ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.262 by root, Wed Oct 1 04:25:25 2008 UTC vs.
Revision 1.463 by root, Thu Jan 16 11:51:05 2014 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012,2013 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
52# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
55# endif 71# endif
56# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
58# endif 74# endif
59# else 75# else
60# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
62# endif 78# endif
63# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
65# endif 81# endif
66# endif 82# endif
67 83
84# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
71# else 88# else
89# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
74# endif 100# endif
75 101
102# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 105# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 106# else
107# undef EV_USE_POLL
88# define EV_USE_POLL 0 108# define EV_USE_POLL 0
89# endif
90# endif 109# endif
91 110
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
95# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
98# endif 118# endif
99 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
106# endif 127# endif
107 128
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
111# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
114# endif 136# endif
115 137
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
122# endif 145# endif
123 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 148# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 149# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
130# endif 163# endif
131 164
132#endif 165#endif
133 166
134#include <math.h>
135#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
136#include <fcntl.h> 169#include <fcntl.h>
137#include <stddef.h> 170#include <stddef.h>
138 171
139#include <stdio.h> 172#include <stdio.h>
140 173
141#include <assert.h> 174#include <assert.h>
142#include <errno.h> 175#include <errno.h>
143#include <sys/types.h> 176#include <sys/types.h>
144#include <time.h> 177#include <time.h>
178#include <limits.h>
145 179
146#include <signal.h> 180#include <signal.h>
147 181
148#ifdef EV_H 182#ifdef EV_H
149# include EV_H 183# include EV_H
150#else 184#else
151# include "ev.h" 185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
152#endif 197#endif
153 198
154#ifndef _WIN32 199#ifndef _WIN32
155# include <sys/time.h> 200# include <sys/time.h>
156# include <sys/wait.h> 201# include <sys/wait.h>
157# include <unistd.h> 202# include <unistd.h>
158#else 203#else
159# include <io.h> 204# include <io.h>
160# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
161# include <windows.h> 207# include <windows.h>
162# ifndef EV_SELECT_IS_WINSOCKET 208# ifndef EV_SELECT_IS_WINSOCKET
163# define EV_SELECT_IS_WINSOCKET 1 209# define EV_SELECT_IS_WINSOCKET 1
164# endif 210# endif
211# undef EV_AVOID_STDIO
165#endif 212#endif
213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
166 221
167/* this block tries to deduce configuration from header-defined symbols and defaults */ 222/* this block tries to deduce configuration from header-defined symbols and defaults */
168 223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# define EV_NSIG (8 * sizeof (sigset_t) + 1)
247#endif
248
249#ifndef EV_USE_FLOOR
250# define EV_USE_FLOOR 0
251#endif
252
253#ifndef EV_USE_CLOCK_SYSCALL
254# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
255# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
256# else
257# define EV_USE_CLOCK_SYSCALL 0
258# endif
259#endif
260
169#ifndef EV_USE_MONOTONIC 261#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0 262# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1 263# define EV_USE_MONOTONIC EV_FEATURE_OS
172# else 264# else
173# define EV_USE_MONOTONIC 0 265# define EV_USE_MONOTONIC 0
174# endif 266# endif
175#endif 267#endif
176 268
177#ifndef EV_USE_REALTIME 269#ifndef EV_USE_REALTIME
178# define EV_USE_REALTIME 0 270# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
179#endif 271#endif
180 272
181#ifndef EV_USE_NANOSLEEP 273#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L 274# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1 275# define EV_USE_NANOSLEEP EV_FEATURE_OS
184# else 276# else
185# define EV_USE_NANOSLEEP 0 277# define EV_USE_NANOSLEEP 0
186# endif 278# endif
187#endif 279#endif
188 280
189#ifndef EV_USE_SELECT 281#ifndef EV_USE_SELECT
190# define EV_USE_SELECT 1 282# define EV_USE_SELECT EV_FEATURE_BACKENDS
191#endif 283#endif
192 284
193#ifndef EV_USE_POLL 285#ifndef EV_USE_POLL
194# ifdef _WIN32 286# ifdef _WIN32
195# define EV_USE_POLL 0 287# define EV_USE_POLL 0
196# else 288# else
197# define EV_USE_POLL 1 289# define EV_USE_POLL EV_FEATURE_BACKENDS
198# endif 290# endif
199#endif 291#endif
200 292
201#ifndef EV_USE_EPOLL 293#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 294# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1 295# define EV_USE_EPOLL EV_FEATURE_BACKENDS
204# else 296# else
205# define EV_USE_EPOLL 0 297# define EV_USE_EPOLL 0
206# endif 298# endif
207#endif 299#endif
208 300
214# define EV_USE_PORT 0 306# define EV_USE_PORT 0
215#endif 307#endif
216 308
217#ifndef EV_USE_INOTIFY 309#ifndef EV_USE_INOTIFY
218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
219# define EV_USE_INOTIFY 1 311# define EV_USE_INOTIFY EV_FEATURE_OS
220# else 312# else
221# define EV_USE_INOTIFY 0 313# define EV_USE_INOTIFY 0
222# endif 314# endif
223#endif 315#endif
224 316
225#ifndef EV_PID_HASHSIZE 317#ifndef EV_PID_HASHSIZE
226# if EV_MINIMAL 318# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
227# define EV_PID_HASHSIZE 1
228# else
229# define EV_PID_HASHSIZE 16
230# endif
231#endif 319#endif
232 320
233#ifndef EV_INOTIFY_HASHSIZE 321#ifndef EV_INOTIFY_HASHSIZE
234# if EV_MINIMAL 322# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
235# define EV_INOTIFY_HASHSIZE 1
236# else
237# define EV_INOTIFY_HASHSIZE 16
238# endif
239#endif 323#endif
240 324
241#ifndef EV_USE_EVENTFD 325#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 326# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1 327# define EV_USE_EVENTFD EV_FEATURE_OS
244# else 328# else
245# define EV_USE_EVENTFD 0 329# define EV_USE_EVENTFD 0
330# endif
331#endif
332
333#ifndef EV_USE_SIGNALFD
334# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
335# define EV_USE_SIGNALFD EV_FEATURE_OS
336# else
337# define EV_USE_SIGNALFD 0
246# endif 338# endif
247#endif 339#endif
248 340
249#if 0 /* debugging */ 341#if 0 /* debugging */
250# define EV_VERIFY 3 342# define EV_VERIFY 3
251# define EV_USE_4HEAP 1 343# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1 344# define EV_HEAP_CACHE_AT 1
253#endif 345#endif
254 346
255#ifndef EV_VERIFY 347#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL 348# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
257#endif 349#endif
258 350
259#ifndef EV_USE_4HEAP 351#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL 352# define EV_USE_4HEAP EV_FEATURE_DATA
261#endif 353#endif
262 354
263#ifndef EV_HEAP_CACHE_AT 355#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL 356# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
357#endif
358
359#ifdef ANDROID
360/* supposedly, android doesn't typedef fd_mask */
361# undef EV_USE_SELECT
362# define EV_USE_SELECT 0
363/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
364# undef EV_USE_CLOCK_SYSCALL
365# define EV_USE_CLOCK_SYSCALL 0
366#endif
367
368/* aix's poll.h seems to cause lots of trouble */
369#ifdef _AIX
370/* AIX has a completely broken poll.h header */
371# undef EV_USE_POLL
372# define EV_USE_POLL 0
373#endif
374
375/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
376/* which makes programs even slower. might work on other unices, too. */
377#if EV_USE_CLOCK_SYSCALL
378# include <sys/syscall.h>
379# ifdef SYS_clock_gettime
380# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
381# undef EV_USE_MONOTONIC
382# define EV_USE_MONOTONIC 1
383# else
384# undef EV_USE_CLOCK_SYSCALL
385# define EV_USE_CLOCK_SYSCALL 0
386# endif
265#endif 387#endif
266 388
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 389/* this block fixes any misconfiguration where we know we run into trouble otherwise */
268 390
269#ifndef CLOCK_MONOTONIC 391#ifndef CLOCK_MONOTONIC
280# undef EV_USE_INOTIFY 402# undef EV_USE_INOTIFY
281# define EV_USE_INOTIFY 0 403# define EV_USE_INOTIFY 0
282#endif 404#endif
283 405
284#if !EV_USE_NANOSLEEP 406#if !EV_USE_NANOSLEEP
285# ifndef _WIN32 407/* hp-ux has it in sys/time.h, which we unconditionally include above */
408# if !defined _WIN32 && !defined __hpux
286# include <sys/select.h> 409# include <sys/select.h>
287# endif 410# endif
288#endif 411#endif
289 412
290#if EV_USE_INOTIFY 413#if EV_USE_INOTIFY
414# include <sys/statfs.h>
291# include <sys/inotify.h> 415# include <sys/inotify.h>
416/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
417# ifndef IN_DONT_FOLLOW
418# undef EV_USE_INOTIFY
419# define EV_USE_INOTIFY 0
292#endif 420# endif
293
294#if EV_SELECT_IS_WINSOCKET
295# include <winsock.h>
296#endif 421#endif
297 422
298#if EV_USE_EVENTFD 423#if EV_USE_EVENTFD
299/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 424/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
300# include <stdint.h> 425# include <stdint.h>
301# ifdef __cplusplus 426# ifndef EFD_NONBLOCK
302extern "C" { 427# define EFD_NONBLOCK O_NONBLOCK
303# endif 428# endif
304int eventfd (unsigned int initval, int flags); 429# ifndef EFD_CLOEXEC
305# ifdef __cplusplus 430# ifdef O_CLOEXEC
306} 431# define EFD_CLOEXEC O_CLOEXEC
432# else
433# define EFD_CLOEXEC 02000000
434# endif
307# endif 435# endif
436EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
437#endif
438
439#if EV_USE_SIGNALFD
440/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
441# include <stdint.h>
442# ifndef SFD_NONBLOCK
443# define SFD_NONBLOCK O_NONBLOCK
444# endif
445# ifndef SFD_CLOEXEC
446# ifdef O_CLOEXEC
447# define SFD_CLOEXEC O_CLOEXEC
448# else
449# define SFD_CLOEXEC 02000000
450# endif
451# endif
452EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
453
454struct signalfd_siginfo
455{
456 uint32_t ssi_signo;
457 char pad[128 - sizeof (uint32_t)];
458};
308#endif 459#endif
309 460
310/**/ 461/**/
311 462
312#if EV_VERIFY >= 3 463#if EV_VERIFY >= 3
313# define EV_FREQUENT_CHECK ev_loop_verify (EV_A) 464# define EV_FREQUENT_CHECK ev_verify (EV_A)
314#else 465#else
315# define EV_FREQUENT_CHECK do { } while (0) 466# define EV_FREQUENT_CHECK do { } while (0)
316#endif 467#endif
317 468
318/* 469/*
319 * This is used to avoid floating point rounding problems. 470 * This is used to work around floating point rounding problems.
320 * It is added to ev_rt_now when scheduling periodics
321 * to ensure progress, time-wise, even when rounding
322 * errors are against us.
323 * This value is good at least till the year 4000. 471 * This value is good at least till the year 4000.
324 * Better solutions welcome.
325 */ 472 */
326#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 473#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
474/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
327 475
328#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 476#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
329#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 477#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
330/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
331 478
479#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
480#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
481
482/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
483/* ECB.H BEGIN */
484/*
485 * libecb - http://software.schmorp.de/pkg/libecb
486 *
487 * Copyright (©) 2009-2013 Marc Alexander Lehmann <libecb@schmorp.de>
488 * Copyright (©) 2011 Emanuele Giaquinta
489 * All rights reserved.
490 *
491 * Redistribution and use in source and binary forms, with or without modifica-
492 * tion, are permitted provided that the following conditions are met:
493 *
494 * 1. Redistributions of source code must retain the above copyright notice,
495 * this list of conditions and the following disclaimer.
496 *
497 * 2. Redistributions in binary form must reproduce the above copyright
498 * notice, this list of conditions and the following disclaimer in the
499 * documentation and/or other materials provided with the distribution.
500 *
501 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
502 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
503 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
504 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
505 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
506 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
507 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
508 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
509 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
510 * OF THE POSSIBILITY OF SUCH DAMAGE.
511 */
512
513#ifndef ECB_H
514#define ECB_H
515
516/* 16 bits major, 16 bits minor */
517#define ECB_VERSION 0x00010003
518
519#ifdef _WIN32
520 typedef signed char int8_t;
521 typedef unsigned char uint8_t;
522 typedef signed short int16_t;
523 typedef unsigned short uint16_t;
524 typedef signed int int32_t;
525 typedef unsigned int uint32_t;
332#if __GNUC__ >= 4 526 #if __GNUC__
333# define expect(expr,value) __builtin_expect ((expr),(value)) 527 typedef signed long long int64_t;
334# define noinline __attribute__ ((noinline)) 528 typedef unsigned long long uint64_t;
529 #else /* _MSC_VER || __BORLANDC__ */
530 typedef signed __int64 int64_t;
531 typedef unsigned __int64 uint64_t;
532 #endif
533 #ifdef _WIN64
534 #define ECB_PTRSIZE 8
535 typedef uint64_t uintptr_t;
536 typedef int64_t intptr_t;
537 #else
538 #define ECB_PTRSIZE 4
539 typedef uint32_t uintptr_t;
540 typedef int32_t intptr_t;
541 #endif
335#else 542#else
336# define expect(expr,value) (expr) 543 #include <inttypes.h>
337# define noinline 544 #if UINTMAX_MAX > 0xffffffffU
338# if __STDC_VERSION__ < 199901L && __GNUC__ < 2 545 #define ECB_PTRSIZE 8
339# define inline 546 #else
547 #define ECB_PTRSIZE 4
548 #endif
340# endif 549#endif
550
551/* work around x32 idiocy by defining proper macros */
552#if __amd64 || __x86_64 || _M_AMD64 || _M_X64
553 #if _ILP32
554 #define ECB_AMD64_X32 1
555 #else
556 #define ECB_AMD64 1
341#endif 557 #endif
558#endif
342 559
560/* many compilers define _GNUC_ to some versions but then only implement
561 * what their idiot authors think are the "more important" extensions,
562 * causing enormous grief in return for some better fake benchmark numbers.
563 * or so.
564 * we try to detect these and simply assume they are not gcc - if they have
565 * an issue with that they should have done it right in the first place.
566 */
567#ifndef ECB_GCC_VERSION
568 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
569 #define ECB_GCC_VERSION(major,minor) 0
570 #else
571 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
572 #endif
573#endif
574
575#define ECB_C (__STDC__+0) /* this assumes that __STDC__ is either empty or a number */
576#define ECB_C99 (__STDC_VERSION__ >= 199901L)
577#define ECB_C11 (__STDC_VERSION__ >= 201112L)
578#define ECB_CPP (__cplusplus+0)
579#define ECB_CPP11 (__cplusplus >= 201103L)
580
581#if ECB_CPP
582 #define ECB_EXTERN_C extern "C"
583 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
584 #define ECB_EXTERN_C_END }
585#else
586 #define ECB_EXTERN_C extern
587 #define ECB_EXTERN_C_BEG
588 #define ECB_EXTERN_C_END
589#endif
590
591/*****************************************************************************/
592
593/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
594/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
595
596#if ECB_NO_THREADS
597 #define ECB_NO_SMP 1
598#endif
599
600#if ECB_NO_SMP
601 #define ECB_MEMORY_FENCE do { } while (0)
602#endif
603
604#ifndef ECB_MEMORY_FENCE
605 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
606 #if __i386 || __i386__
607 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
608 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
609 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
610 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
611 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
612 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
613 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
614 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
615 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
616 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
617 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
618 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
619 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
620 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
621 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
622 #elif (__sparc || __sparc__) && !__sparcv8
623 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
624 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
625 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
626 #elif defined __s390__ || defined __s390x__
627 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
628 #elif defined __mips__
629 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
630 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
631 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
632 #elif defined __alpha__
633 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
634 #elif defined __hppa__
635 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
636 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
637 #elif defined __ia64__
638 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
639 #elif defined __m68k__
640 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
641 #elif defined __m88k__
642 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
643 #elif defined __sh__
644 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
645 #endif
646 #endif
647#endif
648
649#ifndef ECB_MEMORY_FENCE
650 #if ECB_GCC_VERSION(4,7)
651 /* see comment below (stdatomic.h) about the C11 memory model. */
652 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
653
654 /* The __has_feature syntax from clang is so misdesigned that we cannot use it
655 * without risking compile time errors with other compilers. We *could*
656 * define our own ecb_clang_has_feature, but I just can't be bothered to work
657 * around this shit time and again.
658 * #elif defined __clang && __has_feature (cxx_atomic)
659 * // see comment below (stdatomic.h) about the C11 memory model.
660 * #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
661 */
662
663 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
664 #define ECB_MEMORY_FENCE __sync_synchronize ()
665 #elif _MSC_VER >= 1500 /* VC++ 2008 */
666 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
667 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
668 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
669 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
670 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
671 #elif _MSC_VER >= 1400 /* VC++ 2005 */
672 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
673 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
674 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
675 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
676 #elif defined _WIN32
677 #include <WinNT.h>
678 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
679 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
680 #include <mbarrier.h>
681 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
682 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
683 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
684 #elif __xlC__
685 #define ECB_MEMORY_FENCE __sync ()
686 #endif
687#endif
688
689#ifndef ECB_MEMORY_FENCE
690 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
691 /* we assume that these memory fences work on all variables/all memory accesses, */
692 /* not just C11 atomics and atomic accesses */
693 #include <stdatomic.h>
694 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
695 /* any fence other than seq_cst, which isn't very efficient for us. */
696 /* Why that is, we don't know - either the C11 memory model is quite useless */
697 /* for most usages, or gcc and clang have a bug */
698 /* I *currently* lean towards the latter, and inefficiently implement */
699 /* all three of ecb's fences as a seq_cst fence */
700 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
701 #endif
702#endif
703
704#ifndef ECB_MEMORY_FENCE
705 #if !ECB_AVOID_PTHREADS
706 /*
707 * if you get undefined symbol references to pthread_mutex_lock,
708 * or failure to find pthread.h, then you should implement
709 * the ECB_MEMORY_FENCE operations for your cpu/compiler
710 * OR provide pthread.h and link against the posix thread library
711 * of your system.
712 */
713 #include <pthread.h>
714 #define ECB_NEEDS_PTHREADS 1
715 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
716
717 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
718 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
719 #endif
720#endif
721
722#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
723 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
724#endif
725
726#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
727 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
728#endif
729
730/*****************************************************************************/
731
732#if __cplusplus
733 #define ecb_inline static inline
734#elif ECB_GCC_VERSION(2,5)
735 #define ecb_inline static __inline__
736#elif ECB_C99
737 #define ecb_inline static inline
738#else
739 #define ecb_inline static
740#endif
741
742#if ECB_GCC_VERSION(3,3)
743 #define ecb_restrict __restrict__
744#elif ECB_C99
745 #define ecb_restrict restrict
746#else
747 #define ecb_restrict
748#endif
749
750typedef int ecb_bool;
751
752#define ECB_CONCAT_(a, b) a ## b
753#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
754#define ECB_STRINGIFY_(a) # a
755#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
756
757#define ecb_function_ ecb_inline
758
759#if ECB_GCC_VERSION(3,1)
760 #define ecb_attribute(attrlist) __attribute__(attrlist)
761 #define ecb_is_constant(expr) __builtin_constant_p (expr)
762 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
763 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
764#else
765 #define ecb_attribute(attrlist)
766 #define ecb_is_constant(expr) 0
767 #define ecb_expect(expr,value) (expr)
768 #define ecb_prefetch(addr,rw,locality)
769#endif
770
771/* no emulation for ecb_decltype */
772#if ECB_GCC_VERSION(4,5)
773 #define ecb_decltype(x) __decltype(x)
774#elif ECB_GCC_VERSION(3,0)
775 #define ecb_decltype(x) __typeof(x)
776#endif
777
778#define ecb_noinline ecb_attribute ((__noinline__))
779#define ecb_unused ecb_attribute ((__unused__))
780#define ecb_const ecb_attribute ((__const__))
781#define ecb_pure ecb_attribute ((__pure__))
782
783#if ECB_C11
784 #define ecb_noreturn _Noreturn
785#else
786 #define ecb_noreturn ecb_attribute ((__noreturn__))
787#endif
788
789#if ECB_GCC_VERSION(4,3)
790 #define ecb_artificial ecb_attribute ((__artificial__))
791 #define ecb_hot ecb_attribute ((__hot__))
792 #define ecb_cold ecb_attribute ((__cold__))
793#else
794 #define ecb_artificial
795 #define ecb_hot
796 #define ecb_cold
797#endif
798
799/* put around conditional expressions if you are very sure that the */
800/* expression is mostly true or mostly false. note that these return */
801/* booleans, not the expression. */
343#define expect_false(expr) expect ((expr) != 0, 0) 802#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
344#define expect_true(expr) expect ((expr) != 0, 1) 803#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
804/* for compatibility to the rest of the world */
805#define ecb_likely(expr) ecb_expect_true (expr)
806#define ecb_unlikely(expr) ecb_expect_false (expr)
807
808/* count trailing zero bits and count # of one bits */
809#if ECB_GCC_VERSION(3,4)
810 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
811 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
812 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
813 #define ecb_ctz32(x) __builtin_ctz (x)
814 #define ecb_ctz64(x) __builtin_ctzll (x)
815 #define ecb_popcount32(x) __builtin_popcount (x)
816 /* no popcountll */
817#else
818 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
819 ecb_function_ int
820 ecb_ctz32 (uint32_t x)
821 {
822 int r = 0;
823
824 x &= ~x + 1; /* this isolates the lowest bit */
825
826#if ECB_branchless_on_i386
827 r += !!(x & 0xaaaaaaaa) << 0;
828 r += !!(x & 0xcccccccc) << 1;
829 r += !!(x & 0xf0f0f0f0) << 2;
830 r += !!(x & 0xff00ff00) << 3;
831 r += !!(x & 0xffff0000) << 4;
832#else
833 if (x & 0xaaaaaaaa) r += 1;
834 if (x & 0xcccccccc) r += 2;
835 if (x & 0xf0f0f0f0) r += 4;
836 if (x & 0xff00ff00) r += 8;
837 if (x & 0xffff0000) r += 16;
838#endif
839
840 return r;
841 }
842
843 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
844 ecb_function_ int
845 ecb_ctz64 (uint64_t x)
846 {
847 int shift = x & 0xffffffffU ? 0 : 32;
848 return ecb_ctz32 (x >> shift) + shift;
849 }
850
851 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
852 ecb_function_ int
853 ecb_popcount32 (uint32_t x)
854 {
855 x -= (x >> 1) & 0x55555555;
856 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
857 x = ((x >> 4) + x) & 0x0f0f0f0f;
858 x *= 0x01010101;
859
860 return x >> 24;
861 }
862
863 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
864 ecb_function_ int ecb_ld32 (uint32_t x)
865 {
866 int r = 0;
867
868 if (x >> 16) { x >>= 16; r += 16; }
869 if (x >> 8) { x >>= 8; r += 8; }
870 if (x >> 4) { x >>= 4; r += 4; }
871 if (x >> 2) { x >>= 2; r += 2; }
872 if (x >> 1) { r += 1; }
873
874 return r;
875 }
876
877 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
878 ecb_function_ int ecb_ld64 (uint64_t x)
879 {
880 int r = 0;
881
882 if (x >> 32) { x >>= 32; r += 32; }
883
884 return r + ecb_ld32 (x);
885 }
886#endif
887
888ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
889ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
890ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
891ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
892
893ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
894ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
895{
896 return ( (x * 0x0802U & 0x22110U)
897 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
898}
899
900ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
901ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
902{
903 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
904 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
905 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
906 x = ( x >> 8 ) | ( x << 8);
907
908 return x;
909}
910
911ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
912ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
913{
914 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
915 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
916 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
917 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
918 x = ( x >> 16 ) | ( x << 16);
919
920 return x;
921}
922
923/* popcount64 is only available on 64 bit cpus as gcc builtin */
924/* so for this version we are lazy */
925ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
926ecb_function_ int
927ecb_popcount64 (uint64_t x)
928{
929 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
930}
931
932ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
933ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
934ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
935ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
936ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
937ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
938ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
939ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
940
941ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
942ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
943ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
944ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
945ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
946ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
947ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
948ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
949
950#if ECB_GCC_VERSION(4,3)
951 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
952 #define ecb_bswap32(x) __builtin_bswap32 (x)
953 #define ecb_bswap64(x) __builtin_bswap64 (x)
954#else
955 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
956 ecb_function_ uint16_t
957 ecb_bswap16 (uint16_t x)
958 {
959 return ecb_rotl16 (x, 8);
960 }
961
962 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
963 ecb_function_ uint32_t
964 ecb_bswap32 (uint32_t x)
965 {
966 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
967 }
968
969 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
970 ecb_function_ uint64_t
971 ecb_bswap64 (uint64_t x)
972 {
973 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
974 }
975#endif
976
977#if ECB_GCC_VERSION(4,5)
978 #define ecb_unreachable() __builtin_unreachable ()
979#else
980 /* this seems to work fine, but gcc always emits a warning for it :/ */
981 ecb_inline void ecb_unreachable (void) ecb_noreturn;
982 ecb_inline void ecb_unreachable (void) { }
983#endif
984
985/* try to tell the compiler that some condition is definitely true */
986#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
987
988ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
989ecb_inline unsigned char
990ecb_byteorder_helper (void)
991{
992 /* the union code still generates code under pressure in gcc, */
993 /* but less than using pointers, and always seems to */
994 /* successfully return a constant. */
995 /* the reason why we have this horrible preprocessor mess */
996 /* is to avoid it in all cases, at least on common architectures */
997 /* or when using a recent enough gcc version (>= 4.6) */
998#if __i386 || __i386__ || _M_X86 || __amd64 || __amd64__ || _M_X64
999 return 0x44;
1000#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1001 return 0x44;
1002#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1003 return 0x11;
1004#else
1005 union
1006 {
1007 uint32_t i;
1008 uint8_t c;
1009 } u = { 0x11223344 };
1010 return u.c;
1011#endif
1012}
1013
1014ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
1015ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
1016ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
1017ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
1018
1019#if ECB_GCC_VERSION(3,0) || ECB_C99
1020 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1021#else
1022 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1023#endif
1024
1025#if __cplusplus
1026 template<typename T>
1027 static inline T ecb_div_rd (T val, T div)
1028 {
1029 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1030 }
1031 template<typename T>
1032 static inline T ecb_div_ru (T val, T div)
1033 {
1034 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1035 }
1036#else
1037 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1038 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1039#endif
1040
1041#if ecb_cplusplus_does_not_suck
1042 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1043 template<typename T, int N>
1044 static inline int ecb_array_length (const T (&arr)[N])
1045 {
1046 return N;
1047 }
1048#else
1049 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1050#endif
1051
1052/*******************************************************************************/
1053/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1054
1055/* basically, everything uses "ieee pure-endian" floating point numbers */
1056/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1057#if 0 \
1058 || __i386 || __i386__ \
1059 || __amd64 || __amd64__ || __x86_64 || __x86_64__ \
1060 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1061 || defined __arm__ && defined __ARM_EABI__ \
1062 || defined __s390__ || defined __s390x__ \
1063 || defined __mips__ \
1064 || defined __alpha__ \
1065 || defined __hppa__ \
1066 || defined __ia64__ \
1067 || defined __m68k__ \
1068 || defined __m88k__ \
1069 || defined __sh__ \
1070 || defined _M_IX86 || defined _M_AMD64 || defined _M_IA64
1071 #define ECB_STDFP 1
1072 #include <string.h> /* for memcpy */
1073#else
1074 #define ECB_STDFP 0
1075#endif
1076
1077#ifndef ECB_NO_LIBM
1078
1079 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1080
1081 /* only the oldest of old doesn't have this one. solaris. */
1082 #ifdef INFINITY
1083 #define ECB_INFINITY INFINITY
1084 #else
1085 #define ECB_INFINITY HUGE_VAL
1086 #endif
1087
1088 #ifdef NAN
1089 #define ECB_NAN NAN
1090 #else
1091 #define ECB_NAN ECB_INFINITY
1092 #endif
1093
1094 /* converts an ieee half/binary16 to a float */
1095 ecb_function_ float ecb_binary16_to_float (uint16_t x) ecb_const;
1096 ecb_function_ float
1097 ecb_binary16_to_float (uint16_t x)
1098 {
1099 int e = (x >> 10) & 0x1f;
1100 int m = x & 0x3ff;
1101 float r;
1102
1103 if (!e ) r = ldexpf (m , -24);
1104 else if (e != 31) r = ldexpf (m + 0x400, e - 25);
1105 else if (m ) r = ECB_NAN;
1106 else r = ECB_INFINITY;
1107
1108 return x & 0x8000 ? -r : r;
1109 }
1110
1111 /* convert a float to ieee single/binary32 */
1112 ecb_function_ uint32_t ecb_float_to_binary32 (float x) ecb_const;
1113 ecb_function_ uint32_t
1114 ecb_float_to_binary32 (float x)
1115 {
1116 uint32_t r;
1117
1118 #if ECB_STDFP
1119 memcpy (&r, &x, 4);
1120 #else
1121 /* slow emulation, works for anything but -0 */
1122 uint32_t m;
1123 int e;
1124
1125 if (x == 0e0f ) return 0x00000000U;
1126 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1127 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1128 if (x != x ) return 0x7fbfffffU;
1129
1130 m = frexpf (x, &e) * 0x1000000U;
1131
1132 r = m & 0x80000000U;
1133
1134 if (r)
1135 m = -m;
1136
1137 if (e <= -126)
1138 {
1139 m &= 0xffffffU;
1140 m >>= (-125 - e);
1141 e = -126;
1142 }
1143
1144 r |= (e + 126) << 23;
1145 r |= m & 0x7fffffU;
1146 #endif
1147
1148 return r;
1149 }
1150
1151 /* converts an ieee single/binary32 to a float */
1152 ecb_function_ float ecb_binary32_to_float (uint32_t x) ecb_const;
1153 ecb_function_ float
1154 ecb_binary32_to_float (uint32_t x)
1155 {
1156 float r;
1157
1158 #if ECB_STDFP
1159 memcpy (&r, &x, 4);
1160 #else
1161 /* emulation, only works for normals and subnormals and +0 */
1162 int neg = x >> 31;
1163 int e = (x >> 23) & 0xffU;
1164
1165 x &= 0x7fffffU;
1166
1167 if (e)
1168 x |= 0x800000U;
1169 else
1170 e = 1;
1171
1172 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1173 r = ldexpf (x * (0.5f / 0x800000U), e - 126);
1174
1175 r = neg ? -r : r;
1176 #endif
1177
1178 return r;
1179 }
1180
1181 /* convert a double to ieee double/binary64 */
1182 ecb_function_ uint64_t ecb_double_to_binary64 (double x) ecb_const;
1183 ecb_function_ uint64_t
1184 ecb_double_to_binary64 (double x)
1185 {
1186 uint64_t r;
1187
1188 #if ECB_STDFP
1189 memcpy (&r, &x, 8);
1190 #else
1191 /* slow emulation, works for anything but -0 */
1192 uint64_t m;
1193 int e;
1194
1195 if (x == 0e0 ) return 0x0000000000000000U;
1196 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1197 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1198 if (x != x ) return 0X7ff7ffffffffffffU;
1199
1200 m = frexp (x, &e) * 0x20000000000000U;
1201
1202 r = m & 0x8000000000000000;;
1203
1204 if (r)
1205 m = -m;
1206
1207 if (e <= -1022)
1208 {
1209 m &= 0x1fffffffffffffU;
1210 m >>= (-1021 - e);
1211 e = -1022;
1212 }
1213
1214 r |= ((uint64_t)(e + 1022)) << 52;
1215 r |= m & 0xfffffffffffffU;
1216 #endif
1217
1218 return r;
1219 }
1220
1221 /* converts an ieee double/binary64 to a double */
1222 ecb_function_ double ecb_binary64_to_double (uint64_t x) ecb_const;
1223 ecb_function_ double
1224 ecb_binary64_to_double (uint64_t x)
1225 {
1226 double r;
1227
1228 #if ECB_STDFP
1229 memcpy (&r, &x, 8);
1230 #else
1231 /* emulation, only works for normals and subnormals and +0 */
1232 int neg = x >> 63;
1233 int e = (x >> 52) & 0x7ffU;
1234
1235 x &= 0xfffffffffffffU;
1236
1237 if (e)
1238 x |= 0x10000000000000U;
1239 else
1240 e = 1;
1241
1242 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1243 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1244
1245 r = neg ? -r : r;
1246 #endif
1247
1248 return r;
1249 }
1250
1251#endif
1252
1253#endif
1254
1255/* ECB.H END */
1256
1257#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1258/* if your architecture doesn't need memory fences, e.g. because it is
1259 * single-cpu/core, or if you use libev in a project that doesn't use libev
1260 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1261 * libev, in which cases the memory fences become nops.
1262 * alternatively, you can remove this #error and link against libpthread,
1263 * which will then provide the memory fences.
1264 */
1265# error "memory fences not defined for your architecture, please report"
1266#endif
1267
1268#ifndef ECB_MEMORY_FENCE
1269# define ECB_MEMORY_FENCE do { } while (0)
1270# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1271# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1272#endif
1273
1274#define expect_false(cond) ecb_expect_false (cond)
1275#define expect_true(cond) ecb_expect_true (cond)
1276#define noinline ecb_noinline
1277
345#define inline_size static inline 1278#define inline_size ecb_inline
346 1279
347#if EV_MINIMAL 1280#if EV_FEATURE_CODE
1281# define inline_speed ecb_inline
1282#else
348# define inline_speed static noinline 1283# define inline_speed static noinline
1284#endif
1285
1286#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1287
1288#if EV_MINPRI == EV_MAXPRI
1289# define ABSPRI(w) (((W)w), 0)
349#else 1290#else
350# define inline_speed static inline
351#endif
352
353#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
354#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1291# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1292#endif
355 1293
356#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1294#define EMPTY /* required for microsofts broken pseudo-c compiler */
357#define EMPTY2(a,b) /* used to suppress some warnings */ 1295#define EMPTY2(a,b) /* used to suppress some warnings */
358 1296
359typedef ev_watcher *W; 1297typedef ev_watcher *W;
361typedef ev_watcher_time *WT; 1299typedef ev_watcher_time *WT;
362 1300
363#define ev_active(w) ((W)(w))->active 1301#define ev_active(w) ((W)(w))->active
364#define ev_at(w) ((WT)(w))->at 1302#define ev_at(w) ((WT)(w))->at
365 1303
1304#if EV_USE_REALTIME
1305/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1306/* giving it a reasonably high chance of working on typical architectures */
1307static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1308#endif
1309
366#if EV_USE_MONOTONIC 1310#if EV_USE_MONOTONIC
367/* sig_atomic_t is used to avoid per-thread variables or locking but still */
368/* giving it a reasonably high chance of working on typical architetcures */
369static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1311static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1312#endif
1313
1314#ifndef EV_FD_TO_WIN32_HANDLE
1315# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1316#endif
1317#ifndef EV_WIN32_HANDLE_TO_FD
1318# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1319#endif
1320#ifndef EV_WIN32_CLOSE_FD
1321# define EV_WIN32_CLOSE_FD(fd) close (fd)
370#endif 1322#endif
371 1323
372#ifdef _WIN32 1324#ifdef _WIN32
373# include "ev_win32.c" 1325# include "ev_win32.c"
374#endif 1326#endif
375 1327
376/*****************************************************************************/ 1328/*****************************************************************************/
377 1329
1330/* define a suitable floor function (only used by periodics atm) */
1331
1332#if EV_USE_FLOOR
1333# include <math.h>
1334# define ev_floor(v) floor (v)
1335#else
1336
1337#include <float.h>
1338
1339/* a floor() replacement function, should be independent of ev_tstamp type */
1340static ev_tstamp noinline
1341ev_floor (ev_tstamp v)
1342{
1343 /* the choice of shift factor is not terribly important */
1344#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1345 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1346#else
1347 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1348#endif
1349
1350 /* argument too large for an unsigned long? */
1351 if (expect_false (v >= shift))
1352 {
1353 ev_tstamp f;
1354
1355 if (v == v - 1.)
1356 return v; /* very large number */
1357
1358 f = shift * ev_floor (v * (1. / shift));
1359 return f + ev_floor (v - f);
1360 }
1361
1362 /* special treatment for negative args? */
1363 if (expect_false (v < 0.))
1364 {
1365 ev_tstamp f = -ev_floor (-v);
1366
1367 return f - (f == v ? 0 : 1);
1368 }
1369
1370 /* fits into an unsigned long */
1371 return (unsigned long)v;
1372}
1373
1374#endif
1375
1376/*****************************************************************************/
1377
1378#ifdef __linux
1379# include <sys/utsname.h>
1380#endif
1381
1382static unsigned int noinline ecb_cold
1383ev_linux_version (void)
1384{
1385#ifdef __linux
1386 unsigned int v = 0;
1387 struct utsname buf;
1388 int i;
1389 char *p = buf.release;
1390
1391 if (uname (&buf))
1392 return 0;
1393
1394 for (i = 3+1; --i; )
1395 {
1396 unsigned int c = 0;
1397
1398 for (;;)
1399 {
1400 if (*p >= '0' && *p <= '9')
1401 c = c * 10 + *p++ - '0';
1402 else
1403 {
1404 p += *p == '.';
1405 break;
1406 }
1407 }
1408
1409 v = (v << 8) | c;
1410 }
1411
1412 return v;
1413#else
1414 return 0;
1415#endif
1416}
1417
1418/*****************************************************************************/
1419
1420#if EV_AVOID_STDIO
1421static void noinline ecb_cold
1422ev_printerr (const char *msg)
1423{
1424 write (STDERR_FILENO, msg, strlen (msg));
1425}
1426#endif
1427
378static void (*syserr_cb)(const char *msg); 1428static void (*syserr_cb)(const char *msg) EV_THROW;
379 1429
380void 1430void ecb_cold
381ev_set_syserr_cb (void (*cb)(const char *msg)) 1431ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
382{ 1432{
383 syserr_cb = cb; 1433 syserr_cb = cb;
384} 1434}
385 1435
386static void noinline 1436static void noinline ecb_cold
387syserr (const char *msg) 1437ev_syserr (const char *msg)
388{ 1438{
389 if (!msg) 1439 if (!msg)
390 msg = "(libev) system error"; 1440 msg = "(libev) system error";
391 1441
392 if (syserr_cb) 1442 if (syserr_cb)
393 syserr_cb (msg); 1443 syserr_cb (msg);
394 else 1444 else
395 { 1445 {
1446#if EV_AVOID_STDIO
1447 ev_printerr (msg);
1448 ev_printerr (": ");
1449 ev_printerr (strerror (errno));
1450 ev_printerr ("\n");
1451#else
396 perror (msg); 1452 perror (msg);
1453#endif
397 abort (); 1454 abort ();
398 } 1455 }
399} 1456}
400 1457
401static void * 1458static void *
402ev_realloc_emul (void *ptr, long size) 1459ev_realloc_emul (void *ptr, long size) EV_THROW
403{ 1460{
404 /* some systems, notably openbsd and darwin, fail to properly 1461 /* some systems, notably openbsd and darwin, fail to properly
405 * implement realloc (x, 0) (as required by both ansi c-98 and 1462 * implement realloc (x, 0) (as required by both ansi c-89 and
406 * the single unix specification, so work around them here. 1463 * the single unix specification, so work around them here.
1464 * recently, also (at least) fedora and debian started breaking it,
1465 * despite documenting it otherwise.
407 */ 1466 */
408 1467
409 if (size) 1468 if (size)
410 return realloc (ptr, size); 1469 return realloc (ptr, size);
411 1470
412 free (ptr); 1471 free (ptr);
413 return 0; 1472 return 0;
414} 1473}
415 1474
416static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 1475static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
417 1476
418void 1477void ecb_cold
419ev_set_allocator (void *(*cb)(void *ptr, long size)) 1478ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
420{ 1479{
421 alloc = cb; 1480 alloc = cb;
422} 1481}
423 1482
424inline_speed void * 1483inline_speed void *
426{ 1485{
427 ptr = alloc (ptr, size); 1486 ptr = alloc (ptr, size);
428 1487
429 if (!ptr && size) 1488 if (!ptr && size)
430 { 1489 {
1490#if EV_AVOID_STDIO
1491 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1492#else
431 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1493 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1494#endif
432 abort (); 1495 abort ();
433 } 1496 }
434 1497
435 return ptr; 1498 return ptr;
436} 1499}
438#define ev_malloc(size) ev_realloc (0, (size)) 1501#define ev_malloc(size) ev_realloc (0, (size))
439#define ev_free(ptr) ev_realloc ((ptr), 0) 1502#define ev_free(ptr) ev_realloc ((ptr), 0)
440 1503
441/*****************************************************************************/ 1504/*****************************************************************************/
442 1505
1506/* set in reify when reification needed */
1507#define EV_ANFD_REIFY 1
1508
1509/* file descriptor info structure */
443typedef struct 1510typedef struct
444{ 1511{
445 WL head; 1512 WL head;
446 unsigned char events; 1513 unsigned char events; /* the events watched for */
1514 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1515 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
447 unsigned char reify; 1516 unsigned char unused;
1517#if EV_USE_EPOLL
1518 unsigned int egen; /* generation counter to counter epoll bugs */
1519#endif
448#if EV_SELECT_IS_WINSOCKET 1520#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
449 SOCKET handle; 1521 SOCKET handle;
450#endif 1522#endif
1523#if EV_USE_IOCP
1524 OVERLAPPED or, ow;
1525#endif
451} ANFD; 1526} ANFD;
452 1527
1528/* stores the pending event set for a given watcher */
453typedef struct 1529typedef struct
454{ 1530{
455 W w; 1531 W w;
456 int events; 1532 int events; /* the pending event set for the given watcher */
457} ANPENDING; 1533} ANPENDING;
458 1534
459#if EV_USE_INOTIFY 1535#if EV_USE_INOTIFY
460/* hash table entry per inotify-id */ 1536/* hash table entry per inotify-id */
461typedef struct 1537typedef struct
464} ANFS; 1540} ANFS;
465#endif 1541#endif
466 1542
467/* Heap Entry */ 1543/* Heap Entry */
468#if EV_HEAP_CACHE_AT 1544#if EV_HEAP_CACHE_AT
1545 /* a heap element */
469 typedef struct { 1546 typedef struct {
470 ev_tstamp at; 1547 ev_tstamp at;
471 WT w; 1548 WT w;
472 } ANHE; 1549 } ANHE;
473 1550
474 #define ANHE_w(he) (he).w /* access watcher, read-write */ 1551 #define ANHE_w(he) (he).w /* access watcher, read-write */
475 #define ANHE_at(he) (he).at /* access cached at, read-only */ 1552 #define ANHE_at(he) (he).at /* access cached at, read-only */
476 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 1553 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
477#else 1554#else
1555 /* a heap element */
478 typedef WT ANHE; 1556 typedef WT ANHE;
479 1557
480 #define ANHE_w(he) (he) 1558 #define ANHE_w(he) (he)
481 #define ANHE_at(he) (he)->at 1559 #define ANHE_at(he) (he)->at
482 #define ANHE_at_cache(he) 1560 #define ANHE_at_cache(he)
493 #undef VAR 1571 #undef VAR
494 }; 1572 };
495 #include "ev_wrap.h" 1573 #include "ev_wrap.h"
496 1574
497 static struct ev_loop default_loop_struct; 1575 static struct ev_loop default_loop_struct;
498 struct ev_loop *ev_default_loop_ptr; 1576 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
499 1577
500#else 1578#else
501 1579
502 ev_tstamp ev_rt_now; 1580 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
503 #define VAR(name,decl) static decl; 1581 #define VAR(name,decl) static decl;
504 #include "ev_vars.h" 1582 #include "ev_vars.h"
505 #undef VAR 1583 #undef VAR
506 1584
507 static int ev_default_loop_ptr; 1585 static int ev_default_loop_ptr;
508 1586
509#endif 1587#endif
510 1588
1589#if EV_FEATURE_API
1590# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1591# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1592# define EV_INVOKE_PENDING invoke_cb (EV_A)
1593#else
1594# define EV_RELEASE_CB (void)0
1595# define EV_ACQUIRE_CB (void)0
1596# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1597#endif
1598
1599#define EVBREAK_RECURSE 0x80
1600
511/*****************************************************************************/ 1601/*****************************************************************************/
512 1602
1603#ifndef EV_HAVE_EV_TIME
513ev_tstamp 1604ev_tstamp
514ev_time (void) 1605ev_time (void) EV_THROW
515{ 1606{
516#if EV_USE_REALTIME 1607#if EV_USE_REALTIME
1608 if (expect_true (have_realtime))
1609 {
517 struct timespec ts; 1610 struct timespec ts;
518 clock_gettime (CLOCK_REALTIME, &ts); 1611 clock_gettime (CLOCK_REALTIME, &ts);
519 return ts.tv_sec + ts.tv_nsec * 1e-9; 1612 return ts.tv_sec + ts.tv_nsec * 1e-9;
520#else 1613 }
1614#endif
1615
521 struct timeval tv; 1616 struct timeval tv;
522 gettimeofday (&tv, 0); 1617 gettimeofday (&tv, 0);
523 return tv.tv_sec + tv.tv_usec * 1e-6; 1618 return tv.tv_sec + tv.tv_usec * 1e-6;
524#endif
525} 1619}
1620#endif
526 1621
527ev_tstamp inline_size 1622inline_size ev_tstamp
528get_clock (void) 1623get_clock (void)
529{ 1624{
530#if EV_USE_MONOTONIC 1625#if EV_USE_MONOTONIC
531 if (expect_true (have_monotonic)) 1626 if (expect_true (have_monotonic))
532 { 1627 {
539 return ev_time (); 1634 return ev_time ();
540} 1635}
541 1636
542#if EV_MULTIPLICITY 1637#if EV_MULTIPLICITY
543ev_tstamp 1638ev_tstamp
544ev_now (EV_P) 1639ev_now (EV_P) EV_THROW
545{ 1640{
546 return ev_rt_now; 1641 return ev_rt_now;
547} 1642}
548#endif 1643#endif
549 1644
550void 1645void
551ev_sleep (ev_tstamp delay) 1646ev_sleep (ev_tstamp delay) EV_THROW
552{ 1647{
553 if (delay > 0.) 1648 if (delay > 0.)
554 { 1649 {
555#if EV_USE_NANOSLEEP 1650#if EV_USE_NANOSLEEP
556 struct timespec ts; 1651 struct timespec ts;
557 1652
558 ts.tv_sec = (time_t)delay; 1653 EV_TS_SET (ts, delay);
559 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
560
561 nanosleep (&ts, 0); 1654 nanosleep (&ts, 0);
562#elif defined(_WIN32) 1655#elif defined _WIN32
563 Sleep ((unsigned long)(delay * 1e3)); 1656 Sleep ((unsigned long)(delay * 1e3));
564#else 1657#else
565 struct timeval tv; 1658 struct timeval tv;
566 1659
567 tv.tv_sec = (time_t)delay;
568 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
569
570 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */ 1660 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
571 /* somehting nto guaranteed by newer posix versions, but guaranteed */ 1661 /* something not guaranteed by newer posix versions, but guaranteed */
572 /* by older ones */ 1662 /* by older ones */
1663 EV_TV_SET (tv, delay);
573 select (0, 0, 0, 0, &tv); 1664 select (0, 0, 0, 0, &tv);
574#endif 1665#endif
575 } 1666 }
576} 1667}
577 1668
578/*****************************************************************************/ 1669/*****************************************************************************/
579 1670
580#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 1671#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
581 1672
582int inline_size 1673/* find a suitable new size for the given array, */
1674/* hopefully by rounding to a nice-to-malloc size */
1675inline_size int
583array_nextsize (int elem, int cur, int cnt) 1676array_nextsize (int elem, int cur, int cnt)
584{ 1677{
585 int ncur = cur + 1; 1678 int ncur = cur + 1;
586 1679
587 do 1680 do
588 ncur <<= 1; 1681 ncur <<= 1;
589 while (cnt > ncur); 1682 while (cnt > ncur);
590 1683
591 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */ 1684 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
592 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4) 1685 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
593 { 1686 {
594 ncur *= elem; 1687 ncur *= elem;
595 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1); 1688 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
596 ncur = ncur - sizeof (void *) * 4; 1689 ncur = ncur - sizeof (void *) * 4;
598 } 1691 }
599 1692
600 return ncur; 1693 return ncur;
601} 1694}
602 1695
603static noinline void * 1696static void * noinline ecb_cold
604array_realloc (int elem, void *base, int *cur, int cnt) 1697array_realloc (int elem, void *base, int *cur, int cnt)
605{ 1698{
606 *cur = array_nextsize (elem, *cur, cnt); 1699 *cur = array_nextsize (elem, *cur, cnt);
607 return ev_realloc (base, elem * *cur); 1700 return ev_realloc (base, elem * *cur);
608} 1701}
1702
1703#define array_init_zero(base,count) \
1704 memset ((void *)(base), 0, sizeof (*(base)) * (count))
609 1705
610#define array_needsize(type,base,cur,cnt,init) \ 1706#define array_needsize(type,base,cur,cnt,init) \
611 if (expect_false ((cnt) > (cur))) \ 1707 if (expect_false ((cnt) > (cur))) \
612 { \ 1708 { \
613 int ocur_ = (cur); \ 1709 int ecb_unused ocur_ = (cur); \
614 (base) = (type *)array_realloc \ 1710 (base) = (type *)array_realloc \
615 (sizeof (type), (base), &(cur), (cnt)); \ 1711 (sizeof (type), (base), &(cur), (cnt)); \
616 init ((base) + (ocur_), (cur) - ocur_); \ 1712 init ((base) + (ocur_), (cur) - ocur_); \
617 } 1713 }
618 1714
625 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1721 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
626 } 1722 }
627#endif 1723#endif
628 1724
629#define array_free(stem, idx) \ 1725#define array_free(stem, idx) \
630 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1726 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
631 1727
632/*****************************************************************************/ 1728/*****************************************************************************/
633 1729
1730/* dummy callback for pending events */
1731static void noinline
1732pendingcb (EV_P_ ev_prepare *w, int revents)
1733{
1734}
1735
634void noinline 1736void noinline
635ev_feed_event (EV_P_ void *w, int revents) 1737ev_feed_event (EV_P_ void *w, int revents) EV_THROW
636{ 1738{
637 W w_ = (W)w; 1739 W w_ = (W)w;
638 int pri = ABSPRI (w_); 1740 int pri = ABSPRI (w_);
639 1741
640 if (expect_false (w_->pending)) 1742 if (expect_false (w_->pending))
644 w_->pending = ++pendingcnt [pri]; 1746 w_->pending = ++pendingcnt [pri];
645 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 1747 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
646 pendings [pri][w_->pending - 1].w = w_; 1748 pendings [pri][w_->pending - 1].w = w_;
647 pendings [pri][w_->pending - 1].events = revents; 1749 pendings [pri][w_->pending - 1].events = revents;
648 } 1750 }
649}
650 1751
651void inline_speed 1752 pendingpri = NUMPRI - 1;
1753}
1754
1755inline_speed void
1756feed_reverse (EV_P_ W w)
1757{
1758 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1759 rfeeds [rfeedcnt++] = w;
1760}
1761
1762inline_size void
1763feed_reverse_done (EV_P_ int revents)
1764{
1765 do
1766 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1767 while (rfeedcnt);
1768}
1769
1770inline_speed void
652queue_events (EV_P_ W *events, int eventcnt, int type) 1771queue_events (EV_P_ W *events, int eventcnt, int type)
653{ 1772{
654 int i; 1773 int i;
655 1774
656 for (i = 0; i < eventcnt; ++i) 1775 for (i = 0; i < eventcnt; ++i)
657 ev_feed_event (EV_A_ events [i], type); 1776 ev_feed_event (EV_A_ events [i], type);
658} 1777}
659 1778
660/*****************************************************************************/ 1779/*****************************************************************************/
661 1780
662void inline_size 1781inline_speed void
663anfds_init (ANFD *base, int count)
664{
665 while (count--)
666 {
667 base->head = 0;
668 base->events = EV_NONE;
669 base->reify = 0;
670
671 ++base;
672 }
673}
674
675void inline_speed
676fd_event (EV_P_ int fd, int revents) 1782fd_event_nocheck (EV_P_ int fd, int revents)
677{ 1783{
678 ANFD *anfd = anfds + fd; 1784 ANFD *anfd = anfds + fd;
679 ev_io *w; 1785 ev_io *w;
680 1786
681 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1787 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
685 if (ev) 1791 if (ev)
686 ev_feed_event (EV_A_ (W)w, ev); 1792 ev_feed_event (EV_A_ (W)w, ev);
687 } 1793 }
688} 1794}
689 1795
1796/* do not submit kernel events for fds that have reify set */
1797/* because that means they changed while we were polling for new events */
1798inline_speed void
1799fd_event (EV_P_ int fd, int revents)
1800{
1801 ANFD *anfd = anfds + fd;
1802
1803 if (expect_true (!anfd->reify))
1804 fd_event_nocheck (EV_A_ fd, revents);
1805}
1806
690void 1807void
691ev_feed_fd_event (EV_P_ int fd, int revents) 1808ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
692{ 1809{
693 if (fd >= 0 && fd < anfdmax) 1810 if (fd >= 0 && fd < anfdmax)
694 fd_event (EV_A_ fd, revents); 1811 fd_event_nocheck (EV_A_ fd, revents);
695} 1812}
696 1813
697void inline_size 1814/* make sure the external fd watch events are in-sync */
1815/* with the kernel/libev internal state */
1816inline_size void
698fd_reify (EV_P) 1817fd_reify (EV_P)
699{ 1818{
700 int i; 1819 int i;
1820
1821#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1822 for (i = 0; i < fdchangecnt; ++i)
1823 {
1824 int fd = fdchanges [i];
1825 ANFD *anfd = anfds + fd;
1826
1827 if (anfd->reify & EV__IOFDSET && anfd->head)
1828 {
1829 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1830
1831 if (handle != anfd->handle)
1832 {
1833 unsigned long arg;
1834
1835 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1836
1837 /* handle changed, but fd didn't - we need to do it in two steps */
1838 backend_modify (EV_A_ fd, anfd->events, 0);
1839 anfd->events = 0;
1840 anfd->handle = handle;
1841 }
1842 }
1843 }
1844#endif
701 1845
702 for (i = 0; i < fdchangecnt; ++i) 1846 for (i = 0; i < fdchangecnt; ++i)
703 { 1847 {
704 int fd = fdchanges [i]; 1848 int fd = fdchanges [i];
705 ANFD *anfd = anfds + fd; 1849 ANFD *anfd = anfds + fd;
706 ev_io *w; 1850 ev_io *w;
707 1851
708 unsigned char events = 0; 1852 unsigned char o_events = anfd->events;
1853 unsigned char o_reify = anfd->reify;
709 1854
710 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1855 anfd->reify = 0;
711 events |= (unsigned char)w->events;
712 1856
713#if EV_SELECT_IS_WINSOCKET 1857 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
714 if (events)
715 { 1858 {
716 unsigned long arg; 1859 anfd->events = 0;
717 #ifdef EV_FD_TO_WIN32_HANDLE 1860
718 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1861 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
719 #else 1862 anfd->events |= (unsigned char)w->events;
720 anfd->handle = _get_osfhandle (fd); 1863
721 #endif 1864 if (o_events != anfd->events)
722 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0)); 1865 o_reify = EV__IOFDSET; /* actually |= */
723 } 1866 }
724#endif
725 1867
726 { 1868 if (o_reify & EV__IOFDSET)
727 unsigned char o_events = anfd->events;
728 unsigned char o_reify = anfd->reify;
729
730 anfd->reify = 0;
731 anfd->events = events;
732
733 if (o_events != events || o_reify & EV_IOFDSET)
734 backend_modify (EV_A_ fd, o_events, events); 1869 backend_modify (EV_A_ fd, o_events, anfd->events);
735 }
736 } 1870 }
737 1871
738 fdchangecnt = 0; 1872 fdchangecnt = 0;
739} 1873}
740 1874
741void inline_size 1875/* something about the given fd changed */
1876inline_size void
742fd_change (EV_P_ int fd, int flags) 1877fd_change (EV_P_ int fd, int flags)
743{ 1878{
744 unsigned char reify = anfds [fd].reify; 1879 unsigned char reify = anfds [fd].reify;
745 anfds [fd].reify |= flags; 1880 anfds [fd].reify |= flags;
746 1881
750 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1885 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
751 fdchanges [fdchangecnt - 1] = fd; 1886 fdchanges [fdchangecnt - 1] = fd;
752 } 1887 }
753} 1888}
754 1889
755void inline_speed 1890/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1891inline_speed void ecb_cold
756fd_kill (EV_P_ int fd) 1892fd_kill (EV_P_ int fd)
757{ 1893{
758 ev_io *w; 1894 ev_io *w;
759 1895
760 while ((w = (ev_io *)anfds [fd].head)) 1896 while ((w = (ev_io *)anfds [fd].head))
762 ev_io_stop (EV_A_ w); 1898 ev_io_stop (EV_A_ w);
763 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1899 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
764 } 1900 }
765} 1901}
766 1902
767int inline_size 1903/* check whether the given fd is actually valid, for error recovery */
1904inline_size int ecb_cold
768fd_valid (int fd) 1905fd_valid (int fd)
769{ 1906{
770#ifdef _WIN32 1907#ifdef _WIN32
771 return _get_osfhandle (fd) != -1; 1908 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
772#else 1909#else
773 return fcntl (fd, F_GETFD) != -1; 1910 return fcntl (fd, F_GETFD) != -1;
774#endif 1911#endif
775} 1912}
776 1913
777/* called on EBADF to verify fds */ 1914/* called on EBADF to verify fds */
778static void noinline 1915static void noinline ecb_cold
779fd_ebadf (EV_P) 1916fd_ebadf (EV_P)
780{ 1917{
781 int fd; 1918 int fd;
782 1919
783 for (fd = 0; fd < anfdmax; ++fd) 1920 for (fd = 0; fd < anfdmax; ++fd)
785 if (!fd_valid (fd) && errno == EBADF) 1922 if (!fd_valid (fd) && errno == EBADF)
786 fd_kill (EV_A_ fd); 1923 fd_kill (EV_A_ fd);
787} 1924}
788 1925
789/* called on ENOMEM in select/poll to kill some fds and retry */ 1926/* called on ENOMEM in select/poll to kill some fds and retry */
790static void noinline 1927static void noinline ecb_cold
791fd_enomem (EV_P) 1928fd_enomem (EV_P)
792{ 1929{
793 int fd; 1930 int fd;
794 1931
795 for (fd = anfdmax; fd--; ) 1932 for (fd = anfdmax; fd--; )
796 if (anfds [fd].events) 1933 if (anfds [fd].events)
797 { 1934 {
798 fd_kill (EV_A_ fd); 1935 fd_kill (EV_A_ fd);
799 return; 1936 break;
800 } 1937 }
801} 1938}
802 1939
803/* usually called after fork if backend needs to re-arm all fds from scratch */ 1940/* usually called after fork if backend needs to re-arm all fds from scratch */
804static void noinline 1941static void noinline
808 1945
809 for (fd = 0; fd < anfdmax; ++fd) 1946 for (fd = 0; fd < anfdmax; ++fd)
810 if (anfds [fd].events) 1947 if (anfds [fd].events)
811 { 1948 {
812 anfds [fd].events = 0; 1949 anfds [fd].events = 0;
1950 anfds [fd].emask = 0;
813 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1951 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
814 } 1952 }
815} 1953}
816 1954
1955/* used to prepare libev internal fd's */
1956/* this is not fork-safe */
1957inline_speed void
1958fd_intern (int fd)
1959{
1960#ifdef _WIN32
1961 unsigned long arg = 1;
1962 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1963#else
1964 fcntl (fd, F_SETFD, FD_CLOEXEC);
1965 fcntl (fd, F_SETFL, O_NONBLOCK);
1966#endif
1967}
1968
817/*****************************************************************************/ 1969/*****************************************************************************/
818 1970
819/* 1971/*
820 * the heap functions want a real array index. array index 0 uis guaranteed to not 1972 * the heap functions want a real array index. array index 0 is guaranteed to not
821 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 1973 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
822 * the branching factor of the d-tree. 1974 * the branching factor of the d-tree.
823 */ 1975 */
824 1976
825/* 1977/*
834#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1986#define HEAP0 (DHEAP - 1) /* index of first element in heap */
835#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 1987#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
836#define UPHEAP_DONE(p,k) ((p) == (k)) 1988#define UPHEAP_DONE(p,k) ((p) == (k))
837 1989
838/* away from the root */ 1990/* away from the root */
839void inline_speed 1991inline_speed void
840downheap (ANHE *heap, int N, int k) 1992downheap (ANHE *heap, int N, int k)
841{ 1993{
842 ANHE he = heap [k]; 1994 ANHE he = heap [k];
843 ANHE *E = heap + N + HEAP0; 1995 ANHE *E = heap + N + HEAP0;
844 1996
884#define HEAP0 1 2036#define HEAP0 1
885#define HPARENT(k) ((k) >> 1) 2037#define HPARENT(k) ((k) >> 1)
886#define UPHEAP_DONE(p,k) (!(p)) 2038#define UPHEAP_DONE(p,k) (!(p))
887 2039
888/* away from the root */ 2040/* away from the root */
889void inline_speed 2041inline_speed void
890downheap (ANHE *heap, int N, int k) 2042downheap (ANHE *heap, int N, int k)
891{ 2043{
892 ANHE he = heap [k]; 2044 ANHE he = heap [k];
893 2045
894 for (;;) 2046 for (;;)
895 { 2047 {
896 int c = k << 1; 2048 int c = k << 1;
897 2049
898 if (c > N + HEAP0 - 1) 2050 if (c >= N + HEAP0)
899 break; 2051 break;
900 2052
901 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 2053 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
902 ? 1 : 0; 2054 ? 1 : 0;
903 2055
914 ev_active (ANHE_w (he)) = k; 2066 ev_active (ANHE_w (he)) = k;
915} 2067}
916#endif 2068#endif
917 2069
918/* towards the root */ 2070/* towards the root */
919void inline_speed 2071inline_speed void
920upheap (ANHE *heap, int k) 2072upheap (ANHE *heap, int k)
921{ 2073{
922 ANHE he = heap [k]; 2074 ANHE he = heap [k];
923 2075
924 for (;;) 2076 for (;;)
935 2087
936 heap [k] = he; 2088 heap [k] = he;
937 ev_active (ANHE_w (he)) = k; 2089 ev_active (ANHE_w (he)) = k;
938} 2090}
939 2091
940void inline_size 2092/* move an element suitably so it is in a correct place */
2093inline_size void
941adjustheap (ANHE *heap, int N, int k) 2094adjustheap (ANHE *heap, int N, int k)
942{ 2095{
943 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 2096 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
944 upheap (heap, k); 2097 upheap (heap, k);
945 else 2098 else
946 downheap (heap, N, k); 2099 downheap (heap, N, k);
947} 2100}
948 2101
949/* rebuild the heap: this function is used only once and executed rarely */ 2102/* rebuild the heap: this function is used only once and executed rarely */
950void inline_size 2103inline_size void
951reheap (ANHE *heap, int N) 2104reheap (ANHE *heap, int N)
952{ 2105{
953 int i; 2106 int i;
954 2107
955 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 2108 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
958 upheap (heap, i + HEAP0); 2111 upheap (heap, i + HEAP0);
959} 2112}
960 2113
961/*****************************************************************************/ 2114/*****************************************************************************/
962 2115
2116/* associate signal watchers to a signal signal */
963typedef struct 2117typedef struct
964{ 2118{
2119 EV_ATOMIC_T pending;
2120#if EV_MULTIPLICITY
2121 EV_P;
2122#endif
965 WL head; 2123 WL head;
966 EV_ATOMIC_T gotsig;
967} ANSIG; 2124} ANSIG;
968 2125
969static ANSIG *signals; 2126static ANSIG signals [EV_NSIG - 1];
970static int signalmax;
971
972static EV_ATOMIC_T gotsig;
973
974void inline_size
975signals_init (ANSIG *base, int count)
976{
977 while (count--)
978 {
979 base->head = 0;
980 base->gotsig = 0;
981
982 ++base;
983 }
984}
985 2127
986/*****************************************************************************/ 2128/*****************************************************************************/
987 2129
988void inline_speed 2130#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
989fd_intern (int fd)
990{
991#ifdef _WIN32
992 unsigned long arg = 1;
993 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
994#else
995 fcntl (fd, F_SETFD, FD_CLOEXEC);
996 fcntl (fd, F_SETFL, O_NONBLOCK);
997#endif
998}
999 2131
1000static void noinline 2132static void noinline ecb_cold
1001evpipe_init (EV_P) 2133evpipe_init (EV_P)
1002{ 2134{
1003 if (!ev_is_active (&pipeev)) 2135 if (!ev_is_active (&pipe_w))
2136 {
2137 int fds [2];
2138
2139# if EV_USE_EVENTFD
2140 fds [0] = -1;
2141 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2142 if (fds [1] < 0 && errno == EINVAL)
2143 fds [1] = eventfd (0, 0);
2144
2145 if (fds [1] < 0)
2146# endif
2147 {
2148 while (pipe (fds))
2149 ev_syserr ("(libev) error creating signal/async pipe");
2150
2151 fd_intern (fds [0]);
2152 }
2153
2154 evpipe [0] = fds [0];
2155
2156 if (evpipe [1] < 0)
2157 evpipe [1] = fds [1]; /* first call, set write fd */
2158 else
2159 {
2160 /* on subsequent calls, do not change evpipe [1] */
2161 /* so that evpipe_write can always rely on its value. */
2162 /* this branch does not do anything sensible on windows, */
2163 /* so must not be executed on windows */
2164
2165 dup2 (fds [1], evpipe [1]);
2166 close (fds [1]);
2167 }
2168
2169 fd_intern (evpipe [1]);
2170
2171 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2172 ev_io_start (EV_A_ &pipe_w);
2173 ev_unref (EV_A); /* watcher should not keep loop alive */
1004 { 2174 }
2175}
2176
2177inline_speed void
2178evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2179{
2180 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2181
2182 if (expect_true (*flag))
2183 return;
2184
2185 *flag = 1;
2186 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2187
2188 pipe_write_skipped = 1;
2189
2190 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2191
2192 if (pipe_write_wanted)
2193 {
2194 int old_errno;
2195
2196 pipe_write_skipped = 0;
2197 ECB_MEMORY_FENCE_RELEASE;
2198
2199 old_errno = errno; /* save errno because write will clobber it */
2200
1005#if EV_USE_EVENTFD 2201#if EV_USE_EVENTFD
1006 if ((evfd = eventfd (0, 0)) >= 0) 2202 if (evpipe [0] < 0)
1007 { 2203 {
1008 evpipe [0] = -1; 2204 uint64_t counter = 1;
1009 fd_intern (evfd); 2205 write (evpipe [1], &counter, sizeof (uint64_t));
1010 ev_io_set (&pipeev, evfd, EV_READ);
1011 } 2206 }
1012 else 2207 else
1013#endif 2208#endif
1014 { 2209 {
1015 while (pipe (evpipe)) 2210#ifdef _WIN32
1016 syserr ("(libev) error creating signal/async pipe"); 2211 WSABUF buf;
1017 2212 DWORD sent;
1018 fd_intern (evpipe [0]); 2213 buf.buf = &buf;
1019 fd_intern (evpipe [1]); 2214 buf.len = 1;
1020 ev_io_set (&pipeev, evpipe [0], EV_READ); 2215 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2216#else
2217 write (evpipe [1], &(evpipe [1]), 1);
2218#endif
1021 } 2219 }
1022 2220
1023 ev_io_start (EV_A_ &pipeev); 2221 errno = old_errno;
1024 ev_unref (EV_A); /* watcher should not keep loop alive */
1025 }
1026}
1027
1028void inline_size
1029evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1030{
1031 if (!*flag)
1032 { 2222 }
1033 int old_errno = errno; /* save errno because write might clobber it */ 2223}
1034 2224
1035 *flag = 1; 2225/* called whenever the libev signal pipe */
2226/* got some events (signal, async) */
2227static void
2228pipecb (EV_P_ ev_io *iow, int revents)
2229{
2230 int i;
1036 2231
2232 if (revents & EV_READ)
2233 {
1037#if EV_USE_EVENTFD 2234#if EV_USE_EVENTFD
1038 if (evfd >= 0) 2235 if (evpipe [0] < 0)
1039 { 2236 {
1040 uint64_t counter = 1; 2237 uint64_t counter;
1041 write (evfd, &counter, sizeof (uint64_t)); 2238 read (evpipe [1], &counter, sizeof (uint64_t));
1042 } 2239 }
1043 else 2240 else
1044#endif 2241#endif
1045 write (evpipe [1], &old_errno, 1); 2242 {
1046
1047 errno = old_errno;
1048 }
1049}
1050
1051static void
1052pipecb (EV_P_ ev_io *iow, int revents)
1053{
1054#if EV_USE_EVENTFD
1055 if (evfd >= 0)
1056 {
1057 uint64_t counter;
1058 read (evfd, &counter, sizeof (uint64_t));
1059 }
1060 else
1061#endif
1062 {
1063 char dummy; 2243 char dummy[4];
2244#ifdef _WIN32
2245 WSABUF buf;
2246 DWORD recvd;
2247 DWORD flags = 0;
2248 buf.buf = dummy;
2249 buf.len = sizeof (dummy);
2250 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2251#else
1064 read (evpipe [0], &dummy, 1); 2252 read (evpipe [0], &dummy, sizeof (dummy));
2253#endif
2254 }
2255 }
2256
2257 pipe_write_skipped = 0;
2258
2259 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2260
2261#if EV_SIGNAL_ENABLE
2262 if (sig_pending)
1065 } 2263 {
2264 sig_pending = 0;
1066 2265
1067 if (gotsig && ev_is_default_loop (EV_A)) 2266 ECB_MEMORY_FENCE;
1068 {
1069 int signum;
1070 gotsig = 0;
1071 2267
1072 for (signum = signalmax; signum--; ) 2268 for (i = EV_NSIG - 1; i--; )
1073 if (signals [signum].gotsig) 2269 if (expect_false (signals [i].pending))
1074 ev_feed_signal_event (EV_A_ signum + 1); 2270 ev_feed_signal_event (EV_A_ i + 1);
1075 } 2271 }
2272#endif
1076 2273
1077#if EV_ASYNC_ENABLE 2274#if EV_ASYNC_ENABLE
1078 if (gotasync) 2275 if (async_pending)
1079 { 2276 {
1080 int i; 2277 async_pending = 0;
1081 gotasync = 0; 2278
2279 ECB_MEMORY_FENCE;
1082 2280
1083 for (i = asynccnt; i--; ) 2281 for (i = asynccnt; i--; )
1084 if (asyncs [i]->sent) 2282 if (asyncs [i]->sent)
1085 { 2283 {
1086 asyncs [i]->sent = 0; 2284 asyncs [i]->sent = 0;
2285 ECB_MEMORY_FENCE_RELEASE;
1087 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); 2286 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1088 } 2287 }
1089 } 2288 }
1090#endif 2289#endif
1091} 2290}
1092 2291
1093/*****************************************************************************/ 2292/*****************************************************************************/
1094 2293
2294void
2295ev_feed_signal (int signum) EV_THROW
2296{
2297#if EV_MULTIPLICITY
2298 EV_P;
2299 ECB_MEMORY_FENCE_ACQUIRE;
2300 EV_A = signals [signum - 1].loop;
2301
2302 if (!EV_A)
2303 return;
2304#endif
2305
2306 signals [signum - 1].pending = 1;
2307 evpipe_write (EV_A_ &sig_pending);
2308}
2309
1095static void 2310static void
1096ev_sighandler (int signum) 2311ev_sighandler (int signum)
1097{ 2312{
2313#ifdef _WIN32
2314 signal (signum, ev_sighandler);
2315#endif
2316
2317 ev_feed_signal (signum);
2318}
2319
2320void noinline
2321ev_feed_signal_event (EV_P_ int signum) EV_THROW
2322{
2323 WL w;
2324
2325 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2326 return;
2327
2328 --signum;
2329
1098#if EV_MULTIPLICITY 2330#if EV_MULTIPLICITY
1099 struct ev_loop *loop = &default_loop_struct; 2331 /* it is permissible to try to feed a signal to the wrong loop */
1100#endif 2332 /* or, likely more useful, feeding a signal nobody is waiting for */
1101 2333
1102#if _WIN32 2334 if (expect_false (signals [signum].loop != EV_A))
1103 signal (signum, ev_sighandler);
1104#endif
1105
1106 signals [signum - 1].gotsig = 1;
1107 evpipe_write (EV_A_ &gotsig);
1108}
1109
1110void noinline
1111ev_feed_signal_event (EV_P_ int signum)
1112{
1113 WL w;
1114
1115#if EV_MULTIPLICITY
1116 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1117#endif
1118
1119 --signum;
1120
1121 if (signum < 0 || signum >= signalmax)
1122 return; 2335 return;
2336#endif
1123 2337
1124 signals [signum].gotsig = 0; 2338 signals [signum].pending = 0;
2339 ECB_MEMORY_FENCE_RELEASE;
1125 2340
1126 for (w = signals [signum].head; w; w = w->next) 2341 for (w = signals [signum].head; w; w = w->next)
1127 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2342 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1128} 2343}
1129 2344
2345#if EV_USE_SIGNALFD
2346static void
2347sigfdcb (EV_P_ ev_io *iow, int revents)
2348{
2349 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2350
2351 for (;;)
2352 {
2353 ssize_t res = read (sigfd, si, sizeof (si));
2354
2355 /* not ISO-C, as res might be -1, but works with SuS */
2356 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2357 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2358
2359 if (res < (ssize_t)sizeof (si))
2360 break;
2361 }
2362}
2363#endif
2364
2365#endif
2366
1130/*****************************************************************************/ 2367/*****************************************************************************/
1131 2368
2369#if EV_CHILD_ENABLE
1132static WL childs [EV_PID_HASHSIZE]; 2370static WL childs [EV_PID_HASHSIZE];
1133
1134#ifndef _WIN32
1135 2371
1136static ev_signal childev; 2372static ev_signal childev;
1137 2373
1138#ifndef WIFCONTINUED 2374#ifndef WIFCONTINUED
1139# define WIFCONTINUED(status) 0 2375# define WIFCONTINUED(status) 0
1140#endif 2376#endif
1141 2377
1142void inline_speed 2378/* handle a single child status event */
2379inline_speed void
1143child_reap (EV_P_ int chain, int pid, int status) 2380child_reap (EV_P_ int chain, int pid, int status)
1144{ 2381{
1145 ev_child *w; 2382 ev_child *w;
1146 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2383 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1147 2384
1148 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2385 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1149 { 2386 {
1150 if ((w->pid == pid || !w->pid) 2387 if ((w->pid == pid || !w->pid)
1151 && (!traced || (w->flags & 1))) 2388 && (!traced || (w->flags & 1)))
1152 { 2389 {
1153 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 2390 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1160 2397
1161#ifndef WCONTINUED 2398#ifndef WCONTINUED
1162# define WCONTINUED 0 2399# define WCONTINUED 0
1163#endif 2400#endif
1164 2401
2402/* called on sigchld etc., calls waitpid */
1165static void 2403static void
1166childcb (EV_P_ ev_signal *sw, int revents) 2404childcb (EV_P_ ev_signal *sw, int revents)
1167{ 2405{
1168 int pid, status; 2406 int pid, status;
1169 2407
1177 /* make sure we are called again until all children have been reaped */ 2415 /* make sure we are called again until all children have been reaped */
1178 /* we need to do it this way so that the callback gets called before we continue */ 2416 /* we need to do it this way so that the callback gets called before we continue */
1179 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2417 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1180 2418
1181 child_reap (EV_A_ pid, pid, status); 2419 child_reap (EV_A_ pid, pid, status);
1182 if (EV_PID_HASHSIZE > 1) 2420 if ((EV_PID_HASHSIZE) > 1)
1183 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2421 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1184} 2422}
1185 2423
1186#endif 2424#endif
1187 2425
1188/*****************************************************************************/ 2426/*****************************************************************************/
1189 2427
2428#if EV_USE_IOCP
2429# include "ev_iocp.c"
2430#endif
1190#if EV_USE_PORT 2431#if EV_USE_PORT
1191# include "ev_port.c" 2432# include "ev_port.c"
1192#endif 2433#endif
1193#if EV_USE_KQUEUE 2434#if EV_USE_KQUEUE
1194# include "ev_kqueue.c" 2435# include "ev_kqueue.c"
1201#endif 2442#endif
1202#if EV_USE_SELECT 2443#if EV_USE_SELECT
1203# include "ev_select.c" 2444# include "ev_select.c"
1204#endif 2445#endif
1205 2446
1206int 2447int ecb_cold
1207ev_version_major (void) 2448ev_version_major (void) EV_THROW
1208{ 2449{
1209 return EV_VERSION_MAJOR; 2450 return EV_VERSION_MAJOR;
1210} 2451}
1211 2452
1212int 2453int ecb_cold
1213ev_version_minor (void) 2454ev_version_minor (void) EV_THROW
1214{ 2455{
1215 return EV_VERSION_MINOR; 2456 return EV_VERSION_MINOR;
1216} 2457}
1217 2458
1218/* return true if we are running with elevated privileges and should ignore env variables */ 2459/* return true if we are running with elevated privileges and should ignore env variables */
1219int inline_size 2460int inline_size ecb_cold
1220enable_secure (void) 2461enable_secure (void)
1221{ 2462{
1222#ifdef _WIN32 2463#ifdef _WIN32
1223 return 0; 2464 return 0;
1224#else 2465#else
1225 return getuid () != geteuid () 2466 return getuid () != geteuid ()
1226 || getgid () != getegid (); 2467 || getgid () != getegid ();
1227#endif 2468#endif
1228} 2469}
1229 2470
1230unsigned int 2471unsigned int ecb_cold
1231ev_supported_backends (void) 2472ev_supported_backends (void) EV_THROW
1232{ 2473{
1233 unsigned int flags = 0; 2474 unsigned int flags = 0;
1234 2475
1235 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2476 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1236 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2477 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1239 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2480 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1240 2481
1241 return flags; 2482 return flags;
1242} 2483}
1243 2484
1244unsigned int 2485unsigned int ecb_cold
1245ev_recommended_backends (void) 2486ev_recommended_backends (void) EV_THROW
1246{ 2487{
1247 unsigned int flags = ev_supported_backends (); 2488 unsigned int flags = ev_supported_backends ();
1248 2489
1249#ifndef __NetBSD__ 2490#ifndef __NetBSD__
1250 /* kqueue is borked on everything but netbsd apparently */ 2491 /* kqueue is borked on everything but netbsd apparently */
1251 /* it usually doesn't work correctly on anything but sockets and pipes */ 2492 /* it usually doesn't work correctly on anything but sockets and pipes */
1252 flags &= ~EVBACKEND_KQUEUE; 2493 flags &= ~EVBACKEND_KQUEUE;
1253#endif 2494#endif
1254#ifdef __APPLE__ 2495#ifdef __APPLE__
1255 // flags &= ~EVBACKEND_KQUEUE; for documentation 2496 /* only select works correctly on that "unix-certified" platform */
1256 flags &= ~EVBACKEND_POLL; 2497 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2498 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2499#endif
2500#ifdef __FreeBSD__
2501 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1257#endif 2502#endif
1258 2503
1259 return flags; 2504 return flags;
1260} 2505}
1261 2506
2507unsigned int ecb_cold
2508ev_embeddable_backends (void) EV_THROW
2509{
2510 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2511
2512 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2513 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2514 flags &= ~EVBACKEND_EPOLL;
2515
2516 return flags;
2517}
2518
1262unsigned int 2519unsigned int
1263ev_embeddable_backends (void) 2520ev_backend (EV_P) EV_THROW
1264{ 2521{
1265 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2522 return backend;
1266
1267 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1268 /* please fix it and tell me how to detect the fix */
1269 flags &= ~EVBACKEND_EPOLL;
1270
1271 return flags;
1272} 2523}
1273 2524
2525#if EV_FEATURE_API
1274unsigned int 2526unsigned int
1275ev_backend (EV_P) 2527ev_iteration (EV_P) EV_THROW
1276{ 2528{
1277 return backend; 2529 return loop_count;
1278} 2530}
1279 2531
1280unsigned int 2532unsigned int
1281ev_loop_count (EV_P) 2533ev_depth (EV_P) EV_THROW
1282{ 2534{
1283 return loop_count; 2535 return loop_depth;
1284} 2536}
1285 2537
1286void 2538void
1287ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2539ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1288{ 2540{
1289 io_blocktime = interval; 2541 io_blocktime = interval;
1290} 2542}
1291 2543
1292void 2544void
1293ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2545ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1294{ 2546{
1295 timeout_blocktime = interval; 2547 timeout_blocktime = interval;
1296} 2548}
1297 2549
2550void
2551ev_set_userdata (EV_P_ void *data) EV_THROW
2552{
2553 userdata = data;
2554}
2555
2556void *
2557ev_userdata (EV_P) EV_THROW
2558{
2559 return userdata;
2560}
2561
2562void
2563ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_THROW
2564{
2565 invoke_cb = invoke_pending_cb;
2566}
2567
2568void
2569ev_set_loop_release_cb (EV_P_ ev_loop_callback_nothrow release, ev_loop_callback_nothrow acquire) EV_THROW
2570{
2571 release_cb = release;
2572 acquire_cb = acquire;
2573}
2574#endif
2575
2576/* initialise a loop structure, must be zero-initialised */
1298static void noinline 2577static void noinline ecb_cold
1299loop_init (EV_P_ unsigned int flags) 2578loop_init (EV_P_ unsigned int flags) EV_THROW
1300{ 2579{
1301 if (!backend) 2580 if (!backend)
1302 { 2581 {
2582 origflags = flags;
2583
2584#if EV_USE_REALTIME
2585 if (!have_realtime)
2586 {
2587 struct timespec ts;
2588
2589 if (!clock_gettime (CLOCK_REALTIME, &ts))
2590 have_realtime = 1;
2591 }
2592#endif
2593
1303#if EV_USE_MONOTONIC 2594#if EV_USE_MONOTONIC
2595 if (!have_monotonic)
1304 { 2596 {
1305 struct timespec ts; 2597 struct timespec ts;
2598
1306 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2599 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1307 have_monotonic = 1; 2600 have_monotonic = 1;
1308 } 2601 }
1309#endif
1310
1311 ev_rt_now = ev_time ();
1312 mn_now = get_clock ();
1313 now_floor = mn_now;
1314 rtmn_diff = ev_rt_now - mn_now;
1315
1316 io_blocktime = 0.;
1317 timeout_blocktime = 0.;
1318 backend = 0;
1319 backend_fd = -1;
1320 gotasync = 0;
1321#if EV_USE_INOTIFY
1322 fs_fd = -2;
1323#endif 2602#endif
1324 2603
1325 /* pid check not overridable via env */ 2604 /* pid check not overridable via env */
1326#ifndef _WIN32 2605#ifndef _WIN32
1327 if (flags & EVFLAG_FORKCHECK) 2606 if (flags & EVFLAG_FORKCHECK)
1331 if (!(flags & EVFLAG_NOENV) 2610 if (!(flags & EVFLAG_NOENV)
1332 && !enable_secure () 2611 && !enable_secure ()
1333 && getenv ("LIBEV_FLAGS")) 2612 && getenv ("LIBEV_FLAGS"))
1334 flags = atoi (getenv ("LIBEV_FLAGS")); 2613 flags = atoi (getenv ("LIBEV_FLAGS"));
1335 2614
1336 if (!(flags & 0x0000ffffU)) 2615 ev_rt_now = ev_time ();
2616 mn_now = get_clock ();
2617 now_floor = mn_now;
2618 rtmn_diff = ev_rt_now - mn_now;
2619#if EV_FEATURE_API
2620 invoke_cb = ev_invoke_pending;
2621#endif
2622
2623 io_blocktime = 0.;
2624 timeout_blocktime = 0.;
2625 backend = 0;
2626 backend_fd = -1;
2627 sig_pending = 0;
2628#if EV_ASYNC_ENABLE
2629 async_pending = 0;
2630#endif
2631 pipe_write_skipped = 0;
2632 pipe_write_wanted = 0;
2633 evpipe [0] = -1;
2634 evpipe [1] = -1;
2635#if EV_USE_INOTIFY
2636 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2637#endif
2638#if EV_USE_SIGNALFD
2639 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2640#endif
2641
2642 if (!(flags & EVBACKEND_MASK))
1337 flags |= ev_recommended_backends (); 2643 flags |= ev_recommended_backends ();
1338 2644
2645#if EV_USE_IOCP
2646 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2647#endif
1339#if EV_USE_PORT 2648#if EV_USE_PORT
1340 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2649 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1341#endif 2650#endif
1342#if EV_USE_KQUEUE 2651#if EV_USE_KQUEUE
1343 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2652 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1350#endif 2659#endif
1351#if EV_USE_SELECT 2660#if EV_USE_SELECT
1352 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2661 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1353#endif 2662#endif
1354 2663
2664 ev_prepare_init (&pending_w, pendingcb);
2665
2666#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1355 ev_init (&pipeev, pipecb); 2667 ev_init (&pipe_w, pipecb);
1356 ev_set_priority (&pipeev, EV_MAXPRI); 2668 ev_set_priority (&pipe_w, EV_MAXPRI);
2669#endif
1357 } 2670 }
1358} 2671}
1359 2672
1360static void noinline 2673/* free up a loop structure */
2674void ecb_cold
1361loop_destroy (EV_P) 2675ev_loop_destroy (EV_P)
1362{ 2676{
1363 int i; 2677 int i;
1364 2678
2679#if EV_MULTIPLICITY
2680 /* mimic free (0) */
2681 if (!EV_A)
2682 return;
2683#endif
2684
2685#if EV_CLEANUP_ENABLE
2686 /* queue cleanup watchers (and execute them) */
2687 if (expect_false (cleanupcnt))
2688 {
2689 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2690 EV_INVOKE_PENDING;
2691 }
2692#endif
2693
2694#if EV_CHILD_ENABLE
2695 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2696 {
2697 ev_ref (EV_A); /* child watcher */
2698 ev_signal_stop (EV_A_ &childev);
2699 }
2700#endif
2701
1365 if (ev_is_active (&pipeev)) 2702 if (ev_is_active (&pipe_w))
1366 { 2703 {
1367 ev_ref (EV_A); /* signal watcher */ 2704 /*ev_ref (EV_A);*/
1368 ev_io_stop (EV_A_ &pipeev); 2705 /*ev_io_stop (EV_A_ &pipe_w);*/
1369 2706
2707 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2708 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2709 }
2710
1370#if EV_USE_EVENTFD 2711#if EV_USE_SIGNALFD
1371 if (evfd >= 0) 2712 if (ev_is_active (&sigfd_w))
1372 close (evfd); 2713 close (sigfd);
1373#endif 2714#endif
1374
1375 if (evpipe [0] >= 0)
1376 {
1377 close (evpipe [0]);
1378 close (evpipe [1]);
1379 }
1380 }
1381 2715
1382#if EV_USE_INOTIFY 2716#if EV_USE_INOTIFY
1383 if (fs_fd >= 0) 2717 if (fs_fd >= 0)
1384 close (fs_fd); 2718 close (fs_fd);
1385#endif 2719#endif
1386 2720
1387 if (backend_fd >= 0) 2721 if (backend_fd >= 0)
1388 close (backend_fd); 2722 close (backend_fd);
1389 2723
2724#if EV_USE_IOCP
2725 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2726#endif
1390#if EV_USE_PORT 2727#if EV_USE_PORT
1391 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2728 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1392#endif 2729#endif
1393#if EV_USE_KQUEUE 2730#if EV_USE_KQUEUE
1394 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2731 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1409#if EV_IDLE_ENABLE 2746#if EV_IDLE_ENABLE
1410 array_free (idle, [i]); 2747 array_free (idle, [i]);
1411#endif 2748#endif
1412 } 2749 }
1413 2750
1414 ev_free (anfds); anfdmax = 0; 2751 ev_free (anfds); anfds = 0; anfdmax = 0;
1415 2752
1416 /* have to use the microsoft-never-gets-it-right macro */ 2753 /* have to use the microsoft-never-gets-it-right macro */
2754 array_free (rfeed, EMPTY);
1417 array_free (fdchange, EMPTY); 2755 array_free (fdchange, EMPTY);
1418 array_free (timer, EMPTY); 2756 array_free (timer, EMPTY);
1419#if EV_PERIODIC_ENABLE 2757#if EV_PERIODIC_ENABLE
1420 array_free (periodic, EMPTY); 2758 array_free (periodic, EMPTY);
1421#endif 2759#endif
1422#if EV_FORK_ENABLE 2760#if EV_FORK_ENABLE
1423 array_free (fork, EMPTY); 2761 array_free (fork, EMPTY);
1424#endif 2762#endif
2763#if EV_CLEANUP_ENABLE
2764 array_free (cleanup, EMPTY);
2765#endif
1425 array_free (prepare, EMPTY); 2766 array_free (prepare, EMPTY);
1426 array_free (check, EMPTY); 2767 array_free (check, EMPTY);
1427#if EV_ASYNC_ENABLE 2768#if EV_ASYNC_ENABLE
1428 array_free (async, EMPTY); 2769 array_free (async, EMPTY);
1429#endif 2770#endif
1430 2771
1431 backend = 0; 2772 backend = 0;
2773
2774#if EV_MULTIPLICITY
2775 if (ev_is_default_loop (EV_A))
2776#endif
2777 ev_default_loop_ptr = 0;
2778#if EV_MULTIPLICITY
2779 else
2780 ev_free (EV_A);
2781#endif
1432} 2782}
1433 2783
1434#if EV_USE_INOTIFY 2784#if EV_USE_INOTIFY
1435void inline_size infy_fork (EV_P); 2785inline_size void infy_fork (EV_P);
1436#endif 2786#endif
1437 2787
1438void inline_size 2788inline_size void
1439loop_fork (EV_P) 2789loop_fork (EV_P)
1440{ 2790{
1441#if EV_USE_PORT 2791#if EV_USE_PORT
1442 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2792 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1443#endif 2793#endif
1449#endif 2799#endif
1450#if EV_USE_INOTIFY 2800#if EV_USE_INOTIFY
1451 infy_fork (EV_A); 2801 infy_fork (EV_A);
1452#endif 2802#endif
1453 2803
2804#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1454 if (ev_is_active (&pipeev)) 2805 if (ev_is_active (&pipe_w))
1455 { 2806 {
1456 /* this "locks" the handlers against writing to the pipe */ 2807 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1457 /* while we modify the fd vars */
1458 gotsig = 1;
1459#if EV_ASYNC_ENABLE
1460 gotasync = 1;
1461#endif
1462 2808
1463 ev_ref (EV_A); 2809 ev_ref (EV_A);
1464 ev_io_stop (EV_A_ &pipeev); 2810 ev_io_stop (EV_A_ &pipe_w);
1465
1466#if EV_USE_EVENTFD
1467 if (evfd >= 0)
1468 close (evfd);
1469#endif
1470 2811
1471 if (evpipe [0] >= 0) 2812 if (evpipe [0] >= 0)
1472 { 2813 EV_WIN32_CLOSE_FD (evpipe [0]);
1473 close (evpipe [0]);
1474 close (evpipe [1]);
1475 }
1476 2814
1477 evpipe_init (EV_A); 2815 evpipe_init (EV_A);
1478 /* now iterate over everything, in case we missed something */ 2816 /* iterate over everything, in case we missed something before */
1479 pipecb (EV_A_ &pipeev, EV_READ); 2817 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
1480 } 2818 }
2819#endif
1481 2820
1482 postfork = 0; 2821 postfork = 0;
1483} 2822}
1484 2823
1485#if EV_MULTIPLICITY 2824#if EV_MULTIPLICITY
1486 2825
1487struct ev_loop * 2826struct ev_loop * ecb_cold
1488ev_loop_new (unsigned int flags) 2827ev_loop_new (unsigned int flags) EV_THROW
1489{ 2828{
1490 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2829 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1491 2830
1492 memset (loop, 0, sizeof (struct ev_loop)); 2831 memset (EV_A, 0, sizeof (struct ev_loop));
1493
1494 loop_init (EV_A_ flags); 2832 loop_init (EV_A_ flags);
1495 2833
1496 if (ev_backend (EV_A)) 2834 if (ev_backend (EV_A))
1497 return loop; 2835 return EV_A;
1498 2836
2837 ev_free (EV_A);
1499 return 0; 2838 return 0;
1500} 2839}
1501 2840
1502void 2841#endif /* multiplicity */
1503ev_loop_destroy (EV_P)
1504{
1505 loop_destroy (EV_A);
1506 ev_free (loop);
1507}
1508
1509void
1510ev_loop_fork (EV_P)
1511{
1512 postfork = 1; /* must be in line with ev_default_fork */
1513}
1514 2842
1515#if EV_VERIFY 2843#if EV_VERIFY
1516static void noinline 2844static void noinline ecb_cold
1517verify_watcher (EV_P_ W w) 2845verify_watcher (EV_P_ W w)
1518{ 2846{
1519 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI)); 2847 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1520 2848
1521 if (w->pending) 2849 if (w->pending)
1522 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w)); 2850 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1523} 2851}
1524 2852
1525static void noinline 2853static void noinline ecb_cold
1526verify_heap (EV_P_ ANHE *heap, int N) 2854verify_heap (EV_P_ ANHE *heap, int N)
1527{ 2855{
1528 int i; 2856 int i;
1529 2857
1530 for (i = HEAP0; i < N + HEAP0; ++i) 2858 for (i = HEAP0; i < N + HEAP0; ++i)
1531 { 2859 {
1532 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i)); 2860 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1533 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i]))); 2861 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1534 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i])))); 2862 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1535 2863
1536 verify_watcher (EV_A_ (W)ANHE_w (heap [i])); 2864 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1537 } 2865 }
1538} 2866}
1539 2867
1540static void noinline 2868static void noinline ecb_cold
1541array_verify (EV_P_ W *ws, int cnt) 2869array_verify (EV_P_ W *ws, int cnt)
1542{ 2870{
1543 while (cnt--) 2871 while (cnt--)
1544 { 2872 {
1545 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1)); 2873 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1546 verify_watcher (EV_A_ ws [cnt]); 2874 verify_watcher (EV_A_ ws [cnt]);
1547 } 2875 }
1548} 2876}
1549#endif 2877#endif
1550 2878
1551void 2879#if EV_FEATURE_API
1552ev_loop_verify (EV_P) 2880void ecb_cold
2881ev_verify (EV_P) EV_THROW
1553{ 2882{
1554#if EV_VERIFY 2883#if EV_VERIFY
1555 int i; 2884 int i;
1556 WL w; 2885 WL w, w2;
1557 2886
1558 assert (activecnt >= -1); 2887 assert (activecnt >= -1);
1559 2888
1560 assert (fdchangemax >= fdchangecnt); 2889 assert (fdchangemax >= fdchangecnt);
1561 for (i = 0; i < fdchangecnt; ++i) 2890 for (i = 0; i < fdchangecnt; ++i)
1562 assert (("negative fd in fdchanges", fdchanges [i] >= 0)); 2891 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1563 2892
1564 assert (anfdmax >= 0); 2893 assert (anfdmax >= 0);
1565 for (i = 0; i < anfdmax; ++i) 2894 for (i = 0; i < anfdmax; ++i)
2895 {
2896 int j = 0;
2897
1566 for (w = anfds [i].head; w; w = w->next) 2898 for (w = w2 = anfds [i].head; w; w = w->next)
1567 { 2899 {
1568 verify_watcher (EV_A_ (W)w); 2900 verify_watcher (EV_A_ (W)w);
2901
2902 if (j++ & 1)
2903 {
2904 assert (("libev: io watcher list contains a loop", w != w2));
2905 w2 = w2->next;
2906 }
2907
1569 assert (("inactive fd watcher on anfd list", ev_active (w) == 1)); 2908 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1570 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i)); 2909 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1571 } 2910 }
2911 }
1572 2912
1573 assert (timermax >= timercnt); 2913 assert (timermax >= timercnt);
1574 verify_heap (EV_A_ timers, timercnt); 2914 verify_heap (EV_A_ timers, timercnt);
1575 2915
1576#if EV_PERIODIC_ENABLE 2916#if EV_PERIODIC_ENABLE
1591#if EV_FORK_ENABLE 2931#if EV_FORK_ENABLE
1592 assert (forkmax >= forkcnt); 2932 assert (forkmax >= forkcnt);
1593 array_verify (EV_A_ (W *)forks, forkcnt); 2933 array_verify (EV_A_ (W *)forks, forkcnt);
1594#endif 2934#endif
1595 2935
2936#if EV_CLEANUP_ENABLE
2937 assert (cleanupmax >= cleanupcnt);
2938 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2939#endif
2940
1596#if EV_ASYNC_ENABLE 2941#if EV_ASYNC_ENABLE
1597 assert (asyncmax >= asynccnt); 2942 assert (asyncmax >= asynccnt);
1598 array_verify (EV_A_ (W *)asyncs, asynccnt); 2943 array_verify (EV_A_ (W *)asyncs, asynccnt);
1599#endif 2944#endif
1600 2945
2946#if EV_PREPARE_ENABLE
1601 assert (preparemax >= preparecnt); 2947 assert (preparemax >= preparecnt);
1602 array_verify (EV_A_ (W *)prepares, preparecnt); 2948 array_verify (EV_A_ (W *)prepares, preparecnt);
2949#endif
1603 2950
2951#if EV_CHECK_ENABLE
1604 assert (checkmax >= checkcnt); 2952 assert (checkmax >= checkcnt);
1605 array_verify (EV_A_ (W *)checks, checkcnt); 2953 array_verify (EV_A_ (W *)checks, checkcnt);
2954#endif
1606 2955
1607# if 0 2956# if 0
2957#if EV_CHILD_ENABLE
1608 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2958 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1609 for (signum = signalmax; signum--; ) if (signals [signum].gotsig) 2959 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2960#endif
1610# endif 2961# endif
1611#endif 2962#endif
1612} 2963}
1613 2964#endif
1614#endif /* multiplicity */
1615 2965
1616#if EV_MULTIPLICITY 2966#if EV_MULTIPLICITY
1617struct ev_loop * 2967struct ev_loop * ecb_cold
1618ev_default_loop_init (unsigned int flags)
1619#else 2968#else
1620int 2969int
2970#endif
1621ev_default_loop (unsigned int flags) 2971ev_default_loop (unsigned int flags) EV_THROW
1622#endif
1623{ 2972{
1624 if (!ev_default_loop_ptr) 2973 if (!ev_default_loop_ptr)
1625 { 2974 {
1626#if EV_MULTIPLICITY 2975#if EV_MULTIPLICITY
1627 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2976 EV_P = ev_default_loop_ptr = &default_loop_struct;
1628#else 2977#else
1629 ev_default_loop_ptr = 1; 2978 ev_default_loop_ptr = 1;
1630#endif 2979#endif
1631 2980
1632 loop_init (EV_A_ flags); 2981 loop_init (EV_A_ flags);
1633 2982
1634 if (ev_backend (EV_A)) 2983 if (ev_backend (EV_A))
1635 { 2984 {
1636#ifndef _WIN32 2985#if EV_CHILD_ENABLE
1637 ev_signal_init (&childev, childcb, SIGCHLD); 2986 ev_signal_init (&childev, childcb, SIGCHLD);
1638 ev_set_priority (&childev, EV_MAXPRI); 2987 ev_set_priority (&childev, EV_MAXPRI);
1639 ev_signal_start (EV_A_ &childev); 2988 ev_signal_start (EV_A_ &childev);
1640 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2989 ev_unref (EV_A); /* child watcher should not keep loop alive */
1641#endif 2990#endif
1646 2995
1647 return ev_default_loop_ptr; 2996 return ev_default_loop_ptr;
1648} 2997}
1649 2998
1650void 2999void
1651ev_default_destroy (void) 3000ev_loop_fork (EV_P) EV_THROW
1652{ 3001{
1653#if EV_MULTIPLICITY 3002 postfork = 1;
1654 struct ev_loop *loop = ev_default_loop_ptr;
1655#endif
1656
1657#ifndef _WIN32
1658 ev_ref (EV_A); /* child watcher */
1659 ev_signal_stop (EV_A_ &childev);
1660#endif
1661
1662 loop_destroy (EV_A);
1663}
1664
1665void
1666ev_default_fork (void)
1667{
1668#if EV_MULTIPLICITY
1669 struct ev_loop *loop = ev_default_loop_ptr;
1670#endif
1671
1672 if (backend)
1673 postfork = 1; /* must be in line with ev_loop_fork */
1674} 3003}
1675 3004
1676/*****************************************************************************/ 3005/*****************************************************************************/
1677 3006
1678void 3007void
1679ev_invoke (EV_P_ void *w, int revents) 3008ev_invoke (EV_P_ void *w, int revents)
1680{ 3009{
1681 EV_CB_INVOKE ((W)w, revents); 3010 EV_CB_INVOKE ((W)w, revents);
1682} 3011}
1683 3012
1684void inline_speed 3013unsigned int
1685call_pending (EV_P) 3014ev_pending_count (EV_P) EV_THROW
1686{ 3015{
1687 int pri; 3016 int pri;
3017 unsigned int count = 0;
1688 3018
1689 for (pri = NUMPRI; pri--; ) 3019 for (pri = NUMPRI; pri--; )
3020 count += pendingcnt [pri];
3021
3022 return count;
3023}
3024
3025void noinline
3026ev_invoke_pending (EV_P)
3027{
3028 pendingpri = NUMPRI;
3029
3030 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
3031 {
3032 --pendingpri;
3033
1690 while (pendingcnt [pri]) 3034 while (pendingcnt [pendingpri])
1691 {
1692 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1693
1694 if (expect_true (p->w))
1695 { 3035 {
1696 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 3036 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1697 3037
1698 p->w->pending = 0; 3038 p->w->pending = 0;
1699 EV_CB_INVOKE (p->w, p->events); 3039 EV_CB_INVOKE (p->w, p->events);
1700 EV_FREQUENT_CHECK; 3040 EV_FREQUENT_CHECK;
1701 } 3041 }
1702 } 3042 }
1703} 3043}
1704 3044
1705#if EV_IDLE_ENABLE 3045#if EV_IDLE_ENABLE
1706void inline_size 3046/* make idle watchers pending. this handles the "call-idle */
3047/* only when higher priorities are idle" logic */
3048inline_size void
1707idle_reify (EV_P) 3049idle_reify (EV_P)
1708{ 3050{
1709 if (expect_false (idleall)) 3051 if (expect_false (idleall))
1710 { 3052 {
1711 int pri; 3053 int pri;
1723 } 3065 }
1724 } 3066 }
1725} 3067}
1726#endif 3068#endif
1727 3069
1728void inline_size 3070/* make timers pending */
3071inline_size void
1729timers_reify (EV_P) 3072timers_reify (EV_P)
1730{ 3073{
1731 EV_FREQUENT_CHECK; 3074 EV_FREQUENT_CHECK;
1732 3075
1733 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 3076 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1734 { 3077 {
1735 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 3078 do
1736
1737 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1738
1739 /* first reschedule or stop timer */
1740 if (w->repeat)
1741 { 3079 {
3080 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3081
3082 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3083
3084 /* first reschedule or stop timer */
3085 if (w->repeat)
3086 {
1742 ev_at (w) += w->repeat; 3087 ev_at (w) += w->repeat;
1743 if (ev_at (w) < mn_now) 3088 if (ev_at (w) < mn_now)
1744 ev_at (w) = mn_now; 3089 ev_at (w) = mn_now;
1745 3090
1746 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3091 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1747 3092
1748 ANHE_at_cache (timers [HEAP0]); 3093 ANHE_at_cache (timers [HEAP0]);
1749 downheap (timers, timercnt, HEAP0); 3094 downheap (timers, timercnt, HEAP0);
3095 }
3096 else
3097 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3098
3099 EV_FREQUENT_CHECK;
3100 feed_reverse (EV_A_ (W)w);
1750 } 3101 }
1751 else 3102 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1752 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1753 3103
1754 EV_FREQUENT_CHECK; 3104 feed_reverse_done (EV_A_ EV_TIMER);
1755 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1756 } 3105 }
1757} 3106}
1758 3107
1759#if EV_PERIODIC_ENABLE 3108#if EV_PERIODIC_ENABLE
1760void inline_size 3109
3110static void noinline
3111periodic_recalc (EV_P_ ev_periodic *w)
3112{
3113 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3114 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3115
3116 /* the above almost always errs on the low side */
3117 while (at <= ev_rt_now)
3118 {
3119 ev_tstamp nat = at + w->interval;
3120
3121 /* when resolution fails us, we use ev_rt_now */
3122 if (expect_false (nat == at))
3123 {
3124 at = ev_rt_now;
3125 break;
3126 }
3127
3128 at = nat;
3129 }
3130
3131 ev_at (w) = at;
3132}
3133
3134/* make periodics pending */
3135inline_size void
1761periodics_reify (EV_P) 3136periodics_reify (EV_P)
1762{ 3137{
1763 EV_FREQUENT_CHECK; 3138 EV_FREQUENT_CHECK;
1764 3139
1765 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 3140 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1766 { 3141 {
1767 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 3142 do
1768
1769 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1770
1771 /* first reschedule or stop timer */
1772 if (w->reschedule_cb)
1773 { 3143 {
3144 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3145
3146 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3147
3148 /* first reschedule or stop timer */
3149 if (w->reschedule_cb)
3150 {
1774 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3151 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1775 3152
1776 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 3153 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1777 3154
1778 ANHE_at_cache (periodics [HEAP0]); 3155 ANHE_at_cache (periodics [HEAP0]);
1779 downheap (periodics, periodiccnt, HEAP0); 3156 downheap (periodics, periodiccnt, HEAP0);
3157 }
3158 else if (w->interval)
3159 {
3160 periodic_recalc (EV_A_ w);
3161 ANHE_at_cache (periodics [HEAP0]);
3162 downheap (periodics, periodiccnt, HEAP0);
3163 }
3164 else
3165 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3166
3167 EV_FREQUENT_CHECK;
3168 feed_reverse (EV_A_ (W)w);
1780 } 3169 }
1781 else if (w->interval) 3170 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1782 {
1783 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1784 /* if next trigger time is not sufficiently in the future, put it there */
1785 /* this might happen because of floating point inexactness */
1786 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1787 {
1788 ev_at (w) += w->interval;
1789 3171
1790 /* if interval is unreasonably low we might still have a time in the past */
1791 /* so correct this. this will make the periodic very inexact, but the user */
1792 /* has effectively asked to get triggered more often than possible */
1793 if (ev_at (w) < ev_rt_now)
1794 ev_at (w) = ev_rt_now;
1795 }
1796
1797 ANHE_at_cache (periodics [HEAP0]);
1798 downheap (periodics, periodiccnt, HEAP0);
1799 }
1800 else
1801 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1802
1803 EV_FREQUENT_CHECK;
1804 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 3172 feed_reverse_done (EV_A_ EV_PERIODIC);
1805 } 3173 }
1806} 3174}
1807 3175
3176/* simply recalculate all periodics */
3177/* TODO: maybe ensure that at least one event happens when jumping forward? */
1808static void noinline 3178static void noinline ecb_cold
1809periodics_reschedule (EV_P) 3179periodics_reschedule (EV_P)
1810{ 3180{
1811 int i; 3181 int i;
1812 3182
1813 /* adjust periodics after time jump */ 3183 /* adjust periodics after time jump */
1816 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]); 3186 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1817 3187
1818 if (w->reschedule_cb) 3188 if (w->reschedule_cb)
1819 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3189 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1820 else if (w->interval) 3190 else if (w->interval)
1821 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 3191 periodic_recalc (EV_A_ w);
1822 3192
1823 ANHE_at_cache (periodics [i]); 3193 ANHE_at_cache (periodics [i]);
1824 } 3194 }
1825 3195
1826 reheap (periodics, periodiccnt); 3196 reheap (periodics, periodiccnt);
1827} 3197}
1828#endif 3198#endif
1829 3199
1830void inline_speed 3200/* adjust all timers by a given offset */
3201static void noinline ecb_cold
3202timers_reschedule (EV_P_ ev_tstamp adjust)
3203{
3204 int i;
3205
3206 for (i = 0; i < timercnt; ++i)
3207 {
3208 ANHE *he = timers + i + HEAP0;
3209 ANHE_w (*he)->at += adjust;
3210 ANHE_at_cache (*he);
3211 }
3212}
3213
3214/* fetch new monotonic and realtime times from the kernel */
3215/* also detect if there was a timejump, and act accordingly */
3216inline_speed void
1831time_update (EV_P_ ev_tstamp max_block) 3217time_update (EV_P_ ev_tstamp max_block)
1832{ 3218{
1833 int i;
1834
1835#if EV_USE_MONOTONIC 3219#if EV_USE_MONOTONIC
1836 if (expect_true (have_monotonic)) 3220 if (expect_true (have_monotonic))
1837 { 3221 {
3222 int i;
1838 ev_tstamp odiff = rtmn_diff; 3223 ev_tstamp odiff = rtmn_diff;
1839 3224
1840 mn_now = get_clock (); 3225 mn_now = get_clock ();
1841 3226
1842 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 3227 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1858 * doesn't hurt either as we only do this on time-jumps or 3243 * doesn't hurt either as we only do this on time-jumps or
1859 * in the unlikely event of having been preempted here. 3244 * in the unlikely event of having been preempted here.
1860 */ 3245 */
1861 for (i = 4; --i; ) 3246 for (i = 4; --i; )
1862 { 3247 {
3248 ev_tstamp diff;
1863 rtmn_diff = ev_rt_now - mn_now; 3249 rtmn_diff = ev_rt_now - mn_now;
1864 3250
3251 diff = odiff - rtmn_diff;
3252
1865 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)) 3253 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1866 return; /* all is well */ 3254 return; /* all is well */
1867 3255
1868 ev_rt_now = ev_time (); 3256 ev_rt_now = ev_time ();
1869 mn_now = get_clock (); 3257 mn_now = get_clock ();
1870 now_floor = mn_now; 3258 now_floor = mn_now;
1871 } 3259 }
1872 3260
3261 /* no timer adjustment, as the monotonic clock doesn't jump */
3262 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1873# if EV_PERIODIC_ENABLE 3263# if EV_PERIODIC_ENABLE
1874 periodics_reschedule (EV_A); 3264 periodics_reschedule (EV_A);
1875# endif 3265# endif
1876 /* no timer adjustment, as the monotonic clock doesn't jump */
1877 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1878 } 3266 }
1879 else 3267 else
1880#endif 3268#endif
1881 { 3269 {
1882 ev_rt_now = ev_time (); 3270 ev_rt_now = ev_time ();
1883 3271
1884 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 3272 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1885 { 3273 {
3274 /* adjust timers. this is easy, as the offset is the same for all of them */
3275 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1886#if EV_PERIODIC_ENABLE 3276#if EV_PERIODIC_ENABLE
1887 periodics_reschedule (EV_A); 3277 periodics_reschedule (EV_A);
1888#endif 3278#endif
1889 /* adjust timers. this is easy, as the offset is the same for all of them */
1890 for (i = 0; i < timercnt; ++i)
1891 {
1892 ANHE *he = timers + i + HEAP0;
1893 ANHE_w (*he)->at += ev_rt_now - mn_now;
1894 ANHE_at_cache (*he);
1895 }
1896 } 3279 }
1897 3280
1898 mn_now = ev_rt_now; 3281 mn_now = ev_rt_now;
1899 } 3282 }
1900} 3283}
1901 3284
1902void 3285int
1903ev_ref (EV_P)
1904{
1905 ++activecnt;
1906}
1907
1908void
1909ev_unref (EV_P)
1910{
1911 --activecnt;
1912}
1913
1914void
1915ev_now_update (EV_P)
1916{
1917 time_update (EV_A_ 1e100);
1918}
1919
1920static int loop_done;
1921
1922void
1923ev_loop (EV_P_ int flags) 3286ev_run (EV_P_ int flags)
1924{ 3287{
3288#if EV_FEATURE_API
3289 ++loop_depth;
3290#endif
3291
3292 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3293
1925 loop_done = EVUNLOOP_CANCEL; 3294 loop_done = EVBREAK_CANCEL;
1926 3295
1927 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3296 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1928 3297
1929 do 3298 do
1930 { 3299 {
1931#if EV_VERIFY >= 2 3300#if EV_VERIFY >= 2
1932 ev_loop_verify (EV_A); 3301 ev_verify (EV_A);
1933#endif 3302#endif
1934 3303
1935#ifndef _WIN32 3304#ifndef _WIN32
1936 if (expect_false (curpid)) /* penalise the forking check even more */ 3305 if (expect_false (curpid)) /* penalise the forking check even more */
1937 if (expect_false (getpid () != curpid)) 3306 if (expect_false (getpid () != curpid))
1945 /* we might have forked, so queue fork handlers */ 3314 /* we might have forked, so queue fork handlers */
1946 if (expect_false (postfork)) 3315 if (expect_false (postfork))
1947 if (forkcnt) 3316 if (forkcnt)
1948 { 3317 {
1949 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3318 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1950 call_pending (EV_A); 3319 EV_INVOKE_PENDING;
1951 } 3320 }
1952#endif 3321#endif
1953 3322
3323#if EV_PREPARE_ENABLE
1954 /* queue prepare watchers (and execute them) */ 3324 /* queue prepare watchers (and execute them) */
1955 if (expect_false (preparecnt)) 3325 if (expect_false (preparecnt))
1956 { 3326 {
1957 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3327 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1958 call_pending (EV_A); 3328 EV_INVOKE_PENDING;
1959 } 3329 }
3330#endif
1960 3331
1961 if (expect_false (!activecnt)) 3332 if (expect_false (loop_done))
1962 break; 3333 break;
1963 3334
1964 /* we might have forked, so reify kernel state if necessary */ 3335 /* we might have forked, so reify kernel state if necessary */
1965 if (expect_false (postfork)) 3336 if (expect_false (postfork))
1966 loop_fork (EV_A); 3337 loop_fork (EV_A);
1971 /* calculate blocking time */ 3342 /* calculate blocking time */
1972 { 3343 {
1973 ev_tstamp waittime = 0.; 3344 ev_tstamp waittime = 0.;
1974 ev_tstamp sleeptime = 0.; 3345 ev_tstamp sleeptime = 0.;
1975 3346
3347 /* remember old timestamp for io_blocktime calculation */
3348 ev_tstamp prev_mn_now = mn_now;
3349
3350 /* update time to cancel out callback processing overhead */
3351 time_update (EV_A_ 1e100);
3352
3353 /* from now on, we want a pipe-wake-up */
3354 pipe_write_wanted = 1;
3355
3356 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3357
1976 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3358 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1977 { 3359 {
1978 /* update time to cancel out callback processing overhead */
1979 time_update (EV_A_ 1e100);
1980
1981 waittime = MAX_BLOCKTIME; 3360 waittime = MAX_BLOCKTIME;
1982 3361
1983 if (timercnt) 3362 if (timercnt)
1984 { 3363 {
1985 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 3364 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1986 if (waittime > to) waittime = to; 3365 if (waittime > to) waittime = to;
1987 } 3366 }
1988 3367
1989#if EV_PERIODIC_ENABLE 3368#if EV_PERIODIC_ENABLE
1990 if (periodiccnt) 3369 if (periodiccnt)
1991 { 3370 {
1992 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 3371 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1993 if (waittime > to) waittime = to; 3372 if (waittime > to) waittime = to;
1994 } 3373 }
1995#endif 3374#endif
1996 3375
3376 /* don't let timeouts decrease the waittime below timeout_blocktime */
1997 if (expect_false (waittime < timeout_blocktime)) 3377 if (expect_false (waittime < timeout_blocktime))
1998 waittime = timeout_blocktime; 3378 waittime = timeout_blocktime;
1999 3379
2000 sleeptime = waittime - backend_fudge; 3380 /* at this point, we NEED to wait, so we have to ensure */
3381 /* to pass a minimum nonzero value to the backend */
3382 if (expect_false (waittime < backend_mintime))
3383 waittime = backend_mintime;
2001 3384
3385 /* extra check because io_blocktime is commonly 0 */
2002 if (expect_true (sleeptime > io_blocktime)) 3386 if (expect_false (io_blocktime))
2003 sleeptime = io_blocktime;
2004
2005 if (sleeptime)
2006 { 3387 {
3388 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3389
3390 if (sleeptime > waittime - backend_mintime)
3391 sleeptime = waittime - backend_mintime;
3392
3393 if (expect_true (sleeptime > 0.))
3394 {
2007 ev_sleep (sleeptime); 3395 ev_sleep (sleeptime);
2008 waittime -= sleeptime; 3396 waittime -= sleeptime;
3397 }
2009 } 3398 }
2010 } 3399 }
2011 3400
3401#if EV_FEATURE_API
2012 ++loop_count; 3402 ++loop_count;
3403#endif
3404 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2013 backend_poll (EV_A_ waittime); 3405 backend_poll (EV_A_ waittime);
3406 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3407
3408 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3409
3410 ECB_MEMORY_FENCE_ACQUIRE;
3411 if (pipe_write_skipped)
3412 {
3413 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3414 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3415 }
3416
2014 3417
2015 /* update ev_rt_now, do magic */ 3418 /* update ev_rt_now, do magic */
2016 time_update (EV_A_ waittime + sleeptime); 3419 time_update (EV_A_ waittime + sleeptime);
2017 } 3420 }
2018 3421
2025#if EV_IDLE_ENABLE 3428#if EV_IDLE_ENABLE
2026 /* queue idle watchers unless other events are pending */ 3429 /* queue idle watchers unless other events are pending */
2027 idle_reify (EV_A); 3430 idle_reify (EV_A);
2028#endif 3431#endif
2029 3432
3433#if EV_CHECK_ENABLE
2030 /* queue check watchers, to be executed first */ 3434 /* queue check watchers, to be executed first */
2031 if (expect_false (checkcnt)) 3435 if (expect_false (checkcnt))
2032 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3436 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3437#endif
2033 3438
2034 call_pending (EV_A); 3439 EV_INVOKE_PENDING;
2035 } 3440 }
2036 while (expect_true ( 3441 while (expect_true (
2037 activecnt 3442 activecnt
2038 && !loop_done 3443 && !loop_done
2039 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 3444 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2040 )); 3445 ));
2041 3446
2042 if (loop_done == EVUNLOOP_ONE) 3447 if (loop_done == EVBREAK_ONE)
2043 loop_done = EVUNLOOP_CANCEL; 3448 loop_done = EVBREAK_CANCEL;
3449
3450#if EV_FEATURE_API
3451 --loop_depth;
3452#endif
3453
3454 return activecnt;
2044} 3455}
2045 3456
2046void 3457void
2047ev_unloop (EV_P_ int how) 3458ev_break (EV_P_ int how) EV_THROW
2048{ 3459{
2049 loop_done = how; 3460 loop_done = how;
2050} 3461}
2051 3462
3463void
3464ev_ref (EV_P) EV_THROW
3465{
3466 ++activecnt;
3467}
3468
3469void
3470ev_unref (EV_P) EV_THROW
3471{
3472 --activecnt;
3473}
3474
3475void
3476ev_now_update (EV_P) EV_THROW
3477{
3478 time_update (EV_A_ 1e100);
3479}
3480
3481void
3482ev_suspend (EV_P) EV_THROW
3483{
3484 ev_now_update (EV_A);
3485}
3486
3487void
3488ev_resume (EV_P) EV_THROW
3489{
3490 ev_tstamp mn_prev = mn_now;
3491
3492 ev_now_update (EV_A);
3493 timers_reschedule (EV_A_ mn_now - mn_prev);
3494#if EV_PERIODIC_ENABLE
3495 /* TODO: really do this? */
3496 periodics_reschedule (EV_A);
3497#endif
3498}
3499
2052/*****************************************************************************/ 3500/*****************************************************************************/
3501/* singly-linked list management, used when the expected list length is short */
2053 3502
2054void inline_size 3503inline_size void
2055wlist_add (WL *head, WL elem) 3504wlist_add (WL *head, WL elem)
2056{ 3505{
2057 elem->next = *head; 3506 elem->next = *head;
2058 *head = elem; 3507 *head = elem;
2059} 3508}
2060 3509
2061void inline_size 3510inline_size void
2062wlist_del (WL *head, WL elem) 3511wlist_del (WL *head, WL elem)
2063{ 3512{
2064 while (*head) 3513 while (*head)
2065 { 3514 {
2066 if (*head == elem) 3515 if (expect_true (*head == elem))
2067 { 3516 {
2068 *head = elem->next; 3517 *head = elem->next;
2069 return; 3518 break;
2070 } 3519 }
2071 3520
2072 head = &(*head)->next; 3521 head = &(*head)->next;
2073 } 3522 }
2074} 3523}
2075 3524
2076void inline_speed 3525/* internal, faster, version of ev_clear_pending */
3526inline_speed void
2077clear_pending (EV_P_ W w) 3527clear_pending (EV_P_ W w)
2078{ 3528{
2079 if (w->pending) 3529 if (w->pending)
2080 { 3530 {
2081 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3531 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2082 w->pending = 0; 3532 w->pending = 0;
2083 } 3533 }
2084} 3534}
2085 3535
2086int 3536int
2087ev_clear_pending (EV_P_ void *w) 3537ev_clear_pending (EV_P_ void *w) EV_THROW
2088{ 3538{
2089 W w_ = (W)w; 3539 W w_ = (W)w;
2090 int pending = w_->pending; 3540 int pending = w_->pending;
2091 3541
2092 if (expect_true (pending)) 3542 if (expect_true (pending))
2093 { 3543 {
2094 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3544 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3545 p->w = (W)&pending_w;
2095 w_->pending = 0; 3546 w_->pending = 0;
2096 p->w = 0;
2097 return p->events; 3547 return p->events;
2098 } 3548 }
2099 else 3549 else
2100 return 0; 3550 return 0;
2101} 3551}
2102 3552
2103void inline_size 3553inline_size void
2104pri_adjust (EV_P_ W w) 3554pri_adjust (EV_P_ W w)
2105{ 3555{
2106 int pri = w->priority; 3556 int pri = ev_priority (w);
2107 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3557 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2108 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3558 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2109 w->priority = pri; 3559 ev_set_priority (w, pri);
2110} 3560}
2111 3561
2112void inline_speed 3562inline_speed void
2113ev_start (EV_P_ W w, int active) 3563ev_start (EV_P_ W w, int active)
2114{ 3564{
2115 pri_adjust (EV_A_ w); 3565 pri_adjust (EV_A_ w);
2116 w->active = active; 3566 w->active = active;
2117 ev_ref (EV_A); 3567 ev_ref (EV_A);
2118} 3568}
2119 3569
2120void inline_size 3570inline_size void
2121ev_stop (EV_P_ W w) 3571ev_stop (EV_P_ W w)
2122{ 3572{
2123 ev_unref (EV_A); 3573 ev_unref (EV_A);
2124 w->active = 0; 3574 w->active = 0;
2125} 3575}
2126 3576
2127/*****************************************************************************/ 3577/*****************************************************************************/
2128 3578
2129void noinline 3579void noinline
2130ev_io_start (EV_P_ ev_io *w) 3580ev_io_start (EV_P_ ev_io *w) EV_THROW
2131{ 3581{
2132 int fd = w->fd; 3582 int fd = w->fd;
2133 3583
2134 if (expect_false (ev_is_active (w))) 3584 if (expect_false (ev_is_active (w)))
2135 return; 3585 return;
2136 3586
2137 assert (("ev_io_start called with negative fd", fd >= 0)); 3587 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3588 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2138 3589
2139 EV_FREQUENT_CHECK; 3590 EV_FREQUENT_CHECK;
2140 3591
2141 ev_start (EV_A_ (W)w, 1); 3592 ev_start (EV_A_ (W)w, 1);
2142 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3593 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2143 wlist_add (&anfds[fd].head, (WL)w); 3594 wlist_add (&anfds[fd].head, (WL)w);
2144 3595
3596 /* common bug, apparently */
3597 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3598
2145 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3599 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2146 w->events &= ~EV_IOFDSET; 3600 w->events &= ~EV__IOFDSET;
2147 3601
2148 EV_FREQUENT_CHECK; 3602 EV_FREQUENT_CHECK;
2149} 3603}
2150 3604
2151void noinline 3605void noinline
2152ev_io_stop (EV_P_ ev_io *w) 3606ev_io_stop (EV_P_ ev_io *w) EV_THROW
2153{ 3607{
2154 clear_pending (EV_A_ (W)w); 3608 clear_pending (EV_A_ (W)w);
2155 if (expect_false (!ev_is_active (w))) 3609 if (expect_false (!ev_is_active (w)))
2156 return; 3610 return;
2157 3611
2158 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3612 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2159 3613
2160 EV_FREQUENT_CHECK; 3614 EV_FREQUENT_CHECK;
2161 3615
2162 wlist_del (&anfds[w->fd].head, (WL)w); 3616 wlist_del (&anfds[w->fd].head, (WL)w);
2163 ev_stop (EV_A_ (W)w); 3617 ev_stop (EV_A_ (W)w);
2164 3618
2165 fd_change (EV_A_ w->fd, 1); 3619 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2166 3620
2167 EV_FREQUENT_CHECK; 3621 EV_FREQUENT_CHECK;
2168} 3622}
2169 3623
2170void noinline 3624void noinline
2171ev_timer_start (EV_P_ ev_timer *w) 3625ev_timer_start (EV_P_ ev_timer *w) EV_THROW
2172{ 3626{
2173 if (expect_false (ev_is_active (w))) 3627 if (expect_false (ev_is_active (w)))
2174 return; 3628 return;
2175 3629
2176 ev_at (w) += mn_now; 3630 ev_at (w) += mn_now;
2177 3631
2178 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3632 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2179 3633
2180 EV_FREQUENT_CHECK; 3634 EV_FREQUENT_CHECK;
2181 3635
2182 ++timercnt; 3636 ++timercnt;
2183 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1); 3637 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2186 ANHE_at_cache (timers [ev_active (w)]); 3640 ANHE_at_cache (timers [ev_active (w)]);
2187 upheap (timers, ev_active (w)); 3641 upheap (timers, ev_active (w));
2188 3642
2189 EV_FREQUENT_CHECK; 3643 EV_FREQUENT_CHECK;
2190 3644
2191 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 3645 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2192} 3646}
2193 3647
2194void noinline 3648void noinline
2195ev_timer_stop (EV_P_ ev_timer *w) 3649ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
2196{ 3650{
2197 clear_pending (EV_A_ (W)w); 3651 clear_pending (EV_A_ (W)w);
2198 if (expect_false (!ev_is_active (w))) 3652 if (expect_false (!ev_is_active (w)))
2199 return; 3653 return;
2200 3654
2201 EV_FREQUENT_CHECK; 3655 EV_FREQUENT_CHECK;
2202 3656
2203 { 3657 {
2204 int active = ev_active (w); 3658 int active = ev_active (w);
2205 3659
2206 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 3660 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2207 3661
2208 --timercnt; 3662 --timercnt;
2209 3663
2210 if (expect_true (active < timercnt + HEAP0)) 3664 if (expect_true (active < timercnt + HEAP0))
2211 { 3665 {
2212 timers [active] = timers [timercnt + HEAP0]; 3666 timers [active] = timers [timercnt + HEAP0];
2213 adjustheap (timers, timercnt, active); 3667 adjustheap (timers, timercnt, active);
2214 } 3668 }
2215 } 3669 }
2216 3670
2217 EV_FREQUENT_CHECK;
2218
2219 ev_at (w) -= mn_now; 3671 ev_at (w) -= mn_now;
2220 3672
2221 ev_stop (EV_A_ (W)w); 3673 ev_stop (EV_A_ (W)w);
3674
3675 EV_FREQUENT_CHECK;
2222} 3676}
2223 3677
2224void noinline 3678void noinline
2225ev_timer_again (EV_P_ ev_timer *w) 3679ev_timer_again (EV_P_ ev_timer *w) EV_THROW
2226{ 3680{
2227 EV_FREQUENT_CHECK; 3681 EV_FREQUENT_CHECK;
3682
3683 clear_pending (EV_A_ (W)w);
2228 3684
2229 if (ev_is_active (w)) 3685 if (ev_is_active (w))
2230 { 3686 {
2231 if (w->repeat) 3687 if (w->repeat)
2232 { 3688 {
2244 } 3700 }
2245 3701
2246 EV_FREQUENT_CHECK; 3702 EV_FREQUENT_CHECK;
2247} 3703}
2248 3704
3705ev_tstamp
3706ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3707{
3708 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3709}
3710
2249#if EV_PERIODIC_ENABLE 3711#if EV_PERIODIC_ENABLE
2250void noinline 3712void noinline
2251ev_periodic_start (EV_P_ ev_periodic *w) 3713ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
2252{ 3714{
2253 if (expect_false (ev_is_active (w))) 3715 if (expect_false (ev_is_active (w)))
2254 return; 3716 return;
2255 3717
2256 if (w->reschedule_cb) 3718 if (w->reschedule_cb)
2257 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3719 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2258 else if (w->interval) 3720 else if (w->interval)
2259 { 3721 {
2260 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3722 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2261 /* this formula differs from the one in periodic_reify because we do not always round up */ 3723 periodic_recalc (EV_A_ w);
2262 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2263 } 3724 }
2264 else 3725 else
2265 ev_at (w) = w->offset; 3726 ev_at (w) = w->offset;
2266 3727
2267 EV_FREQUENT_CHECK; 3728 EV_FREQUENT_CHECK;
2273 ANHE_at_cache (periodics [ev_active (w)]); 3734 ANHE_at_cache (periodics [ev_active (w)]);
2274 upheap (periodics, ev_active (w)); 3735 upheap (periodics, ev_active (w));
2275 3736
2276 EV_FREQUENT_CHECK; 3737 EV_FREQUENT_CHECK;
2277 3738
2278 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 3739 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2279} 3740}
2280 3741
2281void noinline 3742void noinline
2282ev_periodic_stop (EV_P_ ev_periodic *w) 3743ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
2283{ 3744{
2284 clear_pending (EV_A_ (W)w); 3745 clear_pending (EV_A_ (W)w);
2285 if (expect_false (!ev_is_active (w))) 3746 if (expect_false (!ev_is_active (w)))
2286 return; 3747 return;
2287 3748
2288 EV_FREQUENT_CHECK; 3749 EV_FREQUENT_CHECK;
2289 3750
2290 { 3751 {
2291 int active = ev_active (w); 3752 int active = ev_active (w);
2292 3753
2293 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 3754 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2294 3755
2295 --periodiccnt; 3756 --periodiccnt;
2296 3757
2297 if (expect_true (active < periodiccnt + HEAP0)) 3758 if (expect_true (active < periodiccnt + HEAP0))
2298 { 3759 {
2299 periodics [active] = periodics [periodiccnt + HEAP0]; 3760 periodics [active] = periodics [periodiccnt + HEAP0];
2300 adjustheap (periodics, periodiccnt, active); 3761 adjustheap (periodics, periodiccnt, active);
2301 } 3762 }
2302 } 3763 }
2303 3764
2304 EV_FREQUENT_CHECK;
2305
2306 ev_stop (EV_A_ (W)w); 3765 ev_stop (EV_A_ (W)w);
3766
3767 EV_FREQUENT_CHECK;
2307} 3768}
2308 3769
2309void noinline 3770void noinline
2310ev_periodic_again (EV_P_ ev_periodic *w) 3771ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
2311{ 3772{
2312 /* TODO: use adjustheap and recalculation */ 3773 /* TODO: use adjustheap and recalculation */
2313 ev_periodic_stop (EV_A_ w); 3774 ev_periodic_stop (EV_A_ w);
2314 ev_periodic_start (EV_A_ w); 3775 ev_periodic_start (EV_A_ w);
2315} 3776}
2317 3778
2318#ifndef SA_RESTART 3779#ifndef SA_RESTART
2319# define SA_RESTART 0 3780# define SA_RESTART 0
2320#endif 3781#endif
2321 3782
3783#if EV_SIGNAL_ENABLE
3784
2322void noinline 3785void noinline
2323ev_signal_start (EV_P_ ev_signal *w) 3786ev_signal_start (EV_P_ ev_signal *w) EV_THROW
2324{ 3787{
2325#if EV_MULTIPLICITY
2326 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2327#endif
2328 if (expect_false (ev_is_active (w))) 3788 if (expect_false (ev_is_active (w)))
2329 return; 3789 return;
2330 3790
2331 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3791 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2332 3792
2333 evpipe_init (EV_A); 3793#if EV_MULTIPLICITY
3794 assert (("libev: a signal must not be attached to two different loops",
3795 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2334 3796
2335 EV_FREQUENT_CHECK; 3797 signals [w->signum - 1].loop = EV_A;
3798 ECB_MEMORY_FENCE_RELEASE;
3799#endif
2336 3800
3801 EV_FREQUENT_CHECK;
3802
3803#if EV_USE_SIGNALFD
3804 if (sigfd == -2)
2337 { 3805 {
2338#ifndef _WIN32 3806 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2339 sigset_t full, prev; 3807 if (sigfd < 0 && errno == EINVAL)
2340 sigfillset (&full); 3808 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2341 sigprocmask (SIG_SETMASK, &full, &prev);
2342#endif
2343 3809
2344 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3810 if (sigfd >= 0)
3811 {
3812 fd_intern (sigfd); /* doing it twice will not hurt */
2345 3813
2346#ifndef _WIN32 3814 sigemptyset (&sigfd_set);
2347 sigprocmask (SIG_SETMASK, &prev, 0); 3815
2348#endif 3816 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3817 ev_set_priority (&sigfd_w, EV_MAXPRI);
3818 ev_io_start (EV_A_ &sigfd_w);
3819 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3820 }
2349 } 3821 }
3822
3823 if (sigfd >= 0)
3824 {
3825 /* TODO: check .head */
3826 sigaddset (&sigfd_set, w->signum);
3827 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3828
3829 signalfd (sigfd, &sigfd_set, 0);
3830 }
3831#endif
2350 3832
2351 ev_start (EV_A_ (W)w, 1); 3833 ev_start (EV_A_ (W)w, 1);
2352 wlist_add (&signals [w->signum - 1].head, (WL)w); 3834 wlist_add (&signals [w->signum - 1].head, (WL)w);
2353 3835
2354 if (!((WL)w)->next) 3836 if (!((WL)w)->next)
3837# if EV_USE_SIGNALFD
3838 if (sigfd < 0) /*TODO*/
3839# endif
2355 { 3840 {
2356#if _WIN32 3841# ifdef _WIN32
3842 evpipe_init (EV_A);
3843
2357 signal (w->signum, ev_sighandler); 3844 signal (w->signum, ev_sighandler);
2358#else 3845# else
2359 struct sigaction sa; 3846 struct sigaction sa;
3847
3848 evpipe_init (EV_A);
3849
2360 sa.sa_handler = ev_sighandler; 3850 sa.sa_handler = ev_sighandler;
2361 sigfillset (&sa.sa_mask); 3851 sigfillset (&sa.sa_mask);
2362 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3852 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2363 sigaction (w->signum, &sa, 0); 3853 sigaction (w->signum, &sa, 0);
3854
3855 if (origflags & EVFLAG_NOSIGMASK)
3856 {
3857 sigemptyset (&sa.sa_mask);
3858 sigaddset (&sa.sa_mask, w->signum);
3859 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3860 }
2364#endif 3861#endif
2365 } 3862 }
2366 3863
2367 EV_FREQUENT_CHECK; 3864 EV_FREQUENT_CHECK;
2368} 3865}
2369 3866
2370void noinline 3867void noinline
2371ev_signal_stop (EV_P_ ev_signal *w) 3868ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
2372{ 3869{
2373 clear_pending (EV_A_ (W)w); 3870 clear_pending (EV_A_ (W)w);
2374 if (expect_false (!ev_is_active (w))) 3871 if (expect_false (!ev_is_active (w)))
2375 return; 3872 return;
2376 3873
2378 3875
2379 wlist_del (&signals [w->signum - 1].head, (WL)w); 3876 wlist_del (&signals [w->signum - 1].head, (WL)w);
2380 ev_stop (EV_A_ (W)w); 3877 ev_stop (EV_A_ (W)w);
2381 3878
2382 if (!signals [w->signum - 1].head) 3879 if (!signals [w->signum - 1].head)
3880 {
3881#if EV_MULTIPLICITY
3882 signals [w->signum - 1].loop = 0; /* unattach from signal */
3883#endif
3884#if EV_USE_SIGNALFD
3885 if (sigfd >= 0)
3886 {
3887 sigset_t ss;
3888
3889 sigemptyset (&ss);
3890 sigaddset (&ss, w->signum);
3891 sigdelset (&sigfd_set, w->signum);
3892
3893 signalfd (sigfd, &sigfd_set, 0);
3894 sigprocmask (SIG_UNBLOCK, &ss, 0);
3895 }
3896 else
3897#endif
2383 signal (w->signum, SIG_DFL); 3898 signal (w->signum, SIG_DFL);
3899 }
2384 3900
2385 EV_FREQUENT_CHECK; 3901 EV_FREQUENT_CHECK;
2386} 3902}
3903
3904#endif
3905
3906#if EV_CHILD_ENABLE
2387 3907
2388void 3908void
2389ev_child_start (EV_P_ ev_child *w) 3909ev_child_start (EV_P_ ev_child *w) EV_THROW
2390{ 3910{
2391#if EV_MULTIPLICITY 3911#if EV_MULTIPLICITY
2392 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3912 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2393#endif 3913#endif
2394 if (expect_false (ev_is_active (w))) 3914 if (expect_false (ev_is_active (w)))
2395 return; 3915 return;
2396 3916
2397 EV_FREQUENT_CHECK; 3917 EV_FREQUENT_CHECK;
2398 3918
2399 ev_start (EV_A_ (W)w, 1); 3919 ev_start (EV_A_ (W)w, 1);
2400 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3920 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2401 3921
2402 EV_FREQUENT_CHECK; 3922 EV_FREQUENT_CHECK;
2403} 3923}
2404 3924
2405void 3925void
2406ev_child_stop (EV_P_ ev_child *w) 3926ev_child_stop (EV_P_ ev_child *w) EV_THROW
2407{ 3927{
2408 clear_pending (EV_A_ (W)w); 3928 clear_pending (EV_A_ (W)w);
2409 if (expect_false (!ev_is_active (w))) 3929 if (expect_false (!ev_is_active (w)))
2410 return; 3930 return;
2411 3931
2412 EV_FREQUENT_CHECK; 3932 EV_FREQUENT_CHECK;
2413 3933
2414 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3934 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2415 ev_stop (EV_A_ (W)w); 3935 ev_stop (EV_A_ (W)w);
2416 3936
2417 EV_FREQUENT_CHECK; 3937 EV_FREQUENT_CHECK;
2418} 3938}
3939
3940#endif
2419 3941
2420#if EV_STAT_ENABLE 3942#if EV_STAT_ENABLE
2421 3943
2422# ifdef _WIN32 3944# ifdef _WIN32
2423# undef lstat 3945# undef lstat
2424# define lstat(a,b) _stati64 (a,b) 3946# define lstat(a,b) _stati64 (a,b)
2425# endif 3947# endif
2426 3948
2427#define DEF_STAT_INTERVAL 5.0074891 3949#define DEF_STAT_INTERVAL 5.0074891
3950#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2428#define MIN_STAT_INTERVAL 0.1074891 3951#define MIN_STAT_INTERVAL 0.1074891
2429 3952
2430static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3953static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2431 3954
2432#if EV_USE_INOTIFY 3955#if EV_USE_INOTIFY
2433# define EV_INOTIFY_BUFSIZE 8192 3956
3957/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3958# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2434 3959
2435static void noinline 3960static void noinline
2436infy_add (EV_P_ ev_stat *w) 3961infy_add (EV_P_ ev_stat *w)
2437{ 3962{
2438 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3963 w->wd = inotify_add_watch (fs_fd, w->path,
3964 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
3965 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
3966 | IN_DONT_FOLLOW | IN_MASK_ADD);
2439 3967
2440 if (w->wd < 0) 3968 if (w->wd >= 0)
3969 {
3970 struct statfs sfs;
3971
3972 /* now local changes will be tracked by inotify, but remote changes won't */
3973 /* unless the filesystem is known to be local, we therefore still poll */
3974 /* also do poll on <2.6.25, but with normal frequency */
3975
3976 if (!fs_2625)
3977 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3978 else if (!statfs (w->path, &sfs)
3979 && (sfs.f_type == 0x1373 /* devfs */
3980 || sfs.f_type == 0x4006 /* fat */
3981 || sfs.f_type == 0x4d44 /* msdos */
3982 || sfs.f_type == 0xEF53 /* ext2/3 */
3983 || sfs.f_type == 0x72b6 /* jffs2 */
3984 || sfs.f_type == 0x858458f6 /* ramfs */
3985 || sfs.f_type == 0x5346544e /* ntfs */
3986 || sfs.f_type == 0x3153464a /* jfs */
3987 || sfs.f_type == 0x9123683e /* btrfs */
3988 || sfs.f_type == 0x52654973 /* reiser3 */
3989 || sfs.f_type == 0x01021994 /* tmpfs */
3990 || sfs.f_type == 0x58465342 /* xfs */))
3991 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3992 else
3993 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2441 { 3994 }
2442 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3995 else
3996 {
3997 /* can't use inotify, continue to stat */
3998 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2443 3999
2444 /* monitor some parent directory for speedup hints */ 4000 /* if path is not there, monitor some parent directory for speedup hints */
2445 /* note that exceeding the hardcoded limit is not a correctness issue, */ 4001 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2446 /* but an efficiency issue only */ 4002 /* but an efficiency issue only */
2447 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 4003 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2448 { 4004 {
2449 char path [4096]; 4005 char path [4096];
2450 strcpy (path, w->path); 4006 strcpy (path, w->path);
2454 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 4010 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2455 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 4011 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2456 4012
2457 char *pend = strrchr (path, '/'); 4013 char *pend = strrchr (path, '/');
2458 4014
2459 if (!pend) 4015 if (!pend || pend == path)
2460 break; /* whoops, no '/', complain to your admin */ 4016 break;
2461 4017
2462 *pend = 0; 4018 *pend = 0;
2463 w->wd = inotify_add_watch (fs_fd, path, mask); 4019 w->wd = inotify_add_watch (fs_fd, path, mask);
2464 } 4020 }
2465 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 4021 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2466 } 4022 }
2467 } 4023 }
2468 else
2469 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2470 4024
2471 if (w->wd >= 0) 4025 if (w->wd >= 0)
2472 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 4026 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4027
4028 /* now re-arm timer, if required */
4029 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4030 ev_timer_again (EV_A_ &w->timer);
4031 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2473} 4032}
2474 4033
2475static void noinline 4034static void noinline
2476infy_del (EV_P_ ev_stat *w) 4035infy_del (EV_P_ ev_stat *w)
2477{ 4036{
2480 4039
2481 if (wd < 0) 4040 if (wd < 0)
2482 return; 4041 return;
2483 4042
2484 w->wd = -2; 4043 w->wd = -2;
2485 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 4044 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2486 wlist_del (&fs_hash [slot].head, (WL)w); 4045 wlist_del (&fs_hash [slot].head, (WL)w);
2487 4046
2488 /* remove this watcher, if others are watching it, they will rearm */ 4047 /* remove this watcher, if others are watching it, they will rearm */
2489 inotify_rm_watch (fs_fd, wd); 4048 inotify_rm_watch (fs_fd, wd);
2490} 4049}
2491 4050
2492static void noinline 4051static void noinline
2493infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 4052infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2494{ 4053{
2495 if (slot < 0) 4054 if (slot < 0)
2496 /* overflow, need to check for all hahs slots */ 4055 /* overflow, need to check for all hash slots */
2497 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4056 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2498 infy_wd (EV_A_ slot, wd, ev); 4057 infy_wd (EV_A_ slot, wd, ev);
2499 else 4058 else
2500 { 4059 {
2501 WL w_; 4060 WL w_;
2502 4061
2503 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 4062 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2504 { 4063 {
2505 ev_stat *w = (ev_stat *)w_; 4064 ev_stat *w = (ev_stat *)w_;
2506 w_ = w_->next; /* lets us remove this watcher and all before it */ 4065 w_ = w_->next; /* lets us remove this watcher and all before it */
2507 4066
2508 if (w->wd == wd || wd == -1) 4067 if (w->wd == wd || wd == -1)
2509 { 4068 {
2510 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 4069 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2511 { 4070 {
4071 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2512 w->wd = -1; 4072 w->wd = -1;
2513 infy_add (EV_A_ w); /* re-add, no matter what */ 4073 infy_add (EV_A_ w); /* re-add, no matter what */
2514 } 4074 }
2515 4075
2516 stat_timer_cb (EV_A_ &w->timer, 0); 4076 stat_timer_cb (EV_A_ &w->timer, 0);
2521 4081
2522static void 4082static void
2523infy_cb (EV_P_ ev_io *w, int revents) 4083infy_cb (EV_P_ ev_io *w, int revents)
2524{ 4084{
2525 char buf [EV_INOTIFY_BUFSIZE]; 4085 char buf [EV_INOTIFY_BUFSIZE];
2526 struct inotify_event *ev = (struct inotify_event *)buf;
2527 int ofs; 4086 int ofs;
2528 int len = read (fs_fd, buf, sizeof (buf)); 4087 int len = read (fs_fd, buf, sizeof (buf));
2529 4088
2530 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 4089 for (ofs = 0; ofs < len; )
4090 {
4091 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2531 infy_wd (EV_A_ ev->wd, ev->wd, ev); 4092 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4093 ofs += sizeof (struct inotify_event) + ev->len;
4094 }
2532} 4095}
2533 4096
2534void inline_size 4097inline_size void ecb_cold
4098ev_check_2625 (EV_P)
4099{
4100 /* kernels < 2.6.25 are borked
4101 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4102 */
4103 if (ev_linux_version () < 0x020619)
4104 return;
4105
4106 fs_2625 = 1;
4107}
4108
4109inline_size int
4110infy_newfd (void)
4111{
4112#if defined IN_CLOEXEC && defined IN_NONBLOCK
4113 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4114 if (fd >= 0)
4115 return fd;
4116#endif
4117 return inotify_init ();
4118}
4119
4120inline_size void
2535infy_init (EV_P) 4121infy_init (EV_P)
2536{ 4122{
2537 if (fs_fd != -2) 4123 if (fs_fd != -2)
2538 return; 4124 return;
2539 4125
4126 fs_fd = -1;
4127
4128 ev_check_2625 (EV_A);
4129
2540 fs_fd = inotify_init (); 4130 fs_fd = infy_newfd ();
2541 4131
2542 if (fs_fd >= 0) 4132 if (fs_fd >= 0)
2543 { 4133 {
4134 fd_intern (fs_fd);
2544 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 4135 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2545 ev_set_priority (&fs_w, EV_MAXPRI); 4136 ev_set_priority (&fs_w, EV_MAXPRI);
2546 ev_io_start (EV_A_ &fs_w); 4137 ev_io_start (EV_A_ &fs_w);
4138 ev_unref (EV_A);
2547 } 4139 }
2548} 4140}
2549 4141
2550void inline_size 4142inline_size void
2551infy_fork (EV_P) 4143infy_fork (EV_P)
2552{ 4144{
2553 int slot; 4145 int slot;
2554 4146
2555 if (fs_fd < 0) 4147 if (fs_fd < 0)
2556 return; 4148 return;
2557 4149
4150 ev_ref (EV_A);
4151 ev_io_stop (EV_A_ &fs_w);
2558 close (fs_fd); 4152 close (fs_fd);
2559 fs_fd = inotify_init (); 4153 fs_fd = infy_newfd ();
2560 4154
4155 if (fs_fd >= 0)
4156 {
4157 fd_intern (fs_fd);
4158 ev_io_set (&fs_w, fs_fd, EV_READ);
4159 ev_io_start (EV_A_ &fs_w);
4160 ev_unref (EV_A);
4161 }
4162
2561 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4163 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2562 { 4164 {
2563 WL w_ = fs_hash [slot].head; 4165 WL w_ = fs_hash [slot].head;
2564 fs_hash [slot].head = 0; 4166 fs_hash [slot].head = 0;
2565 4167
2566 while (w_) 4168 while (w_)
2571 w->wd = -1; 4173 w->wd = -1;
2572 4174
2573 if (fs_fd >= 0) 4175 if (fs_fd >= 0)
2574 infy_add (EV_A_ w); /* re-add, no matter what */ 4176 infy_add (EV_A_ w); /* re-add, no matter what */
2575 else 4177 else
4178 {
4179 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4180 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2576 ev_timer_start (EV_A_ &w->timer); 4181 ev_timer_again (EV_A_ &w->timer);
4182 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4183 }
2577 } 4184 }
2578
2579 } 4185 }
2580} 4186}
2581 4187
2582#endif 4188#endif
2583 4189
2586#else 4192#else
2587# define EV_LSTAT(p,b) lstat (p, b) 4193# define EV_LSTAT(p,b) lstat (p, b)
2588#endif 4194#endif
2589 4195
2590void 4196void
2591ev_stat_stat (EV_P_ ev_stat *w) 4197ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
2592{ 4198{
2593 if (lstat (w->path, &w->attr) < 0) 4199 if (lstat (w->path, &w->attr) < 0)
2594 w->attr.st_nlink = 0; 4200 w->attr.st_nlink = 0;
2595 else if (!w->attr.st_nlink) 4201 else if (!w->attr.st_nlink)
2596 w->attr.st_nlink = 1; 4202 w->attr.st_nlink = 1;
2599static void noinline 4205static void noinline
2600stat_timer_cb (EV_P_ ev_timer *w_, int revents) 4206stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2601{ 4207{
2602 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 4208 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2603 4209
2604 /* we copy this here each the time so that */ 4210 ev_statdata prev = w->attr;
2605 /* prev has the old value when the callback gets invoked */
2606 w->prev = w->attr;
2607 ev_stat_stat (EV_A_ w); 4211 ev_stat_stat (EV_A_ w);
2608 4212
2609 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 4213 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2610 if ( 4214 if (
2611 w->prev.st_dev != w->attr.st_dev 4215 prev.st_dev != w->attr.st_dev
2612 || w->prev.st_ino != w->attr.st_ino 4216 || prev.st_ino != w->attr.st_ino
2613 || w->prev.st_mode != w->attr.st_mode 4217 || prev.st_mode != w->attr.st_mode
2614 || w->prev.st_nlink != w->attr.st_nlink 4218 || prev.st_nlink != w->attr.st_nlink
2615 || w->prev.st_uid != w->attr.st_uid 4219 || prev.st_uid != w->attr.st_uid
2616 || w->prev.st_gid != w->attr.st_gid 4220 || prev.st_gid != w->attr.st_gid
2617 || w->prev.st_rdev != w->attr.st_rdev 4221 || prev.st_rdev != w->attr.st_rdev
2618 || w->prev.st_size != w->attr.st_size 4222 || prev.st_size != w->attr.st_size
2619 || w->prev.st_atime != w->attr.st_atime 4223 || prev.st_atime != w->attr.st_atime
2620 || w->prev.st_mtime != w->attr.st_mtime 4224 || prev.st_mtime != w->attr.st_mtime
2621 || w->prev.st_ctime != w->attr.st_ctime 4225 || prev.st_ctime != w->attr.st_ctime
2622 ) { 4226 ) {
4227 /* we only update w->prev on actual differences */
4228 /* in case we test more often than invoke the callback, */
4229 /* to ensure that prev is always different to attr */
4230 w->prev = prev;
4231
2623 #if EV_USE_INOTIFY 4232 #if EV_USE_INOTIFY
4233 if (fs_fd >= 0)
4234 {
2624 infy_del (EV_A_ w); 4235 infy_del (EV_A_ w);
2625 infy_add (EV_A_ w); 4236 infy_add (EV_A_ w);
2626 ev_stat_stat (EV_A_ w); /* avoid race... */ 4237 ev_stat_stat (EV_A_ w); /* avoid race... */
4238 }
2627 #endif 4239 #endif
2628 4240
2629 ev_feed_event (EV_A_ w, EV_STAT); 4241 ev_feed_event (EV_A_ w, EV_STAT);
2630 } 4242 }
2631} 4243}
2632 4244
2633void 4245void
2634ev_stat_start (EV_P_ ev_stat *w) 4246ev_stat_start (EV_P_ ev_stat *w) EV_THROW
2635{ 4247{
2636 if (expect_false (ev_is_active (w))) 4248 if (expect_false (ev_is_active (w)))
2637 return; 4249 return;
2638 4250
2639 /* since we use memcmp, we need to clear any padding data etc. */
2640 memset (&w->prev, 0, sizeof (ev_statdata));
2641 memset (&w->attr, 0, sizeof (ev_statdata));
2642
2643 ev_stat_stat (EV_A_ w); 4251 ev_stat_stat (EV_A_ w);
2644 4252
4253 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2645 if (w->interval < MIN_STAT_INTERVAL) 4254 w->interval = MIN_STAT_INTERVAL;
2646 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2647 4255
2648 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 4256 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2649 ev_set_priority (&w->timer, ev_priority (w)); 4257 ev_set_priority (&w->timer, ev_priority (w));
2650 4258
2651#if EV_USE_INOTIFY 4259#if EV_USE_INOTIFY
2652 infy_init (EV_A); 4260 infy_init (EV_A);
2653 4261
2654 if (fs_fd >= 0) 4262 if (fs_fd >= 0)
2655 infy_add (EV_A_ w); 4263 infy_add (EV_A_ w);
2656 else 4264 else
2657#endif 4265#endif
4266 {
2658 ev_timer_start (EV_A_ &w->timer); 4267 ev_timer_again (EV_A_ &w->timer);
4268 ev_unref (EV_A);
4269 }
2659 4270
2660 ev_start (EV_A_ (W)w, 1); 4271 ev_start (EV_A_ (W)w, 1);
2661 4272
2662 EV_FREQUENT_CHECK; 4273 EV_FREQUENT_CHECK;
2663} 4274}
2664 4275
2665void 4276void
2666ev_stat_stop (EV_P_ ev_stat *w) 4277ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
2667{ 4278{
2668 clear_pending (EV_A_ (W)w); 4279 clear_pending (EV_A_ (W)w);
2669 if (expect_false (!ev_is_active (w))) 4280 if (expect_false (!ev_is_active (w)))
2670 return; 4281 return;
2671 4282
2672 EV_FREQUENT_CHECK; 4283 EV_FREQUENT_CHECK;
2673 4284
2674#if EV_USE_INOTIFY 4285#if EV_USE_INOTIFY
2675 infy_del (EV_A_ w); 4286 infy_del (EV_A_ w);
2676#endif 4287#endif
4288
4289 if (ev_is_active (&w->timer))
4290 {
4291 ev_ref (EV_A);
2677 ev_timer_stop (EV_A_ &w->timer); 4292 ev_timer_stop (EV_A_ &w->timer);
4293 }
2678 4294
2679 ev_stop (EV_A_ (W)w); 4295 ev_stop (EV_A_ (W)w);
2680 4296
2681 EV_FREQUENT_CHECK; 4297 EV_FREQUENT_CHECK;
2682} 4298}
2683#endif 4299#endif
2684 4300
2685#if EV_IDLE_ENABLE 4301#if EV_IDLE_ENABLE
2686void 4302void
2687ev_idle_start (EV_P_ ev_idle *w) 4303ev_idle_start (EV_P_ ev_idle *w) EV_THROW
2688{ 4304{
2689 if (expect_false (ev_is_active (w))) 4305 if (expect_false (ev_is_active (w)))
2690 return; 4306 return;
2691 4307
2692 pri_adjust (EV_A_ (W)w); 4308 pri_adjust (EV_A_ (W)w);
2705 4321
2706 EV_FREQUENT_CHECK; 4322 EV_FREQUENT_CHECK;
2707} 4323}
2708 4324
2709void 4325void
2710ev_idle_stop (EV_P_ ev_idle *w) 4326ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
2711{ 4327{
2712 clear_pending (EV_A_ (W)w); 4328 clear_pending (EV_A_ (W)w);
2713 if (expect_false (!ev_is_active (w))) 4329 if (expect_false (!ev_is_active (w)))
2714 return; 4330 return;
2715 4331
2727 4343
2728 EV_FREQUENT_CHECK; 4344 EV_FREQUENT_CHECK;
2729} 4345}
2730#endif 4346#endif
2731 4347
4348#if EV_PREPARE_ENABLE
2732void 4349void
2733ev_prepare_start (EV_P_ ev_prepare *w) 4350ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
2734{ 4351{
2735 if (expect_false (ev_is_active (w))) 4352 if (expect_false (ev_is_active (w)))
2736 return; 4353 return;
2737 4354
2738 EV_FREQUENT_CHECK; 4355 EV_FREQUENT_CHECK;
2743 4360
2744 EV_FREQUENT_CHECK; 4361 EV_FREQUENT_CHECK;
2745} 4362}
2746 4363
2747void 4364void
2748ev_prepare_stop (EV_P_ ev_prepare *w) 4365ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
2749{ 4366{
2750 clear_pending (EV_A_ (W)w); 4367 clear_pending (EV_A_ (W)w);
2751 if (expect_false (!ev_is_active (w))) 4368 if (expect_false (!ev_is_active (w)))
2752 return; 4369 return;
2753 4370
2762 4379
2763 ev_stop (EV_A_ (W)w); 4380 ev_stop (EV_A_ (W)w);
2764 4381
2765 EV_FREQUENT_CHECK; 4382 EV_FREQUENT_CHECK;
2766} 4383}
4384#endif
2767 4385
4386#if EV_CHECK_ENABLE
2768void 4387void
2769ev_check_start (EV_P_ ev_check *w) 4388ev_check_start (EV_P_ ev_check *w) EV_THROW
2770{ 4389{
2771 if (expect_false (ev_is_active (w))) 4390 if (expect_false (ev_is_active (w)))
2772 return; 4391 return;
2773 4392
2774 EV_FREQUENT_CHECK; 4393 EV_FREQUENT_CHECK;
2779 4398
2780 EV_FREQUENT_CHECK; 4399 EV_FREQUENT_CHECK;
2781} 4400}
2782 4401
2783void 4402void
2784ev_check_stop (EV_P_ ev_check *w) 4403ev_check_stop (EV_P_ ev_check *w) EV_THROW
2785{ 4404{
2786 clear_pending (EV_A_ (W)w); 4405 clear_pending (EV_A_ (W)w);
2787 if (expect_false (!ev_is_active (w))) 4406 if (expect_false (!ev_is_active (w)))
2788 return; 4407 return;
2789 4408
2798 4417
2799 ev_stop (EV_A_ (W)w); 4418 ev_stop (EV_A_ (W)w);
2800 4419
2801 EV_FREQUENT_CHECK; 4420 EV_FREQUENT_CHECK;
2802} 4421}
4422#endif
2803 4423
2804#if EV_EMBED_ENABLE 4424#if EV_EMBED_ENABLE
2805void noinline 4425void noinline
2806ev_embed_sweep (EV_P_ ev_embed *w) 4426ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
2807{ 4427{
2808 ev_loop (w->other, EVLOOP_NONBLOCK); 4428 ev_run (w->other, EVRUN_NOWAIT);
2809} 4429}
2810 4430
2811static void 4431static void
2812embed_io_cb (EV_P_ ev_io *io, int revents) 4432embed_io_cb (EV_P_ ev_io *io, int revents)
2813{ 4433{
2814 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4434 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2815 4435
2816 if (ev_cb (w)) 4436 if (ev_cb (w))
2817 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4437 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2818 else 4438 else
2819 ev_loop (w->other, EVLOOP_NONBLOCK); 4439 ev_run (w->other, EVRUN_NOWAIT);
2820} 4440}
2821 4441
2822static void 4442static void
2823embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4443embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2824{ 4444{
2825 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4445 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2826 4446
2827 { 4447 {
2828 struct ev_loop *loop = w->other; 4448 EV_P = w->other;
2829 4449
2830 while (fdchangecnt) 4450 while (fdchangecnt)
2831 { 4451 {
2832 fd_reify (EV_A); 4452 fd_reify (EV_A);
2833 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4453 ev_run (EV_A_ EVRUN_NOWAIT);
2834 } 4454 }
2835 } 4455 }
2836} 4456}
2837 4457
2838static void 4458static void
2839embed_fork_cb (EV_P_ ev_fork *fork_w, int revents) 4459embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2840{ 4460{
2841 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork)); 4461 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2842 4462
4463 ev_embed_stop (EV_A_ w);
4464
2843 { 4465 {
2844 struct ev_loop *loop = w->other; 4466 EV_P = w->other;
2845 4467
2846 ev_loop_fork (EV_A); 4468 ev_loop_fork (EV_A);
4469 ev_run (EV_A_ EVRUN_NOWAIT);
2847 } 4470 }
4471
4472 ev_embed_start (EV_A_ w);
2848} 4473}
2849 4474
2850#if 0 4475#if 0
2851static void 4476static void
2852embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4477embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2854 ev_idle_stop (EV_A_ idle); 4479 ev_idle_stop (EV_A_ idle);
2855} 4480}
2856#endif 4481#endif
2857 4482
2858void 4483void
2859ev_embed_start (EV_P_ ev_embed *w) 4484ev_embed_start (EV_P_ ev_embed *w) EV_THROW
2860{ 4485{
2861 if (expect_false (ev_is_active (w))) 4486 if (expect_false (ev_is_active (w)))
2862 return; 4487 return;
2863 4488
2864 { 4489 {
2865 struct ev_loop *loop = w->other; 4490 EV_P = w->other;
2866 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4491 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2867 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4492 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2868 } 4493 }
2869 4494
2870 EV_FREQUENT_CHECK; 4495 EV_FREQUENT_CHECK;
2871 4496
2885 4510
2886 EV_FREQUENT_CHECK; 4511 EV_FREQUENT_CHECK;
2887} 4512}
2888 4513
2889void 4514void
2890ev_embed_stop (EV_P_ ev_embed *w) 4515ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
2891{ 4516{
2892 clear_pending (EV_A_ (W)w); 4517 clear_pending (EV_A_ (W)w);
2893 if (expect_false (!ev_is_active (w))) 4518 if (expect_false (!ev_is_active (w)))
2894 return; 4519 return;
2895 4520
2897 4522
2898 ev_io_stop (EV_A_ &w->io); 4523 ev_io_stop (EV_A_ &w->io);
2899 ev_prepare_stop (EV_A_ &w->prepare); 4524 ev_prepare_stop (EV_A_ &w->prepare);
2900 ev_fork_stop (EV_A_ &w->fork); 4525 ev_fork_stop (EV_A_ &w->fork);
2901 4526
4527 ev_stop (EV_A_ (W)w);
4528
2902 EV_FREQUENT_CHECK; 4529 EV_FREQUENT_CHECK;
2903} 4530}
2904#endif 4531#endif
2905 4532
2906#if EV_FORK_ENABLE 4533#if EV_FORK_ENABLE
2907void 4534void
2908ev_fork_start (EV_P_ ev_fork *w) 4535ev_fork_start (EV_P_ ev_fork *w) EV_THROW
2909{ 4536{
2910 if (expect_false (ev_is_active (w))) 4537 if (expect_false (ev_is_active (w)))
2911 return; 4538 return;
2912 4539
2913 EV_FREQUENT_CHECK; 4540 EV_FREQUENT_CHECK;
2918 4545
2919 EV_FREQUENT_CHECK; 4546 EV_FREQUENT_CHECK;
2920} 4547}
2921 4548
2922void 4549void
2923ev_fork_stop (EV_P_ ev_fork *w) 4550ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
2924{ 4551{
2925 clear_pending (EV_A_ (W)w); 4552 clear_pending (EV_A_ (W)w);
2926 if (expect_false (!ev_is_active (w))) 4553 if (expect_false (!ev_is_active (w)))
2927 return; 4554 return;
2928 4555
2939 4566
2940 EV_FREQUENT_CHECK; 4567 EV_FREQUENT_CHECK;
2941} 4568}
2942#endif 4569#endif
2943 4570
4571#if EV_CLEANUP_ENABLE
4572void
4573ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4574{
4575 if (expect_false (ev_is_active (w)))
4576 return;
4577
4578 EV_FREQUENT_CHECK;
4579
4580 ev_start (EV_A_ (W)w, ++cleanupcnt);
4581 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4582 cleanups [cleanupcnt - 1] = w;
4583
4584 /* cleanup watchers should never keep a refcount on the loop */
4585 ev_unref (EV_A);
4586 EV_FREQUENT_CHECK;
4587}
4588
4589void
4590ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4591{
4592 clear_pending (EV_A_ (W)w);
4593 if (expect_false (!ev_is_active (w)))
4594 return;
4595
4596 EV_FREQUENT_CHECK;
4597 ev_ref (EV_A);
4598
4599 {
4600 int active = ev_active (w);
4601
4602 cleanups [active - 1] = cleanups [--cleanupcnt];
4603 ev_active (cleanups [active - 1]) = active;
4604 }
4605
4606 ev_stop (EV_A_ (W)w);
4607
4608 EV_FREQUENT_CHECK;
4609}
4610#endif
4611
2944#if EV_ASYNC_ENABLE 4612#if EV_ASYNC_ENABLE
2945void 4613void
2946ev_async_start (EV_P_ ev_async *w) 4614ev_async_start (EV_P_ ev_async *w) EV_THROW
2947{ 4615{
2948 if (expect_false (ev_is_active (w))) 4616 if (expect_false (ev_is_active (w)))
2949 return; 4617 return;
4618
4619 w->sent = 0;
2950 4620
2951 evpipe_init (EV_A); 4621 evpipe_init (EV_A);
2952 4622
2953 EV_FREQUENT_CHECK; 4623 EV_FREQUENT_CHECK;
2954 4624
2958 4628
2959 EV_FREQUENT_CHECK; 4629 EV_FREQUENT_CHECK;
2960} 4630}
2961 4631
2962void 4632void
2963ev_async_stop (EV_P_ ev_async *w) 4633ev_async_stop (EV_P_ ev_async *w) EV_THROW
2964{ 4634{
2965 clear_pending (EV_A_ (W)w); 4635 clear_pending (EV_A_ (W)w);
2966 if (expect_false (!ev_is_active (w))) 4636 if (expect_false (!ev_is_active (w)))
2967 return; 4637 return;
2968 4638
2979 4649
2980 EV_FREQUENT_CHECK; 4650 EV_FREQUENT_CHECK;
2981} 4651}
2982 4652
2983void 4653void
2984ev_async_send (EV_P_ ev_async *w) 4654ev_async_send (EV_P_ ev_async *w) EV_THROW
2985{ 4655{
2986 w->sent = 1; 4656 w->sent = 1;
2987 evpipe_write (EV_A_ &gotasync); 4657 evpipe_write (EV_A_ &async_pending);
2988} 4658}
2989#endif 4659#endif
2990 4660
2991/*****************************************************************************/ 4661/*****************************************************************************/
2992 4662
3026 4696
3027 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io)); 4697 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3028} 4698}
3029 4699
3030void 4700void
3031ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4701ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
3032{ 4702{
3033 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4703 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3034 4704
3035 if (expect_false (!once)) 4705 if (expect_false (!once))
3036 { 4706 {
3037 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4707 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
3038 return; 4708 return;
3039 } 4709 }
3040 4710
3041 once->cb = cb; 4711 once->cb = cb;
3042 once->arg = arg; 4712 once->arg = arg;
3054 ev_timer_set (&once->to, timeout, 0.); 4724 ev_timer_set (&once->to, timeout, 0.);
3055 ev_timer_start (EV_A_ &once->to); 4725 ev_timer_start (EV_A_ &once->to);
3056 } 4726 }
3057} 4727}
3058 4728
4729/*****************************************************************************/
4730
4731#if EV_WALK_ENABLE
4732void ecb_cold
4733ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4734{
4735 int i, j;
4736 ev_watcher_list *wl, *wn;
4737
4738 if (types & (EV_IO | EV_EMBED))
4739 for (i = 0; i < anfdmax; ++i)
4740 for (wl = anfds [i].head; wl; )
4741 {
4742 wn = wl->next;
4743
4744#if EV_EMBED_ENABLE
4745 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4746 {
4747 if (types & EV_EMBED)
4748 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4749 }
4750 else
4751#endif
4752#if EV_USE_INOTIFY
4753 if (ev_cb ((ev_io *)wl) == infy_cb)
4754 ;
4755 else
4756#endif
4757 if ((ev_io *)wl != &pipe_w)
4758 if (types & EV_IO)
4759 cb (EV_A_ EV_IO, wl);
4760
4761 wl = wn;
4762 }
4763
4764 if (types & (EV_TIMER | EV_STAT))
4765 for (i = timercnt + HEAP0; i-- > HEAP0; )
4766#if EV_STAT_ENABLE
4767 /*TODO: timer is not always active*/
4768 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4769 {
4770 if (types & EV_STAT)
4771 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4772 }
4773 else
4774#endif
4775 if (types & EV_TIMER)
4776 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4777
4778#if EV_PERIODIC_ENABLE
4779 if (types & EV_PERIODIC)
4780 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4781 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4782#endif
4783
4784#if EV_IDLE_ENABLE
4785 if (types & EV_IDLE)
4786 for (j = NUMPRI; j--; )
4787 for (i = idlecnt [j]; i--; )
4788 cb (EV_A_ EV_IDLE, idles [j][i]);
4789#endif
4790
4791#if EV_FORK_ENABLE
4792 if (types & EV_FORK)
4793 for (i = forkcnt; i--; )
4794 if (ev_cb (forks [i]) != embed_fork_cb)
4795 cb (EV_A_ EV_FORK, forks [i]);
4796#endif
4797
4798#if EV_ASYNC_ENABLE
4799 if (types & EV_ASYNC)
4800 for (i = asynccnt; i--; )
4801 cb (EV_A_ EV_ASYNC, asyncs [i]);
4802#endif
4803
4804#if EV_PREPARE_ENABLE
4805 if (types & EV_PREPARE)
4806 for (i = preparecnt; i--; )
4807# if EV_EMBED_ENABLE
4808 if (ev_cb (prepares [i]) != embed_prepare_cb)
4809# endif
4810 cb (EV_A_ EV_PREPARE, prepares [i]);
4811#endif
4812
4813#if EV_CHECK_ENABLE
4814 if (types & EV_CHECK)
4815 for (i = checkcnt; i--; )
4816 cb (EV_A_ EV_CHECK, checks [i]);
4817#endif
4818
4819#if EV_SIGNAL_ENABLE
4820 if (types & EV_SIGNAL)
4821 for (i = 0; i < EV_NSIG - 1; ++i)
4822 for (wl = signals [i].head; wl; )
4823 {
4824 wn = wl->next;
4825 cb (EV_A_ EV_SIGNAL, wl);
4826 wl = wn;
4827 }
4828#endif
4829
4830#if EV_CHILD_ENABLE
4831 if (types & EV_CHILD)
4832 for (i = (EV_PID_HASHSIZE); i--; )
4833 for (wl = childs [i]; wl; )
4834 {
4835 wn = wl->next;
4836 cb (EV_A_ EV_CHILD, wl);
4837 wl = wn;
4838 }
4839#endif
4840/* EV_STAT 0x00001000 /* stat data changed */
4841/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4842}
4843#endif
4844
3059#if EV_MULTIPLICITY 4845#if EV_MULTIPLICITY
3060 #include "ev_wrap.h" 4846 #include "ev_wrap.h"
3061#endif 4847#endif
3062 4848
3063#ifdef __cplusplus
3064}
3065#endif
3066

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines