1389 else
1390 {
1391 p += *p == '.';
1392 break;
1393 }
1394 }
1395
1396 v = (v << 8) | c;
1397 }
1398
1399 return v;
1400#else
1401 return 0;
1402#endif
1403}
1404
1405/*****************************************************************************/
1406
1407#if EV_AVOID_STDIO
1408static void noinline ecb_cold
1409ev_printerr (const char *msg)
1410{
1411 write (STDERR_FILENO, msg, strlen (msg));
1412}
1413#endif
1414
215static void (*syserr_cb)(const char *msg); 1415static void (*syserr_cb)(const char *msg) EV_THROW;
216 1416
1417void ecb_cold
217void ev_set_syserr_cb (void (*cb)(const char *msg)) 1418ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
218{ 1419{
219 syserr_cb = cb; 1420 syserr_cb = cb;
220} 1421}
221 1422
222static void 1423static void noinline ecb_cold
223syserr (const char *msg) 1424ev_syserr (const char *msg)
224{ 1425{
225 if (!msg) 1426 if (!msg)
226 msg = "(libev) system error"; 1427 msg = "(libev) system error";
227 1428
228 if (syserr_cb) 1429 if (syserr_cb)
229 syserr_cb (msg); 1430 syserr_cb (msg);
230 else 1431 else
231 { 1432 {
1433#if EV_AVOID_STDIO
1434 ev_printerr (msg);
1435 ev_printerr (": ");
1436 ev_printerr (strerror (errno));
1437 ev_printerr ("\n");
1438#else
232 perror (msg); 1439 perror (msg);
1440#endif
233 abort (); 1441 abort ();
234 } 1442 }
235} 1443}
236 1444
1445static void *
1446ev_realloc_emul (void *ptr, long size) EV_THROW
1447{
1448 /* some systems, notably openbsd and darwin, fail to properly
1449 * implement realloc (x, 0) (as required by both ansi c-89 and
1450 * the single unix specification, so work around them here.
1451 * recently, also (at least) fedora and debian started breaking it,
1452 * despite documenting it otherwise.
1453 */
1454
1455 if (size)
1456 return realloc (ptr, size);
1457
1458 free (ptr);
1459 return 0;
1460}
1461
237static void *(*alloc)(void *ptr, long size); 1462static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
238 1463
1464void ecb_cold
239void ev_set_allocator (void *(*cb)(void *ptr, long size)) 1465ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
240{ 1466{
241 alloc = cb; 1467 alloc = cb;
242} 1468}
243 1469
244static void * 1470inline_speed void *
245ev_realloc (void *ptr, long size) 1471ev_realloc (void *ptr, long size)
246{ 1472{
247 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1473 ptr = alloc (ptr, size);
248 1474
249 if (!ptr && size) 1475 if (!ptr && size)
250 { 1476 {
1477#if EV_AVOID_STDIO
1478 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1479#else
251 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1480 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1481#endif
252 abort (); 1482 abort ();
253 } 1483 }
254 1484
255 return ptr; 1485 return ptr;
256} 1486}
258#define ev_malloc(size) ev_realloc (0, (size)) 1488#define ev_malloc(size) ev_realloc (0, (size))
259#define ev_free(ptr) ev_realloc ((ptr), 0) 1489#define ev_free(ptr) ev_realloc ((ptr), 0)
260 1490
261/*****************************************************************************/ 1491/*****************************************************************************/
262 1492
1493/* set in reify when reification needed */
1494#define EV_ANFD_REIFY 1
1495
1496/* file descriptor info structure */
263typedef struct 1497typedef struct
264{ 1498{
265 WL head; 1499 WL head;
266 unsigned char events; 1500 unsigned char events; /* the events watched for */
1501 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1502 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
267 unsigned char reify; 1503 unsigned char unused;
1504#if EV_USE_EPOLL
1505 unsigned int egen; /* generation counter to counter epoll bugs */
1506#endif
268#if EV_SELECT_IS_WINSOCKET 1507#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
269 SOCKET handle; 1508 SOCKET handle;
270#endif 1509#endif
1510#if EV_USE_IOCP
1511 OVERLAPPED or, ow;
1512#endif
271} ANFD; 1513} ANFD;
272 1514
1515/* stores the pending event set for a given watcher */
273typedef struct 1516typedef struct
274{ 1517{
275 W w; 1518 W w;
276 int events; 1519 int events; /* the pending event set for the given watcher */
277} ANPENDING; 1520} ANPENDING;
1521
1522#if EV_USE_INOTIFY
1523/* hash table entry per inotify-id */
1524typedef struct
1525{
1526 WL head;
1527} ANFS;
1528#endif
1529
1530/* Heap Entry */
1531#if EV_HEAP_CACHE_AT
1532 /* a heap element */
1533 typedef struct {
1534 ev_tstamp at;
1535 WT w;
1536 } ANHE;
1537
1538 #define ANHE_w(he) (he).w /* access watcher, read-write */
1539 #define ANHE_at(he) (he).at /* access cached at, read-only */
1540 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1541#else
1542 /* a heap element */
1543 typedef WT ANHE;
1544
1545 #define ANHE_w(he) (he)
1546 #define ANHE_at(he) (he)->at
1547 #define ANHE_at_cache(he)
1548#endif
278 1549
279#if EV_MULTIPLICITY 1550#if EV_MULTIPLICITY
280 1551
281 struct ev_loop 1552 struct ev_loop
282 { 1553 {
287 #undef VAR 1558 #undef VAR
288 }; 1559 };
289 #include "ev_wrap.h" 1560 #include "ev_wrap.h"
290 1561
291 static struct ev_loop default_loop_struct; 1562 static struct ev_loop default_loop_struct;
292 struct ev_loop *ev_default_loop_ptr; 1563 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
293 1564
294#else 1565#else
295 1566
296 ev_tstamp ev_rt_now; 1567 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
297 #define VAR(name,decl) static decl; 1568 #define VAR(name,decl) static decl;
298 #include "ev_vars.h" 1569 #include "ev_vars.h"
299 #undef VAR 1570 #undef VAR
300 1571
301 static int ev_default_loop_ptr; 1572 static int ev_default_loop_ptr;
302 1573
303#endif 1574#endif
304 1575
1576#if EV_FEATURE_API
1577# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1578# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1579# define EV_INVOKE_PENDING invoke_cb (EV_A)
1580#else
1581# define EV_RELEASE_CB (void)0
1582# define EV_ACQUIRE_CB (void)0
1583# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1584#endif
1585
1586#define EVBREAK_RECURSE 0x80
1587
305/*****************************************************************************/ 1588/*****************************************************************************/
306 1589
1590#ifndef EV_HAVE_EV_TIME
307ev_tstamp 1591ev_tstamp
308ev_time (void) 1592ev_time (void) EV_THROW
309{ 1593{
310#if EV_USE_REALTIME 1594#if EV_USE_REALTIME
1595 if (expect_true (have_realtime))
1596 {
311 struct timespec ts; 1597 struct timespec ts;
312 clock_gettime (CLOCK_REALTIME, &ts); 1598 clock_gettime (CLOCK_REALTIME, &ts);
313 return ts.tv_sec + ts.tv_nsec * 1e-9; 1599 return ts.tv_sec + ts.tv_nsec * 1e-9;
314#else 1600 }
1601#endif
1602
315 struct timeval tv; 1603 struct timeval tv;
316 gettimeofday (&tv, 0); 1604 gettimeofday (&tv, 0);
317 return tv.tv_sec + tv.tv_usec * 1e-6; 1605 return tv.tv_sec + tv.tv_usec * 1e-6;
318#endif
319} 1606}
1607#endif
320 1608
321inline ev_tstamp 1609inline_size ev_tstamp
322get_clock (void) 1610get_clock (void)
323{ 1611{
324#if EV_USE_MONOTONIC 1612#if EV_USE_MONOTONIC
325 if (expect_true (have_monotonic)) 1613 if (expect_true (have_monotonic))
326 { 1614 {
333 return ev_time (); 1621 return ev_time ();
334} 1622}
335 1623
336#if EV_MULTIPLICITY 1624#if EV_MULTIPLICITY
337ev_tstamp 1625ev_tstamp
338ev_now (EV_P) 1626ev_now (EV_P) EV_THROW
339{ 1627{
340 return ev_rt_now; 1628 return ev_rt_now;
341} 1629}
342#endif 1630#endif
343 1631
344#define array_roundsize(type,n) (((n) | 4) & ~3) 1632void
1633ev_sleep (ev_tstamp delay) EV_THROW
1634{
1635 if (delay > 0.)
1636 {
1637#if EV_USE_NANOSLEEP
1638 struct timespec ts;
1639
1640 EV_TS_SET (ts, delay);
1641 nanosleep (&ts, 0);
1642#elif defined _WIN32
1643 Sleep ((unsigned long)(delay * 1e3));
1644#else
1645 struct timeval tv;
1646
1647 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1648 /* something not guaranteed by newer posix versions, but guaranteed */
1649 /* by older ones */
1650 EV_TV_SET (tv, delay);
1651 select (0, 0, 0, 0, &tv);
1652#endif
1653 }
1654}
1655
1656/*****************************************************************************/
1657
1658#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1659
1660/* find a suitable new size for the given array, */
1661/* hopefully by rounding to a nice-to-malloc size */
1662inline_size int
1663array_nextsize (int elem, int cur, int cnt)
1664{
1665 int ncur = cur + 1;
1666
1667 do
1668 ncur <<= 1;
1669 while (cnt > ncur);
1670
1671 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1672 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1673 {
1674 ncur *= elem;
1675 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1676 ncur = ncur - sizeof (void *) * 4;
1677 ncur /= elem;
1678 }
1679
1680 return ncur;
1681}
1682
1683static void * noinline ecb_cold
1684array_realloc (int elem, void *base, int *cur, int cnt)
1685{
1686 *cur = array_nextsize (elem, *cur, cnt);
1687 return ev_realloc (base, elem * *cur);
1688}
1689
1690#define array_init_zero(base,count) \
1691 memset ((void *)(base), 0, sizeof (*(base)) * (count))
345 1692
346#define array_needsize(type,base,cur,cnt,init) \ 1693#define array_needsize(type,base,cur,cnt,init) \
347 if (expect_false ((cnt) > cur)) \ 1694 if (expect_false ((cnt) > (cur))) \
348 { \ 1695 { \
349 int newcnt = cur; \ 1696 int ecb_unused ocur_ = (cur); \
350 do \ 1697 (base) = (type *)array_realloc \
351 { \ 1698 (sizeof (type), (base), &(cur), (cnt)); \
352 newcnt = array_roundsize (type, newcnt << 1); \ 1699 init ((base) + (ocur_), (cur) - ocur_); \
353 } \
354 while ((cnt) > newcnt); \
355 \
356 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
357 init (base + cur, newcnt - cur); \
358 cur = newcnt; \
359 } 1700 }
360 1701
1702#if 0
361#define array_slim(type,stem) \ 1703#define array_slim(type,stem) \
362 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 1704 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
363 { \ 1705 { \
364 stem ## max = array_roundsize (stem ## cnt >> 1); \ 1706 stem ## max = array_roundsize (stem ## cnt >> 1); \
365 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 1707 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
366 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1708 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
367 } 1709 }
1710#endif
368 1711
369#define array_free(stem, idx) \ 1712#define array_free(stem, idx) \
370 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1713 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
371 1714
372/*****************************************************************************/ 1715/*****************************************************************************/
373 1716
374static void 1717/* dummy callback for pending events */
375anfds_init (ANFD *base, int count) 1718static void noinline
1719pendingcb (EV_P_ ev_prepare *w, int revents)
376{ 1720{
377 while (count--)
378 {
379 base->head = 0;
380 base->events = EV_NONE;
381 base->reify = 0;
382
383 ++base;
384 }
385} 1721}
386 1722
387void 1723void noinline
388ev_feed_event (EV_P_ void *w, int revents) 1724ev_feed_event (EV_P_ void *w, int revents) EV_THROW
389{ 1725{
390 W w_ = (W)w; 1726 W w_ = (W)w;
1727 int pri = ABSPRI (w_);
391 1728
392 if (expect_false (w_->pending)) 1729 if (expect_false (w_->pending))
1730 pendings [pri][w_->pending - 1].events |= revents;
1731 else
393 { 1732 {
1733 w_->pending = ++pendingcnt [pri];
1734 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1735 pendings [pri][w_->pending - 1].w = w_;
394 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 1736 pendings [pri][w_->pending - 1].events = revents;
395 return;
396 } 1737 }
397 1738
398 w_->pending = ++pendingcnt [ABSPRI (w_)]; 1739 pendingpri = NUMPRI - 1;
399 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
400 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
401 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
402} 1740}
403 1741
404static void 1742inline_speed void
1743feed_reverse (EV_P_ W w)
1744{
1745 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1746 rfeeds [rfeedcnt++] = w;
1747}
1748
1749inline_size void
1750feed_reverse_done (EV_P_ int revents)
1751{
1752 do
1753 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1754 while (rfeedcnt);
1755}
1756
1757inline_speed void
405queue_events (EV_P_ W *events, int eventcnt, int type) 1758queue_events (EV_P_ W *events, int eventcnt, int type)
406{ 1759{
407 int i; 1760 int i;
408 1761
409 for (i = 0; i < eventcnt; ++i) 1762 for (i = 0; i < eventcnt; ++i)
410 ev_feed_event (EV_A_ events [i], type); 1763 ev_feed_event (EV_A_ events [i], type);
411} 1764}
412 1765
1766/*****************************************************************************/
1767
413inline void 1768inline_speed void
414fd_event (EV_P_ int fd, int revents) 1769fd_event_nocheck (EV_P_ int fd, int revents)
415{ 1770{
416 ANFD *anfd = anfds + fd; 1771 ANFD *anfd = anfds + fd;
417 struct ev_io *w; 1772 ev_io *w;
418 1773
419 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 1774 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
420 { 1775 {
421 int ev = w->events & revents; 1776 int ev = w->events & revents;
422 1777
423 if (ev) 1778 if (ev)
424 ev_feed_event (EV_A_ (W)w, ev); 1779 ev_feed_event (EV_A_ (W)w, ev);
425 } 1780 }
426} 1781}
427 1782
1783/* do not submit kernel events for fds that have reify set */
1784/* because that means they changed while we were polling for new events */
1785inline_speed void
1786fd_event (EV_P_ int fd, int revents)
1787{
1788 ANFD *anfd = anfds + fd;
1789
1790 if (expect_true (!anfd->reify))
1791 fd_event_nocheck (EV_A_ fd, revents);
1792}
1793
428void 1794void
429ev_feed_fd_event (EV_P_ int fd, int revents) 1795ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
430{ 1796{
1797 if (fd >= 0 && fd < anfdmax)
431 fd_event (EV_A_ fd, revents); 1798 fd_event_nocheck (EV_A_ fd, revents);
432} 1799}
433 1800
434/*****************************************************************************/ 1801/* make sure the external fd watch events are in-sync */
435 1802/* with the kernel/libev internal state */
436inline void 1803inline_size void
437fd_reify (EV_P) 1804fd_reify (EV_P)
438{ 1805{
439 int i; 1806 int i;
440 1807
1808#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
441 for (i = 0; i < fdchangecnt; ++i) 1809 for (i = 0; i < fdchangecnt; ++i)
442 { 1810 {
443 int fd = fdchanges [i]; 1811 int fd = fdchanges [i];
444 ANFD *anfd = anfds + fd; 1812 ANFD *anfd = anfds + fd;
445 struct ev_io *w;
446 1813
447 int events = 0; 1814 if (anfd->reify & EV__IOFDSET && anfd->head)
448
449 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
450 events |= w->events;
451
452#if EV_SELECT_IS_WINSOCKET
453 if (events)
454 { 1815 {
1816 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1817
1818 if (handle != anfd->handle)
1819 {
455 unsigned long argp; 1820 unsigned long arg;
456 anfd->handle = _get_osfhandle (fd); 1821
457 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1822 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1823
1824 /* handle changed, but fd didn't - we need to do it in two steps */
1825 backend_modify (EV_A_ fd, anfd->events, 0);
1826 anfd->events = 0;
1827 anfd->handle = handle;
1828 }
458 } 1829 }
1830 }
459#endif 1831#endif
460 1832
1833 for (i = 0; i < fdchangecnt; ++i)
1834 {
1835 int fd = fdchanges [i];
1836 ANFD *anfd = anfds + fd;
1837 ev_io *w;
1838
1839 unsigned char o_events = anfd->events;
1840 unsigned char o_reify = anfd->reify;
1841
461 anfd->reify = 0; 1842 anfd->reify = 0;
462 1843
463 method_modify (EV_A_ fd, anfd->events, events); 1844 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1845 {
464 anfd->events = events; 1846 anfd->events = 0;
1847
1848 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1849 anfd->events |= (unsigned char)w->events;
1850
1851 if (o_events != anfd->events)
1852 o_reify = EV__IOFDSET; /* actually |= */
1853 }
1854
1855 if (o_reify & EV__IOFDSET)
1856 backend_modify (EV_A_ fd, o_events, anfd->events);
465 } 1857 }
466 1858
467 fdchangecnt = 0; 1859 fdchangecnt = 0;
468} 1860}
469 1861
470static void 1862/* something about the given fd changed */
1863inline_size void
471fd_change (EV_P_ int fd) 1864fd_change (EV_P_ int fd, int flags)
472{ 1865{
473 if (expect_false (anfds [fd].reify)) 1866 unsigned char reify = anfds [fd].reify;
474 return;
475
476 anfds [fd].reify = 1; 1867 anfds [fd].reify |= flags;
477 1868
1869 if (expect_true (!reify))
1870 {
478 ++fdchangecnt; 1871 ++fdchangecnt;
479 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1872 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
480 fdchanges [fdchangecnt - 1] = fd; 1873 fdchanges [fdchangecnt - 1] = fd;
1874 }
481} 1875}
482 1876
483static void 1877/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1878inline_speed void ecb_cold
484fd_kill (EV_P_ int fd) 1879fd_kill (EV_P_ int fd)
485{ 1880{
486 struct ev_io *w; 1881 ev_io *w;
487 1882
488 while ((w = (struct ev_io *)anfds [fd].head)) 1883 while ((w = (ev_io *)anfds [fd].head))
489 { 1884 {
490 ev_io_stop (EV_A_ w); 1885 ev_io_stop (EV_A_ w);
491 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1886 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
492 } 1887 }
493} 1888}
494 1889
495inline int 1890/* check whether the given fd is actually valid, for error recovery */
1891inline_size int ecb_cold
496fd_valid (int fd) 1892fd_valid (int fd)
497{ 1893{
498#ifdef _WIN32 1894#ifdef _WIN32
499 return _get_osfhandle (fd) != -1; 1895 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
500#else 1896#else
501 return fcntl (fd, F_GETFD) != -1; 1897 return fcntl (fd, F_GETFD) != -1;
502#endif 1898#endif
503} 1899}
504 1900
505/* called on EBADF to verify fds */ 1901/* called on EBADF to verify fds */
506static void 1902static void noinline ecb_cold
507fd_ebadf (EV_P) 1903fd_ebadf (EV_P)
508{ 1904{
509 int fd; 1905 int fd;
510 1906
511 for (fd = 0; fd < anfdmax; ++fd) 1907 for (fd = 0; fd < anfdmax; ++fd)
512 if (anfds [fd].events) 1908 if (anfds [fd].events)
513 if (!fd_valid (fd) == -1 && errno == EBADF) 1909 if (!fd_valid (fd) && errno == EBADF)
514 fd_kill (EV_A_ fd); 1910 fd_kill (EV_A_ fd);
515} 1911}
516 1912
517/* called on ENOMEM in select/poll to kill some fds and retry */ 1913/* called on ENOMEM in select/poll to kill some fds and retry */
518static void 1914static void noinline ecb_cold
519fd_enomem (EV_P) 1915fd_enomem (EV_P)
520{ 1916{
521 int fd; 1917 int fd;
522 1918
523 for (fd = anfdmax; fd--; ) 1919 for (fd = anfdmax; fd--; )
524 if (anfds [fd].events) 1920 if (anfds [fd].events)
525 { 1921 {
526 fd_kill (EV_A_ fd); 1922 fd_kill (EV_A_ fd);
527 return; 1923 break;
528 } 1924 }
529} 1925}
530 1926
531/* usually called after fork if method needs to re-arm all fds from scratch */ 1927/* usually called after fork if backend needs to re-arm all fds from scratch */
532static void 1928static void noinline
533fd_rearm_all (EV_P) 1929fd_rearm_all (EV_P)
534{ 1930{
535 int fd; 1931 int fd;
536 1932
537 /* this should be highly optimised to not do anything but set a flag */
538 for (fd = 0; fd < anfdmax; ++fd) 1933 for (fd = 0; fd < anfdmax; ++fd)
539 if (anfds [fd].events) 1934 if (anfds [fd].events)
540 { 1935 {
541 anfds [fd].events = 0; 1936 anfds [fd].events = 0;
542 fd_change (EV_A_ fd); 1937 anfds [fd].emask = 0;
1938 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
543 } 1939 }
544} 1940}
545 1941
546/*****************************************************************************/ 1942/* used to prepare libev internal fd's */
547 1943/* this is not fork-safe */
548static void
549upheap (WT *heap, int k)
550{
551 WT w = heap [k];
552
553 while (k && heap [k >> 1]->at > w->at)
554 {
555 heap [k] = heap [k >> 1];
556 ((W)heap [k])->active = k + 1;
557 k >>= 1;
558 }
559
560 heap [k] = w;
561 ((W)heap [k])->active = k + 1;
562
563}
564
565static void
566downheap (WT *heap, int N, int k)
567{
568 WT w = heap [k];
569
570 while (k < (N >> 1))
571 {
572 int j = k << 1;
573
574 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
575 ++j;
576
577 if (w->at <= heap [j]->at)
578 break;
579
580 heap [k] = heap [j];
581 ((W)heap [k])->active = k + 1;
582 k = j;
583 }
584
585 heap [k] = w;
586 ((W)heap [k])->active = k + 1;
587}
588
589inline void 1944inline_speed void
590adjustheap (WT *heap, int N, int k)
591{
592 upheap (heap, k);
593 downheap (heap, N, k);
594}
595
596/*****************************************************************************/
597
598typedef struct
599{
600 WL head;
601 sig_atomic_t volatile gotsig;
602} ANSIG;
603
604static ANSIG *signals;
605static int signalmax;
606
607static int sigpipe [2];
608static sig_atomic_t volatile gotsig;
609static struct ev_io sigev;
610
611static void
612signals_init (ANSIG *base, int count)
613{
614 while (count--)
615 {
616 base->head = 0;
617 base->gotsig = 0;
618
619 ++base;
620 }
621}
622
623static void
624sighandler (int signum)
625{
626#if _WIN32
627 signal (signum, sighandler);
628#endif
629
630 signals [signum - 1].gotsig = 1;
631
632 if (!gotsig)
633 {
634 int old_errno = errno;
635 gotsig = 1;
636 write (sigpipe [1], &signum, 1);
637 errno = old_errno;
638 }
639}
640
641void
642ev_feed_signal_event (EV_P_ int signum)
643{
644 WL w;
645
646#if EV_MULTIPLICITY
647 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
648#endif
649
650 --signum;
651
652 if (signum < 0 || signum >= signalmax)
653 return;
654
655 signals [signum].gotsig = 0;
656
657 for (w = signals [signum].head; w; w = w->next)
658 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
659}
660
661static void
662sigcb (EV_P_ struct ev_io *iow, int revents)
663{
664 int signum;
665
666 read (sigpipe [0], &revents, 1);
667 gotsig = 0;
668
669 for (signum = signalmax; signum--; )
670 if (signals [signum].gotsig)
671 ev_feed_signal_event (EV_A_ signum + 1);
672}
673
674static void
675fd_intern (int fd) 1945fd_intern (int fd)
676{ 1946{
677#ifdef _WIN32 1947#ifdef _WIN32
678 int arg = 1; 1948 unsigned long arg = 1;
679 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1949 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
680#else 1950#else
681 fcntl (fd, F_SETFD, FD_CLOEXEC); 1951 fcntl (fd, F_SETFD, FD_CLOEXEC);
682 fcntl (fd, F_SETFL, O_NONBLOCK); 1952 fcntl (fd, F_SETFL, O_NONBLOCK);
683#endif 1953#endif
684} 1954}
685 1955
1956/*****************************************************************************/
1957
1958/*
1959 * the heap functions want a real array index. array index 0 is guaranteed to not
1960 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1961 * the branching factor of the d-tree.
1962 */
1963
1964/*
1965 * at the moment we allow libev the luxury of two heaps,
1966 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1967 * which is more cache-efficient.
1968 * the difference is about 5% with 50000+ watchers.
1969 */
1970#if EV_USE_4HEAP
1971
1972#define DHEAP 4
1973#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1974#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1975#define UPHEAP_DONE(p,k) ((p) == (k))
1976
1977/* away from the root */
1978inline_speed void
1979downheap (ANHE *heap, int N, int k)
1980{
1981 ANHE he = heap [k];
1982 ANHE *E = heap + N + HEAP0;
1983
1984 for (;;)
1985 {
1986 ev_tstamp minat;
1987 ANHE *minpos;
1988 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1989
1990 /* find minimum child */
1991 if (expect_true (pos + DHEAP - 1 < E))
1992 {
1993 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1994 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1995 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1996 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1997 }
1998 else if (pos < E)
1999 {
2000 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2001 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2002 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2003 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2004 }
2005 else
2006 break;
2007
2008 if (ANHE_at (he) <= minat)
2009 break;
2010
2011 heap [k] = *minpos;
2012 ev_active (ANHE_w (*minpos)) = k;
2013
2014 k = minpos - heap;
2015 }
2016
2017 heap [k] = he;
2018 ev_active (ANHE_w (he)) = k;
2019}
2020
2021#else /* 4HEAP */
2022
2023#define HEAP0 1
2024#define HPARENT(k) ((k) >> 1)
2025#define UPHEAP_DONE(p,k) (!(p))
2026
2027/* away from the root */
2028inline_speed void
2029downheap (ANHE *heap, int N, int k)
2030{
2031 ANHE he = heap [k];
2032
2033 for (;;)
2034 {
2035 int c = k << 1;
2036
2037 if (c >= N + HEAP0)
2038 break;
2039
2040 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2041 ? 1 : 0;
2042
2043 if (ANHE_at (he) <= ANHE_at (heap [c]))
2044 break;
2045
2046 heap [k] = heap [c];
2047 ev_active (ANHE_w (heap [k])) = k;
2048
2049 k = c;
2050 }
2051
2052 heap [k] = he;
2053 ev_active (ANHE_w (he)) = k;
2054}
2055#endif
2056
2057/* towards the root */
2058inline_speed void
2059upheap (ANHE *heap, int k)
2060{
2061 ANHE he = heap [k];
2062
2063 for (;;)
2064 {
2065 int p = HPARENT (k);
2066
2067 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2068 break;
2069
2070 heap [k] = heap [p];
2071 ev_active (ANHE_w (heap [k])) = k;
2072 k = p;
2073 }
2074
2075 heap [k] = he;
2076 ev_active (ANHE_w (he)) = k;
2077}
2078
2079/* move an element suitably so it is in a correct place */
2080inline_size void
2081adjustheap (ANHE *heap, int N, int k)
2082{
2083 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2084 upheap (heap, k);
2085 else
2086 downheap (heap, N, k);
2087}
2088
2089/* rebuild the heap: this function is used only once and executed rarely */
2090inline_size void
2091reheap (ANHE *heap, int N)
2092{
2093 int i;
2094
2095 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2096 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2097 for (i = 0; i < N; ++i)
2098 upheap (heap, i + HEAP0);
2099}
2100
2101/*****************************************************************************/
2102
2103/* associate signal watchers to a signal signal */
2104typedef struct
2105{
2106 EV_ATOMIC_T pending;
2107#if EV_MULTIPLICITY
2108 EV_P;
2109#endif
2110 WL head;
2111} ANSIG;
2112
2113static ANSIG signals [EV_NSIG - 1];
2114
2115/*****************************************************************************/
2116
2117#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2118
2119static void noinline ecb_cold
2120evpipe_init (EV_P)
2121{
2122 if (!ev_is_active (&pipe_w))
2123 {
2124 int fds [2];
2125
2126# if EV_USE_EVENTFD
2127 fds [0] = -1;
2128 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2129 if (fds [1] < 0 && errno == EINVAL)
2130 fds [1] = eventfd (0, 0);
2131
2132 if (fds [1] < 0)
2133# endif
2134 {
2135 while (pipe (fds))
2136 ev_syserr ("(libev) error creating signal/async pipe");
2137
2138 fd_intern (fds [0]);
2139 }
2140
2141 evpipe [0] = fds [0];
2142
2143 if (evpipe [1] < 0)
2144 evpipe [1] = fds [1]; /* first call, set write fd */
2145 else
2146 {
2147 /* on subsequent calls, do not change evpipe [1] */
2148 /* so that evpipe_write can always rely on its value. */
2149 /* this branch does not do anything sensible on windows, */
2150 /* so must not be executed on windows */
2151
2152 dup2 (fds [1], evpipe [1]);
2153 close (fds [1]);
2154 }
2155
2156 fd_intern (evpipe [1]);
2157
2158 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2159 ev_io_start (EV_A_ &pipe_w);
2160 ev_unref (EV_A); /* watcher should not keep loop alive */
2161 }
2162}
2163
2164inline_speed void
2165evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2166{
2167 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2168
2169 if (expect_true (*flag))
2170 return;
2171
2172 *flag = 1;
2173 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2174
2175 pipe_write_skipped = 1;
2176
2177 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2178
2179 if (pipe_write_wanted)
2180 {
2181 int old_errno;
2182
2183 pipe_write_skipped = 0;
2184 ECB_MEMORY_FENCE_RELEASE;
2185
2186 old_errno = errno; /* save errno because write will clobber it */
2187
2188#if EV_USE_EVENTFD
2189 if (evpipe [0] < 0)
2190 {
2191 uint64_t counter = 1;
2192 write (evpipe [1], &counter, sizeof (uint64_t));
2193 }
2194 else
2195#endif
2196 {
2197#ifdef _WIN32
2198 WSABUF buf;
2199 DWORD sent;
2200 buf.buf = &buf;
2201 buf.len = 1;
2202 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2203#else
2204 write (evpipe [1], &(evpipe [1]), 1);
2205#endif
2206 }
2207
2208 errno = old_errno;
2209 }
2210}
2211
2212/* called whenever the libev signal pipe */
2213/* got some events (signal, async) */
686static void 2214static void
687siginit (EV_P) 2215pipecb (EV_P_ ev_io *iow, int revents)
688{ 2216{
689 fd_intern (sigpipe [0]); 2217 int i;
690 fd_intern (sigpipe [1]);
691 2218
692 ev_io_set (&sigev, sigpipe [0], EV_READ); 2219 if (revents & EV_READ)
693 ev_io_start (EV_A_ &sigev); 2220 {
694 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2221#if EV_USE_EVENTFD
2222 if (evpipe [0] < 0)
2223 {
2224 uint64_t counter;
2225 read (evpipe [1], &counter, sizeof (uint64_t));
2226 }
2227 else
2228#endif
2229 {
2230 char dummy[4];
2231#ifdef _WIN32
2232 WSABUF buf;
2233 DWORD recvd;
2234 DWORD flags = 0;
2235 buf.buf = dummy;
2236 buf.len = sizeof (dummy);
2237 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2238#else
2239 read (evpipe [0], &dummy, sizeof (dummy));
2240#endif
2241 }
2242 }
2243
2244 pipe_write_skipped = 0;
2245
2246 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2247
2248#if EV_SIGNAL_ENABLE
2249 if (sig_pending)
2250 {
2251 sig_pending = 0;
2252
2253 ECB_MEMORY_FENCE;
2254
2255 for (i = EV_NSIG - 1; i--; )
2256 if (expect_false (signals [i].pending))
2257 ev_feed_signal_event (EV_A_ i + 1);
2258 }
2259#endif
2260
2261#if EV_ASYNC_ENABLE
2262 if (async_pending)
2263 {
2264 async_pending = 0;
2265
2266 ECB_MEMORY_FENCE;
2267
2268 for (i = asynccnt; i--; )
2269 if (asyncs [i]->sent)
2270 {
2271 asyncs [i]->sent = 0;
2272 ECB_MEMORY_FENCE_RELEASE;
2273 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2274 }
2275 }
2276#endif
695} 2277}
696 2278
697/*****************************************************************************/ 2279/*****************************************************************************/
698 2280
699static struct ev_child *childs [PID_HASHSIZE]; 2281void
2282ev_feed_signal (int signum) EV_THROW
2283{
2284#if EV_MULTIPLICITY
2285 EV_P;
2286 ECB_MEMORY_FENCE_ACQUIRE;
2287 EV_A = signals [signum - 1].loop;
700 2288
2289 if (!EV_A)
2290 return;
2291#endif
2292
2293 signals [signum - 1].pending = 1;
2294 evpipe_write (EV_A_ &sig_pending);
2295}
2296
2297static void
2298ev_sighandler (int signum)
2299{
701#ifndef _WIN32 2300#ifdef _WIN32
2301 signal (signum, ev_sighandler);
2302#endif
702 2303
2304 ev_feed_signal (signum);
2305}
2306
2307void noinline
2308ev_feed_signal_event (EV_P_ int signum) EV_THROW
2309{
2310 WL w;
2311
2312 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2313 return;
2314
2315 --signum;
2316
2317#if EV_MULTIPLICITY
2318 /* it is permissible to try to feed a signal to the wrong loop */
2319 /* or, likely more useful, feeding a signal nobody is waiting for */
2320
2321 if (expect_false (signals [signum].loop != EV_A))
2322 return;
2323#endif
2324
2325 signals [signum].pending = 0;
2326 ECB_MEMORY_FENCE_RELEASE;
2327
2328 for (w = signals [signum].head; w; w = w->next)
2329 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2330}
2331
2332#if EV_USE_SIGNALFD
2333static void
2334sigfdcb (EV_P_ ev_io *iow, int revents)
2335{
2336 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2337
2338 for (;;)
2339 {
2340 ssize_t res = read (sigfd, si, sizeof (si));
2341
2342 /* not ISO-C, as res might be -1, but works with SuS */
2343 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2344 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2345
2346 if (res < (ssize_t)sizeof (si))
2347 break;
2348 }
2349}
2350#endif
2351
2352#endif
2353
2354/*****************************************************************************/
2355
2356#if EV_CHILD_ENABLE
2357static WL childs [EV_PID_HASHSIZE];
2358
703static struct ev_signal childev; 2359static ev_signal childev;
2360
2361#ifndef WIFCONTINUED
2362# define WIFCONTINUED(status) 0
2363#endif
2364
2365/* handle a single child status event */
2366inline_speed void
2367child_reap (EV_P_ int chain, int pid, int status)
2368{
2369 ev_child *w;
2370 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2371
2372 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2373 {
2374 if ((w->pid == pid || !w->pid)
2375 && (!traced || (w->flags & 1)))
2376 {
2377 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2378 w->rpid = pid;
2379 w->rstatus = status;
2380 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2381 }
2382 }
2383}
704 2384
705#ifndef WCONTINUED 2385#ifndef WCONTINUED
706# define WCONTINUED 0 2386# define WCONTINUED 0
707#endif 2387#endif
708 2388
2389/* called on sigchld etc., calls waitpid */
709static void 2390static void
710child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
711{
712 struct ev_child *w;
713
714 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
715 if (w->pid == pid || !w->pid)
716 {
717 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
718 w->rpid = pid;
719 w->rstatus = status;
720 ev_feed_event (EV_A_ (W)w, EV_CHILD);
721 }
722}
723
724static void
725childcb (EV_P_ struct ev_signal *sw, int revents) 2391childcb (EV_P_ ev_signal *sw, int revents)
726{ 2392{
727 int pid, status; 2393 int pid, status;
728 2394
2395 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
729 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 2396 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
730 { 2397 if (!WCONTINUED
2398 || errno != EINVAL
2399 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2400 return;
2401
731 /* make sure we are called again until all childs have been reaped */ 2402 /* make sure we are called again until all children have been reaped */
2403 /* we need to do it this way so that the callback gets called before we continue */
732 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2404 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
733 2405
734 child_reap (EV_A_ sw, pid, pid, status); 2406 child_reap (EV_A_ pid, pid, status);
2407 if ((EV_PID_HASHSIZE) > 1)
735 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 2408 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
736 }
737} 2409}
738 2410
739#endif 2411#endif
740 2412
741/*****************************************************************************/ 2413/*****************************************************************************/
742 2414
2415#if EV_USE_IOCP
2416# include "ev_iocp.c"
2417#endif
743#if EV_USE_PORT 2418#if EV_USE_PORT
744# include "ev_port.c" 2419# include "ev_port.c"
745#endif 2420#endif
746#if EV_USE_KQUEUE 2421#if EV_USE_KQUEUE
747# include "ev_kqueue.c" 2422# include "ev_kqueue.c"
754#endif 2429#endif
755#if EV_USE_SELECT 2430#if EV_USE_SELECT
756# include "ev_select.c" 2431# include "ev_select.c"
757#endif 2432#endif
758 2433
759int 2434int ecb_cold
760ev_version_major (void) 2435ev_version_major (void) EV_THROW
761{ 2436{
762 return EV_VERSION_MAJOR; 2437 return EV_VERSION_MAJOR;
763} 2438}
764 2439
765int 2440int ecb_cold
766ev_version_minor (void) 2441ev_version_minor (void) EV_THROW
767{ 2442{
768 return EV_VERSION_MINOR; 2443 return EV_VERSION_MINOR;
769} 2444}
770 2445
771/* return true if we are running with elevated privileges and should ignore env variables */ 2446/* return true if we are running with elevated privileges and should ignore env variables */
772static int 2447int inline_size ecb_cold
773enable_secure (void) 2448enable_secure (void)
774{ 2449{
775#ifdef _WIN32 2450#ifdef _WIN32
776 return 0; 2451 return 0;
777#else 2452#else
778 return getuid () != geteuid () 2453 return getuid () != geteuid ()
779 || getgid () != getegid (); 2454 || getgid () != getegid ();
780#endif 2455#endif
781} 2456}
782 2457
783unsigned int 2458unsigned int ecb_cold
784ev_supported_backends (void) 2459ev_supported_backends (void) EV_THROW
785{ 2460{
786}
787
788unsigned int
789ev_recommended_backends (void)
790{
791 unsigned int flags; 2461 unsigned int flags = 0;
792 2462
793 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2463 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
794 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2464 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
795 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL; 2465 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
796 if (EV_USE_POLL ) flags |= EVBACKEND_POLL; 2466 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
797 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2467 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
798 2468
799 return flags; 2469 return flags;
800} 2470}
801 2471
802unsigned int 2472unsigned int ecb_cold
803ev_backend (EV_P) 2473ev_recommended_backends (void) EV_THROW
804{ 2474{
805 unsigned int flags = ev_recommended_backends (); 2475 unsigned int flags = ev_supported_backends ();
806 2476
807#ifndef __NetBSD__ 2477#ifndef __NetBSD__
808 /* kqueue is borked on everything but netbsd apparently */ 2478 /* kqueue is borked on everything but netbsd apparently */
809 /* it usually doesn't work correctly on anything but sockets and pipes */ 2479 /* it usually doesn't work correctly on anything but sockets and pipes */
810 flags &= ~EVBACKEND_KQUEUE; 2480 flags &= ~EVBACKEND_KQUEUE;
811#endif 2481#endif
812#ifdef __APPLE__ 2482#ifdef __APPLE__
813 // flags &= ~EVBACKEND_KQUEUE; for documentation 2483 /* only select works correctly on that "unix-certified" platform */
814 flags &= ~EVBACKEND_POLL; 2484 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2485 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2486#endif
2487#ifdef __FreeBSD__
2488 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
815#endif 2489#endif
816 2490
817 return flags; 2491 return flags;
818} 2492}
819 2493
820static void 2494unsigned int ecb_cold
2495ev_embeddable_backends (void) EV_THROW
2496{
2497 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2498
2499 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2500 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2501 flags &= ~EVBACKEND_EPOLL;
2502
2503 return flags;
2504}
2505
2506unsigned int
2507ev_backend (EV_P) EV_THROW
2508{
2509 return backend;
2510}
2511
2512#if EV_FEATURE_API
2513unsigned int
2514ev_iteration (EV_P) EV_THROW
2515{
2516 return loop_count;
2517}
2518
2519unsigned int
2520ev_depth (EV_P) EV_THROW
2521{
2522 return loop_depth;
2523}
2524
2525void
2526ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2527{
2528 io_blocktime = interval;
2529}
2530
2531void
2532ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2533{
2534 timeout_blocktime = interval;
2535}
2536
2537void
2538ev_set_userdata (EV_P_ void *data) EV_THROW
2539{
2540 userdata = data;
2541}
2542
2543void *
2544ev_userdata (EV_P) EV_THROW
2545{
2546 return userdata;
2547}
2548
2549void
2550ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2551{
2552 invoke_cb = invoke_pending_cb;
2553}
2554
2555void
2556ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2557{
2558 release_cb = release;
2559 acquire_cb = acquire;
2560}
2561#endif
2562
2563/* initialise a loop structure, must be zero-initialised */
2564static void noinline ecb_cold
821loop_init (EV_P_ unsigned int flags) 2565loop_init (EV_P_ unsigned int flags) EV_THROW
822{ 2566{
823 if (!method) 2567 if (!backend)
824 { 2568 {
2569 origflags = flags;
2570
2571#if EV_USE_REALTIME
2572 if (!have_realtime)
2573 {
2574 struct timespec ts;
2575
2576 if (!clock_gettime (CLOCK_REALTIME, &ts))
2577 have_realtime = 1;
2578 }
2579#endif
2580
825#if EV_USE_MONOTONIC 2581#if EV_USE_MONOTONIC
2582 if (!have_monotonic)
826 { 2583 {
827 struct timespec ts; 2584 struct timespec ts;
2585
828 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2586 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
829 have_monotonic = 1; 2587 have_monotonic = 1;
830 } 2588 }
831#endif 2589#endif
832 2590
833 ev_rt_now = ev_time (); 2591 /* pid check not overridable via env */
834 mn_now = get_clock (); 2592#ifndef _WIN32
835 now_floor = mn_now; 2593 if (flags & EVFLAG_FORKCHECK)
836 rtmn_diff = ev_rt_now - mn_now; 2594 curpid = getpid ();
2595#endif
837 2596
838 if (!(flags & EVFLAG_NOENV) 2597 if (!(flags & EVFLAG_NOENV)
839 && !enable_secure () 2598 && !enable_secure ()
840 && getenv ("LIBEV_FLAGS")) 2599 && getenv ("LIBEV_FLAGS"))
841 flags = atoi (getenv ("LIBEV_FLAGS")); 2600 flags = atoi (getenv ("LIBEV_FLAGS"));
842 2601
843 if (!(flags & 0x0000ffffUL)) 2602 ev_rt_now = ev_time ();
2603 mn_now = get_clock ();
2604 now_floor = mn_now;
2605 rtmn_diff = ev_rt_now - mn_now;
2606#if EV_FEATURE_API
2607 invoke_cb = ev_invoke_pending;
2608#endif
2609
2610 io_blocktime = 0.;
2611 timeout_blocktime = 0.;
2612 backend = 0;
2613 backend_fd = -1;
2614 sig_pending = 0;
2615#if EV_ASYNC_ENABLE
2616 async_pending = 0;
2617#endif
2618 pipe_write_skipped = 0;
2619 pipe_write_wanted = 0;
2620 evpipe [0] = -1;
2621 evpipe [1] = -1;
2622#if EV_USE_INOTIFY
2623 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2624#endif
2625#if EV_USE_SIGNALFD
2626 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2627#endif
2628
2629 if (!(flags & EVBACKEND_MASK))
844 flags |= ev_recommended_backends (); 2630 flags |= ev_recommended_backends ();
845 2631
846 method = 0; 2632#if EV_USE_IOCP
2633 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2634#endif
847#if EV_USE_PORT 2635#if EV_USE_PORT
848 if (!method && (flags & EVBACKEND_PORT )) method = port_init (EV_A_ flags); 2636 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
849#endif 2637#endif
850#if EV_USE_KQUEUE 2638#if EV_USE_KQUEUE
851 if (!method && (flags & EVBACKEND_KQUEUE)) method = kqueue_init (EV_A_ flags); 2639 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
852#endif 2640#endif
853#if EV_USE_EPOLL 2641#if EV_USE_EPOLL
854 if (!method && (flags & EVBACKEND_EPOLL )) method = epoll_init (EV_A_ flags); 2642 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
855#endif 2643#endif
856#if EV_USE_POLL 2644#if EV_USE_POLL
857 if (!method && (flags & EVBACKEND_POLL )) method = poll_init (EV_A_ flags); 2645 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
858#endif 2646#endif
859#if EV_USE_SELECT 2647#if EV_USE_SELECT
860 if (!method && (flags & EVBACKEND_SELECT)) method = select_init (EV_A_ flags); 2648 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
861#endif 2649#endif
862 2650
2651 ev_prepare_init (&pending_w, pendingcb);
2652
2653#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
863 ev_init (&sigev, sigcb); 2654 ev_init (&pipe_w, pipecb);
864 ev_set_priority (&sigev, EV_MAXPRI); 2655 ev_set_priority (&pipe_w, EV_MAXPRI);
2656#endif
865 } 2657 }
866} 2658}
867 2659
868static void 2660/* free up a loop structure */
2661void ecb_cold
869loop_destroy (EV_P) 2662ev_loop_destroy (EV_P)
870{ 2663{
871 int i; 2664 int i;
872 2665
2666#if EV_MULTIPLICITY
2667 /* mimic free (0) */
2668 if (!EV_A)
2669 return;
2670#endif
2671
2672#if EV_CLEANUP_ENABLE
2673 /* queue cleanup watchers (and execute them) */
2674 if (expect_false (cleanupcnt))
2675 {
2676 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2677 EV_INVOKE_PENDING;
2678 }
2679#endif
2680
2681#if EV_CHILD_ENABLE
2682 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2683 {
2684 ev_ref (EV_A); /* child watcher */
2685 ev_signal_stop (EV_A_ &childev);
2686 }
2687#endif
2688
2689 if (ev_is_active (&pipe_w))
2690 {
2691 /*ev_ref (EV_A);*/
2692 /*ev_io_stop (EV_A_ &pipe_w);*/
2693
2694 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2695 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2696 }
2697
2698#if EV_USE_SIGNALFD
2699 if (ev_is_active (&sigfd_w))
2700 close (sigfd);
2701#endif
2702
2703#if EV_USE_INOTIFY
2704 if (fs_fd >= 0)
2705 close (fs_fd);
2706#endif
2707
2708 if (backend_fd >= 0)
2709 close (backend_fd);
2710
2711#if EV_USE_IOCP
2712 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2713#endif
873#if EV_USE_PORT 2714#if EV_USE_PORT
874 if (method == EVBACKEND_PORT ) port_destroy (EV_A); 2715 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
875#endif 2716#endif
876#if EV_USE_KQUEUE 2717#if EV_USE_KQUEUE
877 if (method == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2718 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
878#endif 2719#endif
879#if EV_USE_EPOLL 2720#if EV_USE_EPOLL
880 if (method == EVBACKEND_EPOLL ) epoll_destroy (EV_A); 2721 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
881#endif 2722#endif
882#if EV_USE_POLL 2723#if EV_USE_POLL
883 if (method == EVBACKEND_POLL ) poll_destroy (EV_A); 2724 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
884#endif 2725#endif
885#if EV_USE_SELECT 2726#if EV_USE_SELECT
886 if (method == EVBACKEND_SELECT) select_destroy (EV_A); 2727 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
887#endif 2728#endif
888 2729
889 for (i = NUMPRI; i--; ) 2730 for (i = NUMPRI; i--; )
2731 {
890 array_free (pending, [i]); 2732 array_free (pending, [i]);
2733#if EV_IDLE_ENABLE
2734 array_free (idle, [i]);
2735#endif
2736 }
2737
2738 ev_free (anfds); anfds = 0; anfdmax = 0;
891 2739
892 /* have to use the microsoft-never-gets-it-right macro */ 2740 /* have to use the microsoft-never-gets-it-right macro */
2741 array_free (rfeed, EMPTY);
893 array_free (fdchange, EMPTY0); 2742 array_free (fdchange, EMPTY);
894 array_free (timer, EMPTY0); 2743 array_free (timer, EMPTY);
895#if EV_PERIODICS 2744#if EV_PERIODIC_ENABLE
896 array_free (periodic, EMPTY0); 2745 array_free (periodic, EMPTY);
897#endif 2746#endif
2747#if EV_FORK_ENABLE
2748 array_free (fork, EMPTY);
2749#endif
2750#if EV_CLEANUP_ENABLE
898 array_free (idle, EMPTY0); 2751 array_free (cleanup, EMPTY);
2752#endif
899 array_free (prepare, EMPTY0); 2753 array_free (prepare, EMPTY);
900 array_free (check, EMPTY0); 2754 array_free (check, EMPTY);
2755#if EV_ASYNC_ENABLE
2756 array_free (async, EMPTY);
2757#endif
901 2758
902 method = 0; 2759 backend = 0;
903}
904 2760
905static void 2761#if EV_MULTIPLICITY
2762 if (ev_is_default_loop (EV_A))
2763#endif
2764 ev_default_loop_ptr = 0;
2765#if EV_MULTIPLICITY
2766 else
2767 ev_free (EV_A);
2768#endif
2769}
2770
2771#if EV_USE_INOTIFY
2772inline_size void infy_fork (EV_P);
2773#endif
2774
2775inline_size void
906loop_fork (EV_P) 2776loop_fork (EV_P)
907{ 2777{
908#if EV_USE_PORT 2778#if EV_USE_PORT
909 if (method == EVBACKEND_PORT ) port_fork (EV_A); 2779 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
910#endif 2780#endif
911#if EV_USE_KQUEUE 2781#if EV_USE_KQUEUE
912 if (method == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 2782 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
913#endif 2783#endif
914#if EV_USE_EPOLL 2784#if EV_USE_EPOLL
915 if (method == EVBACKEND_EPOLL ) epoll_fork (EV_A); 2785 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
916#endif 2786#endif
2787#if EV_USE_INOTIFY
2788 infy_fork (EV_A);
2789#endif
917 2790
2791#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
918 if (ev_is_active (&sigev)) 2792 if (ev_is_active (&pipe_w))
919 { 2793 {
920 /* default loop */ 2794 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
921 2795
922 ev_ref (EV_A); 2796 ev_ref (EV_A);
923 ev_io_stop (EV_A_ &sigev); 2797 ev_io_stop (EV_A_ &pipe_w);
924 close (sigpipe [0]);
925 close (sigpipe [1]);
926 2798
927 while (pipe (sigpipe)) 2799 if (evpipe [0] >= 0)
928 syserr ("(libev) error creating pipe"); 2800 EV_WIN32_CLOSE_FD (evpipe [0]);
929 2801
930 siginit (EV_A); 2802 evpipe_init (EV_A);
2803 /* iterate over everything, in case we missed something before */
2804 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
931 } 2805 }
2806#endif
932 2807
933 postfork = 0; 2808 postfork = 0;
934} 2809}
935 2810
936#if EV_MULTIPLICITY 2811#if EV_MULTIPLICITY
2812
937struct ev_loop * 2813struct ev_loop * ecb_cold
938ev_loop_new (unsigned int flags) 2814ev_loop_new (unsigned int flags) EV_THROW
939{ 2815{
940 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2816 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
941 2817
942 memset (loop, 0, sizeof (struct ev_loop)); 2818 memset (EV_A, 0, sizeof (struct ev_loop));
943
944 loop_init (EV_A_ flags); 2819 loop_init (EV_A_ flags);
945 2820
946 if (ev_method (EV_A)) 2821 if (ev_backend (EV_A))
947 return loop; 2822 return EV_A;
948 2823
2824 ev_free (EV_A);
949 return 0; 2825 return 0;
950} 2826}
951 2827
952void 2828#endif /* multiplicity */
953ev_loop_destroy (EV_P)
954{
955 loop_destroy (EV_A);
956 ev_free (loop);
957}
958 2829
959void 2830#if EV_VERIFY
960ev_loop_fork (EV_P) 2831static void noinline ecb_cold
2832verify_watcher (EV_P_ W w)
961{ 2833{
962 postfork = 1; 2834 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
963}
964 2835
2836 if (w->pending)
2837 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2838}
2839
2840static void noinline ecb_cold
2841verify_heap (EV_P_ ANHE *heap, int N)
2842{
2843 int i;
2844
2845 for (i = HEAP0; i < N + HEAP0; ++i)
2846 {
2847 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2848 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2849 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2850
2851 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2852 }
2853}
2854
2855static void noinline ecb_cold
2856array_verify (EV_P_ W *ws, int cnt)
2857{
2858 while (cnt--)
2859 {
2860 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2861 verify_watcher (EV_A_ ws [cnt]);
2862 }
2863}
2864#endif
2865
2866#if EV_FEATURE_API
2867void ecb_cold
2868ev_verify (EV_P) EV_THROW
2869{
2870#if EV_VERIFY
2871 int i;
2872 WL w, w2;
2873
2874 assert (activecnt >= -1);
2875
2876 assert (fdchangemax >= fdchangecnt);
2877 for (i = 0; i < fdchangecnt; ++i)
2878 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2879
2880 assert (anfdmax >= 0);
2881 for (i = 0; i < anfdmax; ++i)
2882 {
2883 int j = 0;
2884
2885 for (w = w2 = anfds [i].head; w; w = w->next)
2886 {
2887 verify_watcher (EV_A_ (W)w);
2888
2889 if (j++ & 1)
2890 {
2891 assert (("libev: io watcher list contains a loop", w != w2));
2892 w2 = w2->next;
2893 }
2894
2895 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2896 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2897 }
2898 }
2899
2900 assert (timermax >= timercnt);
2901 verify_heap (EV_A_ timers, timercnt);
2902
2903#if EV_PERIODIC_ENABLE
2904 assert (periodicmax >= periodiccnt);
2905 verify_heap (EV_A_ periodics, periodiccnt);
2906#endif
2907
2908 for (i = NUMPRI; i--; )
2909 {
2910 assert (pendingmax [i] >= pendingcnt [i]);
2911#if EV_IDLE_ENABLE
2912 assert (idleall >= 0);
2913 assert (idlemax [i] >= idlecnt [i]);
2914 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2915#endif
2916 }
2917
2918#if EV_FORK_ENABLE
2919 assert (forkmax >= forkcnt);
2920 array_verify (EV_A_ (W *)forks, forkcnt);
2921#endif
2922
2923#if EV_CLEANUP_ENABLE
2924 assert (cleanupmax >= cleanupcnt);
2925 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2926#endif
2927
2928#if EV_ASYNC_ENABLE
2929 assert (asyncmax >= asynccnt);
2930 array_verify (EV_A_ (W *)asyncs, asynccnt);
2931#endif
2932
2933#if EV_PREPARE_ENABLE
2934 assert (preparemax >= preparecnt);
2935 array_verify (EV_A_ (W *)prepares, preparecnt);
2936#endif
2937
2938#if EV_CHECK_ENABLE
2939 assert (checkmax >= checkcnt);
2940 array_verify (EV_A_ (W *)checks, checkcnt);
2941#endif
2942
2943# if 0
2944#if EV_CHILD_ENABLE
2945 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2946 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2947#endif
2948# endif
2949#endif
2950}
965#endif 2951#endif
966 2952
967#if EV_MULTIPLICITY 2953#if EV_MULTIPLICITY
968struct ev_loop * 2954struct ev_loop * ecb_cold
969ev_default_loop_init (unsigned int flags)
970#else 2955#else
971int 2956int
2957#endif
972ev_default_loop (unsigned int flags) 2958ev_default_loop (unsigned int flags) EV_THROW
973#endif
974{ 2959{
975 if (sigpipe [0] == sigpipe [1])
976 if (pipe (sigpipe))
977 return 0;
978
979 if (!ev_default_loop_ptr) 2960 if (!ev_default_loop_ptr)
980 { 2961 {
981#if EV_MULTIPLICITY 2962#if EV_MULTIPLICITY
982 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2963 EV_P = ev_default_loop_ptr = &default_loop_struct;
983#else 2964#else
984 ev_default_loop_ptr = 1; 2965 ev_default_loop_ptr = 1;
985#endif 2966#endif
986 2967
987 loop_init (EV_A_ flags); 2968 loop_init (EV_A_ flags);
988 2969
989 if (ev_method (EV_A)) 2970 if (ev_backend (EV_A))
990 { 2971 {
991 siginit (EV_A); 2972#if EV_CHILD_ENABLE
992
993#ifndef _WIN32
994 ev_signal_init (&childev, childcb, SIGCHLD); 2973 ev_signal_init (&childev, childcb, SIGCHLD);
995 ev_set_priority (&childev, EV_MAXPRI); 2974 ev_set_priority (&childev, EV_MAXPRI);
996 ev_signal_start (EV_A_ &childev); 2975 ev_signal_start (EV_A_ &childev);
997 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2976 ev_unref (EV_A); /* child watcher should not keep loop alive */
998#endif 2977#endif
1003 2982
1004 return ev_default_loop_ptr; 2983 return ev_default_loop_ptr;
1005} 2984}
1006 2985
1007void 2986void
1008ev_default_destroy (void) 2987ev_loop_fork (EV_P) EV_THROW
1009{ 2988{
1010#if EV_MULTIPLICITY 2989 postfork = 1;
1011 struct ev_loop *loop = ev_default_loop_ptr;
1012#endif
1013
1014#ifndef _WIN32
1015 ev_ref (EV_A); /* child watcher */
1016 ev_signal_stop (EV_A_ &childev);
1017#endif
1018
1019 ev_ref (EV_A); /* signal watcher */
1020 ev_io_stop (EV_A_ &sigev);
1021
1022 close (sigpipe [0]); sigpipe [0] = 0;
1023 close (sigpipe [1]); sigpipe [1] = 0;
1024
1025 loop_destroy (EV_A);
1026} 2990}
2991
2992/*****************************************************************************/
1027 2993
1028void 2994void
1029ev_default_fork (void) 2995ev_invoke (EV_P_ void *w, int revents)
1030{ 2996{
1031#if EV_MULTIPLICITY 2997 EV_CB_INVOKE ((W)w, revents);
1032 struct ev_loop *loop = ev_default_loop_ptr;
1033#endif
1034
1035 if (method)
1036 postfork = 1;
1037} 2998}
1038 2999
1039/*****************************************************************************/ 3000unsigned int
1040 3001ev_pending_count (EV_P) EV_THROW
1041static int
1042any_pending (EV_P)
1043{ 3002{
1044 int pri; 3003 int pri;
3004 unsigned int count = 0;
1045 3005
1046 for (pri = NUMPRI; pri--; ) 3006 for (pri = NUMPRI; pri--; )
1047 if (pendingcnt [pri]) 3007 count += pendingcnt [pri];
1048 return 1;
1049 3008
1050 return 0; 3009 return count;
1051} 3010}
1052 3011
1053inline void 3012void noinline
1054call_pending (EV_P) 3013ev_invoke_pending (EV_P)
1055{ 3014{
1056 int pri; 3015 pendingpri = NUMPRI;
1057 3016
1058 for (pri = NUMPRI; pri--; ) 3017 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
3018 {
3019 --pendingpri;
3020
1059 while (pendingcnt [pri]) 3021 while (pendingcnt [pendingpri])
1060 {
1061 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1062
1063 if (expect_true (p->w))
1064 { 3022 {
3023 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
3024
1065 p->w->pending = 0; 3025 p->w->pending = 0;
1066 EV_CB_INVOKE (p->w, p->events); 3026 EV_CB_INVOKE (p->w, p->events);
3027 EV_FREQUENT_CHECK;
3028 }
3029 }
3030}
3031
3032#if EV_IDLE_ENABLE
3033/* make idle watchers pending. this handles the "call-idle */
3034/* only when higher priorities are idle" logic */
3035inline_size void
3036idle_reify (EV_P)
3037{
3038 if (expect_false (idleall))
3039 {
3040 int pri;
3041
3042 for (pri = NUMPRI; pri--; )
3043 {
3044 if (pendingcnt [pri])
3045 break;
3046
3047 if (idlecnt [pri])
3048 {
3049 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3050 break;
1067 } 3051 }
1068 } 3052 }
3053 }
1069} 3054}
3055#endif
1070 3056
3057/* make timers pending */
1071inline void 3058inline_size void
1072timers_reify (EV_P) 3059timers_reify (EV_P)
1073{ 3060{
3061 EV_FREQUENT_CHECK;
3062
1074 while (timercnt && ((WT)timers [0])->at <= mn_now) 3063 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1075 { 3064 {
1076 struct ev_timer *w = timers [0]; 3065 do
1077
1078 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1079
1080 /* first reschedule or stop timer */
1081 if (w->repeat)
1082 { 3066 {
3067 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3068
3069 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3070
3071 /* first reschedule or stop timer */
3072 if (w->repeat)
3073 {
3074 ev_at (w) += w->repeat;
3075 if (ev_at (w) < mn_now)
3076 ev_at (w) = mn_now;
3077
1083 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3078 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1084 3079
1085 ((WT)w)->at += w->repeat; 3080 ANHE_at_cache (timers [HEAP0]);
1086 if (((WT)w)->at < mn_now)
1087 ((WT)w)->at = mn_now;
1088
1089 downheap ((WT *)timers, timercnt, 0); 3081 downheap (timers, timercnt, HEAP0);
3082 }
3083 else
3084 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3085
3086 EV_FREQUENT_CHECK;
3087 feed_reverse (EV_A_ (W)w);
1090 } 3088 }
1091 else 3089 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1092 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1093 3090
1094 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 3091 feed_reverse_done (EV_A_ EV_TIMER);
3092 }
3093}
3094
3095#if EV_PERIODIC_ENABLE
3096
3097static void noinline
3098periodic_recalc (EV_P_ ev_periodic *w)
3099{
3100 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3101 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3102
3103 /* the above almost always errs on the low side */
3104 while (at <= ev_rt_now)
1095 } 3105 {
1096} 3106 ev_tstamp nat = at + w->interval;
1097 3107
1098#if EV_PERIODICS 3108 /* when resolution fails us, we use ev_rt_now */
3109 if (expect_false (nat == at))
3110 {
3111 at = ev_rt_now;
3112 break;
3113 }
3114
3115 at = nat;
3116 }
3117
3118 ev_at (w) = at;
3119}
3120
3121/* make periodics pending */
1099inline void 3122inline_size void
1100periodics_reify (EV_P) 3123periodics_reify (EV_P)
1101{ 3124{
3125 EV_FREQUENT_CHECK;
3126
1102 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 3127 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1103 { 3128 {
1104 struct ev_periodic *w = periodics [0]; 3129 do
3130 {
3131 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1105 3132
1106 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 3133 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1107 3134
1108 /* first reschedule or stop timer */ 3135 /* first reschedule or stop timer */
3136 if (w->reschedule_cb)
3137 {
3138 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3139
3140 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3141
3142 ANHE_at_cache (periodics [HEAP0]);
3143 downheap (periodics, periodiccnt, HEAP0);
3144 }
3145 else if (w->interval)
3146 {
3147 periodic_recalc (EV_A_ w);
3148 ANHE_at_cache (periodics [HEAP0]);
3149 downheap (periodics, periodiccnt, HEAP0);
3150 }
3151 else
3152 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3153
3154 EV_FREQUENT_CHECK;
3155 feed_reverse (EV_A_ (W)w);
3156 }
3157 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3158
3159 feed_reverse_done (EV_A_ EV_PERIODIC);
3160 }
3161}
3162
3163/* simply recalculate all periodics */
3164/* TODO: maybe ensure that at least one event happens when jumping forward? */
3165static void noinline ecb_cold
3166periodics_reschedule (EV_P)
3167{
3168 int i;
3169
3170 /* adjust periodics after time jump */
3171 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3172 {
3173 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3174
1109 if (w->reschedule_cb) 3175 if (w->reschedule_cb)
3176 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3177 else if (w->interval)
3178 periodic_recalc (EV_A_ w);
3179
3180 ANHE_at_cache (periodics [i]);
3181 }
3182
3183 reheap (periodics, periodiccnt);
3184}
3185#endif
3186
3187/* adjust all timers by a given offset */
3188static void noinline ecb_cold
3189timers_reschedule (EV_P_ ev_tstamp adjust)
3190{
3191 int i;
3192
3193 for (i = 0; i < timercnt; ++i)
3194 {
3195 ANHE *he = timers + i + HEAP0;
3196 ANHE_w (*he)->at += adjust;
3197 ANHE_at_cache (*he);
3198 }
3199}
3200
3201/* fetch new monotonic and realtime times from the kernel */
3202/* also detect if there was a timejump, and act accordingly */
3203inline_speed void
3204time_update (EV_P_ ev_tstamp max_block)
3205{
3206#if EV_USE_MONOTONIC
3207 if (expect_true (have_monotonic))
3208 {
3209 int i;
3210 ev_tstamp odiff = rtmn_diff;
3211
3212 mn_now = get_clock ();
3213
3214 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3215 /* interpolate in the meantime */
3216 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1110 { 3217 {
1111 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 3218 ev_rt_now = rtmn_diff + mn_now;
1112 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 3219 return;
1113 downheap ((WT *)periodics, periodiccnt, 0);
1114 } 3220 }
1115 else if (w->interval)
1116 {
1117 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1118 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1119 downheap ((WT *)periodics, periodiccnt, 0);
1120 }
1121 else
1122 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1123 3221
1124 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1125 }
1126}
1127
1128static void
1129periodics_reschedule (EV_P)
1130{
1131 int i;
1132
1133 /* adjust periodics after time jump */
1134 for (i = 0; i < periodiccnt; ++i)
1135 {
1136 struct ev_periodic *w = periodics [i];
1137
1138 if (w->reschedule_cb)
1139 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1140 else if (w->interval)
1141 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1142 }
1143
1144 /* now rebuild the heap */
1145 for (i = periodiccnt >> 1; i--; )
1146 downheap ((WT *)periodics, periodiccnt, i);
1147}
1148#endif
1149
1150inline int
1151time_update_monotonic (EV_P)
1152{
1153 mn_now = get_clock ();
1154
1155 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1156 {
1157 ev_rt_now = rtmn_diff + mn_now;
1158 return 0;
1159 }
1160 else
1161 {
1162 now_floor = mn_now; 3222 now_floor = mn_now;
1163 ev_rt_now = ev_time (); 3223 ev_rt_now = ev_time ();
1164 return 1;
1165 }
1166}
1167 3224
1168inline void 3225 /* loop a few times, before making important decisions.
1169time_update (EV_P) 3226 * on the choice of "4": one iteration isn't enough,
1170{ 3227 * in case we get preempted during the calls to
1171 int i; 3228 * ev_time and get_clock. a second call is almost guaranteed
1172 3229 * to succeed in that case, though. and looping a few more times
1173#if EV_USE_MONOTONIC 3230 * doesn't hurt either as we only do this on time-jumps or
1174 if (expect_true (have_monotonic)) 3231 * in the unlikely event of having been preempted here.
1175 { 3232 */
1176 if (time_update_monotonic (EV_A)) 3233 for (i = 4; --i; )
1177 { 3234 {
1178 ev_tstamp odiff = rtmn_diff; 3235 ev_tstamp diff;
1179
1180 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1181 {
1182 rtmn_diff = ev_rt_now - mn_now; 3236 rtmn_diff = ev_rt_now - mn_now;
1183 3237
1184 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 3238 diff = odiff - rtmn_diff;
3239
3240 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1185 return; /* all is well */ 3241 return; /* all is well */
1186 3242
1187 ev_rt_now = ev_time (); 3243 ev_rt_now = ev_time ();
1188 mn_now = get_clock (); 3244 mn_now = get_clock ();
1189 now_floor = mn_now; 3245 now_floor = mn_now;
1190 } 3246 }
1191 3247
3248 /* no timer adjustment, as the monotonic clock doesn't jump */
3249 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1192# if EV_PERIODICS 3250# if EV_PERIODIC_ENABLE
3251 periodics_reschedule (EV_A);
3252# endif
3253 }
3254 else
3255#endif
3256 {
3257 ev_rt_now = ev_time ();
3258
3259 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
3260 {
3261 /* adjust timers. this is easy, as the offset is the same for all of them */
3262 timers_reschedule (EV_A_ ev_rt_now - mn_now);
3263#if EV_PERIODIC_ENABLE
1193 periodics_reschedule (EV_A); 3264 periodics_reschedule (EV_A);
1194# endif 3265#endif
1195 /* no timer adjustment, as the monotonic clock doesn't jump */
1196 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1197 } 3266 }
1198 }
1199 else
1200#endif
1201 {
1202 ev_rt_now = ev_time ();
1203
1204 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1205 {
1206#if EV_PERIODICS
1207 periodics_reschedule (EV_A);
1208#endif
1209
1210 /* adjust timers. this is easy, as the offset is the same for all */
1211 for (i = 0; i < timercnt; ++i)
1212 ((WT)timers [i])->at += ev_rt_now - mn_now;
1213 }
1214 3267
1215 mn_now = ev_rt_now; 3268 mn_now = ev_rt_now;
1216 } 3269 }
1217} 3270}
1218 3271
1219void 3272int
1220ev_ref (EV_P)
1221{
1222 ++activecnt;
1223}
1224
1225void
1226ev_unref (EV_P)
1227{
1228 --activecnt;
1229}
1230
1231static int loop_done;
1232
1233void
1234ev_loop (EV_P_ int flags) 3273ev_run (EV_P_ int flags)
1235{ 3274{
1236 double block; 3275#if EV_FEATURE_API
1237 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 3276 ++loop_depth;
3277#endif
1238 3278
1239 while (activecnt) 3279 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3280
3281 loop_done = EVBREAK_CANCEL;
3282
3283 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
3284
3285 do
1240 { 3286 {
3287#if EV_VERIFY >= 2
3288 ev_verify (EV_A);
3289#endif
3290
3291#ifndef _WIN32
3292 if (expect_false (curpid)) /* penalise the forking check even more */
3293 if (expect_false (getpid () != curpid))
3294 {
3295 curpid = getpid ();
3296 postfork = 1;
3297 }
3298#endif
3299
3300#if EV_FORK_ENABLE
3301 /* we might have forked, so queue fork handlers */
3302 if (expect_false (postfork))
3303 if (forkcnt)
3304 {
3305 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3306 EV_INVOKE_PENDING;
3307 }
3308#endif
3309
3310#if EV_PREPARE_ENABLE
1241 /* queue check watchers (and execute them) */ 3311 /* queue prepare watchers (and execute them) */
1242 if (expect_false (preparecnt)) 3312 if (expect_false (preparecnt))
1243 { 3313 {
1244 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3314 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1245 call_pending (EV_A); 3315 EV_INVOKE_PENDING;
1246 } 3316 }
3317#endif
3318
3319 if (expect_false (loop_done))
3320 break;
1247 3321
1248 /* we might have forked, so reify kernel state if necessary */ 3322 /* we might have forked, so reify kernel state if necessary */
1249 if (expect_false (postfork)) 3323 if (expect_false (postfork))
1250 loop_fork (EV_A); 3324 loop_fork (EV_A);
1251 3325
1252 /* update fd-related kernel structures */ 3326 /* update fd-related kernel structures */
1253 fd_reify (EV_A); 3327 fd_reify (EV_A);
1254 3328
1255 /* calculate blocking time */ 3329 /* calculate blocking time */
3330 {
3331 ev_tstamp waittime = 0.;
3332 ev_tstamp sleeptime = 0.;
1256 3333
1257 /* we only need this for !monotonic clock or timers, but as we basically 3334 /* remember old timestamp for io_blocktime calculation */
1258 always have timers, we just calculate it always */ 3335 ev_tstamp prev_mn_now = mn_now;
1259#if EV_USE_MONOTONIC 3336
1260 if (expect_true (have_monotonic)) 3337 /* update time to cancel out callback processing overhead */
1261 time_update_monotonic (EV_A); 3338 time_update (EV_A_ 1e100);
1262 else 3339
1263#endif 3340 /* from now on, we want a pipe-wake-up */
3341 pipe_write_wanted = 1;
3342
3343 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3344
3345 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1264 { 3346 {
1265 ev_rt_now = ev_time ();
1266 mn_now = ev_rt_now;
1267 }
1268
1269 if (flags & EVLOOP_NONBLOCK || idlecnt)
1270 block = 0.;
1271 else
1272 {
1273 block = MAX_BLOCKTIME; 3347 waittime = MAX_BLOCKTIME;
1274 3348
1275 if (timercnt) 3349 if (timercnt)
1276 { 3350 {
1277 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 3351 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1278 if (block > to) block = to; 3352 if (waittime > to) waittime = to;
1279 } 3353 }
1280 3354
1281#if EV_PERIODICS 3355#if EV_PERIODIC_ENABLE
1282 if (periodiccnt) 3356 if (periodiccnt)
1283 { 3357 {
1284 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 3358 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1285 if (block > to) block = to; 3359 if (waittime > to) waittime = to;
1286 } 3360 }
1287#endif 3361#endif
1288 3362
1289 if (expect_false (block < 0.)) block = 0.; 3363 /* don't let timeouts decrease the waittime below timeout_blocktime */
3364 if (expect_false (waittime < timeout_blocktime))
3365 waittime = timeout_blocktime;
3366
3367 /* at this point, we NEED to wait, so we have to ensure */
3368 /* to pass a minimum nonzero value to the backend */
3369 if (expect_false (waittime < backend_mintime))
3370 waittime = backend_mintime;
3371
3372 /* extra check because io_blocktime is commonly 0 */
3373 if (expect_false (io_blocktime))
3374 {
3375 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3376
3377 if (sleeptime > waittime - backend_mintime)
3378 sleeptime = waittime - backend_mintime;
3379
3380 if (expect_true (sleeptime > 0.))
3381 {
3382 ev_sleep (sleeptime);
3383 waittime -= sleeptime;
3384 }
3385 }
1290 } 3386 }
1291 3387
1292 method_poll (EV_A_ block); 3388#if EV_FEATURE_API
3389 ++loop_count;
3390#endif
3391 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3392 backend_poll (EV_A_ waittime);
3393 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1293 3394
3395 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3396
3397 ECB_MEMORY_FENCE_ACQUIRE;
3398 if (pipe_write_skipped)
3399 {
3400 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3401 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3402 }
3403
3404
1294 /* update ev_rt_now, do magic */ 3405 /* update ev_rt_now, do magic */
1295 time_update (EV_A); 3406 time_update (EV_A_ waittime + sleeptime);
3407 }
1296 3408
1297 /* queue pending timers and reschedule them */ 3409 /* queue pending timers and reschedule them */
1298 timers_reify (EV_A); /* relative timers called last */ 3410 timers_reify (EV_A); /* relative timers called last */
1299#if EV_PERIODICS 3411#if EV_PERIODIC_ENABLE
1300 periodics_reify (EV_A); /* absolute timers called first */ 3412 periodics_reify (EV_A); /* absolute timers called first */
1301#endif 3413#endif
1302 3414
3415#if EV_IDLE_ENABLE
1303 /* queue idle watchers unless io or timers are pending */ 3416 /* queue idle watchers unless other events are pending */
1304 if (idlecnt && !any_pending (EV_A)) 3417 idle_reify (EV_A);
1305 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 3418#endif
1306 3419
3420#if EV_CHECK_ENABLE
1307 /* queue check watchers, to be executed first */ 3421 /* queue check watchers, to be executed first */
1308 if (expect_false (checkcnt)) 3422 if (expect_false (checkcnt))
1309 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3423 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3424#endif
1310 3425
1311 call_pending (EV_A); 3426 EV_INVOKE_PENDING;
1312
1313 if (expect_false (loop_done))
1314 break;
1315 } 3427 }
3428 while (expect_true (
3429 activecnt
3430 && !loop_done
3431 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3432 ));
1316 3433
1317 if (loop_done != 2) 3434 if (loop_done == EVBREAK_ONE)
1318 loop_done = 0; 3435 loop_done = EVBREAK_CANCEL;
3436
3437#if EV_FEATURE_API
3438 --loop_depth;
3439#endif
3440
3441 return activecnt;
1319} 3442}
1320 3443
1321void 3444void
1322ev_unloop (EV_P_ int how) 3445ev_break (EV_P_ int how) EV_THROW
1323{ 3446{
1324 loop_done = how; 3447 loop_done = how;
1325} 3448}
1326 3449
3450void
3451ev_ref (EV_P) EV_THROW
3452{
3453 ++activecnt;
3454}
3455
3456void
3457ev_unref (EV_P) EV_THROW
3458{
3459 --activecnt;
3460}
3461
3462void
3463ev_now_update (EV_P) EV_THROW
3464{
3465 time_update (EV_A_ 1e100);
3466}
3467
3468void
3469ev_suspend (EV_P) EV_THROW
3470{
3471 ev_now_update (EV_A);
3472}
3473
3474void
3475ev_resume (EV_P) EV_THROW
3476{
3477 ev_tstamp mn_prev = mn_now;
3478
3479 ev_now_update (EV_A);
3480 timers_reschedule (EV_A_ mn_now - mn_prev);
3481#if EV_PERIODIC_ENABLE
3482 /* TODO: really do this? */
3483 periodics_reschedule (EV_A);
3484#endif
3485}
3486
1327/*****************************************************************************/ 3487/*****************************************************************************/
3488/* singly-linked list management, used when the expected list length is short */
1328 3489
1329inline void 3490inline_size void
1330wlist_add (WL *head, WL elem) 3491wlist_add (WL *head, WL elem)
1331{ 3492{
1332 elem->next = *head; 3493 elem->next = *head;
1333 *head = elem; 3494 *head = elem;
1334} 3495}
1335 3496
1336inline void 3497inline_size void
1337wlist_del (WL *head, WL elem) 3498wlist_del (WL *head, WL elem)
1338{ 3499{
1339 while (*head) 3500 while (*head)
1340 { 3501 {
1341 if (*head == elem) 3502 if (expect_true (*head == elem))
1342 { 3503 {
1343 *head = elem->next; 3504 *head = elem->next;
1344 return; 3505 break;
1345 } 3506 }
1346 3507
1347 head = &(*head)->next; 3508 head = &(*head)->next;
1348 } 3509 }
1349} 3510}
1350 3511
3512/* internal, faster, version of ev_clear_pending */
1351inline void 3513inline_speed void
1352ev_clear_pending (EV_P_ W w) 3514clear_pending (EV_P_ W w)
1353{ 3515{
1354 if (w->pending) 3516 if (w->pending)
1355 { 3517 {
1356 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3518 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1357 w->pending = 0; 3519 w->pending = 0;
1358 } 3520 }
1359} 3521}
1360 3522
3523int
3524ev_clear_pending (EV_P_ void *w) EV_THROW
3525{
3526 W w_ = (W)w;
3527 int pending = w_->pending;
3528
3529 if (expect_true (pending))
3530 {
3531 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3532 p->w = (W)&pending_w;
3533 w_->pending = 0;
3534 return p->events;
3535 }
3536 else
3537 return 0;
3538}
3539
1361inline void 3540inline_size void
3541pri_adjust (EV_P_ W w)
3542{
3543 int pri = ev_priority (w);
3544 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3545 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3546 ev_set_priority (w, pri);
3547}
3548
3549inline_speed void
1362ev_start (EV_P_ W w, int active) 3550ev_start (EV_P_ W w, int active)
1363{ 3551{
1364 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 3552 pri_adjust (EV_A_ w);
1365 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1366
1367 w->active = active; 3553 w->active = active;
1368 ev_ref (EV_A); 3554 ev_ref (EV_A);
1369} 3555}
1370 3556
1371inline void 3557inline_size void
1372ev_stop (EV_P_ W w) 3558ev_stop (EV_P_ W w)
1373{ 3559{
1374 ev_unref (EV_A); 3560 ev_unref (EV_A);
1375 w->active = 0; 3561 w->active = 0;
1376} 3562}
1377 3563
1378/*****************************************************************************/ 3564/*****************************************************************************/
1379 3565
1380void 3566void noinline
1381ev_io_start (EV_P_ struct ev_io *w) 3567ev_io_start (EV_P_ ev_io *w) EV_THROW
1382{ 3568{
1383 int fd = w->fd; 3569 int fd = w->fd;
1384 3570
1385 if (expect_false (ev_is_active (w))) 3571 if (expect_false (ev_is_active (w)))
1386 return; 3572 return;
1387 3573
1388 assert (("ev_io_start called with negative fd", fd >= 0)); 3574 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3575 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3576
3577 EV_FREQUENT_CHECK;
1389 3578
1390 ev_start (EV_A_ (W)w, 1); 3579 ev_start (EV_A_ (W)w, 1);
1391 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3580 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1392 wlist_add ((WL *)&anfds[fd].head, (WL)w); 3581 wlist_add (&anfds[fd].head, (WL)w);
1393 3582
1394 fd_change (EV_A_ fd); 3583 /* common bug, apparently */
1395} 3584 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
1396 3585
1397void 3586 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3587 w->events &= ~EV__IOFDSET;
3588
3589 EV_FREQUENT_CHECK;
3590}
3591
3592void noinline
1398ev_io_stop (EV_P_ struct ev_io *w) 3593ev_io_stop (EV_P_ ev_io *w) EV_THROW
1399{ 3594{
1400 ev_clear_pending (EV_A_ (W)w); 3595 clear_pending (EV_A_ (W)w);
1401 if (expect_false (!ev_is_active (w))) 3596 if (expect_false (!ev_is_active (w)))
1402 return; 3597 return;
1403 3598
1404 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3599 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1405 3600
3601 EV_FREQUENT_CHECK;
3602
1406 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 3603 wlist_del (&anfds[w->fd].head, (WL)w);
1407 ev_stop (EV_A_ (W)w); 3604 ev_stop (EV_A_ (W)w);
1408 3605
1409 fd_change (EV_A_ w->fd); 3606 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1410}
1411 3607
1412void 3608 EV_FREQUENT_CHECK;
3609}
3610
3611void noinline
1413ev_timer_start (EV_P_ struct ev_timer *w) 3612ev_timer_start (EV_P_ ev_timer *w) EV_THROW
1414{ 3613{
1415 if (expect_false (ev_is_active (w))) 3614 if (expect_false (ev_is_active (w)))
1416 return; 3615 return;
1417 3616
1418 ((WT)w)->at += mn_now; 3617 ev_at (w) += mn_now;
1419 3618
1420 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3619 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1421 3620
3621 EV_FREQUENT_CHECK;
3622
3623 ++timercnt;
1422 ev_start (EV_A_ (W)w, ++timercnt); 3624 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1423 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 3625 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1424 timers [timercnt - 1] = w; 3626 ANHE_w (timers [ev_active (w)]) = (WT)w;
1425 upheap ((WT *)timers, timercnt - 1); 3627 ANHE_at_cache (timers [ev_active (w)]);
3628 upheap (timers, ev_active (w));
1426 3629
3630 EV_FREQUENT_CHECK;
3631
1427 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3632 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1428} 3633}
1429 3634
1430void 3635void noinline
1431ev_timer_stop (EV_P_ struct ev_timer *w) 3636ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
1432{ 3637{
1433 ev_clear_pending (EV_A_ (W)w); 3638 clear_pending (EV_A_ (W)w);
1434 if (expect_false (!ev_is_active (w))) 3639 if (expect_false (!ev_is_active (w)))
1435 return; 3640 return;
1436 3641
3642 EV_FREQUENT_CHECK;
3643
3644 {
3645 int active = ev_active (w);
3646
1437 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3647 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1438 3648
3649 --timercnt;
3650
1439 if (expect_true (((W)w)->active < timercnt--)) 3651 if (expect_true (active < timercnt + HEAP0))
1440 { 3652 {
1441 timers [((W)w)->active - 1] = timers [timercnt]; 3653 timers [active] = timers [timercnt + HEAP0];
1442 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 3654 adjustheap (timers, timercnt, active);
1443 } 3655 }
3656 }
1444 3657
1445 ((WT)w)->at -= mn_now; 3658 ev_at (w) -= mn_now;
1446 3659
1447 ev_stop (EV_A_ (W)w); 3660 ev_stop (EV_A_ (W)w);
1448}
1449 3661
1450void 3662 EV_FREQUENT_CHECK;
3663}
3664
3665void noinline
1451ev_timer_again (EV_P_ struct ev_timer *w) 3666ev_timer_again (EV_P_ ev_timer *w) EV_THROW
1452{ 3667{
3668 EV_FREQUENT_CHECK;
3669
3670 clear_pending (EV_A_ (W)w);
3671
1453 if (ev_is_active (w)) 3672 if (ev_is_active (w))
1454 { 3673 {
1455 if (w->repeat) 3674 if (w->repeat)
1456 { 3675 {
1457 ((WT)w)->at = mn_now + w->repeat; 3676 ev_at (w) = mn_now + w->repeat;
3677 ANHE_at_cache (timers [ev_active (w)]);
1458 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 3678 adjustheap (timers, timercnt, ev_active (w));
1459 } 3679 }
1460 else 3680 else
1461 ev_timer_stop (EV_A_ w); 3681 ev_timer_stop (EV_A_ w);
1462 } 3682 }
1463 else if (w->repeat) 3683 else if (w->repeat)
1464 { 3684 {
1465 w->at = w->repeat; 3685 ev_at (w) = w->repeat;
1466 ev_timer_start (EV_A_ w); 3686 ev_timer_start (EV_A_ w);
1467 } 3687 }
1468}
1469 3688
3689 EV_FREQUENT_CHECK;
3690}
3691
3692ev_tstamp
3693ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3694{
3695 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3696}
3697
1470#if EV_PERIODICS 3698#if EV_PERIODIC_ENABLE
1471void 3699void noinline
1472ev_periodic_start (EV_P_ struct ev_periodic *w) 3700ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
1473{ 3701{
1474 if (expect_false (ev_is_active (w))) 3702 if (expect_false (ev_is_active (w)))
1475 return; 3703 return;
1476 3704
1477 if (w->reschedule_cb) 3705 if (w->reschedule_cb)
1478 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 3706 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1479 else if (w->interval) 3707 else if (w->interval)
1480 { 3708 {
1481 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3709 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1482 /* this formula differs from the one in periodic_reify because we do not always round up */ 3710 periodic_recalc (EV_A_ w);
1483 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1484 } 3711 }
3712 else
3713 ev_at (w) = w->offset;
1485 3714
3715 EV_FREQUENT_CHECK;
3716
3717 ++periodiccnt;
1486 ev_start (EV_A_ (W)w, ++periodiccnt); 3718 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1487 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 3719 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1488 periodics [periodiccnt - 1] = w; 3720 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1489 upheap ((WT *)periodics, periodiccnt - 1); 3721 ANHE_at_cache (periodics [ev_active (w)]);
3722 upheap (periodics, ev_active (w));
1490 3723
3724 EV_FREQUENT_CHECK;
3725
1491 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3726 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1492} 3727}
1493 3728
1494void 3729void noinline
1495ev_periodic_stop (EV_P_ struct ev_periodic *w) 3730ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
1496{ 3731{
1497 ev_clear_pending (EV_A_ (W)w); 3732 clear_pending (EV_A_ (W)w);
1498 if (expect_false (!ev_is_active (w))) 3733 if (expect_false (!ev_is_active (w)))
1499 return; 3734 return;
1500 3735
3736 EV_FREQUENT_CHECK;
3737
3738 {
3739 int active = ev_active (w);
3740
1501 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3741 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1502 3742
3743 --periodiccnt;
3744
1503 if (expect_true (((W)w)->active < periodiccnt--)) 3745 if (expect_true (active < periodiccnt + HEAP0))
1504 { 3746 {
1505 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 3747 periodics [active] = periodics [periodiccnt + HEAP0];
1506 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 3748 adjustheap (periodics, periodiccnt, active);
1507 } 3749 }
3750 }
1508 3751
1509 ev_stop (EV_A_ (W)w); 3752 ev_stop (EV_A_ (W)w);
1510}
1511 3753
1512void 3754 EV_FREQUENT_CHECK;
3755}
3756
3757void noinline
1513ev_periodic_again (EV_P_ struct ev_periodic *w) 3758ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
1514{ 3759{
1515 /* TODO: use adjustheap and recalculation */ 3760 /* TODO: use adjustheap and recalculation */
1516 ev_periodic_stop (EV_A_ w); 3761 ev_periodic_stop (EV_A_ w);
1517 ev_periodic_start (EV_A_ w); 3762 ev_periodic_start (EV_A_ w);
1518} 3763}
1519#endif 3764#endif
1520 3765
1521void 3766#ifndef SA_RESTART
1522ev_idle_start (EV_P_ struct ev_idle *w) 3767# define SA_RESTART 0
3768#endif
3769
3770#if EV_SIGNAL_ENABLE
3771
3772void noinline
3773ev_signal_start (EV_P_ ev_signal *w) EV_THROW
1523{ 3774{
1524 if (expect_false (ev_is_active (w))) 3775 if (expect_false (ev_is_active (w)))
1525 return; 3776 return;
1526 3777
3778 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3779
3780#if EV_MULTIPLICITY
3781 assert (("libev: a signal must not be attached to two different loops",
3782 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3783
3784 signals [w->signum - 1].loop = EV_A;
3785 ECB_MEMORY_FENCE_RELEASE;
3786#endif
3787
3788 EV_FREQUENT_CHECK;
3789
3790#if EV_USE_SIGNALFD
3791 if (sigfd == -2)
3792 {
3793 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3794 if (sigfd < 0 && errno == EINVAL)
3795 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3796
3797 if (sigfd >= 0)
3798 {
3799 fd_intern (sigfd); /* doing it twice will not hurt */
3800
3801 sigemptyset (&sigfd_set);
3802
3803 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3804 ev_set_priority (&sigfd_w, EV_MAXPRI);
3805 ev_io_start (EV_A_ &sigfd_w);
3806 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3807 }
3808 }
3809
3810 if (sigfd >= 0)
3811 {
3812 /* TODO: check .head */
3813 sigaddset (&sigfd_set, w->signum);
3814 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3815
3816 signalfd (sigfd, &sigfd_set, 0);
3817 }
3818#endif
3819
1527 ev_start (EV_A_ (W)w, ++idlecnt); 3820 ev_start (EV_A_ (W)w, 1);
1528 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2); 3821 wlist_add (&signals [w->signum - 1].head, (WL)w);
1529 idles [idlecnt - 1] = w;
1530}
1531 3822
1532void 3823 if (!((WL)w)->next)
1533ev_idle_stop (EV_P_ struct ev_idle *w) 3824# if EV_USE_SIGNALFD
3825 if (sigfd < 0) /*TODO*/
3826# endif
3827 {
3828# ifdef _WIN32
3829 evpipe_init (EV_A);
3830
3831 signal (w->signum, ev_sighandler);
3832# else
3833 struct sigaction sa;
3834
3835 evpipe_init (EV_A);
3836
3837 sa.sa_handler = ev_sighandler;
3838 sigfillset (&sa.sa_mask);
3839 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3840 sigaction (w->signum, &sa, 0);
3841
3842 if (origflags & EVFLAG_NOSIGMASK)
3843 {
3844 sigemptyset (&sa.sa_mask);
3845 sigaddset (&sa.sa_mask, w->signum);
3846 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3847 }
3848#endif
3849 }
3850
3851 EV_FREQUENT_CHECK;
3852}
3853
3854void noinline
3855ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
1534{ 3856{
1535 ev_clear_pending (EV_A_ (W)w); 3857 clear_pending (EV_A_ (W)w);
1536 if (expect_false (!ev_is_active (w))) 3858 if (expect_false (!ev_is_active (w)))
1537 return; 3859 return;
1538 3860
1539 idles [((W)w)->active - 1] = idles [--idlecnt]; 3861 EV_FREQUENT_CHECK;
3862
3863 wlist_del (&signals [w->signum - 1].head, (WL)w);
1540 ev_stop (EV_A_ (W)w); 3864 ev_stop (EV_A_ (W)w);
3865
3866 if (!signals [w->signum - 1].head)
3867 {
3868#if EV_MULTIPLICITY
3869 signals [w->signum - 1].loop = 0; /* unattach from signal */
3870#endif
3871#if EV_USE_SIGNALFD
3872 if (sigfd >= 0)
3873 {
3874 sigset_t ss;
3875
3876 sigemptyset (&ss);
3877 sigaddset (&ss, w->signum);
3878 sigdelset (&sigfd_set, w->signum);
3879
3880 signalfd (sigfd, &sigfd_set, 0);
3881 sigprocmask (SIG_UNBLOCK, &ss, 0);
3882 }
3883 else
3884#endif
3885 signal (w->signum, SIG_DFL);
3886 }
3887
3888 EV_FREQUENT_CHECK;
1541} 3889}
3890
3891#endif
3892
3893#if EV_CHILD_ENABLE
1542 3894
1543void 3895void
1544ev_prepare_start (EV_P_ struct ev_prepare *w) 3896ev_child_start (EV_P_ ev_child *w) EV_THROW
1545{ 3897{
3898#if EV_MULTIPLICITY
3899 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
3900#endif
1546 if (expect_false (ev_is_active (w))) 3901 if (expect_false (ev_is_active (w)))
1547 return; 3902 return;
1548 3903
3904 EV_FREQUENT_CHECK;
3905
1549 ev_start (EV_A_ (W)w, ++preparecnt); 3906 ev_start (EV_A_ (W)w, 1);
1550 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3907 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1551 prepares [preparecnt - 1] = w; 3908
3909 EV_FREQUENT_CHECK;
1552} 3910}
1553 3911
1554void 3912void
1555ev_prepare_stop (EV_P_ struct ev_prepare *w) 3913ev_child_stop (EV_P_ ev_child *w) EV_THROW
1556{ 3914{
1557 ev_clear_pending (EV_A_ (W)w); 3915 clear_pending (EV_A_ (W)w);
1558 if (expect_false (!ev_is_active (w))) 3916 if (expect_false (!ev_is_active (w)))
1559 return; 3917 return;
1560 3918
1561 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 3919 EV_FREQUENT_CHECK;
3920
3921 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1562 ev_stop (EV_A_ (W)w); 3922 ev_stop (EV_A_ (W)w);
3923
3924 EV_FREQUENT_CHECK;
1563} 3925}
3926
3927#endif
3928
3929#if EV_STAT_ENABLE
3930
3931# ifdef _WIN32
3932# undef lstat
3933# define lstat(a,b) _stati64 (a,b)
3934# endif
3935
3936#define DEF_STAT_INTERVAL 5.0074891
3937#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3938#define MIN_STAT_INTERVAL 0.1074891
3939
3940static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3941
3942#if EV_USE_INOTIFY
3943
3944/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3945# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3946
3947static void noinline
3948infy_add (EV_P_ ev_stat *w)
3949{
3950 w->wd = inotify_add_watch (fs_fd, w->path,
3951 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
3952 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
3953 | IN_DONT_FOLLOW | IN_MASK_ADD);
3954
3955 if (w->wd >= 0)
3956 {
3957 struct statfs sfs;
3958
3959 /* now local changes will be tracked by inotify, but remote changes won't */
3960 /* unless the filesystem is known to be local, we therefore still poll */
3961 /* also do poll on <2.6.25, but with normal frequency */
3962
3963 if (!fs_2625)
3964 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3965 else if (!statfs (w->path, &sfs)
3966 && (sfs.f_type == 0x1373 /* devfs */
3967 || sfs.f_type == 0x4006 /* fat */
3968 || sfs.f_type == 0x4d44 /* msdos */
3969 || sfs.f_type == 0xEF53 /* ext2/3 */
3970 || sfs.f_type == 0x72b6 /* jffs2 */
3971 || sfs.f_type == 0x858458f6 /* ramfs */
3972 || sfs.f_type == 0x5346544e /* ntfs */
3973 || sfs.f_type == 0x3153464a /* jfs */
3974 || sfs.f_type == 0x9123683e /* btrfs */
3975 || sfs.f_type == 0x52654973 /* reiser3 */
3976 || sfs.f_type == 0x01021994 /* tmpfs */
3977 || sfs.f_type == 0x58465342 /* xfs */))
3978 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3979 else
3980 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3981 }
3982 else
3983 {
3984 /* can't use inotify, continue to stat */
3985 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3986
3987 /* if path is not there, monitor some parent directory for speedup hints */
3988 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3989 /* but an efficiency issue only */
3990 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3991 {
3992 char path [4096];
3993 strcpy (path, w->path);
3994
3995 do
3996 {
3997 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3998 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3999
4000 char *pend = strrchr (path, '/');
4001
4002 if (!pend || pend == path)
4003 break;
4004
4005 *pend = 0;
4006 w->wd = inotify_add_watch (fs_fd, path, mask);
4007 }
4008 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
4009 }
4010 }
4011
4012 if (w->wd >= 0)
4013 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4014
4015 /* now re-arm timer, if required */
4016 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4017 ev_timer_again (EV_A_ &w->timer);
4018 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4019}
4020
4021static void noinline
4022infy_del (EV_P_ ev_stat *w)
4023{
4024 int slot;
4025 int wd = w->wd;
4026
4027 if (wd < 0)
4028 return;
4029
4030 w->wd = -2;
4031 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4032 wlist_del (&fs_hash [slot].head, (WL)w);
4033
4034 /* remove this watcher, if others are watching it, they will rearm */
4035 inotify_rm_watch (fs_fd, wd);
4036}
4037
4038static void noinline
4039infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4040{
4041 if (slot < 0)
4042 /* overflow, need to check for all hash slots */
4043 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4044 infy_wd (EV_A_ slot, wd, ev);
4045 else
4046 {
4047 WL w_;
4048
4049 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4050 {
4051 ev_stat *w = (ev_stat *)w_;
4052 w_ = w_->next; /* lets us remove this watcher and all before it */
4053
4054 if (w->wd == wd || wd == -1)
4055 {
4056 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4057 {
4058 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4059 w->wd = -1;
4060 infy_add (EV_A_ w); /* re-add, no matter what */
4061 }
4062
4063 stat_timer_cb (EV_A_ &w->timer, 0);
4064 }
4065 }
4066 }
4067}
4068
4069static void
4070infy_cb (EV_P_ ev_io *w, int revents)
4071{
4072 char buf [EV_INOTIFY_BUFSIZE];
4073 int ofs;
4074 int len = read (fs_fd, buf, sizeof (buf));
4075
4076 for (ofs = 0; ofs < len; )
4077 {
4078 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4079 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4080 ofs += sizeof (struct inotify_event) + ev->len;
4081 }
4082}
4083
4084inline_size void ecb_cold
4085ev_check_2625 (EV_P)
4086{
4087 /* kernels < 2.6.25 are borked
4088 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4089 */
4090 if (ev_linux_version () < 0x020619)
4091 return;
4092
4093 fs_2625 = 1;
4094}
4095
4096inline_size int
4097infy_newfd (void)
4098{
4099#if defined IN_CLOEXEC && defined IN_NONBLOCK
4100 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4101 if (fd >= 0)
4102 return fd;
4103#endif
4104 return inotify_init ();
4105}
4106
4107inline_size void
4108infy_init (EV_P)
4109{
4110 if (fs_fd != -2)
4111 return;
4112
4113 fs_fd = -1;
4114
4115 ev_check_2625 (EV_A);
4116
4117 fs_fd = infy_newfd ();
4118
4119 if (fs_fd >= 0)
4120 {
4121 fd_intern (fs_fd);
4122 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4123 ev_set_priority (&fs_w, EV_MAXPRI);
4124 ev_io_start (EV_A_ &fs_w);
4125 ev_unref (EV_A);
4126 }
4127}
4128
4129inline_size void
4130infy_fork (EV_P)
4131{
4132 int slot;
4133
4134 if (fs_fd < 0)
4135 return;
4136
4137 ev_ref (EV_A);
4138 ev_io_stop (EV_A_ &fs_w);
4139 close (fs_fd);
4140 fs_fd = infy_newfd ();
4141
4142 if (fs_fd >= 0)
4143 {
4144 fd_intern (fs_fd);
4145 ev_io_set (&fs_w, fs_fd, EV_READ);
4146 ev_io_start (EV_A_ &fs_w);
4147 ev_unref (EV_A);
4148 }
4149
4150 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4151 {
4152 WL w_ = fs_hash [slot].head;
4153 fs_hash [slot].head = 0;
4154
4155 while (w_)
4156 {
4157 ev_stat *w = (ev_stat *)w_;
4158 w_ = w_->next; /* lets us add this watcher */
4159
4160 w->wd = -1;
4161
4162 if (fs_fd >= 0)
4163 infy_add (EV_A_ w); /* re-add, no matter what */
4164 else
4165 {
4166 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4167 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4168 ev_timer_again (EV_A_ &w->timer);
4169 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4170 }
4171 }
4172 }
4173}
4174
4175#endif
4176
4177#ifdef _WIN32
4178# define EV_LSTAT(p,b) _stati64 (p, b)
4179#else
4180# define EV_LSTAT(p,b) lstat (p, b)
4181#endif
1564 4182
1565void 4183void
1566ev_check_start (EV_P_ struct ev_check *w) 4184ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
4185{
4186 if (lstat (w->path, &w->attr) < 0)
4187 w->attr.st_nlink = 0;
4188 else if (!w->attr.st_nlink)
4189 w->attr.st_nlink = 1;
4190}
4191
4192static void noinline
4193stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4194{
4195 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4196
4197 ev_statdata prev = w->attr;
4198 ev_stat_stat (EV_A_ w);
4199
4200 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4201 if (
4202 prev.st_dev != w->attr.st_dev
4203 || prev.st_ino != w->attr.st_ino
4204 || prev.st_mode != w->attr.st_mode
4205 || prev.st_nlink != w->attr.st_nlink
4206 || prev.st_uid != w->attr.st_uid
4207 || prev.st_gid != w->attr.st_gid
4208 || prev.st_rdev != w->attr.st_rdev
4209 || prev.st_size != w->attr.st_size
4210 || prev.st_atime != w->attr.st_atime
4211 || prev.st_mtime != w->attr.st_mtime
4212 || prev.st_ctime != w->attr.st_ctime
4213 ) {
4214 /* we only update w->prev on actual differences */
4215 /* in case we test more often than invoke the callback, */
4216 /* to ensure that prev is always different to attr */
4217 w->prev = prev;
4218
4219 #if EV_USE_INOTIFY
4220 if (fs_fd >= 0)
4221 {
4222 infy_del (EV_A_ w);
4223 infy_add (EV_A_ w);
4224 ev_stat_stat (EV_A_ w); /* avoid race... */
4225 }
4226 #endif
4227
4228 ev_feed_event (EV_A_ w, EV_STAT);
4229 }
4230}
4231
4232void
4233ev_stat_start (EV_P_ ev_stat *w) EV_THROW
1567{ 4234{
1568 if (expect_false (ev_is_active (w))) 4235 if (expect_false (ev_is_active (w)))
1569 return; 4236 return;
1570 4237
4238 ev_stat_stat (EV_A_ w);
4239
4240 if (w->interval < MIN_STAT_INTERVAL && w->interval)
4241 w->interval = MIN_STAT_INTERVAL;
4242
4243 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
4244 ev_set_priority (&w->timer, ev_priority (w));
4245
4246#if EV_USE_INOTIFY
4247 infy_init (EV_A);
4248
4249 if (fs_fd >= 0)
4250 infy_add (EV_A_ w);
4251 else
4252#endif
4253 {
4254 ev_timer_again (EV_A_ &w->timer);
4255 ev_unref (EV_A);
4256 }
4257
1571 ev_start (EV_A_ (W)w, ++checkcnt); 4258 ev_start (EV_A_ (W)w, 1);
1572 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2); 4259
1573 checks [checkcnt - 1] = w; 4260 EV_FREQUENT_CHECK;
1574} 4261}
1575 4262
1576void 4263void
1577ev_check_stop (EV_P_ struct ev_check *w) 4264ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
1578{ 4265{
1579 ev_clear_pending (EV_A_ (W)w); 4266 clear_pending (EV_A_ (W)w);
1580 if (expect_false (!ev_is_active (w))) 4267 if (expect_false (!ev_is_active (w)))
1581 return; 4268 return;
1582 4269
1583 checks [((W)w)->active - 1] = checks [--checkcnt]; 4270 EV_FREQUENT_CHECK;
4271
4272#if EV_USE_INOTIFY
4273 infy_del (EV_A_ w);
4274#endif
4275
4276 if (ev_is_active (&w->timer))
4277 {
4278 ev_ref (EV_A);
4279 ev_timer_stop (EV_A_ &w->timer);
4280 }
4281
1584 ev_stop (EV_A_ (W)w); 4282 ev_stop (EV_A_ (W)w);
1585}
1586 4283
1587#ifndef SA_RESTART 4284 EV_FREQUENT_CHECK;
1588# define SA_RESTART 0 4285}
1589#endif 4286#endif
1590 4287
4288#if EV_IDLE_ENABLE
1591void 4289void
1592ev_signal_start (EV_P_ struct ev_signal *w) 4290ev_idle_start (EV_P_ ev_idle *w) EV_THROW
1593{ 4291{
1594#if EV_MULTIPLICITY
1595 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1596#endif
1597 if (expect_false (ev_is_active (w))) 4292 if (expect_false (ev_is_active (w)))
1598 return; 4293 return;
1599 4294
1600 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 4295 pri_adjust (EV_A_ (W)w);
1601 4296
4297 EV_FREQUENT_CHECK;
4298
4299 {
4300 int active = ++idlecnt [ABSPRI (w)];
4301
4302 ++idleall;
1602 ev_start (EV_A_ (W)w, 1); 4303 ev_start (EV_A_ (W)w, active);
1603 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1604 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1605 4304
1606 if (!((WL)w)->next) 4305 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1607 { 4306 idles [ABSPRI (w)][active - 1] = w;
1608#if _WIN32
1609 signal (w->signum, sighandler);
1610#else
1611 struct sigaction sa;
1612 sa.sa_handler = sighandler;
1613 sigfillset (&sa.sa_mask);
1614 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1615 sigaction (w->signum, &sa, 0);
1616#endif
1617 } 4307 }
4308
4309 EV_FREQUENT_CHECK;
1618} 4310}
1619 4311
1620void 4312void
1621ev_signal_stop (EV_P_ struct ev_signal *w) 4313ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
1622{ 4314{
1623 ev_clear_pending (EV_A_ (W)w); 4315 clear_pending (EV_A_ (W)w);
1624 if (expect_false (!ev_is_active (w))) 4316 if (expect_false (!ev_is_active (w)))
1625 return; 4317 return;
1626 4318
1627 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 4319 EV_FREQUENT_CHECK;
4320
4321 {
4322 int active = ev_active (w);
4323
4324 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4325 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4326
1628 ev_stop (EV_A_ (W)w); 4327 ev_stop (EV_A_ (W)w);
4328 --idleall;
4329 }
1629 4330
1630 if (!signals [w->signum - 1].head) 4331 EV_FREQUENT_CHECK;
1631 signal (w->signum, SIG_DFL);
1632} 4332}
4333#endif
1633 4334
4335#if EV_PREPARE_ENABLE
1634void 4336void
1635ev_child_start (EV_P_ struct ev_child *w) 4337ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
1636{ 4338{
1637#if EV_MULTIPLICITY
1638 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1639#endif
1640 if (expect_false (ev_is_active (w))) 4339 if (expect_false (ev_is_active (w)))
1641 return; 4340 return;
1642 4341
4342 EV_FREQUENT_CHECK;
4343
1643 ev_start (EV_A_ (W)w, 1); 4344 ev_start (EV_A_ (W)w, ++preparecnt);
1644 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 4345 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
4346 prepares [preparecnt - 1] = w;
4347
4348 EV_FREQUENT_CHECK;
1645} 4349}
1646 4350
1647void 4351void
1648ev_child_stop (EV_P_ struct ev_child *w) 4352ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
1649{ 4353{
1650 ev_clear_pending (EV_A_ (W)w); 4354 clear_pending (EV_A_ (W)w);
1651 if (expect_false (!ev_is_active (w))) 4355 if (expect_false (!ev_is_active (w)))
1652 return; 4356 return;
1653 4357
1654 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 4358 EV_FREQUENT_CHECK;
4359
4360 {
4361 int active = ev_active (w);
4362
4363 prepares [active - 1] = prepares [--preparecnt];
4364 ev_active (prepares [active - 1]) = active;
4365 }
4366
1655 ev_stop (EV_A_ (W)w); 4367 ev_stop (EV_A_ (W)w);
4368
4369 EV_FREQUENT_CHECK;
1656} 4370}
4371#endif
4372
4373#if EV_CHECK_ENABLE
4374void
4375ev_check_start (EV_P_ ev_check *w) EV_THROW
4376{
4377 if (expect_false (ev_is_active (w)))
4378 return;
4379
4380 EV_FREQUENT_CHECK;
4381
4382 ev_start (EV_A_ (W)w, ++checkcnt);
4383 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4384 checks [checkcnt - 1] = w;
4385
4386 EV_FREQUENT_CHECK;
4387}
4388
4389void
4390ev_check_stop (EV_P_ ev_check *w) EV_THROW
4391{
4392 clear_pending (EV_A_ (W)w);
4393 if (expect_false (!ev_is_active (w)))
4394 return;
4395
4396 EV_FREQUENT_CHECK;
4397
4398 {
4399 int active = ev_active (w);
4400
4401 checks [active - 1] = checks [--checkcnt];
4402 ev_active (checks [active - 1]) = active;
4403 }
4404
4405 ev_stop (EV_A_ (W)w);
4406
4407 EV_FREQUENT_CHECK;
4408}
4409#endif
4410
4411#if EV_EMBED_ENABLE
4412void noinline
4413ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
4414{
4415 ev_run (w->other, EVRUN_NOWAIT);
4416}
4417
4418static void
4419embed_io_cb (EV_P_ ev_io *io, int revents)
4420{
4421 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4422
4423 if (ev_cb (w))
4424 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4425 else
4426 ev_run (w->other, EVRUN_NOWAIT);
4427}
4428
4429static void
4430embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4431{
4432 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4433
4434 {
4435 EV_P = w->other;
4436
4437 while (fdchangecnt)
4438 {
4439 fd_reify (EV_A);
4440 ev_run (EV_A_ EVRUN_NOWAIT);
4441 }
4442 }
4443}
4444
4445static void
4446embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4447{
4448 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4449
4450 ev_embed_stop (EV_A_ w);
4451
4452 {
4453 EV_P = w->other;
4454
4455 ev_loop_fork (EV_A);
4456 ev_run (EV_A_ EVRUN_NOWAIT);
4457 }
4458
4459 ev_embed_start (EV_A_ w);
4460}
4461
4462#if 0
4463static void
4464embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4465{
4466 ev_idle_stop (EV_A_ idle);
4467}
4468#endif
4469
4470void
4471ev_embed_start (EV_P_ ev_embed *w) EV_THROW
4472{
4473 if (expect_false (ev_is_active (w)))
4474 return;
4475
4476 {
4477 EV_P = w->other;
4478 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4479 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4480 }
4481
4482 EV_FREQUENT_CHECK;
4483
4484 ev_set_priority (&w->io, ev_priority (w));
4485 ev_io_start (EV_A_ &w->io);
4486
4487 ev_prepare_init (&w->prepare, embed_prepare_cb);
4488 ev_set_priority (&w->prepare, EV_MINPRI);
4489 ev_prepare_start (EV_A_ &w->prepare);
4490
4491 ev_fork_init (&w->fork, embed_fork_cb);
4492 ev_fork_start (EV_A_ &w->fork);
4493
4494 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4495
4496 ev_start (EV_A_ (W)w, 1);
4497
4498 EV_FREQUENT_CHECK;
4499}
4500
4501void
4502ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
4503{
4504 clear_pending (EV_A_ (W)w);
4505 if (expect_false (!ev_is_active (w)))
4506 return;
4507
4508 EV_FREQUENT_CHECK;
4509
4510 ev_io_stop (EV_A_ &w->io);
4511 ev_prepare_stop (EV_A_ &w->prepare);
4512 ev_fork_stop (EV_A_ &w->fork);
4513
4514 ev_stop (EV_A_ (W)w);
4515
4516 EV_FREQUENT_CHECK;
4517}
4518#endif
4519
4520#if EV_FORK_ENABLE
4521void
4522ev_fork_start (EV_P_ ev_fork *w) EV_THROW
4523{
4524 if (expect_false (ev_is_active (w)))
4525 return;
4526
4527 EV_FREQUENT_CHECK;
4528
4529 ev_start (EV_A_ (W)w, ++forkcnt);
4530 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4531 forks [forkcnt - 1] = w;
4532
4533 EV_FREQUENT_CHECK;
4534}
4535
4536void
4537ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
4538{
4539 clear_pending (EV_A_ (W)w);
4540 if (expect_false (!ev_is_active (w)))
4541 return;
4542
4543 EV_FREQUENT_CHECK;
4544
4545 {
4546 int active = ev_active (w);
4547
4548 forks [active - 1] = forks [--forkcnt];
4549 ev_active (forks [active - 1]) = active;
4550 }
4551
4552 ev_stop (EV_A_ (W)w);
4553
4554 EV_FREQUENT_CHECK;
4555}
4556#endif
4557
4558#if EV_CLEANUP_ENABLE
4559void
4560ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4561{
4562 if (expect_false (ev_is_active (w)))
4563 return;
4564
4565 EV_FREQUENT_CHECK;
4566
4567 ev_start (EV_A_ (W)w, ++cleanupcnt);
4568 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4569 cleanups [cleanupcnt - 1] = w;
4570
4571 /* cleanup watchers should never keep a refcount on the loop */
4572 ev_unref (EV_A);
4573 EV_FREQUENT_CHECK;
4574}
4575
4576void
4577ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4578{
4579 clear_pending (EV_A_ (W)w);
4580 if (expect_false (!ev_is_active (w)))
4581 return;
4582
4583 EV_FREQUENT_CHECK;
4584 ev_ref (EV_A);
4585
4586 {
4587 int active = ev_active (w);
4588
4589 cleanups [active - 1] = cleanups [--cleanupcnt];
4590 ev_active (cleanups [active - 1]) = active;
4591 }
4592
4593 ev_stop (EV_A_ (W)w);
4594
4595 EV_FREQUENT_CHECK;
4596}
4597#endif
4598
4599#if EV_ASYNC_ENABLE
4600void
4601ev_async_start (EV_P_ ev_async *w) EV_THROW
4602{
4603 if (expect_false (ev_is_active (w)))
4604 return;
4605
4606 w->sent = 0;
4607
4608 evpipe_init (EV_A);
4609
4610 EV_FREQUENT_CHECK;
4611
4612 ev_start (EV_A_ (W)w, ++asynccnt);
4613 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4614 asyncs [asynccnt - 1] = w;
4615
4616 EV_FREQUENT_CHECK;
4617}
4618
4619void
4620ev_async_stop (EV_P_ ev_async *w) EV_THROW
4621{
4622 clear_pending (EV_A_ (W)w);
4623 if (expect_false (!ev_is_active (w)))
4624 return;
4625
4626 EV_FREQUENT_CHECK;
4627
4628 {
4629 int active = ev_active (w);
4630
4631 asyncs [active - 1] = asyncs [--asynccnt];
4632 ev_active (asyncs [active - 1]) = active;
4633 }
4634
4635 ev_stop (EV_A_ (W)w);
4636
4637 EV_FREQUENT_CHECK;
4638}
4639
4640void
4641ev_async_send (EV_P_ ev_async *w) EV_THROW
4642{
4643 w->sent = 1;
4644 evpipe_write (EV_A_ &async_pending);
4645}
4646#endif
1657 4647
1658/*****************************************************************************/ 4648/*****************************************************************************/
1659 4649
1660struct ev_once 4650struct ev_once
1661{ 4651{
1662 struct ev_io io; 4652 ev_io io;
1663 struct ev_timer to; 4653 ev_timer to;
1664 void (*cb)(int revents, void *arg); 4654 void (*cb)(int revents, void *arg);
1665 void *arg; 4655 void *arg;
1666}; 4656};
1667 4657
1668static void 4658static void
1669once_cb (EV_P_ struct ev_once *once, int revents) 4659once_cb (EV_P_ struct ev_once *once, int revents)
1670{ 4660{
1671 void (*cb)(int revents, void *arg) = once->cb; 4661 void (*cb)(int revents, void *arg) = once->cb;
1672 void *arg = once->arg; 4662 void *arg = once->arg;
1673 4663
1674 ev_io_stop (EV_A_ &once->io); 4664 ev_io_stop (EV_A_ &once->io);
1675 ev_timer_stop (EV_A_ &once->to); 4665 ev_timer_stop (EV_A_ &once->to);
1676 ev_free (once); 4666 ev_free (once);
1677 4667
1678 cb (revents, arg); 4668 cb (revents, arg);
1679} 4669}
1680 4670
1681static void 4671static void
1682once_cb_io (EV_P_ struct ev_io *w, int revents) 4672once_cb_io (EV_P_ ev_io *w, int revents)
1683{ 4673{
1684 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4674 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4675
4676 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1685} 4677}
1686 4678
1687static void 4679static void
1688once_cb_to (EV_P_ struct ev_timer *w, int revents) 4680once_cb_to (EV_P_ ev_timer *w, int revents)
1689{ 4681{
1690 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4682 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4683
4684 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1691} 4685}
1692 4686
1693void 4687void
1694ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4688ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
1695{ 4689{
1696 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4690 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1697 4691
1698 if (expect_false (!once)) 4692 if (expect_false (!once))
1699 { 4693 {
1700 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4694 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1701 return; 4695 return;
1702 } 4696 }
1703 4697
1704 once->cb = cb; 4698 once->cb = cb;
1705 once->arg = arg; 4699 once->arg = arg;
1717 ev_timer_set (&once->to, timeout, 0.); 4711 ev_timer_set (&once->to, timeout, 0.);
1718 ev_timer_start (EV_A_ &once->to); 4712 ev_timer_start (EV_A_ &once->to);
1719 } 4713 }
1720} 4714}
1721 4715
1722#ifdef __cplusplus 4716/*****************************************************************************/
1723} 4717
4718#if EV_WALK_ENABLE
4719void ecb_cold
4720ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4721{
4722 int i, j;
4723 ev_watcher_list *wl, *wn;
4724
4725 if (types & (EV_IO | EV_EMBED))
4726 for (i = 0; i < anfdmax; ++i)
4727 for (wl = anfds [i].head; wl; )
4728 {
4729 wn = wl->next;
4730
4731#if EV_EMBED_ENABLE
4732 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4733 {
4734 if (types & EV_EMBED)
4735 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4736 }
4737 else
4738#endif
4739#if EV_USE_INOTIFY
4740 if (ev_cb ((ev_io *)wl) == infy_cb)
4741 ;
4742 else
4743#endif
4744 if ((ev_io *)wl != &pipe_w)
4745 if (types & EV_IO)
4746 cb (EV_A_ EV_IO, wl);
4747
4748 wl = wn;
4749 }
4750
4751 if (types & (EV_TIMER | EV_STAT))
4752 for (i = timercnt + HEAP0; i-- > HEAP0; )
4753#if EV_STAT_ENABLE
4754 /*TODO: timer is not always active*/
4755 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4756 {
4757 if (types & EV_STAT)
4758 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4759 }
4760 else
4761#endif
4762 if (types & EV_TIMER)
4763 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4764
4765#if EV_PERIODIC_ENABLE
4766 if (types & EV_PERIODIC)
4767 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4768 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4769#endif
4770
4771#if EV_IDLE_ENABLE
4772 if (types & EV_IDLE)
4773 for (j = NUMPRI; j--; )
4774 for (i = idlecnt [j]; i--; )
4775 cb (EV_A_ EV_IDLE, idles [j][i]);
4776#endif
4777
4778#if EV_FORK_ENABLE
4779 if (types & EV_FORK)
4780 for (i = forkcnt; i--; )
4781 if (ev_cb (forks [i]) != embed_fork_cb)
4782 cb (EV_A_ EV_FORK, forks [i]);
4783#endif
4784
4785#if EV_ASYNC_ENABLE
4786 if (types & EV_ASYNC)
4787 for (i = asynccnt; i--; )
4788 cb (EV_A_ EV_ASYNC, asyncs [i]);
4789#endif
4790
4791#if EV_PREPARE_ENABLE
4792 if (types & EV_PREPARE)
4793 for (i = preparecnt; i--; )
4794# if EV_EMBED_ENABLE
4795 if (ev_cb (prepares [i]) != embed_prepare_cb)
1724#endif 4796# endif
4797 cb (EV_A_ EV_PREPARE, prepares [i]);
4798#endif
1725 4799
4800#if EV_CHECK_ENABLE
4801 if (types & EV_CHECK)
4802 for (i = checkcnt; i--; )
4803 cb (EV_A_ EV_CHECK, checks [i]);
4804#endif
4805
4806#if EV_SIGNAL_ENABLE
4807 if (types & EV_SIGNAL)
4808 for (i = 0; i < EV_NSIG - 1; ++i)
4809 for (wl = signals [i].head; wl; )
4810 {
4811 wn = wl->next;
4812 cb (EV_A_ EV_SIGNAL, wl);
4813 wl = wn;
4814 }
4815#endif
4816
4817#if EV_CHILD_ENABLE
4818 if (types & EV_CHILD)
4819 for (i = (EV_PID_HASHSIZE); i--; )
4820 for (wl = childs [i]; wl; )
4821 {
4822 wn = wl->next;
4823 cb (EV_A_ EV_CHILD, wl);
4824 wl = wn;
4825 }
4826#endif
4827/* EV_STAT 0x00001000 /* stat data changed */
4828/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4829}
4830#endif
4831
4832#if EV_MULTIPLICITY
4833 #include "ev_wrap.h"
4834#endif
4835

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines