ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.189 by root, Thu Dec 20 10:12:22 2007 UTC vs.
Revision 1.464 by root, Fri Mar 21 16:41:04 2014 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012,2013 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 43# include EV_CONFIG_H
39# else 44# else
40# include "config.h" 45# include "config.h"
41# endif 46# endif
42 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
43# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
46# endif 71# endif
47# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
49# endif 74# endif
50# else 75# else
51# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
53# endif 78# endif
54# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
56# endif 81# endif
57# endif 82# endif
58 83
84# if HAVE_NANOSLEEP
59# ifndef EV_USE_SELECT 85# ifndef EV_USE_NANOSLEEP
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif 87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
65# endif 91# endif
66 92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
67# ifndef EV_USE_POLL 94# ifndef EV_USE_SELECT
68# if HAVE_POLL && HAVE_POLL_H 95# define EV_USE_SELECT EV_FEATURE_BACKENDS
69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
100# endif
101
102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
108# define EV_USE_POLL 0
73# endif 109# endif
74 110
75# ifndef EV_USE_EPOLL
76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
77# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
78# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
79# define EV_USE_EPOLL 0
80# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
81# endif 118# endif
82 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
83# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
89# endif 127# endif
90 128
91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
94# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
95# define EV_USE_PORT 0
96# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
97# endif 136# endif
98 137
99# ifndef EV_USE_INOTIFY
100# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
101# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
102# else
103# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
104# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
105# endif 145# endif
106 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
107#endif 154# endif
108 155
109#include <math.h> 156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
110#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
111#include <fcntl.h> 169#include <fcntl.h>
112#include <stddef.h> 170#include <stddef.h>
113 171
114#include <stdio.h> 172#include <stdio.h>
115 173
116#include <assert.h> 174#include <assert.h>
117#include <errno.h> 175#include <errno.h>
118#include <sys/types.h> 176#include <sys/types.h>
119#include <time.h> 177#include <time.h>
178#include <limits.h>
120 179
121#include <signal.h> 180#include <signal.h>
122 181
123#ifdef EV_H 182#ifdef EV_H
124# include EV_H 183# include EV_H
125#else 184#else
126# include "ev.h" 185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
127#endif 197#endif
128 198
129#ifndef _WIN32 199#ifndef _WIN32
130# include <sys/time.h> 200# include <sys/time.h>
131# include <sys/wait.h> 201# include <sys/wait.h>
132# include <unistd.h> 202# include <unistd.h>
133#else 203#else
204# include <io.h>
134# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
135# include <windows.h> 207# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 208# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 209# define EV_SELECT_IS_WINSOCKET 1
138# endif 210# endif
211# undef EV_AVOID_STDIO
212#endif
213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
221
222/* this block tries to deduce configuration from header-defined symbols and defaults */
223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# define EV_NSIG (8 * sizeof (sigset_t) + 1)
247#endif
248
249#ifndef EV_USE_FLOOR
250# define EV_USE_FLOOR 0
251#endif
252
253#ifndef EV_USE_CLOCK_SYSCALL
254# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
255# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
256# else
257# define EV_USE_CLOCK_SYSCALL 0
139#endif 258# endif
140 259#endif
141/**/
142 260
143#ifndef EV_USE_MONOTONIC 261#ifndef EV_USE_MONOTONIC
262# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
263# define EV_USE_MONOTONIC EV_FEATURE_OS
264# else
144# define EV_USE_MONOTONIC 0 265# define EV_USE_MONOTONIC 0
266# endif
145#endif 267#endif
146 268
147#ifndef EV_USE_REALTIME 269#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 270# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
271#endif
272
273#ifndef EV_USE_NANOSLEEP
274# if _POSIX_C_SOURCE >= 199309L
275# define EV_USE_NANOSLEEP EV_FEATURE_OS
276# else
277# define EV_USE_NANOSLEEP 0
278# endif
149#endif 279#endif
150 280
151#ifndef EV_USE_SELECT 281#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 282# define EV_USE_SELECT EV_FEATURE_BACKENDS
153#endif 283#endif
154 284
155#ifndef EV_USE_POLL 285#ifndef EV_USE_POLL
156# ifdef _WIN32 286# ifdef _WIN32
157# define EV_USE_POLL 0 287# define EV_USE_POLL 0
158# else 288# else
159# define EV_USE_POLL 1 289# define EV_USE_POLL EV_FEATURE_BACKENDS
160# endif 290# endif
161#endif 291#endif
162 292
163#ifndef EV_USE_EPOLL 293#ifndef EV_USE_EPOLL
294# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
295# define EV_USE_EPOLL EV_FEATURE_BACKENDS
296# else
164# define EV_USE_EPOLL 0 297# define EV_USE_EPOLL 0
298# endif
165#endif 299#endif
166 300
167#ifndef EV_USE_KQUEUE 301#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 302# define EV_USE_KQUEUE 0
169#endif 303#endif
171#ifndef EV_USE_PORT 305#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 306# define EV_USE_PORT 0
173#endif 307#endif
174 308
175#ifndef EV_USE_INOTIFY 309#ifndef EV_USE_INOTIFY
310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
311# define EV_USE_INOTIFY EV_FEATURE_OS
312# else
176# define EV_USE_INOTIFY 0 313# define EV_USE_INOTIFY 0
314# endif
177#endif 315#endif
178 316
179#ifndef EV_PID_HASHSIZE 317#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 318# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
181# define EV_PID_HASHSIZE 1 319#endif
320
321#ifndef EV_INOTIFY_HASHSIZE
322# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
323#endif
324
325#ifndef EV_USE_EVENTFD
326# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
327# define EV_USE_EVENTFD EV_FEATURE_OS
182# else 328# else
183# define EV_PID_HASHSIZE 16 329# define EV_USE_EVENTFD 0
184# endif 330# endif
185#endif 331#endif
186 332
187#ifndef EV_INOTIFY_HASHSIZE 333#ifndef EV_USE_SIGNALFD
188# if EV_MINIMAL 334# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
189# define EV_INOTIFY_HASHSIZE 1 335# define EV_USE_SIGNALFD EV_FEATURE_OS
190# else 336# else
191# define EV_INOTIFY_HASHSIZE 16 337# define EV_USE_SIGNALFD 0
192# endif 338# endif
193#endif 339#endif
194 340
195/**/ 341#if 0 /* debugging */
342# define EV_VERIFY 3
343# define EV_USE_4HEAP 1
344# define EV_HEAP_CACHE_AT 1
345#endif
346
347#ifndef EV_VERIFY
348# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
349#endif
350
351#ifndef EV_USE_4HEAP
352# define EV_USE_4HEAP EV_FEATURE_DATA
353#endif
354
355#ifndef EV_HEAP_CACHE_AT
356# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
357#endif
358
359#ifdef ANDROID
360/* supposedly, android doesn't typedef fd_mask */
361# undef EV_USE_SELECT
362# define EV_USE_SELECT 0
363/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
364# undef EV_USE_CLOCK_SYSCALL
365# define EV_USE_CLOCK_SYSCALL 0
366#endif
367
368/* aix's poll.h seems to cause lots of trouble */
369#ifdef _AIX
370/* AIX has a completely broken poll.h header */
371# undef EV_USE_POLL
372# define EV_USE_POLL 0
373#endif
374
375/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
376/* which makes programs even slower. might work on other unices, too. */
377#if EV_USE_CLOCK_SYSCALL
378# include <sys/syscall.h>
379# ifdef SYS_clock_gettime
380# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
381# undef EV_USE_MONOTONIC
382# define EV_USE_MONOTONIC 1
383# else
384# undef EV_USE_CLOCK_SYSCALL
385# define EV_USE_CLOCK_SYSCALL 0
386# endif
387#endif
388
389/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 390
197#ifndef CLOCK_MONOTONIC 391#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 392# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 393# define EV_USE_MONOTONIC 0
200#endif 394#endif
207#if !EV_STAT_ENABLE 401#if !EV_STAT_ENABLE
208# undef EV_USE_INOTIFY 402# undef EV_USE_INOTIFY
209# define EV_USE_INOTIFY 0 403# define EV_USE_INOTIFY 0
210#endif 404#endif
211 405
406#if !EV_USE_NANOSLEEP
407/* hp-ux has it in sys/time.h, which we unconditionally include above */
408# if !defined _WIN32 && !defined __hpux
409# include <sys/select.h>
410# endif
411#endif
412
212#if EV_USE_INOTIFY 413#if EV_USE_INOTIFY
414# include <sys/statfs.h>
213# include <sys/inotify.h> 415# include <sys/inotify.h>
416/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
417# ifndef IN_DONT_FOLLOW
418# undef EV_USE_INOTIFY
419# define EV_USE_INOTIFY 0
214#endif 420# endif
421#endif
215 422
216#if EV_SELECT_IS_WINSOCKET 423#if EV_USE_EVENTFD
424/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
217# include <winsock.h> 425# include <stdint.h>
426# ifndef EFD_NONBLOCK
427# define EFD_NONBLOCK O_NONBLOCK
428# endif
429# ifndef EFD_CLOEXEC
430# ifdef O_CLOEXEC
431# define EFD_CLOEXEC O_CLOEXEC
432# else
433# define EFD_CLOEXEC 02000000
434# endif
435# endif
436EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
437#endif
438
439#if EV_USE_SIGNALFD
440/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
441# include <stdint.h>
442# ifndef SFD_NONBLOCK
443# define SFD_NONBLOCK O_NONBLOCK
444# endif
445# ifndef SFD_CLOEXEC
446# ifdef O_CLOEXEC
447# define SFD_CLOEXEC O_CLOEXEC
448# else
449# define SFD_CLOEXEC 02000000
450# endif
451# endif
452EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
453
454struct signalfd_siginfo
455{
456 uint32_t ssi_signo;
457 char pad[128 - sizeof (uint32_t)];
458};
218#endif 459#endif
219 460
220/**/ 461/**/
221 462
463#if EV_VERIFY >= 3
464# define EV_FREQUENT_CHECK ev_verify (EV_A)
465#else
466# define EV_FREQUENT_CHECK do { } while (0)
467#endif
468
222/* 469/*
223 * This is used to avoid floating point rounding problems. 470 * This is used to work around floating point rounding problems.
224 * It is added to ev_rt_now when scheduling periodics
225 * to ensure progress, time-wise, even when rounding
226 * errors are against us.
227 * This value is good at least till the year 4000. 471 * This value is good at least till the year 4000.
228 * Better solutions welcome.
229 */ 472 */
230#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 473#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
474/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
231 475
232#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 476#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
233#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 477#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
234/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
235 478
479#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
480#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
481
482/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
483/* ECB.H BEGIN */
484/*
485 * libecb - http://software.schmorp.de/pkg/libecb
486 *
487 * Copyright (©) 2009-2014 Marc Alexander Lehmann <libecb@schmorp.de>
488 * Copyright (©) 2011 Emanuele Giaquinta
489 * All rights reserved.
490 *
491 * Redistribution and use in source and binary forms, with or without modifica-
492 * tion, are permitted provided that the following conditions are met:
493 *
494 * 1. Redistributions of source code must retain the above copyright notice,
495 * this list of conditions and the following disclaimer.
496 *
497 * 2. Redistributions in binary form must reproduce the above copyright
498 * notice, this list of conditions and the following disclaimer in the
499 * documentation and/or other materials provided with the distribution.
500 *
501 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
502 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
503 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
504 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
505 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
506 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
507 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
508 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
509 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
510 * OF THE POSSIBILITY OF SUCH DAMAGE.
511 */
512
513#ifndef ECB_H
514#define ECB_H
515
516/* 16 bits major, 16 bits minor */
517#define ECB_VERSION 0x00010003
518
519#ifdef _WIN32
520 typedef signed char int8_t;
521 typedef unsigned char uint8_t;
522 typedef signed short int16_t;
523 typedef unsigned short uint16_t;
524 typedef signed int int32_t;
525 typedef unsigned int uint32_t;
236#if __GNUC__ >= 4 526 #if __GNUC__
237# define expect(expr,value) __builtin_expect ((expr),(value)) 527 typedef signed long long int64_t;
238# define noinline __attribute__ ((noinline)) 528 typedef unsigned long long uint64_t;
529 #else /* _MSC_VER || __BORLANDC__ */
530 typedef signed __int64 int64_t;
531 typedef unsigned __int64 uint64_t;
532 #endif
533 #ifdef _WIN64
534 #define ECB_PTRSIZE 8
535 typedef uint64_t uintptr_t;
536 typedef int64_t intptr_t;
537 #else
538 #define ECB_PTRSIZE 4
539 typedef uint32_t uintptr_t;
540 typedef int32_t intptr_t;
541 #endif
239#else 542#else
240# define expect(expr,value) (expr) 543 #include <inttypes.h>
241# define noinline 544 #if UINTMAX_MAX > 0xffffffffU
242# if __STDC_VERSION__ < 199901L 545 #define ECB_PTRSIZE 8
243# define inline 546 #else
547 #define ECB_PTRSIZE 4
548 #endif
244# endif 549#endif
550
551/* work around x32 idiocy by defining proper macros */
552#if __amd64 || __x86_64 || _M_AMD64 || _M_X64
553 #if _ILP32
554 #define ECB_AMD64_X32 1
555 #else
556 #define ECB_AMD64 1
245#endif 557 #endif
558#endif
246 559
560/* many compilers define _GNUC_ to some versions but then only implement
561 * what their idiot authors think are the "more important" extensions,
562 * causing enormous grief in return for some better fake benchmark numbers.
563 * or so.
564 * we try to detect these and simply assume they are not gcc - if they have
565 * an issue with that they should have done it right in the first place.
566 */
567#ifndef ECB_GCC_VERSION
568 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
569 #define ECB_GCC_VERSION(major,minor) 0
570 #else
571 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
572 #endif
573#endif
574
575#define ECB_CPP (__cplusplus+0)
576#define ECB_CPP11 (__cplusplus >= 201103L)
577
578#if ECB_CPP
579 #define ECB_C 0
580 #define ECB_STDC_VERSION 0
581#else
582 #define ECB_C 1
583 #define ECB_STDC_VERSION __STDC_VERSION__
584#endif
585
586#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
587#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
588
589#if ECB_CPP
590 #define ECB_EXTERN_C extern "C"
591 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
592 #define ECB_EXTERN_C_END }
593#else
594 #define ECB_EXTERN_C extern
595 #define ECB_EXTERN_C_BEG
596 #define ECB_EXTERN_C_END
597#endif
598
599/*****************************************************************************/
600
601/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
602/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
603
604#if ECB_NO_THREADS
605 #define ECB_NO_SMP 1
606#endif
607
608#if ECB_NO_SMP
609 #define ECB_MEMORY_FENCE do { } while (0)
610#endif
611
612#ifndef ECB_MEMORY_FENCE
613 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
614 #if __i386 || __i386__
615 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
616 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
617 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
618 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
619 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
620 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
621 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
622 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
623 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
624 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
625 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
626 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
627 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
628 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
629 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
630 #elif __aarch64__
631 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
632 #elif (__sparc || __sparc__) && !__sparcv8
633 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
634 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
635 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
636 #elif defined __s390__ || defined __s390x__
637 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
638 #elif defined __mips__
639 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
640 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
641 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
642 #elif defined __alpha__
643 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
644 #elif defined __hppa__
645 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
646 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
647 #elif defined __ia64__
648 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
649 #elif defined __m68k__
650 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
651 #elif defined __m88k__
652 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
653 #elif defined __sh__
654 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
655 #endif
656 #endif
657#endif
658
659#ifndef ECB_MEMORY_FENCE
660 #if ECB_GCC_VERSION(4,7)
661 /* see comment below (stdatomic.h) about the C11 memory model. */
662 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
663 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
664 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
665
666 /* The __has_feature syntax from clang is so misdesigned that we cannot use it
667 * without risking compile time errors with other compilers. We *could*
668 * define our own ecb_clang_has_feature, but I just can't be bothered to work
669 * around this shit time and again.
670 * #elif defined __clang && __has_feature (cxx_atomic)
671 * // see comment below (stdatomic.h) about the C11 memory model.
672 * #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
673 * #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
674 * #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
675 */
676
677 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
678 #define ECB_MEMORY_FENCE __sync_synchronize ()
679 #elif _MSC_VER >= 1500 /* VC++ 2008 */
680 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
681 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
682 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
683 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
684 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
685 #elif _MSC_VER >= 1400 /* VC++ 2005 */
686 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
687 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
688 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
689 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
690 #elif defined _WIN32
691 #include <WinNT.h>
692 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
693 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
694 #include <mbarrier.h>
695 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
696 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
697 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
698 #elif __xlC__
699 #define ECB_MEMORY_FENCE __sync ()
700 #endif
701#endif
702
703#ifndef ECB_MEMORY_FENCE
704 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
705 /* we assume that these memory fences work on all variables/all memory accesses, */
706 /* not just C11 atomics and atomic accesses */
707 #include <stdatomic.h>
708 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
709 /* any fence other than seq_cst, which isn't very efficient for us. */
710 /* Why that is, we don't know - either the C11 memory model is quite useless */
711 /* for most usages, or gcc and clang have a bug */
712 /* I *currently* lean towards the latter, and inefficiently implement */
713 /* all three of ecb's fences as a seq_cst fence */
714 /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */
715 /* for all __atomic_thread_fence's except seq_cst */
716 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
717 #endif
718#endif
719
720#ifndef ECB_MEMORY_FENCE
721 #if !ECB_AVOID_PTHREADS
722 /*
723 * if you get undefined symbol references to pthread_mutex_lock,
724 * or failure to find pthread.h, then you should implement
725 * the ECB_MEMORY_FENCE operations for your cpu/compiler
726 * OR provide pthread.h and link against the posix thread library
727 * of your system.
728 */
729 #include <pthread.h>
730 #define ECB_NEEDS_PTHREADS 1
731 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
732
733 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
734 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
735 #endif
736#endif
737
738#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
739 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
740#endif
741
742#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
743 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
744#endif
745
746/*****************************************************************************/
747
748#if __cplusplus
749 #define ecb_inline static inline
750#elif ECB_GCC_VERSION(2,5)
751 #define ecb_inline static __inline__
752#elif ECB_C99
753 #define ecb_inline static inline
754#else
755 #define ecb_inline static
756#endif
757
758#if ECB_GCC_VERSION(3,3)
759 #define ecb_restrict __restrict__
760#elif ECB_C99
761 #define ecb_restrict restrict
762#else
763 #define ecb_restrict
764#endif
765
766typedef int ecb_bool;
767
768#define ECB_CONCAT_(a, b) a ## b
769#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
770#define ECB_STRINGIFY_(a) # a
771#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
772
773#define ecb_function_ ecb_inline
774
775#if ECB_GCC_VERSION(3,1)
776 #define ecb_attribute(attrlist) __attribute__(attrlist)
777 #define ecb_is_constant(expr) __builtin_constant_p (expr)
778 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
779 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
780#else
781 #define ecb_attribute(attrlist)
782
783 /* possible C11 impl for integral types
784 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
785 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
786
787 #define ecb_is_constant(expr) 0
788 #define ecb_expect(expr,value) (expr)
789 #define ecb_prefetch(addr,rw,locality)
790#endif
791
792/* no emulation for ecb_decltype */
793#if ECB_GCC_VERSION(4,5)
794 #define ecb_decltype(x) __decltype(x)
795#elif ECB_GCC_VERSION(3,0)
796 #define ecb_decltype(x) __typeof(x)
797#endif
798
799#define ecb_noinline ecb_attribute ((__noinline__))
800#define ecb_unused ecb_attribute ((__unused__))
801#define ecb_const ecb_attribute ((__const__))
802#define ecb_pure ecb_attribute ((__pure__))
803
804#if ECB_C11
805 #define ecb_noreturn _Noreturn
806#else
807 #define ecb_noreturn ecb_attribute ((__noreturn__))
808#endif
809
810#if ECB_GCC_VERSION(4,3)
811 #define ecb_artificial ecb_attribute ((__artificial__))
812 #define ecb_hot ecb_attribute ((__hot__))
813 #define ecb_cold ecb_attribute ((__cold__))
814#else
815 #define ecb_artificial
816 #define ecb_hot
817 #define ecb_cold
818#endif
819
820/* put around conditional expressions if you are very sure that the */
821/* expression is mostly true or mostly false. note that these return */
822/* booleans, not the expression. */
247#define expect_false(expr) expect ((expr) != 0, 0) 823#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
248#define expect_true(expr) expect ((expr) != 0, 1) 824#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
825/* for compatibility to the rest of the world */
826#define ecb_likely(expr) ecb_expect_true (expr)
827#define ecb_unlikely(expr) ecb_expect_false (expr)
828
829/* count trailing zero bits and count # of one bits */
830#if ECB_GCC_VERSION(3,4)
831 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
832 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
833 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
834 #define ecb_ctz32(x) __builtin_ctz (x)
835 #define ecb_ctz64(x) __builtin_ctzll (x)
836 #define ecb_popcount32(x) __builtin_popcount (x)
837 /* no popcountll */
838#else
839 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
840 ecb_function_ int
841 ecb_ctz32 (uint32_t x)
842 {
843 int r = 0;
844
845 x &= ~x + 1; /* this isolates the lowest bit */
846
847#if ECB_branchless_on_i386
848 r += !!(x & 0xaaaaaaaa) << 0;
849 r += !!(x & 0xcccccccc) << 1;
850 r += !!(x & 0xf0f0f0f0) << 2;
851 r += !!(x & 0xff00ff00) << 3;
852 r += !!(x & 0xffff0000) << 4;
853#else
854 if (x & 0xaaaaaaaa) r += 1;
855 if (x & 0xcccccccc) r += 2;
856 if (x & 0xf0f0f0f0) r += 4;
857 if (x & 0xff00ff00) r += 8;
858 if (x & 0xffff0000) r += 16;
859#endif
860
861 return r;
862 }
863
864 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
865 ecb_function_ int
866 ecb_ctz64 (uint64_t x)
867 {
868 int shift = x & 0xffffffffU ? 0 : 32;
869 return ecb_ctz32 (x >> shift) + shift;
870 }
871
872 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
873 ecb_function_ int
874 ecb_popcount32 (uint32_t x)
875 {
876 x -= (x >> 1) & 0x55555555;
877 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
878 x = ((x >> 4) + x) & 0x0f0f0f0f;
879 x *= 0x01010101;
880
881 return x >> 24;
882 }
883
884 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
885 ecb_function_ int ecb_ld32 (uint32_t x)
886 {
887 int r = 0;
888
889 if (x >> 16) { x >>= 16; r += 16; }
890 if (x >> 8) { x >>= 8; r += 8; }
891 if (x >> 4) { x >>= 4; r += 4; }
892 if (x >> 2) { x >>= 2; r += 2; }
893 if (x >> 1) { r += 1; }
894
895 return r;
896 }
897
898 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
899 ecb_function_ int ecb_ld64 (uint64_t x)
900 {
901 int r = 0;
902
903 if (x >> 32) { x >>= 32; r += 32; }
904
905 return r + ecb_ld32 (x);
906 }
907#endif
908
909ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
910ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
911ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
912ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
913
914ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
915ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
916{
917 return ( (x * 0x0802U & 0x22110U)
918 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
919}
920
921ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
922ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
923{
924 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
925 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
926 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
927 x = ( x >> 8 ) | ( x << 8);
928
929 return x;
930}
931
932ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
933ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
934{
935 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
936 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
937 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
938 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
939 x = ( x >> 16 ) | ( x << 16);
940
941 return x;
942}
943
944/* popcount64 is only available on 64 bit cpus as gcc builtin */
945/* so for this version we are lazy */
946ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
947ecb_function_ int
948ecb_popcount64 (uint64_t x)
949{
950 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
951}
952
953ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
954ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
955ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
956ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
957ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
958ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
959ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
960ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
961
962ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
963ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
964ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
965ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
966ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
967ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
968ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
969ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
970
971#if ECB_GCC_VERSION(4,3)
972 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
973 #define ecb_bswap32(x) __builtin_bswap32 (x)
974 #define ecb_bswap64(x) __builtin_bswap64 (x)
975#else
976 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
977 ecb_function_ uint16_t
978 ecb_bswap16 (uint16_t x)
979 {
980 return ecb_rotl16 (x, 8);
981 }
982
983 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
984 ecb_function_ uint32_t
985 ecb_bswap32 (uint32_t x)
986 {
987 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
988 }
989
990 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
991 ecb_function_ uint64_t
992 ecb_bswap64 (uint64_t x)
993 {
994 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
995 }
996#endif
997
998#if ECB_GCC_VERSION(4,5)
999 #define ecb_unreachable() __builtin_unreachable ()
1000#else
1001 /* this seems to work fine, but gcc always emits a warning for it :/ */
1002 ecb_inline void ecb_unreachable (void) ecb_noreturn;
1003 ecb_inline void ecb_unreachable (void) { }
1004#endif
1005
1006/* try to tell the compiler that some condition is definitely true */
1007#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1008
1009ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
1010ecb_inline unsigned char
1011ecb_byteorder_helper (void)
1012{
1013 /* the union code still generates code under pressure in gcc, */
1014 /* but less than using pointers, and always seems to */
1015 /* successfully return a constant. */
1016 /* the reason why we have this horrible preprocessor mess */
1017 /* is to avoid it in all cases, at least on common architectures */
1018 /* or when using a recent enough gcc version (>= 4.6) */
1019#if __i386 || __i386__ || _M_X86 || __amd64 || __amd64__ || _M_X64
1020 return 0x44;
1021#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1022 return 0x44;
1023#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1024 return 0x11;
1025#else
1026 union
1027 {
1028 uint32_t i;
1029 uint8_t c;
1030 } u = { 0x11223344 };
1031 return u.c;
1032#endif
1033}
1034
1035ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
1036ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
1037ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
1038ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
1039
1040#if ECB_GCC_VERSION(3,0) || ECB_C99
1041 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1042#else
1043 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1044#endif
1045
1046#if __cplusplus
1047 template<typename T>
1048 static inline T ecb_div_rd (T val, T div)
1049 {
1050 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1051 }
1052 template<typename T>
1053 static inline T ecb_div_ru (T val, T div)
1054 {
1055 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1056 }
1057#else
1058 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1059 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1060#endif
1061
1062#if ecb_cplusplus_does_not_suck
1063 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1064 template<typename T, int N>
1065 static inline int ecb_array_length (const T (&arr)[N])
1066 {
1067 return N;
1068 }
1069#else
1070 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1071#endif
1072
1073/*******************************************************************************/
1074/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1075
1076/* basically, everything uses "ieee pure-endian" floating point numbers */
1077/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1078#if 0 \
1079 || __i386 || __i386__ \
1080 || __amd64 || __amd64__ || __x86_64 || __x86_64__ \
1081 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1082 || defined __arm__ && defined __ARM_EABI__ \
1083 || defined __s390__ || defined __s390x__ \
1084 || defined __mips__ \
1085 || defined __alpha__ \
1086 || defined __hppa__ \
1087 || defined __ia64__ \
1088 || defined __m68k__ \
1089 || defined __m88k__ \
1090 || defined __sh__ \
1091 || defined _M_IX86 || defined _M_AMD64 || defined _M_IA64 \
1092 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__))
1093 #define ECB_STDFP 1
1094 #include <string.h> /* for memcpy */
1095#else
1096 #define ECB_STDFP 0
1097#endif
1098
1099#ifndef ECB_NO_LIBM
1100
1101 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1102
1103 /* only the oldest of old doesn't have this one. solaris. */
1104 #ifdef INFINITY
1105 #define ECB_INFINITY INFINITY
1106 #else
1107 #define ECB_INFINITY HUGE_VAL
1108 #endif
1109
1110 #ifdef NAN
1111 #define ECB_NAN NAN
1112 #else
1113 #define ECB_NAN ECB_INFINITY
1114 #endif
1115
1116 /* converts an ieee half/binary16 to a float */
1117 ecb_function_ float ecb_binary16_to_float (uint16_t x) ecb_const;
1118 ecb_function_ float
1119 ecb_binary16_to_float (uint16_t x)
1120 {
1121 int e = (x >> 10) & 0x1f;
1122 int m = x & 0x3ff;
1123 float r;
1124
1125 if (!e ) r = ldexpf (m , -24);
1126 else if (e != 31) r = ldexpf (m + 0x400, e - 25);
1127 else if (m ) r = ECB_NAN;
1128 else r = ECB_INFINITY;
1129
1130 return x & 0x8000 ? -r : r;
1131 }
1132
1133 /* convert a float to ieee single/binary32 */
1134 ecb_function_ uint32_t ecb_float_to_binary32 (float x) ecb_const;
1135 ecb_function_ uint32_t
1136 ecb_float_to_binary32 (float x)
1137 {
1138 uint32_t r;
1139
1140 #if ECB_STDFP
1141 memcpy (&r, &x, 4);
1142 #else
1143 /* slow emulation, works for anything but -0 */
1144 uint32_t m;
1145 int e;
1146
1147 if (x == 0e0f ) return 0x00000000U;
1148 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1149 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1150 if (x != x ) return 0x7fbfffffU;
1151
1152 m = frexpf (x, &e) * 0x1000000U;
1153
1154 r = m & 0x80000000U;
1155
1156 if (r)
1157 m = -m;
1158
1159 if (e <= -126)
1160 {
1161 m &= 0xffffffU;
1162 m >>= (-125 - e);
1163 e = -126;
1164 }
1165
1166 r |= (e + 126) << 23;
1167 r |= m & 0x7fffffU;
1168 #endif
1169
1170 return r;
1171 }
1172
1173 /* converts an ieee single/binary32 to a float */
1174 ecb_function_ float ecb_binary32_to_float (uint32_t x) ecb_const;
1175 ecb_function_ float
1176 ecb_binary32_to_float (uint32_t x)
1177 {
1178 float r;
1179
1180 #if ECB_STDFP
1181 memcpy (&r, &x, 4);
1182 #else
1183 /* emulation, only works for normals and subnormals and +0 */
1184 int neg = x >> 31;
1185 int e = (x >> 23) & 0xffU;
1186
1187 x &= 0x7fffffU;
1188
1189 if (e)
1190 x |= 0x800000U;
1191 else
1192 e = 1;
1193
1194 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1195 r = ldexpf (x * (0.5f / 0x800000U), e - 126);
1196
1197 r = neg ? -r : r;
1198 #endif
1199
1200 return r;
1201 }
1202
1203 /* convert a double to ieee double/binary64 */
1204 ecb_function_ uint64_t ecb_double_to_binary64 (double x) ecb_const;
1205 ecb_function_ uint64_t
1206 ecb_double_to_binary64 (double x)
1207 {
1208 uint64_t r;
1209
1210 #if ECB_STDFP
1211 memcpy (&r, &x, 8);
1212 #else
1213 /* slow emulation, works for anything but -0 */
1214 uint64_t m;
1215 int e;
1216
1217 if (x == 0e0 ) return 0x0000000000000000U;
1218 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1219 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1220 if (x != x ) return 0X7ff7ffffffffffffU;
1221
1222 m = frexp (x, &e) * 0x20000000000000U;
1223
1224 r = m & 0x8000000000000000;;
1225
1226 if (r)
1227 m = -m;
1228
1229 if (e <= -1022)
1230 {
1231 m &= 0x1fffffffffffffU;
1232 m >>= (-1021 - e);
1233 e = -1022;
1234 }
1235
1236 r |= ((uint64_t)(e + 1022)) << 52;
1237 r |= m & 0xfffffffffffffU;
1238 #endif
1239
1240 return r;
1241 }
1242
1243 /* converts an ieee double/binary64 to a double */
1244 ecb_function_ double ecb_binary64_to_double (uint64_t x) ecb_const;
1245 ecb_function_ double
1246 ecb_binary64_to_double (uint64_t x)
1247 {
1248 double r;
1249
1250 #if ECB_STDFP
1251 memcpy (&r, &x, 8);
1252 #else
1253 /* emulation, only works for normals and subnormals and +0 */
1254 int neg = x >> 63;
1255 int e = (x >> 52) & 0x7ffU;
1256
1257 x &= 0xfffffffffffffU;
1258
1259 if (e)
1260 x |= 0x10000000000000U;
1261 else
1262 e = 1;
1263
1264 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1265 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1266
1267 r = neg ? -r : r;
1268 #endif
1269
1270 return r;
1271 }
1272
1273#endif
1274
1275#endif
1276
1277/* ECB.H END */
1278
1279#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1280/* if your architecture doesn't need memory fences, e.g. because it is
1281 * single-cpu/core, or if you use libev in a project that doesn't use libev
1282 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1283 * libev, in which cases the memory fences become nops.
1284 * alternatively, you can remove this #error and link against libpthread,
1285 * which will then provide the memory fences.
1286 */
1287# error "memory fences not defined for your architecture, please report"
1288#endif
1289
1290#ifndef ECB_MEMORY_FENCE
1291# define ECB_MEMORY_FENCE do { } while (0)
1292# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1293# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1294#endif
1295
1296#define expect_false(cond) ecb_expect_false (cond)
1297#define expect_true(cond) ecb_expect_true (cond)
1298#define noinline ecb_noinline
1299
249#define inline_size static inline 1300#define inline_size ecb_inline
250 1301
251#if EV_MINIMAL 1302#if EV_FEATURE_CODE
1303# define inline_speed ecb_inline
1304#else
252# define inline_speed static noinline 1305# define inline_speed static noinline
1306#endif
1307
1308#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1309
1310#if EV_MINPRI == EV_MAXPRI
1311# define ABSPRI(w) (((W)w), 0)
253#else 1312#else
254# define inline_speed static inline
255#endif
256
257#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
258#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1313# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1314#endif
259 1315
260#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1316#define EMPTY /* required for microsofts broken pseudo-c compiler */
261#define EMPTY2(a,b) /* used to suppress some warnings */ 1317#define EMPTY2(a,b) /* used to suppress some warnings */
262 1318
263typedef ev_watcher *W; 1319typedef ev_watcher *W;
264typedef ev_watcher_list *WL; 1320typedef ev_watcher_list *WL;
265typedef ev_watcher_time *WT; 1321typedef ev_watcher_time *WT;
266 1322
1323#define ev_active(w) ((W)(w))->active
1324#define ev_at(w) ((WT)(w))->at
1325
1326#if EV_USE_REALTIME
1327/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1328/* giving it a reasonably high chance of working on typical architectures */
1329static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1330#endif
1331
1332#if EV_USE_MONOTONIC
267static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1333static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1334#endif
1335
1336#ifndef EV_FD_TO_WIN32_HANDLE
1337# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1338#endif
1339#ifndef EV_WIN32_HANDLE_TO_FD
1340# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1341#endif
1342#ifndef EV_WIN32_CLOSE_FD
1343# define EV_WIN32_CLOSE_FD(fd) close (fd)
1344#endif
268 1345
269#ifdef _WIN32 1346#ifdef _WIN32
270# include "ev_win32.c" 1347# include "ev_win32.c"
271#endif 1348#endif
272 1349
273/*****************************************************************************/ 1350/*****************************************************************************/
274 1351
1352/* define a suitable floor function (only used by periodics atm) */
1353
1354#if EV_USE_FLOOR
1355# include <math.h>
1356# define ev_floor(v) floor (v)
1357#else
1358
1359#include <float.h>
1360
1361/* a floor() replacement function, should be independent of ev_tstamp type */
1362static ev_tstamp noinline
1363ev_floor (ev_tstamp v)
1364{
1365 /* the choice of shift factor is not terribly important */
1366#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1367 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1368#else
1369 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1370#endif
1371
1372 /* argument too large for an unsigned long? */
1373 if (expect_false (v >= shift))
1374 {
1375 ev_tstamp f;
1376
1377 if (v == v - 1.)
1378 return v; /* very large number */
1379
1380 f = shift * ev_floor (v * (1. / shift));
1381 return f + ev_floor (v - f);
1382 }
1383
1384 /* special treatment for negative args? */
1385 if (expect_false (v < 0.))
1386 {
1387 ev_tstamp f = -ev_floor (-v);
1388
1389 return f - (f == v ? 0 : 1);
1390 }
1391
1392 /* fits into an unsigned long */
1393 return (unsigned long)v;
1394}
1395
1396#endif
1397
1398/*****************************************************************************/
1399
1400#ifdef __linux
1401# include <sys/utsname.h>
1402#endif
1403
1404static unsigned int noinline ecb_cold
1405ev_linux_version (void)
1406{
1407#ifdef __linux
1408 unsigned int v = 0;
1409 struct utsname buf;
1410 int i;
1411 char *p = buf.release;
1412
1413 if (uname (&buf))
1414 return 0;
1415
1416 for (i = 3+1; --i; )
1417 {
1418 unsigned int c = 0;
1419
1420 for (;;)
1421 {
1422 if (*p >= '0' && *p <= '9')
1423 c = c * 10 + *p++ - '0';
1424 else
1425 {
1426 p += *p == '.';
1427 break;
1428 }
1429 }
1430
1431 v = (v << 8) | c;
1432 }
1433
1434 return v;
1435#else
1436 return 0;
1437#endif
1438}
1439
1440/*****************************************************************************/
1441
1442#if EV_AVOID_STDIO
1443static void noinline ecb_cold
1444ev_printerr (const char *msg)
1445{
1446 write (STDERR_FILENO, msg, strlen (msg));
1447}
1448#endif
1449
275static void (*syserr_cb)(const char *msg); 1450static void (*syserr_cb)(const char *msg) EV_THROW;
276 1451
277void 1452void ecb_cold
278ev_set_syserr_cb (void (*cb)(const char *msg)) 1453ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
279{ 1454{
280 syserr_cb = cb; 1455 syserr_cb = cb;
281} 1456}
282 1457
283static void noinline 1458static void noinline ecb_cold
284syserr (const char *msg) 1459ev_syserr (const char *msg)
285{ 1460{
286 if (!msg) 1461 if (!msg)
287 msg = "(libev) system error"; 1462 msg = "(libev) system error";
288 1463
289 if (syserr_cb) 1464 if (syserr_cb)
290 syserr_cb (msg); 1465 syserr_cb (msg);
291 else 1466 else
292 { 1467 {
1468#if EV_AVOID_STDIO
1469 ev_printerr (msg);
1470 ev_printerr (": ");
1471 ev_printerr (strerror (errno));
1472 ev_printerr ("\n");
1473#else
293 perror (msg); 1474 perror (msg);
1475#endif
294 abort (); 1476 abort ();
295 } 1477 }
296} 1478}
297 1479
1480static void *
1481ev_realloc_emul (void *ptr, long size) EV_THROW
1482{
1483 /* some systems, notably openbsd and darwin, fail to properly
1484 * implement realloc (x, 0) (as required by both ansi c-89 and
1485 * the single unix specification, so work around them here.
1486 * recently, also (at least) fedora and debian started breaking it,
1487 * despite documenting it otherwise.
1488 */
1489
1490 if (size)
1491 return realloc (ptr, size);
1492
1493 free (ptr);
1494 return 0;
1495}
1496
298static void *(*alloc)(void *ptr, long size); 1497static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
299 1498
300void 1499void ecb_cold
301ev_set_allocator (void *(*cb)(void *ptr, long size)) 1500ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
302{ 1501{
303 alloc = cb; 1502 alloc = cb;
304} 1503}
305 1504
306inline_speed void * 1505inline_speed void *
307ev_realloc (void *ptr, long size) 1506ev_realloc (void *ptr, long size)
308{ 1507{
309 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1508 ptr = alloc (ptr, size);
310 1509
311 if (!ptr && size) 1510 if (!ptr && size)
312 { 1511 {
1512#if EV_AVOID_STDIO
1513 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1514#else
313 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1515 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1516#endif
314 abort (); 1517 abort ();
315 } 1518 }
316 1519
317 return ptr; 1520 return ptr;
318} 1521}
320#define ev_malloc(size) ev_realloc (0, (size)) 1523#define ev_malloc(size) ev_realloc (0, (size))
321#define ev_free(ptr) ev_realloc ((ptr), 0) 1524#define ev_free(ptr) ev_realloc ((ptr), 0)
322 1525
323/*****************************************************************************/ 1526/*****************************************************************************/
324 1527
1528/* set in reify when reification needed */
1529#define EV_ANFD_REIFY 1
1530
1531/* file descriptor info structure */
325typedef struct 1532typedef struct
326{ 1533{
327 WL head; 1534 WL head;
328 unsigned char events; 1535 unsigned char events; /* the events watched for */
1536 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1537 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
329 unsigned char reify; 1538 unsigned char unused;
1539#if EV_USE_EPOLL
1540 unsigned int egen; /* generation counter to counter epoll bugs */
1541#endif
330#if EV_SELECT_IS_WINSOCKET 1542#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
331 SOCKET handle; 1543 SOCKET handle;
332#endif 1544#endif
1545#if EV_USE_IOCP
1546 OVERLAPPED or, ow;
1547#endif
333} ANFD; 1548} ANFD;
334 1549
1550/* stores the pending event set for a given watcher */
335typedef struct 1551typedef struct
336{ 1552{
337 W w; 1553 W w;
338 int events; 1554 int events; /* the pending event set for the given watcher */
339} ANPENDING; 1555} ANPENDING;
340 1556
341#if EV_USE_INOTIFY 1557#if EV_USE_INOTIFY
1558/* hash table entry per inotify-id */
342typedef struct 1559typedef struct
343{ 1560{
344 WL head; 1561 WL head;
345} ANFS; 1562} ANFS;
1563#endif
1564
1565/* Heap Entry */
1566#if EV_HEAP_CACHE_AT
1567 /* a heap element */
1568 typedef struct {
1569 ev_tstamp at;
1570 WT w;
1571 } ANHE;
1572
1573 #define ANHE_w(he) (he).w /* access watcher, read-write */
1574 #define ANHE_at(he) (he).at /* access cached at, read-only */
1575 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1576#else
1577 /* a heap element */
1578 typedef WT ANHE;
1579
1580 #define ANHE_w(he) (he)
1581 #define ANHE_at(he) (he)->at
1582 #define ANHE_at_cache(he)
346#endif 1583#endif
347 1584
348#if EV_MULTIPLICITY 1585#if EV_MULTIPLICITY
349 1586
350 struct ev_loop 1587 struct ev_loop
356 #undef VAR 1593 #undef VAR
357 }; 1594 };
358 #include "ev_wrap.h" 1595 #include "ev_wrap.h"
359 1596
360 static struct ev_loop default_loop_struct; 1597 static struct ev_loop default_loop_struct;
361 struct ev_loop *ev_default_loop_ptr; 1598 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
362 1599
363#else 1600#else
364 1601
365 ev_tstamp ev_rt_now; 1602 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
366 #define VAR(name,decl) static decl; 1603 #define VAR(name,decl) static decl;
367 #include "ev_vars.h" 1604 #include "ev_vars.h"
368 #undef VAR 1605 #undef VAR
369 1606
370 static int ev_default_loop_ptr; 1607 static int ev_default_loop_ptr;
371 1608
372#endif 1609#endif
373 1610
1611#if EV_FEATURE_API
1612# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1613# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1614# define EV_INVOKE_PENDING invoke_cb (EV_A)
1615#else
1616# define EV_RELEASE_CB (void)0
1617# define EV_ACQUIRE_CB (void)0
1618# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1619#endif
1620
1621#define EVBREAK_RECURSE 0x80
1622
374/*****************************************************************************/ 1623/*****************************************************************************/
375 1624
1625#ifndef EV_HAVE_EV_TIME
376ev_tstamp 1626ev_tstamp
377ev_time (void) 1627ev_time (void) EV_THROW
378{ 1628{
379#if EV_USE_REALTIME 1629#if EV_USE_REALTIME
1630 if (expect_true (have_realtime))
1631 {
380 struct timespec ts; 1632 struct timespec ts;
381 clock_gettime (CLOCK_REALTIME, &ts); 1633 clock_gettime (CLOCK_REALTIME, &ts);
382 return ts.tv_sec + ts.tv_nsec * 1e-9; 1634 return ts.tv_sec + ts.tv_nsec * 1e-9;
383#else 1635 }
1636#endif
1637
384 struct timeval tv; 1638 struct timeval tv;
385 gettimeofday (&tv, 0); 1639 gettimeofday (&tv, 0);
386 return tv.tv_sec + tv.tv_usec * 1e-6; 1640 return tv.tv_sec + tv.tv_usec * 1e-6;
387#endif
388} 1641}
1642#endif
389 1643
390ev_tstamp inline_size 1644inline_size ev_tstamp
391get_clock (void) 1645get_clock (void)
392{ 1646{
393#if EV_USE_MONOTONIC 1647#if EV_USE_MONOTONIC
394 if (expect_true (have_monotonic)) 1648 if (expect_true (have_monotonic))
395 { 1649 {
402 return ev_time (); 1656 return ev_time ();
403} 1657}
404 1658
405#if EV_MULTIPLICITY 1659#if EV_MULTIPLICITY
406ev_tstamp 1660ev_tstamp
407ev_now (EV_P) 1661ev_now (EV_P) EV_THROW
408{ 1662{
409 return ev_rt_now; 1663 return ev_rt_now;
410} 1664}
411#endif 1665#endif
412 1666
413int inline_size 1667void
1668ev_sleep (ev_tstamp delay) EV_THROW
1669{
1670 if (delay > 0.)
1671 {
1672#if EV_USE_NANOSLEEP
1673 struct timespec ts;
1674
1675 EV_TS_SET (ts, delay);
1676 nanosleep (&ts, 0);
1677#elif defined _WIN32
1678 Sleep ((unsigned long)(delay * 1e3));
1679#else
1680 struct timeval tv;
1681
1682 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1683 /* something not guaranteed by newer posix versions, but guaranteed */
1684 /* by older ones */
1685 EV_TV_SET (tv, delay);
1686 select (0, 0, 0, 0, &tv);
1687#endif
1688 }
1689}
1690
1691/*****************************************************************************/
1692
1693#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1694
1695/* find a suitable new size for the given array, */
1696/* hopefully by rounding to a nice-to-malloc size */
1697inline_size int
414array_nextsize (int elem, int cur, int cnt) 1698array_nextsize (int elem, int cur, int cnt)
415{ 1699{
416 int ncur = cur + 1; 1700 int ncur = cur + 1;
417 1701
418 do 1702 do
419 ncur <<= 1; 1703 ncur <<= 1;
420 while (cnt > ncur); 1704 while (cnt > ncur);
421 1705
422 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 1706 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
423 if (elem * ncur > 4096) 1707 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
424 { 1708 {
425 ncur *= elem; 1709 ncur *= elem;
426 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 1710 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
427 ncur = ncur - sizeof (void *) * 4; 1711 ncur = ncur - sizeof (void *) * 4;
428 ncur /= elem; 1712 ncur /= elem;
429 } 1713 }
430 1714
431 return ncur; 1715 return ncur;
432} 1716}
433 1717
434static noinline void * 1718static void * noinline ecb_cold
435array_realloc (int elem, void *base, int *cur, int cnt) 1719array_realloc (int elem, void *base, int *cur, int cnt)
436{ 1720{
437 *cur = array_nextsize (elem, *cur, cnt); 1721 *cur = array_nextsize (elem, *cur, cnt);
438 return ev_realloc (base, elem * *cur); 1722 return ev_realloc (base, elem * *cur);
439} 1723}
1724
1725#define array_init_zero(base,count) \
1726 memset ((void *)(base), 0, sizeof (*(base)) * (count))
440 1727
441#define array_needsize(type,base,cur,cnt,init) \ 1728#define array_needsize(type,base,cur,cnt,init) \
442 if (expect_false ((cnt) > (cur))) \ 1729 if (expect_false ((cnt) > (cur))) \
443 { \ 1730 { \
444 int ocur_ = (cur); \ 1731 int ecb_unused ocur_ = (cur); \
445 (base) = (type *)array_realloc \ 1732 (base) = (type *)array_realloc \
446 (sizeof (type), (base), &(cur), (cnt)); \ 1733 (sizeof (type), (base), &(cur), (cnt)); \
447 init ((base) + (ocur_), (cur) - ocur_); \ 1734 init ((base) + (ocur_), (cur) - ocur_); \
448 } 1735 }
449 1736
456 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1743 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
457 } 1744 }
458#endif 1745#endif
459 1746
460#define array_free(stem, idx) \ 1747#define array_free(stem, idx) \
461 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1748 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
462 1749
463/*****************************************************************************/ 1750/*****************************************************************************/
464 1751
1752/* dummy callback for pending events */
1753static void noinline
1754pendingcb (EV_P_ ev_prepare *w, int revents)
1755{
1756}
1757
465void noinline 1758void noinline
466ev_feed_event (EV_P_ void *w, int revents) 1759ev_feed_event (EV_P_ void *w, int revents) EV_THROW
467{ 1760{
468 W w_ = (W)w; 1761 W w_ = (W)w;
469 int pri = ABSPRI (w_); 1762 int pri = ABSPRI (w_);
470 1763
471 if (expect_false (w_->pending)) 1764 if (expect_false (w_->pending))
475 w_->pending = ++pendingcnt [pri]; 1768 w_->pending = ++pendingcnt [pri];
476 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 1769 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
477 pendings [pri][w_->pending - 1].w = w_; 1770 pendings [pri][w_->pending - 1].w = w_;
478 pendings [pri][w_->pending - 1].events = revents; 1771 pendings [pri][w_->pending - 1].events = revents;
479 } 1772 }
480}
481 1773
482void inline_speed 1774 pendingpri = NUMPRI - 1;
1775}
1776
1777inline_speed void
1778feed_reverse (EV_P_ W w)
1779{
1780 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1781 rfeeds [rfeedcnt++] = w;
1782}
1783
1784inline_size void
1785feed_reverse_done (EV_P_ int revents)
1786{
1787 do
1788 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1789 while (rfeedcnt);
1790}
1791
1792inline_speed void
483queue_events (EV_P_ W *events, int eventcnt, int type) 1793queue_events (EV_P_ W *events, int eventcnt, int type)
484{ 1794{
485 int i; 1795 int i;
486 1796
487 for (i = 0; i < eventcnt; ++i) 1797 for (i = 0; i < eventcnt; ++i)
488 ev_feed_event (EV_A_ events [i], type); 1798 ev_feed_event (EV_A_ events [i], type);
489} 1799}
490 1800
491/*****************************************************************************/ 1801/*****************************************************************************/
492 1802
493void inline_size 1803inline_speed void
494anfds_init (ANFD *base, int count)
495{
496 while (count--)
497 {
498 base->head = 0;
499 base->events = EV_NONE;
500 base->reify = 0;
501
502 ++base;
503 }
504}
505
506void inline_speed
507fd_event (EV_P_ int fd, int revents) 1804fd_event_nocheck (EV_P_ int fd, int revents)
508{ 1805{
509 ANFD *anfd = anfds + fd; 1806 ANFD *anfd = anfds + fd;
510 ev_io *w; 1807 ev_io *w;
511 1808
512 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1809 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
516 if (ev) 1813 if (ev)
517 ev_feed_event (EV_A_ (W)w, ev); 1814 ev_feed_event (EV_A_ (W)w, ev);
518 } 1815 }
519} 1816}
520 1817
1818/* do not submit kernel events for fds that have reify set */
1819/* because that means they changed while we were polling for new events */
1820inline_speed void
1821fd_event (EV_P_ int fd, int revents)
1822{
1823 ANFD *anfd = anfds + fd;
1824
1825 if (expect_true (!anfd->reify))
1826 fd_event_nocheck (EV_A_ fd, revents);
1827}
1828
521void 1829void
522ev_feed_fd_event (EV_P_ int fd, int revents) 1830ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
523{ 1831{
524 if (fd >= 0 && fd < anfdmax) 1832 if (fd >= 0 && fd < anfdmax)
525 fd_event (EV_A_ fd, revents); 1833 fd_event_nocheck (EV_A_ fd, revents);
526} 1834}
527 1835
528void inline_size 1836/* make sure the external fd watch events are in-sync */
1837/* with the kernel/libev internal state */
1838inline_size void
529fd_reify (EV_P) 1839fd_reify (EV_P)
530{ 1840{
531 int i; 1841 int i;
1842
1843#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1844 for (i = 0; i < fdchangecnt; ++i)
1845 {
1846 int fd = fdchanges [i];
1847 ANFD *anfd = anfds + fd;
1848
1849 if (anfd->reify & EV__IOFDSET && anfd->head)
1850 {
1851 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1852
1853 if (handle != anfd->handle)
1854 {
1855 unsigned long arg;
1856
1857 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1858
1859 /* handle changed, but fd didn't - we need to do it in two steps */
1860 backend_modify (EV_A_ fd, anfd->events, 0);
1861 anfd->events = 0;
1862 anfd->handle = handle;
1863 }
1864 }
1865 }
1866#endif
532 1867
533 for (i = 0; i < fdchangecnt; ++i) 1868 for (i = 0; i < fdchangecnt; ++i)
534 { 1869 {
535 int fd = fdchanges [i]; 1870 int fd = fdchanges [i];
536 ANFD *anfd = anfds + fd; 1871 ANFD *anfd = anfds + fd;
537 ev_io *w; 1872 ev_io *w;
538 1873
539 unsigned char events = 0; 1874 unsigned char o_events = anfd->events;
1875 unsigned char o_reify = anfd->reify;
540 1876
541 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1877 anfd->reify = 0;
542 events |= (unsigned char)w->events;
543 1878
544#if EV_SELECT_IS_WINSOCKET 1879 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
545 if (events)
546 { 1880 {
547 unsigned long argp; 1881 anfd->events = 0;
548 anfd->handle = _get_osfhandle (fd); 1882
549 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1883 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1884 anfd->events |= (unsigned char)w->events;
1885
1886 if (o_events != anfd->events)
1887 o_reify = EV__IOFDSET; /* actually |= */
550 } 1888 }
551#endif
552 1889
553 { 1890 if (o_reify & EV__IOFDSET)
554 unsigned char o_events = anfd->events;
555 unsigned char o_reify = anfd->reify;
556
557 anfd->reify = 0;
558 anfd->events = events;
559
560 if (o_events != events || o_reify & EV_IOFDSET)
561 backend_modify (EV_A_ fd, o_events, events); 1891 backend_modify (EV_A_ fd, o_events, anfd->events);
562 }
563 } 1892 }
564 1893
565 fdchangecnt = 0; 1894 fdchangecnt = 0;
566} 1895}
567 1896
568void inline_size 1897/* something about the given fd changed */
1898inline_size void
569fd_change (EV_P_ int fd, int flags) 1899fd_change (EV_P_ int fd, int flags)
570{ 1900{
571 unsigned char reify = anfds [fd].reify; 1901 unsigned char reify = anfds [fd].reify;
572 anfds [fd].reify |= flags; 1902 anfds [fd].reify |= flags;
573 1903
577 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1907 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
578 fdchanges [fdchangecnt - 1] = fd; 1908 fdchanges [fdchangecnt - 1] = fd;
579 } 1909 }
580} 1910}
581 1911
582void inline_speed 1912/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1913inline_speed void ecb_cold
583fd_kill (EV_P_ int fd) 1914fd_kill (EV_P_ int fd)
584{ 1915{
585 ev_io *w; 1916 ev_io *w;
586 1917
587 while ((w = (ev_io *)anfds [fd].head)) 1918 while ((w = (ev_io *)anfds [fd].head))
589 ev_io_stop (EV_A_ w); 1920 ev_io_stop (EV_A_ w);
590 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1921 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
591 } 1922 }
592} 1923}
593 1924
594int inline_size 1925/* check whether the given fd is actually valid, for error recovery */
1926inline_size int ecb_cold
595fd_valid (int fd) 1927fd_valid (int fd)
596{ 1928{
597#ifdef _WIN32 1929#ifdef _WIN32
598 return _get_osfhandle (fd) != -1; 1930 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
599#else 1931#else
600 return fcntl (fd, F_GETFD) != -1; 1932 return fcntl (fd, F_GETFD) != -1;
601#endif 1933#endif
602} 1934}
603 1935
604/* called on EBADF to verify fds */ 1936/* called on EBADF to verify fds */
605static void noinline 1937static void noinline ecb_cold
606fd_ebadf (EV_P) 1938fd_ebadf (EV_P)
607{ 1939{
608 int fd; 1940 int fd;
609 1941
610 for (fd = 0; fd < anfdmax; ++fd) 1942 for (fd = 0; fd < anfdmax; ++fd)
611 if (anfds [fd].events) 1943 if (anfds [fd].events)
612 if (!fd_valid (fd) == -1 && errno == EBADF) 1944 if (!fd_valid (fd) && errno == EBADF)
613 fd_kill (EV_A_ fd); 1945 fd_kill (EV_A_ fd);
614} 1946}
615 1947
616/* called on ENOMEM in select/poll to kill some fds and retry */ 1948/* called on ENOMEM in select/poll to kill some fds and retry */
617static void noinline 1949static void noinline ecb_cold
618fd_enomem (EV_P) 1950fd_enomem (EV_P)
619{ 1951{
620 int fd; 1952 int fd;
621 1953
622 for (fd = anfdmax; fd--; ) 1954 for (fd = anfdmax; fd--; )
623 if (anfds [fd].events) 1955 if (anfds [fd].events)
624 { 1956 {
625 fd_kill (EV_A_ fd); 1957 fd_kill (EV_A_ fd);
626 return; 1958 break;
627 } 1959 }
628} 1960}
629 1961
630/* usually called after fork if backend needs to re-arm all fds from scratch */ 1962/* usually called after fork if backend needs to re-arm all fds from scratch */
631static void noinline 1963static void noinline
635 1967
636 for (fd = 0; fd < anfdmax; ++fd) 1968 for (fd = 0; fd < anfdmax; ++fd)
637 if (anfds [fd].events) 1969 if (anfds [fd].events)
638 { 1970 {
639 anfds [fd].events = 0; 1971 anfds [fd].events = 0;
1972 anfds [fd].emask = 0;
640 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1973 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
641 } 1974 }
642} 1975}
643 1976
644/*****************************************************************************/ 1977/* used to prepare libev internal fd's */
645 1978/* this is not fork-safe */
646void inline_speed 1979inline_speed void
647upheap (WT *heap, int k)
648{
649 WT w = heap [k];
650
651 while (k)
652 {
653 int p = (k - 1) >> 1;
654
655 if (heap [p]->at <= w->at)
656 break;
657
658 heap [k] = heap [p];
659 ((W)heap [k])->active = k + 1;
660 k = p;
661 }
662
663 heap [k] = w;
664 ((W)heap [k])->active = k + 1;
665}
666
667void inline_speed
668downheap (WT *heap, int N, int k)
669{
670 WT w = heap [k];
671
672 for (;;)
673 {
674 int c = (k << 1) + 1;
675
676 if (c >= N)
677 break;
678
679 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
680 ? 1 : 0;
681
682 if (w->at <= heap [c]->at)
683 break;
684
685 heap [k] = heap [c];
686 ((W)heap [k])->active = k + 1;
687
688 k = c;
689 }
690
691 heap [k] = w;
692 ((W)heap [k])->active = k + 1;
693}
694
695void inline_size
696adjustheap (WT *heap, int N, int k)
697{
698 upheap (heap, k);
699 downheap (heap, N, k);
700}
701
702/*****************************************************************************/
703
704typedef struct
705{
706 WL head;
707 sig_atomic_t volatile gotsig;
708} ANSIG;
709
710static ANSIG *signals;
711static int signalmax;
712
713static int sigpipe [2];
714static sig_atomic_t volatile gotsig;
715static ev_io sigev;
716
717void inline_size
718signals_init (ANSIG *base, int count)
719{
720 while (count--)
721 {
722 base->head = 0;
723 base->gotsig = 0;
724
725 ++base;
726 }
727}
728
729static void
730sighandler (int signum)
731{
732#if _WIN32
733 signal (signum, sighandler);
734#endif
735
736 signals [signum - 1].gotsig = 1;
737
738 if (!gotsig)
739 {
740 int old_errno = errno;
741 gotsig = 1;
742 write (sigpipe [1], &signum, 1);
743 errno = old_errno;
744 }
745}
746
747void noinline
748ev_feed_signal_event (EV_P_ int signum)
749{
750 WL w;
751
752#if EV_MULTIPLICITY
753 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
754#endif
755
756 --signum;
757
758 if (signum < 0 || signum >= signalmax)
759 return;
760
761 signals [signum].gotsig = 0;
762
763 for (w = signals [signum].head; w; w = w->next)
764 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
765}
766
767static void
768sigcb (EV_P_ ev_io *iow, int revents)
769{
770 int signum;
771
772 read (sigpipe [0], &revents, 1);
773 gotsig = 0;
774
775 for (signum = signalmax; signum--; )
776 if (signals [signum].gotsig)
777 ev_feed_signal_event (EV_A_ signum + 1);
778}
779
780void inline_speed
781fd_intern (int fd) 1980fd_intern (int fd)
782{ 1981{
783#ifdef _WIN32 1982#ifdef _WIN32
784 int arg = 1; 1983 unsigned long arg = 1;
785 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1984 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
786#else 1985#else
787 fcntl (fd, F_SETFD, FD_CLOEXEC); 1986 fcntl (fd, F_SETFD, FD_CLOEXEC);
788 fcntl (fd, F_SETFL, O_NONBLOCK); 1987 fcntl (fd, F_SETFL, O_NONBLOCK);
789#endif 1988#endif
790} 1989}
791 1990
792static void noinline
793siginit (EV_P)
794{
795 fd_intern (sigpipe [0]);
796 fd_intern (sigpipe [1]);
797
798 ev_io_set (&sigev, sigpipe [0], EV_READ);
799 ev_io_start (EV_A_ &sigev);
800 ev_unref (EV_A); /* child watcher should not keep loop alive */
801}
802
803/*****************************************************************************/ 1991/*****************************************************************************/
804 1992
1993/*
1994 * the heap functions want a real array index. array index 0 is guaranteed to not
1995 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1996 * the branching factor of the d-tree.
1997 */
1998
1999/*
2000 * at the moment we allow libev the luxury of two heaps,
2001 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2002 * which is more cache-efficient.
2003 * the difference is about 5% with 50000+ watchers.
2004 */
2005#if EV_USE_4HEAP
2006
2007#define DHEAP 4
2008#define HEAP0 (DHEAP - 1) /* index of first element in heap */
2009#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2010#define UPHEAP_DONE(p,k) ((p) == (k))
2011
2012/* away from the root */
2013inline_speed void
2014downheap (ANHE *heap, int N, int k)
2015{
2016 ANHE he = heap [k];
2017 ANHE *E = heap + N + HEAP0;
2018
2019 for (;;)
2020 {
2021 ev_tstamp minat;
2022 ANHE *minpos;
2023 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2024
2025 /* find minimum child */
2026 if (expect_true (pos + DHEAP - 1 < E))
2027 {
2028 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2029 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2030 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2031 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2032 }
2033 else if (pos < E)
2034 {
2035 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2036 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2037 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2038 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2039 }
2040 else
2041 break;
2042
2043 if (ANHE_at (he) <= minat)
2044 break;
2045
2046 heap [k] = *minpos;
2047 ev_active (ANHE_w (*minpos)) = k;
2048
2049 k = minpos - heap;
2050 }
2051
2052 heap [k] = he;
2053 ev_active (ANHE_w (he)) = k;
2054}
2055
2056#else /* 4HEAP */
2057
2058#define HEAP0 1
2059#define HPARENT(k) ((k) >> 1)
2060#define UPHEAP_DONE(p,k) (!(p))
2061
2062/* away from the root */
2063inline_speed void
2064downheap (ANHE *heap, int N, int k)
2065{
2066 ANHE he = heap [k];
2067
2068 for (;;)
2069 {
2070 int c = k << 1;
2071
2072 if (c >= N + HEAP0)
2073 break;
2074
2075 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2076 ? 1 : 0;
2077
2078 if (ANHE_at (he) <= ANHE_at (heap [c]))
2079 break;
2080
2081 heap [k] = heap [c];
2082 ev_active (ANHE_w (heap [k])) = k;
2083
2084 k = c;
2085 }
2086
2087 heap [k] = he;
2088 ev_active (ANHE_w (he)) = k;
2089}
2090#endif
2091
2092/* towards the root */
2093inline_speed void
2094upheap (ANHE *heap, int k)
2095{
2096 ANHE he = heap [k];
2097
2098 for (;;)
2099 {
2100 int p = HPARENT (k);
2101
2102 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2103 break;
2104
2105 heap [k] = heap [p];
2106 ev_active (ANHE_w (heap [k])) = k;
2107 k = p;
2108 }
2109
2110 heap [k] = he;
2111 ev_active (ANHE_w (he)) = k;
2112}
2113
2114/* move an element suitably so it is in a correct place */
2115inline_size void
2116adjustheap (ANHE *heap, int N, int k)
2117{
2118 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2119 upheap (heap, k);
2120 else
2121 downheap (heap, N, k);
2122}
2123
2124/* rebuild the heap: this function is used only once and executed rarely */
2125inline_size void
2126reheap (ANHE *heap, int N)
2127{
2128 int i;
2129
2130 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2131 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2132 for (i = 0; i < N; ++i)
2133 upheap (heap, i + HEAP0);
2134}
2135
2136/*****************************************************************************/
2137
2138/* associate signal watchers to a signal signal */
2139typedef struct
2140{
2141 EV_ATOMIC_T pending;
2142#if EV_MULTIPLICITY
2143 EV_P;
2144#endif
2145 WL head;
2146} ANSIG;
2147
2148static ANSIG signals [EV_NSIG - 1];
2149
2150/*****************************************************************************/
2151
2152#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2153
2154static void noinline ecb_cold
2155evpipe_init (EV_P)
2156{
2157 if (!ev_is_active (&pipe_w))
2158 {
2159 int fds [2];
2160
2161# if EV_USE_EVENTFD
2162 fds [0] = -1;
2163 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2164 if (fds [1] < 0 && errno == EINVAL)
2165 fds [1] = eventfd (0, 0);
2166
2167 if (fds [1] < 0)
2168# endif
2169 {
2170 while (pipe (fds))
2171 ev_syserr ("(libev) error creating signal/async pipe");
2172
2173 fd_intern (fds [0]);
2174 }
2175
2176 evpipe [0] = fds [0];
2177
2178 if (evpipe [1] < 0)
2179 evpipe [1] = fds [1]; /* first call, set write fd */
2180 else
2181 {
2182 /* on subsequent calls, do not change evpipe [1] */
2183 /* so that evpipe_write can always rely on its value. */
2184 /* this branch does not do anything sensible on windows, */
2185 /* so must not be executed on windows */
2186
2187 dup2 (fds [1], evpipe [1]);
2188 close (fds [1]);
2189 }
2190
2191 fd_intern (evpipe [1]);
2192
2193 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2194 ev_io_start (EV_A_ &pipe_w);
2195 ev_unref (EV_A); /* watcher should not keep loop alive */
2196 }
2197}
2198
2199inline_speed void
2200evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2201{
2202 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2203
2204 if (expect_true (*flag))
2205 return;
2206
2207 *flag = 1;
2208 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2209
2210 pipe_write_skipped = 1;
2211
2212 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2213
2214 if (pipe_write_wanted)
2215 {
2216 int old_errno;
2217
2218 pipe_write_skipped = 0;
2219 ECB_MEMORY_FENCE_RELEASE;
2220
2221 old_errno = errno; /* save errno because write will clobber it */
2222
2223#if EV_USE_EVENTFD
2224 if (evpipe [0] < 0)
2225 {
2226 uint64_t counter = 1;
2227 write (evpipe [1], &counter, sizeof (uint64_t));
2228 }
2229 else
2230#endif
2231 {
2232#ifdef _WIN32
2233 WSABUF buf;
2234 DWORD sent;
2235 buf.buf = &buf;
2236 buf.len = 1;
2237 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2238#else
2239 write (evpipe [1], &(evpipe [1]), 1);
2240#endif
2241 }
2242
2243 errno = old_errno;
2244 }
2245}
2246
2247/* called whenever the libev signal pipe */
2248/* got some events (signal, async) */
2249static void
2250pipecb (EV_P_ ev_io *iow, int revents)
2251{
2252 int i;
2253
2254 if (revents & EV_READ)
2255 {
2256#if EV_USE_EVENTFD
2257 if (evpipe [0] < 0)
2258 {
2259 uint64_t counter;
2260 read (evpipe [1], &counter, sizeof (uint64_t));
2261 }
2262 else
2263#endif
2264 {
2265 char dummy[4];
2266#ifdef _WIN32
2267 WSABUF buf;
2268 DWORD recvd;
2269 DWORD flags = 0;
2270 buf.buf = dummy;
2271 buf.len = sizeof (dummy);
2272 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2273#else
2274 read (evpipe [0], &dummy, sizeof (dummy));
2275#endif
2276 }
2277 }
2278
2279 pipe_write_skipped = 0;
2280
2281 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2282
2283#if EV_SIGNAL_ENABLE
2284 if (sig_pending)
2285 {
2286 sig_pending = 0;
2287
2288 ECB_MEMORY_FENCE;
2289
2290 for (i = EV_NSIG - 1; i--; )
2291 if (expect_false (signals [i].pending))
2292 ev_feed_signal_event (EV_A_ i + 1);
2293 }
2294#endif
2295
2296#if EV_ASYNC_ENABLE
2297 if (async_pending)
2298 {
2299 async_pending = 0;
2300
2301 ECB_MEMORY_FENCE;
2302
2303 for (i = asynccnt; i--; )
2304 if (asyncs [i]->sent)
2305 {
2306 asyncs [i]->sent = 0;
2307 ECB_MEMORY_FENCE_RELEASE;
2308 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2309 }
2310 }
2311#endif
2312}
2313
2314/*****************************************************************************/
2315
2316void
2317ev_feed_signal (int signum) EV_THROW
2318{
2319#if EV_MULTIPLICITY
2320 EV_P;
2321 ECB_MEMORY_FENCE_ACQUIRE;
2322 EV_A = signals [signum - 1].loop;
2323
2324 if (!EV_A)
2325 return;
2326#endif
2327
2328 signals [signum - 1].pending = 1;
2329 evpipe_write (EV_A_ &sig_pending);
2330}
2331
2332static void
2333ev_sighandler (int signum)
2334{
2335#ifdef _WIN32
2336 signal (signum, ev_sighandler);
2337#endif
2338
2339 ev_feed_signal (signum);
2340}
2341
2342void noinline
2343ev_feed_signal_event (EV_P_ int signum) EV_THROW
2344{
2345 WL w;
2346
2347 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2348 return;
2349
2350 --signum;
2351
2352#if EV_MULTIPLICITY
2353 /* it is permissible to try to feed a signal to the wrong loop */
2354 /* or, likely more useful, feeding a signal nobody is waiting for */
2355
2356 if (expect_false (signals [signum].loop != EV_A))
2357 return;
2358#endif
2359
2360 signals [signum].pending = 0;
2361 ECB_MEMORY_FENCE_RELEASE;
2362
2363 for (w = signals [signum].head; w; w = w->next)
2364 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2365}
2366
2367#if EV_USE_SIGNALFD
2368static void
2369sigfdcb (EV_P_ ev_io *iow, int revents)
2370{
2371 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2372
2373 for (;;)
2374 {
2375 ssize_t res = read (sigfd, si, sizeof (si));
2376
2377 /* not ISO-C, as res might be -1, but works with SuS */
2378 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2379 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2380
2381 if (res < (ssize_t)sizeof (si))
2382 break;
2383 }
2384}
2385#endif
2386
2387#endif
2388
2389/*****************************************************************************/
2390
2391#if EV_CHILD_ENABLE
805static WL childs [EV_PID_HASHSIZE]; 2392static WL childs [EV_PID_HASHSIZE];
806 2393
807#ifndef _WIN32
808
809static ev_signal childev; 2394static ev_signal childev;
810 2395
811void inline_speed 2396#ifndef WIFCONTINUED
2397# define WIFCONTINUED(status) 0
2398#endif
2399
2400/* handle a single child status event */
2401inline_speed void
812child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 2402child_reap (EV_P_ int chain, int pid, int status)
813{ 2403{
814 ev_child *w; 2404 ev_child *w;
2405 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
815 2406
816 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2407 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2408 {
817 if (w->pid == pid || !w->pid) 2409 if ((w->pid == pid || !w->pid)
2410 && (!traced || (w->flags & 1)))
818 { 2411 {
819 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 2412 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
820 w->rpid = pid; 2413 w->rpid = pid;
821 w->rstatus = status; 2414 w->rstatus = status;
822 ev_feed_event (EV_A_ (W)w, EV_CHILD); 2415 ev_feed_event (EV_A_ (W)w, EV_CHILD);
823 } 2416 }
2417 }
824} 2418}
825 2419
826#ifndef WCONTINUED 2420#ifndef WCONTINUED
827# define WCONTINUED 0 2421# define WCONTINUED 0
828#endif 2422#endif
829 2423
2424/* called on sigchld etc., calls waitpid */
830static void 2425static void
831childcb (EV_P_ ev_signal *sw, int revents) 2426childcb (EV_P_ ev_signal *sw, int revents)
832{ 2427{
833 int pid, status; 2428 int pid, status;
834 2429
837 if (!WCONTINUED 2432 if (!WCONTINUED
838 || errno != EINVAL 2433 || errno != EINVAL
839 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 2434 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
840 return; 2435 return;
841 2436
842 /* make sure we are called again until all childs have been reaped */ 2437 /* make sure we are called again until all children have been reaped */
843 /* we need to do it this way so that the callback gets called before we continue */ 2438 /* we need to do it this way so that the callback gets called before we continue */
844 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2439 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
845 2440
846 child_reap (EV_A_ sw, pid, pid, status); 2441 child_reap (EV_A_ pid, pid, status);
847 if (EV_PID_HASHSIZE > 1) 2442 if ((EV_PID_HASHSIZE) > 1)
848 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2443 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
849} 2444}
850 2445
851#endif 2446#endif
852 2447
853/*****************************************************************************/ 2448/*****************************************************************************/
854 2449
2450#if EV_USE_IOCP
2451# include "ev_iocp.c"
2452#endif
855#if EV_USE_PORT 2453#if EV_USE_PORT
856# include "ev_port.c" 2454# include "ev_port.c"
857#endif 2455#endif
858#if EV_USE_KQUEUE 2456#if EV_USE_KQUEUE
859# include "ev_kqueue.c" 2457# include "ev_kqueue.c"
866#endif 2464#endif
867#if EV_USE_SELECT 2465#if EV_USE_SELECT
868# include "ev_select.c" 2466# include "ev_select.c"
869#endif 2467#endif
870 2468
871int 2469int ecb_cold
872ev_version_major (void) 2470ev_version_major (void) EV_THROW
873{ 2471{
874 return EV_VERSION_MAJOR; 2472 return EV_VERSION_MAJOR;
875} 2473}
876 2474
877int 2475int ecb_cold
878ev_version_minor (void) 2476ev_version_minor (void) EV_THROW
879{ 2477{
880 return EV_VERSION_MINOR; 2478 return EV_VERSION_MINOR;
881} 2479}
882 2480
883/* return true if we are running with elevated privileges and should ignore env variables */ 2481/* return true if we are running with elevated privileges and should ignore env variables */
884int inline_size 2482int inline_size ecb_cold
885enable_secure (void) 2483enable_secure (void)
886{ 2484{
887#ifdef _WIN32 2485#ifdef _WIN32
888 return 0; 2486 return 0;
889#else 2487#else
890 return getuid () != geteuid () 2488 return getuid () != geteuid ()
891 || getgid () != getegid (); 2489 || getgid () != getegid ();
892#endif 2490#endif
893} 2491}
894 2492
895unsigned int 2493unsigned int ecb_cold
896ev_supported_backends (void) 2494ev_supported_backends (void) EV_THROW
897{ 2495{
898 unsigned int flags = 0; 2496 unsigned int flags = 0;
899 2497
900 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2498 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
901 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2499 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
904 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2502 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
905 2503
906 return flags; 2504 return flags;
907} 2505}
908 2506
909unsigned int 2507unsigned int ecb_cold
910ev_recommended_backends (void) 2508ev_recommended_backends (void) EV_THROW
911{ 2509{
912 unsigned int flags = ev_supported_backends (); 2510 unsigned int flags = ev_supported_backends ();
913 2511
914#ifndef __NetBSD__ 2512#ifndef __NetBSD__
915 /* kqueue is borked on everything but netbsd apparently */ 2513 /* kqueue is borked on everything but netbsd apparently */
916 /* it usually doesn't work correctly on anything but sockets and pipes */ 2514 /* it usually doesn't work correctly on anything but sockets and pipes */
917 flags &= ~EVBACKEND_KQUEUE; 2515 flags &= ~EVBACKEND_KQUEUE;
918#endif 2516#endif
919#ifdef __APPLE__ 2517#ifdef __APPLE__
920 // flags &= ~EVBACKEND_KQUEUE; for documentation 2518 /* only select works correctly on that "unix-certified" platform */
921 flags &= ~EVBACKEND_POLL; 2519 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2520 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2521#endif
2522#ifdef __FreeBSD__
2523 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
922#endif 2524#endif
923 2525
924 return flags; 2526 return flags;
925} 2527}
926 2528
2529unsigned int ecb_cold
2530ev_embeddable_backends (void) EV_THROW
2531{
2532 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2533
2534 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2535 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2536 flags &= ~EVBACKEND_EPOLL;
2537
2538 return flags;
2539}
2540
927unsigned int 2541unsigned int
928ev_embeddable_backends (void) 2542ev_backend (EV_P) EV_THROW
929{ 2543{
930 return EVBACKEND_EPOLL 2544 return backend;
931 | EVBACKEND_KQUEUE
932 | EVBACKEND_PORT;
933} 2545}
934 2546
2547#if EV_FEATURE_API
935unsigned int 2548unsigned int
936ev_backend (EV_P) 2549ev_iteration (EV_P) EV_THROW
937{ 2550{
938 return backend; 2551 return loop_count;
939} 2552}
940 2553
941unsigned int 2554unsigned int
942ev_loop_count (EV_P) 2555ev_depth (EV_P) EV_THROW
943{ 2556{
944 return loop_count; 2557 return loop_depth;
945} 2558}
946 2559
2560void
2561ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2562{
2563 io_blocktime = interval;
2564}
2565
2566void
2567ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2568{
2569 timeout_blocktime = interval;
2570}
2571
2572void
2573ev_set_userdata (EV_P_ void *data) EV_THROW
2574{
2575 userdata = data;
2576}
2577
2578void *
2579ev_userdata (EV_P) EV_THROW
2580{
2581 return userdata;
2582}
2583
2584void
2585ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_THROW
2586{
2587 invoke_cb = invoke_pending_cb;
2588}
2589
2590void
2591ev_set_loop_release_cb (EV_P_ ev_loop_callback_nothrow release, ev_loop_callback_nothrow acquire) EV_THROW
2592{
2593 release_cb = release;
2594 acquire_cb = acquire;
2595}
2596#endif
2597
2598/* initialise a loop structure, must be zero-initialised */
947static void noinline 2599static void noinline ecb_cold
948loop_init (EV_P_ unsigned int flags) 2600loop_init (EV_P_ unsigned int flags) EV_THROW
949{ 2601{
950 if (!backend) 2602 if (!backend)
951 { 2603 {
2604 origflags = flags;
2605
2606#if EV_USE_REALTIME
2607 if (!have_realtime)
2608 {
2609 struct timespec ts;
2610
2611 if (!clock_gettime (CLOCK_REALTIME, &ts))
2612 have_realtime = 1;
2613 }
2614#endif
2615
952#if EV_USE_MONOTONIC 2616#if EV_USE_MONOTONIC
2617 if (!have_monotonic)
953 { 2618 {
954 struct timespec ts; 2619 struct timespec ts;
2620
955 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2621 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
956 have_monotonic = 1; 2622 have_monotonic = 1;
957 } 2623 }
958#endif 2624#endif
959
960 ev_rt_now = ev_time ();
961 mn_now = get_clock ();
962 now_floor = mn_now;
963 rtmn_diff = ev_rt_now - mn_now;
964 2625
965 /* pid check not overridable via env */ 2626 /* pid check not overridable via env */
966#ifndef _WIN32 2627#ifndef _WIN32
967 if (flags & EVFLAG_FORKCHECK) 2628 if (flags & EVFLAG_FORKCHECK)
968 curpid = getpid (); 2629 curpid = getpid ();
971 if (!(flags & EVFLAG_NOENV) 2632 if (!(flags & EVFLAG_NOENV)
972 && !enable_secure () 2633 && !enable_secure ()
973 && getenv ("LIBEV_FLAGS")) 2634 && getenv ("LIBEV_FLAGS"))
974 flags = atoi (getenv ("LIBEV_FLAGS")); 2635 flags = atoi (getenv ("LIBEV_FLAGS"));
975 2636
976 if (!(flags & 0x0000ffffUL)) 2637 ev_rt_now = ev_time ();
2638 mn_now = get_clock ();
2639 now_floor = mn_now;
2640 rtmn_diff = ev_rt_now - mn_now;
2641#if EV_FEATURE_API
2642 invoke_cb = ev_invoke_pending;
2643#endif
2644
2645 io_blocktime = 0.;
2646 timeout_blocktime = 0.;
2647 backend = 0;
2648 backend_fd = -1;
2649 sig_pending = 0;
2650#if EV_ASYNC_ENABLE
2651 async_pending = 0;
2652#endif
2653 pipe_write_skipped = 0;
2654 pipe_write_wanted = 0;
2655 evpipe [0] = -1;
2656 evpipe [1] = -1;
2657#if EV_USE_INOTIFY
2658 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2659#endif
2660#if EV_USE_SIGNALFD
2661 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2662#endif
2663
2664 if (!(flags & EVBACKEND_MASK))
977 flags |= ev_recommended_backends (); 2665 flags |= ev_recommended_backends ();
978 2666
979 backend = 0;
980 backend_fd = -1;
981#if EV_USE_INOTIFY 2667#if EV_USE_IOCP
982 fs_fd = -2; 2668 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
983#endif 2669#endif
984
985#if EV_USE_PORT 2670#if EV_USE_PORT
986 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2671 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
987#endif 2672#endif
988#if EV_USE_KQUEUE 2673#if EV_USE_KQUEUE
989 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2674 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
996#endif 2681#endif
997#if EV_USE_SELECT 2682#if EV_USE_SELECT
998 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2683 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
999#endif 2684#endif
1000 2685
2686 ev_prepare_init (&pending_w, pendingcb);
2687
2688#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1001 ev_init (&sigev, sigcb); 2689 ev_init (&pipe_w, pipecb);
1002 ev_set_priority (&sigev, EV_MAXPRI); 2690 ev_set_priority (&pipe_w, EV_MAXPRI);
2691#endif
1003 } 2692 }
1004} 2693}
1005 2694
1006static void noinline 2695/* free up a loop structure */
2696void ecb_cold
1007loop_destroy (EV_P) 2697ev_loop_destroy (EV_P)
1008{ 2698{
1009 int i; 2699 int i;
2700
2701#if EV_MULTIPLICITY
2702 /* mimic free (0) */
2703 if (!EV_A)
2704 return;
2705#endif
2706
2707#if EV_CLEANUP_ENABLE
2708 /* queue cleanup watchers (and execute them) */
2709 if (expect_false (cleanupcnt))
2710 {
2711 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2712 EV_INVOKE_PENDING;
2713 }
2714#endif
2715
2716#if EV_CHILD_ENABLE
2717 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2718 {
2719 ev_ref (EV_A); /* child watcher */
2720 ev_signal_stop (EV_A_ &childev);
2721 }
2722#endif
2723
2724 if (ev_is_active (&pipe_w))
2725 {
2726 /*ev_ref (EV_A);*/
2727 /*ev_io_stop (EV_A_ &pipe_w);*/
2728
2729 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2730 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2731 }
2732
2733#if EV_USE_SIGNALFD
2734 if (ev_is_active (&sigfd_w))
2735 close (sigfd);
2736#endif
1010 2737
1011#if EV_USE_INOTIFY 2738#if EV_USE_INOTIFY
1012 if (fs_fd >= 0) 2739 if (fs_fd >= 0)
1013 close (fs_fd); 2740 close (fs_fd);
1014#endif 2741#endif
1015 2742
1016 if (backend_fd >= 0) 2743 if (backend_fd >= 0)
1017 close (backend_fd); 2744 close (backend_fd);
1018 2745
2746#if EV_USE_IOCP
2747 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2748#endif
1019#if EV_USE_PORT 2749#if EV_USE_PORT
1020 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2750 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1021#endif 2751#endif
1022#if EV_USE_KQUEUE 2752#if EV_USE_KQUEUE
1023 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2753 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1038#if EV_IDLE_ENABLE 2768#if EV_IDLE_ENABLE
1039 array_free (idle, [i]); 2769 array_free (idle, [i]);
1040#endif 2770#endif
1041 } 2771 }
1042 2772
1043 ev_free (anfds); anfdmax = 0; 2773 ev_free (anfds); anfds = 0; anfdmax = 0;
1044 2774
1045 /* have to use the microsoft-never-gets-it-right macro */ 2775 /* have to use the microsoft-never-gets-it-right macro */
2776 array_free (rfeed, EMPTY);
1046 array_free (fdchange, EMPTY); 2777 array_free (fdchange, EMPTY);
1047 array_free (timer, EMPTY); 2778 array_free (timer, EMPTY);
1048#if EV_PERIODIC_ENABLE 2779#if EV_PERIODIC_ENABLE
1049 array_free (periodic, EMPTY); 2780 array_free (periodic, EMPTY);
1050#endif 2781#endif
1051#if EV_FORK_ENABLE 2782#if EV_FORK_ENABLE
1052 array_free (fork, EMPTY); 2783 array_free (fork, EMPTY);
1053#endif 2784#endif
2785#if EV_CLEANUP_ENABLE
2786 array_free (cleanup, EMPTY);
2787#endif
1054 array_free (prepare, EMPTY); 2788 array_free (prepare, EMPTY);
1055 array_free (check, EMPTY); 2789 array_free (check, EMPTY);
2790#if EV_ASYNC_ENABLE
2791 array_free (async, EMPTY);
2792#endif
1056 2793
1057 backend = 0; 2794 backend = 0;
1058}
1059 2795
2796#if EV_MULTIPLICITY
2797 if (ev_is_default_loop (EV_A))
2798#endif
2799 ev_default_loop_ptr = 0;
2800#if EV_MULTIPLICITY
2801 else
2802 ev_free (EV_A);
2803#endif
2804}
2805
2806#if EV_USE_INOTIFY
1060void inline_size infy_fork (EV_P); 2807inline_size void infy_fork (EV_P);
2808#endif
1061 2809
1062void inline_size 2810inline_size void
1063loop_fork (EV_P) 2811loop_fork (EV_P)
1064{ 2812{
1065#if EV_USE_PORT 2813#if EV_USE_PORT
1066 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2814 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1067#endif 2815#endif
1073#endif 2821#endif
1074#if EV_USE_INOTIFY 2822#if EV_USE_INOTIFY
1075 infy_fork (EV_A); 2823 infy_fork (EV_A);
1076#endif 2824#endif
1077 2825
2826#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1078 if (ev_is_active (&sigev)) 2827 if (ev_is_active (&pipe_w))
1079 { 2828 {
1080 /* default loop */ 2829 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1081 2830
1082 ev_ref (EV_A); 2831 ev_ref (EV_A);
1083 ev_io_stop (EV_A_ &sigev); 2832 ev_io_stop (EV_A_ &pipe_w);
1084 close (sigpipe [0]);
1085 close (sigpipe [1]);
1086 2833
1087 while (pipe (sigpipe)) 2834 if (evpipe [0] >= 0)
1088 syserr ("(libev) error creating pipe"); 2835 EV_WIN32_CLOSE_FD (evpipe [0]);
1089 2836
1090 siginit (EV_A); 2837 evpipe_init (EV_A);
2838 /* iterate over everything, in case we missed something before */
2839 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
1091 } 2840 }
2841#endif
1092 2842
1093 postfork = 0; 2843 postfork = 0;
1094} 2844}
1095 2845
1096#if EV_MULTIPLICITY 2846#if EV_MULTIPLICITY
2847
1097struct ev_loop * 2848struct ev_loop * ecb_cold
1098ev_loop_new (unsigned int flags) 2849ev_loop_new (unsigned int flags) EV_THROW
1099{ 2850{
1100 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2851 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1101 2852
1102 memset (loop, 0, sizeof (struct ev_loop)); 2853 memset (EV_A, 0, sizeof (struct ev_loop));
1103
1104 loop_init (EV_A_ flags); 2854 loop_init (EV_A_ flags);
1105 2855
1106 if (ev_backend (EV_A)) 2856 if (ev_backend (EV_A))
1107 return loop; 2857 return EV_A;
1108 2858
2859 ev_free (EV_A);
1109 return 0; 2860 return 0;
1110} 2861}
1111 2862
1112void 2863#endif /* multiplicity */
1113ev_loop_destroy (EV_P)
1114{
1115 loop_destroy (EV_A);
1116 ev_free (loop);
1117}
1118 2864
1119void 2865#if EV_VERIFY
1120ev_loop_fork (EV_P) 2866static void noinline ecb_cold
2867verify_watcher (EV_P_ W w)
1121{ 2868{
1122 postfork = 1; 2869 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1123}
1124 2870
2871 if (w->pending)
2872 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2873}
2874
2875static void noinline ecb_cold
2876verify_heap (EV_P_ ANHE *heap, int N)
2877{
2878 int i;
2879
2880 for (i = HEAP0; i < N + HEAP0; ++i)
2881 {
2882 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2883 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2884 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2885
2886 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2887 }
2888}
2889
2890static void noinline ecb_cold
2891array_verify (EV_P_ W *ws, int cnt)
2892{
2893 while (cnt--)
2894 {
2895 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2896 verify_watcher (EV_A_ ws [cnt]);
2897 }
2898}
2899#endif
2900
2901#if EV_FEATURE_API
2902void ecb_cold
2903ev_verify (EV_P) EV_THROW
2904{
2905#if EV_VERIFY
2906 int i;
2907 WL w, w2;
2908
2909 assert (activecnt >= -1);
2910
2911 assert (fdchangemax >= fdchangecnt);
2912 for (i = 0; i < fdchangecnt; ++i)
2913 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2914
2915 assert (anfdmax >= 0);
2916 for (i = 0; i < anfdmax; ++i)
2917 {
2918 int j = 0;
2919
2920 for (w = w2 = anfds [i].head; w; w = w->next)
2921 {
2922 verify_watcher (EV_A_ (W)w);
2923
2924 if (j++ & 1)
2925 {
2926 assert (("libev: io watcher list contains a loop", w != w2));
2927 w2 = w2->next;
2928 }
2929
2930 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2931 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2932 }
2933 }
2934
2935 assert (timermax >= timercnt);
2936 verify_heap (EV_A_ timers, timercnt);
2937
2938#if EV_PERIODIC_ENABLE
2939 assert (periodicmax >= periodiccnt);
2940 verify_heap (EV_A_ periodics, periodiccnt);
2941#endif
2942
2943 for (i = NUMPRI; i--; )
2944 {
2945 assert (pendingmax [i] >= pendingcnt [i]);
2946#if EV_IDLE_ENABLE
2947 assert (idleall >= 0);
2948 assert (idlemax [i] >= idlecnt [i]);
2949 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2950#endif
2951 }
2952
2953#if EV_FORK_ENABLE
2954 assert (forkmax >= forkcnt);
2955 array_verify (EV_A_ (W *)forks, forkcnt);
2956#endif
2957
2958#if EV_CLEANUP_ENABLE
2959 assert (cleanupmax >= cleanupcnt);
2960 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2961#endif
2962
2963#if EV_ASYNC_ENABLE
2964 assert (asyncmax >= asynccnt);
2965 array_verify (EV_A_ (W *)asyncs, asynccnt);
2966#endif
2967
2968#if EV_PREPARE_ENABLE
2969 assert (preparemax >= preparecnt);
2970 array_verify (EV_A_ (W *)prepares, preparecnt);
2971#endif
2972
2973#if EV_CHECK_ENABLE
2974 assert (checkmax >= checkcnt);
2975 array_verify (EV_A_ (W *)checks, checkcnt);
2976#endif
2977
2978# if 0
2979#if EV_CHILD_ENABLE
2980 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2981 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2982#endif
2983# endif
2984#endif
2985}
1125#endif 2986#endif
1126 2987
1127#if EV_MULTIPLICITY 2988#if EV_MULTIPLICITY
1128struct ev_loop * 2989struct ev_loop * ecb_cold
1129ev_default_loop_init (unsigned int flags)
1130#else 2990#else
1131int 2991int
2992#endif
1132ev_default_loop (unsigned int flags) 2993ev_default_loop (unsigned int flags) EV_THROW
1133#endif
1134{ 2994{
1135 if (sigpipe [0] == sigpipe [1])
1136 if (pipe (sigpipe))
1137 return 0;
1138
1139 if (!ev_default_loop_ptr) 2995 if (!ev_default_loop_ptr)
1140 { 2996 {
1141#if EV_MULTIPLICITY 2997#if EV_MULTIPLICITY
1142 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2998 EV_P = ev_default_loop_ptr = &default_loop_struct;
1143#else 2999#else
1144 ev_default_loop_ptr = 1; 3000 ev_default_loop_ptr = 1;
1145#endif 3001#endif
1146 3002
1147 loop_init (EV_A_ flags); 3003 loop_init (EV_A_ flags);
1148 3004
1149 if (ev_backend (EV_A)) 3005 if (ev_backend (EV_A))
1150 { 3006 {
1151 siginit (EV_A); 3007#if EV_CHILD_ENABLE
1152
1153#ifndef _WIN32
1154 ev_signal_init (&childev, childcb, SIGCHLD); 3008 ev_signal_init (&childev, childcb, SIGCHLD);
1155 ev_set_priority (&childev, EV_MAXPRI); 3009 ev_set_priority (&childev, EV_MAXPRI);
1156 ev_signal_start (EV_A_ &childev); 3010 ev_signal_start (EV_A_ &childev);
1157 ev_unref (EV_A); /* child watcher should not keep loop alive */ 3011 ev_unref (EV_A); /* child watcher should not keep loop alive */
1158#endif 3012#endif
1163 3017
1164 return ev_default_loop_ptr; 3018 return ev_default_loop_ptr;
1165} 3019}
1166 3020
1167void 3021void
1168ev_default_destroy (void) 3022ev_loop_fork (EV_P) EV_THROW
1169{ 3023{
1170#if EV_MULTIPLICITY
1171 struct ev_loop *loop = ev_default_loop_ptr;
1172#endif
1173
1174#ifndef _WIN32
1175 ev_ref (EV_A); /* child watcher */
1176 ev_signal_stop (EV_A_ &childev);
1177#endif
1178
1179 ev_ref (EV_A); /* signal watcher */
1180 ev_io_stop (EV_A_ &sigev);
1181
1182 close (sigpipe [0]); sigpipe [0] = 0;
1183 close (sigpipe [1]); sigpipe [1] = 0;
1184
1185 loop_destroy (EV_A);
1186}
1187
1188void
1189ev_default_fork (void)
1190{
1191#if EV_MULTIPLICITY
1192 struct ev_loop *loop = ev_default_loop_ptr;
1193#endif
1194
1195 if (backend)
1196 postfork = 1; 3024 postfork = 1;
1197} 3025}
1198 3026
1199/*****************************************************************************/ 3027/*****************************************************************************/
1200 3028
1201void 3029void
1202ev_invoke (EV_P_ void *w, int revents) 3030ev_invoke (EV_P_ void *w, int revents)
1203{ 3031{
1204 EV_CB_INVOKE ((W)w, revents); 3032 EV_CB_INVOKE ((W)w, revents);
1205} 3033}
1206 3034
1207void inline_speed 3035unsigned int
1208call_pending (EV_P) 3036ev_pending_count (EV_P) EV_THROW
1209{ 3037{
1210 int pri; 3038 int pri;
3039 unsigned int count = 0;
1211 3040
1212 for (pri = NUMPRI; pri--; ) 3041 for (pri = NUMPRI; pri--; )
3042 count += pendingcnt [pri];
3043
3044 return count;
3045}
3046
3047void noinline
3048ev_invoke_pending (EV_P)
3049{
3050 pendingpri = NUMPRI;
3051
3052 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
3053 {
3054 --pendingpri;
3055
1213 while (pendingcnt [pri]) 3056 while (pendingcnt [pendingpri])
1214 {
1215 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1216
1217 if (expect_true (p->w))
1218 {
1219 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1220
1221 p->w->pending = 0;
1222 EV_CB_INVOKE (p->w, p->events);
1223 }
1224 }
1225}
1226
1227void inline_size
1228timers_reify (EV_P)
1229{
1230 while (timercnt && ((WT)timers [0])->at <= mn_now)
1231 {
1232 ev_timer *w = (ev_timer *)timers [0];
1233
1234 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1235
1236 /* first reschedule or stop timer */
1237 if (w->repeat)
1238 { 3057 {
1239 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3058 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1240 3059
1241 ((WT)w)->at += w->repeat; 3060 p->w->pending = 0;
1242 if (((WT)w)->at < mn_now) 3061 EV_CB_INVOKE (p->w, p->events);
1243 ((WT)w)->at = mn_now; 3062 EV_FREQUENT_CHECK;
1244
1245 downheap (timers, timercnt, 0);
1246 } 3063 }
1247 else
1248 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1249
1250 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1251 }
1252}
1253
1254#if EV_PERIODIC_ENABLE
1255void inline_size
1256periodics_reify (EV_P)
1257{
1258 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1259 { 3064 }
1260 ev_periodic *w = (ev_periodic *)periodics [0];
1261
1262 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1263
1264 /* first reschedule or stop timer */
1265 if (w->reschedule_cb)
1266 {
1267 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1268 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1269 downheap (periodics, periodiccnt, 0);
1270 }
1271 else if (w->interval)
1272 {
1273 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1274 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1275 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1276 downheap (periodics, periodiccnt, 0);
1277 }
1278 else
1279 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1280
1281 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1282 }
1283} 3065}
1284
1285static void noinline
1286periodics_reschedule (EV_P)
1287{
1288 int i;
1289
1290 /* adjust periodics after time jump */
1291 for (i = 0; i < periodiccnt; ++i)
1292 {
1293 ev_periodic *w = (ev_periodic *)periodics [i];
1294
1295 if (w->reschedule_cb)
1296 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1297 else if (w->interval)
1298 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1299 }
1300
1301 /* now rebuild the heap */
1302 for (i = periodiccnt >> 1; i--; )
1303 downheap (periodics, periodiccnt, i);
1304}
1305#endif
1306 3066
1307#if EV_IDLE_ENABLE 3067#if EV_IDLE_ENABLE
1308void inline_size 3068/* make idle watchers pending. this handles the "call-idle */
3069/* only when higher priorities are idle" logic */
3070inline_size void
1309idle_reify (EV_P) 3071idle_reify (EV_P)
1310{ 3072{
1311 if (expect_false (idleall)) 3073 if (expect_false (idleall))
1312 { 3074 {
1313 int pri; 3075 int pri;
1325 } 3087 }
1326 } 3088 }
1327} 3089}
1328#endif 3090#endif
1329 3091
1330void inline_speed 3092/* make timers pending */
3093inline_size void
3094timers_reify (EV_P)
3095{
3096 EV_FREQUENT_CHECK;
3097
3098 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3099 {
3100 do
3101 {
3102 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3103
3104 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3105
3106 /* first reschedule or stop timer */
3107 if (w->repeat)
3108 {
3109 ev_at (w) += w->repeat;
3110 if (ev_at (w) < mn_now)
3111 ev_at (w) = mn_now;
3112
3113 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3114
3115 ANHE_at_cache (timers [HEAP0]);
3116 downheap (timers, timercnt, HEAP0);
3117 }
3118 else
3119 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3120
3121 EV_FREQUENT_CHECK;
3122 feed_reverse (EV_A_ (W)w);
3123 }
3124 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3125
3126 feed_reverse_done (EV_A_ EV_TIMER);
3127 }
3128}
3129
3130#if EV_PERIODIC_ENABLE
3131
3132static void noinline
3133periodic_recalc (EV_P_ ev_periodic *w)
3134{
3135 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3136 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3137
3138 /* the above almost always errs on the low side */
3139 while (at <= ev_rt_now)
3140 {
3141 ev_tstamp nat = at + w->interval;
3142
3143 /* when resolution fails us, we use ev_rt_now */
3144 if (expect_false (nat == at))
3145 {
3146 at = ev_rt_now;
3147 break;
3148 }
3149
3150 at = nat;
3151 }
3152
3153 ev_at (w) = at;
3154}
3155
3156/* make periodics pending */
3157inline_size void
3158periodics_reify (EV_P)
3159{
3160 EV_FREQUENT_CHECK;
3161
3162 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3163 {
3164 do
3165 {
3166 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3167
3168 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3169
3170 /* first reschedule or stop timer */
3171 if (w->reschedule_cb)
3172 {
3173 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3174
3175 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3176
3177 ANHE_at_cache (periodics [HEAP0]);
3178 downheap (periodics, periodiccnt, HEAP0);
3179 }
3180 else if (w->interval)
3181 {
3182 periodic_recalc (EV_A_ w);
3183 ANHE_at_cache (periodics [HEAP0]);
3184 downheap (periodics, periodiccnt, HEAP0);
3185 }
3186 else
3187 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3188
3189 EV_FREQUENT_CHECK;
3190 feed_reverse (EV_A_ (W)w);
3191 }
3192 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3193
3194 feed_reverse_done (EV_A_ EV_PERIODIC);
3195 }
3196}
3197
3198/* simply recalculate all periodics */
3199/* TODO: maybe ensure that at least one event happens when jumping forward? */
3200static void noinline ecb_cold
3201periodics_reschedule (EV_P)
3202{
3203 int i;
3204
3205 /* adjust periodics after time jump */
3206 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3207 {
3208 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3209
3210 if (w->reschedule_cb)
3211 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3212 else if (w->interval)
3213 periodic_recalc (EV_A_ w);
3214
3215 ANHE_at_cache (periodics [i]);
3216 }
3217
3218 reheap (periodics, periodiccnt);
3219}
3220#endif
3221
3222/* adjust all timers by a given offset */
3223static void noinline ecb_cold
3224timers_reschedule (EV_P_ ev_tstamp adjust)
3225{
3226 int i;
3227
3228 for (i = 0; i < timercnt; ++i)
3229 {
3230 ANHE *he = timers + i + HEAP0;
3231 ANHE_w (*he)->at += adjust;
3232 ANHE_at_cache (*he);
3233 }
3234}
3235
3236/* fetch new monotonic and realtime times from the kernel */
3237/* also detect if there was a timejump, and act accordingly */
3238inline_speed void
1331time_update (EV_P_ ev_tstamp max_block) 3239time_update (EV_P_ ev_tstamp max_block)
1332{ 3240{
1333 int i;
1334
1335#if EV_USE_MONOTONIC 3241#if EV_USE_MONOTONIC
1336 if (expect_true (have_monotonic)) 3242 if (expect_true (have_monotonic))
1337 { 3243 {
3244 int i;
1338 ev_tstamp odiff = rtmn_diff; 3245 ev_tstamp odiff = rtmn_diff;
1339 3246
1340 mn_now = get_clock (); 3247 mn_now = get_clock ();
1341 3248
1342 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 3249 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1358 * doesn't hurt either as we only do this on time-jumps or 3265 * doesn't hurt either as we only do this on time-jumps or
1359 * in the unlikely event of having been preempted here. 3266 * in the unlikely event of having been preempted here.
1360 */ 3267 */
1361 for (i = 4; --i; ) 3268 for (i = 4; --i; )
1362 { 3269 {
3270 ev_tstamp diff;
1363 rtmn_diff = ev_rt_now - mn_now; 3271 rtmn_diff = ev_rt_now - mn_now;
1364 3272
1365 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 3273 diff = odiff - rtmn_diff;
3274
3275 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1366 return; /* all is well */ 3276 return; /* all is well */
1367 3277
1368 ev_rt_now = ev_time (); 3278 ev_rt_now = ev_time ();
1369 mn_now = get_clock (); 3279 mn_now = get_clock ();
1370 now_floor = mn_now; 3280 now_floor = mn_now;
1371 } 3281 }
1372 3282
3283 /* no timer adjustment, as the monotonic clock doesn't jump */
3284 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1373# if EV_PERIODIC_ENABLE 3285# if EV_PERIODIC_ENABLE
1374 periodics_reschedule (EV_A); 3286 periodics_reschedule (EV_A);
1375# endif 3287# endif
1376 /* no timer adjustment, as the monotonic clock doesn't jump */
1377 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1378 } 3288 }
1379 else 3289 else
1380#endif 3290#endif
1381 { 3291 {
1382 ev_rt_now = ev_time (); 3292 ev_rt_now = ev_time ();
1383 3293
1384 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 3294 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1385 { 3295 {
3296 /* adjust timers. this is easy, as the offset is the same for all of them */
3297 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1386#if EV_PERIODIC_ENABLE 3298#if EV_PERIODIC_ENABLE
1387 periodics_reschedule (EV_A); 3299 periodics_reschedule (EV_A);
1388#endif 3300#endif
1389 /* adjust timers. this is easy, as the offset is the same for all of them */
1390 for (i = 0; i < timercnt; ++i)
1391 ((WT)timers [i])->at += ev_rt_now - mn_now;
1392 } 3301 }
1393 3302
1394 mn_now = ev_rt_now; 3303 mn_now = ev_rt_now;
1395 } 3304 }
1396} 3305}
1397 3306
1398void 3307int
1399ev_ref (EV_P)
1400{
1401 ++activecnt;
1402}
1403
1404void
1405ev_unref (EV_P)
1406{
1407 --activecnt;
1408}
1409
1410static int loop_done;
1411
1412void
1413ev_loop (EV_P_ int flags) 3308ev_run (EV_P_ int flags)
1414{ 3309{
1415 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 3310#if EV_FEATURE_API
1416 ? EVUNLOOP_ONE 3311 ++loop_depth;
1417 : EVUNLOOP_CANCEL; 3312#endif
1418 3313
3314 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3315
3316 loop_done = EVBREAK_CANCEL;
3317
1419 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3318 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1420 3319
1421 do 3320 do
1422 { 3321 {
3322#if EV_VERIFY >= 2
3323 ev_verify (EV_A);
3324#endif
3325
1423#ifndef _WIN32 3326#ifndef _WIN32
1424 if (expect_false (curpid)) /* penalise the forking check even more */ 3327 if (expect_false (curpid)) /* penalise the forking check even more */
1425 if (expect_false (getpid () != curpid)) 3328 if (expect_false (getpid () != curpid))
1426 { 3329 {
1427 curpid = getpid (); 3330 curpid = getpid ();
1433 /* we might have forked, so queue fork handlers */ 3336 /* we might have forked, so queue fork handlers */
1434 if (expect_false (postfork)) 3337 if (expect_false (postfork))
1435 if (forkcnt) 3338 if (forkcnt)
1436 { 3339 {
1437 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3340 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1438 call_pending (EV_A); 3341 EV_INVOKE_PENDING;
1439 } 3342 }
1440#endif 3343#endif
1441 3344
3345#if EV_PREPARE_ENABLE
1442 /* queue prepare watchers (and execute them) */ 3346 /* queue prepare watchers (and execute them) */
1443 if (expect_false (preparecnt)) 3347 if (expect_false (preparecnt))
1444 { 3348 {
1445 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3349 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1446 call_pending (EV_A); 3350 EV_INVOKE_PENDING;
1447 } 3351 }
3352#endif
1448 3353
1449 if (expect_false (!activecnt)) 3354 if (expect_false (loop_done))
1450 break; 3355 break;
1451 3356
1452 /* we might have forked, so reify kernel state if necessary */ 3357 /* we might have forked, so reify kernel state if necessary */
1453 if (expect_false (postfork)) 3358 if (expect_false (postfork))
1454 loop_fork (EV_A); 3359 loop_fork (EV_A);
1456 /* update fd-related kernel structures */ 3361 /* update fd-related kernel structures */
1457 fd_reify (EV_A); 3362 fd_reify (EV_A);
1458 3363
1459 /* calculate blocking time */ 3364 /* calculate blocking time */
1460 { 3365 {
1461 ev_tstamp block; 3366 ev_tstamp waittime = 0.;
3367 ev_tstamp sleeptime = 0.;
1462 3368
1463 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 3369 /* remember old timestamp for io_blocktime calculation */
1464 block = 0.; /* do not block at all */ 3370 ev_tstamp prev_mn_now = mn_now;
1465 else 3371
3372 /* update time to cancel out callback processing overhead */
3373 time_update (EV_A_ 1e100);
3374
3375 /* from now on, we want a pipe-wake-up */
3376 pipe_write_wanted = 1;
3377
3378 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3379
3380 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1466 { 3381 {
1467 /* update time to cancel out callback processing overhead */
1468 time_update (EV_A_ 1e100);
1469
1470 block = MAX_BLOCKTIME; 3382 waittime = MAX_BLOCKTIME;
1471 3383
1472 if (timercnt) 3384 if (timercnt)
1473 { 3385 {
1474 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 3386 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1475 if (block > to) block = to; 3387 if (waittime > to) waittime = to;
1476 } 3388 }
1477 3389
1478#if EV_PERIODIC_ENABLE 3390#if EV_PERIODIC_ENABLE
1479 if (periodiccnt) 3391 if (periodiccnt)
1480 { 3392 {
1481 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 3393 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1482 if (block > to) block = to; 3394 if (waittime > to) waittime = to;
1483 } 3395 }
1484#endif 3396#endif
1485 3397
3398 /* don't let timeouts decrease the waittime below timeout_blocktime */
3399 if (expect_false (waittime < timeout_blocktime))
3400 waittime = timeout_blocktime;
3401
3402 /* at this point, we NEED to wait, so we have to ensure */
3403 /* to pass a minimum nonzero value to the backend */
3404 if (expect_false (waittime < backend_mintime))
3405 waittime = backend_mintime;
3406
3407 /* extra check because io_blocktime is commonly 0 */
1486 if (expect_false (block < 0.)) block = 0.; 3408 if (expect_false (io_blocktime))
3409 {
3410 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3411
3412 if (sleeptime > waittime - backend_mintime)
3413 sleeptime = waittime - backend_mintime;
3414
3415 if (expect_true (sleeptime > 0.))
3416 {
3417 ev_sleep (sleeptime);
3418 waittime -= sleeptime;
3419 }
3420 }
1487 } 3421 }
1488 3422
3423#if EV_FEATURE_API
1489 ++loop_count; 3424 ++loop_count;
3425#endif
3426 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1490 backend_poll (EV_A_ block); 3427 backend_poll (EV_A_ waittime);
3428 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3429
3430 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3431
3432 ECB_MEMORY_FENCE_ACQUIRE;
3433 if (pipe_write_skipped)
3434 {
3435 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3436 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3437 }
3438
1491 3439
1492 /* update ev_rt_now, do magic */ 3440 /* update ev_rt_now, do magic */
1493 time_update (EV_A_ block); 3441 time_update (EV_A_ waittime + sleeptime);
1494 } 3442 }
1495 3443
1496 /* queue pending timers and reschedule them */ 3444 /* queue pending timers and reschedule them */
1497 timers_reify (EV_A); /* relative timers called last */ 3445 timers_reify (EV_A); /* relative timers called last */
1498#if EV_PERIODIC_ENABLE 3446#if EV_PERIODIC_ENABLE
1502#if EV_IDLE_ENABLE 3450#if EV_IDLE_ENABLE
1503 /* queue idle watchers unless other events are pending */ 3451 /* queue idle watchers unless other events are pending */
1504 idle_reify (EV_A); 3452 idle_reify (EV_A);
1505#endif 3453#endif
1506 3454
3455#if EV_CHECK_ENABLE
1507 /* queue check watchers, to be executed first */ 3456 /* queue check watchers, to be executed first */
1508 if (expect_false (checkcnt)) 3457 if (expect_false (checkcnt))
1509 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3458 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3459#endif
1510 3460
1511 call_pending (EV_A); 3461 EV_INVOKE_PENDING;
1512
1513 } 3462 }
1514 while (expect_true (activecnt && !loop_done)); 3463 while (expect_true (
3464 activecnt
3465 && !loop_done
3466 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3467 ));
1515 3468
1516 if (loop_done == EVUNLOOP_ONE) 3469 if (loop_done == EVBREAK_ONE)
1517 loop_done = EVUNLOOP_CANCEL; 3470 loop_done = EVBREAK_CANCEL;
3471
3472#if EV_FEATURE_API
3473 --loop_depth;
3474#endif
3475
3476 return activecnt;
1518} 3477}
1519 3478
1520void 3479void
1521ev_unloop (EV_P_ int how) 3480ev_break (EV_P_ int how) EV_THROW
1522{ 3481{
1523 loop_done = how; 3482 loop_done = how;
1524} 3483}
1525 3484
3485void
3486ev_ref (EV_P) EV_THROW
3487{
3488 ++activecnt;
3489}
3490
3491void
3492ev_unref (EV_P) EV_THROW
3493{
3494 --activecnt;
3495}
3496
3497void
3498ev_now_update (EV_P) EV_THROW
3499{
3500 time_update (EV_A_ 1e100);
3501}
3502
3503void
3504ev_suspend (EV_P) EV_THROW
3505{
3506 ev_now_update (EV_A);
3507}
3508
3509void
3510ev_resume (EV_P) EV_THROW
3511{
3512 ev_tstamp mn_prev = mn_now;
3513
3514 ev_now_update (EV_A);
3515 timers_reschedule (EV_A_ mn_now - mn_prev);
3516#if EV_PERIODIC_ENABLE
3517 /* TODO: really do this? */
3518 periodics_reschedule (EV_A);
3519#endif
3520}
3521
1526/*****************************************************************************/ 3522/*****************************************************************************/
3523/* singly-linked list management, used when the expected list length is short */
1527 3524
1528void inline_size 3525inline_size void
1529wlist_add (WL *head, WL elem) 3526wlist_add (WL *head, WL elem)
1530{ 3527{
1531 elem->next = *head; 3528 elem->next = *head;
1532 *head = elem; 3529 *head = elem;
1533} 3530}
1534 3531
1535void inline_size 3532inline_size void
1536wlist_del (WL *head, WL elem) 3533wlist_del (WL *head, WL elem)
1537{ 3534{
1538 while (*head) 3535 while (*head)
1539 { 3536 {
1540 if (*head == elem) 3537 if (expect_true (*head == elem))
1541 { 3538 {
1542 *head = elem->next; 3539 *head = elem->next;
1543 return; 3540 break;
1544 } 3541 }
1545 3542
1546 head = &(*head)->next; 3543 head = &(*head)->next;
1547 } 3544 }
1548} 3545}
1549 3546
1550void inline_speed 3547/* internal, faster, version of ev_clear_pending */
3548inline_speed void
1551clear_pending (EV_P_ W w) 3549clear_pending (EV_P_ W w)
1552{ 3550{
1553 if (w->pending) 3551 if (w->pending)
1554 { 3552 {
1555 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3553 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1556 w->pending = 0; 3554 w->pending = 0;
1557 } 3555 }
1558} 3556}
1559 3557
1560int 3558int
1561ev_clear_pending (EV_P_ void *w) 3559ev_clear_pending (EV_P_ void *w) EV_THROW
1562{ 3560{
1563 W w_ = (W)w; 3561 W w_ = (W)w;
1564 int pending = w_->pending; 3562 int pending = w_->pending;
1565 3563
1566 if (expect_true (pending)) 3564 if (expect_true (pending))
1567 { 3565 {
1568 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3566 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3567 p->w = (W)&pending_w;
1569 w_->pending = 0; 3568 w_->pending = 0;
1570 p->w = 0;
1571 return p->events; 3569 return p->events;
1572 } 3570 }
1573 else 3571 else
1574 return 0; 3572 return 0;
1575} 3573}
1576 3574
1577void inline_size 3575inline_size void
1578pri_adjust (EV_P_ W w) 3576pri_adjust (EV_P_ W w)
1579{ 3577{
1580 int pri = w->priority; 3578 int pri = ev_priority (w);
1581 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3579 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1582 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3580 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1583 w->priority = pri; 3581 ev_set_priority (w, pri);
1584} 3582}
1585 3583
1586void inline_speed 3584inline_speed void
1587ev_start (EV_P_ W w, int active) 3585ev_start (EV_P_ W w, int active)
1588{ 3586{
1589 pri_adjust (EV_A_ w); 3587 pri_adjust (EV_A_ w);
1590 w->active = active; 3588 w->active = active;
1591 ev_ref (EV_A); 3589 ev_ref (EV_A);
1592} 3590}
1593 3591
1594void inline_size 3592inline_size void
1595ev_stop (EV_P_ W w) 3593ev_stop (EV_P_ W w)
1596{ 3594{
1597 ev_unref (EV_A); 3595 ev_unref (EV_A);
1598 w->active = 0; 3596 w->active = 0;
1599} 3597}
1600 3598
1601/*****************************************************************************/ 3599/*****************************************************************************/
1602 3600
1603void noinline 3601void noinline
1604ev_io_start (EV_P_ ev_io *w) 3602ev_io_start (EV_P_ ev_io *w) EV_THROW
1605{ 3603{
1606 int fd = w->fd; 3604 int fd = w->fd;
1607 3605
1608 if (expect_false (ev_is_active (w))) 3606 if (expect_false (ev_is_active (w)))
1609 return; 3607 return;
1610 3608
1611 assert (("ev_io_start called with negative fd", fd >= 0)); 3609 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3610 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3611
3612 EV_FREQUENT_CHECK;
1612 3613
1613 ev_start (EV_A_ (W)w, 1); 3614 ev_start (EV_A_ (W)w, 1);
1614 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3615 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1615 wlist_add (&anfds[fd].head, (WL)w); 3616 wlist_add (&anfds[fd].head, (WL)w);
1616 3617
3618 /* common bug, apparently */
3619 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3620
1617 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3621 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1618 w->events &= ~EV_IOFDSET; 3622 w->events &= ~EV__IOFDSET;
3623
3624 EV_FREQUENT_CHECK;
1619} 3625}
1620 3626
1621void noinline 3627void noinline
1622ev_io_stop (EV_P_ ev_io *w) 3628ev_io_stop (EV_P_ ev_io *w) EV_THROW
1623{ 3629{
1624 clear_pending (EV_A_ (W)w); 3630 clear_pending (EV_A_ (W)w);
1625 if (expect_false (!ev_is_active (w))) 3631 if (expect_false (!ev_is_active (w)))
1626 return; 3632 return;
1627 3633
1628 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3634 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3635
3636 EV_FREQUENT_CHECK;
1629 3637
1630 wlist_del (&anfds[w->fd].head, (WL)w); 3638 wlist_del (&anfds[w->fd].head, (WL)w);
1631 ev_stop (EV_A_ (W)w); 3639 ev_stop (EV_A_ (W)w);
1632 3640
1633 fd_change (EV_A_ w->fd, 1); 3641 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3642
3643 EV_FREQUENT_CHECK;
1634} 3644}
1635 3645
1636void noinline 3646void noinline
1637ev_timer_start (EV_P_ ev_timer *w) 3647ev_timer_start (EV_P_ ev_timer *w) EV_THROW
1638{ 3648{
1639 if (expect_false (ev_is_active (w))) 3649 if (expect_false (ev_is_active (w)))
1640 return; 3650 return;
1641 3651
1642 ((WT)w)->at += mn_now; 3652 ev_at (w) += mn_now;
1643 3653
1644 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3654 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1645 3655
3656 EV_FREQUENT_CHECK;
3657
3658 ++timercnt;
1646 ev_start (EV_A_ (W)w, ++timercnt); 3659 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1647 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 3660 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1648 timers [timercnt - 1] = (WT)w; 3661 ANHE_w (timers [ev_active (w)]) = (WT)w;
1649 upheap (timers, timercnt - 1); 3662 ANHE_at_cache (timers [ev_active (w)]);
3663 upheap (timers, ev_active (w));
1650 3664
3665 EV_FREQUENT_CHECK;
3666
1651 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 3667 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1652} 3668}
1653 3669
1654void noinline 3670void noinline
1655ev_timer_stop (EV_P_ ev_timer *w) 3671ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
1656{ 3672{
1657 clear_pending (EV_A_ (W)w); 3673 clear_pending (EV_A_ (W)w);
1658 if (expect_false (!ev_is_active (w))) 3674 if (expect_false (!ev_is_active (w)))
1659 return; 3675 return;
1660 3676
1661 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 3677 EV_FREQUENT_CHECK;
1662 3678
1663 { 3679 {
1664 int active = ((W)w)->active; 3680 int active = ev_active (w);
1665 3681
3682 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3683
3684 --timercnt;
3685
1666 if (expect_true (--active < --timercnt)) 3686 if (expect_true (active < timercnt + HEAP0))
1667 { 3687 {
1668 timers [active] = timers [timercnt]; 3688 timers [active] = timers [timercnt + HEAP0];
1669 adjustheap (timers, timercnt, active); 3689 adjustheap (timers, timercnt, active);
1670 } 3690 }
1671 } 3691 }
1672 3692
1673 ((WT)w)->at -= mn_now; 3693 ev_at (w) -= mn_now;
1674 3694
1675 ev_stop (EV_A_ (W)w); 3695 ev_stop (EV_A_ (W)w);
3696
3697 EV_FREQUENT_CHECK;
1676} 3698}
1677 3699
1678void noinline 3700void noinline
1679ev_timer_again (EV_P_ ev_timer *w) 3701ev_timer_again (EV_P_ ev_timer *w) EV_THROW
1680{ 3702{
3703 EV_FREQUENT_CHECK;
3704
3705 clear_pending (EV_A_ (W)w);
3706
1681 if (ev_is_active (w)) 3707 if (ev_is_active (w))
1682 { 3708 {
1683 if (w->repeat) 3709 if (w->repeat)
1684 { 3710 {
1685 ((WT)w)->at = mn_now + w->repeat; 3711 ev_at (w) = mn_now + w->repeat;
3712 ANHE_at_cache (timers [ev_active (w)]);
1686 adjustheap (timers, timercnt, ((W)w)->active - 1); 3713 adjustheap (timers, timercnt, ev_active (w));
1687 } 3714 }
1688 else 3715 else
1689 ev_timer_stop (EV_A_ w); 3716 ev_timer_stop (EV_A_ w);
1690 } 3717 }
1691 else if (w->repeat) 3718 else if (w->repeat)
1692 { 3719 {
1693 w->at = w->repeat; 3720 ev_at (w) = w->repeat;
1694 ev_timer_start (EV_A_ w); 3721 ev_timer_start (EV_A_ w);
1695 } 3722 }
3723
3724 EV_FREQUENT_CHECK;
3725}
3726
3727ev_tstamp
3728ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3729{
3730 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1696} 3731}
1697 3732
1698#if EV_PERIODIC_ENABLE 3733#if EV_PERIODIC_ENABLE
1699void noinline 3734void noinline
1700ev_periodic_start (EV_P_ ev_periodic *w) 3735ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
1701{ 3736{
1702 if (expect_false (ev_is_active (w))) 3737 if (expect_false (ev_is_active (w)))
1703 return; 3738 return;
1704 3739
1705 if (w->reschedule_cb) 3740 if (w->reschedule_cb)
1706 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 3741 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1707 else if (w->interval) 3742 else if (w->interval)
1708 { 3743 {
1709 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3744 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1710 /* this formula differs from the one in periodic_reify because we do not always round up */ 3745 periodic_recalc (EV_A_ w);
1711 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1712 } 3746 }
1713 else 3747 else
1714 ((WT)w)->at = w->offset; 3748 ev_at (w) = w->offset;
1715 3749
3750 EV_FREQUENT_CHECK;
3751
3752 ++periodiccnt;
1716 ev_start (EV_A_ (W)w, ++periodiccnt); 3753 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1717 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 3754 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1718 periodics [periodiccnt - 1] = (WT)w; 3755 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1719 upheap (periodics, periodiccnt - 1); 3756 ANHE_at_cache (periodics [ev_active (w)]);
3757 upheap (periodics, ev_active (w));
1720 3758
3759 EV_FREQUENT_CHECK;
3760
1721 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 3761 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1722} 3762}
1723 3763
1724void noinline 3764void noinline
1725ev_periodic_stop (EV_P_ ev_periodic *w) 3765ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
1726{ 3766{
1727 clear_pending (EV_A_ (W)w); 3767 clear_pending (EV_A_ (W)w);
1728 if (expect_false (!ev_is_active (w))) 3768 if (expect_false (!ev_is_active (w)))
1729 return; 3769 return;
1730 3770
1731 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 3771 EV_FREQUENT_CHECK;
1732 3772
1733 { 3773 {
1734 int active = ((W)w)->active; 3774 int active = ev_active (w);
1735 3775
3776 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3777
3778 --periodiccnt;
3779
1736 if (expect_true (--active < --periodiccnt)) 3780 if (expect_true (active < periodiccnt + HEAP0))
1737 { 3781 {
1738 periodics [active] = periodics [periodiccnt]; 3782 periodics [active] = periodics [periodiccnt + HEAP0];
1739 adjustheap (periodics, periodiccnt, active); 3783 adjustheap (periodics, periodiccnt, active);
1740 } 3784 }
1741 } 3785 }
1742 3786
1743 ev_stop (EV_A_ (W)w); 3787 ev_stop (EV_A_ (W)w);
3788
3789 EV_FREQUENT_CHECK;
1744} 3790}
1745 3791
1746void noinline 3792void noinline
1747ev_periodic_again (EV_P_ ev_periodic *w) 3793ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
1748{ 3794{
1749 /* TODO: use adjustheap and recalculation */ 3795 /* TODO: use adjustheap and recalculation */
1750 ev_periodic_stop (EV_A_ w); 3796 ev_periodic_stop (EV_A_ w);
1751 ev_periodic_start (EV_A_ w); 3797 ev_periodic_start (EV_A_ w);
1752} 3798}
1754 3800
1755#ifndef SA_RESTART 3801#ifndef SA_RESTART
1756# define SA_RESTART 0 3802# define SA_RESTART 0
1757#endif 3803#endif
1758 3804
3805#if EV_SIGNAL_ENABLE
3806
1759void noinline 3807void noinline
1760ev_signal_start (EV_P_ ev_signal *w) 3808ev_signal_start (EV_P_ ev_signal *w) EV_THROW
1761{ 3809{
1762#if EV_MULTIPLICITY
1763 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1764#endif
1765 if (expect_false (ev_is_active (w))) 3810 if (expect_false (ev_is_active (w)))
1766 return; 3811 return;
1767 3812
1768 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3813 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
1769 3814
3815#if EV_MULTIPLICITY
3816 assert (("libev: a signal must not be attached to two different loops",
3817 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3818
3819 signals [w->signum - 1].loop = EV_A;
3820 ECB_MEMORY_FENCE_RELEASE;
3821#endif
3822
3823 EV_FREQUENT_CHECK;
3824
3825#if EV_USE_SIGNALFD
3826 if (sigfd == -2)
1770 { 3827 {
1771#ifndef _WIN32 3828 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
1772 sigset_t full, prev; 3829 if (sigfd < 0 && errno == EINVAL)
1773 sigfillset (&full); 3830 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
1774 sigprocmask (SIG_SETMASK, &full, &prev);
1775#endif
1776 3831
1777 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3832 if (sigfd >= 0)
3833 {
3834 fd_intern (sigfd); /* doing it twice will not hurt */
1778 3835
1779#ifndef _WIN32 3836 sigemptyset (&sigfd_set);
1780 sigprocmask (SIG_SETMASK, &prev, 0); 3837
1781#endif 3838 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3839 ev_set_priority (&sigfd_w, EV_MAXPRI);
3840 ev_io_start (EV_A_ &sigfd_w);
3841 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3842 }
1782 } 3843 }
3844
3845 if (sigfd >= 0)
3846 {
3847 /* TODO: check .head */
3848 sigaddset (&sigfd_set, w->signum);
3849 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3850
3851 signalfd (sigfd, &sigfd_set, 0);
3852 }
3853#endif
1783 3854
1784 ev_start (EV_A_ (W)w, 1); 3855 ev_start (EV_A_ (W)w, 1);
1785 wlist_add (&signals [w->signum - 1].head, (WL)w); 3856 wlist_add (&signals [w->signum - 1].head, (WL)w);
1786 3857
1787 if (!((WL)w)->next) 3858 if (!((WL)w)->next)
3859# if EV_USE_SIGNALFD
3860 if (sigfd < 0) /*TODO*/
3861# endif
1788 { 3862 {
1789#if _WIN32 3863# ifdef _WIN32
3864 evpipe_init (EV_A);
3865
1790 signal (w->signum, sighandler); 3866 signal (w->signum, ev_sighandler);
1791#else 3867# else
1792 struct sigaction sa; 3868 struct sigaction sa;
3869
3870 evpipe_init (EV_A);
3871
1793 sa.sa_handler = sighandler; 3872 sa.sa_handler = ev_sighandler;
1794 sigfillset (&sa.sa_mask); 3873 sigfillset (&sa.sa_mask);
1795 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3874 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1796 sigaction (w->signum, &sa, 0); 3875 sigaction (w->signum, &sa, 0);
3876
3877 if (origflags & EVFLAG_NOSIGMASK)
3878 {
3879 sigemptyset (&sa.sa_mask);
3880 sigaddset (&sa.sa_mask, w->signum);
3881 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3882 }
1797#endif 3883#endif
1798 } 3884 }
3885
3886 EV_FREQUENT_CHECK;
1799} 3887}
1800 3888
1801void noinline 3889void noinline
1802ev_signal_stop (EV_P_ ev_signal *w) 3890ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
1803{ 3891{
1804 clear_pending (EV_A_ (W)w); 3892 clear_pending (EV_A_ (W)w);
1805 if (expect_false (!ev_is_active (w))) 3893 if (expect_false (!ev_is_active (w)))
1806 return; 3894 return;
1807 3895
3896 EV_FREQUENT_CHECK;
3897
1808 wlist_del (&signals [w->signum - 1].head, (WL)w); 3898 wlist_del (&signals [w->signum - 1].head, (WL)w);
1809 ev_stop (EV_A_ (W)w); 3899 ev_stop (EV_A_ (W)w);
1810 3900
1811 if (!signals [w->signum - 1].head) 3901 if (!signals [w->signum - 1].head)
3902 {
3903#if EV_MULTIPLICITY
3904 signals [w->signum - 1].loop = 0; /* unattach from signal */
3905#endif
3906#if EV_USE_SIGNALFD
3907 if (sigfd >= 0)
3908 {
3909 sigset_t ss;
3910
3911 sigemptyset (&ss);
3912 sigaddset (&ss, w->signum);
3913 sigdelset (&sigfd_set, w->signum);
3914
3915 signalfd (sigfd, &sigfd_set, 0);
3916 sigprocmask (SIG_UNBLOCK, &ss, 0);
3917 }
3918 else
3919#endif
1812 signal (w->signum, SIG_DFL); 3920 signal (w->signum, SIG_DFL);
3921 }
3922
3923 EV_FREQUENT_CHECK;
1813} 3924}
3925
3926#endif
3927
3928#if EV_CHILD_ENABLE
1814 3929
1815void 3930void
1816ev_child_start (EV_P_ ev_child *w) 3931ev_child_start (EV_P_ ev_child *w) EV_THROW
1817{ 3932{
1818#if EV_MULTIPLICITY 3933#if EV_MULTIPLICITY
1819 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3934 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1820#endif 3935#endif
1821 if (expect_false (ev_is_active (w))) 3936 if (expect_false (ev_is_active (w)))
1822 return; 3937 return;
1823 3938
3939 EV_FREQUENT_CHECK;
3940
1824 ev_start (EV_A_ (W)w, 1); 3941 ev_start (EV_A_ (W)w, 1);
1825 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3942 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3943
3944 EV_FREQUENT_CHECK;
1826} 3945}
1827 3946
1828void 3947void
1829ev_child_stop (EV_P_ ev_child *w) 3948ev_child_stop (EV_P_ ev_child *w) EV_THROW
1830{ 3949{
1831 clear_pending (EV_A_ (W)w); 3950 clear_pending (EV_A_ (W)w);
1832 if (expect_false (!ev_is_active (w))) 3951 if (expect_false (!ev_is_active (w)))
1833 return; 3952 return;
1834 3953
3954 EV_FREQUENT_CHECK;
3955
1835 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3956 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1836 ev_stop (EV_A_ (W)w); 3957 ev_stop (EV_A_ (W)w);
3958
3959 EV_FREQUENT_CHECK;
1837} 3960}
3961
3962#endif
1838 3963
1839#if EV_STAT_ENABLE 3964#if EV_STAT_ENABLE
1840 3965
1841# ifdef _WIN32 3966# ifdef _WIN32
1842# undef lstat 3967# undef lstat
1843# define lstat(a,b) _stati64 (a,b) 3968# define lstat(a,b) _stati64 (a,b)
1844# endif 3969# endif
1845 3970
1846#define DEF_STAT_INTERVAL 5.0074891 3971#define DEF_STAT_INTERVAL 5.0074891
3972#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1847#define MIN_STAT_INTERVAL 0.1074891 3973#define MIN_STAT_INTERVAL 0.1074891
1848 3974
1849static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3975static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1850 3976
1851#if EV_USE_INOTIFY 3977#if EV_USE_INOTIFY
1852# define EV_INOTIFY_BUFSIZE 8192 3978
3979/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3980# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
1853 3981
1854static void noinline 3982static void noinline
1855infy_add (EV_P_ ev_stat *w) 3983infy_add (EV_P_ ev_stat *w)
1856{ 3984{
1857 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3985 w->wd = inotify_add_watch (fs_fd, w->path,
3986 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
3987 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
3988 | IN_DONT_FOLLOW | IN_MASK_ADD);
1858 3989
1859 if (w->wd < 0) 3990 if (w->wd >= 0)
3991 {
3992 struct statfs sfs;
3993
3994 /* now local changes will be tracked by inotify, but remote changes won't */
3995 /* unless the filesystem is known to be local, we therefore still poll */
3996 /* also do poll on <2.6.25, but with normal frequency */
3997
3998 if (!fs_2625)
3999 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4000 else if (!statfs (w->path, &sfs)
4001 && (sfs.f_type == 0x1373 /* devfs */
4002 || sfs.f_type == 0x4006 /* fat */
4003 || sfs.f_type == 0x4d44 /* msdos */
4004 || sfs.f_type == 0xEF53 /* ext2/3 */
4005 || sfs.f_type == 0x72b6 /* jffs2 */
4006 || sfs.f_type == 0x858458f6 /* ramfs */
4007 || sfs.f_type == 0x5346544e /* ntfs */
4008 || sfs.f_type == 0x3153464a /* jfs */
4009 || sfs.f_type == 0x9123683e /* btrfs */
4010 || sfs.f_type == 0x52654973 /* reiser3 */
4011 || sfs.f_type == 0x01021994 /* tmpfs */
4012 || sfs.f_type == 0x58465342 /* xfs */))
4013 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4014 else
4015 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1860 { 4016 }
1861 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 4017 else
4018 {
4019 /* can't use inotify, continue to stat */
4020 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1862 4021
1863 /* monitor some parent directory for speedup hints */ 4022 /* if path is not there, monitor some parent directory for speedup hints */
4023 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4024 /* but an efficiency issue only */
1864 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 4025 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1865 { 4026 {
1866 char path [4096]; 4027 char path [4096];
1867 strcpy (path, w->path); 4028 strcpy (path, w->path);
1868 4029
1871 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 4032 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1872 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 4033 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1873 4034
1874 char *pend = strrchr (path, '/'); 4035 char *pend = strrchr (path, '/');
1875 4036
1876 if (!pend) 4037 if (!pend || pend == path)
1877 break; /* whoops, no '/', complain to your admin */ 4038 break;
1878 4039
1879 *pend = 0; 4040 *pend = 0;
1880 w->wd = inotify_add_watch (fs_fd, path, mask); 4041 w->wd = inotify_add_watch (fs_fd, path, mask);
1881 } 4042 }
1882 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 4043 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1883 } 4044 }
1884 } 4045 }
1885 else
1886 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1887 4046
1888 if (w->wd >= 0) 4047 if (w->wd >= 0)
1889 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 4048 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4049
4050 /* now re-arm timer, if required */
4051 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4052 ev_timer_again (EV_A_ &w->timer);
4053 if (ev_is_active (&w->timer)) ev_unref (EV_A);
1890} 4054}
1891 4055
1892static void noinline 4056static void noinline
1893infy_del (EV_P_ ev_stat *w) 4057infy_del (EV_P_ ev_stat *w)
1894{ 4058{
1897 4061
1898 if (wd < 0) 4062 if (wd < 0)
1899 return; 4063 return;
1900 4064
1901 w->wd = -2; 4065 w->wd = -2;
1902 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 4066 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
1903 wlist_del (&fs_hash [slot].head, (WL)w); 4067 wlist_del (&fs_hash [slot].head, (WL)w);
1904 4068
1905 /* remove this watcher, if others are watching it, they will rearm */ 4069 /* remove this watcher, if others are watching it, they will rearm */
1906 inotify_rm_watch (fs_fd, wd); 4070 inotify_rm_watch (fs_fd, wd);
1907} 4071}
1908 4072
1909static void noinline 4073static void noinline
1910infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 4074infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1911{ 4075{
1912 if (slot < 0) 4076 if (slot < 0)
1913 /* overflow, need to check for all hahs slots */ 4077 /* overflow, need to check for all hash slots */
1914 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4078 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1915 infy_wd (EV_A_ slot, wd, ev); 4079 infy_wd (EV_A_ slot, wd, ev);
1916 else 4080 else
1917 { 4081 {
1918 WL w_; 4082 WL w_;
1919 4083
1920 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 4084 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
1921 { 4085 {
1922 ev_stat *w = (ev_stat *)w_; 4086 ev_stat *w = (ev_stat *)w_;
1923 w_ = w_->next; /* lets us remove this watcher and all before it */ 4087 w_ = w_->next; /* lets us remove this watcher and all before it */
1924 4088
1925 if (w->wd == wd || wd == -1) 4089 if (w->wd == wd || wd == -1)
1926 { 4090 {
1927 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 4091 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1928 { 4092 {
4093 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
1929 w->wd = -1; 4094 w->wd = -1;
1930 infy_add (EV_A_ w); /* re-add, no matter what */ 4095 infy_add (EV_A_ w); /* re-add, no matter what */
1931 } 4096 }
1932 4097
1933 stat_timer_cb (EV_A_ &w->timer, 0); 4098 stat_timer_cb (EV_A_ &w->timer, 0);
1938 4103
1939static void 4104static void
1940infy_cb (EV_P_ ev_io *w, int revents) 4105infy_cb (EV_P_ ev_io *w, int revents)
1941{ 4106{
1942 char buf [EV_INOTIFY_BUFSIZE]; 4107 char buf [EV_INOTIFY_BUFSIZE];
1943 struct inotify_event *ev = (struct inotify_event *)buf;
1944 int ofs; 4108 int ofs;
1945 int len = read (fs_fd, buf, sizeof (buf)); 4109 int len = read (fs_fd, buf, sizeof (buf));
1946 4110
1947 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 4111 for (ofs = 0; ofs < len; )
4112 {
4113 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
1948 infy_wd (EV_A_ ev->wd, ev->wd, ev); 4114 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4115 ofs += sizeof (struct inotify_event) + ev->len;
4116 }
1949} 4117}
1950 4118
1951void inline_size 4119inline_size void ecb_cold
4120ev_check_2625 (EV_P)
4121{
4122 /* kernels < 2.6.25 are borked
4123 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4124 */
4125 if (ev_linux_version () < 0x020619)
4126 return;
4127
4128 fs_2625 = 1;
4129}
4130
4131inline_size int
4132infy_newfd (void)
4133{
4134#if defined IN_CLOEXEC && defined IN_NONBLOCK
4135 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4136 if (fd >= 0)
4137 return fd;
4138#endif
4139 return inotify_init ();
4140}
4141
4142inline_size void
1952infy_init (EV_P) 4143infy_init (EV_P)
1953{ 4144{
1954 if (fs_fd != -2) 4145 if (fs_fd != -2)
1955 return; 4146 return;
1956 4147
4148 fs_fd = -1;
4149
4150 ev_check_2625 (EV_A);
4151
1957 fs_fd = inotify_init (); 4152 fs_fd = infy_newfd ();
1958 4153
1959 if (fs_fd >= 0) 4154 if (fs_fd >= 0)
1960 { 4155 {
4156 fd_intern (fs_fd);
1961 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 4157 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1962 ev_set_priority (&fs_w, EV_MAXPRI); 4158 ev_set_priority (&fs_w, EV_MAXPRI);
1963 ev_io_start (EV_A_ &fs_w); 4159 ev_io_start (EV_A_ &fs_w);
4160 ev_unref (EV_A);
1964 } 4161 }
1965} 4162}
1966 4163
1967void inline_size 4164inline_size void
1968infy_fork (EV_P) 4165infy_fork (EV_P)
1969{ 4166{
1970 int slot; 4167 int slot;
1971 4168
1972 if (fs_fd < 0) 4169 if (fs_fd < 0)
1973 return; 4170 return;
1974 4171
4172 ev_ref (EV_A);
4173 ev_io_stop (EV_A_ &fs_w);
1975 close (fs_fd); 4174 close (fs_fd);
1976 fs_fd = inotify_init (); 4175 fs_fd = infy_newfd ();
1977 4176
4177 if (fs_fd >= 0)
4178 {
4179 fd_intern (fs_fd);
4180 ev_io_set (&fs_w, fs_fd, EV_READ);
4181 ev_io_start (EV_A_ &fs_w);
4182 ev_unref (EV_A);
4183 }
4184
1978 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4185 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1979 { 4186 {
1980 WL w_ = fs_hash [slot].head; 4187 WL w_ = fs_hash [slot].head;
1981 fs_hash [slot].head = 0; 4188 fs_hash [slot].head = 0;
1982 4189
1983 while (w_) 4190 while (w_)
1988 w->wd = -1; 4195 w->wd = -1;
1989 4196
1990 if (fs_fd >= 0) 4197 if (fs_fd >= 0)
1991 infy_add (EV_A_ w); /* re-add, no matter what */ 4198 infy_add (EV_A_ w); /* re-add, no matter what */
1992 else 4199 else
4200 {
4201 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4202 if (ev_is_active (&w->timer)) ev_ref (EV_A);
1993 ev_timer_start (EV_A_ &w->timer); 4203 ev_timer_again (EV_A_ &w->timer);
4204 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4205 }
1994 } 4206 }
1995
1996 } 4207 }
1997} 4208}
1998 4209
4210#endif
4211
4212#ifdef _WIN32
4213# define EV_LSTAT(p,b) _stati64 (p, b)
4214#else
4215# define EV_LSTAT(p,b) lstat (p, b)
1999#endif 4216#endif
2000 4217
2001void 4218void
2002ev_stat_stat (EV_P_ ev_stat *w) 4219ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
2003{ 4220{
2004 if (lstat (w->path, &w->attr) < 0) 4221 if (lstat (w->path, &w->attr) < 0)
2005 w->attr.st_nlink = 0; 4222 w->attr.st_nlink = 0;
2006 else if (!w->attr.st_nlink) 4223 else if (!w->attr.st_nlink)
2007 w->attr.st_nlink = 1; 4224 w->attr.st_nlink = 1;
2010static void noinline 4227static void noinline
2011stat_timer_cb (EV_P_ ev_timer *w_, int revents) 4228stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2012{ 4229{
2013 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 4230 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2014 4231
2015 /* we copy this here each the time so that */ 4232 ev_statdata prev = w->attr;
2016 /* prev has the old value when the callback gets invoked */
2017 w->prev = w->attr;
2018 ev_stat_stat (EV_A_ w); 4233 ev_stat_stat (EV_A_ w);
2019 4234
2020 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 4235 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2021 if ( 4236 if (
2022 w->prev.st_dev != w->attr.st_dev 4237 prev.st_dev != w->attr.st_dev
2023 || w->prev.st_ino != w->attr.st_ino 4238 || prev.st_ino != w->attr.st_ino
2024 || w->prev.st_mode != w->attr.st_mode 4239 || prev.st_mode != w->attr.st_mode
2025 || w->prev.st_nlink != w->attr.st_nlink 4240 || prev.st_nlink != w->attr.st_nlink
2026 || w->prev.st_uid != w->attr.st_uid 4241 || prev.st_uid != w->attr.st_uid
2027 || w->prev.st_gid != w->attr.st_gid 4242 || prev.st_gid != w->attr.st_gid
2028 || w->prev.st_rdev != w->attr.st_rdev 4243 || prev.st_rdev != w->attr.st_rdev
2029 || w->prev.st_size != w->attr.st_size 4244 || prev.st_size != w->attr.st_size
2030 || w->prev.st_atime != w->attr.st_atime 4245 || prev.st_atime != w->attr.st_atime
2031 || w->prev.st_mtime != w->attr.st_mtime 4246 || prev.st_mtime != w->attr.st_mtime
2032 || w->prev.st_ctime != w->attr.st_ctime 4247 || prev.st_ctime != w->attr.st_ctime
2033 ) { 4248 ) {
4249 /* we only update w->prev on actual differences */
4250 /* in case we test more often than invoke the callback, */
4251 /* to ensure that prev is always different to attr */
4252 w->prev = prev;
4253
2034 #if EV_USE_INOTIFY 4254 #if EV_USE_INOTIFY
4255 if (fs_fd >= 0)
4256 {
2035 infy_del (EV_A_ w); 4257 infy_del (EV_A_ w);
2036 infy_add (EV_A_ w); 4258 infy_add (EV_A_ w);
2037 ev_stat_stat (EV_A_ w); /* avoid race... */ 4259 ev_stat_stat (EV_A_ w); /* avoid race... */
4260 }
2038 #endif 4261 #endif
2039 4262
2040 ev_feed_event (EV_A_ w, EV_STAT); 4263 ev_feed_event (EV_A_ w, EV_STAT);
2041 } 4264 }
2042} 4265}
2043 4266
2044void 4267void
2045ev_stat_start (EV_P_ ev_stat *w) 4268ev_stat_start (EV_P_ ev_stat *w) EV_THROW
2046{ 4269{
2047 if (expect_false (ev_is_active (w))) 4270 if (expect_false (ev_is_active (w)))
2048 return; 4271 return;
2049 4272
2050 /* since we use memcmp, we need to clear any padding data etc. */
2051 memset (&w->prev, 0, sizeof (ev_statdata));
2052 memset (&w->attr, 0, sizeof (ev_statdata));
2053
2054 ev_stat_stat (EV_A_ w); 4273 ev_stat_stat (EV_A_ w);
2055 4274
4275 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2056 if (w->interval < MIN_STAT_INTERVAL) 4276 w->interval = MIN_STAT_INTERVAL;
2057 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2058 4277
2059 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 4278 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2060 ev_set_priority (&w->timer, ev_priority (w)); 4279 ev_set_priority (&w->timer, ev_priority (w));
2061 4280
2062#if EV_USE_INOTIFY 4281#if EV_USE_INOTIFY
2063 infy_init (EV_A); 4282 infy_init (EV_A);
2064 4283
2065 if (fs_fd >= 0) 4284 if (fs_fd >= 0)
2066 infy_add (EV_A_ w); 4285 infy_add (EV_A_ w);
2067 else 4286 else
2068#endif 4287#endif
4288 {
2069 ev_timer_start (EV_A_ &w->timer); 4289 ev_timer_again (EV_A_ &w->timer);
4290 ev_unref (EV_A);
4291 }
2070 4292
2071 ev_start (EV_A_ (W)w, 1); 4293 ev_start (EV_A_ (W)w, 1);
4294
4295 EV_FREQUENT_CHECK;
2072} 4296}
2073 4297
2074void 4298void
2075ev_stat_stop (EV_P_ ev_stat *w) 4299ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
2076{ 4300{
2077 clear_pending (EV_A_ (W)w); 4301 clear_pending (EV_A_ (W)w);
2078 if (expect_false (!ev_is_active (w))) 4302 if (expect_false (!ev_is_active (w)))
2079 return; 4303 return;
2080 4304
4305 EV_FREQUENT_CHECK;
4306
2081#if EV_USE_INOTIFY 4307#if EV_USE_INOTIFY
2082 infy_del (EV_A_ w); 4308 infy_del (EV_A_ w);
2083#endif 4309#endif
4310
4311 if (ev_is_active (&w->timer))
4312 {
4313 ev_ref (EV_A);
2084 ev_timer_stop (EV_A_ &w->timer); 4314 ev_timer_stop (EV_A_ &w->timer);
4315 }
2085 4316
2086 ev_stop (EV_A_ (W)w); 4317 ev_stop (EV_A_ (W)w);
4318
4319 EV_FREQUENT_CHECK;
2087} 4320}
2088#endif 4321#endif
2089 4322
2090#if EV_IDLE_ENABLE 4323#if EV_IDLE_ENABLE
2091void 4324void
2092ev_idle_start (EV_P_ ev_idle *w) 4325ev_idle_start (EV_P_ ev_idle *w) EV_THROW
2093{ 4326{
2094 if (expect_false (ev_is_active (w))) 4327 if (expect_false (ev_is_active (w)))
2095 return; 4328 return;
2096 4329
2097 pri_adjust (EV_A_ (W)w); 4330 pri_adjust (EV_A_ (W)w);
4331
4332 EV_FREQUENT_CHECK;
2098 4333
2099 { 4334 {
2100 int active = ++idlecnt [ABSPRI (w)]; 4335 int active = ++idlecnt [ABSPRI (w)];
2101 4336
2102 ++idleall; 4337 ++idleall;
2103 ev_start (EV_A_ (W)w, active); 4338 ev_start (EV_A_ (W)w, active);
2104 4339
2105 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 4340 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2106 idles [ABSPRI (w)][active - 1] = w; 4341 idles [ABSPRI (w)][active - 1] = w;
2107 } 4342 }
4343
4344 EV_FREQUENT_CHECK;
2108} 4345}
2109 4346
2110void 4347void
2111ev_idle_stop (EV_P_ ev_idle *w) 4348ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
2112{ 4349{
2113 clear_pending (EV_A_ (W)w); 4350 clear_pending (EV_A_ (W)w);
2114 if (expect_false (!ev_is_active (w))) 4351 if (expect_false (!ev_is_active (w)))
2115 return; 4352 return;
2116 4353
4354 EV_FREQUENT_CHECK;
4355
2117 { 4356 {
2118 int active = ((W)w)->active; 4357 int active = ev_active (w);
2119 4358
2120 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 4359 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2121 ((W)idles [ABSPRI (w)][active - 1])->active = active; 4360 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2122 4361
2123 ev_stop (EV_A_ (W)w); 4362 ev_stop (EV_A_ (W)w);
2124 --idleall; 4363 --idleall;
2125 } 4364 }
2126}
2127#endif
2128 4365
4366 EV_FREQUENT_CHECK;
4367}
4368#endif
4369
4370#if EV_PREPARE_ENABLE
2129void 4371void
2130ev_prepare_start (EV_P_ ev_prepare *w) 4372ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
2131{ 4373{
2132 if (expect_false (ev_is_active (w))) 4374 if (expect_false (ev_is_active (w)))
2133 return; 4375 return;
4376
4377 EV_FREQUENT_CHECK;
2134 4378
2135 ev_start (EV_A_ (W)w, ++preparecnt); 4379 ev_start (EV_A_ (W)w, ++preparecnt);
2136 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 4380 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2137 prepares [preparecnt - 1] = w; 4381 prepares [preparecnt - 1] = w;
4382
4383 EV_FREQUENT_CHECK;
2138} 4384}
2139 4385
2140void 4386void
2141ev_prepare_stop (EV_P_ ev_prepare *w) 4387ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
2142{ 4388{
2143 clear_pending (EV_A_ (W)w); 4389 clear_pending (EV_A_ (W)w);
2144 if (expect_false (!ev_is_active (w))) 4390 if (expect_false (!ev_is_active (w)))
2145 return; 4391 return;
2146 4392
4393 EV_FREQUENT_CHECK;
4394
2147 { 4395 {
2148 int active = ((W)w)->active; 4396 int active = ev_active (w);
4397
2149 prepares [active - 1] = prepares [--preparecnt]; 4398 prepares [active - 1] = prepares [--preparecnt];
2150 ((W)prepares [active - 1])->active = active; 4399 ev_active (prepares [active - 1]) = active;
2151 } 4400 }
2152 4401
2153 ev_stop (EV_A_ (W)w); 4402 ev_stop (EV_A_ (W)w);
2154}
2155 4403
4404 EV_FREQUENT_CHECK;
4405}
4406#endif
4407
4408#if EV_CHECK_ENABLE
2156void 4409void
2157ev_check_start (EV_P_ ev_check *w) 4410ev_check_start (EV_P_ ev_check *w) EV_THROW
2158{ 4411{
2159 if (expect_false (ev_is_active (w))) 4412 if (expect_false (ev_is_active (w)))
2160 return; 4413 return;
4414
4415 EV_FREQUENT_CHECK;
2161 4416
2162 ev_start (EV_A_ (W)w, ++checkcnt); 4417 ev_start (EV_A_ (W)w, ++checkcnt);
2163 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 4418 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2164 checks [checkcnt - 1] = w; 4419 checks [checkcnt - 1] = w;
4420
4421 EV_FREQUENT_CHECK;
2165} 4422}
2166 4423
2167void 4424void
2168ev_check_stop (EV_P_ ev_check *w) 4425ev_check_stop (EV_P_ ev_check *w) EV_THROW
2169{ 4426{
2170 clear_pending (EV_A_ (W)w); 4427 clear_pending (EV_A_ (W)w);
2171 if (expect_false (!ev_is_active (w))) 4428 if (expect_false (!ev_is_active (w)))
2172 return; 4429 return;
2173 4430
4431 EV_FREQUENT_CHECK;
4432
2174 { 4433 {
2175 int active = ((W)w)->active; 4434 int active = ev_active (w);
4435
2176 checks [active - 1] = checks [--checkcnt]; 4436 checks [active - 1] = checks [--checkcnt];
2177 ((W)checks [active - 1])->active = active; 4437 ev_active (checks [active - 1]) = active;
2178 } 4438 }
2179 4439
2180 ev_stop (EV_A_ (W)w); 4440 ev_stop (EV_A_ (W)w);
4441
4442 EV_FREQUENT_CHECK;
2181} 4443}
4444#endif
2182 4445
2183#if EV_EMBED_ENABLE 4446#if EV_EMBED_ENABLE
2184void noinline 4447void noinline
2185ev_embed_sweep (EV_P_ ev_embed *w) 4448ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
2186{ 4449{
2187 ev_loop (w->other, EVLOOP_NONBLOCK); 4450 ev_run (w->other, EVRUN_NOWAIT);
2188} 4451}
2189 4452
2190static void 4453static void
2191embed_io_cb (EV_P_ ev_io *io, int revents) 4454embed_io_cb (EV_P_ ev_io *io, int revents)
2192{ 4455{
2193 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4456 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2194 4457
2195 if (ev_cb (w)) 4458 if (ev_cb (w))
2196 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4459 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2197 else 4460 else
2198 ev_embed_sweep (loop, w); 4461 ev_run (w->other, EVRUN_NOWAIT);
2199} 4462}
2200 4463
2201static void 4464static void
2202embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4465embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2203{ 4466{
2204 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4467 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2205 4468
2206 fd_reify (w->other); 4469 {
4470 EV_P = w->other;
4471
4472 while (fdchangecnt)
4473 {
4474 fd_reify (EV_A);
4475 ev_run (EV_A_ EVRUN_NOWAIT);
4476 }
4477 }
2207} 4478}
4479
4480static void
4481embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4482{
4483 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4484
4485 ev_embed_stop (EV_A_ w);
4486
4487 {
4488 EV_P = w->other;
4489
4490 ev_loop_fork (EV_A);
4491 ev_run (EV_A_ EVRUN_NOWAIT);
4492 }
4493
4494 ev_embed_start (EV_A_ w);
4495}
4496
4497#if 0
4498static void
4499embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4500{
4501 ev_idle_stop (EV_A_ idle);
4502}
4503#endif
2208 4504
2209void 4505void
2210ev_embed_start (EV_P_ ev_embed *w) 4506ev_embed_start (EV_P_ ev_embed *w) EV_THROW
2211{ 4507{
2212 if (expect_false (ev_is_active (w))) 4508 if (expect_false (ev_is_active (w)))
2213 return; 4509 return;
2214 4510
2215 { 4511 {
2216 struct ev_loop *loop = w->other; 4512 EV_P = w->other;
2217 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4513 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2218 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4514 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2219 } 4515 }
4516
4517 EV_FREQUENT_CHECK;
2220 4518
2221 ev_set_priority (&w->io, ev_priority (w)); 4519 ev_set_priority (&w->io, ev_priority (w));
2222 ev_io_start (EV_A_ &w->io); 4520 ev_io_start (EV_A_ &w->io);
2223 4521
2224 ev_prepare_init (&w->prepare, embed_prepare_cb); 4522 ev_prepare_init (&w->prepare, embed_prepare_cb);
2225 ev_set_priority (&w->prepare, EV_MINPRI); 4523 ev_set_priority (&w->prepare, EV_MINPRI);
2226 ev_prepare_start (EV_A_ &w->prepare); 4524 ev_prepare_start (EV_A_ &w->prepare);
2227 4525
4526 ev_fork_init (&w->fork, embed_fork_cb);
4527 ev_fork_start (EV_A_ &w->fork);
4528
4529 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4530
2228 ev_start (EV_A_ (W)w, 1); 4531 ev_start (EV_A_ (W)w, 1);
4532
4533 EV_FREQUENT_CHECK;
2229} 4534}
2230 4535
2231void 4536void
2232ev_embed_stop (EV_P_ ev_embed *w) 4537ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
2233{ 4538{
2234 clear_pending (EV_A_ (W)w); 4539 clear_pending (EV_A_ (W)w);
2235 if (expect_false (!ev_is_active (w))) 4540 if (expect_false (!ev_is_active (w)))
2236 return; 4541 return;
2237 4542
4543 EV_FREQUENT_CHECK;
4544
2238 ev_io_stop (EV_A_ &w->io); 4545 ev_io_stop (EV_A_ &w->io);
2239 ev_prepare_stop (EV_A_ &w->prepare); 4546 ev_prepare_stop (EV_A_ &w->prepare);
4547 ev_fork_stop (EV_A_ &w->fork);
2240 4548
2241 ev_stop (EV_A_ (W)w); 4549 ev_stop (EV_A_ (W)w);
4550
4551 EV_FREQUENT_CHECK;
2242} 4552}
2243#endif 4553#endif
2244 4554
2245#if EV_FORK_ENABLE 4555#if EV_FORK_ENABLE
2246void 4556void
2247ev_fork_start (EV_P_ ev_fork *w) 4557ev_fork_start (EV_P_ ev_fork *w) EV_THROW
2248{ 4558{
2249 if (expect_false (ev_is_active (w))) 4559 if (expect_false (ev_is_active (w)))
2250 return; 4560 return;
4561
4562 EV_FREQUENT_CHECK;
2251 4563
2252 ev_start (EV_A_ (W)w, ++forkcnt); 4564 ev_start (EV_A_ (W)w, ++forkcnt);
2253 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 4565 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2254 forks [forkcnt - 1] = w; 4566 forks [forkcnt - 1] = w;
4567
4568 EV_FREQUENT_CHECK;
2255} 4569}
2256 4570
2257void 4571void
2258ev_fork_stop (EV_P_ ev_fork *w) 4572ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
2259{ 4573{
2260 clear_pending (EV_A_ (W)w); 4574 clear_pending (EV_A_ (W)w);
2261 if (expect_false (!ev_is_active (w))) 4575 if (expect_false (!ev_is_active (w)))
2262 return; 4576 return;
2263 4577
4578 EV_FREQUENT_CHECK;
4579
2264 { 4580 {
2265 int active = ((W)w)->active; 4581 int active = ev_active (w);
4582
2266 forks [active - 1] = forks [--forkcnt]; 4583 forks [active - 1] = forks [--forkcnt];
2267 ((W)forks [active - 1])->active = active; 4584 ev_active (forks [active - 1]) = active;
2268 } 4585 }
2269 4586
2270 ev_stop (EV_A_ (W)w); 4587 ev_stop (EV_A_ (W)w);
4588
4589 EV_FREQUENT_CHECK;
4590}
4591#endif
4592
4593#if EV_CLEANUP_ENABLE
4594void
4595ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4596{
4597 if (expect_false (ev_is_active (w)))
4598 return;
4599
4600 EV_FREQUENT_CHECK;
4601
4602 ev_start (EV_A_ (W)w, ++cleanupcnt);
4603 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4604 cleanups [cleanupcnt - 1] = w;
4605
4606 /* cleanup watchers should never keep a refcount on the loop */
4607 ev_unref (EV_A);
4608 EV_FREQUENT_CHECK;
4609}
4610
4611void
4612ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4613{
4614 clear_pending (EV_A_ (W)w);
4615 if (expect_false (!ev_is_active (w)))
4616 return;
4617
4618 EV_FREQUENT_CHECK;
4619 ev_ref (EV_A);
4620
4621 {
4622 int active = ev_active (w);
4623
4624 cleanups [active - 1] = cleanups [--cleanupcnt];
4625 ev_active (cleanups [active - 1]) = active;
4626 }
4627
4628 ev_stop (EV_A_ (W)w);
4629
4630 EV_FREQUENT_CHECK;
4631}
4632#endif
4633
4634#if EV_ASYNC_ENABLE
4635void
4636ev_async_start (EV_P_ ev_async *w) EV_THROW
4637{
4638 if (expect_false (ev_is_active (w)))
4639 return;
4640
4641 w->sent = 0;
4642
4643 evpipe_init (EV_A);
4644
4645 EV_FREQUENT_CHECK;
4646
4647 ev_start (EV_A_ (W)w, ++asynccnt);
4648 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4649 asyncs [asynccnt - 1] = w;
4650
4651 EV_FREQUENT_CHECK;
4652}
4653
4654void
4655ev_async_stop (EV_P_ ev_async *w) EV_THROW
4656{
4657 clear_pending (EV_A_ (W)w);
4658 if (expect_false (!ev_is_active (w)))
4659 return;
4660
4661 EV_FREQUENT_CHECK;
4662
4663 {
4664 int active = ev_active (w);
4665
4666 asyncs [active - 1] = asyncs [--asynccnt];
4667 ev_active (asyncs [active - 1]) = active;
4668 }
4669
4670 ev_stop (EV_A_ (W)w);
4671
4672 EV_FREQUENT_CHECK;
4673}
4674
4675void
4676ev_async_send (EV_P_ ev_async *w) EV_THROW
4677{
4678 w->sent = 1;
4679 evpipe_write (EV_A_ &async_pending);
2271} 4680}
2272#endif 4681#endif
2273 4682
2274/*****************************************************************************/ 4683/*****************************************************************************/
2275 4684
2285once_cb (EV_P_ struct ev_once *once, int revents) 4694once_cb (EV_P_ struct ev_once *once, int revents)
2286{ 4695{
2287 void (*cb)(int revents, void *arg) = once->cb; 4696 void (*cb)(int revents, void *arg) = once->cb;
2288 void *arg = once->arg; 4697 void *arg = once->arg;
2289 4698
2290 ev_io_stop (EV_A_ &once->io); 4699 ev_io_stop (EV_A_ &once->io);
2291 ev_timer_stop (EV_A_ &once->to); 4700 ev_timer_stop (EV_A_ &once->to);
2292 ev_free (once); 4701 ev_free (once);
2293 4702
2294 cb (revents, arg); 4703 cb (revents, arg);
2295} 4704}
2296 4705
2297static void 4706static void
2298once_cb_io (EV_P_ ev_io *w, int revents) 4707once_cb_io (EV_P_ ev_io *w, int revents)
2299{ 4708{
2300 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4709 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4710
4711 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2301} 4712}
2302 4713
2303static void 4714static void
2304once_cb_to (EV_P_ ev_timer *w, int revents) 4715once_cb_to (EV_P_ ev_timer *w, int revents)
2305{ 4716{
2306 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4717 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4718
4719 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2307} 4720}
2308 4721
2309void 4722void
2310ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4723ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
2311{ 4724{
2312 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4725 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2313 4726
2314 if (expect_false (!once)) 4727 if (expect_false (!once))
2315 { 4728 {
2316 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4729 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2317 return; 4730 return;
2318 } 4731 }
2319 4732
2320 once->cb = cb; 4733 once->cb = cb;
2321 once->arg = arg; 4734 once->arg = arg;
2333 ev_timer_set (&once->to, timeout, 0.); 4746 ev_timer_set (&once->to, timeout, 0.);
2334 ev_timer_start (EV_A_ &once->to); 4747 ev_timer_start (EV_A_ &once->to);
2335 } 4748 }
2336} 4749}
2337 4750
4751/*****************************************************************************/
4752
4753#if EV_WALK_ENABLE
4754void ecb_cold
4755ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4756{
4757 int i, j;
4758 ev_watcher_list *wl, *wn;
4759
4760 if (types & (EV_IO | EV_EMBED))
4761 for (i = 0; i < anfdmax; ++i)
4762 for (wl = anfds [i].head; wl; )
4763 {
4764 wn = wl->next;
4765
4766#if EV_EMBED_ENABLE
4767 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4768 {
4769 if (types & EV_EMBED)
4770 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4771 }
4772 else
4773#endif
4774#if EV_USE_INOTIFY
4775 if (ev_cb ((ev_io *)wl) == infy_cb)
4776 ;
4777 else
4778#endif
4779 if ((ev_io *)wl != &pipe_w)
4780 if (types & EV_IO)
4781 cb (EV_A_ EV_IO, wl);
4782
4783 wl = wn;
4784 }
4785
4786 if (types & (EV_TIMER | EV_STAT))
4787 for (i = timercnt + HEAP0; i-- > HEAP0; )
4788#if EV_STAT_ENABLE
4789 /*TODO: timer is not always active*/
4790 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4791 {
4792 if (types & EV_STAT)
4793 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4794 }
4795 else
4796#endif
4797 if (types & EV_TIMER)
4798 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4799
4800#if EV_PERIODIC_ENABLE
4801 if (types & EV_PERIODIC)
4802 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4803 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4804#endif
4805
4806#if EV_IDLE_ENABLE
4807 if (types & EV_IDLE)
4808 for (j = NUMPRI; j--; )
4809 for (i = idlecnt [j]; i--; )
4810 cb (EV_A_ EV_IDLE, idles [j][i]);
4811#endif
4812
4813#if EV_FORK_ENABLE
4814 if (types & EV_FORK)
4815 for (i = forkcnt; i--; )
4816 if (ev_cb (forks [i]) != embed_fork_cb)
4817 cb (EV_A_ EV_FORK, forks [i]);
4818#endif
4819
4820#if EV_ASYNC_ENABLE
4821 if (types & EV_ASYNC)
4822 for (i = asynccnt; i--; )
4823 cb (EV_A_ EV_ASYNC, asyncs [i]);
4824#endif
4825
4826#if EV_PREPARE_ENABLE
4827 if (types & EV_PREPARE)
4828 for (i = preparecnt; i--; )
4829# if EV_EMBED_ENABLE
4830 if (ev_cb (prepares [i]) != embed_prepare_cb)
4831# endif
4832 cb (EV_A_ EV_PREPARE, prepares [i]);
4833#endif
4834
4835#if EV_CHECK_ENABLE
4836 if (types & EV_CHECK)
4837 for (i = checkcnt; i--; )
4838 cb (EV_A_ EV_CHECK, checks [i]);
4839#endif
4840
4841#if EV_SIGNAL_ENABLE
4842 if (types & EV_SIGNAL)
4843 for (i = 0; i < EV_NSIG - 1; ++i)
4844 for (wl = signals [i].head; wl; )
4845 {
4846 wn = wl->next;
4847 cb (EV_A_ EV_SIGNAL, wl);
4848 wl = wn;
4849 }
4850#endif
4851
4852#if EV_CHILD_ENABLE
4853 if (types & EV_CHILD)
4854 for (i = (EV_PID_HASHSIZE); i--; )
4855 for (wl = childs [i]; wl; )
4856 {
4857 wn = wl->next;
4858 cb (EV_A_ EV_CHILD, wl);
4859 wl = wn;
4860 }
4861#endif
4862/* EV_STAT 0x00001000 /* stat data changed */
4863/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4864}
4865#endif
4866
2338#if EV_MULTIPLICITY 4867#if EV_MULTIPLICITY
2339 #include "ev_wrap.h" 4868 #include "ev_wrap.h"
2340#endif 4869#endif
2341 4870
2342#ifdef __cplusplus
2343}
2344#endif
2345

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines