ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.283 by root, Wed Apr 15 09:51:19 2009 UTC vs.
Revision 1.467 by root, Fri May 16 15:15:39 2014 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012,2013 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
51 53
52# if HAVE_CLOCK_SYSCALL 54# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL 55# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1 56# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME 57# ifndef EV_USE_REALTIME
57# endif 59# endif
58# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1 61# define EV_USE_MONOTONIC 1
60# endif 62# endif
61# endif 63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
62# endif 66# endif
63 67
64# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
65# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
66# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
75# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
77# endif 81# endif
78# endif 82# endif
79 83
84# if HAVE_NANOSLEEP
80# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
81# if HAVE_NANOSLEEP
82# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
83# else 88# else
89# undef EV_USE_NANOSLEEP
84# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
85# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
86# endif 100# endif
87 101
102# if HAVE_POLL && HAVE_POLL_H
88# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
89# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
90# define EV_USE_SELECT 1
91# else
92# define EV_USE_SELECT 0
93# endif 105# endif
94# endif
95
96# ifndef EV_USE_POLL
97# if HAVE_POLL && HAVE_POLL_H
98# define EV_USE_POLL 1
99# else 106# else
107# undef EV_USE_POLL
100# define EV_USE_POLL 0 108# define EV_USE_POLL 0
101# endif
102# endif 109# endif
103 110
104# ifndef EV_USE_EPOLL
105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
106# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
107# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
108# define EV_USE_EPOLL 0
109# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
110# endif 118# endif
111 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
112# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
113# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
114# define EV_USE_KQUEUE 1
115# else
116# define EV_USE_KQUEUE 0
117# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
118# endif 127# endif
119 128
120# ifndef EV_USE_PORT
121# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
122# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
123# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
124# define EV_USE_PORT 0
125# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
126# endif 136# endif
127 137
128# ifndef EV_USE_INOTIFY
129# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
130# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
131# else
132# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
133# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
134# endif 145# endif
135 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
136# ifndef EV_USE_EVENTFD 148# ifndef EV_USE_SIGNALFD
137# if HAVE_EVENTFD 149# define EV_USE_SIGNALFD EV_FEATURE_OS
138# define EV_USE_EVENTFD 1
139# else
140# define EV_USE_EVENTFD 0
141# endif 150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
142# endif 163# endif
143 164
144#endif 165#endif
145 166
146#include <math.h>
147#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
148#include <fcntl.h> 169#include <fcntl.h>
149#include <stddef.h> 170#include <stddef.h>
150 171
151#include <stdio.h> 172#include <stdio.h>
152 173
153#include <assert.h> 174#include <assert.h>
154#include <errno.h> 175#include <errno.h>
155#include <sys/types.h> 176#include <sys/types.h>
156#include <time.h> 177#include <time.h>
178#include <limits.h>
157 179
158#include <signal.h> 180#include <signal.h>
159 181
160#ifdef EV_H 182#ifdef EV_H
161# include EV_H 183# include EV_H
162#else 184#else
163# include "ev.h" 185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
164#endif 197#endif
165 198
166#ifndef _WIN32 199#ifndef _WIN32
167# include <sys/time.h> 200# include <sys/time.h>
168# include <sys/wait.h> 201# include <sys/wait.h>
169# include <unistd.h> 202# include <unistd.h>
170#else 203#else
171# include <io.h> 204# include <io.h>
172# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
173# include <windows.h> 207# include <windows.h>
174# ifndef EV_SELECT_IS_WINSOCKET 208# ifndef EV_SELECT_IS_WINSOCKET
175# define EV_SELECT_IS_WINSOCKET 1 209# define EV_SELECT_IS_WINSOCKET 1
176# endif 210# endif
211# undef EV_AVOID_STDIO
177#endif 212#endif
213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
178 221
179/* this block tries to deduce configuration from header-defined symbols and defaults */ 222/* this block tries to deduce configuration from header-defined symbols and defaults */
180 223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# define EV_NSIG (8 * sizeof (sigset_t) + 1)
247#endif
248
249#ifndef EV_USE_FLOOR
250# define EV_USE_FLOOR 0
251#endif
252
181#ifndef EV_USE_CLOCK_SYSCALL 253#ifndef EV_USE_CLOCK_SYSCALL
182# if __linux && __GLIBC__ >= 2 254# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
183# define EV_USE_CLOCK_SYSCALL 1 255# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
184# else 256# else
185# define EV_USE_CLOCK_SYSCALL 0 257# define EV_USE_CLOCK_SYSCALL 0
186# endif 258# endif
187#endif 259#endif
188 260
189#ifndef EV_USE_MONOTONIC 261#ifndef EV_USE_MONOTONIC
190# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0 262# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
191# define EV_USE_MONOTONIC 1 263# define EV_USE_MONOTONIC EV_FEATURE_OS
192# else 264# else
193# define EV_USE_MONOTONIC 0 265# define EV_USE_MONOTONIC 0
194# endif 266# endif
195#endif 267#endif
196 268
198# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL 270# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
199#endif 271#endif
200 272
201#ifndef EV_USE_NANOSLEEP 273#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L 274# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1 275# define EV_USE_NANOSLEEP EV_FEATURE_OS
204# else 276# else
205# define EV_USE_NANOSLEEP 0 277# define EV_USE_NANOSLEEP 0
206# endif 278# endif
207#endif 279#endif
208 280
209#ifndef EV_USE_SELECT 281#ifndef EV_USE_SELECT
210# define EV_USE_SELECT 1 282# define EV_USE_SELECT EV_FEATURE_BACKENDS
211#endif 283#endif
212 284
213#ifndef EV_USE_POLL 285#ifndef EV_USE_POLL
214# ifdef _WIN32 286# ifdef _WIN32
215# define EV_USE_POLL 0 287# define EV_USE_POLL 0
216# else 288# else
217# define EV_USE_POLL 1 289# define EV_USE_POLL EV_FEATURE_BACKENDS
218# endif 290# endif
219#endif 291#endif
220 292
221#ifndef EV_USE_EPOLL 293#ifndef EV_USE_EPOLL
222# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 294# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
223# define EV_USE_EPOLL 1 295# define EV_USE_EPOLL EV_FEATURE_BACKENDS
224# else 296# else
225# define EV_USE_EPOLL 0 297# define EV_USE_EPOLL 0
226# endif 298# endif
227#endif 299#endif
228 300
234# define EV_USE_PORT 0 306# define EV_USE_PORT 0
235#endif 307#endif
236 308
237#ifndef EV_USE_INOTIFY 309#ifndef EV_USE_INOTIFY
238# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
239# define EV_USE_INOTIFY 1 311# define EV_USE_INOTIFY EV_FEATURE_OS
240# else 312# else
241# define EV_USE_INOTIFY 0 313# define EV_USE_INOTIFY 0
242# endif 314# endif
243#endif 315#endif
244 316
245#ifndef EV_PID_HASHSIZE 317#ifndef EV_PID_HASHSIZE
246# if EV_MINIMAL 318# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
247# define EV_PID_HASHSIZE 1
248# else
249# define EV_PID_HASHSIZE 16
250# endif
251#endif 319#endif
252 320
253#ifndef EV_INOTIFY_HASHSIZE 321#ifndef EV_INOTIFY_HASHSIZE
254# if EV_MINIMAL 322# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
255# define EV_INOTIFY_HASHSIZE 1
256# else
257# define EV_INOTIFY_HASHSIZE 16
258# endif
259#endif 323#endif
260 324
261#ifndef EV_USE_EVENTFD 325#ifndef EV_USE_EVENTFD
262# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 326# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
263# define EV_USE_EVENTFD 1 327# define EV_USE_EVENTFD EV_FEATURE_OS
264# else 328# else
265# define EV_USE_EVENTFD 0 329# define EV_USE_EVENTFD 0
330# endif
331#endif
332
333#ifndef EV_USE_SIGNALFD
334# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
335# define EV_USE_SIGNALFD EV_FEATURE_OS
336# else
337# define EV_USE_SIGNALFD 0
266# endif 338# endif
267#endif 339#endif
268 340
269#if 0 /* debugging */ 341#if 0 /* debugging */
270# define EV_VERIFY 3 342# define EV_VERIFY 3
271# define EV_USE_4HEAP 1 343# define EV_USE_4HEAP 1
272# define EV_HEAP_CACHE_AT 1 344# define EV_HEAP_CACHE_AT 1
273#endif 345#endif
274 346
275#ifndef EV_VERIFY 347#ifndef EV_VERIFY
276# define EV_VERIFY !EV_MINIMAL 348# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
277#endif 349#endif
278 350
279#ifndef EV_USE_4HEAP 351#ifndef EV_USE_4HEAP
280# define EV_USE_4HEAP !EV_MINIMAL 352# define EV_USE_4HEAP EV_FEATURE_DATA
281#endif 353#endif
282 354
283#ifndef EV_HEAP_CACHE_AT 355#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL 356# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
357#endif
358
359#ifdef ANDROID
360/* supposedly, android doesn't typedef fd_mask */
361# undef EV_USE_SELECT
362# define EV_USE_SELECT 0
363/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
364# undef EV_USE_CLOCK_SYSCALL
365# define EV_USE_CLOCK_SYSCALL 0
366#endif
367
368/* aix's poll.h seems to cause lots of trouble */
369#ifdef _AIX
370/* AIX has a completely broken poll.h header */
371# undef EV_USE_POLL
372# define EV_USE_POLL 0
373#endif
374
375/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
376/* which makes programs even slower. might work on other unices, too. */
377#if EV_USE_CLOCK_SYSCALL
378# include <sys/syscall.h>
379# ifdef SYS_clock_gettime
380# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
381# undef EV_USE_MONOTONIC
382# define EV_USE_MONOTONIC 1
383# else
384# undef EV_USE_CLOCK_SYSCALL
385# define EV_USE_CLOCK_SYSCALL 0
386# endif
285#endif 387#endif
286 388
287/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 389/* this block fixes any misconfiguration where we know we run into trouble otherwise */
288 390
289#ifndef CLOCK_MONOTONIC 391#ifndef CLOCK_MONOTONIC
300# undef EV_USE_INOTIFY 402# undef EV_USE_INOTIFY
301# define EV_USE_INOTIFY 0 403# define EV_USE_INOTIFY 0
302#endif 404#endif
303 405
304#if !EV_USE_NANOSLEEP 406#if !EV_USE_NANOSLEEP
305# ifndef _WIN32 407/* hp-ux has it in sys/time.h, which we unconditionally include above */
408# if !defined _WIN32 && !defined __hpux
306# include <sys/select.h> 409# include <sys/select.h>
307# endif 410# endif
308#endif 411#endif
309 412
310#if EV_USE_INOTIFY 413#if EV_USE_INOTIFY
311# include <sys/utsname.h>
312# include <sys/statfs.h> 414# include <sys/statfs.h>
313# include <sys/inotify.h> 415# include <sys/inotify.h>
314/* some very old inotify.h headers don't have IN_DONT_FOLLOW */ 416/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
315# ifndef IN_DONT_FOLLOW 417# ifndef IN_DONT_FOLLOW
316# undef EV_USE_INOTIFY 418# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0 419# define EV_USE_INOTIFY 0
318# endif 420# endif
319#endif 421#endif
320 422
321#if EV_SELECT_IS_WINSOCKET
322# include <winsock.h>
323#endif
324
325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
331# define EV_USE_MONOTONIC 1
332#endif
333
334#if EV_USE_EVENTFD 423#if EV_USE_EVENTFD
335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 424/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336# include <stdint.h> 425# include <stdint.h>
337# ifdef __cplusplus 426# ifndef EFD_NONBLOCK
338extern "C" { 427# define EFD_NONBLOCK O_NONBLOCK
339# endif 428# endif
340int eventfd (unsigned int initval, int flags); 429# ifndef EFD_CLOEXEC
341# ifdef __cplusplus 430# ifdef O_CLOEXEC
342} 431# define EFD_CLOEXEC O_CLOEXEC
432# else
433# define EFD_CLOEXEC 02000000
434# endif
343# endif 435# endif
436EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
437#endif
438
439#if EV_USE_SIGNALFD
440/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
441# include <stdint.h>
442# ifndef SFD_NONBLOCK
443# define SFD_NONBLOCK O_NONBLOCK
444# endif
445# ifndef SFD_CLOEXEC
446# ifdef O_CLOEXEC
447# define SFD_CLOEXEC O_CLOEXEC
448# else
449# define SFD_CLOEXEC 02000000
450# endif
451# endif
452EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
453
454struct signalfd_siginfo
455{
456 uint32_t ssi_signo;
457 char pad[128 - sizeof (uint32_t)];
458};
344#endif 459#endif
345 460
346/**/ 461/**/
347 462
348#if EV_VERIFY >= 3 463#if EV_VERIFY >= 3
349# define EV_FREQUENT_CHECK ev_loop_verify (EV_A) 464# define EV_FREQUENT_CHECK ev_verify (EV_A)
350#else 465#else
351# define EV_FREQUENT_CHECK do { } while (0) 466# define EV_FREQUENT_CHECK do { } while (0)
352#endif 467#endif
353 468
354/* 469/*
355 * This is used to avoid floating point rounding problems. 470 * This is used to work around floating point rounding problems.
356 * It is added to ev_rt_now when scheduling periodics
357 * to ensure progress, time-wise, even when rounding
358 * errors are against us.
359 * This value is good at least till the year 4000. 471 * This value is good at least till the year 4000.
360 * Better solutions welcome.
361 */ 472 */
362#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 473#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
474/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
363 475
364#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 476#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
365#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 477#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
366/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
367 478
479#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
480#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
481
482/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
483/* ECB.H BEGIN */
484/*
485 * libecb - http://software.schmorp.de/pkg/libecb
486 *
487 * Copyright (©) 2009-2014 Marc Alexander Lehmann <libecb@schmorp.de>
488 * Copyright (©) 2011 Emanuele Giaquinta
489 * All rights reserved.
490 *
491 * Redistribution and use in source and binary forms, with or without modifica-
492 * tion, are permitted provided that the following conditions are met:
493 *
494 * 1. Redistributions of source code must retain the above copyright notice,
495 * this list of conditions and the following disclaimer.
496 *
497 * 2. Redistributions in binary form must reproduce the above copyright
498 * notice, this list of conditions and the following disclaimer in the
499 * documentation and/or other materials provided with the distribution.
500 *
501 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
502 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
503 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
504 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
505 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
506 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
507 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
508 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
509 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
510 * OF THE POSSIBILITY OF SUCH DAMAGE.
511 *
512 * Alternatively, the contents of this file may be used under the terms of
513 * the GNU General Public License ("GPL") version 2 or any later version,
514 * in which case the provisions of the GPL are applicable instead of
515 * the above. If you wish to allow the use of your version of this file
516 * only under the terms of the GPL and not to allow others to use your
517 * version of this file under the BSD license, indicate your decision
518 * by deleting the provisions above and replace them with the notice
519 * and other provisions required by the GPL. If you do not delete the
520 * provisions above, a recipient may use your version of this file under
521 * either the BSD or the GPL.
522 */
523
524#ifndef ECB_H
525#define ECB_H
526
527/* 16 bits major, 16 bits minor */
528#define ECB_VERSION 0x00010003
529
530#ifdef _WIN32
531 typedef signed char int8_t;
532 typedef unsigned char uint8_t;
533 typedef signed short int16_t;
534 typedef unsigned short uint16_t;
535 typedef signed int int32_t;
536 typedef unsigned int uint32_t;
368#if __GNUC__ >= 4 537 #if __GNUC__
369# define expect(expr,value) __builtin_expect ((expr),(value)) 538 typedef signed long long int64_t;
370# define noinline __attribute__ ((noinline)) 539 typedef unsigned long long uint64_t;
540 #else /* _MSC_VER || __BORLANDC__ */
541 typedef signed __int64 int64_t;
542 typedef unsigned __int64 uint64_t;
543 #endif
544 #ifdef _WIN64
545 #define ECB_PTRSIZE 8
546 typedef uint64_t uintptr_t;
547 typedef int64_t intptr_t;
548 #else
549 #define ECB_PTRSIZE 4
550 typedef uint32_t uintptr_t;
551 typedef int32_t intptr_t;
552 #endif
371#else 553#else
372# define expect(expr,value) (expr) 554 #include <inttypes.h>
373# define noinline 555 #if UINTMAX_MAX > 0xffffffffU
374# if __STDC_VERSION__ < 199901L && __GNUC__ < 2 556 #define ECB_PTRSIZE 8
375# define inline 557 #else
558 #define ECB_PTRSIZE 4
559 #endif
376# endif 560#endif
561
562/* work around x32 idiocy by defining proper macros */
563#if __amd64 || __x86_64 || _M_AMD64 || _M_X64
564 #if _ILP32
565 #define ECB_AMD64_X32 1
566 #else
567 #define ECB_AMD64 1
377#endif 568 #endif
569#endif
378 570
571/* many compilers define _GNUC_ to some versions but then only implement
572 * what their idiot authors think are the "more important" extensions,
573 * causing enormous grief in return for some better fake benchmark numbers.
574 * or so.
575 * we try to detect these and simply assume they are not gcc - if they have
576 * an issue with that they should have done it right in the first place.
577 */
578#ifndef ECB_GCC_VERSION
579 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
580 #define ECB_GCC_VERSION(major,minor) 0
581 #else
582 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
583 #endif
584#endif
585
586#define ECB_CPP (__cplusplus+0)
587#define ECB_CPP11 (__cplusplus >= 201103L)
588
589#if ECB_CPP
590 #define ECB_C 0
591 #define ECB_STDC_VERSION 0
592#else
593 #define ECB_C 1
594 #define ECB_STDC_VERSION __STDC_VERSION__
595#endif
596
597#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
598#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
599
600#if ECB_CPP
601 #define ECB_EXTERN_C extern "C"
602 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
603 #define ECB_EXTERN_C_END }
604#else
605 #define ECB_EXTERN_C extern
606 #define ECB_EXTERN_C_BEG
607 #define ECB_EXTERN_C_END
608#endif
609
610/*****************************************************************************/
611
612/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
613/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
614
615#if ECB_NO_THREADS
616 #define ECB_NO_SMP 1
617#endif
618
619#if ECB_NO_SMP
620 #define ECB_MEMORY_FENCE do { } while (0)
621#endif
622
623#ifndef ECB_MEMORY_FENCE
624 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
625 #if __i386 || __i386__
626 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
627 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
628 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
629 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
630 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
631 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
632 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
633 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
634 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
635 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
636 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
637 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
638 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
639 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
640 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
641 #elif __aarch64__
642 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
643 #elif (__sparc || __sparc__) && !__sparcv8
644 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
645 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
646 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
647 #elif defined __s390__ || defined __s390x__
648 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
649 #elif defined __mips__
650 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
651 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
652 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
653 #elif defined __alpha__
654 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
655 #elif defined __hppa__
656 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
657 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
658 #elif defined __ia64__
659 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
660 #elif defined __m68k__
661 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
662 #elif defined __m88k__
663 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
664 #elif defined __sh__
665 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
666 #endif
667 #endif
668#endif
669
670#ifndef ECB_MEMORY_FENCE
671 #if ECB_GCC_VERSION(4,7)
672 /* see comment below (stdatomic.h) about the C11 memory model. */
673 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
674 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
675 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
676
677 /* The __has_feature syntax from clang is so misdesigned that we cannot use it
678 * without risking compile time errors with other compilers. We *could*
679 * define our own ecb_clang_has_feature, but I just can't be bothered to work
680 * around this shit time and again.
681 * #elif defined __clang && __has_feature (cxx_atomic)
682 * // see comment below (stdatomic.h) about the C11 memory model.
683 * #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
684 * #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
685 * #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
686 */
687
688 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
689 #define ECB_MEMORY_FENCE __sync_synchronize ()
690 #elif _MSC_VER >= 1500 /* VC++ 2008 */
691 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
692 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
693 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
694 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
695 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
696 #elif _MSC_VER >= 1400 /* VC++ 2005 */
697 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
698 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
699 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
700 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
701 #elif defined _WIN32
702 #include <WinNT.h>
703 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
704 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
705 #include <mbarrier.h>
706 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
707 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
708 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
709 #elif __xlC__
710 #define ECB_MEMORY_FENCE __sync ()
711 #endif
712#endif
713
714#ifndef ECB_MEMORY_FENCE
715 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
716 /* we assume that these memory fences work on all variables/all memory accesses, */
717 /* not just C11 atomics and atomic accesses */
718 #include <stdatomic.h>
719 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
720 /* any fence other than seq_cst, which isn't very efficient for us. */
721 /* Why that is, we don't know - either the C11 memory model is quite useless */
722 /* for most usages, or gcc and clang have a bug */
723 /* I *currently* lean towards the latter, and inefficiently implement */
724 /* all three of ecb's fences as a seq_cst fence */
725 /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */
726 /* for all __atomic_thread_fence's except seq_cst */
727 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
728 #endif
729#endif
730
731#ifndef ECB_MEMORY_FENCE
732 #if !ECB_AVOID_PTHREADS
733 /*
734 * if you get undefined symbol references to pthread_mutex_lock,
735 * or failure to find pthread.h, then you should implement
736 * the ECB_MEMORY_FENCE operations for your cpu/compiler
737 * OR provide pthread.h and link against the posix thread library
738 * of your system.
739 */
740 #include <pthread.h>
741 #define ECB_NEEDS_PTHREADS 1
742 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
743
744 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
745 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
746 #endif
747#endif
748
749#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
750 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
751#endif
752
753#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
754 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
755#endif
756
757/*****************************************************************************/
758
759#if __cplusplus
760 #define ecb_inline static inline
761#elif ECB_GCC_VERSION(2,5)
762 #define ecb_inline static __inline__
763#elif ECB_C99
764 #define ecb_inline static inline
765#else
766 #define ecb_inline static
767#endif
768
769#if ECB_GCC_VERSION(3,3)
770 #define ecb_restrict __restrict__
771#elif ECB_C99
772 #define ecb_restrict restrict
773#else
774 #define ecb_restrict
775#endif
776
777typedef int ecb_bool;
778
779#define ECB_CONCAT_(a, b) a ## b
780#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
781#define ECB_STRINGIFY_(a) # a
782#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
783
784#define ecb_function_ ecb_inline
785
786#if ECB_GCC_VERSION(3,1)
787 #define ecb_attribute(attrlist) __attribute__(attrlist)
788 #define ecb_is_constant(expr) __builtin_constant_p (expr)
789 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
790 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
791#else
792 #define ecb_attribute(attrlist)
793
794 /* possible C11 impl for integral types
795 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
796 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
797
798 #define ecb_is_constant(expr) 0
799 #define ecb_expect(expr,value) (expr)
800 #define ecb_prefetch(addr,rw,locality)
801#endif
802
803/* no emulation for ecb_decltype */
804#if ECB_GCC_VERSION(4,5)
805 #define ecb_decltype(x) __decltype(x)
806#elif ECB_GCC_VERSION(3,0)
807 #define ecb_decltype(x) __typeof(x)
808#endif
809
810#define ecb_noinline ecb_attribute ((__noinline__))
811#define ecb_unused ecb_attribute ((__unused__))
812#define ecb_const ecb_attribute ((__const__))
813#define ecb_pure ecb_attribute ((__pure__))
814
815#if ECB_C11
816 #define ecb_noreturn _Noreturn
817#else
818 #define ecb_noreturn ecb_attribute ((__noreturn__))
819#endif
820
821#if ECB_GCC_VERSION(4,3)
822 #define ecb_artificial ecb_attribute ((__artificial__))
823 #define ecb_hot ecb_attribute ((__hot__))
824 #define ecb_cold ecb_attribute ((__cold__))
825#else
826 #define ecb_artificial
827 #define ecb_hot
828 #define ecb_cold
829#endif
830
831/* put around conditional expressions if you are very sure that the */
832/* expression is mostly true or mostly false. note that these return */
833/* booleans, not the expression. */
379#define expect_false(expr) expect ((expr) != 0, 0) 834#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
380#define expect_true(expr) expect ((expr) != 0, 1) 835#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
836/* for compatibility to the rest of the world */
837#define ecb_likely(expr) ecb_expect_true (expr)
838#define ecb_unlikely(expr) ecb_expect_false (expr)
839
840/* count trailing zero bits and count # of one bits */
841#if ECB_GCC_VERSION(3,4)
842 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
843 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
844 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
845 #define ecb_ctz32(x) __builtin_ctz (x)
846 #define ecb_ctz64(x) __builtin_ctzll (x)
847 #define ecb_popcount32(x) __builtin_popcount (x)
848 /* no popcountll */
849#else
850 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
851 ecb_function_ int
852 ecb_ctz32 (uint32_t x)
853 {
854 int r = 0;
855
856 x &= ~x + 1; /* this isolates the lowest bit */
857
858#if ECB_branchless_on_i386
859 r += !!(x & 0xaaaaaaaa) << 0;
860 r += !!(x & 0xcccccccc) << 1;
861 r += !!(x & 0xf0f0f0f0) << 2;
862 r += !!(x & 0xff00ff00) << 3;
863 r += !!(x & 0xffff0000) << 4;
864#else
865 if (x & 0xaaaaaaaa) r += 1;
866 if (x & 0xcccccccc) r += 2;
867 if (x & 0xf0f0f0f0) r += 4;
868 if (x & 0xff00ff00) r += 8;
869 if (x & 0xffff0000) r += 16;
870#endif
871
872 return r;
873 }
874
875 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
876 ecb_function_ int
877 ecb_ctz64 (uint64_t x)
878 {
879 int shift = x & 0xffffffffU ? 0 : 32;
880 return ecb_ctz32 (x >> shift) + shift;
881 }
882
883 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
884 ecb_function_ int
885 ecb_popcount32 (uint32_t x)
886 {
887 x -= (x >> 1) & 0x55555555;
888 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
889 x = ((x >> 4) + x) & 0x0f0f0f0f;
890 x *= 0x01010101;
891
892 return x >> 24;
893 }
894
895 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
896 ecb_function_ int ecb_ld32 (uint32_t x)
897 {
898 int r = 0;
899
900 if (x >> 16) { x >>= 16; r += 16; }
901 if (x >> 8) { x >>= 8; r += 8; }
902 if (x >> 4) { x >>= 4; r += 4; }
903 if (x >> 2) { x >>= 2; r += 2; }
904 if (x >> 1) { r += 1; }
905
906 return r;
907 }
908
909 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
910 ecb_function_ int ecb_ld64 (uint64_t x)
911 {
912 int r = 0;
913
914 if (x >> 32) { x >>= 32; r += 32; }
915
916 return r + ecb_ld32 (x);
917 }
918#endif
919
920ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
921ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
922ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
923ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
924
925ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
926ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
927{
928 return ( (x * 0x0802U & 0x22110U)
929 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
930}
931
932ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
933ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
934{
935 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
936 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
937 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
938 x = ( x >> 8 ) | ( x << 8);
939
940 return x;
941}
942
943ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
944ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
945{
946 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
947 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
948 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
949 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
950 x = ( x >> 16 ) | ( x << 16);
951
952 return x;
953}
954
955/* popcount64 is only available on 64 bit cpus as gcc builtin */
956/* so for this version we are lazy */
957ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
958ecb_function_ int
959ecb_popcount64 (uint64_t x)
960{
961 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
962}
963
964ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
965ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
966ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
967ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
968ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
969ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
970ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
971ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
972
973ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
974ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
975ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
976ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
977ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
978ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
979ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
980ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
981
982#if ECB_GCC_VERSION(4,3)
983 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
984 #define ecb_bswap32(x) __builtin_bswap32 (x)
985 #define ecb_bswap64(x) __builtin_bswap64 (x)
986#else
987 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
988 ecb_function_ uint16_t
989 ecb_bswap16 (uint16_t x)
990 {
991 return ecb_rotl16 (x, 8);
992 }
993
994 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
995 ecb_function_ uint32_t
996 ecb_bswap32 (uint32_t x)
997 {
998 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
999 }
1000
1001 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
1002 ecb_function_ uint64_t
1003 ecb_bswap64 (uint64_t x)
1004 {
1005 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1006 }
1007#endif
1008
1009#if ECB_GCC_VERSION(4,5)
1010 #define ecb_unreachable() __builtin_unreachable ()
1011#else
1012 /* this seems to work fine, but gcc always emits a warning for it :/ */
1013 ecb_inline void ecb_unreachable (void) ecb_noreturn;
1014 ecb_inline void ecb_unreachable (void) { }
1015#endif
1016
1017/* try to tell the compiler that some condition is definitely true */
1018#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1019
1020ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
1021ecb_inline unsigned char
1022ecb_byteorder_helper (void)
1023{
1024 /* the union code still generates code under pressure in gcc, */
1025 /* but less than using pointers, and always seems to */
1026 /* successfully return a constant. */
1027 /* the reason why we have this horrible preprocessor mess */
1028 /* is to avoid it in all cases, at least on common architectures */
1029 /* or when using a recent enough gcc version (>= 4.6) */
1030#if __i386 || __i386__ || _M_X86 || __amd64 || __amd64__ || _M_X64
1031 return 0x44;
1032#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1033 return 0x44;
1034#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1035 return 0x11;
1036#else
1037 union
1038 {
1039 uint32_t i;
1040 uint8_t c;
1041 } u = { 0x11223344 };
1042 return u.c;
1043#endif
1044}
1045
1046ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
1047ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
1048ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
1049ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
1050
1051#if ECB_GCC_VERSION(3,0) || ECB_C99
1052 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1053#else
1054 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1055#endif
1056
1057#if __cplusplus
1058 template<typename T>
1059 static inline T ecb_div_rd (T val, T div)
1060 {
1061 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1062 }
1063 template<typename T>
1064 static inline T ecb_div_ru (T val, T div)
1065 {
1066 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1067 }
1068#else
1069 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1070 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1071#endif
1072
1073#if ecb_cplusplus_does_not_suck
1074 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1075 template<typename T, int N>
1076 static inline int ecb_array_length (const T (&arr)[N])
1077 {
1078 return N;
1079 }
1080#else
1081 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1082#endif
1083
1084/*******************************************************************************/
1085/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1086
1087/* basically, everything uses "ieee pure-endian" floating point numbers */
1088/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1089#if 0 \
1090 || __i386 || __i386__ \
1091 || __amd64 || __amd64__ || __x86_64 || __x86_64__ \
1092 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1093 || defined __s390__ || defined __s390x__ \
1094 || defined __mips__ \
1095 || defined __alpha__ \
1096 || defined __hppa__ \
1097 || defined __ia64__ \
1098 || defined __m68k__ \
1099 || defined __m88k__ \
1100 || defined __sh__ \
1101 || defined _M_IX86 || defined _M_AMD64 || defined _M_IA64 \
1102 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1103 || defined __aarch64__
1104 #define ECB_STDFP 1
1105 #include <string.h> /* for memcpy */
1106#else
1107 #define ECB_STDFP 0
1108#endif
1109
1110#ifndef ECB_NO_LIBM
1111
1112 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1113
1114 /* only the oldest of old doesn't have this one. solaris. */
1115 #ifdef INFINITY
1116 #define ECB_INFINITY INFINITY
1117 #else
1118 #define ECB_INFINITY HUGE_VAL
1119 #endif
1120
1121 #ifdef NAN
1122 #define ECB_NAN NAN
1123 #else
1124 #define ECB_NAN ECB_INFINITY
1125 #endif
1126
1127 /* converts an ieee half/binary16 to a float */
1128 ecb_function_ float ecb_binary16_to_float (uint16_t x) ecb_const;
1129 ecb_function_ float
1130 ecb_binary16_to_float (uint16_t x)
1131 {
1132 int e = (x >> 10) & 0x1f;
1133 int m = x & 0x3ff;
1134 float r;
1135
1136 if (!e ) r = ldexpf (m , -24);
1137 else if (e != 31) r = ldexpf (m + 0x400, e - 25);
1138 else if (m ) r = ECB_NAN;
1139 else r = ECB_INFINITY;
1140
1141 return x & 0x8000 ? -r : r;
1142 }
1143
1144 /* convert a float to ieee single/binary32 */
1145 ecb_function_ uint32_t ecb_float_to_binary32 (float x) ecb_const;
1146 ecb_function_ uint32_t
1147 ecb_float_to_binary32 (float x)
1148 {
1149 uint32_t r;
1150
1151 #if ECB_STDFP
1152 memcpy (&r, &x, 4);
1153 #else
1154 /* slow emulation, works for anything but -0 */
1155 uint32_t m;
1156 int e;
1157
1158 if (x == 0e0f ) return 0x00000000U;
1159 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1160 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1161 if (x != x ) return 0x7fbfffffU;
1162
1163 m = frexpf (x, &e) * 0x1000000U;
1164
1165 r = m & 0x80000000U;
1166
1167 if (r)
1168 m = -m;
1169
1170 if (e <= -126)
1171 {
1172 m &= 0xffffffU;
1173 m >>= (-125 - e);
1174 e = -126;
1175 }
1176
1177 r |= (e + 126) << 23;
1178 r |= m & 0x7fffffU;
1179 #endif
1180
1181 return r;
1182 }
1183
1184 /* converts an ieee single/binary32 to a float */
1185 ecb_function_ float ecb_binary32_to_float (uint32_t x) ecb_const;
1186 ecb_function_ float
1187 ecb_binary32_to_float (uint32_t x)
1188 {
1189 float r;
1190
1191 #if ECB_STDFP
1192 memcpy (&r, &x, 4);
1193 #else
1194 /* emulation, only works for normals and subnormals and +0 */
1195 int neg = x >> 31;
1196 int e = (x >> 23) & 0xffU;
1197
1198 x &= 0x7fffffU;
1199
1200 if (e)
1201 x |= 0x800000U;
1202 else
1203 e = 1;
1204
1205 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1206 r = ldexpf (x * (0.5f / 0x800000U), e - 126);
1207
1208 r = neg ? -r : r;
1209 #endif
1210
1211 return r;
1212 }
1213
1214 /* convert a double to ieee double/binary64 */
1215 ecb_function_ uint64_t ecb_double_to_binary64 (double x) ecb_const;
1216 ecb_function_ uint64_t
1217 ecb_double_to_binary64 (double x)
1218 {
1219 uint64_t r;
1220
1221 #if ECB_STDFP
1222 memcpy (&r, &x, 8);
1223 #else
1224 /* slow emulation, works for anything but -0 */
1225 uint64_t m;
1226 int e;
1227
1228 if (x == 0e0 ) return 0x0000000000000000U;
1229 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1230 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1231 if (x != x ) return 0X7ff7ffffffffffffU;
1232
1233 m = frexp (x, &e) * 0x20000000000000U;
1234
1235 r = m & 0x8000000000000000;;
1236
1237 if (r)
1238 m = -m;
1239
1240 if (e <= -1022)
1241 {
1242 m &= 0x1fffffffffffffU;
1243 m >>= (-1021 - e);
1244 e = -1022;
1245 }
1246
1247 r |= ((uint64_t)(e + 1022)) << 52;
1248 r |= m & 0xfffffffffffffU;
1249 #endif
1250
1251 return r;
1252 }
1253
1254 /* converts an ieee double/binary64 to a double */
1255 ecb_function_ double ecb_binary64_to_double (uint64_t x) ecb_const;
1256 ecb_function_ double
1257 ecb_binary64_to_double (uint64_t x)
1258 {
1259 double r;
1260
1261 #if ECB_STDFP
1262 memcpy (&r, &x, 8);
1263 #else
1264 /* emulation, only works for normals and subnormals and +0 */
1265 int neg = x >> 63;
1266 int e = (x >> 52) & 0x7ffU;
1267
1268 x &= 0xfffffffffffffU;
1269
1270 if (e)
1271 x |= 0x10000000000000U;
1272 else
1273 e = 1;
1274
1275 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1276 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1277
1278 r = neg ? -r : r;
1279 #endif
1280
1281 return r;
1282 }
1283
1284#endif
1285
1286#endif
1287
1288/* ECB.H END */
1289
1290#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1291/* if your architecture doesn't need memory fences, e.g. because it is
1292 * single-cpu/core, or if you use libev in a project that doesn't use libev
1293 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1294 * libev, in which cases the memory fences become nops.
1295 * alternatively, you can remove this #error and link against libpthread,
1296 * which will then provide the memory fences.
1297 */
1298# error "memory fences not defined for your architecture, please report"
1299#endif
1300
1301#ifndef ECB_MEMORY_FENCE
1302# define ECB_MEMORY_FENCE do { } while (0)
1303# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1304# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1305#endif
1306
1307#define expect_false(cond) ecb_expect_false (cond)
1308#define expect_true(cond) ecb_expect_true (cond)
1309#define noinline ecb_noinline
1310
381#define inline_size static inline 1311#define inline_size ecb_inline
382 1312
383#if EV_MINIMAL 1313#if EV_FEATURE_CODE
1314# define inline_speed ecb_inline
1315#else
384# define inline_speed static noinline 1316# define inline_speed static noinline
1317#endif
1318
1319#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1320
1321#if EV_MINPRI == EV_MAXPRI
1322# define ABSPRI(w) (((W)w), 0)
385#else 1323#else
386# define inline_speed static inline
387#endif
388
389#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
390#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1324# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1325#endif
391 1326
392#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1327#define EMPTY /* required for microsofts broken pseudo-c compiler */
393#define EMPTY2(a,b) /* used to suppress some warnings */ 1328#define EMPTY2(a,b) /* used to suppress some warnings */
394 1329
395typedef ev_watcher *W; 1330typedef ev_watcher *W;
399#define ev_active(w) ((W)(w))->active 1334#define ev_active(w) ((W)(w))->active
400#define ev_at(w) ((WT)(w))->at 1335#define ev_at(w) ((WT)(w))->at
401 1336
402#if EV_USE_REALTIME 1337#if EV_USE_REALTIME
403/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 1338/* sig_atomic_t is used to avoid per-thread variables or locking but still */
404/* giving it a reasonably high chance of working on typical architetcures */ 1339/* giving it a reasonably high chance of working on typical architectures */
405static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */ 1340static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
406#endif 1341#endif
407 1342
408#if EV_USE_MONOTONIC 1343#if EV_USE_MONOTONIC
409static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1344static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
410#endif 1345#endif
411 1346
1347#ifndef EV_FD_TO_WIN32_HANDLE
1348# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1349#endif
1350#ifndef EV_WIN32_HANDLE_TO_FD
1351# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1352#endif
1353#ifndef EV_WIN32_CLOSE_FD
1354# define EV_WIN32_CLOSE_FD(fd) close (fd)
1355#endif
1356
412#ifdef _WIN32 1357#ifdef _WIN32
413# include "ev_win32.c" 1358# include "ev_win32.c"
414#endif 1359#endif
415 1360
416/*****************************************************************************/ 1361/*****************************************************************************/
417 1362
1363/* define a suitable floor function (only used by periodics atm) */
1364
1365#if EV_USE_FLOOR
1366# include <math.h>
1367# define ev_floor(v) floor (v)
1368#else
1369
1370#include <float.h>
1371
1372/* a floor() replacement function, should be independent of ev_tstamp type */
1373static ev_tstamp noinline
1374ev_floor (ev_tstamp v)
1375{
1376 /* the choice of shift factor is not terribly important */
1377#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1378 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1379#else
1380 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1381#endif
1382
1383 /* argument too large for an unsigned long? */
1384 if (expect_false (v >= shift))
1385 {
1386 ev_tstamp f;
1387
1388 if (v == v - 1.)
1389 return v; /* very large number */
1390
1391 f = shift * ev_floor (v * (1. / shift));
1392 return f + ev_floor (v - f);
1393 }
1394
1395 /* special treatment for negative args? */
1396 if (expect_false (v < 0.))
1397 {
1398 ev_tstamp f = -ev_floor (-v);
1399
1400 return f - (f == v ? 0 : 1);
1401 }
1402
1403 /* fits into an unsigned long */
1404 return (unsigned long)v;
1405}
1406
1407#endif
1408
1409/*****************************************************************************/
1410
1411#ifdef __linux
1412# include <sys/utsname.h>
1413#endif
1414
1415static unsigned int noinline ecb_cold
1416ev_linux_version (void)
1417{
1418#ifdef __linux
1419 unsigned int v = 0;
1420 struct utsname buf;
1421 int i;
1422 char *p = buf.release;
1423
1424 if (uname (&buf))
1425 return 0;
1426
1427 for (i = 3+1; --i; )
1428 {
1429 unsigned int c = 0;
1430
1431 for (;;)
1432 {
1433 if (*p >= '0' && *p <= '9')
1434 c = c * 10 + *p++ - '0';
1435 else
1436 {
1437 p += *p == '.';
1438 break;
1439 }
1440 }
1441
1442 v = (v << 8) | c;
1443 }
1444
1445 return v;
1446#else
1447 return 0;
1448#endif
1449}
1450
1451/*****************************************************************************/
1452
1453#if EV_AVOID_STDIO
1454static void noinline ecb_cold
1455ev_printerr (const char *msg)
1456{
1457 write (STDERR_FILENO, msg, strlen (msg));
1458}
1459#endif
1460
418static void (*syserr_cb)(const char *msg); 1461static void (*syserr_cb)(const char *msg) EV_THROW;
419 1462
420void 1463void ecb_cold
421ev_set_syserr_cb (void (*cb)(const char *msg)) 1464ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
422{ 1465{
423 syserr_cb = cb; 1466 syserr_cb = cb;
424} 1467}
425 1468
426static void noinline 1469static void noinline ecb_cold
427ev_syserr (const char *msg) 1470ev_syserr (const char *msg)
428{ 1471{
429 if (!msg) 1472 if (!msg)
430 msg = "(libev) system error"; 1473 msg = "(libev) system error";
431 1474
432 if (syserr_cb) 1475 if (syserr_cb)
433 syserr_cb (msg); 1476 syserr_cb (msg);
434 else 1477 else
435 { 1478 {
1479#if EV_AVOID_STDIO
1480 ev_printerr (msg);
1481 ev_printerr (": ");
1482 ev_printerr (strerror (errno));
1483 ev_printerr ("\n");
1484#else
436 perror (msg); 1485 perror (msg);
1486#endif
437 abort (); 1487 abort ();
438 } 1488 }
439} 1489}
440 1490
441static void * 1491static void *
442ev_realloc_emul (void *ptr, long size) 1492ev_realloc_emul (void *ptr, long size) EV_THROW
443{ 1493{
444 /* some systems, notably openbsd and darwin, fail to properly 1494 /* some systems, notably openbsd and darwin, fail to properly
445 * implement realloc (x, 0) (as required by both ansi c-98 and 1495 * implement realloc (x, 0) (as required by both ansi c-89 and
446 * the single unix specification, so work around them here. 1496 * the single unix specification, so work around them here.
1497 * recently, also (at least) fedora and debian started breaking it,
1498 * despite documenting it otherwise.
447 */ 1499 */
448 1500
449 if (size) 1501 if (size)
450 return realloc (ptr, size); 1502 return realloc (ptr, size);
451 1503
452 free (ptr); 1504 free (ptr);
453 return 0; 1505 return 0;
454} 1506}
455 1507
456static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 1508static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
457 1509
458void 1510void ecb_cold
459ev_set_allocator (void *(*cb)(void *ptr, long size)) 1511ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
460{ 1512{
461 alloc = cb; 1513 alloc = cb;
462} 1514}
463 1515
464inline_speed void * 1516inline_speed void *
466{ 1518{
467 ptr = alloc (ptr, size); 1519 ptr = alloc (ptr, size);
468 1520
469 if (!ptr && size) 1521 if (!ptr && size)
470 { 1522 {
1523#if EV_AVOID_STDIO
1524 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1525#else
471 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1526 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1527#endif
472 abort (); 1528 abort ();
473 } 1529 }
474 1530
475 return ptr; 1531 return ptr;
476} 1532}
478#define ev_malloc(size) ev_realloc (0, (size)) 1534#define ev_malloc(size) ev_realloc (0, (size))
479#define ev_free(ptr) ev_realloc ((ptr), 0) 1535#define ev_free(ptr) ev_realloc ((ptr), 0)
480 1536
481/*****************************************************************************/ 1537/*****************************************************************************/
482 1538
1539/* set in reify when reification needed */
1540#define EV_ANFD_REIFY 1
1541
1542/* file descriptor info structure */
483typedef struct 1543typedef struct
484{ 1544{
485 WL head; 1545 WL head;
486 unsigned char events; 1546 unsigned char events; /* the events watched for */
487 unsigned char reify; 1547 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
488 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */ 1548 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
489 unsigned char unused; 1549 unsigned char unused;
490#if EV_USE_EPOLL 1550#if EV_USE_EPOLL
491 unsigned int egen; /* generation counter to counter epoll bugs */ 1551 unsigned int egen; /* generation counter to counter epoll bugs */
492#endif 1552#endif
493#if EV_SELECT_IS_WINSOCKET 1553#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
494 SOCKET handle; 1554 SOCKET handle;
495#endif 1555#endif
1556#if EV_USE_IOCP
1557 OVERLAPPED or, ow;
1558#endif
496} ANFD; 1559} ANFD;
497 1560
1561/* stores the pending event set for a given watcher */
498typedef struct 1562typedef struct
499{ 1563{
500 W w; 1564 W w;
501 int events; 1565 int events; /* the pending event set for the given watcher */
502} ANPENDING; 1566} ANPENDING;
503 1567
504#if EV_USE_INOTIFY 1568#if EV_USE_INOTIFY
505/* hash table entry per inotify-id */ 1569/* hash table entry per inotify-id */
506typedef struct 1570typedef struct
509} ANFS; 1573} ANFS;
510#endif 1574#endif
511 1575
512/* Heap Entry */ 1576/* Heap Entry */
513#if EV_HEAP_CACHE_AT 1577#if EV_HEAP_CACHE_AT
1578 /* a heap element */
514 typedef struct { 1579 typedef struct {
515 ev_tstamp at; 1580 ev_tstamp at;
516 WT w; 1581 WT w;
517 } ANHE; 1582 } ANHE;
518 1583
519 #define ANHE_w(he) (he).w /* access watcher, read-write */ 1584 #define ANHE_w(he) (he).w /* access watcher, read-write */
520 #define ANHE_at(he) (he).at /* access cached at, read-only */ 1585 #define ANHE_at(he) (he).at /* access cached at, read-only */
521 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 1586 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
522#else 1587#else
1588 /* a heap element */
523 typedef WT ANHE; 1589 typedef WT ANHE;
524 1590
525 #define ANHE_w(he) (he) 1591 #define ANHE_w(he) (he)
526 #define ANHE_at(he) (he)->at 1592 #define ANHE_at(he) (he)->at
527 #define ANHE_at_cache(he) 1593 #define ANHE_at_cache(he)
538 #undef VAR 1604 #undef VAR
539 }; 1605 };
540 #include "ev_wrap.h" 1606 #include "ev_wrap.h"
541 1607
542 static struct ev_loop default_loop_struct; 1608 static struct ev_loop default_loop_struct;
543 struct ev_loop *ev_default_loop_ptr; 1609 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
544 1610
545#else 1611#else
546 1612
547 ev_tstamp ev_rt_now; 1613 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
548 #define VAR(name,decl) static decl; 1614 #define VAR(name,decl) static decl;
549 #include "ev_vars.h" 1615 #include "ev_vars.h"
550 #undef VAR 1616 #undef VAR
551 1617
552 static int ev_default_loop_ptr; 1618 static int ev_default_loop_ptr;
553 1619
554#endif 1620#endif
555 1621
1622#if EV_FEATURE_API
1623# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1624# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1625# define EV_INVOKE_PENDING invoke_cb (EV_A)
1626#else
1627# define EV_RELEASE_CB (void)0
1628# define EV_ACQUIRE_CB (void)0
1629# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1630#endif
1631
1632#define EVBREAK_RECURSE 0x80
1633
556/*****************************************************************************/ 1634/*****************************************************************************/
557 1635
1636#ifndef EV_HAVE_EV_TIME
558ev_tstamp 1637ev_tstamp
559ev_time (void) 1638ev_time (void) EV_THROW
560{ 1639{
561#if EV_USE_REALTIME 1640#if EV_USE_REALTIME
562 if (expect_true (have_realtime)) 1641 if (expect_true (have_realtime))
563 { 1642 {
564 struct timespec ts; 1643 struct timespec ts;
569 1648
570 struct timeval tv; 1649 struct timeval tv;
571 gettimeofday (&tv, 0); 1650 gettimeofday (&tv, 0);
572 return tv.tv_sec + tv.tv_usec * 1e-6; 1651 return tv.tv_sec + tv.tv_usec * 1e-6;
573} 1652}
1653#endif
574 1654
575ev_tstamp inline_size 1655inline_size ev_tstamp
576get_clock (void) 1656get_clock (void)
577{ 1657{
578#if EV_USE_MONOTONIC 1658#if EV_USE_MONOTONIC
579 if (expect_true (have_monotonic)) 1659 if (expect_true (have_monotonic))
580 { 1660 {
587 return ev_time (); 1667 return ev_time ();
588} 1668}
589 1669
590#if EV_MULTIPLICITY 1670#if EV_MULTIPLICITY
591ev_tstamp 1671ev_tstamp
592ev_now (EV_P) 1672ev_now (EV_P) EV_THROW
593{ 1673{
594 return ev_rt_now; 1674 return ev_rt_now;
595} 1675}
596#endif 1676#endif
597 1677
598void 1678void
599ev_sleep (ev_tstamp delay) 1679ev_sleep (ev_tstamp delay) EV_THROW
600{ 1680{
601 if (delay > 0.) 1681 if (delay > 0.)
602 { 1682 {
603#if EV_USE_NANOSLEEP 1683#if EV_USE_NANOSLEEP
604 struct timespec ts; 1684 struct timespec ts;
605 1685
606 ts.tv_sec = (time_t)delay; 1686 EV_TS_SET (ts, delay);
607 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
608
609 nanosleep (&ts, 0); 1687 nanosleep (&ts, 0);
610#elif defined(_WIN32) 1688#elif defined _WIN32
611 Sleep ((unsigned long)(delay * 1e3)); 1689 Sleep ((unsigned long)(delay * 1e3));
612#else 1690#else
613 struct timeval tv; 1691 struct timeval tv;
614 1692
615 tv.tv_sec = (time_t)delay;
616 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
617
618 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */ 1693 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
619 /* somehting nto guaranteed by newer posix versions, but guaranteed */ 1694 /* something not guaranteed by newer posix versions, but guaranteed */
620 /* by older ones */ 1695 /* by older ones */
1696 EV_TV_SET (tv, delay);
621 select (0, 0, 0, 0, &tv); 1697 select (0, 0, 0, 0, &tv);
622#endif 1698#endif
623 } 1699 }
624} 1700}
625 1701
626/*****************************************************************************/ 1702/*****************************************************************************/
627 1703
628#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 1704#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
629 1705
630int inline_size 1706/* find a suitable new size for the given array, */
1707/* hopefully by rounding to a nice-to-malloc size */
1708inline_size int
631array_nextsize (int elem, int cur, int cnt) 1709array_nextsize (int elem, int cur, int cnt)
632{ 1710{
633 int ncur = cur + 1; 1711 int ncur = cur + 1;
634 1712
635 do 1713 do
636 ncur <<= 1; 1714 ncur <<= 1;
637 while (cnt > ncur); 1715 while (cnt > ncur);
638 1716
639 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */ 1717 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
640 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4) 1718 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
641 { 1719 {
642 ncur *= elem; 1720 ncur *= elem;
643 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1); 1721 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
644 ncur = ncur - sizeof (void *) * 4; 1722 ncur = ncur - sizeof (void *) * 4;
646 } 1724 }
647 1725
648 return ncur; 1726 return ncur;
649} 1727}
650 1728
651static noinline void * 1729static void * noinline ecb_cold
652array_realloc (int elem, void *base, int *cur, int cnt) 1730array_realloc (int elem, void *base, int *cur, int cnt)
653{ 1731{
654 *cur = array_nextsize (elem, *cur, cnt); 1732 *cur = array_nextsize (elem, *cur, cnt);
655 return ev_realloc (base, elem * *cur); 1733 return ev_realloc (base, elem * *cur);
656} 1734}
659 memset ((void *)(base), 0, sizeof (*(base)) * (count)) 1737 memset ((void *)(base), 0, sizeof (*(base)) * (count))
660 1738
661#define array_needsize(type,base,cur,cnt,init) \ 1739#define array_needsize(type,base,cur,cnt,init) \
662 if (expect_false ((cnt) > (cur))) \ 1740 if (expect_false ((cnt) > (cur))) \
663 { \ 1741 { \
664 int ocur_ = (cur); \ 1742 int ecb_unused ocur_ = (cur); \
665 (base) = (type *)array_realloc \ 1743 (base) = (type *)array_realloc \
666 (sizeof (type), (base), &(cur), (cnt)); \ 1744 (sizeof (type), (base), &(cur), (cnt)); \
667 init ((base) + (ocur_), (cur) - ocur_); \ 1745 init ((base) + (ocur_), (cur) - ocur_); \
668 } 1746 }
669 1747
680#define array_free(stem, idx) \ 1758#define array_free(stem, idx) \
681 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0 1759 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
682 1760
683/*****************************************************************************/ 1761/*****************************************************************************/
684 1762
1763/* dummy callback for pending events */
1764static void noinline
1765pendingcb (EV_P_ ev_prepare *w, int revents)
1766{
1767}
1768
685void noinline 1769void noinline
686ev_feed_event (EV_P_ void *w, int revents) 1770ev_feed_event (EV_P_ void *w, int revents) EV_THROW
687{ 1771{
688 W w_ = (W)w; 1772 W w_ = (W)w;
689 int pri = ABSPRI (w_); 1773 int pri = ABSPRI (w_);
690 1774
691 if (expect_false (w_->pending)) 1775 if (expect_false (w_->pending))
695 w_->pending = ++pendingcnt [pri]; 1779 w_->pending = ++pendingcnt [pri];
696 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 1780 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
697 pendings [pri][w_->pending - 1].w = w_; 1781 pendings [pri][w_->pending - 1].w = w_;
698 pendings [pri][w_->pending - 1].events = revents; 1782 pendings [pri][w_->pending - 1].events = revents;
699 } 1783 }
700}
701 1784
702void inline_speed 1785 pendingpri = NUMPRI - 1;
1786}
1787
1788inline_speed void
1789feed_reverse (EV_P_ W w)
1790{
1791 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1792 rfeeds [rfeedcnt++] = w;
1793}
1794
1795inline_size void
1796feed_reverse_done (EV_P_ int revents)
1797{
1798 do
1799 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1800 while (rfeedcnt);
1801}
1802
1803inline_speed void
703queue_events (EV_P_ W *events, int eventcnt, int type) 1804queue_events (EV_P_ W *events, int eventcnt, int type)
704{ 1805{
705 int i; 1806 int i;
706 1807
707 for (i = 0; i < eventcnt; ++i) 1808 for (i = 0; i < eventcnt; ++i)
708 ev_feed_event (EV_A_ events [i], type); 1809 ev_feed_event (EV_A_ events [i], type);
709} 1810}
710 1811
711/*****************************************************************************/ 1812/*****************************************************************************/
712 1813
713void inline_speed 1814inline_speed void
714fd_event (EV_P_ int fd, int revents) 1815fd_event_nocheck (EV_P_ int fd, int revents)
715{ 1816{
716 ANFD *anfd = anfds + fd; 1817 ANFD *anfd = anfds + fd;
717 ev_io *w; 1818 ev_io *w;
718 1819
719 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1820 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
723 if (ev) 1824 if (ev)
724 ev_feed_event (EV_A_ (W)w, ev); 1825 ev_feed_event (EV_A_ (W)w, ev);
725 } 1826 }
726} 1827}
727 1828
1829/* do not submit kernel events for fds that have reify set */
1830/* because that means they changed while we were polling for new events */
1831inline_speed void
1832fd_event (EV_P_ int fd, int revents)
1833{
1834 ANFD *anfd = anfds + fd;
1835
1836 if (expect_true (!anfd->reify))
1837 fd_event_nocheck (EV_A_ fd, revents);
1838}
1839
728void 1840void
729ev_feed_fd_event (EV_P_ int fd, int revents) 1841ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
730{ 1842{
731 if (fd >= 0 && fd < anfdmax) 1843 if (fd >= 0 && fd < anfdmax)
732 fd_event (EV_A_ fd, revents); 1844 fd_event_nocheck (EV_A_ fd, revents);
733} 1845}
734 1846
735void inline_size 1847/* make sure the external fd watch events are in-sync */
1848/* with the kernel/libev internal state */
1849inline_size void
736fd_reify (EV_P) 1850fd_reify (EV_P)
737{ 1851{
738 int i; 1852 int i;
1853
1854#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1855 for (i = 0; i < fdchangecnt; ++i)
1856 {
1857 int fd = fdchanges [i];
1858 ANFD *anfd = anfds + fd;
1859
1860 if (anfd->reify & EV__IOFDSET && anfd->head)
1861 {
1862 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1863
1864 if (handle != anfd->handle)
1865 {
1866 unsigned long arg;
1867
1868 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1869
1870 /* handle changed, but fd didn't - we need to do it in two steps */
1871 backend_modify (EV_A_ fd, anfd->events, 0);
1872 anfd->events = 0;
1873 anfd->handle = handle;
1874 }
1875 }
1876 }
1877#endif
739 1878
740 for (i = 0; i < fdchangecnt; ++i) 1879 for (i = 0; i < fdchangecnt; ++i)
741 { 1880 {
742 int fd = fdchanges [i]; 1881 int fd = fdchanges [i];
743 ANFD *anfd = anfds + fd; 1882 ANFD *anfd = anfds + fd;
744 ev_io *w; 1883 ev_io *w;
745 1884
746 unsigned char events = 0; 1885 unsigned char o_events = anfd->events;
1886 unsigned char o_reify = anfd->reify;
747 1887
748 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1888 anfd->reify = 0;
749 events |= (unsigned char)w->events;
750 1889
751#if EV_SELECT_IS_WINSOCKET 1890 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
752 if (events)
753 { 1891 {
754 unsigned long arg; 1892 anfd->events = 0;
755 #ifdef EV_FD_TO_WIN32_HANDLE 1893
756 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1894 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
757 #else 1895 anfd->events |= (unsigned char)w->events;
758 anfd->handle = _get_osfhandle (fd); 1896
759 #endif 1897 if (o_events != anfd->events)
760 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0)); 1898 o_reify = EV__IOFDSET; /* actually |= */
761 } 1899 }
762#endif
763 1900
764 { 1901 if (o_reify & EV__IOFDSET)
765 unsigned char o_events = anfd->events;
766 unsigned char o_reify = anfd->reify;
767
768 anfd->reify = 0;
769 anfd->events = events;
770
771 if (o_events != events || o_reify & EV__IOFDSET)
772 backend_modify (EV_A_ fd, o_events, events); 1902 backend_modify (EV_A_ fd, o_events, anfd->events);
773 }
774 } 1903 }
775 1904
776 fdchangecnt = 0; 1905 fdchangecnt = 0;
777} 1906}
778 1907
779void inline_size 1908/* something about the given fd changed */
1909inline_size void
780fd_change (EV_P_ int fd, int flags) 1910fd_change (EV_P_ int fd, int flags)
781{ 1911{
782 unsigned char reify = anfds [fd].reify; 1912 unsigned char reify = anfds [fd].reify;
783 anfds [fd].reify |= flags; 1913 anfds [fd].reify |= flags;
784 1914
788 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1918 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
789 fdchanges [fdchangecnt - 1] = fd; 1919 fdchanges [fdchangecnt - 1] = fd;
790 } 1920 }
791} 1921}
792 1922
793void inline_speed 1923/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1924inline_speed void ecb_cold
794fd_kill (EV_P_ int fd) 1925fd_kill (EV_P_ int fd)
795{ 1926{
796 ev_io *w; 1927 ev_io *w;
797 1928
798 while ((w = (ev_io *)anfds [fd].head)) 1929 while ((w = (ev_io *)anfds [fd].head))
800 ev_io_stop (EV_A_ w); 1931 ev_io_stop (EV_A_ w);
801 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1932 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
802 } 1933 }
803} 1934}
804 1935
805int inline_size 1936/* check whether the given fd is actually valid, for error recovery */
1937inline_size int ecb_cold
806fd_valid (int fd) 1938fd_valid (int fd)
807{ 1939{
808#ifdef _WIN32 1940#ifdef _WIN32
809 return _get_osfhandle (fd) != -1; 1941 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
810#else 1942#else
811 return fcntl (fd, F_GETFD) != -1; 1943 return fcntl (fd, F_GETFD) != -1;
812#endif 1944#endif
813} 1945}
814 1946
815/* called on EBADF to verify fds */ 1947/* called on EBADF to verify fds */
816static void noinline 1948static void noinline ecb_cold
817fd_ebadf (EV_P) 1949fd_ebadf (EV_P)
818{ 1950{
819 int fd; 1951 int fd;
820 1952
821 for (fd = 0; fd < anfdmax; ++fd) 1953 for (fd = 0; fd < anfdmax; ++fd)
823 if (!fd_valid (fd) && errno == EBADF) 1955 if (!fd_valid (fd) && errno == EBADF)
824 fd_kill (EV_A_ fd); 1956 fd_kill (EV_A_ fd);
825} 1957}
826 1958
827/* called on ENOMEM in select/poll to kill some fds and retry */ 1959/* called on ENOMEM in select/poll to kill some fds and retry */
828static void noinline 1960static void noinline ecb_cold
829fd_enomem (EV_P) 1961fd_enomem (EV_P)
830{ 1962{
831 int fd; 1963 int fd;
832 1964
833 for (fd = anfdmax; fd--; ) 1965 for (fd = anfdmax; fd--; )
834 if (anfds [fd].events) 1966 if (anfds [fd].events)
835 { 1967 {
836 fd_kill (EV_A_ fd); 1968 fd_kill (EV_A_ fd);
837 return; 1969 break;
838 } 1970 }
839} 1971}
840 1972
841/* usually called after fork if backend needs to re-arm all fds from scratch */ 1973/* usually called after fork if backend needs to re-arm all fds from scratch */
842static void noinline 1974static void noinline
847 for (fd = 0; fd < anfdmax; ++fd) 1979 for (fd = 0; fd < anfdmax; ++fd)
848 if (anfds [fd].events) 1980 if (anfds [fd].events)
849 { 1981 {
850 anfds [fd].events = 0; 1982 anfds [fd].events = 0;
851 anfds [fd].emask = 0; 1983 anfds [fd].emask = 0;
852 fd_change (EV_A_ fd, EV__IOFDSET | 1); 1984 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
853 } 1985 }
854} 1986}
855 1987
1988/* used to prepare libev internal fd's */
1989/* this is not fork-safe */
1990inline_speed void
1991fd_intern (int fd)
1992{
1993#ifdef _WIN32
1994 unsigned long arg = 1;
1995 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1996#else
1997 fcntl (fd, F_SETFD, FD_CLOEXEC);
1998 fcntl (fd, F_SETFL, O_NONBLOCK);
1999#endif
2000}
2001
856/*****************************************************************************/ 2002/*****************************************************************************/
857 2003
858/* 2004/*
859 * the heap functions want a real array index. array index 0 uis guaranteed to not 2005 * the heap functions want a real array index. array index 0 is guaranteed to not
860 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 2006 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
861 * the branching factor of the d-tree. 2007 * the branching factor of the d-tree.
862 */ 2008 */
863 2009
864/* 2010/*
873#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 2019#define HEAP0 (DHEAP - 1) /* index of first element in heap */
874#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 2020#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
875#define UPHEAP_DONE(p,k) ((p) == (k)) 2021#define UPHEAP_DONE(p,k) ((p) == (k))
876 2022
877/* away from the root */ 2023/* away from the root */
878void inline_speed 2024inline_speed void
879downheap (ANHE *heap, int N, int k) 2025downheap (ANHE *heap, int N, int k)
880{ 2026{
881 ANHE he = heap [k]; 2027 ANHE he = heap [k];
882 ANHE *E = heap + N + HEAP0; 2028 ANHE *E = heap + N + HEAP0;
883 2029
923#define HEAP0 1 2069#define HEAP0 1
924#define HPARENT(k) ((k) >> 1) 2070#define HPARENT(k) ((k) >> 1)
925#define UPHEAP_DONE(p,k) (!(p)) 2071#define UPHEAP_DONE(p,k) (!(p))
926 2072
927/* away from the root */ 2073/* away from the root */
928void inline_speed 2074inline_speed void
929downheap (ANHE *heap, int N, int k) 2075downheap (ANHE *heap, int N, int k)
930{ 2076{
931 ANHE he = heap [k]; 2077 ANHE he = heap [k];
932 2078
933 for (;;) 2079 for (;;)
934 { 2080 {
935 int c = k << 1; 2081 int c = k << 1;
936 2082
937 if (c > N + HEAP0 - 1) 2083 if (c >= N + HEAP0)
938 break; 2084 break;
939 2085
940 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 2086 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
941 ? 1 : 0; 2087 ? 1 : 0;
942 2088
953 ev_active (ANHE_w (he)) = k; 2099 ev_active (ANHE_w (he)) = k;
954} 2100}
955#endif 2101#endif
956 2102
957/* towards the root */ 2103/* towards the root */
958void inline_speed 2104inline_speed void
959upheap (ANHE *heap, int k) 2105upheap (ANHE *heap, int k)
960{ 2106{
961 ANHE he = heap [k]; 2107 ANHE he = heap [k];
962 2108
963 for (;;) 2109 for (;;)
974 2120
975 heap [k] = he; 2121 heap [k] = he;
976 ev_active (ANHE_w (he)) = k; 2122 ev_active (ANHE_w (he)) = k;
977} 2123}
978 2124
979void inline_size 2125/* move an element suitably so it is in a correct place */
2126inline_size void
980adjustheap (ANHE *heap, int N, int k) 2127adjustheap (ANHE *heap, int N, int k)
981{ 2128{
982 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 2129 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
983 upheap (heap, k); 2130 upheap (heap, k);
984 else 2131 else
985 downheap (heap, N, k); 2132 downheap (heap, N, k);
986} 2133}
987 2134
988/* rebuild the heap: this function is used only once and executed rarely */ 2135/* rebuild the heap: this function is used only once and executed rarely */
989void inline_size 2136inline_size void
990reheap (ANHE *heap, int N) 2137reheap (ANHE *heap, int N)
991{ 2138{
992 int i; 2139 int i;
993 2140
994 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 2141 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
997 upheap (heap, i + HEAP0); 2144 upheap (heap, i + HEAP0);
998} 2145}
999 2146
1000/*****************************************************************************/ 2147/*****************************************************************************/
1001 2148
2149/* associate signal watchers to a signal signal */
1002typedef struct 2150typedef struct
1003{ 2151{
2152 EV_ATOMIC_T pending;
2153#if EV_MULTIPLICITY
2154 EV_P;
2155#endif
1004 WL head; 2156 WL head;
1005 EV_ATOMIC_T gotsig;
1006} ANSIG; 2157} ANSIG;
1007 2158
1008static ANSIG *signals; 2159static ANSIG signals [EV_NSIG - 1];
1009static int signalmax;
1010
1011static EV_ATOMIC_T gotsig;
1012 2160
1013/*****************************************************************************/ 2161/*****************************************************************************/
1014 2162
1015void inline_speed 2163#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1016fd_intern (int fd)
1017{
1018#ifdef _WIN32
1019 unsigned long arg = 1;
1020 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1021#else
1022 fcntl (fd, F_SETFD, FD_CLOEXEC);
1023 fcntl (fd, F_SETFL, O_NONBLOCK);
1024#endif
1025}
1026 2164
1027static void noinline 2165static void noinline ecb_cold
1028evpipe_init (EV_P) 2166evpipe_init (EV_P)
1029{ 2167{
1030 if (!ev_is_active (&pipeev)) 2168 if (!ev_is_active (&pipe_w))
2169 {
2170 int fds [2];
2171
2172# if EV_USE_EVENTFD
2173 fds [0] = -1;
2174 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2175 if (fds [1] < 0 && errno == EINVAL)
2176 fds [1] = eventfd (0, 0);
2177
2178 if (fds [1] < 0)
2179# endif
2180 {
2181 while (pipe (fds))
2182 ev_syserr ("(libev) error creating signal/async pipe");
2183
2184 fd_intern (fds [0]);
2185 }
2186
2187 evpipe [0] = fds [0];
2188
2189 if (evpipe [1] < 0)
2190 evpipe [1] = fds [1]; /* first call, set write fd */
2191 else
2192 {
2193 /* on subsequent calls, do not change evpipe [1] */
2194 /* so that evpipe_write can always rely on its value. */
2195 /* this branch does not do anything sensible on windows, */
2196 /* so must not be executed on windows */
2197
2198 dup2 (fds [1], evpipe [1]);
2199 close (fds [1]);
2200 }
2201
2202 fd_intern (evpipe [1]);
2203
2204 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2205 ev_io_start (EV_A_ &pipe_w);
2206 ev_unref (EV_A); /* watcher should not keep loop alive */
1031 { 2207 }
2208}
2209
2210inline_speed void
2211evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2212{
2213 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2214
2215 if (expect_true (*flag))
2216 return;
2217
2218 *flag = 1;
2219 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2220
2221 pipe_write_skipped = 1;
2222
2223 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2224
2225 if (pipe_write_wanted)
2226 {
2227 int old_errno;
2228
2229 pipe_write_skipped = 0;
2230 ECB_MEMORY_FENCE_RELEASE;
2231
2232 old_errno = errno; /* save errno because write will clobber it */
2233
1032#if EV_USE_EVENTFD 2234#if EV_USE_EVENTFD
1033 if ((evfd = eventfd (0, 0)) >= 0) 2235 if (evpipe [0] < 0)
1034 { 2236 {
1035 evpipe [0] = -1; 2237 uint64_t counter = 1;
1036 fd_intern (evfd); 2238 write (evpipe [1], &counter, sizeof (uint64_t));
1037 ev_io_set (&pipeev, evfd, EV_READ);
1038 } 2239 }
1039 else 2240 else
1040#endif 2241#endif
1041 { 2242 {
1042 while (pipe (evpipe)) 2243#ifdef _WIN32
1043 ev_syserr ("(libev) error creating signal/async pipe"); 2244 WSABUF buf;
1044 2245 DWORD sent;
1045 fd_intern (evpipe [0]); 2246 buf.buf = &buf;
1046 fd_intern (evpipe [1]); 2247 buf.len = 1;
1047 ev_io_set (&pipeev, evpipe [0], EV_READ); 2248 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2249#else
2250 write (evpipe [1], &(evpipe [1]), 1);
2251#endif
1048 } 2252 }
1049 2253
1050 ev_io_start (EV_A_ &pipeev); 2254 errno = old_errno;
1051 ev_unref (EV_A); /* watcher should not keep loop alive */
1052 }
1053}
1054
1055void inline_size
1056evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1057{
1058 if (!*flag)
1059 { 2255 }
1060 int old_errno = errno; /* save errno because write might clobber it */ 2256}
1061 2257
1062 *flag = 1; 2258/* called whenever the libev signal pipe */
2259/* got some events (signal, async) */
2260static void
2261pipecb (EV_P_ ev_io *iow, int revents)
2262{
2263 int i;
1063 2264
2265 if (revents & EV_READ)
2266 {
1064#if EV_USE_EVENTFD 2267#if EV_USE_EVENTFD
1065 if (evfd >= 0) 2268 if (evpipe [0] < 0)
1066 { 2269 {
1067 uint64_t counter = 1; 2270 uint64_t counter;
1068 write (evfd, &counter, sizeof (uint64_t)); 2271 read (evpipe [1], &counter, sizeof (uint64_t));
1069 } 2272 }
1070 else 2273 else
1071#endif 2274#endif
1072 write (evpipe [1], &old_errno, 1); 2275 {
1073
1074 errno = old_errno;
1075 }
1076}
1077
1078static void
1079pipecb (EV_P_ ev_io *iow, int revents)
1080{
1081#if EV_USE_EVENTFD
1082 if (evfd >= 0)
1083 {
1084 uint64_t counter;
1085 read (evfd, &counter, sizeof (uint64_t));
1086 }
1087 else
1088#endif
1089 {
1090 char dummy; 2276 char dummy[4];
2277#ifdef _WIN32
2278 WSABUF buf;
2279 DWORD recvd;
2280 DWORD flags = 0;
2281 buf.buf = dummy;
2282 buf.len = sizeof (dummy);
2283 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2284#else
1091 read (evpipe [0], &dummy, 1); 2285 read (evpipe [0], &dummy, sizeof (dummy));
2286#endif
2287 }
2288 }
2289
2290 pipe_write_skipped = 0;
2291
2292 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2293
2294#if EV_SIGNAL_ENABLE
2295 if (sig_pending)
1092 } 2296 {
2297 sig_pending = 0;
1093 2298
1094 if (gotsig && ev_is_default_loop (EV_A)) 2299 ECB_MEMORY_FENCE;
1095 {
1096 int signum;
1097 gotsig = 0;
1098 2300
1099 for (signum = signalmax; signum--; ) 2301 for (i = EV_NSIG - 1; i--; )
1100 if (signals [signum].gotsig) 2302 if (expect_false (signals [i].pending))
1101 ev_feed_signal_event (EV_A_ signum + 1); 2303 ev_feed_signal_event (EV_A_ i + 1);
1102 } 2304 }
2305#endif
1103 2306
1104#if EV_ASYNC_ENABLE 2307#if EV_ASYNC_ENABLE
1105 if (gotasync) 2308 if (async_pending)
1106 { 2309 {
1107 int i; 2310 async_pending = 0;
1108 gotasync = 0; 2311
2312 ECB_MEMORY_FENCE;
1109 2313
1110 for (i = asynccnt; i--; ) 2314 for (i = asynccnt; i--; )
1111 if (asyncs [i]->sent) 2315 if (asyncs [i]->sent)
1112 { 2316 {
1113 asyncs [i]->sent = 0; 2317 asyncs [i]->sent = 0;
2318 ECB_MEMORY_FENCE_RELEASE;
1114 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); 2319 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1115 } 2320 }
1116 } 2321 }
1117#endif 2322#endif
1118} 2323}
1119 2324
1120/*****************************************************************************/ 2325/*****************************************************************************/
1121 2326
2327void
2328ev_feed_signal (int signum) EV_THROW
2329{
2330#if EV_MULTIPLICITY
2331 EV_P;
2332 ECB_MEMORY_FENCE_ACQUIRE;
2333 EV_A = signals [signum - 1].loop;
2334
2335 if (!EV_A)
2336 return;
2337#endif
2338
2339 signals [signum - 1].pending = 1;
2340 evpipe_write (EV_A_ &sig_pending);
2341}
2342
1122static void 2343static void
1123ev_sighandler (int signum) 2344ev_sighandler (int signum)
1124{ 2345{
2346#ifdef _WIN32
2347 signal (signum, ev_sighandler);
2348#endif
2349
2350 ev_feed_signal (signum);
2351}
2352
2353void noinline
2354ev_feed_signal_event (EV_P_ int signum) EV_THROW
2355{
2356 WL w;
2357
2358 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2359 return;
2360
2361 --signum;
2362
1125#if EV_MULTIPLICITY 2363#if EV_MULTIPLICITY
1126 struct ev_loop *loop = &default_loop_struct; 2364 /* it is permissible to try to feed a signal to the wrong loop */
1127#endif 2365 /* or, likely more useful, feeding a signal nobody is waiting for */
1128 2366
1129#if _WIN32 2367 if (expect_false (signals [signum].loop != EV_A))
1130 signal (signum, ev_sighandler);
1131#endif
1132
1133 signals [signum - 1].gotsig = 1;
1134 evpipe_write (EV_A_ &gotsig);
1135}
1136
1137void noinline
1138ev_feed_signal_event (EV_P_ int signum)
1139{
1140 WL w;
1141
1142#if EV_MULTIPLICITY
1143 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1144#endif
1145
1146 --signum;
1147
1148 if (signum < 0 || signum >= signalmax)
1149 return; 2368 return;
2369#endif
1150 2370
1151 signals [signum].gotsig = 0; 2371 signals [signum].pending = 0;
2372 ECB_MEMORY_FENCE_RELEASE;
1152 2373
1153 for (w = signals [signum].head; w; w = w->next) 2374 for (w = signals [signum].head; w; w = w->next)
1154 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2375 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1155} 2376}
1156 2377
2378#if EV_USE_SIGNALFD
2379static void
2380sigfdcb (EV_P_ ev_io *iow, int revents)
2381{
2382 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2383
2384 for (;;)
2385 {
2386 ssize_t res = read (sigfd, si, sizeof (si));
2387
2388 /* not ISO-C, as res might be -1, but works with SuS */
2389 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2390 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2391
2392 if (res < (ssize_t)sizeof (si))
2393 break;
2394 }
2395}
2396#endif
2397
2398#endif
2399
1157/*****************************************************************************/ 2400/*****************************************************************************/
1158 2401
2402#if EV_CHILD_ENABLE
1159static WL childs [EV_PID_HASHSIZE]; 2403static WL childs [EV_PID_HASHSIZE];
1160
1161#ifndef _WIN32
1162 2404
1163static ev_signal childev; 2405static ev_signal childev;
1164 2406
1165#ifndef WIFCONTINUED 2407#ifndef WIFCONTINUED
1166# define WIFCONTINUED(status) 0 2408# define WIFCONTINUED(status) 0
1167#endif 2409#endif
1168 2410
1169void inline_speed 2411/* handle a single child status event */
2412inline_speed void
1170child_reap (EV_P_ int chain, int pid, int status) 2413child_reap (EV_P_ int chain, int pid, int status)
1171{ 2414{
1172 ev_child *w; 2415 ev_child *w;
1173 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2416 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1174 2417
1175 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2418 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1176 { 2419 {
1177 if ((w->pid == pid || !w->pid) 2420 if ((w->pid == pid || !w->pid)
1178 && (!traced || (w->flags & 1))) 2421 && (!traced || (w->flags & 1)))
1179 { 2422 {
1180 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 2423 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1187 2430
1188#ifndef WCONTINUED 2431#ifndef WCONTINUED
1189# define WCONTINUED 0 2432# define WCONTINUED 0
1190#endif 2433#endif
1191 2434
2435/* called on sigchld etc., calls waitpid */
1192static void 2436static void
1193childcb (EV_P_ ev_signal *sw, int revents) 2437childcb (EV_P_ ev_signal *sw, int revents)
1194{ 2438{
1195 int pid, status; 2439 int pid, status;
1196 2440
1204 /* make sure we are called again until all children have been reaped */ 2448 /* make sure we are called again until all children have been reaped */
1205 /* we need to do it this way so that the callback gets called before we continue */ 2449 /* we need to do it this way so that the callback gets called before we continue */
1206 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2450 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1207 2451
1208 child_reap (EV_A_ pid, pid, status); 2452 child_reap (EV_A_ pid, pid, status);
1209 if (EV_PID_HASHSIZE > 1) 2453 if ((EV_PID_HASHSIZE) > 1)
1210 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2454 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1211} 2455}
1212 2456
1213#endif 2457#endif
1214 2458
1215/*****************************************************************************/ 2459/*****************************************************************************/
1216 2460
2461#if EV_USE_IOCP
2462# include "ev_iocp.c"
2463#endif
1217#if EV_USE_PORT 2464#if EV_USE_PORT
1218# include "ev_port.c" 2465# include "ev_port.c"
1219#endif 2466#endif
1220#if EV_USE_KQUEUE 2467#if EV_USE_KQUEUE
1221# include "ev_kqueue.c" 2468# include "ev_kqueue.c"
1228#endif 2475#endif
1229#if EV_USE_SELECT 2476#if EV_USE_SELECT
1230# include "ev_select.c" 2477# include "ev_select.c"
1231#endif 2478#endif
1232 2479
1233int 2480int ecb_cold
1234ev_version_major (void) 2481ev_version_major (void) EV_THROW
1235{ 2482{
1236 return EV_VERSION_MAJOR; 2483 return EV_VERSION_MAJOR;
1237} 2484}
1238 2485
1239int 2486int ecb_cold
1240ev_version_minor (void) 2487ev_version_minor (void) EV_THROW
1241{ 2488{
1242 return EV_VERSION_MINOR; 2489 return EV_VERSION_MINOR;
1243} 2490}
1244 2491
1245/* return true if we are running with elevated privileges and should ignore env variables */ 2492/* return true if we are running with elevated privileges and should ignore env variables */
1246int inline_size 2493int inline_size ecb_cold
1247enable_secure (void) 2494enable_secure (void)
1248{ 2495{
1249#ifdef _WIN32 2496#ifdef _WIN32
1250 return 0; 2497 return 0;
1251#else 2498#else
1252 return getuid () != geteuid () 2499 return getuid () != geteuid ()
1253 || getgid () != getegid (); 2500 || getgid () != getegid ();
1254#endif 2501#endif
1255} 2502}
1256 2503
1257unsigned int 2504unsigned int ecb_cold
1258ev_supported_backends (void) 2505ev_supported_backends (void) EV_THROW
1259{ 2506{
1260 unsigned int flags = 0; 2507 unsigned int flags = 0;
1261 2508
1262 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2509 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1263 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2510 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1266 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2513 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1267 2514
1268 return flags; 2515 return flags;
1269} 2516}
1270 2517
1271unsigned int 2518unsigned int ecb_cold
1272ev_recommended_backends (void) 2519ev_recommended_backends (void) EV_THROW
1273{ 2520{
1274 unsigned int flags = ev_supported_backends (); 2521 unsigned int flags = ev_supported_backends ();
1275 2522
1276#ifndef __NetBSD__ 2523#ifndef __NetBSD__
1277 /* kqueue is borked on everything but netbsd apparently */ 2524 /* kqueue is borked on everything but netbsd apparently */
1281#ifdef __APPLE__ 2528#ifdef __APPLE__
1282 /* only select works correctly on that "unix-certified" platform */ 2529 /* only select works correctly on that "unix-certified" platform */
1283 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */ 2530 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1284 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */ 2531 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1285#endif 2532#endif
2533#ifdef __FreeBSD__
2534 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2535#endif
1286 2536
1287 return flags; 2537 return flags;
1288} 2538}
1289 2539
2540unsigned int ecb_cold
2541ev_embeddable_backends (void) EV_THROW
2542{
2543 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2544
2545 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2546 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2547 flags &= ~EVBACKEND_EPOLL;
2548
2549 return flags;
2550}
2551
1290unsigned int 2552unsigned int
1291ev_embeddable_backends (void) 2553ev_backend (EV_P) EV_THROW
1292{ 2554{
1293 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2555 return backend;
1294
1295 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1296 /* please fix it and tell me how to detect the fix */
1297 flags &= ~EVBACKEND_EPOLL;
1298
1299 return flags;
1300} 2556}
1301 2557
2558#if EV_FEATURE_API
1302unsigned int 2559unsigned int
1303ev_backend (EV_P) 2560ev_iteration (EV_P) EV_THROW
1304{ 2561{
1305 return backend; 2562 return loop_count;
1306} 2563}
1307 2564
1308unsigned int 2565unsigned int
1309ev_loop_count (EV_P) 2566ev_depth (EV_P) EV_THROW
1310{ 2567{
1311 return loop_count; 2568 return loop_depth;
1312} 2569}
1313 2570
1314void 2571void
1315ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2572ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1316{ 2573{
1317 io_blocktime = interval; 2574 io_blocktime = interval;
1318} 2575}
1319 2576
1320void 2577void
1321ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2578ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1322{ 2579{
1323 timeout_blocktime = interval; 2580 timeout_blocktime = interval;
1324} 2581}
1325 2582
2583void
2584ev_set_userdata (EV_P_ void *data) EV_THROW
2585{
2586 userdata = data;
2587}
2588
2589void *
2590ev_userdata (EV_P) EV_THROW
2591{
2592 return userdata;
2593}
2594
2595void
2596ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_THROW
2597{
2598 invoke_cb = invoke_pending_cb;
2599}
2600
2601void
2602ev_set_loop_release_cb (EV_P_ ev_loop_callback_nothrow release, ev_loop_callback_nothrow acquire) EV_THROW
2603{
2604 release_cb = release;
2605 acquire_cb = acquire;
2606}
2607#endif
2608
2609/* initialise a loop structure, must be zero-initialised */
1326static void noinline 2610static void noinline ecb_cold
1327loop_init (EV_P_ unsigned int flags) 2611loop_init (EV_P_ unsigned int flags) EV_THROW
1328{ 2612{
1329 if (!backend) 2613 if (!backend)
1330 { 2614 {
2615 origflags = flags;
2616
1331#if EV_USE_REALTIME 2617#if EV_USE_REALTIME
1332 if (!have_realtime) 2618 if (!have_realtime)
1333 { 2619 {
1334 struct timespec ts; 2620 struct timespec ts;
1335 2621
1346 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2632 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1347 have_monotonic = 1; 2633 have_monotonic = 1;
1348 } 2634 }
1349#endif 2635#endif
1350 2636
1351 ev_rt_now = ev_time ();
1352 mn_now = get_clock ();
1353 now_floor = mn_now;
1354 rtmn_diff = ev_rt_now - mn_now;
1355
1356 io_blocktime = 0.;
1357 timeout_blocktime = 0.;
1358 backend = 0;
1359 backend_fd = -1;
1360 gotasync = 0;
1361#if EV_USE_INOTIFY
1362 fs_fd = -2;
1363#endif
1364
1365 /* pid check not overridable via env */ 2637 /* pid check not overridable via env */
1366#ifndef _WIN32 2638#ifndef _WIN32
1367 if (flags & EVFLAG_FORKCHECK) 2639 if (flags & EVFLAG_FORKCHECK)
1368 curpid = getpid (); 2640 curpid = getpid ();
1369#endif 2641#endif
1371 if (!(flags & EVFLAG_NOENV) 2643 if (!(flags & EVFLAG_NOENV)
1372 && !enable_secure () 2644 && !enable_secure ()
1373 && getenv ("LIBEV_FLAGS")) 2645 && getenv ("LIBEV_FLAGS"))
1374 flags = atoi (getenv ("LIBEV_FLAGS")); 2646 flags = atoi (getenv ("LIBEV_FLAGS"));
1375 2647
1376 if (!(flags & 0x0000ffffU)) 2648 ev_rt_now = ev_time ();
2649 mn_now = get_clock ();
2650 now_floor = mn_now;
2651 rtmn_diff = ev_rt_now - mn_now;
2652#if EV_FEATURE_API
2653 invoke_cb = ev_invoke_pending;
2654#endif
2655
2656 io_blocktime = 0.;
2657 timeout_blocktime = 0.;
2658 backend = 0;
2659 backend_fd = -1;
2660 sig_pending = 0;
2661#if EV_ASYNC_ENABLE
2662 async_pending = 0;
2663#endif
2664 pipe_write_skipped = 0;
2665 pipe_write_wanted = 0;
2666 evpipe [0] = -1;
2667 evpipe [1] = -1;
2668#if EV_USE_INOTIFY
2669 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2670#endif
2671#if EV_USE_SIGNALFD
2672 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2673#endif
2674
2675 if (!(flags & EVBACKEND_MASK))
1377 flags |= ev_recommended_backends (); 2676 flags |= ev_recommended_backends ();
1378 2677
2678#if EV_USE_IOCP
2679 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2680#endif
1379#if EV_USE_PORT 2681#if EV_USE_PORT
1380 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2682 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1381#endif 2683#endif
1382#if EV_USE_KQUEUE 2684#if EV_USE_KQUEUE
1383 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2685 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1390#endif 2692#endif
1391#if EV_USE_SELECT 2693#if EV_USE_SELECT
1392 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2694 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1393#endif 2695#endif
1394 2696
2697 ev_prepare_init (&pending_w, pendingcb);
2698
2699#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1395 ev_init (&pipeev, pipecb); 2700 ev_init (&pipe_w, pipecb);
1396 ev_set_priority (&pipeev, EV_MAXPRI); 2701 ev_set_priority (&pipe_w, EV_MAXPRI);
2702#endif
1397 } 2703 }
1398} 2704}
1399 2705
1400static void noinline 2706/* free up a loop structure */
2707void ecb_cold
1401loop_destroy (EV_P) 2708ev_loop_destroy (EV_P)
1402{ 2709{
1403 int i; 2710 int i;
1404 2711
2712#if EV_MULTIPLICITY
2713 /* mimic free (0) */
2714 if (!EV_A)
2715 return;
2716#endif
2717
2718#if EV_CLEANUP_ENABLE
2719 /* queue cleanup watchers (and execute them) */
2720 if (expect_false (cleanupcnt))
2721 {
2722 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2723 EV_INVOKE_PENDING;
2724 }
2725#endif
2726
2727#if EV_CHILD_ENABLE
2728 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2729 {
2730 ev_ref (EV_A); /* child watcher */
2731 ev_signal_stop (EV_A_ &childev);
2732 }
2733#endif
2734
1405 if (ev_is_active (&pipeev)) 2735 if (ev_is_active (&pipe_w))
1406 { 2736 {
1407 ev_ref (EV_A); /* signal watcher */ 2737 /*ev_ref (EV_A);*/
1408 ev_io_stop (EV_A_ &pipeev); 2738 /*ev_io_stop (EV_A_ &pipe_w);*/
1409 2739
2740 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2741 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2742 }
2743
1410#if EV_USE_EVENTFD 2744#if EV_USE_SIGNALFD
1411 if (evfd >= 0) 2745 if (ev_is_active (&sigfd_w))
1412 close (evfd); 2746 close (sigfd);
1413#endif 2747#endif
1414
1415 if (evpipe [0] >= 0)
1416 {
1417 close (evpipe [0]);
1418 close (evpipe [1]);
1419 }
1420 }
1421 2748
1422#if EV_USE_INOTIFY 2749#if EV_USE_INOTIFY
1423 if (fs_fd >= 0) 2750 if (fs_fd >= 0)
1424 close (fs_fd); 2751 close (fs_fd);
1425#endif 2752#endif
1426 2753
1427 if (backend_fd >= 0) 2754 if (backend_fd >= 0)
1428 close (backend_fd); 2755 close (backend_fd);
1429 2756
2757#if EV_USE_IOCP
2758 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2759#endif
1430#if EV_USE_PORT 2760#if EV_USE_PORT
1431 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2761 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1432#endif 2762#endif
1433#if EV_USE_KQUEUE 2763#if EV_USE_KQUEUE
1434 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2764 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1449#if EV_IDLE_ENABLE 2779#if EV_IDLE_ENABLE
1450 array_free (idle, [i]); 2780 array_free (idle, [i]);
1451#endif 2781#endif
1452 } 2782 }
1453 2783
1454 ev_free (anfds); anfdmax = 0; 2784 ev_free (anfds); anfds = 0; anfdmax = 0;
1455 2785
1456 /* have to use the microsoft-never-gets-it-right macro */ 2786 /* have to use the microsoft-never-gets-it-right macro */
2787 array_free (rfeed, EMPTY);
1457 array_free (fdchange, EMPTY); 2788 array_free (fdchange, EMPTY);
1458 array_free (timer, EMPTY); 2789 array_free (timer, EMPTY);
1459#if EV_PERIODIC_ENABLE 2790#if EV_PERIODIC_ENABLE
1460 array_free (periodic, EMPTY); 2791 array_free (periodic, EMPTY);
1461#endif 2792#endif
1462#if EV_FORK_ENABLE 2793#if EV_FORK_ENABLE
1463 array_free (fork, EMPTY); 2794 array_free (fork, EMPTY);
1464#endif 2795#endif
2796#if EV_CLEANUP_ENABLE
2797 array_free (cleanup, EMPTY);
2798#endif
1465 array_free (prepare, EMPTY); 2799 array_free (prepare, EMPTY);
1466 array_free (check, EMPTY); 2800 array_free (check, EMPTY);
1467#if EV_ASYNC_ENABLE 2801#if EV_ASYNC_ENABLE
1468 array_free (async, EMPTY); 2802 array_free (async, EMPTY);
1469#endif 2803#endif
1470 2804
1471 backend = 0; 2805 backend = 0;
2806
2807#if EV_MULTIPLICITY
2808 if (ev_is_default_loop (EV_A))
2809#endif
2810 ev_default_loop_ptr = 0;
2811#if EV_MULTIPLICITY
2812 else
2813 ev_free (EV_A);
2814#endif
1472} 2815}
1473 2816
1474#if EV_USE_INOTIFY 2817#if EV_USE_INOTIFY
1475void inline_size infy_fork (EV_P); 2818inline_size void infy_fork (EV_P);
1476#endif 2819#endif
1477 2820
1478void inline_size 2821inline_size void
1479loop_fork (EV_P) 2822loop_fork (EV_P)
1480{ 2823{
1481#if EV_USE_PORT 2824#if EV_USE_PORT
1482 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2825 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1483#endif 2826#endif
1489#endif 2832#endif
1490#if EV_USE_INOTIFY 2833#if EV_USE_INOTIFY
1491 infy_fork (EV_A); 2834 infy_fork (EV_A);
1492#endif 2835#endif
1493 2836
2837#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1494 if (ev_is_active (&pipeev)) 2838 if (ev_is_active (&pipe_w))
1495 { 2839 {
1496 /* this "locks" the handlers against writing to the pipe */ 2840 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1497 /* while we modify the fd vars */
1498 gotsig = 1;
1499#if EV_ASYNC_ENABLE
1500 gotasync = 1;
1501#endif
1502 2841
1503 ev_ref (EV_A); 2842 ev_ref (EV_A);
1504 ev_io_stop (EV_A_ &pipeev); 2843 ev_io_stop (EV_A_ &pipe_w);
1505
1506#if EV_USE_EVENTFD
1507 if (evfd >= 0)
1508 close (evfd);
1509#endif
1510 2844
1511 if (evpipe [0] >= 0) 2845 if (evpipe [0] >= 0)
1512 { 2846 EV_WIN32_CLOSE_FD (evpipe [0]);
1513 close (evpipe [0]);
1514 close (evpipe [1]);
1515 }
1516 2847
1517 evpipe_init (EV_A); 2848 evpipe_init (EV_A);
1518 /* now iterate over everything, in case we missed something */ 2849 /* iterate over everything, in case we missed something before */
1519 pipecb (EV_A_ &pipeev, EV_READ); 2850 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
1520 } 2851 }
2852#endif
1521 2853
1522 postfork = 0; 2854 postfork = 0;
1523} 2855}
1524 2856
1525#if EV_MULTIPLICITY 2857#if EV_MULTIPLICITY
1526 2858
1527struct ev_loop * 2859struct ev_loop * ecb_cold
1528ev_loop_new (unsigned int flags) 2860ev_loop_new (unsigned int flags) EV_THROW
1529{ 2861{
1530 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2862 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1531 2863
1532 memset (loop, 0, sizeof (struct ev_loop)); 2864 memset (EV_A, 0, sizeof (struct ev_loop));
1533
1534 loop_init (EV_A_ flags); 2865 loop_init (EV_A_ flags);
1535 2866
1536 if (ev_backend (EV_A)) 2867 if (ev_backend (EV_A))
1537 return loop; 2868 return EV_A;
1538 2869
2870 ev_free (EV_A);
1539 return 0; 2871 return 0;
1540} 2872}
1541 2873
1542void 2874#endif /* multiplicity */
1543ev_loop_destroy (EV_P)
1544{
1545 loop_destroy (EV_A);
1546 ev_free (loop);
1547}
1548
1549void
1550ev_loop_fork (EV_P)
1551{
1552 postfork = 1; /* must be in line with ev_default_fork */
1553}
1554 2875
1555#if EV_VERIFY 2876#if EV_VERIFY
1556static void noinline 2877static void noinline ecb_cold
1557verify_watcher (EV_P_ W w) 2878verify_watcher (EV_P_ W w)
1558{ 2879{
1559 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI)); 2880 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1560 2881
1561 if (w->pending) 2882 if (w->pending)
1562 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w)); 2883 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1563} 2884}
1564 2885
1565static void noinline 2886static void noinline ecb_cold
1566verify_heap (EV_P_ ANHE *heap, int N) 2887verify_heap (EV_P_ ANHE *heap, int N)
1567{ 2888{
1568 int i; 2889 int i;
1569 2890
1570 for (i = HEAP0; i < N + HEAP0; ++i) 2891 for (i = HEAP0; i < N + HEAP0; ++i)
1575 2896
1576 verify_watcher (EV_A_ (W)ANHE_w (heap [i])); 2897 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1577 } 2898 }
1578} 2899}
1579 2900
1580static void noinline 2901static void noinline ecb_cold
1581array_verify (EV_P_ W *ws, int cnt) 2902array_verify (EV_P_ W *ws, int cnt)
1582{ 2903{
1583 while (cnt--) 2904 while (cnt--)
1584 { 2905 {
1585 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1)); 2906 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1586 verify_watcher (EV_A_ ws [cnt]); 2907 verify_watcher (EV_A_ ws [cnt]);
1587 } 2908 }
1588} 2909}
1589#endif 2910#endif
1590 2911
1591void 2912#if EV_FEATURE_API
1592ev_loop_verify (EV_P) 2913void ecb_cold
2914ev_verify (EV_P) EV_THROW
1593{ 2915{
1594#if EV_VERIFY 2916#if EV_VERIFY
1595 int i; 2917 int i;
1596 WL w; 2918 WL w, w2;
1597 2919
1598 assert (activecnt >= -1); 2920 assert (activecnt >= -1);
1599 2921
1600 assert (fdchangemax >= fdchangecnt); 2922 assert (fdchangemax >= fdchangecnt);
1601 for (i = 0; i < fdchangecnt; ++i) 2923 for (i = 0; i < fdchangecnt; ++i)
1602 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0)); 2924 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1603 2925
1604 assert (anfdmax >= 0); 2926 assert (anfdmax >= 0);
1605 for (i = 0; i < anfdmax; ++i) 2927 for (i = 0; i < anfdmax; ++i)
2928 {
2929 int j = 0;
2930
1606 for (w = anfds [i].head; w; w = w->next) 2931 for (w = w2 = anfds [i].head; w; w = w->next)
1607 { 2932 {
1608 verify_watcher (EV_A_ (W)w); 2933 verify_watcher (EV_A_ (W)w);
2934
2935 if (j++ & 1)
2936 {
2937 assert (("libev: io watcher list contains a loop", w != w2));
2938 w2 = w2->next;
2939 }
2940
1609 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1)); 2941 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1610 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i)); 2942 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1611 } 2943 }
2944 }
1612 2945
1613 assert (timermax >= timercnt); 2946 assert (timermax >= timercnt);
1614 verify_heap (EV_A_ timers, timercnt); 2947 verify_heap (EV_A_ timers, timercnt);
1615 2948
1616#if EV_PERIODIC_ENABLE 2949#if EV_PERIODIC_ENABLE
1631#if EV_FORK_ENABLE 2964#if EV_FORK_ENABLE
1632 assert (forkmax >= forkcnt); 2965 assert (forkmax >= forkcnt);
1633 array_verify (EV_A_ (W *)forks, forkcnt); 2966 array_verify (EV_A_ (W *)forks, forkcnt);
1634#endif 2967#endif
1635 2968
2969#if EV_CLEANUP_ENABLE
2970 assert (cleanupmax >= cleanupcnt);
2971 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2972#endif
2973
1636#if EV_ASYNC_ENABLE 2974#if EV_ASYNC_ENABLE
1637 assert (asyncmax >= asynccnt); 2975 assert (asyncmax >= asynccnt);
1638 array_verify (EV_A_ (W *)asyncs, asynccnt); 2976 array_verify (EV_A_ (W *)asyncs, asynccnt);
1639#endif 2977#endif
1640 2978
2979#if EV_PREPARE_ENABLE
1641 assert (preparemax >= preparecnt); 2980 assert (preparemax >= preparecnt);
1642 array_verify (EV_A_ (W *)prepares, preparecnt); 2981 array_verify (EV_A_ (W *)prepares, preparecnt);
2982#endif
1643 2983
2984#if EV_CHECK_ENABLE
1644 assert (checkmax >= checkcnt); 2985 assert (checkmax >= checkcnt);
1645 array_verify (EV_A_ (W *)checks, checkcnt); 2986 array_verify (EV_A_ (W *)checks, checkcnt);
2987#endif
1646 2988
1647# if 0 2989# if 0
2990#if EV_CHILD_ENABLE
1648 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2991 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1649 for (signum = signalmax; signum--; ) if (signals [signum].gotsig) 2992 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2993#endif
1650# endif 2994# endif
1651#endif 2995#endif
1652} 2996}
1653 2997#endif
1654#endif /* multiplicity */
1655 2998
1656#if EV_MULTIPLICITY 2999#if EV_MULTIPLICITY
1657struct ev_loop * 3000struct ev_loop * ecb_cold
1658ev_default_loop_init (unsigned int flags)
1659#else 3001#else
1660int 3002int
3003#endif
1661ev_default_loop (unsigned int flags) 3004ev_default_loop (unsigned int flags) EV_THROW
1662#endif
1663{ 3005{
1664 if (!ev_default_loop_ptr) 3006 if (!ev_default_loop_ptr)
1665 { 3007 {
1666#if EV_MULTIPLICITY 3008#if EV_MULTIPLICITY
1667 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 3009 EV_P = ev_default_loop_ptr = &default_loop_struct;
1668#else 3010#else
1669 ev_default_loop_ptr = 1; 3011 ev_default_loop_ptr = 1;
1670#endif 3012#endif
1671 3013
1672 loop_init (EV_A_ flags); 3014 loop_init (EV_A_ flags);
1673 3015
1674 if (ev_backend (EV_A)) 3016 if (ev_backend (EV_A))
1675 { 3017 {
1676#ifndef _WIN32 3018#if EV_CHILD_ENABLE
1677 ev_signal_init (&childev, childcb, SIGCHLD); 3019 ev_signal_init (&childev, childcb, SIGCHLD);
1678 ev_set_priority (&childev, EV_MAXPRI); 3020 ev_set_priority (&childev, EV_MAXPRI);
1679 ev_signal_start (EV_A_ &childev); 3021 ev_signal_start (EV_A_ &childev);
1680 ev_unref (EV_A); /* child watcher should not keep loop alive */ 3022 ev_unref (EV_A); /* child watcher should not keep loop alive */
1681#endif 3023#endif
1686 3028
1687 return ev_default_loop_ptr; 3029 return ev_default_loop_ptr;
1688} 3030}
1689 3031
1690void 3032void
1691ev_default_destroy (void) 3033ev_loop_fork (EV_P) EV_THROW
1692{ 3034{
1693#if EV_MULTIPLICITY 3035 postfork = 1;
1694 struct ev_loop *loop = ev_default_loop_ptr;
1695#endif
1696
1697 ev_default_loop_ptr = 0;
1698
1699#ifndef _WIN32
1700 ev_ref (EV_A); /* child watcher */
1701 ev_signal_stop (EV_A_ &childev);
1702#endif
1703
1704 loop_destroy (EV_A);
1705}
1706
1707void
1708ev_default_fork (void)
1709{
1710#if EV_MULTIPLICITY
1711 struct ev_loop *loop = ev_default_loop_ptr;
1712#endif
1713
1714 postfork = 1; /* must be in line with ev_loop_fork */
1715} 3036}
1716 3037
1717/*****************************************************************************/ 3038/*****************************************************************************/
1718 3039
1719void 3040void
1720ev_invoke (EV_P_ void *w, int revents) 3041ev_invoke (EV_P_ void *w, int revents)
1721{ 3042{
1722 EV_CB_INVOKE ((W)w, revents); 3043 EV_CB_INVOKE ((W)w, revents);
1723} 3044}
1724 3045
1725void inline_speed 3046unsigned int
1726call_pending (EV_P) 3047ev_pending_count (EV_P) EV_THROW
1727{ 3048{
1728 int pri; 3049 int pri;
3050 unsigned int count = 0;
1729 3051
1730 for (pri = NUMPRI; pri--; ) 3052 for (pri = NUMPRI; pri--; )
3053 count += pendingcnt [pri];
3054
3055 return count;
3056}
3057
3058void noinline
3059ev_invoke_pending (EV_P)
3060{
3061 pendingpri = NUMPRI;
3062
3063 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
3064 {
3065 --pendingpri;
3066
1731 while (pendingcnt [pri]) 3067 while (pendingcnt [pendingpri])
1732 {
1733 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1734
1735 if (expect_true (p->w))
1736 { 3068 {
1737 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/ 3069 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1738 3070
1739 p->w->pending = 0; 3071 p->w->pending = 0;
1740 EV_CB_INVOKE (p->w, p->events); 3072 EV_CB_INVOKE (p->w, p->events);
1741 EV_FREQUENT_CHECK; 3073 EV_FREQUENT_CHECK;
1742 } 3074 }
1743 } 3075 }
1744} 3076}
1745 3077
1746#if EV_IDLE_ENABLE 3078#if EV_IDLE_ENABLE
1747void inline_size 3079/* make idle watchers pending. this handles the "call-idle */
3080/* only when higher priorities are idle" logic */
3081inline_size void
1748idle_reify (EV_P) 3082idle_reify (EV_P)
1749{ 3083{
1750 if (expect_false (idleall)) 3084 if (expect_false (idleall))
1751 { 3085 {
1752 int pri; 3086 int pri;
1764 } 3098 }
1765 } 3099 }
1766} 3100}
1767#endif 3101#endif
1768 3102
1769void inline_size 3103/* make timers pending */
3104inline_size void
1770timers_reify (EV_P) 3105timers_reify (EV_P)
1771{ 3106{
1772 EV_FREQUENT_CHECK; 3107 EV_FREQUENT_CHECK;
1773 3108
1774 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 3109 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1775 { 3110 {
1776 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 3111 do
1777
1778 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1779
1780 /* first reschedule or stop timer */
1781 if (w->repeat)
1782 { 3112 {
3113 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3114
3115 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3116
3117 /* first reschedule or stop timer */
3118 if (w->repeat)
3119 {
1783 ev_at (w) += w->repeat; 3120 ev_at (w) += w->repeat;
1784 if (ev_at (w) < mn_now) 3121 if (ev_at (w) < mn_now)
1785 ev_at (w) = mn_now; 3122 ev_at (w) = mn_now;
1786 3123
1787 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3124 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1788 3125
1789 ANHE_at_cache (timers [HEAP0]); 3126 ANHE_at_cache (timers [HEAP0]);
1790 downheap (timers, timercnt, HEAP0); 3127 downheap (timers, timercnt, HEAP0);
3128 }
3129 else
3130 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3131
3132 EV_FREQUENT_CHECK;
3133 feed_reverse (EV_A_ (W)w);
1791 } 3134 }
1792 else 3135 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1793 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1794 3136
1795 EV_FREQUENT_CHECK; 3137 feed_reverse_done (EV_A_ EV_TIMER);
1796 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1797 } 3138 }
1798} 3139}
1799 3140
1800#if EV_PERIODIC_ENABLE 3141#if EV_PERIODIC_ENABLE
1801void inline_size 3142
3143static void noinline
3144periodic_recalc (EV_P_ ev_periodic *w)
3145{
3146 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3147 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3148
3149 /* the above almost always errs on the low side */
3150 while (at <= ev_rt_now)
3151 {
3152 ev_tstamp nat = at + w->interval;
3153
3154 /* when resolution fails us, we use ev_rt_now */
3155 if (expect_false (nat == at))
3156 {
3157 at = ev_rt_now;
3158 break;
3159 }
3160
3161 at = nat;
3162 }
3163
3164 ev_at (w) = at;
3165}
3166
3167/* make periodics pending */
3168inline_size void
1802periodics_reify (EV_P) 3169periodics_reify (EV_P)
1803{ 3170{
1804 EV_FREQUENT_CHECK; 3171 EV_FREQUENT_CHECK;
1805 3172
1806 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 3173 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1807 { 3174 {
1808 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 3175 do
1809
1810 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1811
1812 /* first reschedule or stop timer */
1813 if (w->reschedule_cb)
1814 { 3176 {
3177 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3178
3179 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3180
3181 /* first reschedule or stop timer */
3182 if (w->reschedule_cb)
3183 {
1815 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3184 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1816 3185
1817 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 3186 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1818 3187
1819 ANHE_at_cache (periodics [HEAP0]); 3188 ANHE_at_cache (periodics [HEAP0]);
1820 downheap (periodics, periodiccnt, HEAP0); 3189 downheap (periodics, periodiccnt, HEAP0);
3190 }
3191 else if (w->interval)
3192 {
3193 periodic_recalc (EV_A_ w);
3194 ANHE_at_cache (periodics [HEAP0]);
3195 downheap (periodics, periodiccnt, HEAP0);
3196 }
3197 else
3198 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3199
3200 EV_FREQUENT_CHECK;
3201 feed_reverse (EV_A_ (W)w);
1821 } 3202 }
1822 else if (w->interval) 3203 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1823 {
1824 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1825 /* if next trigger time is not sufficiently in the future, put it there */
1826 /* this might happen because of floating point inexactness */
1827 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1828 {
1829 ev_at (w) += w->interval;
1830 3204
1831 /* if interval is unreasonably low we might still have a time in the past */
1832 /* so correct this. this will make the periodic very inexact, but the user */
1833 /* has effectively asked to get triggered more often than possible */
1834 if (ev_at (w) < ev_rt_now)
1835 ev_at (w) = ev_rt_now;
1836 }
1837
1838 ANHE_at_cache (periodics [HEAP0]);
1839 downheap (periodics, periodiccnt, HEAP0);
1840 }
1841 else
1842 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1843
1844 EV_FREQUENT_CHECK;
1845 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 3205 feed_reverse_done (EV_A_ EV_PERIODIC);
1846 } 3206 }
1847} 3207}
1848 3208
3209/* simply recalculate all periodics */
3210/* TODO: maybe ensure that at least one event happens when jumping forward? */
1849static void noinline 3211static void noinline ecb_cold
1850periodics_reschedule (EV_P) 3212periodics_reschedule (EV_P)
1851{ 3213{
1852 int i; 3214 int i;
1853 3215
1854 /* adjust periodics after time jump */ 3216 /* adjust periodics after time jump */
1857 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]); 3219 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1858 3220
1859 if (w->reschedule_cb) 3221 if (w->reschedule_cb)
1860 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3222 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1861 else if (w->interval) 3223 else if (w->interval)
1862 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 3224 periodic_recalc (EV_A_ w);
1863 3225
1864 ANHE_at_cache (periodics [i]); 3226 ANHE_at_cache (periodics [i]);
1865 } 3227 }
1866 3228
1867 reheap (periodics, periodiccnt); 3229 reheap (periodics, periodiccnt);
1868} 3230}
1869#endif 3231#endif
1870 3232
1871void inline_speed 3233/* adjust all timers by a given offset */
3234static void noinline ecb_cold
3235timers_reschedule (EV_P_ ev_tstamp adjust)
3236{
3237 int i;
3238
3239 for (i = 0; i < timercnt; ++i)
3240 {
3241 ANHE *he = timers + i + HEAP0;
3242 ANHE_w (*he)->at += adjust;
3243 ANHE_at_cache (*he);
3244 }
3245}
3246
3247/* fetch new monotonic and realtime times from the kernel */
3248/* also detect if there was a timejump, and act accordingly */
3249inline_speed void
1872time_update (EV_P_ ev_tstamp max_block) 3250time_update (EV_P_ ev_tstamp max_block)
1873{ 3251{
1874 int i;
1875
1876#if EV_USE_MONOTONIC 3252#if EV_USE_MONOTONIC
1877 if (expect_true (have_monotonic)) 3253 if (expect_true (have_monotonic))
1878 { 3254 {
3255 int i;
1879 ev_tstamp odiff = rtmn_diff; 3256 ev_tstamp odiff = rtmn_diff;
1880 3257
1881 mn_now = get_clock (); 3258 mn_now = get_clock ();
1882 3259
1883 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 3260 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1899 * doesn't hurt either as we only do this on time-jumps or 3276 * doesn't hurt either as we only do this on time-jumps or
1900 * in the unlikely event of having been preempted here. 3277 * in the unlikely event of having been preempted here.
1901 */ 3278 */
1902 for (i = 4; --i; ) 3279 for (i = 4; --i; )
1903 { 3280 {
3281 ev_tstamp diff;
1904 rtmn_diff = ev_rt_now - mn_now; 3282 rtmn_diff = ev_rt_now - mn_now;
1905 3283
3284 diff = odiff - rtmn_diff;
3285
1906 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)) 3286 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1907 return; /* all is well */ 3287 return; /* all is well */
1908 3288
1909 ev_rt_now = ev_time (); 3289 ev_rt_now = ev_time ();
1910 mn_now = get_clock (); 3290 mn_now = get_clock ();
1911 now_floor = mn_now; 3291 now_floor = mn_now;
1912 } 3292 }
1913 3293
3294 /* no timer adjustment, as the monotonic clock doesn't jump */
3295 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1914# if EV_PERIODIC_ENABLE 3296# if EV_PERIODIC_ENABLE
1915 periodics_reschedule (EV_A); 3297 periodics_reschedule (EV_A);
1916# endif 3298# endif
1917 /* no timer adjustment, as the monotonic clock doesn't jump */
1918 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1919 } 3299 }
1920 else 3300 else
1921#endif 3301#endif
1922 { 3302 {
1923 ev_rt_now = ev_time (); 3303 ev_rt_now = ev_time ();
1924 3304
1925 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 3305 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1926 { 3306 {
3307 /* adjust timers. this is easy, as the offset is the same for all of them */
3308 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1927#if EV_PERIODIC_ENABLE 3309#if EV_PERIODIC_ENABLE
1928 periodics_reschedule (EV_A); 3310 periodics_reschedule (EV_A);
1929#endif 3311#endif
1930 /* adjust timers. this is easy, as the offset is the same for all of them */
1931 for (i = 0; i < timercnt; ++i)
1932 {
1933 ANHE *he = timers + i + HEAP0;
1934 ANHE_w (*he)->at += ev_rt_now - mn_now;
1935 ANHE_at_cache (*he);
1936 }
1937 } 3312 }
1938 3313
1939 mn_now = ev_rt_now; 3314 mn_now = ev_rt_now;
1940 } 3315 }
1941} 3316}
1942 3317
1943void 3318int
1944ev_ref (EV_P)
1945{
1946 ++activecnt;
1947}
1948
1949void
1950ev_unref (EV_P)
1951{
1952 --activecnt;
1953}
1954
1955void
1956ev_now_update (EV_P)
1957{
1958 time_update (EV_A_ 1e100);
1959}
1960
1961static int loop_done;
1962
1963void
1964ev_loop (EV_P_ int flags) 3319ev_run (EV_P_ int flags)
1965{ 3320{
3321#if EV_FEATURE_API
3322 ++loop_depth;
3323#endif
3324
3325 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3326
1966 loop_done = EVUNLOOP_CANCEL; 3327 loop_done = EVBREAK_CANCEL;
1967 3328
1968 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3329 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1969 3330
1970 do 3331 do
1971 { 3332 {
1972#if EV_VERIFY >= 2 3333#if EV_VERIFY >= 2
1973 ev_loop_verify (EV_A); 3334 ev_verify (EV_A);
1974#endif 3335#endif
1975 3336
1976#ifndef _WIN32 3337#ifndef _WIN32
1977 if (expect_false (curpid)) /* penalise the forking check even more */ 3338 if (expect_false (curpid)) /* penalise the forking check even more */
1978 if (expect_false (getpid () != curpid)) 3339 if (expect_false (getpid () != curpid))
1986 /* we might have forked, so queue fork handlers */ 3347 /* we might have forked, so queue fork handlers */
1987 if (expect_false (postfork)) 3348 if (expect_false (postfork))
1988 if (forkcnt) 3349 if (forkcnt)
1989 { 3350 {
1990 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3351 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1991 call_pending (EV_A); 3352 EV_INVOKE_PENDING;
1992 } 3353 }
1993#endif 3354#endif
1994 3355
3356#if EV_PREPARE_ENABLE
1995 /* queue prepare watchers (and execute them) */ 3357 /* queue prepare watchers (and execute them) */
1996 if (expect_false (preparecnt)) 3358 if (expect_false (preparecnt))
1997 { 3359 {
1998 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3360 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1999 call_pending (EV_A); 3361 EV_INVOKE_PENDING;
2000 } 3362 }
3363#endif
3364
3365 if (expect_false (loop_done))
3366 break;
2001 3367
2002 /* we might have forked, so reify kernel state if necessary */ 3368 /* we might have forked, so reify kernel state if necessary */
2003 if (expect_false (postfork)) 3369 if (expect_false (postfork))
2004 loop_fork (EV_A); 3370 loop_fork (EV_A);
2005 3371
2009 /* calculate blocking time */ 3375 /* calculate blocking time */
2010 { 3376 {
2011 ev_tstamp waittime = 0.; 3377 ev_tstamp waittime = 0.;
2012 ev_tstamp sleeptime = 0.; 3378 ev_tstamp sleeptime = 0.;
2013 3379
3380 /* remember old timestamp for io_blocktime calculation */
3381 ev_tstamp prev_mn_now = mn_now;
3382
3383 /* update time to cancel out callback processing overhead */
3384 time_update (EV_A_ 1e100);
3385
3386 /* from now on, we want a pipe-wake-up */
3387 pipe_write_wanted = 1;
3388
3389 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3390
2014 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3391 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
2015 { 3392 {
2016 /* update time to cancel out callback processing overhead */
2017 time_update (EV_A_ 1e100);
2018
2019 waittime = MAX_BLOCKTIME; 3393 waittime = MAX_BLOCKTIME;
2020 3394
2021 if (timercnt) 3395 if (timercnt)
2022 { 3396 {
2023 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 3397 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
2024 if (waittime > to) waittime = to; 3398 if (waittime > to) waittime = to;
2025 } 3399 }
2026 3400
2027#if EV_PERIODIC_ENABLE 3401#if EV_PERIODIC_ENABLE
2028 if (periodiccnt) 3402 if (periodiccnt)
2029 { 3403 {
2030 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 3404 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
2031 if (waittime > to) waittime = to; 3405 if (waittime > to) waittime = to;
2032 } 3406 }
2033#endif 3407#endif
2034 3408
3409 /* don't let timeouts decrease the waittime below timeout_blocktime */
2035 if (expect_false (waittime < timeout_blocktime)) 3410 if (expect_false (waittime < timeout_blocktime))
2036 waittime = timeout_blocktime; 3411 waittime = timeout_blocktime;
2037 3412
2038 sleeptime = waittime - backend_fudge; 3413 /* at this point, we NEED to wait, so we have to ensure */
3414 /* to pass a minimum nonzero value to the backend */
3415 if (expect_false (waittime < backend_mintime))
3416 waittime = backend_mintime;
2039 3417
3418 /* extra check because io_blocktime is commonly 0 */
2040 if (expect_true (sleeptime > io_blocktime)) 3419 if (expect_false (io_blocktime))
2041 sleeptime = io_blocktime;
2042
2043 if (sleeptime)
2044 { 3420 {
3421 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3422
3423 if (sleeptime > waittime - backend_mintime)
3424 sleeptime = waittime - backend_mintime;
3425
3426 if (expect_true (sleeptime > 0.))
3427 {
2045 ev_sleep (sleeptime); 3428 ev_sleep (sleeptime);
2046 waittime -= sleeptime; 3429 waittime -= sleeptime;
3430 }
2047 } 3431 }
2048 } 3432 }
2049 3433
3434#if EV_FEATURE_API
2050 ++loop_count; 3435 ++loop_count;
3436#endif
3437 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2051 backend_poll (EV_A_ waittime); 3438 backend_poll (EV_A_ waittime);
3439 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3440
3441 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3442
3443 ECB_MEMORY_FENCE_ACQUIRE;
3444 if (pipe_write_skipped)
3445 {
3446 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3447 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3448 }
3449
2052 3450
2053 /* update ev_rt_now, do magic */ 3451 /* update ev_rt_now, do magic */
2054 time_update (EV_A_ waittime + sleeptime); 3452 time_update (EV_A_ waittime + sleeptime);
2055 } 3453 }
2056 3454
2063#if EV_IDLE_ENABLE 3461#if EV_IDLE_ENABLE
2064 /* queue idle watchers unless other events are pending */ 3462 /* queue idle watchers unless other events are pending */
2065 idle_reify (EV_A); 3463 idle_reify (EV_A);
2066#endif 3464#endif
2067 3465
3466#if EV_CHECK_ENABLE
2068 /* queue check watchers, to be executed first */ 3467 /* queue check watchers, to be executed first */
2069 if (expect_false (checkcnt)) 3468 if (expect_false (checkcnt))
2070 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3469 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3470#endif
2071 3471
2072 call_pending (EV_A); 3472 EV_INVOKE_PENDING;
2073 } 3473 }
2074 while (expect_true ( 3474 while (expect_true (
2075 activecnt 3475 activecnt
2076 && !loop_done 3476 && !loop_done
2077 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 3477 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2078 )); 3478 ));
2079 3479
2080 if (loop_done == EVUNLOOP_ONE) 3480 if (loop_done == EVBREAK_ONE)
2081 loop_done = EVUNLOOP_CANCEL; 3481 loop_done = EVBREAK_CANCEL;
3482
3483#if EV_FEATURE_API
3484 --loop_depth;
3485#endif
3486
3487 return activecnt;
2082} 3488}
2083 3489
2084void 3490void
2085ev_unloop (EV_P_ int how) 3491ev_break (EV_P_ int how) EV_THROW
2086{ 3492{
2087 loop_done = how; 3493 loop_done = how;
2088} 3494}
2089 3495
3496void
3497ev_ref (EV_P) EV_THROW
3498{
3499 ++activecnt;
3500}
3501
3502void
3503ev_unref (EV_P) EV_THROW
3504{
3505 --activecnt;
3506}
3507
3508void
3509ev_now_update (EV_P) EV_THROW
3510{
3511 time_update (EV_A_ 1e100);
3512}
3513
3514void
3515ev_suspend (EV_P) EV_THROW
3516{
3517 ev_now_update (EV_A);
3518}
3519
3520void
3521ev_resume (EV_P) EV_THROW
3522{
3523 ev_tstamp mn_prev = mn_now;
3524
3525 ev_now_update (EV_A);
3526 timers_reschedule (EV_A_ mn_now - mn_prev);
3527#if EV_PERIODIC_ENABLE
3528 /* TODO: really do this? */
3529 periodics_reschedule (EV_A);
3530#endif
3531}
3532
2090/*****************************************************************************/ 3533/*****************************************************************************/
3534/* singly-linked list management, used when the expected list length is short */
2091 3535
2092void inline_size 3536inline_size void
2093wlist_add (WL *head, WL elem) 3537wlist_add (WL *head, WL elem)
2094{ 3538{
2095 elem->next = *head; 3539 elem->next = *head;
2096 *head = elem; 3540 *head = elem;
2097} 3541}
2098 3542
2099void inline_size 3543inline_size void
2100wlist_del (WL *head, WL elem) 3544wlist_del (WL *head, WL elem)
2101{ 3545{
2102 while (*head) 3546 while (*head)
2103 { 3547 {
2104 if (*head == elem) 3548 if (expect_true (*head == elem))
2105 { 3549 {
2106 *head = elem->next; 3550 *head = elem->next;
2107 return; 3551 break;
2108 } 3552 }
2109 3553
2110 head = &(*head)->next; 3554 head = &(*head)->next;
2111 } 3555 }
2112} 3556}
2113 3557
2114void inline_speed 3558/* internal, faster, version of ev_clear_pending */
3559inline_speed void
2115clear_pending (EV_P_ W w) 3560clear_pending (EV_P_ W w)
2116{ 3561{
2117 if (w->pending) 3562 if (w->pending)
2118 { 3563 {
2119 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3564 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2120 w->pending = 0; 3565 w->pending = 0;
2121 } 3566 }
2122} 3567}
2123 3568
2124int 3569int
2125ev_clear_pending (EV_P_ void *w) 3570ev_clear_pending (EV_P_ void *w) EV_THROW
2126{ 3571{
2127 W w_ = (W)w; 3572 W w_ = (W)w;
2128 int pending = w_->pending; 3573 int pending = w_->pending;
2129 3574
2130 if (expect_true (pending)) 3575 if (expect_true (pending))
2131 { 3576 {
2132 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3577 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3578 p->w = (W)&pending_w;
2133 w_->pending = 0; 3579 w_->pending = 0;
2134 p->w = 0;
2135 return p->events; 3580 return p->events;
2136 } 3581 }
2137 else 3582 else
2138 return 0; 3583 return 0;
2139} 3584}
2140 3585
2141void inline_size 3586inline_size void
2142pri_adjust (EV_P_ W w) 3587pri_adjust (EV_P_ W w)
2143{ 3588{
2144 int pri = w->priority; 3589 int pri = ev_priority (w);
2145 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3590 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2146 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3591 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2147 w->priority = pri; 3592 ev_set_priority (w, pri);
2148} 3593}
2149 3594
2150void inline_speed 3595inline_speed void
2151ev_start (EV_P_ W w, int active) 3596ev_start (EV_P_ W w, int active)
2152{ 3597{
2153 pri_adjust (EV_A_ w); 3598 pri_adjust (EV_A_ w);
2154 w->active = active; 3599 w->active = active;
2155 ev_ref (EV_A); 3600 ev_ref (EV_A);
2156} 3601}
2157 3602
2158void inline_size 3603inline_size void
2159ev_stop (EV_P_ W w) 3604ev_stop (EV_P_ W w)
2160{ 3605{
2161 ev_unref (EV_A); 3606 ev_unref (EV_A);
2162 w->active = 0; 3607 w->active = 0;
2163} 3608}
2164 3609
2165/*****************************************************************************/ 3610/*****************************************************************************/
2166 3611
2167void noinline 3612void noinline
2168ev_io_start (EV_P_ ev_io *w) 3613ev_io_start (EV_P_ ev_io *w) EV_THROW
2169{ 3614{
2170 int fd = w->fd; 3615 int fd = w->fd;
2171 3616
2172 if (expect_false (ev_is_active (w))) 3617 if (expect_false (ev_is_active (w)))
2173 return; 3618 return;
2174 3619
2175 assert (("libev: ev_io_start called with negative fd", fd >= 0)); 3620 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2176 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE)))); 3621 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2177 3622
2178 EV_FREQUENT_CHECK; 3623 EV_FREQUENT_CHECK;
2179 3624
2180 ev_start (EV_A_ (W)w, 1); 3625 ev_start (EV_A_ (W)w, 1);
2181 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero); 3626 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2182 wlist_add (&anfds[fd].head, (WL)w); 3627 wlist_add (&anfds[fd].head, (WL)w);
2183 3628
3629 /* common bug, apparently */
3630 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3631
2184 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1); 3632 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2185 w->events &= ~EV__IOFDSET; 3633 w->events &= ~EV__IOFDSET;
2186 3634
2187 EV_FREQUENT_CHECK; 3635 EV_FREQUENT_CHECK;
2188} 3636}
2189 3637
2190void noinline 3638void noinline
2191ev_io_stop (EV_P_ ev_io *w) 3639ev_io_stop (EV_P_ ev_io *w) EV_THROW
2192{ 3640{
2193 clear_pending (EV_A_ (W)w); 3641 clear_pending (EV_A_ (W)w);
2194 if (expect_false (!ev_is_active (w))) 3642 if (expect_false (!ev_is_active (w)))
2195 return; 3643 return;
2196 3644
2199 EV_FREQUENT_CHECK; 3647 EV_FREQUENT_CHECK;
2200 3648
2201 wlist_del (&anfds[w->fd].head, (WL)w); 3649 wlist_del (&anfds[w->fd].head, (WL)w);
2202 ev_stop (EV_A_ (W)w); 3650 ev_stop (EV_A_ (W)w);
2203 3651
2204 fd_change (EV_A_ w->fd, 1); 3652 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2205 3653
2206 EV_FREQUENT_CHECK; 3654 EV_FREQUENT_CHECK;
2207} 3655}
2208 3656
2209void noinline 3657void noinline
2210ev_timer_start (EV_P_ ev_timer *w) 3658ev_timer_start (EV_P_ ev_timer *w) EV_THROW
2211{ 3659{
2212 if (expect_false (ev_is_active (w))) 3660 if (expect_false (ev_is_active (w)))
2213 return; 3661 return;
2214 3662
2215 ev_at (w) += mn_now; 3663 ev_at (w) += mn_now;
2229 3677
2230 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 3678 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2231} 3679}
2232 3680
2233void noinline 3681void noinline
2234ev_timer_stop (EV_P_ ev_timer *w) 3682ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
2235{ 3683{
2236 clear_pending (EV_A_ (W)w); 3684 clear_pending (EV_A_ (W)w);
2237 if (expect_false (!ev_is_active (w))) 3685 if (expect_false (!ev_is_active (w)))
2238 return; 3686 return;
2239 3687
2251 timers [active] = timers [timercnt + HEAP0]; 3699 timers [active] = timers [timercnt + HEAP0];
2252 adjustheap (timers, timercnt, active); 3700 adjustheap (timers, timercnt, active);
2253 } 3701 }
2254 } 3702 }
2255 3703
2256 EV_FREQUENT_CHECK;
2257
2258 ev_at (w) -= mn_now; 3704 ev_at (w) -= mn_now;
2259 3705
2260 ev_stop (EV_A_ (W)w); 3706 ev_stop (EV_A_ (W)w);
3707
3708 EV_FREQUENT_CHECK;
2261} 3709}
2262 3710
2263void noinline 3711void noinline
2264ev_timer_again (EV_P_ ev_timer *w) 3712ev_timer_again (EV_P_ ev_timer *w) EV_THROW
2265{ 3713{
2266 EV_FREQUENT_CHECK; 3714 EV_FREQUENT_CHECK;
3715
3716 clear_pending (EV_A_ (W)w);
2267 3717
2268 if (ev_is_active (w)) 3718 if (ev_is_active (w))
2269 { 3719 {
2270 if (w->repeat) 3720 if (w->repeat)
2271 { 3721 {
2283 } 3733 }
2284 3734
2285 EV_FREQUENT_CHECK; 3735 EV_FREQUENT_CHECK;
2286} 3736}
2287 3737
3738ev_tstamp
3739ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3740{
3741 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3742}
3743
2288#if EV_PERIODIC_ENABLE 3744#if EV_PERIODIC_ENABLE
2289void noinline 3745void noinline
2290ev_periodic_start (EV_P_ ev_periodic *w) 3746ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
2291{ 3747{
2292 if (expect_false (ev_is_active (w))) 3748 if (expect_false (ev_is_active (w)))
2293 return; 3749 return;
2294 3750
2295 if (w->reschedule_cb) 3751 if (w->reschedule_cb)
2296 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3752 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2297 else if (w->interval) 3753 else if (w->interval)
2298 { 3754 {
2299 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.)); 3755 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2300 /* this formula differs from the one in periodic_reify because we do not always round up */ 3756 periodic_recalc (EV_A_ w);
2301 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2302 } 3757 }
2303 else 3758 else
2304 ev_at (w) = w->offset; 3759 ev_at (w) = w->offset;
2305 3760
2306 EV_FREQUENT_CHECK; 3761 EV_FREQUENT_CHECK;
2316 3771
2317 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 3772 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2318} 3773}
2319 3774
2320void noinline 3775void noinline
2321ev_periodic_stop (EV_P_ ev_periodic *w) 3776ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
2322{ 3777{
2323 clear_pending (EV_A_ (W)w); 3778 clear_pending (EV_A_ (W)w);
2324 if (expect_false (!ev_is_active (w))) 3779 if (expect_false (!ev_is_active (w)))
2325 return; 3780 return;
2326 3781
2338 periodics [active] = periodics [periodiccnt + HEAP0]; 3793 periodics [active] = periodics [periodiccnt + HEAP0];
2339 adjustheap (periodics, periodiccnt, active); 3794 adjustheap (periodics, periodiccnt, active);
2340 } 3795 }
2341 } 3796 }
2342 3797
2343 EV_FREQUENT_CHECK;
2344
2345 ev_stop (EV_A_ (W)w); 3798 ev_stop (EV_A_ (W)w);
3799
3800 EV_FREQUENT_CHECK;
2346} 3801}
2347 3802
2348void noinline 3803void noinline
2349ev_periodic_again (EV_P_ ev_periodic *w) 3804ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
2350{ 3805{
2351 /* TODO: use adjustheap and recalculation */ 3806 /* TODO: use adjustheap and recalculation */
2352 ev_periodic_stop (EV_A_ w); 3807 ev_periodic_stop (EV_A_ w);
2353 ev_periodic_start (EV_A_ w); 3808 ev_periodic_start (EV_A_ w);
2354} 3809}
2356 3811
2357#ifndef SA_RESTART 3812#ifndef SA_RESTART
2358# define SA_RESTART 0 3813# define SA_RESTART 0
2359#endif 3814#endif
2360 3815
3816#if EV_SIGNAL_ENABLE
3817
2361void noinline 3818void noinline
2362ev_signal_start (EV_P_ ev_signal *w) 3819ev_signal_start (EV_P_ ev_signal *w) EV_THROW
2363{ 3820{
2364#if EV_MULTIPLICITY
2365 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2366#endif
2367 if (expect_false (ev_is_active (w))) 3821 if (expect_false (ev_is_active (w)))
2368 return; 3822 return;
2369 3823
2370 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0)); 3824 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2371 3825
2372 evpipe_init (EV_A); 3826#if EV_MULTIPLICITY
3827 assert (("libev: a signal must not be attached to two different loops",
3828 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2373 3829
2374 EV_FREQUENT_CHECK; 3830 signals [w->signum - 1].loop = EV_A;
3831 ECB_MEMORY_FENCE_RELEASE;
3832#endif
2375 3833
3834 EV_FREQUENT_CHECK;
3835
3836#if EV_USE_SIGNALFD
3837 if (sigfd == -2)
2376 { 3838 {
2377#ifndef _WIN32 3839 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2378 sigset_t full, prev; 3840 if (sigfd < 0 && errno == EINVAL)
2379 sigfillset (&full); 3841 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2380 sigprocmask (SIG_SETMASK, &full, &prev);
2381#endif
2382 3842
2383 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero); 3843 if (sigfd >= 0)
3844 {
3845 fd_intern (sigfd); /* doing it twice will not hurt */
2384 3846
2385#ifndef _WIN32 3847 sigemptyset (&sigfd_set);
2386 sigprocmask (SIG_SETMASK, &prev, 0); 3848
2387#endif 3849 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3850 ev_set_priority (&sigfd_w, EV_MAXPRI);
3851 ev_io_start (EV_A_ &sigfd_w);
3852 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3853 }
2388 } 3854 }
3855
3856 if (sigfd >= 0)
3857 {
3858 /* TODO: check .head */
3859 sigaddset (&sigfd_set, w->signum);
3860 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3861
3862 signalfd (sigfd, &sigfd_set, 0);
3863 }
3864#endif
2389 3865
2390 ev_start (EV_A_ (W)w, 1); 3866 ev_start (EV_A_ (W)w, 1);
2391 wlist_add (&signals [w->signum - 1].head, (WL)w); 3867 wlist_add (&signals [w->signum - 1].head, (WL)w);
2392 3868
2393 if (!((WL)w)->next) 3869 if (!((WL)w)->next)
3870# if EV_USE_SIGNALFD
3871 if (sigfd < 0) /*TODO*/
3872# endif
2394 { 3873 {
2395#if _WIN32 3874# ifdef _WIN32
3875 evpipe_init (EV_A);
3876
2396 signal (w->signum, ev_sighandler); 3877 signal (w->signum, ev_sighandler);
2397#else 3878# else
2398 struct sigaction sa; 3879 struct sigaction sa;
3880
3881 evpipe_init (EV_A);
3882
2399 sa.sa_handler = ev_sighandler; 3883 sa.sa_handler = ev_sighandler;
2400 sigfillset (&sa.sa_mask); 3884 sigfillset (&sa.sa_mask);
2401 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3885 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2402 sigaction (w->signum, &sa, 0); 3886 sigaction (w->signum, &sa, 0);
3887
3888 if (origflags & EVFLAG_NOSIGMASK)
3889 {
3890 sigemptyset (&sa.sa_mask);
3891 sigaddset (&sa.sa_mask, w->signum);
3892 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3893 }
2403#endif 3894#endif
2404 } 3895 }
2405 3896
2406 EV_FREQUENT_CHECK; 3897 EV_FREQUENT_CHECK;
2407} 3898}
2408 3899
2409void noinline 3900void noinline
2410ev_signal_stop (EV_P_ ev_signal *w) 3901ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
2411{ 3902{
2412 clear_pending (EV_A_ (W)w); 3903 clear_pending (EV_A_ (W)w);
2413 if (expect_false (!ev_is_active (w))) 3904 if (expect_false (!ev_is_active (w)))
2414 return; 3905 return;
2415 3906
2417 3908
2418 wlist_del (&signals [w->signum - 1].head, (WL)w); 3909 wlist_del (&signals [w->signum - 1].head, (WL)w);
2419 ev_stop (EV_A_ (W)w); 3910 ev_stop (EV_A_ (W)w);
2420 3911
2421 if (!signals [w->signum - 1].head) 3912 if (!signals [w->signum - 1].head)
3913 {
3914#if EV_MULTIPLICITY
3915 signals [w->signum - 1].loop = 0; /* unattach from signal */
3916#endif
3917#if EV_USE_SIGNALFD
3918 if (sigfd >= 0)
3919 {
3920 sigset_t ss;
3921
3922 sigemptyset (&ss);
3923 sigaddset (&ss, w->signum);
3924 sigdelset (&sigfd_set, w->signum);
3925
3926 signalfd (sigfd, &sigfd_set, 0);
3927 sigprocmask (SIG_UNBLOCK, &ss, 0);
3928 }
3929 else
3930#endif
2422 signal (w->signum, SIG_DFL); 3931 signal (w->signum, SIG_DFL);
3932 }
2423 3933
2424 EV_FREQUENT_CHECK; 3934 EV_FREQUENT_CHECK;
2425} 3935}
3936
3937#endif
3938
3939#if EV_CHILD_ENABLE
2426 3940
2427void 3941void
2428ev_child_start (EV_P_ ev_child *w) 3942ev_child_start (EV_P_ ev_child *w) EV_THROW
2429{ 3943{
2430#if EV_MULTIPLICITY 3944#if EV_MULTIPLICITY
2431 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3945 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2432#endif 3946#endif
2433 if (expect_false (ev_is_active (w))) 3947 if (expect_false (ev_is_active (w)))
2434 return; 3948 return;
2435 3949
2436 EV_FREQUENT_CHECK; 3950 EV_FREQUENT_CHECK;
2437 3951
2438 ev_start (EV_A_ (W)w, 1); 3952 ev_start (EV_A_ (W)w, 1);
2439 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3953 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2440 3954
2441 EV_FREQUENT_CHECK; 3955 EV_FREQUENT_CHECK;
2442} 3956}
2443 3957
2444void 3958void
2445ev_child_stop (EV_P_ ev_child *w) 3959ev_child_stop (EV_P_ ev_child *w) EV_THROW
2446{ 3960{
2447 clear_pending (EV_A_ (W)w); 3961 clear_pending (EV_A_ (W)w);
2448 if (expect_false (!ev_is_active (w))) 3962 if (expect_false (!ev_is_active (w)))
2449 return; 3963 return;
2450 3964
2451 EV_FREQUENT_CHECK; 3965 EV_FREQUENT_CHECK;
2452 3966
2453 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3967 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2454 ev_stop (EV_A_ (W)w); 3968 ev_stop (EV_A_ (W)w);
2455 3969
2456 EV_FREQUENT_CHECK; 3970 EV_FREQUENT_CHECK;
2457} 3971}
3972
3973#endif
2458 3974
2459#if EV_STAT_ENABLE 3975#if EV_STAT_ENABLE
2460 3976
2461# ifdef _WIN32 3977# ifdef _WIN32
2462# undef lstat 3978# undef lstat
2468#define MIN_STAT_INTERVAL 0.1074891 3984#define MIN_STAT_INTERVAL 0.1074891
2469 3985
2470static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3986static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2471 3987
2472#if EV_USE_INOTIFY 3988#if EV_USE_INOTIFY
2473# define EV_INOTIFY_BUFSIZE 8192 3989
3990/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3991# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2474 3992
2475static void noinline 3993static void noinline
2476infy_add (EV_P_ ev_stat *w) 3994infy_add (EV_P_ ev_stat *w)
2477{ 3995{
2478 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3996 w->wd = inotify_add_watch (fs_fd, w->path,
3997 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
3998 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
3999 | IN_DONT_FOLLOW | IN_MASK_ADD);
2479 4000
2480 if (w->wd < 0) 4001 if (w->wd >= 0)
4002 {
4003 struct statfs sfs;
4004
4005 /* now local changes will be tracked by inotify, but remote changes won't */
4006 /* unless the filesystem is known to be local, we therefore still poll */
4007 /* also do poll on <2.6.25, but with normal frequency */
4008
4009 if (!fs_2625)
4010 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4011 else if (!statfs (w->path, &sfs)
4012 && (sfs.f_type == 0x1373 /* devfs */
4013 || sfs.f_type == 0x4006 /* fat */
4014 || sfs.f_type == 0x4d44 /* msdos */
4015 || sfs.f_type == 0xEF53 /* ext2/3 */
4016 || sfs.f_type == 0x72b6 /* jffs2 */
4017 || sfs.f_type == 0x858458f6 /* ramfs */
4018 || sfs.f_type == 0x5346544e /* ntfs */
4019 || sfs.f_type == 0x3153464a /* jfs */
4020 || sfs.f_type == 0x9123683e /* btrfs */
4021 || sfs.f_type == 0x52654973 /* reiser3 */
4022 || sfs.f_type == 0x01021994 /* tmpfs */
4023 || sfs.f_type == 0x58465342 /* xfs */))
4024 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4025 else
4026 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2481 { 4027 }
4028 else
4029 {
4030 /* can't use inotify, continue to stat */
2482 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL; 4031 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2483 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2484 4032
2485 /* monitor some parent directory for speedup hints */ 4033 /* if path is not there, monitor some parent directory for speedup hints */
2486 /* note that exceeding the hardcoded path limit is not a correctness issue, */ 4034 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2487 /* but an efficiency issue only */ 4035 /* but an efficiency issue only */
2488 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 4036 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2489 { 4037 {
2490 char path [4096]; 4038 char path [4096];
2500 if (!pend || pend == path) 4048 if (!pend || pend == path)
2501 break; 4049 break;
2502 4050
2503 *pend = 0; 4051 *pend = 0;
2504 w->wd = inotify_add_watch (fs_fd, path, mask); 4052 w->wd = inotify_add_watch (fs_fd, path, mask);
2505 } 4053 }
2506 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 4054 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2507 } 4055 }
2508 } 4056 }
2509 4057
2510 if (w->wd >= 0) 4058 if (w->wd >= 0)
2511 {
2512 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 4059 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2513 4060
2514 /* now local changes will be tracked by inotify, but remote changes won't */ 4061 /* now re-arm timer, if required */
2515 /* unless the filesystem it known to be local, we therefore still poll */ 4062 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2516 /* also do poll on <2.6.25, but with normal frequency */
2517 struct statfs sfs;
2518
2519 if (fs_2625 && !statfs (w->path, &sfs))
2520 if (sfs.f_type == 0x1373 /* devfs */
2521 || sfs.f_type == 0xEF53 /* ext2/3 */
2522 || sfs.f_type == 0x3153464a /* jfs */
2523 || sfs.f_type == 0x52654973 /* reiser3 */
2524 || sfs.f_type == 0x01021994 /* tempfs */
2525 || sfs.f_type == 0x58465342 /* xfs */)
2526 return;
2527
2528 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2529 ev_timer_again (EV_A_ &w->timer); 4063 ev_timer_again (EV_A_ &w->timer);
2530 } 4064 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2531} 4065}
2532 4066
2533static void noinline 4067static void noinline
2534infy_del (EV_P_ ev_stat *w) 4068infy_del (EV_P_ ev_stat *w)
2535{ 4069{
2538 4072
2539 if (wd < 0) 4073 if (wd < 0)
2540 return; 4074 return;
2541 4075
2542 w->wd = -2; 4076 w->wd = -2;
2543 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 4077 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2544 wlist_del (&fs_hash [slot].head, (WL)w); 4078 wlist_del (&fs_hash [slot].head, (WL)w);
2545 4079
2546 /* remove this watcher, if others are watching it, they will rearm */ 4080 /* remove this watcher, if others are watching it, they will rearm */
2547 inotify_rm_watch (fs_fd, wd); 4081 inotify_rm_watch (fs_fd, wd);
2548} 4082}
2550static void noinline 4084static void noinline
2551infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 4085infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2552{ 4086{
2553 if (slot < 0) 4087 if (slot < 0)
2554 /* overflow, need to check for all hash slots */ 4088 /* overflow, need to check for all hash slots */
2555 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4089 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2556 infy_wd (EV_A_ slot, wd, ev); 4090 infy_wd (EV_A_ slot, wd, ev);
2557 else 4091 else
2558 { 4092 {
2559 WL w_; 4093 WL w_;
2560 4094
2561 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 4095 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2562 { 4096 {
2563 ev_stat *w = (ev_stat *)w_; 4097 ev_stat *w = (ev_stat *)w_;
2564 w_ = w_->next; /* lets us remove this watcher and all before it */ 4098 w_ = w_->next; /* lets us remove this watcher and all before it */
2565 4099
2566 if (w->wd == wd || wd == -1) 4100 if (w->wd == wd || wd == -1)
2567 { 4101 {
2568 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 4102 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2569 { 4103 {
2570 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 4104 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2571 w->wd = -1; 4105 w->wd = -1;
2572 infy_add (EV_A_ w); /* re-add, no matter what */ 4106 infy_add (EV_A_ w); /* re-add, no matter what */
2573 } 4107 }
2574 4108
2575 stat_timer_cb (EV_A_ &w->timer, 0); 4109 stat_timer_cb (EV_A_ &w->timer, 0);
2580 4114
2581static void 4115static void
2582infy_cb (EV_P_ ev_io *w, int revents) 4116infy_cb (EV_P_ ev_io *w, int revents)
2583{ 4117{
2584 char buf [EV_INOTIFY_BUFSIZE]; 4118 char buf [EV_INOTIFY_BUFSIZE];
2585 struct inotify_event *ev = (struct inotify_event *)buf;
2586 int ofs; 4119 int ofs;
2587 int len = read (fs_fd, buf, sizeof (buf)); 4120 int len = read (fs_fd, buf, sizeof (buf));
2588 4121
2589 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 4122 for (ofs = 0; ofs < len; )
4123 {
4124 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2590 infy_wd (EV_A_ ev->wd, ev->wd, ev); 4125 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4126 ofs += sizeof (struct inotify_event) + ev->len;
4127 }
2591} 4128}
2592 4129
2593void inline_size 4130inline_size void ecb_cold
2594check_2625 (EV_P) 4131ev_check_2625 (EV_P)
2595{ 4132{
2596 /* kernels < 2.6.25 are borked 4133 /* kernels < 2.6.25 are borked
2597 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html 4134 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2598 */ 4135 */
2599 struct utsname buf; 4136 if (ev_linux_version () < 0x020619)
2600 int major, minor, micro;
2601
2602 if (uname (&buf))
2603 return; 4137 return;
2604 4138
2605 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2606 return;
2607
2608 if (major < 2
2609 || (major == 2 && minor < 6)
2610 || (major == 2 && minor == 6 && micro < 25))
2611 return;
2612
2613 fs_2625 = 1; 4139 fs_2625 = 1;
2614} 4140}
2615 4141
2616void inline_size 4142inline_size int
4143infy_newfd (void)
4144{
4145#if defined IN_CLOEXEC && defined IN_NONBLOCK
4146 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4147 if (fd >= 0)
4148 return fd;
4149#endif
4150 return inotify_init ();
4151}
4152
4153inline_size void
2617infy_init (EV_P) 4154infy_init (EV_P)
2618{ 4155{
2619 if (fs_fd != -2) 4156 if (fs_fd != -2)
2620 return; 4157 return;
2621 4158
2622 fs_fd = -1; 4159 fs_fd = -1;
2623 4160
2624 check_2625 (EV_A); 4161 ev_check_2625 (EV_A);
2625 4162
2626 fs_fd = inotify_init (); 4163 fs_fd = infy_newfd ();
2627 4164
2628 if (fs_fd >= 0) 4165 if (fs_fd >= 0)
2629 { 4166 {
4167 fd_intern (fs_fd);
2630 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 4168 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2631 ev_set_priority (&fs_w, EV_MAXPRI); 4169 ev_set_priority (&fs_w, EV_MAXPRI);
2632 ev_io_start (EV_A_ &fs_w); 4170 ev_io_start (EV_A_ &fs_w);
4171 ev_unref (EV_A);
2633 } 4172 }
2634} 4173}
2635 4174
2636void inline_size 4175inline_size void
2637infy_fork (EV_P) 4176infy_fork (EV_P)
2638{ 4177{
2639 int slot; 4178 int slot;
2640 4179
2641 if (fs_fd < 0) 4180 if (fs_fd < 0)
2642 return; 4181 return;
2643 4182
4183 ev_ref (EV_A);
4184 ev_io_stop (EV_A_ &fs_w);
2644 close (fs_fd); 4185 close (fs_fd);
2645 fs_fd = inotify_init (); 4186 fs_fd = infy_newfd ();
2646 4187
4188 if (fs_fd >= 0)
4189 {
4190 fd_intern (fs_fd);
4191 ev_io_set (&fs_w, fs_fd, EV_READ);
4192 ev_io_start (EV_A_ &fs_w);
4193 ev_unref (EV_A);
4194 }
4195
2647 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4196 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2648 { 4197 {
2649 WL w_ = fs_hash [slot].head; 4198 WL w_ = fs_hash [slot].head;
2650 fs_hash [slot].head = 0; 4199 fs_hash [slot].head = 0;
2651 4200
2652 while (w_) 4201 while (w_)
2657 w->wd = -1; 4206 w->wd = -1;
2658 4207
2659 if (fs_fd >= 0) 4208 if (fs_fd >= 0)
2660 infy_add (EV_A_ w); /* re-add, no matter what */ 4209 infy_add (EV_A_ w); /* re-add, no matter what */
2661 else 4210 else
4211 {
4212 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4213 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2662 ev_timer_again (EV_A_ &w->timer); 4214 ev_timer_again (EV_A_ &w->timer);
4215 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4216 }
2663 } 4217 }
2664 } 4218 }
2665} 4219}
2666 4220
2667#endif 4221#endif
2671#else 4225#else
2672# define EV_LSTAT(p,b) lstat (p, b) 4226# define EV_LSTAT(p,b) lstat (p, b)
2673#endif 4227#endif
2674 4228
2675void 4229void
2676ev_stat_stat (EV_P_ ev_stat *w) 4230ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
2677{ 4231{
2678 if (lstat (w->path, &w->attr) < 0) 4232 if (lstat (w->path, &w->attr) < 0)
2679 w->attr.st_nlink = 0; 4233 w->attr.st_nlink = 0;
2680 else if (!w->attr.st_nlink) 4234 else if (!w->attr.st_nlink)
2681 w->attr.st_nlink = 1; 4235 w->attr.st_nlink = 1;
2684static void noinline 4238static void noinline
2685stat_timer_cb (EV_P_ ev_timer *w_, int revents) 4239stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2686{ 4240{
2687 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 4241 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2688 4242
2689 /* we copy this here each the time so that */ 4243 ev_statdata prev = w->attr;
2690 /* prev has the old value when the callback gets invoked */
2691 w->prev = w->attr;
2692 ev_stat_stat (EV_A_ w); 4244 ev_stat_stat (EV_A_ w);
2693 4245
2694 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 4246 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2695 if ( 4247 if (
2696 w->prev.st_dev != w->attr.st_dev 4248 prev.st_dev != w->attr.st_dev
2697 || w->prev.st_ino != w->attr.st_ino 4249 || prev.st_ino != w->attr.st_ino
2698 || w->prev.st_mode != w->attr.st_mode 4250 || prev.st_mode != w->attr.st_mode
2699 || w->prev.st_nlink != w->attr.st_nlink 4251 || prev.st_nlink != w->attr.st_nlink
2700 || w->prev.st_uid != w->attr.st_uid 4252 || prev.st_uid != w->attr.st_uid
2701 || w->prev.st_gid != w->attr.st_gid 4253 || prev.st_gid != w->attr.st_gid
2702 || w->prev.st_rdev != w->attr.st_rdev 4254 || prev.st_rdev != w->attr.st_rdev
2703 || w->prev.st_size != w->attr.st_size 4255 || prev.st_size != w->attr.st_size
2704 || w->prev.st_atime != w->attr.st_atime 4256 || prev.st_atime != w->attr.st_atime
2705 || w->prev.st_mtime != w->attr.st_mtime 4257 || prev.st_mtime != w->attr.st_mtime
2706 || w->prev.st_ctime != w->attr.st_ctime 4258 || prev.st_ctime != w->attr.st_ctime
2707 ) { 4259 ) {
4260 /* we only update w->prev on actual differences */
4261 /* in case we test more often than invoke the callback, */
4262 /* to ensure that prev is always different to attr */
4263 w->prev = prev;
4264
2708 #if EV_USE_INOTIFY 4265 #if EV_USE_INOTIFY
2709 if (fs_fd >= 0) 4266 if (fs_fd >= 0)
2710 { 4267 {
2711 infy_del (EV_A_ w); 4268 infy_del (EV_A_ w);
2712 infy_add (EV_A_ w); 4269 infy_add (EV_A_ w);
2717 ev_feed_event (EV_A_ w, EV_STAT); 4274 ev_feed_event (EV_A_ w, EV_STAT);
2718 } 4275 }
2719} 4276}
2720 4277
2721void 4278void
2722ev_stat_start (EV_P_ ev_stat *w) 4279ev_stat_start (EV_P_ ev_stat *w) EV_THROW
2723{ 4280{
2724 if (expect_false (ev_is_active (w))) 4281 if (expect_false (ev_is_active (w)))
2725 return; 4282 return;
2726 4283
2727 ev_stat_stat (EV_A_ w); 4284 ev_stat_stat (EV_A_ w);
2737 4294
2738 if (fs_fd >= 0) 4295 if (fs_fd >= 0)
2739 infy_add (EV_A_ w); 4296 infy_add (EV_A_ w);
2740 else 4297 else
2741#endif 4298#endif
4299 {
2742 ev_timer_again (EV_A_ &w->timer); 4300 ev_timer_again (EV_A_ &w->timer);
4301 ev_unref (EV_A);
4302 }
2743 4303
2744 ev_start (EV_A_ (W)w, 1); 4304 ev_start (EV_A_ (W)w, 1);
2745 4305
2746 EV_FREQUENT_CHECK; 4306 EV_FREQUENT_CHECK;
2747} 4307}
2748 4308
2749void 4309void
2750ev_stat_stop (EV_P_ ev_stat *w) 4310ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
2751{ 4311{
2752 clear_pending (EV_A_ (W)w); 4312 clear_pending (EV_A_ (W)w);
2753 if (expect_false (!ev_is_active (w))) 4313 if (expect_false (!ev_is_active (w)))
2754 return; 4314 return;
2755 4315
2756 EV_FREQUENT_CHECK; 4316 EV_FREQUENT_CHECK;
2757 4317
2758#if EV_USE_INOTIFY 4318#if EV_USE_INOTIFY
2759 infy_del (EV_A_ w); 4319 infy_del (EV_A_ w);
2760#endif 4320#endif
4321
4322 if (ev_is_active (&w->timer))
4323 {
4324 ev_ref (EV_A);
2761 ev_timer_stop (EV_A_ &w->timer); 4325 ev_timer_stop (EV_A_ &w->timer);
4326 }
2762 4327
2763 ev_stop (EV_A_ (W)w); 4328 ev_stop (EV_A_ (W)w);
2764 4329
2765 EV_FREQUENT_CHECK; 4330 EV_FREQUENT_CHECK;
2766} 4331}
2767#endif 4332#endif
2768 4333
2769#if EV_IDLE_ENABLE 4334#if EV_IDLE_ENABLE
2770void 4335void
2771ev_idle_start (EV_P_ ev_idle *w) 4336ev_idle_start (EV_P_ ev_idle *w) EV_THROW
2772{ 4337{
2773 if (expect_false (ev_is_active (w))) 4338 if (expect_false (ev_is_active (w)))
2774 return; 4339 return;
2775 4340
2776 pri_adjust (EV_A_ (W)w); 4341 pri_adjust (EV_A_ (W)w);
2789 4354
2790 EV_FREQUENT_CHECK; 4355 EV_FREQUENT_CHECK;
2791} 4356}
2792 4357
2793void 4358void
2794ev_idle_stop (EV_P_ ev_idle *w) 4359ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
2795{ 4360{
2796 clear_pending (EV_A_ (W)w); 4361 clear_pending (EV_A_ (W)w);
2797 if (expect_false (!ev_is_active (w))) 4362 if (expect_false (!ev_is_active (w)))
2798 return; 4363 return;
2799 4364
2811 4376
2812 EV_FREQUENT_CHECK; 4377 EV_FREQUENT_CHECK;
2813} 4378}
2814#endif 4379#endif
2815 4380
4381#if EV_PREPARE_ENABLE
2816void 4382void
2817ev_prepare_start (EV_P_ ev_prepare *w) 4383ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
2818{ 4384{
2819 if (expect_false (ev_is_active (w))) 4385 if (expect_false (ev_is_active (w)))
2820 return; 4386 return;
2821 4387
2822 EV_FREQUENT_CHECK; 4388 EV_FREQUENT_CHECK;
2827 4393
2828 EV_FREQUENT_CHECK; 4394 EV_FREQUENT_CHECK;
2829} 4395}
2830 4396
2831void 4397void
2832ev_prepare_stop (EV_P_ ev_prepare *w) 4398ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
2833{ 4399{
2834 clear_pending (EV_A_ (W)w); 4400 clear_pending (EV_A_ (W)w);
2835 if (expect_false (!ev_is_active (w))) 4401 if (expect_false (!ev_is_active (w)))
2836 return; 4402 return;
2837 4403
2846 4412
2847 ev_stop (EV_A_ (W)w); 4413 ev_stop (EV_A_ (W)w);
2848 4414
2849 EV_FREQUENT_CHECK; 4415 EV_FREQUENT_CHECK;
2850} 4416}
4417#endif
2851 4418
4419#if EV_CHECK_ENABLE
2852void 4420void
2853ev_check_start (EV_P_ ev_check *w) 4421ev_check_start (EV_P_ ev_check *w) EV_THROW
2854{ 4422{
2855 if (expect_false (ev_is_active (w))) 4423 if (expect_false (ev_is_active (w)))
2856 return; 4424 return;
2857 4425
2858 EV_FREQUENT_CHECK; 4426 EV_FREQUENT_CHECK;
2863 4431
2864 EV_FREQUENT_CHECK; 4432 EV_FREQUENT_CHECK;
2865} 4433}
2866 4434
2867void 4435void
2868ev_check_stop (EV_P_ ev_check *w) 4436ev_check_stop (EV_P_ ev_check *w) EV_THROW
2869{ 4437{
2870 clear_pending (EV_A_ (W)w); 4438 clear_pending (EV_A_ (W)w);
2871 if (expect_false (!ev_is_active (w))) 4439 if (expect_false (!ev_is_active (w)))
2872 return; 4440 return;
2873 4441
2882 4450
2883 ev_stop (EV_A_ (W)w); 4451 ev_stop (EV_A_ (W)w);
2884 4452
2885 EV_FREQUENT_CHECK; 4453 EV_FREQUENT_CHECK;
2886} 4454}
4455#endif
2887 4456
2888#if EV_EMBED_ENABLE 4457#if EV_EMBED_ENABLE
2889void noinline 4458void noinline
2890ev_embed_sweep (EV_P_ ev_embed *w) 4459ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
2891{ 4460{
2892 ev_loop (w->other, EVLOOP_NONBLOCK); 4461 ev_run (w->other, EVRUN_NOWAIT);
2893} 4462}
2894 4463
2895static void 4464static void
2896embed_io_cb (EV_P_ ev_io *io, int revents) 4465embed_io_cb (EV_P_ ev_io *io, int revents)
2897{ 4466{
2898 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4467 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2899 4468
2900 if (ev_cb (w)) 4469 if (ev_cb (w))
2901 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4470 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2902 else 4471 else
2903 ev_loop (w->other, EVLOOP_NONBLOCK); 4472 ev_run (w->other, EVRUN_NOWAIT);
2904} 4473}
2905 4474
2906static void 4475static void
2907embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4476embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2908{ 4477{
2909 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4478 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2910 4479
2911 { 4480 {
2912 struct ev_loop *loop = w->other; 4481 EV_P = w->other;
2913 4482
2914 while (fdchangecnt) 4483 while (fdchangecnt)
2915 { 4484 {
2916 fd_reify (EV_A); 4485 fd_reify (EV_A);
2917 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4486 ev_run (EV_A_ EVRUN_NOWAIT);
2918 } 4487 }
2919 } 4488 }
2920} 4489}
2921 4490
2922static void 4491static void
2925 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork)); 4494 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2926 4495
2927 ev_embed_stop (EV_A_ w); 4496 ev_embed_stop (EV_A_ w);
2928 4497
2929 { 4498 {
2930 struct ev_loop *loop = w->other; 4499 EV_P = w->other;
2931 4500
2932 ev_loop_fork (EV_A); 4501 ev_loop_fork (EV_A);
2933 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4502 ev_run (EV_A_ EVRUN_NOWAIT);
2934 } 4503 }
2935 4504
2936 ev_embed_start (EV_A_ w); 4505 ev_embed_start (EV_A_ w);
2937} 4506}
2938 4507
2943 ev_idle_stop (EV_A_ idle); 4512 ev_idle_stop (EV_A_ idle);
2944} 4513}
2945#endif 4514#endif
2946 4515
2947void 4516void
2948ev_embed_start (EV_P_ ev_embed *w) 4517ev_embed_start (EV_P_ ev_embed *w) EV_THROW
2949{ 4518{
2950 if (expect_false (ev_is_active (w))) 4519 if (expect_false (ev_is_active (w)))
2951 return; 4520 return;
2952 4521
2953 { 4522 {
2954 struct ev_loop *loop = w->other; 4523 EV_P = w->other;
2955 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4524 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2956 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4525 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2957 } 4526 }
2958 4527
2959 EV_FREQUENT_CHECK; 4528 EV_FREQUENT_CHECK;
2974 4543
2975 EV_FREQUENT_CHECK; 4544 EV_FREQUENT_CHECK;
2976} 4545}
2977 4546
2978void 4547void
2979ev_embed_stop (EV_P_ ev_embed *w) 4548ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
2980{ 4549{
2981 clear_pending (EV_A_ (W)w); 4550 clear_pending (EV_A_ (W)w);
2982 if (expect_false (!ev_is_active (w))) 4551 if (expect_false (!ev_is_active (w)))
2983 return; 4552 return;
2984 4553
2986 4555
2987 ev_io_stop (EV_A_ &w->io); 4556 ev_io_stop (EV_A_ &w->io);
2988 ev_prepare_stop (EV_A_ &w->prepare); 4557 ev_prepare_stop (EV_A_ &w->prepare);
2989 ev_fork_stop (EV_A_ &w->fork); 4558 ev_fork_stop (EV_A_ &w->fork);
2990 4559
4560 ev_stop (EV_A_ (W)w);
4561
2991 EV_FREQUENT_CHECK; 4562 EV_FREQUENT_CHECK;
2992} 4563}
2993#endif 4564#endif
2994 4565
2995#if EV_FORK_ENABLE 4566#if EV_FORK_ENABLE
2996void 4567void
2997ev_fork_start (EV_P_ ev_fork *w) 4568ev_fork_start (EV_P_ ev_fork *w) EV_THROW
2998{ 4569{
2999 if (expect_false (ev_is_active (w))) 4570 if (expect_false (ev_is_active (w)))
3000 return; 4571 return;
3001 4572
3002 EV_FREQUENT_CHECK; 4573 EV_FREQUENT_CHECK;
3007 4578
3008 EV_FREQUENT_CHECK; 4579 EV_FREQUENT_CHECK;
3009} 4580}
3010 4581
3011void 4582void
3012ev_fork_stop (EV_P_ ev_fork *w) 4583ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
3013{ 4584{
3014 clear_pending (EV_A_ (W)w); 4585 clear_pending (EV_A_ (W)w);
3015 if (expect_false (!ev_is_active (w))) 4586 if (expect_false (!ev_is_active (w)))
3016 return; 4587 return;
3017 4588
3028 4599
3029 EV_FREQUENT_CHECK; 4600 EV_FREQUENT_CHECK;
3030} 4601}
3031#endif 4602#endif
3032 4603
4604#if EV_CLEANUP_ENABLE
4605void
4606ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4607{
4608 if (expect_false (ev_is_active (w)))
4609 return;
4610
4611 EV_FREQUENT_CHECK;
4612
4613 ev_start (EV_A_ (W)w, ++cleanupcnt);
4614 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4615 cleanups [cleanupcnt - 1] = w;
4616
4617 /* cleanup watchers should never keep a refcount on the loop */
4618 ev_unref (EV_A);
4619 EV_FREQUENT_CHECK;
4620}
4621
4622void
4623ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4624{
4625 clear_pending (EV_A_ (W)w);
4626 if (expect_false (!ev_is_active (w)))
4627 return;
4628
4629 EV_FREQUENT_CHECK;
4630 ev_ref (EV_A);
4631
4632 {
4633 int active = ev_active (w);
4634
4635 cleanups [active - 1] = cleanups [--cleanupcnt];
4636 ev_active (cleanups [active - 1]) = active;
4637 }
4638
4639 ev_stop (EV_A_ (W)w);
4640
4641 EV_FREQUENT_CHECK;
4642}
4643#endif
4644
3033#if EV_ASYNC_ENABLE 4645#if EV_ASYNC_ENABLE
3034void 4646void
3035ev_async_start (EV_P_ ev_async *w) 4647ev_async_start (EV_P_ ev_async *w) EV_THROW
3036{ 4648{
3037 if (expect_false (ev_is_active (w))) 4649 if (expect_false (ev_is_active (w)))
3038 return; 4650 return;
4651
4652 w->sent = 0;
3039 4653
3040 evpipe_init (EV_A); 4654 evpipe_init (EV_A);
3041 4655
3042 EV_FREQUENT_CHECK; 4656 EV_FREQUENT_CHECK;
3043 4657
3047 4661
3048 EV_FREQUENT_CHECK; 4662 EV_FREQUENT_CHECK;
3049} 4663}
3050 4664
3051void 4665void
3052ev_async_stop (EV_P_ ev_async *w) 4666ev_async_stop (EV_P_ ev_async *w) EV_THROW
3053{ 4667{
3054 clear_pending (EV_A_ (W)w); 4668 clear_pending (EV_A_ (W)w);
3055 if (expect_false (!ev_is_active (w))) 4669 if (expect_false (!ev_is_active (w)))
3056 return; 4670 return;
3057 4671
3068 4682
3069 EV_FREQUENT_CHECK; 4683 EV_FREQUENT_CHECK;
3070} 4684}
3071 4685
3072void 4686void
3073ev_async_send (EV_P_ ev_async *w) 4687ev_async_send (EV_P_ ev_async *w) EV_THROW
3074{ 4688{
3075 w->sent = 1; 4689 w->sent = 1;
3076 evpipe_write (EV_A_ &gotasync); 4690 evpipe_write (EV_A_ &async_pending);
3077} 4691}
3078#endif 4692#endif
3079 4693
3080/*****************************************************************************/ 4694/*****************************************************************************/
3081 4695
3115 4729
3116 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io)); 4730 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3117} 4731}
3118 4732
3119void 4733void
3120ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4734ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
3121{ 4735{
3122 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4736 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3123 4737
3124 if (expect_false (!once)) 4738 if (expect_false (!once))
3125 { 4739 {
3126 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4740 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
3127 return; 4741 return;
3128 } 4742 }
3129 4743
3130 once->cb = cb; 4744 once->cb = cb;
3131 once->arg = arg; 4745 once->arg = arg;
3145 } 4759 }
3146} 4760}
3147 4761
3148/*****************************************************************************/ 4762/*****************************************************************************/
3149 4763
3150#if 0 4764#if EV_WALK_ENABLE
3151void 4765void ecb_cold
3152ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) 4766ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
3153{ 4767{
3154 int i, j; 4768 int i, j;
3155 ev_watcher_list *wl, *wn; 4769 ev_watcher_list *wl, *wn;
3156 4770
3157 if (types & (EV_IO | EV_EMBED)) 4771 if (types & (EV_IO | EV_EMBED))
3171#if EV_USE_INOTIFY 4785#if EV_USE_INOTIFY
3172 if (ev_cb ((ev_io *)wl) == infy_cb) 4786 if (ev_cb ((ev_io *)wl) == infy_cb)
3173 ; 4787 ;
3174 else 4788 else
3175#endif 4789#endif
3176 if ((ev_io *)wl != &pipeev) 4790 if ((ev_io *)wl != &pipe_w)
3177 if (types & EV_IO) 4791 if (types & EV_IO)
3178 cb (EV_A_ EV_IO, wl); 4792 cb (EV_A_ EV_IO, wl);
3179 4793
3180 wl = wn; 4794 wl = wn;
3181 } 4795 }
3200 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i])); 4814 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3201#endif 4815#endif
3202 4816
3203#if EV_IDLE_ENABLE 4817#if EV_IDLE_ENABLE
3204 if (types & EV_IDLE) 4818 if (types & EV_IDLE)
3205 for (j = NUMPRI; i--; ) 4819 for (j = NUMPRI; j--; )
3206 for (i = idlecnt [j]; i--; ) 4820 for (i = idlecnt [j]; i--; )
3207 cb (EV_A_ EV_IDLE, idles [j][i]); 4821 cb (EV_A_ EV_IDLE, idles [j][i]);
3208#endif 4822#endif
3209 4823
3210#if EV_FORK_ENABLE 4824#if EV_FORK_ENABLE
3218 if (types & EV_ASYNC) 4832 if (types & EV_ASYNC)
3219 for (i = asynccnt; i--; ) 4833 for (i = asynccnt; i--; )
3220 cb (EV_A_ EV_ASYNC, asyncs [i]); 4834 cb (EV_A_ EV_ASYNC, asyncs [i]);
3221#endif 4835#endif
3222 4836
4837#if EV_PREPARE_ENABLE
3223 if (types & EV_PREPARE) 4838 if (types & EV_PREPARE)
3224 for (i = preparecnt; i--; ) 4839 for (i = preparecnt; i--; )
3225#if EV_EMBED_ENABLE 4840# if EV_EMBED_ENABLE
3226 if (ev_cb (prepares [i]) != embed_prepare_cb) 4841 if (ev_cb (prepares [i]) != embed_prepare_cb)
3227#endif 4842# endif
3228 cb (EV_A_ EV_PREPARE, prepares [i]); 4843 cb (EV_A_ EV_PREPARE, prepares [i]);
4844#endif
3229 4845
4846#if EV_CHECK_ENABLE
3230 if (types & EV_CHECK) 4847 if (types & EV_CHECK)
3231 for (i = checkcnt; i--; ) 4848 for (i = checkcnt; i--; )
3232 cb (EV_A_ EV_CHECK, checks [i]); 4849 cb (EV_A_ EV_CHECK, checks [i]);
4850#endif
3233 4851
4852#if EV_SIGNAL_ENABLE
3234 if (types & EV_SIGNAL) 4853 if (types & EV_SIGNAL)
3235 for (i = 0; i < signalmax; ++i) 4854 for (i = 0; i < EV_NSIG - 1; ++i)
3236 for (wl = signals [i].head; wl; ) 4855 for (wl = signals [i].head; wl; )
3237 { 4856 {
3238 wn = wl->next; 4857 wn = wl->next;
3239 cb (EV_A_ EV_SIGNAL, wl); 4858 cb (EV_A_ EV_SIGNAL, wl);
3240 wl = wn; 4859 wl = wn;
3241 } 4860 }
4861#endif
3242 4862
4863#if EV_CHILD_ENABLE
3243 if (types & EV_CHILD) 4864 if (types & EV_CHILD)
3244 for (i = EV_PID_HASHSIZE; i--; ) 4865 for (i = (EV_PID_HASHSIZE); i--; )
3245 for (wl = childs [i]; wl; ) 4866 for (wl = childs [i]; wl; )
3246 { 4867 {
3247 wn = wl->next; 4868 wn = wl->next;
3248 cb (EV_A_ EV_CHILD, wl); 4869 cb (EV_A_ EV_CHILD, wl);
3249 wl = wn; 4870 wl = wn;
3250 } 4871 }
4872#endif
3251/* EV_STAT 0x00001000 /* stat data changed */ 4873/* EV_STAT 0x00001000 /* stat data changed */
3252/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */ 4874/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3253} 4875}
3254#endif 4876#endif
3255 4877
3256#if EV_MULTIPLICITY 4878#if EV_MULTIPLICITY
3257 #include "ev_wrap.h" 4879 #include "ev_wrap.h"
3258#endif 4880#endif
3259 4881
3260#ifdef __cplusplus
3261}
3262#endif
3263

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines