ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.256 by root, Thu Jun 19 06:53:49 2008 UTC vs.
Revision 1.462 by root, Sun Jan 5 02:59:36 2014 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
52# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
55# endif 71# endif
56# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
58# endif 74# endif
59# else 75# else
60# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
62# endif 78# endif
63# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
65# endif 81# endif
66# endif 82# endif
67 83
84# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
71# else 88# else
89# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
74# endif 100# endif
75 101
102# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 105# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 106# else
107# undef EV_USE_POLL
88# define EV_USE_POLL 0 108# define EV_USE_POLL 0
89# endif
90# endif 109# endif
91 110
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
95# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
98# endif 118# endif
99 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
106# endif 127# endif
107 128
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
111# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
114# endif 136# endif
115 137
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
122# endif 145# endif
123 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 148# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 149# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
130# endif 163# endif
131 164
132#endif 165#endif
133 166
134#include <math.h>
135#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
136#include <fcntl.h> 169#include <fcntl.h>
137#include <stddef.h> 170#include <stddef.h>
138 171
139#include <stdio.h> 172#include <stdio.h>
140 173
141#include <assert.h> 174#include <assert.h>
142#include <errno.h> 175#include <errno.h>
143#include <sys/types.h> 176#include <sys/types.h>
144#include <time.h> 177#include <time.h>
178#include <limits.h>
145 179
146#include <signal.h> 180#include <signal.h>
147 181
148#ifdef EV_H 182#ifdef EV_H
149# include EV_H 183# include EV_H
150#else 184#else
151# include "ev.h" 185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
152#endif 197#endif
153 198
154#ifndef _WIN32 199#ifndef _WIN32
155# include <sys/time.h> 200# include <sys/time.h>
156# include <sys/wait.h> 201# include <sys/wait.h>
157# include <unistd.h> 202# include <unistd.h>
158#else 203#else
159# include <io.h> 204# include <io.h>
160# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
161# include <windows.h> 207# include <windows.h>
162# ifndef EV_SELECT_IS_WINSOCKET 208# ifndef EV_SELECT_IS_WINSOCKET
163# define EV_SELECT_IS_WINSOCKET 1 209# define EV_SELECT_IS_WINSOCKET 1
164# endif 210# endif
211# undef EV_AVOID_STDIO
165#endif 212#endif
213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
166 221
167/* this block tries to deduce configuration from header-defined symbols and defaults */ 222/* this block tries to deduce configuration from header-defined symbols and defaults */
168 223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# define EV_NSIG (8 * sizeof (sigset_t) + 1)
247#endif
248
249#ifndef EV_USE_FLOOR
250# define EV_USE_FLOOR 0
251#endif
252
253#ifndef EV_USE_CLOCK_SYSCALL
254# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
255# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
256# else
257# define EV_USE_CLOCK_SYSCALL 0
258# endif
259#endif
260
169#ifndef EV_USE_MONOTONIC 261#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0 262# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1 263# define EV_USE_MONOTONIC EV_FEATURE_OS
172# else 264# else
173# define EV_USE_MONOTONIC 0 265# define EV_USE_MONOTONIC 0
174# endif 266# endif
175#endif 267#endif
176 268
177#ifndef EV_USE_REALTIME 269#ifndef EV_USE_REALTIME
178# define EV_USE_REALTIME 0 270# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
179#endif 271#endif
180 272
181#ifndef EV_USE_NANOSLEEP 273#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L 274# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1 275# define EV_USE_NANOSLEEP EV_FEATURE_OS
184# else 276# else
185# define EV_USE_NANOSLEEP 0 277# define EV_USE_NANOSLEEP 0
186# endif 278# endif
187#endif 279#endif
188 280
189#ifndef EV_USE_SELECT 281#ifndef EV_USE_SELECT
190# define EV_USE_SELECT 1 282# define EV_USE_SELECT EV_FEATURE_BACKENDS
191#endif 283#endif
192 284
193#ifndef EV_USE_POLL 285#ifndef EV_USE_POLL
194# ifdef _WIN32 286# ifdef _WIN32
195# define EV_USE_POLL 0 287# define EV_USE_POLL 0
196# else 288# else
197# define EV_USE_POLL 1 289# define EV_USE_POLL EV_FEATURE_BACKENDS
198# endif 290# endif
199#endif 291#endif
200 292
201#ifndef EV_USE_EPOLL 293#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 294# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1 295# define EV_USE_EPOLL EV_FEATURE_BACKENDS
204# else 296# else
205# define EV_USE_EPOLL 0 297# define EV_USE_EPOLL 0
206# endif 298# endif
207#endif 299#endif
208 300
214# define EV_USE_PORT 0 306# define EV_USE_PORT 0
215#endif 307#endif
216 308
217#ifndef EV_USE_INOTIFY 309#ifndef EV_USE_INOTIFY
218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
219# define EV_USE_INOTIFY 1 311# define EV_USE_INOTIFY EV_FEATURE_OS
220# else 312# else
221# define EV_USE_INOTIFY 0 313# define EV_USE_INOTIFY 0
222# endif 314# endif
223#endif 315#endif
224 316
225#ifndef EV_PID_HASHSIZE 317#ifndef EV_PID_HASHSIZE
226# if EV_MINIMAL 318# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
227# define EV_PID_HASHSIZE 1
228# else
229# define EV_PID_HASHSIZE 16
230# endif
231#endif 319#endif
232 320
233#ifndef EV_INOTIFY_HASHSIZE 321#ifndef EV_INOTIFY_HASHSIZE
234# if EV_MINIMAL 322# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
235# define EV_INOTIFY_HASHSIZE 1
236# else
237# define EV_INOTIFY_HASHSIZE 16
238# endif
239#endif 323#endif
240 324
241#ifndef EV_USE_EVENTFD 325#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 326# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1 327# define EV_USE_EVENTFD EV_FEATURE_OS
244# else 328# else
245# define EV_USE_EVENTFD 0 329# define EV_USE_EVENTFD 0
330# endif
331#endif
332
333#ifndef EV_USE_SIGNALFD
334# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
335# define EV_USE_SIGNALFD EV_FEATURE_OS
336# else
337# define EV_USE_SIGNALFD 0
246# endif 338# endif
247#endif 339#endif
248 340
249#if 0 /* debugging */ 341#if 0 /* debugging */
250# define EV_VERIFY 3 342# define EV_VERIFY 3
251# define EV_USE_4HEAP 1 343# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1 344# define EV_HEAP_CACHE_AT 1
253#endif 345#endif
254 346
255#ifndef EV_VERIFY 347#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL 348# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
257#endif 349#endif
258 350
259#ifndef EV_USE_4HEAP 351#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL 352# define EV_USE_4HEAP EV_FEATURE_DATA
261#endif 353#endif
262 354
263#ifndef EV_HEAP_CACHE_AT 355#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL 356# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
357#endif
358
359#ifdef ANDROID
360/* supposedly, android doesn't typedef fd_mask */
361# undef EV_USE_SELECT
362# define EV_USE_SELECT 0
363/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
364# undef EV_USE_CLOCK_SYSCALL
365# define EV_USE_CLOCK_SYSCALL 0
366#endif
367
368/* aix's poll.h seems to cause lots of trouble */
369#ifdef _AIX
370/* AIX has a completely broken poll.h header */
371# undef EV_USE_POLL
372# define EV_USE_POLL 0
373#endif
374
375/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
376/* which makes programs even slower. might work on other unices, too. */
377#if EV_USE_CLOCK_SYSCALL
378# include <sys/syscall.h>
379# ifdef SYS_clock_gettime
380# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
381# undef EV_USE_MONOTONIC
382# define EV_USE_MONOTONIC 1
383# else
384# undef EV_USE_CLOCK_SYSCALL
385# define EV_USE_CLOCK_SYSCALL 0
386# endif
265#endif 387#endif
266 388
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 389/* this block fixes any misconfiguration where we know we run into trouble otherwise */
268 390
269#ifndef CLOCK_MONOTONIC 391#ifndef CLOCK_MONOTONIC
280# undef EV_USE_INOTIFY 402# undef EV_USE_INOTIFY
281# define EV_USE_INOTIFY 0 403# define EV_USE_INOTIFY 0
282#endif 404#endif
283 405
284#if !EV_USE_NANOSLEEP 406#if !EV_USE_NANOSLEEP
285# ifndef _WIN32 407/* hp-ux has it in sys/time.h, which we unconditionally include above */
408# if !defined _WIN32 && !defined __hpux
286# include <sys/select.h> 409# include <sys/select.h>
287# endif 410# endif
288#endif 411#endif
289 412
290#if EV_USE_INOTIFY 413#if EV_USE_INOTIFY
414# include <sys/statfs.h>
291# include <sys/inotify.h> 415# include <sys/inotify.h>
416/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
417# ifndef IN_DONT_FOLLOW
418# undef EV_USE_INOTIFY
419# define EV_USE_INOTIFY 0
292#endif 420# endif
293
294#if EV_SELECT_IS_WINSOCKET
295# include <winsock.h>
296#endif 421#endif
297 422
298#if EV_USE_EVENTFD 423#if EV_USE_EVENTFD
299/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 424/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
300# include <stdint.h> 425# include <stdint.h>
301# ifdef __cplusplus 426# ifndef EFD_NONBLOCK
302extern "C" { 427# define EFD_NONBLOCK O_NONBLOCK
303# endif 428# endif
304int eventfd (unsigned int initval, int flags); 429# ifndef EFD_CLOEXEC
305# ifdef __cplusplus 430# ifdef O_CLOEXEC
306} 431# define EFD_CLOEXEC O_CLOEXEC
432# else
433# define EFD_CLOEXEC 02000000
434# endif
307# endif 435# endif
436EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
437#endif
438
439#if EV_USE_SIGNALFD
440/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
441# include <stdint.h>
442# ifndef SFD_NONBLOCK
443# define SFD_NONBLOCK O_NONBLOCK
444# endif
445# ifndef SFD_CLOEXEC
446# ifdef O_CLOEXEC
447# define SFD_CLOEXEC O_CLOEXEC
448# else
449# define SFD_CLOEXEC 02000000
450# endif
451# endif
452EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
453
454struct signalfd_siginfo
455{
456 uint32_t ssi_signo;
457 char pad[128 - sizeof (uint32_t)];
458};
308#endif 459#endif
309 460
310/**/ 461/**/
311 462
312#if EV_VERIFY >= 3 463#if EV_VERIFY >= 3
313# define EV_FREQUENT_CHECK ev_loop_verify (EV_A) 464# define EV_FREQUENT_CHECK ev_verify (EV_A)
314#else 465#else
315# define EV_FREQUENT_CHECK do { } while (0) 466# define EV_FREQUENT_CHECK do { } while (0)
316#endif 467#endif
317 468
318/* 469/*
319 * This is used to avoid floating point rounding problems. 470 * This is used to work around floating point rounding problems.
320 * It is added to ev_rt_now when scheduling periodics
321 * to ensure progress, time-wise, even when rounding
322 * errors are against us.
323 * This value is good at least till the year 4000. 471 * This value is good at least till the year 4000.
324 * Better solutions welcome.
325 */ 472 */
326#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 473#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
474/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
327 475
328#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 476#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
329#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 477#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
330/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
331 478
479#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
480#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
481
482/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
483/* ECB.H BEGIN */
484/*
485 * libecb - http://software.schmorp.de/pkg/libecb
486 *
487 * Copyright (©) 2009-2013 Marc Alexander Lehmann <libecb@schmorp.de>
488 * Copyright (©) 2011 Emanuele Giaquinta
489 * All rights reserved.
490 *
491 * Redistribution and use in source and binary forms, with or without modifica-
492 * tion, are permitted provided that the following conditions are met:
493 *
494 * 1. Redistributions of source code must retain the above copyright notice,
495 * this list of conditions and the following disclaimer.
496 *
497 * 2. Redistributions in binary form must reproduce the above copyright
498 * notice, this list of conditions and the following disclaimer in the
499 * documentation and/or other materials provided with the distribution.
500 *
501 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
502 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
503 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
504 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
505 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
506 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
507 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
508 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
509 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
510 * OF THE POSSIBILITY OF SUCH DAMAGE.
511 */
512
513#ifndef ECB_H
514#define ECB_H
515
516/* 16 bits major, 16 bits minor */
517#define ECB_VERSION 0x00010003
518
519#ifdef _WIN32
520 typedef signed char int8_t;
521 typedef unsigned char uint8_t;
522 typedef signed short int16_t;
523 typedef unsigned short uint16_t;
524 typedef signed int int32_t;
525 typedef unsigned int uint32_t;
332#if __GNUC__ >= 4 526 #if __GNUC__
333# define expect(expr,value) __builtin_expect ((expr),(value)) 527 typedef signed long long int64_t;
334# define noinline __attribute__ ((noinline)) 528 typedef unsigned long long uint64_t;
529 #else /* _MSC_VER || __BORLANDC__ */
530 typedef signed __int64 int64_t;
531 typedef unsigned __int64 uint64_t;
532 #endif
533 #ifdef _WIN64
534 #define ECB_PTRSIZE 8
535 typedef uint64_t uintptr_t;
536 typedef int64_t intptr_t;
537 #else
538 #define ECB_PTRSIZE 4
539 typedef uint32_t uintptr_t;
540 typedef int32_t intptr_t;
541 #endif
335#else 542#else
336# define expect(expr,value) (expr) 543 #include <inttypes.h>
337# define noinline 544 #if UINTMAX_MAX > 0xffffffffU
338# if __STDC_VERSION__ < 199901L && __GNUC__ < 2 545 #define ECB_PTRSIZE 8
339# define inline 546 #else
547 #define ECB_PTRSIZE 4
548 #endif
340# endif 549#endif
550
551/* work around x32 idiocy by defining proper macros */
552#if __amd64 || __x86_64 || _M_AMD64 || _M_X64
553 #if _ILP32
554 #define ECB_AMD64_X32 1
555 #else
556 #define ECB_AMD64 1
341#endif 557 #endif
558#endif
342 559
560/* many compilers define _GNUC_ to some versions but then only implement
561 * what their idiot authors think are the "more important" extensions,
562 * causing enormous grief in return for some better fake benchmark numbers.
563 * or so.
564 * we try to detect these and simply assume they are not gcc - if they have
565 * an issue with that they should have done it right in the first place.
566 */
567#ifndef ECB_GCC_VERSION
568 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
569 #define ECB_GCC_VERSION(major,minor) 0
570 #else
571 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
572 #endif
573#endif
574
575#define ECB_C (__STDC__+0) /* this assumes that __STDC__ is either empty or a number */
576#define ECB_C99 (__STDC_VERSION__ >= 199901L)
577#define ECB_C11 (__STDC_VERSION__ >= 201112L)
578#define ECB_CPP (__cplusplus+0)
579#define ECB_CPP11 (__cplusplus >= 201103L)
580
581#if ECB_CPP
582 #define ECB_EXTERN_C extern "C"
583 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
584 #define ECB_EXTERN_C_END }
585#else
586 #define ECB_EXTERN_C extern
587 #define ECB_EXTERN_C_BEG
588 #define ECB_EXTERN_C_END
589#endif
590
591/*****************************************************************************/
592
593/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
594/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
595
596#if ECB_NO_THREADS
597 #define ECB_NO_SMP 1
598#endif
599
600#if ECB_NO_SMP
601 #define ECB_MEMORY_FENCE do { } while (0)
602#endif
603
604#ifndef ECB_MEMORY_FENCE
605 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
606 #if __i386 || __i386__
607 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
608 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
609 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
610 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
611 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
612 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
613 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
614 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
615 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
616 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
617 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
618 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
619 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
620 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
621 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
622 #elif (__sparc || __sparc__) && !__sparcv8
623 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
624 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
625 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
626 #elif defined __s390__ || defined __s390x__
627 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
628 #elif defined __mips__
629 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
630 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
631 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
632 #elif defined __alpha__
633 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
634 #elif defined __hppa__
635 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
636 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
637 #elif defined __ia64__
638 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
639 #elif defined __m68k__
640 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
641 #elif defined __m88k__
642 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
643 #elif defined __sh__
644 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
645 #endif
646 #endif
647#endif
648
649#ifndef ECB_MEMORY_FENCE
650 #if ECB_GCC_VERSION(4,7)
651 /* see comment below (stdatomic.h) about the C11 memory model. */
652 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
653
654 /* The __has_feature syntax from clang is so misdesigned that we cannot use it
655 * without risking compile time errors with other compilers. We *could*
656 * define our own ecb_clang_has_feature, but I just can't be bothered to work
657 * around this shit time and again.
658 * #elif defined __clang && __has_feature (cxx_atomic)
659 * // see comment below (stdatomic.h) about the C11 memory model.
660 * #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
661 */
662
663 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
664 #define ECB_MEMORY_FENCE __sync_synchronize ()
665 #elif _MSC_VER >= 1500 /* VC++ 2008 */
666 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
667 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
668 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
669 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
670 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
671 #elif _MSC_VER >= 1400 /* VC++ 2005 */
672 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
673 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
674 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
675 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
676 #elif defined _WIN32
677 #include <WinNT.h>
678 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
679 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
680 #include <mbarrier.h>
681 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
682 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
683 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
684 #elif __xlC__
685 #define ECB_MEMORY_FENCE __sync ()
686 #endif
687#endif
688
689#ifndef ECB_MEMORY_FENCE
690 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
691 /* we assume that these memory fences work on all variables/all memory accesses, */
692 /* not just C11 atomics and atomic accesses */
693 #include <stdatomic.h>
694 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
695 /* any fence other than seq_cst, which isn't very efficient for us. */
696 /* Why that is, we don't know - either the C11 memory model is quite useless */
697 /* for most usages, or gcc and clang have a bug */
698 /* I *currently* lean towards the latter, and inefficiently implement */
699 /* all three of ecb's fences as a seq_cst fence */
700 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
701 #endif
702#endif
703
704#ifndef ECB_MEMORY_FENCE
705 #if !ECB_AVOID_PTHREADS
706 /*
707 * if you get undefined symbol references to pthread_mutex_lock,
708 * or failure to find pthread.h, then you should implement
709 * the ECB_MEMORY_FENCE operations for your cpu/compiler
710 * OR provide pthread.h and link against the posix thread library
711 * of your system.
712 */
713 #include <pthread.h>
714 #define ECB_NEEDS_PTHREADS 1
715 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
716
717 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
718 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
719 #endif
720#endif
721
722#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
723 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
724#endif
725
726#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
727 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
728#endif
729
730/*****************************************************************************/
731
732#if __cplusplus
733 #define ecb_inline static inline
734#elif ECB_GCC_VERSION(2,5)
735 #define ecb_inline static __inline__
736#elif ECB_C99
737 #define ecb_inline static inline
738#else
739 #define ecb_inline static
740#endif
741
742#if ECB_GCC_VERSION(3,3)
743 #define ecb_restrict __restrict__
744#elif ECB_C99
745 #define ecb_restrict restrict
746#else
747 #define ecb_restrict
748#endif
749
750typedef int ecb_bool;
751
752#define ECB_CONCAT_(a, b) a ## b
753#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
754#define ECB_STRINGIFY_(a) # a
755#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
756
757#define ecb_function_ ecb_inline
758
759#if ECB_GCC_VERSION(3,1)
760 #define ecb_attribute(attrlist) __attribute__(attrlist)
761 #define ecb_is_constant(expr) __builtin_constant_p (expr)
762 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
763 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
764#else
765 #define ecb_attribute(attrlist)
766 #define ecb_is_constant(expr) 0
767 #define ecb_expect(expr,value) (expr)
768 #define ecb_prefetch(addr,rw,locality)
769#endif
770
771/* no emulation for ecb_decltype */
772#if ECB_GCC_VERSION(4,5)
773 #define ecb_decltype(x) __decltype(x)
774#elif ECB_GCC_VERSION(3,0)
775 #define ecb_decltype(x) __typeof(x)
776#endif
777
778#define ecb_noinline ecb_attribute ((__noinline__))
779#define ecb_unused ecb_attribute ((__unused__))
780#define ecb_const ecb_attribute ((__const__))
781#define ecb_pure ecb_attribute ((__pure__))
782
783#if ECB_C11
784 #define ecb_noreturn _Noreturn
785#else
786 #define ecb_noreturn ecb_attribute ((__noreturn__))
787#endif
788
789#if ECB_GCC_VERSION(4,3)
790 #define ecb_artificial ecb_attribute ((__artificial__))
791 #define ecb_hot ecb_attribute ((__hot__))
792 #define ecb_cold ecb_attribute ((__cold__))
793#else
794 #define ecb_artificial
795 #define ecb_hot
796 #define ecb_cold
797#endif
798
799/* put around conditional expressions if you are very sure that the */
800/* expression is mostly true or mostly false. note that these return */
801/* booleans, not the expression. */
343#define expect_false(expr) expect ((expr) != 0, 0) 802#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
344#define expect_true(expr) expect ((expr) != 0, 1) 803#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
804/* for compatibility to the rest of the world */
805#define ecb_likely(expr) ecb_expect_true (expr)
806#define ecb_unlikely(expr) ecb_expect_false (expr)
807
808/* count trailing zero bits and count # of one bits */
809#if ECB_GCC_VERSION(3,4)
810 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
811 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
812 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
813 #define ecb_ctz32(x) __builtin_ctz (x)
814 #define ecb_ctz64(x) __builtin_ctzll (x)
815 #define ecb_popcount32(x) __builtin_popcount (x)
816 /* no popcountll */
817#else
818 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
819 ecb_function_ int
820 ecb_ctz32 (uint32_t x)
821 {
822 int r = 0;
823
824 x &= ~x + 1; /* this isolates the lowest bit */
825
826#if ECB_branchless_on_i386
827 r += !!(x & 0xaaaaaaaa) << 0;
828 r += !!(x & 0xcccccccc) << 1;
829 r += !!(x & 0xf0f0f0f0) << 2;
830 r += !!(x & 0xff00ff00) << 3;
831 r += !!(x & 0xffff0000) << 4;
832#else
833 if (x & 0xaaaaaaaa) r += 1;
834 if (x & 0xcccccccc) r += 2;
835 if (x & 0xf0f0f0f0) r += 4;
836 if (x & 0xff00ff00) r += 8;
837 if (x & 0xffff0000) r += 16;
838#endif
839
840 return r;
841 }
842
843 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
844 ecb_function_ int
845 ecb_ctz64 (uint64_t x)
846 {
847 int shift = x & 0xffffffffU ? 0 : 32;
848 return ecb_ctz32 (x >> shift) + shift;
849 }
850
851 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
852 ecb_function_ int
853 ecb_popcount32 (uint32_t x)
854 {
855 x -= (x >> 1) & 0x55555555;
856 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
857 x = ((x >> 4) + x) & 0x0f0f0f0f;
858 x *= 0x01010101;
859
860 return x >> 24;
861 }
862
863 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
864 ecb_function_ int ecb_ld32 (uint32_t x)
865 {
866 int r = 0;
867
868 if (x >> 16) { x >>= 16; r += 16; }
869 if (x >> 8) { x >>= 8; r += 8; }
870 if (x >> 4) { x >>= 4; r += 4; }
871 if (x >> 2) { x >>= 2; r += 2; }
872 if (x >> 1) { r += 1; }
873
874 return r;
875 }
876
877 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
878 ecb_function_ int ecb_ld64 (uint64_t x)
879 {
880 int r = 0;
881
882 if (x >> 32) { x >>= 32; r += 32; }
883
884 return r + ecb_ld32 (x);
885 }
886#endif
887
888ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
889ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
890ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
891ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
892
893ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
894ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
895{
896 return ( (x * 0x0802U & 0x22110U)
897 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
898}
899
900ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
901ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
902{
903 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
904 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
905 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
906 x = ( x >> 8 ) | ( x << 8);
907
908 return x;
909}
910
911ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
912ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
913{
914 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
915 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
916 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
917 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
918 x = ( x >> 16 ) | ( x << 16);
919
920 return x;
921}
922
923/* popcount64 is only available on 64 bit cpus as gcc builtin */
924/* so for this version we are lazy */
925ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
926ecb_function_ int
927ecb_popcount64 (uint64_t x)
928{
929 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
930}
931
932ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
933ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
934ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
935ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
936ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
937ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
938ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
939ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
940
941ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
942ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
943ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
944ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
945ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
946ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
947ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
948ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
949
950#if ECB_GCC_VERSION(4,3)
951 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
952 #define ecb_bswap32(x) __builtin_bswap32 (x)
953 #define ecb_bswap64(x) __builtin_bswap64 (x)
954#else
955 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
956 ecb_function_ uint16_t
957 ecb_bswap16 (uint16_t x)
958 {
959 return ecb_rotl16 (x, 8);
960 }
961
962 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
963 ecb_function_ uint32_t
964 ecb_bswap32 (uint32_t x)
965 {
966 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
967 }
968
969 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
970 ecb_function_ uint64_t
971 ecb_bswap64 (uint64_t x)
972 {
973 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
974 }
975#endif
976
977#if ECB_GCC_VERSION(4,5)
978 #define ecb_unreachable() __builtin_unreachable ()
979#else
980 /* this seems to work fine, but gcc always emits a warning for it :/ */
981 ecb_inline void ecb_unreachable (void) ecb_noreturn;
982 ecb_inline void ecb_unreachable (void) { }
983#endif
984
985/* try to tell the compiler that some condition is definitely true */
986#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
987
988ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
989ecb_inline unsigned char
990ecb_byteorder_helper (void)
991{
992 /* the union code still generates code under pressure in gcc, */
993 /* but less than using pointers, and always seems to */
994 /* successfully return a constant. */
995 /* the reason why we have this horrible preprocessor mess */
996 /* is to avoid it in all cases, at least on common architectures */
997 /* or when using a recent enough gcc version (>= 4.6) */
998#if __i386 || __i386__ || _M_X86 || __amd64 || __amd64__ || _M_X64
999 return 0x44;
1000#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1001 return 0x44;
1002#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1003 return 0x11;
1004#else
1005 union
1006 {
1007 uint32_t i;
1008 uint8_t c;
1009 } u = { 0x11223344 };
1010 return u.c;
1011#endif
1012}
1013
1014ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
1015ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
1016ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
1017ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
1018
1019#if ECB_GCC_VERSION(3,0) || ECB_C99
1020 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1021#else
1022 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1023#endif
1024
1025#if __cplusplus
1026 template<typename T>
1027 static inline T ecb_div_rd (T val, T div)
1028 {
1029 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1030 }
1031 template<typename T>
1032 static inline T ecb_div_ru (T val, T div)
1033 {
1034 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1035 }
1036#else
1037 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1038 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1039#endif
1040
1041#if ecb_cplusplus_does_not_suck
1042 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1043 template<typename T, int N>
1044 static inline int ecb_array_length (const T (&arr)[N])
1045 {
1046 return N;
1047 }
1048#else
1049 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1050#endif
1051
1052/*******************************************************************************/
1053/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1054
1055/* basically, everything uses "ieee pure-endian" floating point numbers */
1056/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1057#if 0 \
1058 || __i386 || __i386__ \
1059 || __amd64 || __amd64__ || __x86_64 || __x86_64__ \
1060 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1061 || defined __arm__ && defined __ARM_EABI__ \
1062 || defined __s390__ || defined __s390x__ \
1063 || defined __mips__ \
1064 || defined __alpha__ \
1065 || defined __hppa__ \
1066 || defined __ia64__ \
1067 || defined __m68k__ \
1068 || defined __m88k__ \
1069 || defined __sh__ \
1070 || defined _M_IX86 || defined _M_AMD64 || defined _M_IA64
1071 #define ECB_STDFP 1
1072 #include <string.h> /* for memcpy */
1073#else
1074 #define ECB_STDFP 0
1075#endif
1076
1077#ifndef ECB_NO_LIBM
1078
1079 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1080
1081 /* only the oldest of old doesn't have this one. solaris. */
1082 #ifdef INFINITY
1083 #define ECB_INFINITY INFINITY
1084 #else
1085 #define ECB_INFINITY HUGE_VAL
1086 #endif
1087
1088 #ifdef NAN
1089 #define ECB_NAN NAN
1090 #else
1091 #define ECB_NAN ECB_INFINITY
1092 #endif
1093
1094 /* converts an ieee half/binary16 to a float */
1095 ecb_function_ float ecb_binary16_to_float (uint16_t x) ecb_const;
1096 ecb_function_ float
1097 ecb_binary16_to_float (uint16_t x)
1098 {
1099 int e = (x >> 10) & 0x1f;
1100 int m = x & 0x3ff;
1101 float r;
1102
1103 if (!e ) r = ldexpf (m , -24);
1104 else if (e != 31) r = ldexpf (m + 0x400, e - 25);
1105 else if (m ) r = ECB_NAN;
1106 else r = ECB_INFINITY;
1107
1108 return x & 0x8000 ? -r : r;
1109 }
1110
1111 /* convert a float to ieee single/binary32 */
1112 ecb_function_ uint32_t ecb_float_to_binary32 (float x) ecb_const;
1113 ecb_function_ uint32_t
1114 ecb_float_to_binary32 (float x)
1115 {
1116 uint32_t r;
1117
1118 #if ECB_STDFP
1119 memcpy (&r, &x, 4);
1120 #else
1121 /* slow emulation, works for anything but -0 */
1122 uint32_t m;
1123 int e;
1124
1125 if (x == 0e0f ) return 0x00000000U;
1126 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1127 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1128 if (x != x ) return 0x7fbfffffU;
1129
1130 m = frexpf (x, &e) * 0x1000000U;
1131
1132 r = m & 0x80000000U;
1133
1134 if (r)
1135 m = -m;
1136
1137 if (e <= -126)
1138 {
1139 m &= 0xffffffU;
1140 m >>= (-125 - e);
1141 e = -126;
1142 }
1143
1144 r |= (e + 126) << 23;
1145 r |= m & 0x7fffffU;
1146 #endif
1147
1148 return r;
1149 }
1150
1151 /* converts an ieee single/binary32 to a float */
1152 ecb_function_ float ecb_binary32_to_float (uint32_t x) ecb_const;
1153 ecb_function_ float
1154 ecb_binary32_to_float (uint32_t x)
1155 {
1156 float r;
1157
1158 #if ECB_STDFP
1159 memcpy (&r, &x, 4);
1160 #else
1161 /* emulation, only works for normals and subnormals and +0 */
1162 int neg = x >> 31;
1163 int e = (x >> 23) & 0xffU;
1164
1165 x &= 0x7fffffU;
1166
1167 if (e)
1168 x |= 0x800000U;
1169 else
1170 e = 1;
1171
1172 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1173 r = ldexpf (x * (0.5f / 0x800000U), e - 126);
1174
1175 r = neg ? -r : r;
1176 #endif
1177
1178 return r;
1179 }
1180
1181 /* convert a double to ieee double/binary64 */
1182 ecb_function_ uint64_t ecb_double_to_binary64 (double x) ecb_const;
1183 ecb_function_ uint64_t
1184 ecb_double_to_binary64 (double x)
1185 {
1186 uint64_t r;
1187
1188 #if ECB_STDFP
1189 memcpy (&r, &x, 8);
1190 #else
1191 /* slow emulation, works for anything but -0 */
1192 uint64_t m;
1193 int e;
1194
1195 if (x == 0e0 ) return 0x0000000000000000U;
1196 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1197 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1198 if (x != x ) return 0X7ff7ffffffffffffU;
1199
1200 m = frexp (x, &e) * 0x20000000000000U;
1201
1202 r = m & 0x8000000000000000;;
1203
1204 if (r)
1205 m = -m;
1206
1207 if (e <= -1022)
1208 {
1209 m &= 0x1fffffffffffffU;
1210 m >>= (-1021 - e);
1211 e = -1022;
1212 }
1213
1214 r |= ((uint64_t)(e + 1022)) << 52;
1215 r |= m & 0xfffffffffffffU;
1216 #endif
1217
1218 return r;
1219 }
1220
1221 /* converts an ieee double/binary64 to a double */
1222 ecb_function_ double ecb_binary64_to_double (uint64_t x) ecb_const;
1223 ecb_function_ double
1224 ecb_binary64_to_double (uint64_t x)
1225 {
1226 double r;
1227
1228 #if ECB_STDFP
1229 memcpy (&r, &x, 8);
1230 #else
1231 /* emulation, only works for normals and subnormals and +0 */
1232 int neg = x >> 63;
1233 int e = (x >> 52) & 0x7ffU;
1234
1235 x &= 0xfffffffffffffU;
1236
1237 if (e)
1238 x |= 0x10000000000000U;
1239 else
1240 e = 1;
1241
1242 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1243 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1244
1245 r = neg ? -r : r;
1246 #endif
1247
1248 return r;
1249 }
1250
1251#endif
1252
1253#endif
1254
1255/* ECB.H END */
1256
1257#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1258/* if your architecture doesn't need memory fences, e.g. because it is
1259 * single-cpu/core, or if you use libev in a project that doesn't use libev
1260 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1261 * libev, in which cases the memory fences become nops.
1262 * alternatively, you can remove this #error and link against libpthread,
1263 * which will then provide the memory fences.
1264 */
1265# error "memory fences not defined for your architecture, please report"
1266#endif
1267
1268#ifndef ECB_MEMORY_FENCE
1269# define ECB_MEMORY_FENCE do { } while (0)
1270# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1271# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1272#endif
1273
1274#define expect_false(cond) ecb_expect_false (cond)
1275#define expect_true(cond) ecb_expect_true (cond)
1276#define noinline ecb_noinline
1277
345#define inline_size static inline 1278#define inline_size ecb_inline
346 1279
347#if EV_MINIMAL 1280#if EV_FEATURE_CODE
1281# define inline_speed ecb_inline
1282#else
348# define inline_speed static noinline 1283# define inline_speed static noinline
1284#endif
1285
1286#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1287
1288#if EV_MINPRI == EV_MAXPRI
1289# define ABSPRI(w) (((W)w), 0)
349#else 1290#else
350# define inline_speed static inline
351#endif
352
353#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
354#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1291# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1292#endif
355 1293
356#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1294#define EMPTY /* required for microsofts broken pseudo-c compiler */
357#define EMPTY2(a,b) /* used to suppress some warnings */ 1295#define EMPTY2(a,b) /* used to suppress some warnings */
358 1296
359typedef ev_watcher *W; 1297typedef ev_watcher *W;
361typedef ev_watcher_time *WT; 1299typedef ev_watcher_time *WT;
362 1300
363#define ev_active(w) ((W)(w))->active 1301#define ev_active(w) ((W)(w))->active
364#define ev_at(w) ((WT)(w))->at 1302#define ev_at(w) ((WT)(w))->at
365 1303
1304#if EV_USE_REALTIME
1305/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1306/* giving it a reasonably high chance of working on typical architectures */
1307static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1308#endif
1309
366#if EV_USE_MONOTONIC 1310#if EV_USE_MONOTONIC
367/* sig_atomic_t is used to avoid per-thread variables or locking but still */
368/* giving it a reasonably high chance of working on typical architetcures */
369static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1311static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1312#endif
1313
1314#ifndef EV_FD_TO_WIN32_HANDLE
1315# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1316#endif
1317#ifndef EV_WIN32_HANDLE_TO_FD
1318# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1319#endif
1320#ifndef EV_WIN32_CLOSE_FD
1321# define EV_WIN32_CLOSE_FD(fd) close (fd)
370#endif 1322#endif
371 1323
372#ifdef _WIN32 1324#ifdef _WIN32
373# include "ev_win32.c" 1325# include "ev_win32.c"
374#endif 1326#endif
375 1327
376/*****************************************************************************/ 1328/*****************************************************************************/
377 1329
1330/* define a suitable floor function (only used by periodics atm) */
1331
1332#if EV_USE_FLOOR
1333# include <math.h>
1334# define ev_floor(v) floor (v)
1335#else
1336
1337#include <float.h>
1338
1339/* a floor() replacement function, should be independent of ev_tstamp type */
1340static ev_tstamp noinline
1341ev_floor (ev_tstamp v)
1342{
1343 /* the choice of shift factor is not terribly important */
1344#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1345 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1346#else
1347 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1348#endif
1349
1350 /* argument too large for an unsigned long? */
1351 if (expect_false (v >= shift))
1352 {
1353 ev_tstamp f;
1354
1355 if (v == v - 1.)
1356 return v; /* very large number */
1357
1358 f = shift * ev_floor (v * (1. / shift));
1359 return f + ev_floor (v - f);
1360 }
1361
1362 /* special treatment for negative args? */
1363 if (expect_false (v < 0.))
1364 {
1365 ev_tstamp f = -ev_floor (-v);
1366
1367 return f - (f == v ? 0 : 1);
1368 }
1369
1370 /* fits into an unsigned long */
1371 return (unsigned long)v;
1372}
1373
1374#endif
1375
1376/*****************************************************************************/
1377
1378#ifdef __linux
1379# include <sys/utsname.h>
1380#endif
1381
1382static unsigned int noinline ecb_cold
1383ev_linux_version (void)
1384{
1385#ifdef __linux
1386 unsigned int v = 0;
1387 struct utsname buf;
1388 int i;
1389 char *p = buf.release;
1390
1391 if (uname (&buf))
1392 return 0;
1393
1394 for (i = 3+1; --i; )
1395 {
1396 unsigned int c = 0;
1397
1398 for (;;)
1399 {
1400 if (*p >= '0' && *p <= '9')
1401 c = c * 10 + *p++ - '0';
1402 else
1403 {
1404 p += *p == '.';
1405 break;
1406 }
1407 }
1408
1409 v = (v << 8) | c;
1410 }
1411
1412 return v;
1413#else
1414 return 0;
1415#endif
1416}
1417
1418/*****************************************************************************/
1419
1420#if EV_AVOID_STDIO
1421static void noinline ecb_cold
1422ev_printerr (const char *msg)
1423{
1424 write (STDERR_FILENO, msg, strlen (msg));
1425}
1426#endif
1427
378static void (*syserr_cb)(const char *msg); 1428static void (*syserr_cb)(const char *msg) EV_THROW;
379 1429
380void 1430void ecb_cold
381ev_set_syserr_cb (void (*cb)(const char *msg)) 1431ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
382{ 1432{
383 syserr_cb = cb; 1433 syserr_cb = cb;
384} 1434}
385 1435
386static void noinline 1436static void noinline ecb_cold
387syserr (const char *msg) 1437ev_syserr (const char *msg)
388{ 1438{
389 if (!msg) 1439 if (!msg)
390 msg = "(libev) system error"; 1440 msg = "(libev) system error";
391 1441
392 if (syserr_cb) 1442 if (syserr_cb)
393 syserr_cb (msg); 1443 syserr_cb (msg);
394 else 1444 else
395 { 1445 {
1446#if EV_AVOID_STDIO
1447 ev_printerr (msg);
1448 ev_printerr (": ");
1449 ev_printerr (strerror (errno));
1450 ev_printerr ("\n");
1451#else
396 perror (msg); 1452 perror (msg);
1453#endif
397 abort (); 1454 abort ();
398 } 1455 }
399} 1456}
400 1457
401static void * 1458static void *
402ev_realloc_emul (void *ptr, long size) 1459ev_realloc_emul (void *ptr, long size) EV_THROW
403{ 1460{
404 /* some systems, notably openbsd and darwin, fail to properly 1461 /* some systems, notably openbsd and darwin, fail to properly
405 * implement realloc (x, 0) (as required by both ansi c-98 and 1462 * implement realloc (x, 0) (as required by both ansi c-89 and
406 * the single unix specification, so work around them here. 1463 * the single unix specification, so work around them here.
1464 * recently, also (at least) fedora and debian started breaking it,
1465 * despite documenting it otherwise.
407 */ 1466 */
408 1467
409 if (size) 1468 if (size)
410 return realloc (ptr, size); 1469 return realloc (ptr, size);
411 1470
412 free (ptr); 1471 free (ptr);
413 return 0; 1472 return 0;
414} 1473}
415 1474
416static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 1475static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
417 1476
418void 1477void ecb_cold
419ev_set_allocator (void *(*cb)(void *ptr, long size)) 1478ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
420{ 1479{
421 alloc = cb; 1480 alloc = cb;
422} 1481}
423 1482
424inline_speed void * 1483inline_speed void *
426{ 1485{
427 ptr = alloc (ptr, size); 1486 ptr = alloc (ptr, size);
428 1487
429 if (!ptr && size) 1488 if (!ptr && size)
430 { 1489 {
1490#if EV_AVOID_STDIO
1491 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1492#else
431 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1493 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1494#endif
432 abort (); 1495 abort ();
433 } 1496 }
434 1497
435 return ptr; 1498 return ptr;
436} 1499}
438#define ev_malloc(size) ev_realloc (0, (size)) 1501#define ev_malloc(size) ev_realloc (0, (size))
439#define ev_free(ptr) ev_realloc ((ptr), 0) 1502#define ev_free(ptr) ev_realloc ((ptr), 0)
440 1503
441/*****************************************************************************/ 1504/*****************************************************************************/
442 1505
1506/* set in reify when reification needed */
1507#define EV_ANFD_REIFY 1
1508
1509/* file descriptor info structure */
443typedef struct 1510typedef struct
444{ 1511{
445 WL head; 1512 WL head;
446 unsigned char events; 1513 unsigned char events; /* the events watched for */
1514 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1515 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
447 unsigned char reify; 1516 unsigned char unused;
1517#if EV_USE_EPOLL
1518 unsigned int egen; /* generation counter to counter epoll bugs */
1519#endif
448#if EV_SELECT_IS_WINSOCKET 1520#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
449 SOCKET handle; 1521 SOCKET handle;
450#endif 1522#endif
1523#if EV_USE_IOCP
1524 OVERLAPPED or, ow;
1525#endif
451} ANFD; 1526} ANFD;
452 1527
1528/* stores the pending event set for a given watcher */
453typedef struct 1529typedef struct
454{ 1530{
455 W w; 1531 W w;
456 int events; 1532 int events; /* the pending event set for the given watcher */
457} ANPENDING; 1533} ANPENDING;
458 1534
459#if EV_USE_INOTIFY 1535#if EV_USE_INOTIFY
460/* hash table entry per inotify-id */ 1536/* hash table entry per inotify-id */
461typedef struct 1537typedef struct
464} ANFS; 1540} ANFS;
465#endif 1541#endif
466 1542
467/* Heap Entry */ 1543/* Heap Entry */
468#if EV_HEAP_CACHE_AT 1544#if EV_HEAP_CACHE_AT
1545 /* a heap element */
469 typedef struct { 1546 typedef struct {
470 ev_tstamp at; 1547 ev_tstamp at;
471 WT w; 1548 WT w;
472 } ANHE; 1549 } ANHE;
473 1550
474 #define ANHE_w(he) (he).w /* access watcher, read-write */ 1551 #define ANHE_w(he) (he).w /* access watcher, read-write */
475 #define ANHE_at(he) (he).at /* access cached at, read-only */ 1552 #define ANHE_at(he) (he).at /* access cached at, read-only */
476 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 1553 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
477#else 1554#else
1555 /* a heap element */
478 typedef WT ANHE; 1556 typedef WT ANHE;
479 1557
480 #define ANHE_w(he) (he) 1558 #define ANHE_w(he) (he)
481 #define ANHE_at(he) (he)->at 1559 #define ANHE_at(he) (he)->at
482 #define ANHE_at_cache(he) 1560 #define ANHE_at_cache(he)
493 #undef VAR 1571 #undef VAR
494 }; 1572 };
495 #include "ev_wrap.h" 1573 #include "ev_wrap.h"
496 1574
497 static struct ev_loop default_loop_struct; 1575 static struct ev_loop default_loop_struct;
498 struct ev_loop *ev_default_loop_ptr; 1576 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
499 1577
500#else 1578#else
501 1579
502 ev_tstamp ev_rt_now; 1580 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
503 #define VAR(name,decl) static decl; 1581 #define VAR(name,decl) static decl;
504 #include "ev_vars.h" 1582 #include "ev_vars.h"
505 #undef VAR 1583 #undef VAR
506 1584
507 static int ev_default_loop_ptr; 1585 static int ev_default_loop_ptr;
508 1586
509#endif 1587#endif
510 1588
1589#if EV_FEATURE_API
1590# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1591# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1592# define EV_INVOKE_PENDING invoke_cb (EV_A)
1593#else
1594# define EV_RELEASE_CB (void)0
1595# define EV_ACQUIRE_CB (void)0
1596# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1597#endif
1598
1599#define EVBREAK_RECURSE 0x80
1600
511/*****************************************************************************/ 1601/*****************************************************************************/
512 1602
1603#ifndef EV_HAVE_EV_TIME
513ev_tstamp 1604ev_tstamp
514ev_time (void) 1605ev_time (void) EV_THROW
515{ 1606{
516#if EV_USE_REALTIME 1607#if EV_USE_REALTIME
1608 if (expect_true (have_realtime))
1609 {
517 struct timespec ts; 1610 struct timespec ts;
518 clock_gettime (CLOCK_REALTIME, &ts); 1611 clock_gettime (CLOCK_REALTIME, &ts);
519 return ts.tv_sec + ts.tv_nsec * 1e-9; 1612 return ts.tv_sec + ts.tv_nsec * 1e-9;
520#else 1613 }
1614#endif
1615
521 struct timeval tv; 1616 struct timeval tv;
522 gettimeofday (&tv, 0); 1617 gettimeofday (&tv, 0);
523 return tv.tv_sec + tv.tv_usec * 1e-6; 1618 return tv.tv_sec + tv.tv_usec * 1e-6;
524#endif
525} 1619}
1620#endif
526 1621
527ev_tstamp inline_size 1622inline_size ev_tstamp
528get_clock (void) 1623get_clock (void)
529{ 1624{
530#if EV_USE_MONOTONIC 1625#if EV_USE_MONOTONIC
531 if (expect_true (have_monotonic)) 1626 if (expect_true (have_monotonic))
532 { 1627 {
539 return ev_time (); 1634 return ev_time ();
540} 1635}
541 1636
542#if EV_MULTIPLICITY 1637#if EV_MULTIPLICITY
543ev_tstamp 1638ev_tstamp
544ev_now (EV_P) 1639ev_now (EV_P) EV_THROW
545{ 1640{
546 return ev_rt_now; 1641 return ev_rt_now;
547} 1642}
548#endif 1643#endif
549 1644
550void 1645void
551ev_sleep (ev_tstamp delay) 1646ev_sleep (ev_tstamp delay) EV_THROW
552{ 1647{
553 if (delay > 0.) 1648 if (delay > 0.)
554 { 1649 {
555#if EV_USE_NANOSLEEP 1650#if EV_USE_NANOSLEEP
556 struct timespec ts; 1651 struct timespec ts;
557 1652
558 ts.tv_sec = (time_t)delay; 1653 EV_TS_SET (ts, delay);
559 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
560
561 nanosleep (&ts, 0); 1654 nanosleep (&ts, 0);
562#elif defined(_WIN32) 1655#elif defined _WIN32
563 Sleep ((unsigned long)(delay * 1e3)); 1656 Sleep ((unsigned long)(delay * 1e3));
564#else 1657#else
565 struct timeval tv; 1658 struct timeval tv;
566 1659
567 tv.tv_sec = (time_t)delay; 1660 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
568 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 1661 /* something not guaranteed by newer posix versions, but guaranteed */
569 1662 /* by older ones */
1663 EV_TV_SET (tv, delay);
570 select (0, 0, 0, 0, &tv); 1664 select (0, 0, 0, 0, &tv);
571#endif 1665#endif
572 } 1666 }
573} 1667}
574 1668
575/*****************************************************************************/ 1669/*****************************************************************************/
576 1670
577#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 1671#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
578 1672
579int inline_size 1673/* find a suitable new size for the given array, */
1674/* hopefully by rounding to a nice-to-malloc size */
1675inline_size int
580array_nextsize (int elem, int cur, int cnt) 1676array_nextsize (int elem, int cur, int cnt)
581{ 1677{
582 int ncur = cur + 1; 1678 int ncur = cur + 1;
583 1679
584 do 1680 do
585 ncur <<= 1; 1681 ncur <<= 1;
586 while (cnt > ncur); 1682 while (cnt > ncur);
587 1683
588 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */ 1684 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
589 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4) 1685 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
590 { 1686 {
591 ncur *= elem; 1687 ncur *= elem;
592 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1); 1688 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
593 ncur = ncur - sizeof (void *) * 4; 1689 ncur = ncur - sizeof (void *) * 4;
595 } 1691 }
596 1692
597 return ncur; 1693 return ncur;
598} 1694}
599 1695
600static noinline void * 1696static void * noinline ecb_cold
601array_realloc (int elem, void *base, int *cur, int cnt) 1697array_realloc (int elem, void *base, int *cur, int cnt)
602{ 1698{
603 *cur = array_nextsize (elem, *cur, cnt); 1699 *cur = array_nextsize (elem, *cur, cnt);
604 return ev_realloc (base, elem * *cur); 1700 return ev_realloc (base, elem * *cur);
605} 1701}
1702
1703#define array_init_zero(base,count) \
1704 memset ((void *)(base), 0, sizeof (*(base)) * (count))
606 1705
607#define array_needsize(type,base,cur,cnt,init) \ 1706#define array_needsize(type,base,cur,cnt,init) \
608 if (expect_false ((cnt) > (cur))) \ 1707 if (expect_false ((cnt) > (cur))) \
609 { \ 1708 { \
610 int ocur_ = (cur); \ 1709 int ecb_unused ocur_ = (cur); \
611 (base) = (type *)array_realloc \ 1710 (base) = (type *)array_realloc \
612 (sizeof (type), (base), &(cur), (cnt)); \ 1711 (sizeof (type), (base), &(cur), (cnt)); \
613 init ((base) + (ocur_), (cur) - ocur_); \ 1712 init ((base) + (ocur_), (cur) - ocur_); \
614 } 1713 }
615 1714
622 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1721 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
623 } 1722 }
624#endif 1723#endif
625 1724
626#define array_free(stem, idx) \ 1725#define array_free(stem, idx) \
627 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1726 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
628 1727
629/*****************************************************************************/ 1728/*****************************************************************************/
630 1729
1730/* dummy callback for pending events */
1731static void noinline
1732pendingcb (EV_P_ ev_prepare *w, int revents)
1733{
1734}
1735
631void noinline 1736void noinline
632ev_feed_event (EV_P_ void *w, int revents) 1737ev_feed_event (EV_P_ void *w, int revents) EV_THROW
633{ 1738{
634 W w_ = (W)w; 1739 W w_ = (W)w;
635 int pri = ABSPRI (w_); 1740 int pri = ABSPRI (w_);
636 1741
637 if (expect_false (w_->pending)) 1742 if (expect_false (w_->pending))
641 w_->pending = ++pendingcnt [pri]; 1746 w_->pending = ++pendingcnt [pri];
642 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 1747 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
643 pendings [pri][w_->pending - 1].w = w_; 1748 pendings [pri][w_->pending - 1].w = w_;
644 pendings [pri][w_->pending - 1].events = revents; 1749 pendings [pri][w_->pending - 1].events = revents;
645 } 1750 }
646}
647 1751
648void inline_speed 1752 pendingpri = NUMPRI - 1;
1753}
1754
1755inline_speed void
1756feed_reverse (EV_P_ W w)
1757{
1758 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1759 rfeeds [rfeedcnt++] = w;
1760}
1761
1762inline_size void
1763feed_reverse_done (EV_P_ int revents)
1764{
1765 do
1766 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1767 while (rfeedcnt);
1768}
1769
1770inline_speed void
649queue_events (EV_P_ W *events, int eventcnt, int type) 1771queue_events (EV_P_ W *events, int eventcnt, int type)
650{ 1772{
651 int i; 1773 int i;
652 1774
653 for (i = 0; i < eventcnt; ++i) 1775 for (i = 0; i < eventcnt; ++i)
654 ev_feed_event (EV_A_ events [i], type); 1776 ev_feed_event (EV_A_ events [i], type);
655} 1777}
656 1778
657/*****************************************************************************/ 1779/*****************************************************************************/
658 1780
659void inline_size 1781inline_speed void
660anfds_init (ANFD *base, int count)
661{
662 while (count--)
663 {
664 base->head = 0;
665 base->events = EV_NONE;
666 base->reify = 0;
667
668 ++base;
669 }
670}
671
672void inline_speed
673fd_event (EV_P_ int fd, int revents) 1782fd_event_nocheck (EV_P_ int fd, int revents)
674{ 1783{
675 ANFD *anfd = anfds + fd; 1784 ANFD *anfd = anfds + fd;
676 ev_io *w; 1785 ev_io *w;
677 1786
678 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1787 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
682 if (ev) 1791 if (ev)
683 ev_feed_event (EV_A_ (W)w, ev); 1792 ev_feed_event (EV_A_ (W)w, ev);
684 } 1793 }
685} 1794}
686 1795
1796/* do not submit kernel events for fds that have reify set */
1797/* because that means they changed while we were polling for new events */
1798inline_speed void
1799fd_event (EV_P_ int fd, int revents)
1800{
1801 ANFD *anfd = anfds + fd;
1802
1803 if (expect_true (!anfd->reify))
1804 fd_event_nocheck (EV_A_ fd, revents);
1805}
1806
687void 1807void
688ev_feed_fd_event (EV_P_ int fd, int revents) 1808ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
689{ 1809{
690 if (fd >= 0 && fd < anfdmax) 1810 if (fd >= 0 && fd < anfdmax)
691 fd_event (EV_A_ fd, revents); 1811 fd_event_nocheck (EV_A_ fd, revents);
692} 1812}
693 1813
694void inline_size 1814/* make sure the external fd watch events are in-sync */
1815/* with the kernel/libev internal state */
1816inline_size void
695fd_reify (EV_P) 1817fd_reify (EV_P)
696{ 1818{
697 int i; 1819 int i;
1820
1821#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1822 for (i = 0; i < fdchangecnt; ++i)
1823 {
1824 int fd = fdchanges [i];
1825 ANFD *anfd = anfds + fd;
1826
1827 if (anfd->reify & EV__IOFDSET && anfd->head)
1828 {
1829 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1830
1831 if (handle != anfd->handle)
1832 {
1833 unsigned long arg;
1834
1835 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1836
1837 /* handle changed, but fd didn't - we need to do it in two steps */
1838 backend_modify (EV_A_ fd, anfd->events, 0);
1839 anfd->events = 0;
1840 anfd->handle = handle;
1841 }
1842 }
1843 }
1844#endif
698 1845
699 for (i = 0; i < fdchangecnt; ++i) 1846 for (i = 0; i < fdchangecnt; ++i)
700 { 1847 {
701 int fd = fdchanges [i]; 1848 int fd = fdchanges [i];
702 ANFD *anfd = anfds + fd; 1849 ANFD *anfd = anfds + fd;
703 ev_io *w; 1850 ev_io *w;
704 1851
705 unsigned char events = 0; 1852 unsigned char o_events = anfd->events;
1853 unsigned char o_reify = anfd->reify;
706 1854
707 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1855 anfd->reify = 0;
708 events |= (unsigned char)w->events;
709 1856
710#if EV_SELECT_IS_WINSOCKET 1857 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
711 if (events)
712 { 1858 {
713 unsigned long arg; 1859 anfd->events = 0;
714 #ifdef EV_FD_TO_WIN32_HANDLE 1860
715 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1861 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
716 #else 1862 anfd->events |= (unsigned char)w->events;
717 anfd->handle = _get_osfhandle (fd); 1863
718 #endif 1864 if (o_events != anfd->events)
719 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0)); 1865 o_reify = EV__IOFDSET; /* actually |= */
720 } 1866 }
721#endif
722 1867
723 { 1868 if (o_reify & EV__IOFDSET)
724 unsigned char o_events = anfd->events;
725 unsigned char o_reify = anfd->reify;
726
727 anfd->reify = 0;
728 anfd->events = events;
729
730 if (o_events != events || o_reify & EV_IOFDSET)
731 backend_modify (EV_A_ fd, o_events, events); 1869 backend_modify (EV_A_ fd, o_events, anfd->events);
732 }
733 } 1870 }
734 1871
735 fdchangecnt = 0; 1872 fdchangecnt = 0;
736} 1873}
737 1874
738void inline_size 1875/* something about the given fd changed */
1876inline_size void
739fd_change (EV_P_ int fd, int flags) 1877fd_change (EV_P_ int fd, int flags)
740{ 1878{
741 unsigned char reify = anfds [fd].reify; 1879 unsigned char reify = anfds [fd].reify;
742 anfds [fd].reify |= flags; 1880 anfds [fd].reify |= flags;
743 1881
747 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1885 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
748 fdchanges [fdchangecnt - 1] = fd; 1886 fdchanges [fdchangecnt - 1] = fd;
749 } 1887 }
750} 1888}
751 1889
752void inline_speed 1890/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1891inline_speed void ecb_cold
753fd_kill (EV_P_ int fd) 1892fd_kill (EV_P_ int fd)
754{ 1893{
755 ev_io *w; 1894 ev_io *w;
756 1895
757 while ((w = (ev_io *)anfds [fd].head)) 1896 while ((w = (ev_io *)anfds [fd].head))
759 ev_io_stop (EV_A_ w); 1898 ev_io_stop (EV_A_ w);
760 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1899 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
761 } 1900 }
762} 1901}
763 1902
764int inline_size 1903/* check whether the given fd is actually valid, for error recovery */
1904inline_size int ecb_cold
765fd_valid (int fd) 1905fd_valid (int fd)
766{ 1906{
767#ifdef _WIN32 1907#ifdef _WIN32
768 return _get_osfhandle (fd) != -1; 1908 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
769#else 1909#else
770 return fcntl (fd, F_GETFD) != -1; 1910 return fcntl (fd, F_GETFD) != -1;
771#endif 1911#endif
772} 1912}
773 1913
774/* called on EBADF to verify fds */ 1914/* called on EBADF to verify fds */
775static void noinline 1915static void noinline ecb_cold
776fd_ebadf (EV_P) 1916fd_ebadf (EV_P)
777{ 1917{
778 int fd; 1918 int fd;
779 1919
780 for (fd = 0; fd < anfdmax; ++fd) 1920 for (fd = 0; fd < anfdmax; ++fd)
782 if (!fd_valid (fd) && errno == EBADF) 1922 if (!fd_valid (fd) && errno == EBADF)
783 fd_kill (EV_A_ fd); 1923 fd_kill (EV_A_ fd);
784} 1924}
785 1925
786/* called on ENOMEM in select/poll to kill some fds and retry */ 1926/* called on ENOMEM in select/poll to kill some fds and retry */
787static void noinline 1927static void noinline ecb_cold
788fd_enomem (EV_P) 1928fd_enomem (EV_P)
789{ 1929{
790 int fd; 1930 int fd;
791 1931
792 for (fd = anfdmax; fd--; ) 1932 for (fd = anfdmax; fd--; )
793 if (anfds [fd].events) 1933 if (anfds [fd].events)
794 { 1934 {
795 fd_kill (EV_A_ fd); 1935 fd_kill (EV_A_ fd);
796 return; 1936 break;
797 } 1937 }
798} 1938}
799 1939
800/* usually called after fork if backend needs to re-arm all fds from scratch */ 1940/* usually called after fork if backend needs to re-arm all fds from scratch */
801static void noinline 1941static void noinline
805 1945
806 for (fd = 0; fd < anfdmax; ++fd) 1946 for (fd = 0; fd < anfdmax; ++fd)
807 if (anfds [fd].events) 1947 if (anfds [fd].events)
808 { 1948 {
809 anfds [fd].events = 0; 1949 anfds [fd].events = 0;
1950 anfds [fd].emask = 0;
810 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1951 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
811 } 1952 }
812} 1953}
813 1954
1955/* used to prepare libev internal fd's */
1956/* this is not fork-safe */
1957inline_speed void
1958fd_intern (int fd)
1959{
1960#ifdef _WIN32
1961 unsigned long arg = 1;
1962 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1963#else
1964 fcntl (fd, F_SETFD, FD_CLOEXEC);
1965 fcntl (fd, F_SETFL, O_NONBLOCK);
1966#endif
1967}
1968
814/*****************************************************************************/ 1969/*****************************************************************************/
815 1970
816/* 1971/*
817 * the heap functions want a real array index. array index 0 uis guaranteed to not 1972 * the heap functions want a real array index. array index 0 is guaranteed to not
818 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 1973 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
819 * the branching factor of the d-tree. 1974 * the branching factor of the d-tree.
820 */ 1975 */
821 1976
822/* 1977/*
831#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1986#define HEAP0 (DHEAP - 1) /* index of first element in heap */
832#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 1987#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
833#define UPHEAP_DONE(p,k) ((p) == (k)) 1988#define UPHEAP_DONE(p,k) ((p) == (k))
834 1989
835/* away from the root */ 1990/* away from the root */
836void inline_speed 1991inline_speed void
837downheap (ANHE *heap, int N, int k) 1992downheap (ANHE *heap, int N, int k)
838{ 1993{
839 ANHE he = heap [k]; 1994 ANHE he = heap [k];
840 ANHE *E = heap + N + HEAP0; 1995 ANHE *E = heap + N + HEAP0;
841 1996
881#define HEAP0 1 2036#define HEAP0 1
882#define HPARENT(k) ((k) >> 1) 2037#define HPARENT(k) ((k) >> 1)
883#define UPHEAP_DONE(p,k) (!(p)) 2038#define UPHEAP_DONE(p,k) (!(p))
884 2039
885/* away from the root */ 2040/* away from the root */
886void inline_speed 2041inline_speed void
887downheap (ANHE *heap, int N, int k) 2042downheap (ANHE *heap, int N, int k)
888{ 2043{
889 ANHE he = heap [k]; 2044 ANHE he = heap [k];
890 2045
891 for (;;) 2046 for (;;)
892 { 2047 {
893 int c = k << 1; 2048 int c = k << 1;
894 2049
895 if (c > N + HEAP0 - 1) 2050 if (c >= N + HEAP0)
896 break; 2051 break;
897 2052
898 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 2053 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
899 ? 1 : 0; 2054 ? 1 : 0;
900 2055
911 ev_active (ANHE_w (he)) = k; 2066 ev_active (ANHE_w (he)) = k;
912} 2067}
913#endif 2068#endif
914 2069
915/* towards the root */ 2070/* towards the root */
916void inline_speed 2071inline_speed void
917upheap (ANHE *heap, int k) 2072upheap (ANHE *heap, int k)
918{ 2073{
919 ANHE he = heap [k]; 2074 ANHE he = heap [k];
920 2075
921 for (;;) 2076 for (;;)
932 2087
933 heap [k] = he; 2088 heap [k] = he;
934 ev_active (ANHE_w (he)) = k; 2089 ev_active (ANHE_w (he)) = k;
935} 2090}
936 2091
937void inline_size 2092/* move an element suitably so it is in a correct place */
2093inline_size void
938adjustheap (ANHE *heap, int N, int k) 2094adjustheap (ANHE *heap, int N, int k)
939{ 2095{
940 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 2096 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
941 upheap (heap, k); 2097 upheap (heap, k);
942 else 2098 else
943 downheap (heap, N, k); 2099 downheap (heap, N, k);
944} 2100}
945 2101
946/* rebuild the heap: this function is used only once and executed rarely */ 2102/* rebuild the heap: this function is used only once and executed rarely */
947void inline_size 2103inline_size void
948reheap (ANHE *heap, int N) 2104reheap (ANHE *heap, int N)
949{ 2105{
950 int i; 2106 int i;
951 2107
952 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 2108 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
955 upheap (heap, i + HEAP0); 2111 upheap (heap, i + HEAP0);
956} 2112}
957 2113
958/*****************************************************************************/ 2114/*****************************************************************************/
959 2115
2116/* associate signal watchers to a signal signal */
960typedef struct 2117typedef struct
961{ 2118{
2119 EV_ATOMIC_T pending;
2120#if EV_MULTIPLICITY
2121 EV_P;
2122#endif
962 WL head; 2123 WL head;
963 EV_ATOMIC_T gotsig;
964} ANSIG; 2124} ANSIG;
965 2125
966static ANSIG *signals; 2126static ANSIG signals [EV_NSIG - 1];
967static int signalmax;
968
969static EV_ATOMIC_T gotsig;
970
971void inline_size
972signals_init (ANSIG *base, int count)
973{
974 while (count--)
975 {
976 base->head = 0;
977 base->gotsig = 0;
978
979 ++base;
980 }
981}
982 2127
983/*****************************************************************************/ 2128/*****************************************************************************/
984 2129
985void inline_speed 2130#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
986fd_intern (int fd)
987{
988#ifdef _WIN32
989 unsigned long arg = 1;
990 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
991#else
992 fcntl (fd, F_SETFD, FD_CLOEXEC);
993 fcntl (fd, F_SETFL, O_NONBLOCK);
994#endif
995}
996 2131
997static void noinline 2132static void noinline ecb_cold
998evpipe_init (EV_P) 2133evpipe_init (EV_P)
999{ 2134{
1000 if (!ev_is_active (&pipeev)) 2135 if (!ev_is_active (&pipe_w))
2136 {
2137 int fds [2];
2138
2139# if EV_USE_EVENTFD
2140 fds [0] = -1;
2141 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2142 if (fds [1] < 0 && errno == EINVAL)
2143 fds [1] = eventfd (0, 0);
2144
2145 if (fds [1] < 0)
2146# endif
2147 {
2148 while (pipe (fds))
2149 ev_syserr ("(libev) error creating signal/async pipe");
2150
2151 fd_intern (fds [0]);
2152 }
2153
2154 evpipe [0] = fds [0];
2155
2156 if (evpipe [1] < 0)
2157 evpipe [1] = fds [1]; /* first call, set write fd */
2158 else
2159 {
2160 /* on subsequent calls, do not change evpipe [1] */
2161 /* so that evpipe_write can always rely on its value. */
2162 /* this branch does not do anything sensible on windows, */
2163 /* so must not be executed on windows */
2164
2165 dup2 (fds [1], evpipe [1]);
2166 close (fds [1]);
2167 }
2168
2169 fd_intern (evpipe [1]);
2170
2171 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2172 ev_io_start (EV_A_ &pipe_w);
2173 ev_unref (EV_A); /* watcher should not keep loop alive */
1001 { 2174 }
2175}
2176
2177inline_speed void
2178evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2179{
2180 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2181
2182 if (expect_true (*flag))
2183 return;
2184
2185 *flag = 1;
2186 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2187
2188 pipe_write_skipped = 1;
2189
2190 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2191
2192 if (pipe_write_wanted)
2193 {
2194 int old_errno;
2195
2196 pipe_write_skipped = 0;
2197 ECB_MEMORY_FENCE_RELEASE;
2198
2199 old_errno = errno; /* save errno because write will clobber it */
2200
1002#if EV_USE_EVENTFD 2201#if EV_USE_EVENTFD
1003 if ((evfd = eventfd (0, 0)) >= 0) 2202 if (evpipe [0] < 0)
1004 { 2203 {
1005 evpipe [0] = -1; 2204 uint64_t counter = 1;
1006 fd_intern (evfd); 2205 write (evpipe [1], &counter, sizeof (uint64_t));
1007 ev_io_set (&pipeev, evfd, EV_READ);
1008 } 2206 }
1009 else 2207 else
1010#endif 2208#endif
1011 { 2209 {
1012 while (pipe (evpipe)) 2210#ifdef _WIN32
1013 syserr ("(libev) error creating signal/async pipe"); 2211 WSABUF buf;
1014 2212 DWORD sent;
1015 fd_intern (evpipe [0]); 2213 buf.buf = &buf;
1016 fd_intern (evpipe [1]); 2214 buf.len = 1;
1017 ev_io_set (&pipeev, evpipe [0], EV_READ); 2215 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2216#else
2217 write (evpipe [1], &(evpipe [1]), 1);
2218#endif
1018 } 2219 }
1019 2220
1020 ev_io_start (EV_A_ &pipeev); 2221 errno = old_errno;
1021 ev_unref (EV_A); /* watcher should not keep loop alive */
1022 }
1023}
1024
1025void inline_size
1026evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1027{
1028 if (!*flag)
1029 { 2222 }
1030 int old_errno = errno; /* save errno because write might clobber it */ 2223}
1031 2224
1032 *flag = 1; 2225/* called whenever the libev signal pipe */
2226/* got some events (signal, async) */
2227static void
2228pipecb (EV_P_ ev_io *iow, int revents)
2229{
2230 int i;
1033 2231
2232 if (revents & EV_READ)
2233 {
1034#if EV_USE_EVENTFD 2234#if EV_USE_EVENTFD
1035 if (evfd >= 0) 2235 if (evpipe [0] < 0)
1036 { 2236 {
1037 uint64_t counter = 1; 2237 uint64_t counter;
1038 write (evfd, &counter, sizeof (uint64_t)); 2238 read (evpipe [1], &counter, sizeof (uint64_t));
1039 } 2239 }
1040 else 2240 else
1041#endif 2241#endif
1042 write (evpipe [1], &old_errno, 1); 2242 {
1043
1044 errno = old_errno;
1045 }
1046}
1047
1048static void
1049pipecb (EV_P_ ev_io *iow, int revents)
1050{
1051#if EV_USE_EVENTFD
1052 if (evfd >= 0)
1053 {
1054 uint64_t counter;
1055 read (evfd, &counter, sizeof (uint64_t));
1056 }
1057 else
1058#endif
1059 {
1060 char dummy; 2243 char dummy[4];
2244#ifdef _WIN32
2245 WSABUF buf;
2246 DWORD recvd;
2247 DWORD flags = 0;
2248 buf.buf = dummy;
2249 buf.len = sizeof (dummy);
2250 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2251#else
1061 read (evpipe [0], &dummy, 1); 2252 read (evpipe [0], &dummy, sizeof (dummy));
2253#endif
2254 }
2255 }
2256
2257 pipe_write_skipped = 0;
2258
2259 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2260
2261#if EV_SIGNAL_ENABLE
2262 if (sig_pending)
1062 } 2263 {
2264 sig_pending = 0;
1063 2265
1064 if (gotsig && ev_is_default_loop (EV_A)) 2266 ECB_MEMORY_FENCE;
1065 {
1066 int signum;
1067 gotsig = 0;
1068 2267
1069 for (signum = signalmax; signum--; ) 2268 for (i = EV_NSIG - 1; i--; )
1070 if (signals [signum].gotsig) 2269 if (expect_false (signals [i].pending))
1071 ev_feed_signal_event (EV_A_ signum + 1); 2270 ev_feed_signal_event (EV_A_ i + 1);
1072 } 2271 }
2272#endif
1073 2273
1074#if EV_ASYNC_ENABLE 2274#if EV_ASYNC_ENABLE
1075 if (gotasync) 2275 if (async_pending)
1076 { 2276 {
1077 int i; 2277 async_pending = 0;
1078 gotasync = 0; 2278
2279 ECB_MEMORY_FENCE;
1079 2280
1080 for (i = asynccnt; i--; ) 2281 for (i = asynccnt; i--; )
1081 if (asyncs [i]->sent) 2282 if (asyncs [i]->sent)
1082 { 2283 {
1083 asyncs [i]->sent = 0; 2284 asyncs [i]->sent = 0;
2285 ECB_MEMORY_FENCE_RELEASE;
1084 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); 2286 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1085 } 2287 }
1086 } 2288 }
1087#endif 2289#endif
1088} 2290}
1089 2291
1090/*****************************************************************************/ 2292/*****************************************************************************/
1091 2293
2294void
2295ev_feed_signal (int signum) EV_THROW
2296{
2297#if EV_MULTIPLICITY
2298 EV_P;
2299 ECB_MEMORY_FENCE_ACQUIRE;
2300 EV_A = signals [signum - 1].loop;
2301
2302 if (!EV_A)
2303 return;
2304#endif
2305
2306 signals [signum - 1].pending = 1;
2307 evpipe_write (EV_A_ &sig_pending);
2308}
2309
1092static void 2310static void
1093ev_sighandler (int signum) 2311ev_sighandler (int signum)
1094{ 2312{
2313#ifdef _WIN32
2314 signal (signum, ev_sighandler);
2315#endif
2316
2317 ev_feed_signal (signum);
2318}
2319
2320void noinline
2321ev_feed_signal_event (EV_P_ int signum) EV_THROW
2322{
2323 WL w;
2324
2325 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2326 return;
2327
2328 --signum;
2329
1095#if EV_MULTIPLICITY 2330#if EV_MULTIPLICITY
1096 struct ev_loop *loop = &default_loop_struct; 2331 /* it is permissible to try to feed a signal to the wrong loop */
1097#endif 2332 /* or, likely more useful, feeding a signal nobody is waiting for */
1098 2333
1099#if _WIN32 2334 if (expect_false (signals [signum].loop != EV_A))
1100 signal (signum, ev_sighandler);
1101#endif
1102
1103 signals [signum - 1].gotsig = 1;
1104 evpipe_write (EV_A_ &gotsig);
1105}
1106
1107void noinline
1108ev_feed_signal_event (EV_P_ int signum)
1109{
1110 WL w;
1111
1112#if EV_MULTIPLICITY
1113 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1114#endif
1115
1116 --signum;
1117
1118 if (signum < 0 || signum >= signalmax)
1119 return; 2335 return;
2336#endif
1120 2337
1121 signals [signum].gotsig = 0; 2338 signals [signum].pending = 0;
2339 ECB_MEMORY_FENCE_RELEASE;
1122 2340
1123 for (w = signals [signum].head; w; w = w->next) 2341 for (w = signals [signum].head; w; w = w->next)
1124 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2342 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1125} 2343}
1126 2344
2345#if EV_USE_SIGNALFD
2346static void
2347sigfdcb (EV_P_ ev_io *iow, int revents)
2348{
2349 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2350
2351 for (;;)
2352 {
2353 ssize_t res = read (sigfd, si, sizeof (si));
2354
2355 /* not ISO-C, as res might be -1, but works with SuS */
2356 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2357 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2358
2359 if (res < (ssize_t)sizeof (si))
2360 break;
2361 }
2362}
2363#endif
2364
2365#endif
2366
1127/*****************************************************************************/ 2367/*****************************************************************************/
1128 2368
2369#if EV_CHILD_ENABLE
1129static WL childs [EV_PID_HASHSIZE]; 2370static WL childs [EV_PID_HASHSIZE];
1130
1131#ifndef _WIN32
1132 2371
1133static ev_signal childev; 2372static ev_signal childev;
1134 2373
1135#ifndef WIFCONTINUED 2374#ifndef WIFCONTINUED
1136# define WIFCONTINUED(status) 0 2375# define WIFCONTINUED(status) 0
1137#endif 2376#endif
1138 2377
1139void inline_speed 2378/* handle a single child status event */
2379inline_speed void
1140child_reap (EV_P_ int chain, int pid, int status) 2380child_reap (EV_P_ int chain, int pid, int status)
1141{ 2381{
1142 ev_child *w; 2382 ev_child *w;
1143 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2383 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1144 2384
1145 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2385 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1146 { 2386 {
1147 if ((w->pid == pid || !w->pid) 2387 if ((w->pid == pid || !w->pid)
1148 && (!traced || (w->flags & 1))) 2388 && (!traced || (w->flags & 1)))
1149 { 2389 {
1150 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 2390 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1157 2397
1158#ifndef WCONTINUED 2398#ifndef WCONTINUED
1159# define WCONTINUED 0 2399# define WCONTINUED 0
1160#endif 2400#endif
1161 2401
2402/* called on sigchld etc., calls waitpid */
1162static void 2403static void
1163childcb (EV_P_ ev_signal *sw, int revents) 2404childcb (EV_P_ ev_signal *sw, int revents)
1164{ 2405{
1165 int pid, status; 2406 int pid, status;
1166 2407
1174 /* make sure we are called again until all children have been reaped */ 2415 /* make sure we are called again until all children have been reaped */
1175 /* we need to do it this way so that the callback gets called before we continue */ 2416 /* we need to do it this way so that the callback gets called before we continue */
1176 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2417 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1177 2418
1178 child_reap (EV_A_ pid, pid, status); 2419 child_reap (EV_A_ pid, pid, status);
1179 if (EV_PID_HASHSIZE > 1) 2420 if ((EV_PID_HASHSIZE) > 1)
1180 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2421 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1181} 2422}
1182 2423
1183#endif 2424#endif
1184 2425
1185/*****************************************************************************/ 2426/*****************************************************************************/
1186 2427
2428#if EV_USE_IOCP
2429# include "ev_iocp.c"
2430#endif
1187#if EV_USE_PORT 2431#if EV_USE_PORT
1188# include "ev_port.c" 2432# include "ev_port.c"
1189#endif 2433#endif
1190#if EV_USE_KQUEUE 2434#if EV_USE_KQUEUE
1191# include "ev_kqueue.c" 2435# include "ev_kqueue.c"
1198#endif 2442#endif
1199#if EV_USE_SELECT 2443#if EV_USE_SELECT
1200# include "ev_select.c" 2444# include "ev_select.c"
1201#endif 2445#endif
1202 2446
1203int 2447int ecb_cold
1204ev_version_major (void) 2448ev_version_major (void) EV_THROW
1205{ 2449{
1206 return EV_VERSION_MAJOR; 2450 return EV_VERSION_MAJOR;
1207} 2451}
1208 2452
1209int 2453int ecb_cold
1210ev_version_minor (void) 2454ev_version_minor (void) EV_THROW
1211{ 2455{
1212 return EV_VERSION_MINOR; 2456 return EV_VERSION_MINOR;
1213} 2457}
1214 2458
1215/* return true if we are running with elevated privileges and should ignore env variables */ 2459/* return true if we are running with elevated privileges and should ignore env variables */
1216int inline_size 2460int inline_size ecb_cold
1217enable_secure (void) 2461enable_secure (void)
1218{ 2462{
1219#ifdef _WIN32 2463#ifdef _WIN32
1220 return 0; 2464 return 0;
1221#else 2465#else
1222 return getuid () != geteuid () 2466 return getuid () != geteuid ()
1223 || getgid () != getegid (); 2467 || getgid () != getegid ();
1224#endif 2468#endif
1225} 2469}
1226 2470
1227unsigned int 2471unsigned int ecb_cold
1228ev_supported_backends (void) 2472ev_supported_backends (void) EV_THROW
1229{ 2473{
1230 unsigned int flags = 0; 2474 unsigned int flags = 0;
1231 2475
1232 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2476 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1233 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2477 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1236 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2480 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1237 2481
1238 return flags; 2482 return flags;
1239} 2483}
1240 2484
1241unsigned int 2485unsigned int ecb_cold
1242ev_recommended_backends (void) 2486ev_recommended_backends (void) EV_THROW
1243{ 2487{
1244 unsigned int flags = ev_supported_backends (); 2488 unsigned int flags = ev_supported_backends ();
1245 2489
1246#ifndef __NetBSD__ 2490#ifndef __NetBSD__
1247 /* kqueue is borked on everything but netbsd apparently */ 2491 /* kqueue is borked on everything but netbsd apparently */
1248 /* it usually doesn't work correctly on anything but sockets and pipes */ 2492 /* it usually doesn't work correctly on anything but sockets and pipes */
1249 flags &= ~EVBACKEND_KQUEUE; 2493 flags &= ~EVBACKEND_KQUEUE;
1250#endif 2494#endif
1251#ifdef __APPLE__ 2495#ifdef __APPLE__
1252 // flags &= ~EVBACKEND_KQUEUE; for documentation 2496 /* only select works correctly on that "unix-certified" platform */
1253 flags &= ~EVBACKEND_POLL; 2497 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2498 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2499#endif
2500#ifdef __FreeBSD__
2501 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1254#endif 2502#endif
1255 2503
1256 return flags; 2504 return flags;
1257} 2505}
1258 2506
2507unsigned int ecb_cold
2508ev_embeddable_backends (void) EV_THROW
2509{
2510 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2511
2512 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2513 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2514 flags &= ~EVBACKEND_EPOLL;
2515
2516 return flags;
2517}
2518
1259unsigned int 2519unsigned int
1260ev_embeddable_backends (void) 2520ev_backend (EV_P) EV_THROW
1261{ 2521{
1262 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2522 return backend;
1263
1264 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1265 /* please fix it and tell me how to detect the fix */
1266 flags &= ~EVBACKEND_EPOLL;
1267
1268 return flags;
1269} 2523}
1270 2524
2525#if EV_FEATURE_API
1271unsigned int 2526unsigned int
1272ev_backend (EV_P) 2527ev_iteration (EV_P) EV_THROW
1273{ 2528{
1274 return backend; 2529 return loop_count;
1275} 2530}
1276 2531
1277unsigned int 2532unsigned int
1278ev_loop_count (EV_P) 2533ev_depth (EV_P) EV_THROW
1279{ 2534{
1280 return loop_count; 2535 return loop_depth;
1281} 2536}
1282 2537
1283void 2538void
1284ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2539ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1285{ 2540{
1286 io_blocktime = interval; 2541 io_blocktime = interval;
1287} 2542}
1288 2543
1289void 2544void
1290ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2545ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1291{ 2546{
1292 timeout_blocktime = interval; 2547 timeout_blocktime = interval;
1293} 2548}
1294 2549
2550void
2551ev_set_userdata (EV_P_ void *data) EV_THROW
2552{
2553 userdata = data;
2554}
2555
2556void *
2557ev_userdata (EV_P) EV_THROW
2558{
2559 return userdata;
2560}
2561
2562void
2563ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_THROW
2564{
2565 invoke_cb = invoke_pending_cb;
2566}
2567
2568void
2569ev_set_loop_release_cb (EV_P_ ev_loop_callback_nothrow release, ev_loop_callback_nothrow acquire) EV_THROW
2570{
2571 release_cb = release;
2572 acquire_cb = acquire;
2573}
2574#endif
2575
2576/* initialise a loop structure, must be zero-initialised */
1295static void noinline 2577static void noinline ecb_cold
1296loop_init (EV_P_ unsigned int flags) 2578loop_init (EV_P_ unsigned int flags) EV_THROW
1297{ 2579{
1298 if (!backend) 2580 if (!backend)
1299 { 2581 {
2582 origflags = flags;
2583
2584#if EV_USE_REALTIME
2585 if (!have_realtime)
2586 {
2587 struct timespec ts;
2588
2589 if (!clock_gettime (CLOCK_REALTIME, &ts))
2590 have_realtime = 1;
2591 }
2592#endif
2593
1300#if EV_USE_MONOTONIC 2594#if EV_USE_MONOTONIC
2595 if (!have_monotonic)
1301 { 2596 {
1302 struct timespec ts; 2597 struct timespec ts;
2598
1303 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2599 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1304 have_monotonic = 1; 2600 have_monotonic = 1;
1305 } 2601 }
1306#endif
1307
1308 ev_rt_now = ev_time ();
1309 mn_now = get_clock ();
1310 now_floor = mn_now;
1311 rtmn_diff = ev_rt_now - mn_now;
1312
1313 io_blocktime = 0.;
1314 timeout_blocktime = 0.;
1315 backend = 0;
1316 backend_fd = -1;
1317 gotasync = 0;
1318#if EV_USE_INOTIFY
1319 fs_fd = -2;
1320#endif 2602#endif
1321 2603
1322 /* pid check not overridable via env */ 2604 /* pid check not overridable via env */
1323#ifndef _WIN32 2605#ifndef _WIN32
1324 if (flags & EVFLAG_FORKCHECK) 2606 if (flags & EVFLAG_FORKCHECK)
1328 if (!(flags & EVFLAG_NOENV) 2610 if (!(flags & EVFLAG_NOENV)
1329 && !enable_secure () 2611 && !enable_secure ()
1330 && getenv ("LIBEV_FLAGS")) 2612 && getenv ("LIBEV_FLAGS"))
1331 flags = atoi (getenv ("LIBEV_FLAGS")); 2613 flags = atoi (getenv ("LIBEV_FLAGS"));
1332 2614
1333 if (!(flags & 0x0000ffffU)) 2615 ev_rt_now = ev_time ();
2616 mn_now = get_clock ();
2617 now_floor = mn_now;
2618 rtmn_diff = ev_rt_now - mn_now;
2619#if EV_FEATURE_API
2620 invoke_cb = ev_invoke_pending;
2621#endif
2622
2623 io_blocktime = 0.;
2624 timeout_blocktime = 0.;
2625 backend = 0;
2626 backend_fd = -1;
2627 sig_pending = 0;
2628#if EV_ASYNC_ENABLE
2629 async_pending = 0;
2630#endif
2631 pipe_write_skipped = 0;
2632 pipe_write_wanted = 0;
2633 evpipe [0] = -1;
2634 evpipe [1] = -1;
2635#if EV_USE_INOTIFY
2636 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2637#endif
2638#if EV_USE_SIGNALFD
2639 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2640#endif
2641
2642 if (!(flags & EVBACKEND_MASK))
1334 flags |= ev_recommended_backends (); 2643 flags |= ev_recommended_backends ();
1335 2644
2645#if EV_USE_IOCP
2646 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2647#endif
1336#if EV_USE_PORT 2648#if EV_USE_PORT
1337 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2649 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1338#endif 2650#endif
1339#if EV_USE_KQUEUE 2651#if EV_USE_KQUEUE
1340 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2652 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1347#endif 2659#endif
1348#if EV_USE_SELECT 2660#if EV_USE_SELECT
1349 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2661 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1350#endif 2662#endif
1351 2663
2664 ev_prepare_init (&pending_w, pendingcb);
2665
2666#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1352 ev_init (&pipeev, pipecb); 2667 ev_init (&pipe_w, pipecb);
1353 ev_set_priority (&pipeev, EV_MAXPRI); 2668 ev_set_priority (&pipe_w, EV_MAXPRI);
2669#endif
1354 } 2670 }
1355} 2671}
1356 2672
1357static void noinline 2673/* free up a loop structure */
2674void ecb_cold
1358loop_destroy (EV_P) 2675ev_loop_destroy (EV_P)
1359{ 2676{
1360 int i; 2677 int i;
1361 2678
2679#if EV_MULTIPLICITY
2680 /* mimic free (0) */
2681 if (!EV_A)
2682 return;
2683#endif
2684
2685#if EV_CLEANUP_ENABLE
2686 /* queue cleanup watchers (and execute them) */
2687 if (expect_false (cleanupcnt))
2688 {
2689 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2690 EV_INVOKE_PENDING;
2691 }
2692#endif
2693
2694#if EV_CHILD_ENABLE
2695 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2696 {
2697 ev_ref (EV_A); /* child watcher */
2698 ev_signal_stop (EV_A_ &childev);
2699 }
2700#endif
2701
1362 if (ev_is_active (&pipeev)) 2702 if (ev_is_active (&pipe_w))
1363 { 2703 {
1364 ev_ref (EV_A); /* signal watcher */ 2704 /*ev_ref (EV_A);*/
1365 ev_io_stop (EV_A_ &pipeev); 2705 /*ev_io_stop (EV_A_ &pipe_w);*/
1366 2706
2707 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2708 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2709 }
2710
1367#if EV_USE_EVENTFD 2711#if EV_USE_SIGNALFD
1368 if (evfd >= 0) 2712 if (ev_is_active (&sigfd_w))
1369 close (evfd); 2713 close (sigfd);
1370#endif 2714#endif
1371
1372 if (evpipe [0] >= 0)
1373 {
1374 close (evpipe [0]);
1375 close (evpipe [1]);
1376 }
1377 }
1378 2715
1379#if EV_USE_INOTIFY 2716#if EV_USE_INOTIFY
1380 if (fs_fd >= 0) 2717 if (fs_fd >= 0)
1381 close (fs_fd); 2718 close (fs_fd);
1382#endif 2719#endif
1383 2720
1384 if (backend_fd >= 0) 2721 if (backend_fd >= 0)
1385 close (backend_fd); 2722 close (backend_fd);
1386 2723
2724#if EV_USE_IOCP
2725 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2726#endif
1387#if EV_USE_PORT 2727#if EV_USE_PORT
1388 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2728 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1389#endif 2729#endif
1390#if EV_USE_KQUEUE 2730#if EV_USE_KQUEUE
1391 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2731 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1406#if EV_IDLE_ENABLE 2746#if EV_IDLE_ENABLE
1407 array_free (idle, [i]); 2747 array_free (idle, [i]);
1408#endif 2748#endif
1409 } 2749 }
1410 2750
1411 ev_free (anfds); anfdmax = 0; 2751 ev_free (anfds); anfds = 0; anfdmax = 0;
1412 2752
1413 /* have to use the microsoft-never-gets-it-right macro */ 2753 /* have to use the microsoft-never-gets-it-right macro */
2754 array_free (rfeed, EMPTY);
1414 array_free (fdchange, EMPTY); 2755 array_free (fdchange, EMPTY);
1415 array_free (timer, EMPTY); 2756 array_free (timer, EMPTY);
1416#if EV_PERIODIC_ENABLE 2757#if EV_PERIODIC_ENABLE
1417 array_free (periodic, EMPTY); 2758 array_free (periodic, EMPTY);
1418#endif 2759#endif
1419#if EV_FORK_ENABLE 2760#if EV_FORK_ENABLE
1420 array_free (fork, EMPTY); 2761 array_free (fork, EMPTY);
1421#endif 2762#endif
2763#if EV_CLEANUP_ENABLE
2764 array_free (cleanup, EMPTY);
2765#endif
1422 array_free (prepare, EMPTY); 2766 array_free (prepare, EMPTY);
1423 array_free (check, EMPTY); 2767 array_free (check, EMPTY);
1424#if EV_ASYNC_ENABLE 2768#if EV_ASYNC_ENABLE
1425 array_free (async, EMPTY); 2769 array_free (async, EMPTY);
1426#endif 2770#endif
1427 2771
1428 backend = 0; 2772 backend = 0;
2773
2774#if EV_MULTIPLICITY
2775 if (ev_is_default_loop (EV_A))
2776#endif
2777 ev_default_loop_ptr = 0;
2778#if EV_MULTIPLICITY
2779 else
2780 ev_free (EV_A);
2781#endif
1429} 2782}
1430 2783
1431#if EV_USE_INOTIFY 2784#if EV_USE_INOTIFY
1432void inline_size infy_fork (EV_P); 2785inline_size void infy_fork (EV_P);
1433#endif 2786#endif
1434 2787
1435void inline_size 2788inline_size void
1436loop_fork (EV_P) 2789loop_fork (EV_P)
1437{ 2790{
1438#if EV_USE_PORT 2791#if EV_USE_PORT
1439 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2792 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1440#endif 2793#endif
1446#endif 2799#endif
1447#if EV_USE_INOTIFY 2800#if EV_USE_INOTIFY
1448 infy_fork (EV_A); 2801 infy_fork (EV_A);
1449#endif 2802#endif
1450 2803
2804#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1451 if (ev_is_active (&pipeev)) 2805 if (ev_is_active (&pipe_w))
1452 { 2806 {
1453 /* this "locks" the handlers against writing to the pipe */ 2807 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1454 /* while we modify the fd vars */
1455 gotsig = 1;
1456#if EV_ASYNC_ENABLE
1457 gotasync = 1;
1458#endif
1459 2808
1460 ev_ref (EV_A); 2809 ev_ref (EV_A);
1461 ev_io_stop (EV_A_ &pipeev); 2810 ev_io_stop (EV_A_ &pipe_w);
1462
1463#if EV_USE_EVENTFD
1464 if (evfd >= 0)
1465 close (evfd);
1466#endif
1467 2811
1468 if (evpipe [0] >= 0) 2812 if (evpipe [0] >= 0)
1469 { 2813 EV_WIN32_CLOSE_FD (evpipe [0]);
1470 close (evpipe [0]);
1471 close (evpipe [1]);
1472 }
1473 2814
1474 evpipe_init (EV_A); 2815 evpipe_init (EV_A);
1475 /* now iterate over everything, in case we missed something */ 2816 /* iterate over everything, in case we missed something before */
1476 pipecb (EV_A_ &pipeev, EV_READ); 2817 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
1477 } 2818 }
2819#endif
1478 2820
1479 postfork = 0; 2821 postfork = 0;
1480} 2822}
1481 2823
1482#if EV_MULTIPLICITY 2824#if EV_MULTIPLICITY
1483 2825
1484struct ev_loop * 2826struct ev_loop * ecb_cold
1485ev_loop_new (unsigned int flags) 2827ev_loop_new (unsigned int flags) EV_THROW
1486{ 2828{
1487 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2829 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1488 2830
1489 memset (loop, 0, sizeof (struct ev_loop)); 2831 memset (EV_A, 0, sizeof (struct ev_loop));
1490
1491 loop_init (EV_A_ flags); 2832 loop_init (EV_A_ flags);
1492 2833
1493 if (ev_backend (EV_A)) 2834 if (ev_backend (EV_A))
1494 return loop; 2835 return EV_A;
1495 2836
2837 ev_free (EV_A);
1496 return 0; 2838 return 0;
1497} 2839}
1498 2840
1499void 2841#endif /* multiplicity */
1500ev_loop_destroy (EV_P)
1501{
1502 loop_destroy (EV_A);
1503 ev_free (loop);
1504}
1505
1506void
1507ev_loop_fork (EV_P)
1508{
1509 postfork = 1; /* must be in line with ev_default_fork */
1510}
1511 2842
1512#if EV_VERIFY 2843#if EV_VERIFY
1513void noinline 2844static void noinline ecb_cold
1514verify_watcher (EV_P_ W w) 2845verify_watcher (EV_P_ W w)
1515{ 2846{
1516 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI)); 2847 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1517 2848
1518 if (w->pending) 2849 if (w->pending)
1519 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w)); 2850 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1520} 2851}
1521 2852
1522static void noinline 2853static void noinline ecb_cold
1523verify_heap (EV_P_ ANHE *heap, int N) 2854verify_heap (EV_P_ ANHE *heap, int N)
1524{ 2855{
1525 int i; 2856 int i;
1526 2857
1527 for (i = HEAP0; i < N + HEAP0; ++i) 2858 for (i = HEAP0; i < N + HEAP0; ++i)
1528 { 2859 {
1529 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i)); 2860 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1530 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i]))); 2861 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1531 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i])))); 2862 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1532 2863
1533 verify_watcher (EV_A_ (W)ANHE_w (heap [i])); 2864 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1534 } 2865 }
1535} 2866}
1536 2867
1537static void noinline 2868static void noinline ecb_cold
1538array_verify (EV_P_ W *ws, int cnt) 2869array_verify (EV_P_ W *ws, int cnt)
1539{ 2870{
1540 while (cnt--) 2871 while (cnt--)
1541 { 2872 {
1542 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1)); 2873 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1543 verify_watcher (EV_A_ ws [cnt]); 2874 verify_watcher (EV_A_ ws [cnt]);
1544 } 2875 }
1545} 2876}
1546#endif 2877#endif
1547 2878
1548void 2879#if EV_FEATURE_API
1549ev_loop_verify (EV_P) 2880void ecb_cold
2881ev_verify (EV_P) EV_THROW
1550{ 2882{
1551#if EV_VERIFY 2883#if EV_VERIFY
1552 int i; 2884 int i;
1553 WL w; 2885 WL w, w2;
1554 2886
1555 assert (activecnt >= -1); 2887 assert (activecnt >= -1);
1556 2888
1557 assert (fdchangemax >= fdchangecnt); 2889 assert (fdchangemax >= fdchangecnt);
1558 for (i = 0; i < fdchangecnt; ++i) 2890 for (i = 0; i < fdchangecnt; ++i)
1559 assert (("negative fd in fdchanges", fdchanges [i] >= 0)); 2891 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1560 2892
1561 assert (anfdmax >= 0); 2893 assert (anfdmax >= 0);
1562 for (i = 0; i < anfdmax; ++i) 2894 for (i = 0; i < anfdmax; ++i)
2895 {
2896 int j = 0;
2897
1563 for (w = anfds [i].head; w; w = w->next) 2898 for (w = w2 = anfds [i].head; w; w = w->next)
1564 { 2899 {
1565 verify_watcher (EV_A_ (W)w); 2900 verify_watcher (EV_A_ (W)w);
2901
2902 if (j++ & 1)
2903 {
2904 assert (("libev: io watcher list contains a loop", w != w2));
2905 w2 = w2->next;
2906 }
2907
1566 assert (("inactive fd watcher on anfd list", ev_active (w) == 1)); 2908 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1567 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i)); 2909 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1568 } 2910 }
2911 }
1569 2912
1570 assert (timermax >= timercnt); 2913 assert (timermax >= timercnt);
1571 verify_heap (EV_A_ timers, timercnt); 2914 verify_heap (EV_A_ timers, timercnt);
1572 2915
1573#if EV_PERIODIC_ENABLE 2916#if EV_PERIODIC_ENABLE
1588#if EV_FORK_ENABLE 2931#if EV_FORK_ENABLE
1589 assert (forkmax >= forkcnt); 2932 assert (forkmax >= forkcnt);
1590 array_verify (EV_A_ (W *)forks, forkcnt); 2933 array_verify (EV_A_ (W *)forks, forkcnt);
1591#endif 2934#endif
1592 2935
2936#if EV_CLEANUP_ENABLE
2937 assert (cleanupmax >= cleanupcnt);
2938 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2939#endif
2940
1593#if EV_ASYNC_ENABLE 2941#if EV_ASYNC_ENABLE
1594 assert (asyncmax >= asynccnt); 2942 assert (asyncmax >= asynccnt);
1595 array_verify (EV_A_ (W *)asyncs, asynccnt); 2943 array_verify (EV_A_ (W *)asyncs, asynccnt);
1596#endif 2944#endif
1597 2945
2946#if EV_PREPARE_ENABLE
1598 assert (preparemax >= preparecnt); 2947 assert (preparemax >= preparecnt);
1599 array_verify (EV_A_ (W *)prepares, preparecnt); 2948 array_verify (EV_A_ (W *)prepares, preparecnt);
2949#endif
1600 2950
2951#if EV_CHECK_ENABLE
1601 assert (checkmax >= checkcnt); 2952 assert (checkmax >= checkcnt);
1602 array_verify (EV_A_ (W *)checks, checkcnt); 2953 array_verify (EV_A_ (W *)checks, checkcnt);
2954#endif
1603 2955
1604# if 0 2956# if 0
2957#if EV_CHILD_ENABLE
1605 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2958 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1606 for (signum = signalmax; signum--; ) if (signals [signum].gotsig) 2959 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2960#endif
1607# endif 2961# endif
1608#endif 2962#endif
1609} 2963}
1610 2964#endif
1611#endif /* multiplicity */
1612 2965
1613#if EV_MULTIPLICITY 2966#if EV_MULTIPLICITY
1614struct ev_loop * 2967struct ev_loop * ecb_cold
1615ev_default_loop_init (unsigned int flags)
1616#else 2968#else
1617int 2969int
2970#endif
1618ev_default_loop (unsigned int flags) 2971ev_default_loop (unsigned int flags) EV_THROW
1619#endif
1620{ 2972{
1621 if (!ev_default_loop_ptr) 2973 if (!ev_default_loop_ptr)
1622 { 2974 {
1623#if EV_MULTIPLICITY 2975#if EV_MULTIPLICITY
1624 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2976 EV_P = ev_default_loop_ptr = &default_loop_struct;
1625#else 2977#else
1626 ev_default_loop_ptr = 1; 2978 ev_default_loop_ptr = 1;
1627#endif 2979#endif
1628 2980
1629 loop_init (EV_A_ flags); 2981 loop_init (EV_A_ flags);
1630 2982
1631 if (ev_backend (EV_A)) 2983 if (ev_backend (EV_A))
1632 { 2984 {
1633#ifndef _WIN32 2985#if EV_CHILD_ENABLE
1634 ev_signal_init (&childev, childcb, SIGCHLD); 2986 ev_signal_init (&childev, childcb, SIGCHLD);
1635 ev_set_priority (&childev, EV_MAXPRI); 2987 ev_set_priority (&childev, EV_MAXPRI);
1636 ev_signal_start (EV_A_ &childev); 2988 ev_signal_start (EV_A_ &childev);
1637 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2989 ev_unref (EV_A); /* child watcher should not keep loop alive */
1638#endif 2990#endif
1643 2995
1644 return ev_default_loop_ptr; 2996 return ev_default_loop_ptr;
1645} 2997}
1646 2998
1647void 2999void
1648ev_default_destroy (void) 3000ev_loop_fork (EV_P) EV_THROW
1649{ 3001{
1650#if EV_MULTIPLICITY 3002 postfork = 1;
1651 struct ev_loop *loop = ev_default_loop_ptr;
1652#endif
1653
1654#ifndef _WIN32
1655 ev_ref (EV_A); /* child watcher */
1656 ev_signal_stop (EV_A_ &childev);
1657#endif
1658
1659 loop_destroy (EV_A);
1660}
1661
1662void
1663ev_default_fork (void)
1664{
1665#if EV_MULTIPLICITY
1666 struct ev_loop *loop = ev_default_loop_ptr;
1667#endif
1668
1669 if (backend)
1670 postfork = 1; /* must be in line with ev_loop_fork */
1671} 3003}
1672 3004
1673/*****************************************************************************/ 3005/*****************************************************************************/
1674 3006
1675void 3007void
1676ev_invoke (EV_P_ void *w, int revents) 3008ev_invoke (EV_P_ void *w, int revents)
1677{ 3009{
1678 EV_CB_INVOKE ((W)w, revents); 3010 EV_CB_INVOKE ((W)w, revents);
1679} 3011}
1680 3012
1681void inline_speed 3013unsigned int
1682call_pending (EV_P) 3014ev_pending_count (EV_P) EV_THROW
1683{ 3015{
1684 int pri; 3016 int pri;
3017 unsigned int count = 0;
1685 3018
1686 for (pri = NUMPRI; pri--; ) 3019 for (pri = NUMPRI; pri--; )
3020 count += pendingcnt [pri];
3021
3022 return count;
3023}
3024
3025void noinline
3026ev_invoke_pending (EV_P)
3027{
3028 pendingpri = NUMPRI;
3029
3030 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
3031 {
3032 --pendingpri;
3033
1687 while (pendingcnt [pri]) 3034 while (pendingcnt [pendingpri])
1688 {
1689 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1690
1691 if (expect_true (p->w))
1692 { 3035 {
1693 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 3036 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1694 3037
1695 p->w->pending = 0; 3038 p->w->pending = 0;
1696 EV_CB_INVOKE (p->w, p->events); 3039 EV_CB_INVOKE (p->w, p->events);
1697 EV_FREQUENT_CHECK; 3040 EV_FREQUENT_CHECK;
1698 } 3041 }
1699 } 3042 }
1700} 3043}
1701 3044
1702#if EV_IDLE_ENABLE 3045#if EV_IDLE_ENABLE
1703void inline_size 3046/* make idle watchers pending. this handles the "call-idle */
3047/* only when higher priorities are idle" logic */
3048inline_size void
1704idle_reify (EV_P) 3049idle_reify (EV_P)
1705{ 3050{
1706 if (expect_false (idleall)) 3051 if (expect_false (idleall))
1707 { 3052 {
1708 int pri; 3053 int pri;
1720 } 3065 }
1721 } 3066 }
1722} 3067}
1723#endif 3068#endif
1724 3069
1725void inline_size 3070/* make timers pending */
3071inline_size void
1726timers_reify (EV_P) 3072timers_reify (EV_P)
1727{ 3073{
1728 EV_FREQUENT_CHECK; 3074 EV_FREQUENT_CHECK;
1729 3075
1730 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 3076 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1731 { 3077 {
1732 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 3078 do
1733
1734 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1735
1736 /* first reschedule or stop timer */
1737 if (w->repeat)
1738 { 3079 {
3080 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3081
3082 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3083
3084 /* first reschedule or stop timer */
3085 if (w->repeat)
3086 {
1739 ev_at (w) += w->repeat; 3087 ev_at (w) += w->repeat;
1740 if (ev_at (w) < mn_now) 3088 if (ev_at (w) < mn_now)
1741 ev_at (w) = mn_now; 3089 ev_at (w) = mn_now;
1742 3090
1743 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3091 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1744 3092
1745 ANHE_at_cache (timers [HEAP0]); 3093 ANHE_at_cache (timers [HEAP0]);
1746 downheap (timers, timercnt, HEAP0); 3094 downheap (timers, timercnt, HEAP0);
3095 }
3096 else
3097 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3098
3099 EV_FREQUENT_CHECK;
3100 feed_reverse (EV_A_ (W)w);
1747 } 3101 }
1748 else 3102 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1749 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1750 3103
1751 EV_FREQUENT_CHECK; 3104 feed_reverse_done (EV_A_ EV_TIMER);
1752 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1753 } 3105 }
1754} 3106}
1755 3107
1756#if EV_PERIODIC_ENABLE 3108#if EV_PERIODIC_ENABLE
1757void inline_size 3109
3110static void noinline
3111periodic_recalc (EV_P_ ev_periodic *w)
3112{
3113 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3114 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3115
3116 /* the above almost always errs on the low side */
3117 while (at <= ev_rt_now)
3118 {
3119 ev_tstamp nat = at + w->interval;
3120
3121 /* when resolution fails us, we use ev_rt_now */
3122 if (expect_false (nat == at))
3123 {
3124 at = ev_rt_now;
3125 break;
3126 }
3127
3128 at = nat;
3129 }
3130
3131 ev_at (w) = at;
3132}
3133
3134/* make periodics pending */
3135inline_size void
1758periodics_reify (EV_P) 3136periodics_reify (EV_P)
1759{ 3137{
1760 EV_FREQUENT_CHECK; 3138 EV_FREQUENT_CHECK;
1761 3139
1762 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 3140 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1763 { 3141 {
1764 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 3142 do
1765
1766 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1767
1768 /* first reschedule or stop timer */
1769 if (w->reschedule_cb)
1770 { 3143 {
3144 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3145
3146 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3147
3148 /* first reschedule or stop timer */
3149 if (w->reschedule_cb)
3150 {
1771 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3151 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1772 3152
1773 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 3153 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1774 3154
1775 ANHE_at_cache (periodics [HEAP0]); 3155 ANHE_at_cache (periodics [HEAP0]);
1776 downheap (periodics, periodiccnt, HEAP0); 3156 downheap (periodics, periodiccnt, HEAP0);
3157 }
3158 else if (w->interval)
3159 {
3160 periodic_recalc (EV_A_ w);
3161 ANHE_at_cache (periodics [HEAP0]);
3162 downheap (periodics, periodiccnt, HEAP0);
3163 }
3164 else
3165 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3166
3167 EV_FREQUENT_CHECK;
3168 feed_reverse (EV_A_ (W)w);
1777 } 3169 }
1778 else if (w->interval) 3170 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1779 {
1780 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1781 /* if next trigger time is not sufficiently in the future, put it there */
1782 /* this might happen because of floating point inexactness */
1783 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1784 {
1785 ev_at (w) += w->interval;
1786 3171
1787 /* if interval is unreasonably low we might still have a time in the past */
1788 /* so correct this. this will make the periodic very inexact, but the user */
1789 /* has effectively asked to get triggered more often than possible */
1790 if (ev_at (w) < ev_rt_now)
1791 ev_at (w) = ev_rt_now;
1792 }
1793
1794 ANHE_at_cache (periodics [HEAP0]);
1795 downheap (periodics, periodiccnt, HEAP0);
1796 }
1797 else
1798 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1799
1800 EV_FREQUENT_CHECK;
1801 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 3172 feed_reverse_done (EV_A_ EV_PERIODIC);
1802 } 3173 }
1803} 3174}
1804 3175
3176/* simply recalculate all periodics */
3177/* TODO: maybe ensure that at least one event happens when jumping forward? */
1805static void noinline 3178static void noinline ecb_cold
1806periodics_reschedule (EV_P) 3179periodics_reschedule (EV_P)
1807{ 3180{
1808 int i; 3181 int i;
1809 3182
1810 /* adjust periodics after time jump */ 3183 /* adjust periodics after time jump */
1813 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]); 3186 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1814 3187
1815 if (w->reschedule_cb) 3188 if (w->reschedule_cb)
1816 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3189 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1817 else if (w->interval) 3190 else if (w->interval)
1818 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 3191 periodic_recalc (EV_A_ w);
1819 3192
1820 ANHE_at_cache (periodics [i]); 3193 ANHE_at_cache (periodics [i]);
1821 } 3194 }
1822 3195
1823 reheap (periodics, periodiccnt); 3196 reheap (periodics, periodiccnt);
1824} 3197}
1825#endif 3198#endif
1826 3199
1827void inline_speed 3200/* adjust all timers by a given offset */
3201static void noinline ecb_cold
3202timers_reschedule (EV_P_ ev_tstamp adjust)
3203{
3204 int i;
3205
3206 for (i = 0; i < timercnt; ++i)
3207 {
3208 ANHE *he = timers + i + HEAP0;
3209 ANHE_w (*he)->at += adjust;
3210 ANHE_at_cache (*he);
3211 }
3212}
3213
3214/* fetch new monotonic and realtime times from the kernel */
3215/* also detect if there was a timejump, and act accordingly */
3216inline_speed void
1828time_update (EV_P_ ev_tstamp max_block) 3217time_update (EV_P_ ev_tstamp max_block)
1829{ 3218{
1830 int i;
1831
1832#if EV_USE_MONOTONIC 3219#if EV_USE_MONOTONIC
1833 if (expect_true (have_monotonic)) 3220 if (expect_true (have_monotonic))
1834 { 3221 {
3222 int i;
1835 ev_tstamp odiff = rtmn_diff; 3223 ev_tstamp odiff = rtmn_diff;
1836 3224
1837 mn_now = get_clock (); 3225 mn_now = get_clock ();
1838 3226
1839 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 3227 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1855 * doesn't hurt either as we only do this on time-jumps or 3243 * doesn't hurt either as we only do this on time-jumps or
1856 * in the unlikely event of having been preempted here. 3244 * in the unlikely event of having been preempted here.
1857 */ 3245 */
1858 for (i = 4; --i; ) 3246 for (i = 4; --i; )
1859 { 3247 {
3248 ev_tstamp diff;
1860 rtmn_diff = ev_rt_now - mn_now; 3249 rtmn_diff = ev_rt_now - mn_now;
1861 3250
3251 diff = odiff - rtmn_diff;
3252
1862 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)) 3253 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1863 return; /* all is well */ 3254 return; /* all is well */
1864 3255
1865 ev_rt_now = ev_time (); 3256 ev_rt_now = ev_time ();
1866 mn_now = get_clock (); 3257 mn_now = get_clock ();
1867 now_floor = mn_now; 3258 now_floor = mn_now;
1868 } 3259 }
1869 3260
3261 /* no timer adjustment, as the monotonic clock doesn't jump */
3262 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1870# if EV_PERIODIC_ENABLE 3263# if EV_PERIODIC_ENABLE
1871 periodics_reschedule (EV_A); 3264 periodics_reschedule (EV_A);
1872# endif 3265# endif
1873 /* no timer adjustment, as the monotonic clock doesn't jump */
1874 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1875 } 3266 }
1876 else 3267 else
1877#endif 3268#endif
1878 { 3269 {
1879 ev_rt_now = ev_time (); 3270 ev_rt_now = ev_time ();
1880 3271
1881 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 3272 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1882 { 3273 {
3274 /* adjust timers. this is easy, as the offset is the same for all of them */
3275 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1883#if EV_PERIODIC_ENABLE 3276#if EV_PERIODIC_ENABLE
1884 periodics_reschedule (EV_A); 3277 periodics_reschedule (EV_A);
1885#endif 3278#endif
1886 /* adjust timers. this is easy, as the offset is the same for all of them */
1887 for (i = 0; i < timercnt; ++i)
1888 {
1889 ANHE *he = timers + i + HEAP0;
1890 ANHE_w (*he)->at += ev_rt_now - mn_now;
1891 ANHE_at_cache (*he);
1892 }
1893 } 3279 }
1894 3280
1895 mn_now = ev_rt_now; 3281 mn_now = ev_rt_now;
1896 } 3282 }
1897} 3283}
1898 3284
1899void 3285int
1900ev_ref (EV_P)
1901{
1902 ++activecnt;
1903}
1904
1905void
1906ev_unref (EV_P)
1907{
1908 --activecnt;
1909}
1910
1911static int loop_done;
1912
1913void
1914ev_loop (EV_P_ int flags) 3286ev_run (EV_P_ int flags)
1915{ 3287{
3288#if EV_FEATURE_API
3289 ++loop_depth;
3290#endif
3291
3292 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3293
1916 loop_done = EVUNLOOP_CANCEL; 3294 loop_done = EVBREAK_CANCEL;
1917 3295
1918 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3296 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1919 3297
1920 do 3298 do
1921 { 3299 {
1922#if EV_VERIFY >= 2 3300#if EV_VERIFY >= 2
1923 ev_loop_verify (EV_A); 3301 ev_verify (EV_A);
1924#endif 3302#endif
1925 3303
1926#ifndef _WIN32 3304#ifndef _WIN32
1927 if (expect_false (curpid)) /* penalise the forking check even more */ 3305 if (expect_false (curpid)) /* penalise the forking check even more */
1928 if (expect_false (getpid () != curpid)) 3306 if (expect_false (getpid () != curpid))
1936 /* we might have forked, so queue fork handlers */ 3314 /* we might have forked, so queue fork handlers */
1937 if (expect_false (postfork)) 3315 if (expect_false (postfork))
1938 if (forkcnt) 3316 if (forkcnt)
1939 { 3317 {
1940 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3318 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1941 call_pending (EV_A); 3319 EV_INVOKE_PENDING;
1942 } 3320 }
1943#endif 3321#endif
1944 3322
3323#if EV_PREPARE_ENABLE
1945 /* queue prepare watchers (and execute them) */ 3324 /* queue prepare watchers (and execute them) */
1946 if (expect_false (preparecnt)) 3325 if (expect_false (preparecnt))
1947 { 3326 {
1948 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3327 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1949 call_pending (EV_A); 3328 EV_INVOKE_PENDING;
1950 } 3329 }
3330#endif
1951 3331
1952 if (expect_false (!activecnt)) 3332 if (expect_false (loop_done))
1953 break; 3333 break;
1954 3334
1955 /* we might have forked, so reify kernel state if necessary */ 3335 /* we might have forked, so reify kernel state if necessary */
1956 if (expect_false (postfork)) 3336 if (expect_false (postfork))
1957 loop_fork (EV_A); 3337 loop_fork (EV_A);
1962 /* calculate blocking time */ 3342 /* calculate blocking time */
1963 { 3343 {
1964 ev_tstamp waittime = 0.; 3344 ev_tstamp waittime = 0.;
1965 ev_tstamp sleeptime = 0.; 3345 ev_tstamp sleeptime = 0.;
1966 3346
3347 /* remember old timestamp for io_blocktime calculation */
3348 ev_tstamp prev_mn_now = mn_now;
3349
3350 /* update time to cancel out callback processing overhead */
3351 time_update (EV_A_ 1e100);
3352
3353 /* from now on, we want a pipe-wake-up */
3354 pipe_write_wanted = 1;
3355
3356 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3357
1967 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3358 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1968 { 3359 {
1969 /* update time to cancel out callback processing overhead */
1970 time_update (EV_A_ 1e100);
1971
1972 waittime = MAX_BLOCKTIME; 3360 waittime = MAX_BLOCKTIME;
1973 3361
1974 if (timercnt) 3362 if (timercnt)
1975 { 3363 {
1976 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 3364 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1977 if (waittime > to) waittime = to; 3365 if (waittime > to) waittime = to;
1978 } 3366 }
1979 3367
1980#if EV_PERIODIC_ENABLE 3368#if EV_PERIODIC_ENABLE
1981 if (periodiccnt) 3369 if (periodiccnt)
1982 { 3370 {
1983 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 3371 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1984 if (waittime > to) waittime = to; 3372 if (waittime > to) waittime = to;
1985 } 3373 }
1986#endif 3374#endif
1987 3375
3376 /* don't let timeouts decrease the waittime below timeout_blocktime */
1988 if (expect_false (waittime < timeout_blocktime)) 3377 if (expect_false (waittime < timeout_blocktime))
1989 waittime = timeout_blocktime; 3378 waittime = timeout_blocktime;
1990 3379
1991 sleeptime = waittime - backend_fudge; 3380 /* at this point, we NEED to wait, so we have to ensure */
3381 /* to pass a minimum nonzero value to the backend */
3382 if (expect_false (waittime < backend_mintime))
3383 waittime = backend_mintime;
1992 3384
3385 /* extra check because io_blocktime is commonly 0 */
1993 if (expect_true (sleeptime > io_blocktime)) 3386 if (expect_false (io_blocktime))
1994 sleeptime = io_blocktime;
1995
1996 if (sleeptime)
1997 { 3387 {
3388 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3389
3390 if (sleeptime > waittime - backend_mintime)
3391 sleeptime = waittime - backend_mintime;
3392
3393 if (expect_true (sleeptime > 0.))
3394 {
1998 ev_sleep (sleeptime); 3395 ev_sleep (sleeptime);
1999 waittime -= sleeptime; 3396 waittime -= sleeptime;
3397 }
2000 } 3398 }
2001 } 3399 }
2002 3400
3401#if EV_FEATURE_API
2003 ++loop_count; 3402 ++loop_count;
3403#endif
3404 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2004 backend_poll (EV_A_ waittime); 3405 backend_poll (EV_A_ waittime);
3406 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3407
3408 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3409
3410 ECB_MEMORY_FENCE_ACQUIRE;
3411 if (pipe_write_skipped)
3412 {
3413 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3414 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3415 }
3416
2005 3417
2006 /* update ev_rt_now, do magic */ 3418 /* update ev_rt_now, do magic */
2007 time_update (EV_A_ waittime + sleeptime); 3419 time_update (EV_A_ waittime + sleeptime);
2008 } 3420 }
2009 3421
2016#if EV_IDLE_ENABLE 3428#if EV_IDLE_ENABLE
2017 /* queue idle watchers unless other events are pending */ 3429 /* queue idle watchers unless other events are pending */
2018 idle_reify (EV_A); 3430 idle_reify (EV_A);
2019#endif 3431#endif
2020 3432
3433#if EV_CHECK_ENABLE
2021 /* queue check watchers, to be executed first */ 3434 /* queue check watchers, to be executed first */
2022 if (expect_false (checkcnt)) 3435 if (expect_false (checkcnt))
2023 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3436 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3437#endif
2024 3438
2025 call_pending (EV_A); 3439 EV_INVOKE_PENDING;
2026 } 3440 }
2027 while (expect_true ( 3441 while (expect_true (
2028 activecnt 3442 activecnt
2029 && !loop_done 3443 && !loop_done
2030 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 3444 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2031 )); 3445 ));
2032 3446
2033 if (loop_done == EVUNLOOP_ONE) 3447 if (loop_done == EVBREAK_ONE)
2034 loop_done = EVUNLOOP_CANCEL; 3448 loop_done = EVBREAK_CANCEL;
3449
3450#if EV_FEATURE_API
3451 --loop_depth;
3452#endif
3453
3454 return activecnt;
2035} 3455}
2036 3456
2037void 3457void
2038ev_unloop (EV_P_ int how) 3458ev_break (EV_P_ int how) EV_THROW
2039{ 3459{
2040 loop_done = how; 3460 loop_done = how;
2041} 3461}
2042 3462
3463void
3464ev_ref (EV_P) EV_THROW
3465{
3466 ++activecnt;
3467}
3468
3469void
3470ev_unref (EV_P) EV_THROW
3471{
3472 --activecnt;
3473}
3474
3475void
3476ev_now_update (EV_P) EV_THROW
3477{
3478 time_update (EV_A_ 1e100);
3479}
3480
3481void
3482ev_suspend (EV_P) EV_THROW
3483{
3484 ev_now_update (EV_A);
3485}
3486
3487void
3488ev_resume (EV_P) EV_THROW
3489{
3490 ev_tstamp mn_prev = mn_now;
3491
3492 ev_now_update (EV_A);
3493 timers_reschedule (EV_A_ mn_now - mn_prev);
3494#if EV_PERIODIC_ENABLE
3495 /* TODO: really do this? */
3496 periodics_reschedule (EV_A);
3497#endif
3498}
3499
2043/*****************************************************************************/ 3500/*****************************************************************************/
3501/* singly-linked list management, used when the expected list length is short */
2044 3502
2045void inline_size 3503inline_size void
2046wlist_add (WL *head, WL elem) 3504wlist_add (WL *head, WL elem)
2047{ 3505{
2048 elem->next = *head; 3506 elem->next = *head;
2049 *head = elem; 3507 *head = elem;
2050} 3508}
2051 3509
2052void inline_size 3510inline_size void
2053wlist_del (WL *head, WL elem) 3511wlist_del (WL *head, WL elem)
2054{ 3512{
2055 while (*head) 3513 while (*head)
2056 { 3514 {
2057 if (*head == elem) 3515 if (expect_true (*head == elem))
2058 { 3516 {
2059 *head = elem->next; 3517 *head = elem->next;
2060 return; 3518 break;
2061 } 3519 }
2062 3520
2063 head = &(*head)->next; 3521 head = &(*head)->next;
2064 } 3522 }
2065} 3523}
2066 3524
2067void inline_speed 3525/* internal, faster, version of ev_clear_pending */
3526inline_speed void
2068clear_pending (EV_P_ W w) 3527clear_pending (EV_P_ W w)
2069{ 3528{
2070 if (w->pending) 3529 if (w->pending)
2071 { 3530 {
2072 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3531 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2073 w->pending = 0; 3532 w->pending = 0;
2074 } 3533 }
2075} 3534}
2076 3535
2077int 3536int
2078ev_clear_pending (EV_P_ void *w) 3537ev_clear_pending (EV_P_ void *w) EV_THROW
2079{ 3538{
2080 W w_ = (W)w; 3539 W w_ = (W)w;
2081 int pending = w_->pending; 3540 int pending = w_->pending;
2082 3541
2083 if (expect_true (pending)) 3542 if (expect_true (pending))
2084 { 3543 {
2085 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3544 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3545 p->w = (W)&pending_w;
2086 w_->pending = 0; 3546 w_->pending = 0;
2087 p->w = 0;
2088 return p->events; 3547 return p->events;
2089 } 3548 }
2090 else 3549 else
2091 return 0; 3550 return 0;
2092} 3551}
2093 3552
2094void inline_size 3553inline_size void
2095pri_adjust (EV_P_ W w) 3554pri_adjust (EV_P_ W w)
2096{ 3555{
2097 int pri = w->priority; 3556 int pri = ev_priority (w);
2098 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3557 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2099 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3558 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2100 w->priority = pri; 3559 ev_set_priority (w, pri);
2101} 3560}
2102 3561
2103void inline_speed 3562inline_speed void
2104ev_start (EV_P_ W w, int active) 3563ev_start (EV_P_ W w, int active)
2105{ 3564{
2106 pri_adjust (EV_A_ w); 3565 pri_adjust (EV_A_ w);
2107 w->active = active; 3566 w->active = active;
2108 ev_ref (EV_A); 3567 ev_ref (EV_A);
2109} 3568}
2110 3569
2111void inline_size 3570inline_size void
2112ev_stop (EV_P_ W w) 3571ev_stop (EV_P_ W w)
2113{ 3572{
2114 ev_unref (EV_A); 3573 ev_unref (EV_A);
2115 w->active = 0; 3574 w->active = 0;
2116} 3575}
2117 3576
2118/*****************************************************************************/ 3577/*****************************************************************************/
2119 3578
2120void noinline 3579void noinline
2121ev_io_start (EV_P_ ev_io *w) 3580ev_io_start (EV_P_ ev_io *w) EV_THROW
2122{ 3581{
2123 int fd = w->fd; 3582 int fd = w->fd;
2124 3583
2125 if (expect_false (ev_is_active (w))) 3584 if (expect_false (ev_is_active (w)))
2126 return; 3585 return;
2127 3586
2128 assert (("ev_io_start called with negative fd", fd >= 0)); 3587 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3588 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2129 3589
2130 EV_FREQUENT_CHECK; 3590 EV_FREQUENT_CHECK;
2131 3591
2132 ev_start (EV_A_ (W)w, 1); 3592 ev_start (EV_A_ (W)w, 1);
2133 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3593 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2134 wlist_add (&anfds[fd].head, (WL)w); 3594 wlist_add (&anfds[fd].head, (WL)w);
2135 3595
3596 /* common bug, apparently */
3597 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3598
2136 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3599 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2137 w->events &= ~EV_IOFDSET; 3600 w->events &= ~EV__IOFDSET;
2138 3601
2139 EV_FREQUENT_CHECK; 3602 EV_FREQUENT_CHECK;
2140} 3603}
2141 3604
2142void noinline 3605void noinline
2143ev_io_stop (EV_P_ ev_io *w) 3606ev_io_stop (EV_P_ ev_io *w) EV_THROW
2144{ 3607{
2145 clear_pending (EV_A_ (W)w); 3608 clear_pending (EV_A_ (W)w);
2146 if (expect_false (!ev_is_active (w))) 3609 if (expect_false (!ev_is_active (w)))
2147 return; 3610 return;
2148 3611
2149 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3612 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2150 3613
2151 EV_FREQUENT_CHECK; 3614 EV_FREQUENT_CHECK;
2152 3615
2153 wlist_del (&anfds[w->fd].head, (WL)w); 3616 wlist_del (&anfds[w->fd].head, (WL)w);
2154 ev_stop (EV_A_ (W)w); 3617 ev_stop (EV_A_ (W)w);
2155 3618
2156 fd_change (EV_A_ w->fd, 1); 3619 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2157 3620
2158 EV_FREQUENT_CHECK; 3621 EV_FREQUENT_CHECK;
2159} 3622}
2160 3623
2161void noinline 3624void noinline
2162ev_timer_start (EV_P_ ev_timer *w) 3625ev_timer_start (EV_P_ ev_timer *w) EV_THROW
2163{ 3626{
2164 if (expect_false (ev_is_active (w))) 3627 if (expect_false (ev_is_active (w)))
2165 return; 3628 return;
2166 3629
2167 ev_at (w) += mn_now; 3630 ev_at (w) += mn_now;
2168 3631
2169 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3632 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2170 3633
2171 EV_FREQUENT_CHECK; 3634 EV_FREQUENT_CHECK;
2172 3635
2173 ++timercnt; 3636 ++timercnt;
2174 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1); 3637 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2177 ANHE_at_cache (timers [ev_active (w)]); 3640 ANHE_at_cache (timers [ev_active (w)]);
2178 upheap (timers, ev_active (w)); 3641 upheap (timers, ev_active (w));
2179 3642
2180 EV_FREQUENT_CHECK; 3643 EV_FREQUENT_CHECK;
2181 3644
2182 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 3645 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2183} 3646}
2184 3647
2185void noinline 3648void noinline
2186ev_timer_stop (EV_P_ ev_timer *w) 3649ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
2187{ 3650{
2188 clear_pending (EV_A_ (W)w); 3651 clear_pending (EV_A_ (W)w);
2189 if (expect_false (!ev_is_active (w))) 3652 if (expect_false (!ev_is_active (w)))
2190 return; 3653 return;
2191 3654
2192 EV_FREQUENT_CHECK; 3655 EV_FREQUENT_CHECK;
2193 3656
2194 { 3657 {
2195 int active = ev_active (w); 3658 int active = ev_active (w);
2196 3659
2197 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 3660 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2198 3661
2199 --timercnt; 3662 --timercnt;
2200 3663
2201 if (expect_true (active < timercnt + HEAP0)) 3664 if (expect_true (active < timercnt + HEAP0))
2202 { 3665 {
2203 timers [active] = timers [timercnt + HEAP0]; 3666 timers [active] = timers [timercnt + HEAP0];
2204 adjustheap (timers, timercnt, active); 3667 adjustheap (timers, timercnt, active);
2205 } 3668 }
2206 } 3669 }
2207 3670
2208 EV_FREQUENT_CHECK;
2209
2210 ev_at (w) -= mn_now; 3671 ev_at (w) -= mn_now;
2211 3672
2212 ev_stop (EV_A_ (W)w); 3673 ev_stop (EV_A_ (W)w);
3674
3675 EV_FREQUENT_CHECK;
2213} 3676}
2214 3677
2215void noinline 3678void noinline
2216ev_timer_again (EV_P_ ev_timer *w) 3679ev_timer_again (EV_P_ ev_timer *w) EV_THROW
2217{ 3680{
2218 EV_FREQUENT_CHECK; 3681 EV_FREQUENT_CHECK;
3682
3683 clear_pending (EV_A_ (W)w);
2219 3684
2220 if (ev_is_active (w)) 3685 if (ev_is_active (w))
2221 { 3686 {
2222 if (w->repeat) 3687 if (w->repeat)
2223 { 3688 {
2235 } 3700 }
2236 3701
2237 EV_FREQUENT_CHECK; 3702 EV_FREQUENT_CHECK;
2238} 3703}
2239 3704
3705ev_tstamp
3706ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3707{
3708 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3709}
3710
2240#if EV_PERIODIC_ENABLE 3711#if EV_PERIODIC_ENABLE
2241void noinline 3712void noinline
2242ev_periodic_start (EV_P_ ev_periodic *w) 3713ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
2243{ 3714{
2244 if (expect_false (ev_is_active (w))) 3715 if (expect_false (ev_is_active (w)))
2245 return; 3716 return;
2246 3717
2247 if (w->reschedule_cb) 3718 if (w->reschedule_cb)
2248 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3719 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2249 else if (w->interval) 3720 else if (w->interval)
2250 { 3721 {
2251 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3722 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2252 /* this formula differs from the one in periodic_reify because we do not always round up */ 3723 periodic_recalc (EV_A_ w);
2253 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2254 } 3724 }
2255 else 3725 else
2256 ev_at (w) = w->offset; 3726 ev_at (w) = w->offset;
2257 3727
2258 EV_FREQUENT_CHECK; 3728 EV_FREQUENT_CHECK;
2264 ANHE_at_cache (periodics [ev_active (w)]); 3734 ANHE_at_cache (periodics [ev_active (w)]);
2265 upheap (periodics, ev_active (w)); 3735 upheap (periodics, ev_active (w));
2266 3736
2267 EV_FREQUENT_CHECK; 3737 EV_FREQUENT_CHECK;
2268 3738
2269 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 3739 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2270} 3740}
2271 3741
2272void noinline 3742void noinline
2273ev_periodic_stop (EV_P_ ev_periodic *w) 3743ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
2274{ 3744{
2275 clear_pending (EV_A_ (W)w); 3745 clear_pending (EV_A_ (W)w);
2276 if (expect_false (!ev_is_active (w))) 3746 if (expect_false (!ev_is_active (w)))
2277 return; 3747 return;
2278 3748
2279 EV_FREQUENT_CHECK; 3749 EV_FREQUENT_CHECK;
2280 3750
2281 { 3751 {
2282 int active = ev_active (w); 3752 int active = ev_active (w);
2283 3753
2284 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 3754 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2285 3755
2286 --periodiccnt; 3756 --periodiccnt;
2287 3757
2288 if (expect_true (active < periodiccnt + HEAP0)) 3758 if (expect_true (active < periodiccnt + HEAP0))
2289 { 3759 {
2290 periodics [active] = periodics [periodiccnt + HEAP0]; 3760 periodics [active] = periodics [periodiccnt + HEAP0];
2291 adjustheap (periodics, periodiccnt, active); 3761 adjustheap (periodics, periodiccnt, active);
2292 } 3762 }
2293 } 3763 }
2294 3764
2295 EV_FREQUENT_CHECK;
2296
2297 ev_stop (EV_A_ (W)w); 3765 ev_stop (EV_A_ (W)w);
3766
3767 EV_FREQUENT_CHECK;
2298} 3768}
2299 3769
2300void noinline 3770void noinline
2301ev_periodic_again (EV_P_ ev_periodic *w) 3771ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
2302{ 3772{
2303 /* TODO: use adjustheap and recalculation */ 3773 /* TODO: use adjustheap and recalculation */
2304 ev_periodic_stop (EV_A_ w); 3774 ev_periodic_stop (EV_A_ w);
2305 ev_periodic_start (EV_A_ w); 3775 ev_periodic_start (EV_A_ w);
2306} 3776}
2308 3778
2309#ifndef SA_RESTART 3779#ifndef SA_RESTART
2310# define SA_RESTART 0 3780# define SA_RESTART 0
2311#endif 3781#endif
2312 3782
3783#if EV_SIGNAL_ENABLE
3784
2313void noinline 3785void noinline
2314ev_signal_start (EV_P_ ev_signal *w) 3786ev_signal_start (EV_P_ ev_signal *w) EV_THROW
2315{ 3787{
2316#if EV_MULTIPLICITY
2317 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2318#endif
2319 if (expect_false (ev_is_active (w))) 3788 if (expect_false (ev_is_active (w)))
2320 return; 3789 return;
2321 3790
2322 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3791 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2323 3792
2324 evpipe_init (EV_A); 3793#if EV_MULTIPLICITY
3794 assert (("libev: a signal must not be attached to two different loops",
3795 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2325 3796
2326 EV_FREQUENT_CHECK; 3797 signals [w->signum - 1].loop = EV_A;
3798 ECB_MEMORY_FENCE_RELEASE;
3799#endif
2327 3800
3801 EV_FREQUENT_CHECK;
3802
3803#if EV_USE_SIGNALFD
3804 if (sigfd == -2)
2328 { 3805 {
2329#ifndef _WIN32 3806 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2330 sigset_t full, prev; 3807 if (sigfd < 0 && errno == EINVAL)
2331 sigfillset (&full); 3808 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2332 sigprocmask (SIG_SETMASK, &full, &prev);
2333#endif
2334 3809
2335 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3810 if (sigfd >= 0)
3811 {
3812 fd_intern (sigfd); /* doing it twice will not hurt */
2336 3813
2337#ifndef _WIN32 3814 sigemptyset (&sigfd_set);
2338 sigprocmask (SIG_SETMASK, &prev, 0); 3815
2339#endif 3816 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3817 ev_set_priority (&sigfd_w, EV_MAXPRI);
3818 ev_io_start (EV_A_ &sigfd_w);
3819 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3820 }
2340 } 3821 }
3822
3823 if (sigfd >= 0)
3824 {
3825 /* TODO: check .head */
3826 sigaddset (&sigfd_set, w->signum);
3827 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3828
3829 signalfd (sigfd, &sigfd_set, 0);
3830 }
3831#endif
2341 3832
2342 ev_start (EV_A_ (W)w, 1); 3833 ev_start (EV_A_ (W)w, 1);
2343 wlist_add (&signals [w->signum - 1].head, (WL)w); 3834 wlist_add (&signals [w->signum - 1].head, (WL)w);
2344 3835
2345 if (!((WL)w)->next) 3836 if (!((WL)w)->next)
3837# if EV_USE_SIGNALFD
3838 if (sigfd < 0) /*TODO*/
3839# endif
2346 { 3840 {
2347#if _WIN32 3841# ifdef _WIN32
3842 evpipe_init (EV_A);
3843
2348 signal (w->signum, ev_sighandler); 3844 signal (w->signum, ev_sighandler);
2349#else 3845# else
2350 struct sigaction sa; 3846 struct sigaction sa;
3847
3848 evpipe_init (EV_A);
3849
2351 sa.sa_handler = ev_sighandler; 3850 sa.sa_handler = ev_sighandler;
2352 sigfillset (&sa.sa_mask); 3851 sigfillset (&sa.sa_mask);
2353 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3852 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2354 sigaction (w->signum, &sa, 0); 3853 sigaction (w->signum, &sa, 0);
3854
3855 if (origflags & EVFLAG_NOSIGMASK)
3856 {
3857 sigemptyset (&sa.sa_mask);
3858 sigaddset (&sa.sa_mask, w->signum);
3859 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3860 }
2355#endif 3861#endif
2356 } 3862 }
2357 3863
2358 EV_FREQUENT_CHECK; 3864 EV_FREQUENT_CHECK;
2359} 3865}
2360 3866
2361void noinline 3867void noinline
2362ev_signal_stop (EV_P_ ev_signal *w) 3868ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
2363{ 3869{
2364 clear_pending (EV_A_ (W)w); 3870 clear_pending (EV_A_ (W)w);
2365 if (expect_false (!ev_is_active (w))) 3871 if (expect_false (!ev_is_active (w)))
2366 return; 3872 return;
2367 3873
2369 3875
2370 wlist_del (&signals [w->signum - 1].head, (WL)w); 3876 wlist_del (&signals [w->signum - 1].head, (WL)w);
2371 ev_stop (EV_A_ (W)w); 3877 ev_stop (EV_A_ (W)w);
2372 3878
2373 if (!signals [w->signum - 1].head) 3879 if (!signals [w->signum - 1].head)
3880 {
3881#if EV_MULTIPLICITY
3882 signals [w->signum - 1].loop = 0; /* unattach from signal */
3883#endif
3884#if EV_USE_SIGNALFD
3885 if (sigfd >= 0)
3886 {
3887 sigset_t ss;
3888
3889 sigemptyset (&ss);
3890 sigaddset (&ss, w->signum);
3891 sigdelset (&sigfd_set, w->signum);
3892
3893 signalfd (sigfd, &sigfd_set, 0);
3894 sigprocmask (SIG_UNBLOCK, &ss, 0);
3895 }
3896 else
3897#endif
2374 signal (w->signum, SIG_DFL); 3898 signal (w->signum, SIG_DFL);
3899 }
2375 3900
2376 EV_FREQUENT_CHECK; 3901 EV_FREQUENT_CHECK;
2377} 3902}
3903
3904#endif
3905
3906#if EV_CHILD_ENABLE
2378 3907
2379void 3908void
2380ev_child_start (EV_P_ ev_child *w) 3909ev_child_start (EV_P_ ev_child *w) EV_THROW
2381{ 3910{
2382#if EV_MULTIPLICITY 3911#if EV_MULTIPLICITY
2383 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3912 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2384#endif 3913#endif
2385 if (expect_false (ev_is_active (w))) 3914 if (expect_false (ev_is_active (w)))
2386 return; 3915 return;
2387 3916
2388 EV_FREQUENT_CHECK; 3917 EV_FREQUENT_CHECK;
2389 3918
2390 ev_start (EV_A_ (W)w, 1); 3919 ev_start (EV_A_ (W)w, 1);
2391 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3920 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2392 3921
2393 EV_FREQUENT_CHECK; 3922 EV_FREQUENT_CHECK;
2394} 3923}
2395 3924
2396void 3925void
2397ev_child_stop (EV_P_ ev_child *w) 3926ev_child_stop (EV_P_ ev_child *w) EV_THROW
2398{ 3927{
2399 clear_pending (EV_A_ (W)w); 3928 clear_pending (EV_A_ (W)w);
2400 if (expect_false (!ev_is_active (w))) 3929 if (expect_false (!ev_is_active (w)))
2401 return; 3930 return;
2402 3931
2403 EV_FREQUENT_CHECK; 3932 EV_FREQUENT_CHECK;
2404 3933
2405 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3934 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2406 ev_stop (EV_A_ (W)w); 3935 ev_stop (EV_A_ (W)w);
2407 3936
2408 EV_FREQUENT_CHECK; 3937 EV_FREQUENT_CHECK;
2409} 3938}
3939
3940#endif
2410 3941
2411#if EV_STAT_ENABLE 3942#if EV_STAT_ENABLE
2412 3943
2413# ifdef _WIN32 3944# ifdef _WIN32
2414# undef lstat 3945# undef lstat
2415# define lstat(a,b) _stati64 (a,b) 3946# define lstat(a,b) _stati64 (a,b)
2416# endif 3947# endif
2417 3948
2418#define DEF_STAT_INTERVAL 5.0074891 3949#define DEF_STAT_INTERVAL 5.0074891
3950#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2419#define MIN_STAT_INTERVAL 0.1074891 3951#define MIN_STAT_INTERVAL 0.1074891
2420 3952
2421static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3953static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2422 3954
2423#if EV_USE_INOTIFY 3955#if EV_USE_INOTIFY
2424# define EV_INOTIFY_BUFSIZE 8192 3956
3957/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3958# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2425 3959
2426static void noinline 3960static void noinline
2427infy_add (EV_P_ ev_stat *w) 3961infy_add (EV_P_ ev_stat *w)
2428{ 3962{
2429 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3963 w->wd = inotify_add_watch (fs_fd, w->path,
3964 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
3965 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
3966 | IN_DONT_FOLLOW | IN_MASK_ADD);
2430 3967
2431 if (w->wd < 0) 3968 if (w->wd >= 0)
3969 {
3970 struct statfs sfs;
3971
3972 /* now local changes will be tracked by inotify, but remote changes won't */
3973 /* unless the filesystem is known to be local, we therefore still poll */
3974 /* also do poll on <2.6.25, but with normal frequency */
3975
3976 if (!fs_2625)
3977 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3978 else if (!statfs (w->path, &sfs)
3979 && (sfs.f_type == 0x1373 /* devfs */
3980 || sfs.f_type == 0x4006 /* fat */
3981 || sfs.f_type == 0x4d44 /* msdos */
3982 || sfs.f_type == 0xEF53 /* ext2/3 */
3983 || sfs.f_type == 0x72b6 /* jffs2 */
3984 || sfs.f_type == 0x858458f6 /* ramfs */
3985 || sfs.f_type == 0x5346544e /* ntfs */
3986 || sfs.f_type == 0x3153464a /* jfs */
3987 || sfs.f_type == 0x9123683e /* btrfs */
3988 || sfs.f_type == 0x52654973 /* reiser3 */
3989 || sfs.f_type == 0x01021994 /* tmpfs */
3990 || sfs.f_type == 0x58465342 /* xfs */))
3991 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3992 else
3993 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2432 { 3994 }
2433 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3995 else
3996 {
3997 /* can't use inotify, continue to stat */
3998 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2434 3999
2435 /* monitor some parent directory for speedup hints */ 4000 /* if path is not there, monitor some parent directory for speedup hints */
2436 /* note that exceeding the hardcoded limit is not a correctness issue, */ 4001 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2437 /* but an efficiency issue only */ 4002 /* but an efficiency issue only */
2438 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 4003 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2439 { 4004 {
2440 char path [4096]; 4005 char path [4096];
2441 strcpy (path, w->path); 4006 strcpy (path, w->path);
2445 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 4010 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2446 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 4011 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2447 4012
2448 char *pend = strrchr (path, '/'); 4013 char *pend = strrchr (path, '/');
2449 4014
2450 if (!pend) 4015 if (!pend || pend == path)
2451 break; /* whoops, no '/', complain to your admin */ 4016 break;
2452 4017
2453 *pend = 0; 4018 *pend = 0;
2454 w->wd = inotify_add_watch (fs_fd, path, mask); 4019 w->wd = inotify_add_watch (fs_fd, path, mask);
2455 } 4020 }
2456 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 4021 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2457 } 4022 }
2458 } 4023 }
2459 else
2460 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2461 4024
2462 if (w->wd >= 0) 4025 if (w->wd >= 0)
2463 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 4026 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4027
4028 /* now re-arm timer, if required */
4029 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4030 ev_timer_again (EV_A_ &w->timer);
4031 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2464} 4032}
2465 4033
2466static void noinline 4034static void noinline
2467infy_del (EV_P_ ev_stat *w) 4035infy_del (EV_P_ ev_stat *w)
2468{ 4036{
2471 4039
2472 if (wd < 0) 4040 if (wd < 0)
2473 return; 4041 return;
2474 4042
2475 w->wd = -2; 4043 w->wd = -2;
2476 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 4044 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2477 wlist_del (&fs_hash [slot].head, (WL)w); 4045 wlist_del (&fs_hash [slot].head, (WL)w);
2478 4046
2479 /* remove this watcher, if others are watching it, they will rearm */ 4047 /* remove this watcher, if others are watching it, they will rearm */
2480 inotify_rm_watch (fs_fd, wd); 4048 inotify_rm_watch (fs_fd, wd);
2481} 4049}
2482 4050
2483static void noinline 4051static void noinline
2484infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 4052infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2485{ 4053{
2486 if (slot < 0) 4054 if (slot < 0)
2487 /* overflow, need to check for all hahs slots */ 4055 /* overflow, need to check for all hash slots */
2488 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4056 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2489 infy_wd (EV_A_ slot, wd, ev); 4057 infy_wd (EV_A_ slot, wd, ev);
2490 else 4058 else
2491 { 4059 {
2492 WL w_; 4060 WL w_;
2493 4061
2494 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 4062 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2495 { 4063 {
2496 ev_stat *w = (ev_stat *)w_; 4064 ev_stat *w = (ev_stat *)w_;
2497 w_ = w_->next; /* lets us remove this watcher and all before it */ 4065 w_ = w_->next; /* lets us remove this watcher and all before it */
2498 4066
2499 if (w->wd == wd || wd == -1) 4067 if (w->wd == wd || wd == -1)
2500 { 4068 {
2501 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 4069 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2502 { 4070 {
4071 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2503 w->wd = -1; 4072 w->wd = -1;
2504 infy_add (EV_A_ w); /* re-add, no matter what */ 4073 infy_add (EV_A_ w); /* re-add, no matter what */
2505 } 4074 }
2506 4075
2507 stat_timer_cb (EV_A_ &w->timer, 0); 4076 stat_timer_cb (EV_A_ &w->timer, 0);
2512 4081
2513static void 4082static void
2514infy_cb (EV_P_ ev_io *w, int revents) 4083infy_cb (EV_P_ ev_io *w, int revents)
2515{ 4084{
2516 char buf [EV_INOTIFY_BUFSIZE]; 4085 char buf [EV_INOTIFY_BUFSIZE];
2517 struct inotify_event *ev = (struct inotify_event *)buf;
2518 int ofs; 4086 int ofs;
2519 int len = read (fs_fd, buf, sizeof (buf)); 4087 int len = read (fs_fd, buf, sizeof (buf));
2520 4088
2521 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 4089 for (ofs = 0; ofs < len; )
4090 {
4091 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2522 infy_wd (EV_A_ ev->wd, ev->wd, ev); 4092 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4093 ofs += sizeof (struct inotify_event) + ev->len;
4094 }
2523} 4095}
2524 4096
2525void inline_size 4097inline_size void ecb_cold
4098ev_check_2625 (EV_P)
4099{
4100 /* kernels < 2.6.25 are borked
4101 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4102 */
4103 if (ev_linux_version () < 0x020619)
4104 return;
4105
4106 fs_2625 = 1;
4107}
4108
4109inline_size int
4110infy_newfd (void)
4111{
4112#if defined IN_CLOEXEC && defined IN_NONBLOCK
4113 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4114 if (fd >= 0)
4115 return fd;
4116#endif
4117 return inotify_init ();
4118}
4119
4120inline_size void
2526infy_init (EV_P) 4121infy_init (EV_P)
2527{ 4122{
2528 if (fs_fd != -2) 4123 if (fs_fd != -2)
2529 return; 4124 return;
2530 4125
4126 fs_fd = -1;
4127
4128 ev_check_2625 (EV_A);
4129
2531 fs_fd = inotify_init (); 4130 fs_fd = infy_newfd ();
2532 4131
2533 if (fs_fd >= 0) 4132 if (fs_fd >= 0)
2534 { 4133 {
4134 fd_intern (fs_fd);
2535 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 4135 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2536 ev_set_priority (&fs_w, EV_MAXPRI); 4136 ev_set_priority (&fs_w, EV_MAXPRI);
2537 ev_io_start (EV_A_ &fs_w); 4137 ev_io_start (EV_A_ &fs_w);
4138 ev_unref (EV_A);
2538 } 4139 }
2539} 4140}
2540 4141
2541void inline_size 4142inline_size void
2542infy_fork (EV_P) 4143infy_fork (EV_P)
2543{ 4144{
2544 int slot; 4145 int slot;
2545 4146
2546 if (fs_fd < 0) 4147 if (fs_fd < 0)
2547 return; 4148 return;
2548 4149
4150 ev_ref (EV_A);
4151 ev_io_stop (EV_A_ &fs_w);
2549 close (fs_fd); 4152 close (fs_fd);
2550 fs_fd = inotify_init (); 4153 fs_fd = infy_newfd ();
2551 4154
4155 if (fs_fd >= 0)
4156 {
4157 fd_intern (fs_fd);
4158 ev_io_set (&fs_w, fs_fd, EV_READ);
4159 ev_io_start (EV_A_ &fs_w);
4160 ev_unref (EV_A);
4161 }
4162
2552 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4163 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2553 { 4164 {
2554 WL w_ = fs_hash [slot].head; 4165 WL w_ = fs_hash [slot].head;
2555 fs_hash [slot].head = 0; 4166 fs_hash [slot].head = 0;
2556 4167
2557 while (w_) 4168 while (w_)
2562 w->wd = -1; 4173 w->wd = -1;
2563 4174
2564 if (fs_fd >= 0) 4175 if (fs_fd >= 0)
2565 infy_add (EV_A_ w); /* re-add, no matter what */ 4176 infy_add (EV_A_ w); /* re-add, no matter what */
2566 else 4177 else
4178 {
4179 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4180 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2567 ev_timer_start (EV_A_ &w->timer); 4181 ev_timer_again (EV_A_ &w->timer);
4182 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4183 }
2568 } 4184 }
2569
2570 } 4185 }
2571} 4186}
2572 4187
2573#endif 4188#endif
2574 4189
2577#else 4192#else
2578# define EV_LSTAT(p,b) lstat (p, b) 4193# define EV_LSTAT(p,b) lstat (p, b)
2579#endif 4194#endif
2580 4195
2581void 4196void
2582ev_stat_stat (EV_P_ ev_stat *w) 4197ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
2583{ 4198{
2584 if (lstat (w->path, &w->attr) < 0) 4199 if (lstat (w->path, &w->attr) < 0)
2585 w->attr.st_nlink = 0; 4200 w->attr.st_nlink = 0;
2586 else if (!w->attr.st_nlink) 4201 else if (!w->attr.st_nlink)
2587 w->attr.st_nlink = 1; 4202 w->attr.st_nlink = 1;
2590static void noinline 4205static void noinline
2591stat_timer_cb (EV_P_ ev_timer *w_, int revents) 4206stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2592{ 4207{
2593 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 4208 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2594 4209
2595 /* we copy this here each the time so that */ 4210 ev_statdata prev = w->attr;
2596 /* prev has the old value when the callback gets invoked */
2597 w->prev = w->attr;
2598 ev_stat_stat (EV_A_ w); 4211 ev_stat_stat (EV_A_ w);
2599 4212
2600 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 4213 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2601 if ( 4214 if (
2602 w->prev.st_dev != w->attr.st_dev 4215 prev.st_dev != w->attr.st_dev
2603 || w->prev.st_ino != w->attr.st_ino 4216 || prev.st_ino != w->attr.st_ino
2604 || w->prev.st_mode != w->attr.st_mode 4217 || prev.st_mode != w->attr.st_mode
2605 || w->prev.st_nlink != w->attr.st_nlink 4218 || prev.st_nlink != w->attr.st_nlink
2606 || w->prev.st_uid != w->attr.st_uid 4219 || prev.st_uid != w->attr.st_uid
2607 || w->prev.st_gid != w->attr.st_gid 4220 || prev.st_gid != w->attr.st_gid
2608 || w->prev.st_rdev != w->attr.st_rdev 4221 || prev.st_rdev != w->attr.st_rdev
2609 || w->prev.st_size != w->attr.st_size 4222 || prev.st_size != w->attr.st_size
2610 || w->prev.st_atime != w->attr.st_atime 4223 || prev.st_atime != w->attr.st_atime
2611 || w->prev.st_mtime != w->attr.st_mtime 4224 || prev.st_mtime != w->attr.st_mtime
2612 || w->prev.st_ctime != w->attr.st_ctime 4225 || prev.st_ctime != w->attr.st_ctime
2613 ) { 4226 ) {
4227 /* we only update w->prev on actual differences */
4228 /* in case we test more often than invoke the callback, */
4229 /* to ensure that prev is always different to attr */
4230 w->prev = prev;
4231
2614 #if EV_USE_INOTIFY 4232 #if EV_USE_INOTIFY
4233 if (fs_fd >= 0)
4234 {
2615 infy_del (EV_A_ w); 4235 infy_del (EV_A_ w);
2616 infy_add (EV_A_ w); 4236 infy_add (EV_A_ w);
2617 ev_stat_stat (EV_A_ w); /* avoid race... */ 4237 ev_stat_stat (EV_A_ w); /* avoid race... */
4238 }
2618 #endif 4239 #endif
2619 4240
2620 ev_feed_event (EV_A_ w, EV_STAT); 4241 ev_feed_event (EV_A_ w, EV_STAT);
2621 } 4242 }
2622} 4243}
2623 4244
2624void 4245void
2625ev_stat_start (EV_P_ ev_stat *w) 4246ev_stat_start (EV_P_ ev_stat *w) EV_THROW
2626{ 4247{
2627 if (expect_false (ev_is_active (w))) 4248 if (expect_false (ev_is_active (w)))
2628 return; 4249 return;
2629 4250
2630 /* since we use memcmp, we need to clear any padding data etc. */
2631 memset (&w->prev, 0, sizeof (ev_statdata));
2632 memset (&w->attr, 0, sizeof (ev_statdata));
2633
2634 ev_stat_stat (EV_A_ w); 4251 ev_stat_stat (EV_A_ w);
2635 4252
4253 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2636 if (w->interval < MIN_STAT_INTERVAL) 4254 w->interval = MIN_STAT_INTERVAL;
2637 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2638 4255
2639 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 4256 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2640 ev_set_priority (&w->timer, ev_priority (w)); 4257 ev_set_priority (&w->timer, ev_priority (w));
2641 4258
2642#if EV_USE_INOTIFY 4259#if EV_USE_INOTIFY
2643 infy_init (EV_A); 4260 infy_init (EV_A);
2644 4261
2645 if (fs_fd >= 0) 4262 if (fs_fd >= 0)
2646 infy_add (EV_A_ w); 4263 infy_add (EV_A_ w);
2647 else 4264 else
2648#endif 4265#endif
4266 {
2649 ev_timer_start (EV_A_ &w->timer); 4267 ev_timer_again (EV_A_ &w->timer);
4268 ev_unref (EV_A);
4269 }
2650 4270
2651 ev_start (EV_A_ (W)w, 1); 4271 ev_start (EV_A_ (W)w, 1);
2652 4272
2653 EV_FREQUENT_CHECK; 4273 EV_FREQUENT_CHECK;
2654} 4274}
2655 4275
2656void 4276void
2657ev_stat_stop (EV_P_ ev_stat *w) 4277ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
2658{ 4278{
2659 clear_pending (EV_A_ (W)w); 4279 clear_pending (EV_A_ (W)w);
2660 if (expect_false (!ev_is_active (w))) 4280 if (expect_false (!ev_is_active (w)))
2661 return; 4281 return;
2662 4282
2663 EV_FREQUENT_CHECK; 4283 EV_FREQUENT_CHECK;
2664 4284
2665#if EV_USE_INOTIFY 4285#if EV_USE_INOTIFY
2666 infy_del (EV_A_ w); 4286 infy_del (EV_A_ w);
2667#endif 4287#endif
4288
4289 if (ev_is_active (&w->timer))
4290 {
4291 ev_ref (EV_A);
2668 ev_timer_stop (EV_A_ &w->timer); 4292 ev_timer_stop (EV_A_ &w->timer);
4293 }
2669 4294
2670 ev_stop (EV_A_ (W)w); 4295 ev_stop (EV_A_ (W)w);
2671 4296
2672 EV_FREQUENT_CHECK; 4297 EV_FREQUENT_CHECK;
2673} 4298}
2674#endif 4299#endif
2675 4300
2676#if EV_IDLE_ENABLE 4301#if EV_IDLE_ENABLE
2677void 4302void
2678ev_idle_start (EV_P_ ev_idle *w) 4303ev_idle_start (EV_P_ ev_idle *w) EV_THROW
2679{ 4304{
2680 if (expect_false (ev_is_active (w))) 4305 if (expect_false (ev_is_active (w)))
2681 return; 4306 return;
2682 4307
2683 pri_adjust (EV_A_ (W)w); 4308 pri_adjust (EV_A_ (W)w);
2696 4321
2697 EV_FREQUENT_CHECK; 4322 EV_FREQUENT_CHECK;
2698} 4323}
2699 4324
2700void 4325void
2701ev_idle_stop (EV_P_ ev_idle *w) 4326ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
2702{ 4327{
2703 clear_pending (EV_A_ (W)w); 4328 clear_pending (EV_A_ (W)w);
2704 if (expect_false (!ev_is_active (w))) 4329 if (expect_false (!ev_is_active (w)))
2705 return; 4330 return;
2706 4331
2718 4343
2719 EV_FREQUENT_CHECK; 4344 EV_FREQUENT_CHECK;
2720} 4345}
2721#endif 4346#endif
2722 4347
4348#if EV_PREPARE_ENABLE
2723void 4349void
2724ev_prepare_start (EV_P_ ev_prepare *w) 4350ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
2725{ 4351{
2726 if (expect_false (ev_is_active (w))) 4352 if (expect_false (ev_is_active (w)))
2727 return; 4353 return;
2728 4354
2729 EV_FREQUENT_CHECK; 4355 EV_FREQUENT_CHECK;
2734 4360
2735 EV_FREQUENT_CHECK; 4361 EV_FREQUENT_CHECK;
2736} 4362}
2737 4363
2738void 4364void
2739ev_prepare_stop (EV_P_ ev_prepare *w) 4365ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
2740{ 4366{
2741 clear_pending (EV_A_ (W)w); 4367 clear_pending (EV_A_ (W)w);
2742 if (expect_false (!ev_is_active (w))) 4368 if (expect_false (!ev_is_active (w)))
2743 return; 4369 return;
2744 4370
2753 4379
2754 ev_stop (EV_A_ (W)w); 4380 ev_stop (EV_A_ (W)w);
2755 4381
2756 EV_FREQUENT_CHECK; 4382 EV_FREQUENT_CHECK;
2757} 4383}
4384#endif
2758 4385
4386#if EV_CHECK_ENABLE
2759void 4387void
2760ev_check_start (EV_P_ ev_check *w) 4388ev_check_start (EV_P_ ev_check *w) EV_THROW
2761{ 4389{
2762 if (expect_false (ev_is_active (w))) 4390 if (expect_false (ev_is_active (w)))
2763 return; 4391 return;
2764 4392
2765 EV_FREQUENT_CHECK; 4393 EV_FREQUENT_CHECK;
2770 4398
2771 EV_FREQUENT_CHECK; 4399 EV_FREQUENT_CHECK;
2772} 4400}
2773 4401
2774void 4402void
2775ev_check_stop (EV_P_ ev_check *w) 4403ev_check_stop (EV_P_ ev_check *w) EV_THROW
2776{ 4404{
2777 clear_pending (EV_A_ (W)w); 4405 clear_pending (EV_A_ (W)w);
2778 if (expect_false (!ev_is_active (w))) 4406 if (expect_false (!ev_is_active (w)))
2779 return; 4407 return;
2780 4408
2789 4417
2790 ev_stop (EV_A_ (W)w); 4418 ev_stop (EV_A_ (W)w);
2791 4419
2792 EV_FREQUENT_CHECK; 4420 EV_FREQUENT_CHECK;
2793} 4421}
4422#endif
2794 4423
2795#if EV_EMBED_ENABLE 4424#if EV_EMBED_ENABLE
2796void noinline 4425void noinline
2797ev_embed_sweep (EV_P_ ev_embed *w) 4426ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
2798{ 4427{
2799 ev_loop (w->other, EVLOOP_NONBLOCK); 4428 ev_run (w->other, EVRUN_NOWAIT);
2800} 4429}
2801 4430
2802static void 4431static void
2803embed_io_cb (EV_P_ ev_io *io, int revents) 4432embed_io_cb (EV_P_ ev_io *io, int revents)
2804{ 4433{
2805 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4434 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2806 4435
2807 if (ev_cb (w)) 4436 if (ev_cb (w))
2808 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4437 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2809 else 4438 else
2810 ev_loop (w->other, EVLOOP_NONBLOCK); 4439 ev_run (w->other, EVRUN_NOWAIT);
2811} 4440}
2812 4441
2813static void 4442static void
2814embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4443embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2815{ 4444{
2816 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4445 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2817 4446
2818 { 4447 {
2819 struct ev_loop *loop = w->other; 4448 EV_P = w->other;
2820 4449
2821 while (fdchangecnt) 4450 while (fdchangecnt)
2822 { 4451 {
2823 fd_reify (EV_A); 4452 fd_reify (EV_A);
2824 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4453 ev_run (EV_A_ EVRUN_NOWAIT);
2825 } 4454 }
2826 } 4455 }
4456}
4457
4458static void
4459embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4460{
4461 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4462
4463 ev_embed_stop (EV_A_ w);
4464
4465 {
4466 EV_P = w->other;
4467
4468 ev_loop_fork (EV_A);
4469 ev_run (EV_A_ EVRUN_NOWAIT);
4470 }
4471
4472 ev_embed_start (EV_A_ w);
2827} 4473}
2828 4474
2829#if 0 4475#if 0
2830static void 4476static void
2831embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4477embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2833 ev_idle_stop (EV_A_ idle); 4479 ev_idle_stop (EV_A_ idle);
2834} 4480}
2835#endif 4481#endif
2836 4482
2837void 4483void
2838ev_embed_start (EV_P_ ev_embed *w) 4484ev_embed_start (EV_P_ ev_embed *w) EV_THROW
2839{ 4485{
2840 if (expect_false (ev_is_active (w))) 4486 if (expect_false (ev_is_active (w)))
2841 return; 4487 return;
2842 4488
2843 { 4489 {
2844 struct ev_loop *loop = w->other; 4490 EV_P = w->other;
2845 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4491 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2846 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4492 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2847 } 4493 }
2848 4494
2849 EV_FREQUENT_CHECK; 4495 EV_FREQUENT_CHECK;
2850 4496
2853 4499
2854 ev_prepare_init (&w->prepare, embed_prepare_cb); 4500 ev_prepare_init (&w->prepare, embed_prepare_cb);
2855 ev_set_priority (&w->prepare, EV_MINPRI); 4501 ev_set_priority (&w->prepare, EV_MINPRI);
2856 ev_prepare_start (EV_A_ &w->prepare); 4502 ev_prepare_start (EV_A_ &w->prepare);
2857 4503
4504 ev_fork_init (&w->fork, embed_fork_cb);
4505 ev_fork_start (EV_A_ &w->fork);
4506
2858 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 4507 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2859 4508
2860 ev_start (EV_A_ (W)w, 1); 4509 ev_start (EV_A_ (W)w, 1);
2861 4510
2862 EV_FREQUENT_CHECK; 4511 EV_FREQUENT_CHECK;
2863} 4512}
2864 4513
2865void 4514void
2866ev_embed_stop (EV_P_ ev_embed *w) 4515ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
2867{ 4516{
2868 clear_pending (EV_A_ (W)w); 4517 clear_pending (EV_A_ (W)w);
2869 if (expect_false (!ev_is_active (w))) 4518 if (expect_false (!ev_is_active (w)))
2870 return; 4519 return;
2871 4520
2872 EV_FREQUENT_CHECK; 4521 EV_FREQUENT_CHECK;
2873 4522
2874 ev_io_stop (EV_A_ &w->io); 4523 ev_io_stop (EV_A_ &w->io);
2875 ev_prepare_stop (EV_A_ &w->prepare); 4524 ev_prepare_stop (EV_A_ &w->prepare);
4525 ev_fork_stop (EV_A_ &w->fork);
2876 4526
2877 ev_stop (EV_A_ (W)w); 4527 ev_stop (EV_A_ (W)w);
2878 4528
2879 EV_FREQUENT_CHECK; 4529 EV_FREQUENT_CHECK;
2880} 4530}
2881#endif 4531#endif
2882 4532
2883#if EV_FORK_ENABLE 4533#if EV_FORK_ENABLE
2884void 4534void
2885ev_fork_start (EV_P_ ev_fork *w) 4535ev_fork_start (EV_P_ ev_fork *w) EV_THROW
2886{ 4536{
2887 if (expect_false (ev_is_active (w))) 4537 if (expect_false (ev_is_active (w)))
2888 return; 4538 return;
2889 4539
2890 EV_FREQUENT_CHECK; 4540 EV_FREQUENT_CHECK;
2895 4545
2896 EV_FREQUENT_CHECK; 4546 EV_FREQUENT_CHECK;
2897} 4547}
2898 4548
2899void 4549void
2900ev_fork_stop (EV_P_ ev_fork *w) 4550ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
2901{ 4551{
2902 clear_pending (EV_A_ (W)w); 4552 clear_pending (EV_A_ (W)w);
2903 if (expect_false (!ev_is_active (w))) 4553 if (expect_false (!ev_is_active (w)))
2904 return; 4554 return;
2905 4555
2916 4566
2917 EV_FREQUENT_CHECK; 4567 EV_FREQUENT_CHECK;
2918} 4568}
2919#endif 4569#endif
2920 4570
4571#if EV_CLEANUP_ENABLE
4572void
4573ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4574{
4575 if (expect_false (ev_is_active (w)))
4576 return;
4577
4578 EV_FREQUENT_CHECK;
4579
4580 ev_start (EV_A_ (W)w, ++cleanupcnt);
4581 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4582 cleanups [cleanupcnt - 1] = w;
4583
4584 /* cleanup watchers should never keep a refcount on the loop */
4585 ev_unref (EV_A);
4586 EV_FREQUENT_CHECK;
4587}
4588
4589void
4590ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4591{
4592 clear_pending (EV_A_ (W)w);
4593 if (expect_false (!ev_is_active (w)))
4594 return;
4595
4596 EV_FREQUENT_CHECK;
4597 ev_ref (EV_A);
4598
4599 {
4600 int active = ev_active (w);
4601
4602 cleanups [active - 1] = cleanups [--cleanupcnt];
4603 ev_active (cleanups [active - 1]) = active;
4604 }
4605
4606 ev_stop (EV_A_ (W)w);
4607
4608 EV_FREQUENT_CHECK;
4609}
4610#endif
4611
2921#if EV_ASYNC_ENABLE 4612#if EV_ASYNC_ENABLE
2922void 4613void
2923ev_async_start (EV_P_ ev_async *w) 4614ev_async_start (EV_P_ ev_async *w) EV_THROW
2924{ 4615{
2925 if (expect_false (ev_is_active (w))) 4616 if (expect_false (ev_is_active (w)))
2926 return; 4617 return;
4618
4619 w->sent = 0;
2927 4620
2928 evpipe_init (EV_A); 4621 evpipe_init (EV_A);
2929 4622
2930 EV_FREQUENT_CHECK; 4623 EV_FREQUENT_CHECK;
2931 4624
2935 4628
2936 EV_FREQUENT_CHECK; 4629 EV_FREQUENT_CHECK;
2937} 4630}
2938 4631
2939void 4632void
2940ev_async_stop (EV_P_ ev_async *w) 4633ev_async_stop (EV_P_ ev_async *w) EV_THROW
2941{ 4634{
2942 clear_pending (EV_A_ (W)w); 4635 clear_pending (EV_A_ (W)w);
2943 if (expect_false (!ev_is_active (w))) 4636 if (expect_false (!ev_is_active (w)))
2944 return; 4637 return;
2945 4638
2956 4649
2957 EV_FREQUENT_CHECK; 4650 EV_FREQUENT_CHECK;
2958} 4651}
2959 4652
2960void 4653void
2961ev_async_send (EV_P_ ev_async *w) 4654ev_async_send (EV_P_ ev_async *w) EV_THROW
2962{ 4655{
2963 w->sent = 1; 4656 w->sent = 1;
2964 evpipe_write (EV_A_ &gotasync); 4657 evpipe_write (EV_A_ &async_pending);
2965} 4658}
2966#endif 4659#endif
2967 4660
2968/*****************************************************************************/ 4661/*****************************************************************************/
2969 4662
2979once_cb (EV_P_ struct ev_once *once, int revents) 4672once_cb (EV_P_ struct ev_once *once, int revents)
2980{ 4673{
2981 void (*cb)(int revents, void *arg) = once->cb; 4674 void (*cb)(int revents, void *arg) = once->cb;
2982 void *arg = once->arg; 4675 void *arg = once->arg;
2983 4676
2984 ev_io_stop (EV_A_ &once->io); 4677 ev_io_stop (EV_A_ &once->io);
2985 ev_timer_stop (EV_A_ &once->to); 4678 ev_timer_stop (EV_A_ &once->to);
2986 ev_free (once); 4679 ev_free (once);
2987 4680
2988 cb (revents, arg); 4681 cb (revents, arg);
2989} 4682}
2990 4683
2991static void 4684static void
2992once_cb_io (EV_P_ ev_io *w, int revents) 4685once_cb_io (EV_P_ ev_io *w, int revents)
2993{ 4686{
2994 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4687 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4688
4689 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2995} 4690}
2996 4691
2997static void 4692static void
2998once_cb_to (EV_P_ ev_timer *w, int revents) 4693once_cb_to (EV_P_ ev_timer *w, int revents)
2999{ 4694{
3000 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4695 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4696
4697 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3001} 4698}
3002 4699
3003void 4700void
3004ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4701ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
3005{ 4702{
3006 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4703 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3007 4704
3008 if (expect_false (!once)) 4705 if (expect_false (!once))
3009 { 4706 {
3010 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4707 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
3011 return; 4708 return;
3012 } 4709 }
3013 4710
3014 once->cb = cb; 4711 once->cb = cb;
3015 once->arg = arg; 4712 once->arg = arg;
3027 ev_timer_set (&once->to, timeout, 0.); 4724 ev_timer_set (&once->to, timeout, 0.);
3028 ev_timer_start (EV_A_ &once->to); 4725 ev_timer_start (EV_A_ &once->to);
3029 } 4726 }
3030} 4727}
3031 4728
4729/*****************************************************************************/
4730
4731#if EV_WALK_ENABLE
4732void ecb_cold
4733ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4734{
4735 int i, j;
4736 ev_watcher_list *wl, *wn;
4737
4738 if (types & (EV_IO | EV_EMBED))
4739 for (i = 0; i < anfdmax; ++i)
4740 for (wl = anfds [i].head; wl; )
4741 {
4742 wn = wl->next;
4743
4744#if EV_EMBED_ENABLE
4745 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4746 {
4747 if (types & EV_EMBED)
4748 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4749 }
4750 else
4751#endif
4752#if EV_USE_INOTIFY
4753 if (ev_cb ((ev_io *)wl) == infy_cb)
4754 ;
4755 else
4756#endif
4757 if ((ev_io *)wl != &pipe_w)
4758 if (types & EV_IO)
4759 cb (EV_A_ EV_IO, wl);
4760
4761 wl = wn;
4762 }
4763
4764 if (types & (EV_TIMER | EV_STAT))
4765 for (i = timercnt + HEAP0; i-- > HEAP0; )
4766#if EV_STAT_ENABLE
4767 /*TODO: timer is not always active*/
4768 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4769 {
4770 if (types & EV_STAT)
4771 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4772 }
4773 else
4774#endif
4775 if (types & EV_TIMER)
4776 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4777
4778#if EV_PERIODIC_ENABLE
4779 if (types & EV_PERIODIC)
4780 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4781 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4782#endif
4783
4784#if EV_IDLE_ENABLE
4785 if (types & EV_IDLE)
4786 for (j = NUMPRI; j--; )
4787 for (i = idlecnt [j]; i--; )
4788 cb (EV_A_ EV_IDLE, idles [j][i]);
4789#endif
4790
4791#if EV_FORK_ENABLE
4792 if (types & EV_FORK)
4793 for (i = forkcnt; i--; )
4794 if (ev_cb (forks [i]) != embed_fork_cb)
4795 cb (EV_A_ EV_FORK, forks [i]);
4796#endif
4797
4798#if EV_ASYNC_ENABLE
4799 if (types & EV_ASYNC)
4800 for (i = asynccnt; i--; )
4801 cb (EV_A_ EV_ASYNC, asyncs [i]);
4802#endif
4803
4804#if EV_PREPARE_ENABLE
4805 if (types & EV_PREPARE)
4806 for (i = preparecnt; i--; )
4807# if EV_EMBED_ENABLE
4808 if (ev_cb (prepares [i]) != embed_prepare_cb)
4809# endif
4810 cb (EV_A_ EV_PREPARE, prepares [i]);
4811#endif
4812
4813#if EV_CHECK_ENABLE
4814 if (types & EV_CHECK)
4815 for (i = checkcnt; i--; )
4816 cb (EV_A_ EV_CHECK, checks [i]);
4817#endif
4818
4819#if EV_SIGNAL_ENABLE
4820 if (types & EV_SIGNAL)
4821 for (i = 0; i < EV_NSIG - 1; ++i)
4822 for (wl = signals [i].head; wl; )
4823 {
4824 wn = wl->next;
4825 cb (EV_A_ EV_SIGNAL, wl);
4826 wl = wn;
4827 }
4828#endif
4829
4830#if EV_CHILD_ENABLE
4831 if (types & EV_CHILD)
4832 for (i = (EV_PID_HASHSIZE); i--; )
4833 for (wl = childs [i]; wl; )
4834 {
4835 wn = wl->next;
4836 cb (EV_A_ EV_CHILD, wl);
4837 wl = wn;
4838 }
4839#endif
4840/* EV_STAT 0x00001000 /* stat data changed */
4841/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4842}
4843#endif
4844
3032#if EV_MULTIPLICITY 4845#if EV_MULTIPLICITY
3033 #include "ev_wrap.h" 4846 #include "ev_wrap.h"
3034#endif 4847#endif
3035 4848
3036#ifdef __cplusplus
3037}
3038#endif
3039

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines