ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.357 by root, Sat Oct 23 22:25:44 2010 UTC vs.
Revision 1.467 by root, Fri May 16 15:15:39 2014 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012,2013 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
43# include EV_CONFIG_H 43# include EV_CONFIG_H
44# else 44# else
45# include "config.h" 45# include "config.h"
46# endif 46# endif
47 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
48# if HAVE_CLOCK_SYSCALL 54# if HAVE_CLOCK_SYSCALL
49# ifndef EV_USE_CLOCK_SYSCALL 55# ifndef EV_USE_CLOCK_SYSCALL
50# define EV_USE_CLOCK_SYSCALL 1 56# define EV_USE_CLOCK_SYSCALL 1
51# ifndef EV_USE_REALTIME 57# ifndef EV_USE_REALTIME
52# define EV_USE_REALTIME 0 58# define EV_USE_REALTIME 0
53# endif 59# endif
54# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
55# define EV_USE_MONOTONIC 1 61# define EV_USE_MONOTONIC 1
56# endif 62# endif
57# endif 63# endif
58# elif !defined(EV_USE_CLOCK_SYSCALL) 64# elif !defined EV_USE_CLOCK_SYSCALL
59# define EV_USE_CLOCK_SYSCALL 0 65# define EV_USE_CLOCK_SYSCALL 0
60# endif 66# endif
61 67
62# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
63# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
156# define EV_USE_EVENTFD 0 162# define EV_USE_EVENTFD 0
157# endif 163# endif
158 164
159#endif 165#endif
160 166
161#include <math.h>
162#include <stdlib.h> 167#include <stdlib.h>
163#include <string.h> 168#include <string.h>
164#include <fcntl.h> 169#include <fcntl.h>
165#include <stddef.h> 170#include <stddef.h>
166 171
178# include EV_H 183# include EV_H
179#else 184#else
180# include "ev.h" 185# include "ev.h"
181#endif 186#endif
182 187
183EV_CPP(extern "C" {) 188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
197#endif
184 198
185#ifndef _WIN32 199#ifndef _WIN32
186# include <sys/time.h> 200# include <sys/time.h>
187# include <sys/wait.h> 201# include <sys/wait.h>
188# include <unistd.h> 202# include <unistd.h>
189#else 203#else
190# include <io.h> 204# include <io.h>
191# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
192# include <windows.h> 207# include <windows.h>
193# ifndef EV_SELECT_IS_WINSOCKET 208# ifndef EV_SELECT_IS_WINSOCKET
194# define EV_SELECT_IS_WINSOCKET 1 209# define EV_SELECT_IS_WINSOCKET 1
195# endif 210# endif
196# undef EV_AVOID_STDIO 211# undef EV_AVOID_STDIO
205#define _DARWIN_UNLIMITED_SELECT 1 220#define _DARWIN_UNLIMITED_SELECT 1
206 221
207/* this block tries to deduce configuration from header-defined symbols and defaults */ 222/* this block tries to deduce configuration from header-defined symbols and defaults */
208 223
209/* try to deduce the maximum number of signals on this platform */ 224/* try to deduce the maximum number of signals on this platform */
210#if defined (EV_NSIG) 225#if defined EV_NSIG
211/* use what's provided */ 226/* use what's provided */
212#elif defined (NSIG) 227#elif defined NSIG
213# define EV_NSIG (NSIG) 228# define EV_NSIG (NSIG)
214#elif defined(_NSIG) 229#elif defined _NSIG
215# define EV_NSIG (_NSIG) 230# define EV_NSIG (_NSIG)
216#elif defined (SIGMAX) 231#elif defined SIGMAX
217# define EV_NSIG (SIGMAX+1) 232# define EV_NSIG (SIGMAX+1)
218#elif defined (SIG_MAX) 233#elif defined SIG_MAX
219# define EV_NSIG (SIG_MAX+1) 234# define EV_NSIG (SIG_MAX+1)
220#elif defined (_SIG_MAX) 235#elif defined _SIG_MAX
221# define EV_NSIG (_SIG_MAX+1) 236# define EV_NSIG (_SIG_MAX+1)
222#elif defined (MAXSIG) 237#elif defined MAXSIG
223# define EV_NSIG (MAXSIG+1) 238# define EV_NSIG (MAXSIG+1)
224#elif defined (MAX_SIG) 239#elif defined MAX_SIG
225# define EV_NSIG (MAX_SIG+1) 240# define EV_NSIG (MAX_SIG+1)
226#elif defined (SIGARRAYSIZE) 241#elif defined SIGARRAYSIZE
227# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */ 242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
228#elif defined (_sys_nsig) 243#elif defined _sys_nsig
229# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */ 244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
230#else 245#else
231# error "unable to find value for NSIG, please report" 246# define EV_NSIG (8 * sizeof (sigset_t) + 1)
232/* to make it compile regardless, just remove the above line, */ 247#endif
233/* but consider reporting it, too! :) */ 248
234# define EV_NSIG 65 249#ifndef EV_USE_FLOOR
250# define EV_USE_FLOOR 0
235#endif 251#endif
236 252
237#ifndef EV_USE_CLOCK_SYSCALL 253#ifndef EV_USE_CLOCK_SYSCALL
238# if __linux && __GLIBC__ >= 2 254# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
239# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS 255# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
240# else 256# else
241# define EV_USE_CLOCK_SYSCALL 0 257# define EV_USE_CLOCK_SYSCALL 0
242# endif 258# endif
243#endif 259#endif
244 260
245#ifndef EV_USE_MONOTONIC 261#ifndef EV_USE_MONOTONIC
246# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0 262# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
247# define EV_USE_MONOTONIC EV_FEATURE_OS 263# define EV_USE_MONOTONIC EV_FEATURE_OS
248# else 264# else
249# define EV_USE_MONOTONIC 0 265# define EV_USE_MONOTONIC 0
250# endif 266# endif
251#endif 267#endif
338 354
339#ifndef EV_HEAP_CACHE_AT 355#ifndef EV_HEAP_CACHE_AT
340# define EV_HEAP_CACHE_AT EV_FEATURE_DATA 356# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
341#endif 357#endif
342 358
359#ifdef ANDROID
360/* supposedly, android doesn't typedef fd_mask */
361# undef EV_USE_SELECT
362# define EV_USE_SELECT 0
363/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
364# undef EV_USE_CLOCK_SYSCALL
365# define EV_USE_CLOCK_SYSCALL 0
366#endif
367
368/* aix's poll.h seems to cause lots of trouble */
369#ifdef _AIX
370/* AIX has a completely broken poll.h header */
371# undef EV_USE_POLL
372# define EV_USE_POLL 0
373#endif
374
343/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */ 375/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
344/* which makes programs even slower. might work on other unices, too. */ 376/* which makes programs even slower. might work on other unices, too. */
345#if EV_USE_CLOCK_SYSCALL 377#if EV_USE_CLOCK_SYSCALL
346# include <syscall.h> 378# include <sys/syscall.h>
347# ifdef SYS_clock_gettime 379# ifdef SYS_clock_gettime
348# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts)) 380# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
349# undef EV_USE_MONOTONIC 381# undef EV_USE_MONOTONIC
350# define EV_USE_MONOTONIC 1 382# define EV_USE_MONOTONIC 1
351# else 383# else
354# endif 386# endif
355#endif 387#endif
356 388
357/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 389/* this block fixes any misconfiguration where we know we run into trouble otherwise */
358 390
359#ifdef _AIX
360/* AIX has a completely broken poll.h header */
361# undef EV_USE_POLL
362# define EV_USE_POLL 0
363#endif
364
365#ifndef CLOCK_MONOTONIC 391#ifndef CLOCK_MONOTONIC
366# undef EV_USE_MONOTONIC 392# undef EV_USE_MONOTONIC
367# define EV_USE_MONOTONIC 0 393# define EV_USE_MONOTONIC 0
368#endif 394#endif
369 395
376# undef EV_USE_INOTIFY 402# undef EV_USE_INOTIFY
377# define EV_USE_INOTIFY 0 403# define EV_USE_INOTIFY 0
378#endif 404#endif
379 405
380#if !EV_USE_NANOSLEEP 406#if !EV_USE_NANOSLEEP
381# ifndef _WIN32 407/* hp-ux has it in sys/time.h, which we unconditionally include above */
408# if !defined _WIN32 && !defined __hpux
382# include <sys/select.h> 409# include <sys/select.h>
383# endif 410# endif
384#endif 411#endif
385 412
386#if EV_USE_INOTIFY 413#if EV_USE_INOTIFY
389/* some very old inotify.h headers don't have IN_DONT_FOLLOW */ 416/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
390# ifndef IN_DONT_FOLLOW 417# ifndef IN_DONT_FOLLOW
391# undef EV_USE_INOTIFY 418# undef EV_USE_INOTIFY
392# define EV_USE_INOTIFY 0 419# define EV_USE_INOTIFY 0
393# endif 420# endif
394#endif
395
396#if EV_SELECT_IS_WINSOCKET
397# include <winsock.h>
398#endif 421#endif
399 422
400#if EV_USE_EVENTFD 423#if EV_USE_EVENTFD
401/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 424/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
402# include <stdint.h> 425# include <stdint.h>
442#else 465#else
443# define EV_FREQUENT_CHECK do { } while (0) 466# define EV_FREQUENT_CHECK do { } while (0)
444#endif 467#endif
445 468
446/* 469/*
447 * This is used to avoid floating point rounding problems. 470 * This is used to work around floating point rounding problems.
448 * It is added to ev_rt_now when scheduling periodics
449 * to ensure progress, time-wise, even when rounding
450 * errors are against us.
451 * This value is good at least till the year 4000. 471 * This value is good at least till the year 4000.
452 * Better solutions welcome.
453 */ 472 */
454#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 473#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
474/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
455 475
456#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 476#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
457#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 477#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
458 478
459#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0) 479#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
460#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0) 480#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
461 481
482/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
483/* ECB.H BEGIN */
484/*
485 * libecb - http://software.schmorp.de/pkg/libecb
486 *
487 * Copyright (©) 2009-2014 Marc Alexander Lehmann <libecb@schmorp.de>
488 * Copyright (©) 2011 Emanuele Giaquinta
489 * All rights reserved.
490 *
491 * Redistribution and use in source and binary forms, with or without modifica-
492 * tion, are permitted provided that the following conditions are met:
493 *
494 * 1. Redistributions of source code must retain the above copyright notice,
495 * this list of conditions and the following disclaimer.
496 *
497 * 2. Redistributions in binary form must reproduce the above copyright
498 * notice, this list of conditions and the following disclaimer in the
499 * documentation and/or other materials provided with the distribution.
500 *
501 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
502 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
503 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
504 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
505 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
506 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
507 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
508 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
509 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
510 * OF THE POSSIBILITY OF SUCH DAMAGE.
511 *
512 * Alternatively, the contents of this file may be used under the terms of
513 * the GNU General Public License ("GPL") version 2 or any later version,
514 * in which case the provisions of the GPL are applicable instead of
515 * the above. If you wish to allow the use of your version of this file
516 * only under the terms of the GPL and not to allow others to use your
517 * version of this file under the BSD license, indicate your decision
518 * by deleting the provisions above and replace them with the notice
519 * and other provisions required by the GPL. If you do not delete the
520 * provisions above, a recipient may use your version of this file under
521 * either the BSD or the GPL.
522 */
523
524#ifndef ECB_H
525#define ECB_H
526
527/* 16 bits major, 16 bits minor */
528#define ECB_VERSION 0x00010003
529
530#ifdef _WIN32
531 typedef signed char int8_t;
532 typedef unsigned char uint8_t;
533 typedef signed short int16_t;
534 typedef unsigned short uint16_t;
535 typedef signed int int32_t;
536 typedef unsigned int uint32_t;
462#if __GNUC__ >= 4 537 #if __GNUC__
463# define expect(expr,value) __builtin_expect ((expr),(value)) 538 typedef signed long long int64_t;
464# define noinline __attribute__ ((noinline)) 539 typedef unsigned long long uint64_t;
540 #else /* _MSC_VER || __BORLANDC__ */
541 typedef signed __int64 int64_t;
542 typedef unsigned __int64 uint64_t;
543 #endif
544 #ifdef _WIN64
545 #define ECB_PTRSIZE 8
546 typedef uint64_t uintptr_t;
547 typedef int64_t intptr_t;
548 #else
549 #define ECB_PTRSIZE 4
550 typedef uint32_t uintptr_t;
551 typedef int32_t intptr_t;
552 #endif
465#else 553#else
466# define expect(expr,value) (expr) 554 #include <inttypes.h>
467# define noinline 555 #if UINTMAX_MAX > 0xffffffffU
468# if __STDC_VERSION__ < 199901L && __GNUC__ < 2 556 #define ECB_PTRSIZE 8
469# define inline 557 #else
558 #define ECB_PTRSIZE 4
559 #endif
470# endif 560#endif
561
562/* work around x32 idiocy by defining proper macros */
563#if __amd64 || __x86_64 || _M_AMD64 || _M_X64
564 #if _ILP32
565 #define ECB_AMD64_X32 1
566 #else
567 #define ECB_AMD64 1
471#endif 568 #endif
569#endif
472 570
571/* many compilers define _GNUC_ to some versions but then only implement
572 * what their idiot authors think are the "more important" extensions,
573 * causing enormous grief in return for some better fake benchmark numbers.
574 * or so.
575 * we try to detect these and simply assume they are not gcc - if they have
576 * an issue with that they should have done it right in the first place.
577 */
578#ifndef ECB_GCC_VERSION
579 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
580 #define ECB_GCC_VERSION(major,minor) 0
581 #else
582 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
583 #endif
584#endif
585
586#define ECB_CPP (__cplusplus+0)
587#define ECB_CPP11 (__cplusplus >= 201103L)
588
589#if ECB_CPP
590 #define ECB_C 0
591 #define ECB_STDC_VERSION 0
592#else
593 #define ECB_C 1
594 #define ECB_STDC_VERSION __STDC_VERSION__
595#endif
596
597#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
598#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
599
600#if ECB_CPP
601 #define ECB_EXTERN_C extern "C"
602 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
603 #define ECB_EXTERN_C_END }
604#else
605 #define ECB_EXTERN_C extern
606 #define ECB_EXTERN_C_BEG
607 #define ECB_EXTERN_C_END
608#endif
609
610/*****************************************************************************/
611
612/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
613/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
614
615#if ECB_NO_THREADS
616 #define ECB_NO_SMP 1
617#endif
618
619#if ECB_NO_SMP
620 #define ECB_MEMORY_FENCE do { } while (0)
621#endif
622
623#ifndef ECB_MEMORY_FENCE
624 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
625 #if __i386 || __i386__
626 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
627 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
628 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
629 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
630 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
631 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
632 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
633 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
634 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
635 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
636 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
637 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
638 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
639 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
640 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
641 #elif __aarch64__
642 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
643 #elif (__sparc || __sparc__) && !__sparcv8
644 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
645 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
646 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
647 #elif defined __s390__ || defined __s390x__
648 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
649 #elif defined __mips__
650 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
651 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
652 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
653 #elif defined __alpha__
654 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
655 #elif defined __hppa__
656 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
657 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
658 #elif defined __ia64__
659 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
660 #elif defined __m68k__
661 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
662 #elif defined __m88k__
663 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
664 #elif defined __sh__
665 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
666 #endif
667 #endif
668#endif
669
670#ifndef ECB_MEMORY_FENCE
671 #if ECB_GCC_VERSION(4,7)
672 /* see comment below (stdatomic.h) about the C11 memory model. */
673 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
674 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
675 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
676
677 /* The __has_feature syntax from clang is so misdesigned that we cannot use it
678 * without risking compile time errors with other compilers. We *could*
679 * define our own ecb_clang_has_feature, but I just can't be bothered to work
680 * around this shit time and again.
681 * #elif defined __clang && __has_feature (cxx_atomic)
682 * // see comment below (stdatomic.h) about the C11 memory model.
683 * #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
684 * #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
685 * #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
686 */
687
688 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
689 #define ECB_MEMORY_FENCE __sync_synchronize ()
690 #elif _MSC_VER >= 1500 /* VC++ 2008 */
691 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
692 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
693 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
694 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
695 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
696 #elif _MSC_VER >= 1400 /* VC++ 2005 */
697 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
698 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
699 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
700 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
701 #elif defined _WIN32
702 #include <WinNT.h>
703 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
704 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
705 #include <mbarrier.h>
706 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
707 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
708 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
709 #elif __xlC__
710 #define ECB_MEMORY_FENCE __sync ()
711 #endif
712#endif
713
714#ifndef ECB_MEMORY_FENCE
715 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
716 /* we assume that these memory fences work on all variables/all memory accesses, */
717 /* not just C11 atomics and atomic accesses */
718 #include <stdatomic.h>
719 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
720 /* any fence other than seq_cst, which isn't very efficient for us. */
721 /* Why that is, we don't know - either the C11 memory model is quite useless */
722 /* for most usages, or gcc and clang have a bug */
723 /* I *currently* lean towards the latter, and inefficiently implement */
724 /* all three of ecb's fences as a seq_cst fence */
725 /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */
726 /* for all __atomic_thread_fence's except seq_cst */
727 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
728 #endif
729#endif
730
731#ifndef ECB_MEMORY_FENCE
732 #if !ECB_AVOID_PTHREADS
733 /*
734 * if you get undefined symbol references to pthread_mutex_lock,
735 * or failure to find pthread.h, then you should implement
736 * the ECB_MEMORY_FENCE operations for your cpu/compiler
737 * OR provide pthread.h and link against the posix thread library
738 * of your system.
739 */
740 #include <pthread.h>
741 #define ECB_NEEDS_PTHREADS 1
742 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
743
744 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
745 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
746 #endif
747#endif
748
749#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
750 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
751#endif
752
753#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
754 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
755#endif
756
757/*****************************************************************************/
758
759#if __cplusplus
760 #define ecb_inline static inline
761#elif ECB_GCC_VERSION(2,5)
762 #define ecb_inline static __inline__
763#elif ECB_C99
764 #define ecb_inline static inline
765#else
766 #define ecb_inline static
767#endif
768
769#if ECB_GCC_VERSION(3,3)
770 #define ecb_restrict __restrict__
771#elif ECB_C99
772 #define ecb_restrict restrict
773#else
774 #define ecb_restrict
775#endif
776
777typedef int ecb_bool;
778
779#define ECB_CONCAT_(a, b) a ## b
780#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
781#define ECB_STRINGIFY_(a) # a
782#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
783
784#define ecb_function_ ecb_inline
785
786#if ECB_GCC_VERSION(3,1)
787 #define ecb_attribute(attrlist) __attribute__(attrlist)
788 #define ecb_is_constant(expr) __builtin_constant_p (expr)
789 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
790 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
791#else
792 #define ecb_attribute(attrlist)
793
794 /* possible C11 impl for integral types
795 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
796 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
797
798 #define ecb_is_constant(expr) 0
799 #define ecb_expect(expr,value) (expr)
800 #define ecb_prefetch(addr,rw,locality)
801#endif
802
803/* no emulation for ecb_decltype */
804#if ECB_GCC_VERSION(4,5)
805 #define ecb_decltype(x) __decltype(x)
806#elif ECB_GCC_VERSION(3,0)
807 #define ecb_decltype(x) __typeof(x)
808#endif
809
810#define ecb_noinline ecb_attribute ((__noinline__))
811#define ecb_unused ecb_attribute ((__unused__))
812#define ecb_const ecb_attribute ((__const__))
813#define ecb_pure ecb_attribute ((__pure__))
814
815#if ECB_C11
816 #define ecb_noreturn _Noreturn
817#else
818 #define ecb_noreturn ecb_attribute ((__noreturn__))
819#endif
820
821#if ECB_GCC_VERSION(4,3)
822 #define ecb_artificial ecb_attribute ((__artificial__))
823 #define ecb_hot ecb_attribute ((__hot__))
824 #define ecb_cold ecb_attribute ((__cold__))
825#else
826 #define ecb_artificial
827 #define ecb_hot
828 #define ecb_cold
829#endif
830
831/* put around conditional expressions if you are very sure that the */
832/* expression is mostly true or mostly false. note that these return */
833/* booleans, not the expression. */
473#define expect_false(expr) expect ((expr) != 0, 0) 834#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
474#define expect_true(expr) expect ((expr) != 0, 1) 835#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
836/* for compatibility to the rest of the world */
837#define ecb_likely(expr) ecb_expect_true (expr)
838#define ecb_unlikely(expr) ecb_expect_false (expr)
839
840/* count trailing zero bits and count # of one bits */
841#if ECB_GCC_VERSION(3,4)
842 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
843 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
844 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
845 #define ecb_ctz32(x) __builtin_ctz (x)
846 #define ecb_ctz64(x) __builtin_ctzll (x)
847 #define ecb_popcount32(x) __builtin_popcount (x)
848 /* no popcountll */
849#else
850 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
851 ecb_function_ int
852 ecb_ctz32 (uint32_t x)
853 {
854 int r = 0;
855
856 x &= ~x + 1; /* this isolates the lowest bit */
857
858#if ECB_branchless_on_i386
859 r += !!(x & 0xaaaaaaaa) << 0;
860 r += !!(x & 0xcccccccc) << 1;
861 r += !!(x & 0xf0f0f0f0) << 2;
862 r += !!(x & 0xff00ff00) << 3;
863 r += !!(x & 0xffff0000) << 4;
864#else
865 if (x & 0xaaaaaaaa) r += 1;
866 if (x & 0xcccccccc) r += 2;
867 if (x & 0xf0f0f0f0) r += 4;
868 if (x & 0xff00ff00) r += 8;
869 if (x & 0xffff0000) r += 16;
870#endif
871
872 return r;
873 }
874
875 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
876 ecb_function_ int
877 ecb_ctz64 (uint64_t x)
878 {
879 int shift = x & 0xffffffffU ? 0 : 32;
880 return ecb_ctz32 (x >> shift) + shift;
881 }
882
883 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
884 ecb_function_ int
885 ecb_popcount32 (uint32_t x)
886 {
887 x -= (x >> 1) & 0x55555555;
888 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
889 x = ((x >> 4) + x) & 0x0f0f0f0f;
890 x *= 0x01010101;
891
892 return x >> 24;
893 }
894
895 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
896 ecb_function_ int ecb_ld32 (uint32_t x)
897 {
898 int r = 0;
899
900 if (x >> 16) { x >>= 16; r += 16; }
901 if (x >> 8) { x >>= 8; r += 8; }
902 if (x >> 4) { x >>= 4; r += 4; }
903 if (x >> 2) { x >>= 2; r += 2; }
904 if (x >> 1) { r += 1; }
905
906 return r;
907 }
908
909 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
910 ecb_function_ int ecb_ld64 (uint64_t x)
911 {
912 int r = 0;
913
914 if (x >> 32) { x >>= 32; r += 32; }
915
916 return r + ecb_ld32 (x);
917 }
918#endif
919
920ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
921ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
922ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
923ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
924
925ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
926ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
927{
928 return ( (x * 0x0802U & 0x22110U)
929 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
930}
931
932ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
933ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
934{
935 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
936 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
937 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
938 x = ( x >> 8 ) | ( x << 8);
939
940 return x;
941}
942
943ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
944ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
945{
946 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
947 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
948 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
949 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
950 x = ( x >> 16 ) | ( x << 16);
951
952 return x;
953}
954
955/* popcount64 is only available on 64 bit cpus as gcc builtin */
956/* so for this version we are lazy */
957ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
958ecb_function_ int
959ecb_popcount64 (uint64_t x)
960{
961 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
962}
963
964ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
965ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
966ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
967ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
968ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
969ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
970ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
971ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
972
973ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
974ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
975ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
976ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
977ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
978ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
979ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
980ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
981
982#if ECB_GCC_VERSION(4,3)
983 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
984 #define ecb_bswap32(x) __builtin_bswap32 (x)
985 #define ecb_bswap64(x) __builtin_bswap64 (x)
986#else
987 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
988 ecb_function_ uint16_t
989 ecb_bswap16 (uint16_t x)
990 {
991 return ecb_rotl16 (x, 8);
992 }
993
994 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
995 ecb_function_ uint32_t
996 ecb_bswap32 (uint32_t x)
997 {
998 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
999 }
1000
1001 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
1002 ecb_function_ uint64_t
1003 ecb_bswap64 (uint64_t x)
1004 {
1005 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1006 }
1007#endif
1008
1009#if ECB_GCC_VERSION(4,5)
1010 #define ecb_unreachable() __builtin_unreachable ()
1011#else
1012 /* this seems to work fine, but gcc always emits a warning for it :/ */
1013 ecb_inline void ecb_unreachable (void) ecb_noreturn;
1014 ecb_inline void ecb_unreachable (void) { }
1015#endif
1016
1017/* try to tell the compiler that some condition is definitely true */
1018#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1019
1020ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
1021ecb_inline unsigned char
1022ecb_byteorder_helper (void)
1023{
1024 /* the union code still generates code under pressure in gcc, */
1025 /* but less than using pointers, and always seems to */
1026 /* successfully return a constant. */
1027 /* the reason why we have this horrible preprocessor mess */
1028 /* is to avoid it in all cases, at least on common architectures */
1029 /* or when using a recent enough gcc version (>= 4.6) */
1030#if __i386 || __i386__ || _M_X86 || __amd64 || __amd64__ || _M_X64
1031 return 0x44;
1032#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1033 return 0x44;
1034#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1035 return 0x11;
1036#else
1037 union
1038 {
1039 uint32_t i;
1040 uint8_t c;
1041 } u = { 0x11223344 };
1042 return u.c;
1043#endif
1044}
1045
1046ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
1047ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
1048ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
1049ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
1050
1051#if ECB_GCC_VERSION(3,0) || ECB_C99
1052 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1053#else
1054 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1055#endif
1056
1057#if __cplusplus
1058 template<typename T>
1059 static inline T ecb_div_rd (T val, T div)
1060 {
1061 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1062 }
1063 template<typename T>
1064 static inline T ecb_div_ru (T val, T div)
1065 {
1066 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1067 }
1068#else
1069 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1070 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1071#endif
1072
1073#if ecb_cplusplus_does_not_suck
1074 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1075 template<typename T, int N>
1076 static inline int ecb_array_length (const T (&arr)[N])
1077 {
1078 return N;
1079 }
1080#else
1081 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1082#endif
1083
1084/*******************************************************************************/
1085/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1086
1087/* basically, everything uses "ieee pure-endian" floating point numbers */
1088/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1089#if 0 \
1090 || __i386 || __i386__ \
1091 || __amd64 || __amd64__ || __x86_64 || __x86_64__ \
1092 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1093 || defined __s390__ || defined __s390x__ \
1094 || defined __mips__ \
1095 || defined __alpha__ \
1096 || defined __hppa__ \
1097 || defined __ia64__ \
1098 || defined __m68k__ \
1099 || defined __m88k__ \
1100 || defined __sh__ \
1101 || defined _M_IX86 || defined _M_AMD64 || defined _M_IA64 \
1102 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1103 || defined __aarch64__
1104 #define ECB_STDFP 1
1105 #include <string.h> /* for memcpy */
1106#else
1107 #define ECB_STDFP 0
1108#endif
1109
1110#ifndef ECB_NO_LIBM
1111
1112 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1113
1114 /* only the oldest of old doesn't have this one. solaris. */
1115 #ifdef INFINITY
1116 #define ECB_INFINITY INFINITY
1117 #else
1118 #define ECB_INFINITY HUGE_VAL
1119 #endif
1120
1121 #ifdef NAN
1122 #define ECB_NAN NAN
1123 #else
1124 #define ECB_NAN ECB_INFINITY
1125 #endif
1126
1127 /* converts an ieee half/binary16 to a float */
1128 ecb_function_ float ecb_binary16_to_float (uint16_t x) ecb_const;
1129 ecb_function_ float
1130 ecb_binary16_to_float (uint16_t x)
1131 {
1132 int e = (x >> 10) & 0x1f;
1133 int m = x & 0x3ff;
1134 float r;
1135
1136 if (!e ) r = ldexpf (m , -24);
1137 else if (e != 31) r = ldexpf (m + 0x400, e - 25);
1138 else if (m ) r = ECB_NAN;
1139 else r = ECB_INFINITY;
1140
1141 return x & 0x8000 ? -r : r;
1142 }
1143
1144 /* convert a float to ieee single/binary32 */
1145 ecb_function_ uint32_t ecb_float_to_binary32 (float x) ecb_const;
1146 ecb_function_ uint32_t
1147 ecb_float_to_binary32 (float x)
1148 {
1149 uint32_t r;
1150
1151 #if ECB_STDFP
1152 memcpy (&r, &x, 4);
1153 #else
1154 /* slow emulation, works for anything but -0 */
1155 uint32_t m;
1156 int e;
1157
1158 if (x == 0e0f ) return 0x00000000U;
1159 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1160 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1161 if (x != x ) return 0x7fbfffffU;
1162
1163 m = frexpf (x, &e) * 0x1000000U;
1164
1165 r = m & 0x80000000U;
1166
1167 if (r)
1168 m = -m;
1169
1170 if (e <= -126)
1171 {
1172 m &= 0xffffffU;
1173 m >>= (-125 - e);
1174 e = -126;
1175 }
1176
1177 r |= (e + 126) << 23;
1178 r |= m & 0x7fffffU;
1179 #endif
1180
1181 return r;
1182 }
1183
1184 /* converts an ieee single/binary32 to a float */
1185 ecb_function_ float ecb_binary32_to_float (uint32_t x) ecb_const;
1186 ecb_function_ float
1187 ecb_binary32_to_float (uint32_t x)
1188 {
1189 float r;
1190
1191 #if ECB_STDFP
1192 memcpy (&r, &x, 4);
1193 #else
1194 /* emulation, only works for normals and subnormals and +0 */
1195 int neg = x >> 31;
1196 int e = (x >> 23) & 0xffU;
1197
1198 x &= 0x7fffffU;
1199
1200 if (e)
1201 x |= 0x800000U;
1202 else
1203 e = 1;
1204
1205 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1206 r = ldexpf (x * (0.5f / 0x800000U), e - 126);
1207
1208 r = neg ? -r : r;
1209 #endif
1210
1211 return r;
1212 }
1213
1214 /* convert a double to ieee double/binary64 */
1215 ecb_function_ uint64_t ecb_double_to_binary64 (double x) ecb_const;
1216 ecb_function_ uint64_t
1217 ecb_double_to_binary64 (double x)
1218 {
1219 uint64_t r;
1220
1221 #if ECB_STDFP
1222 memcpy (&r, &x, 8);
1223 #else
1224 /* slow emulation, works for anything but -0 */
1225 uint64_t m;
1226 int e;
1227
1228 if (x == 0e0 ) return 0x0000000000000000U;
1229 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1230 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1231 if (x != x ) return 0X7ff7ffffffffffffU;
1232
1233 m = frexp (x, &e) * 0x20000000000000U;
1234
1235 r = m & 0x8000000000000000;;
1236
1237 if (r)
1238 m = -m;
1239
1240 if (e <= -1022)
1241 {
1242 m &= 0x1fffffffffffffU;
1243 m >>= (-1021 - e);
1244 e = -1022;
1245 }
1246
1247 r |= ((uint64_t)(e + 1022)) << 52;
1248 r |= m & 0xfffffffffffffU;
1249 #endif
1250
1251 return r;
1252 }
1253
1254 /* converts an ieee double/binary64 to a double */
1255 ecb_function_ double ecb_binary64_to_double (uint64_t x) ecb_const;
1256 ecb_function_ double
1257 ecb_binary64_to_double (uint64_t x)
1258 {
1259 double r;
1260
1261 #if ECB_STDFP
1262 memcpy (&r, &x, 8);
1263 #else
1264 /* emulation, only works for normals and subnormals and +0 */
1265 int neg = x >> 63;
1266 int e = (x >> 52) & 0x7ffU;
1267
1268 x &= 0xfffffffffffffU;
1269
1270 if (e)
1271 x |= 0x10000000000000U;
1272 else
1273 e = 1;
1274
1275 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1276 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1277
1278 r = neg ? -r : r;
1279 #endif
1280
1281 return r;
1282 }
1283
1284#endif
1285
1286#endif
1287
1288/* ECB.H END */
1289
1290#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1291/* if your architecture doesn't need memory fences, e.g. because it is
1292 * single-cpu/core, or if you use libev in a project that doesn't use libev
1293 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1294 * libev, in which cases the memory fences become nops.
1295 * alternatively, you can remove this #error and link against libpthread,
1296 * which will then provide the memory fences.
1297 */
1298# error "memory fences not defined for your architecture, please report"
1299#endif
1300
1301#ifndef ECB_MEMORY_FENCE
1302# define ECB_MEMORY_FENCE do { } while (0)
1303# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1304# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1305#endif
1306
1307#define expect_false(cond) ecb_expect_false (cond)
1308#define expect_true(cond) ecb_expect_true (cond)
1309#define noinline ecb_noinline
1310
475#define inline_size static inline 1311#define inline_size ecb_inline
476 1312
477#if EV_FEATURE_CODE 1313#if EV_FEATURE_CODE
478# define inline_speed static inline 1314# define inline_speed ecb_inline
479#else 1315#else
480# define inline_speed static noinline 1316# define inline_speed static noinline
481#endif 1317#endif
482 1318
483#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 1319#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
522# include "ev_win32.c" 1358# include "ev_win32.c"
523#endif 1359#endif
524 1360
525/*****************************************************************************/ 1361/*****************************************************************************/
526 1362
1363/* define a suitable floor function (only used by periodics atm) */
1364
1365#if EV_USE_FLOOR
1366# include <math.h>
1367# define ev_floor(v) floor (v)
1368#else
1369
1370#include <float.h>
1371
1372/* a floor() replacement function, should be independent of ev_tstamp type */
1373static ev_tstamp noinline
1374ev_floor (ev_tstamp v)
1375{
1376 /* the choice of shift factor is not terribly important */
1377#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1378 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1379#else
1380 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1381#endif
1382
1383 /* argument too large for an unsigned long? */
1384 if (expect_false (v >= shift))
1385 {
1386 ev_tstamp f;
1387
1388 if (v == v - 1.)
1389 return v; /* very large number */
1390
1391 f = shift * ev_floor (v * (1. / shift));
1392 return f + ev_floor (v - f);
1393 }
1394
1395 /* special treatment for negative args? */
1396 if (expect_false (v < 0.))
1397 {
1398 ev_tstamp f = -ev_floor (-v);
1399
1400 return f - (f == v ? 0 : 1);
1401 }
1402
1403 /* fits into an unsigned long */
1404 return (unsigned long)v;
1405}
1406
1407#endif
1408
1409/*****************************************************************************/
1410
527#ifdef __linux 1411#ifdef __linux
528# include <sys/utsname.h> 1412# include <sys/utsname.h>
529#endif 1413#endif
530 1414
531static unsigned int noinline 1415static unsigned int noinline ecb_cold
532ev_linux_version (void) 1416ev_linux_version (void)
533{ 1417{
534#ifdef __linux 1418#ifdef __linux
1419 unsigned int v = 0;
535 struct utsname buf; 1420 struct utsname buf;
536 unsigned int v;
537 int i; 1421 int i;
538 char *p = buf.release; 1422 char *p = buf.release;
539 1423
540 if (uname (&buf)) 1424 if (uname (&buf))
541 return 0; 1425 return 0;
565} 1449}
566 1450
567/*****************************************************************************/ 1451/*****************************************************************************/
568 1452
569#if EV_AVOID_STDIO 1453#if EV_AVOID_STDIO
570static void noinline 1454static void noinline ecb_cold
571ev_printerr (const char *msg) 1455ev_printerr (const char *msg)
572{ 1456{
573 write (STDERR_FILENO, msg, strlen (msg)); 1457 write (STDERR_FILENO, msg, strlen (msg));
574} 1458}
575#endif 1459#endif
576 1460
577static void (*syserr_cb)(const char *msg); 1461static void (*syserr_cb)(const char *msg) EV_THROW;
578 1462
579void 1463void ecb_cold
580ev_set_syserr_cb (void (*cb)(const char *msg)) 1464ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
581{ 1465{
582 syserr_cb = cb; 1466 syserr_cb = cb;
583} 1467}
584 1468
585static void noinline 1469static void noinline ecb_cold
586ev_syserr (const char *msg) 1470ev_syserr (const char *msg)
587{ 1471{
588 if (!msg) 1472 if (!msg)
589 msg = "(libev) system error"; 1473 msg = "(libev) system error";
590 1474
591 if (syserr_cb) 1475 if (syserr_cb)
592 syserr_cb (msg); 1476 syserr_cb (msg);
593 else 1477 else
594 { 1478 {
595#if EV_AVOID_STDIO 1479#if EV_AVOID_STDIO
596 const char *err = strerror (errno);
597
598 ev_printerr (msg); 1480 ev_printerr (msg);
599 ev_printerr (": "); 1481 ev_printerr (": ");
600 ev_printerr (err); 1482 ev_printerr (strerror (errno));
601 ev_printerr ("\n"); 1483 ev_printerr ("\n");
602#else 1484#else
603 perror (msg); 1485 perror (msg);
604#endif 1486#endif
605 abort (); 1487 abort ();
606 } 1488 }
607} 1489}
608 1490
609static void * 1491static void *
610ev_realloc_emul (void *ptr, long size) 1492ev_realloc_emul (void *ptr, long size) EV_THROW
611{ 1493{
612#if __GLIBC__
613 return realloc (ptr, size);
614#else
615 /* some systems, notably openbsd and darwin, fail to properly 1494 /* some systems, notably openbsd and darwin, fail to properly
616 * implement realloc (x, 0) (as required by both ansi c-89 and 1495 * implement realloc (x, 0) (as required by both ansi c-89 and
617 * the single unix specification, so work around them here. 1496 * the single unix specification, so work around them here.
1497 * recently, also (at least) fedora and debian started breaking it,
1498 * despite documenting it otherwise.
618 */ 1499 */
619 1500
620 if (size) 1501 if (size)
621 return realloc (ptr, size); 1502 return realloc (ptr, size);
622 1503
623 free (ptr); 1504 free (ptr);
624 return 0; 1505 return 0;
625#endif
626} 1506}
627 1507
628static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 1508static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
629 1509
630void 1510void ecb_cold
631ev_set_allocator (void *(*cb)(void *ptr, long size)) 1511ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
632{ 1512{
633 alloc = cb; 1513 alloc = cb;
634} 1514}
635 1515
636inline_speed void * 1516inline_speed void *
639 ptr = alloc (ptr, size); 1519 ptr = alloc (ptr, size);
640 1520
641 if (!ptr && size) 1521 if (!ptr && size)
642 { 1522 {
643#if EV_AVOID_STDIO 1523#if EV_AVOID_STDIO
644 ev_printerr ("libev: memory allocation failed, aborting.\n"); 1524 ev_printerr ("(libev) memory allocation failed, aborting.\n");
645#else 1525#else
646 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1526 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
647#endif 1527#endif
648 abort (); 1528 abort ();
649 } 1529 }
650 1530
651 return ptr; 1531 return ptr;
724 #undef VAR 1604 #undef VAR
725 }; 1605 };
726 #include "ev_wrap.h" 1606 #include "ev_wrap.h"
727 1607
728 static struct ev_loop default_loop_struct; 1608 static struct ev_loop default_loop_struct;
729 struct ev_loop *ev_default_loop_ptr; 1609 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
730 1610
731#else 1611#else
732 1612
733 ev_tstamp ev_rt_now; 1613 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
734 #define VAR(name,decl) static decl; 1614 #define VAR(name,decl) static decl;
735 #include "ev_vars.h" 1615 #include "ev_vars.h"
736 #undef VAR 1616 #undef VAR
737 1617
738 static int ev_default_loop_ptr; 1618 static int ev_default_loop_ptr;
753 1633
754/*****************************************************************************/ 1634/*****************************************************************************/
755 1635
756#ifndef EV_HAVE_EV_TIME 1636#ifndef EV_HAVE_EV_TIME
757ev_tstamp 1637ev_tstamp
758ev_time (void) 1638ev_time (void) EV_THROW
759{ 1639{
760#if EV_USE_REALTIME 1640#if EV_USE_REALTIME
761 if (expect_true (have_realtime)) 1641 if (expect_true (have_realtime))
762 { 1642 {
763 struct timespec ts; 1643 struct timespec ts;
787 return ev_time (); 1667 return ev_time ();
788} 1668}
789 1669
790#if EV_MULTIPLICITY 1670#if EV_MULTIPLICITY
791ev_tstamp 1671ev_tstamp
792ev_now (EV_P) 1672ev_now (EV_P) EV_THROW
793{ 1673{
794 return ev_rt_now; 1674 return ev_rt_now;
795} 1675}
796#endif 1676#endif
797 1677
798void 1678void
799ev_sleep (ev_tstamp delay) 1679ev_sleep (ev_tstamp delay) EV_THROW
800{ 1680{
801 if (delay > 0.) 1681 if (delay > 0.)
802 { 1682 {
803#if EV_USE_NANOSLEEP 1683#if EV_USE_NANOSLEEP
804 struct timespec ts; 1684 struct timespec ts;
805 1685
806 EV_TS_SET (ts, delay); 1686 EV_TS_SET (ts, delay);
807 nanosleep (&ts, 0); 1687 nanosleep (&ts, 0);
808#elif defined(_WIN32) 1688#elif defined _WIN32
809 Sleep ((unsigned long)(delay * 1e3)); 1689 Sleep ((unsigned long)(delay * 1e3));
810#else 1690#else
811 struct timeval tv; 1691 struct timeval tv;
812 1692
813 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */ 1693 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
832 1712
833 do 1713 do
834 ncur <<= 1; 1714 ncur <<= 1;
835 while (cnt > ncur); 1715 while (cnt > ncur);
836 1716
837 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */ 1717 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
838 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4) 1718 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
839 { 1719 {
840 ncur *= elem; 1720 ncur *= elem;
841 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1); 1721 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
842 ncur = ncur - sizeof (void *) * 4; 1722 ncur = ncur - sizeof (void *) * 4;
844 } 1724 }
845 1725
846 return ncur; 1726 return ncur;
847} 1727}
848 1728
849static noinline void * 1729static void * noinline ecb_cold
850array_realloc (int elem, void *base, int *cur, int cnt) 1730array_realloc (int elem, void *base, int *cur, int cnt)
851{ 1731{
852 *cur = array_nextsize (elem, *cur, cnt); 1732 *cur = array_nextsize (elem, *cur, cnt);
853 return ev_realloc (base, elem * *cur); 1733 return ev_realloc (base, elem * *cur);
854} 1734}
857 memset ((void *)(base), 0, sizeof (*(base)) * (count)) 1737 memset ((void *)(base), 0, sizeof (*(base)) * (count))
858 1738
859#define array_needsize(type,base,cur,cnt,init) \ 1739#define array_needsize(type,base,cur,cnt,init) \
860 if (expect_false ((cnt) > (cur))) \ 1740 if (expect_false ((cnt) > (cur))) \
861 { \ 1741 { \
862 int ocur_ = (cur); \ 1742 int ecb_unused ocur_ = (cur); \
863 (base) = (type *)array_realloc \ 1743 (base) = (type *)array_realloc \
864 (sizeof (type), (base), &(cur), (cnt)); \ 1744 (sizeof (type), (base), &(cur), (cnt)); \
865 init ((base) + (ocur_), (cur) - ocur_); \ 1745 init ((base) + (ocur_), (cur) - ocur_); \
866 } 1746 }
867 1747
885pendingcb (EV_P_ ev_prepare *w, int revents) 1765pendingcb (EV_P_ ev_prepare *w, int revents)
886{ 1766{
887} 1767}
888 1768
889void noinline 1769void noinline
890ev_feed_event (EV_P_ void *w, int revents) 1770ev_feed_event (EV_P_ void *w, int revents) EV_THROW
891{ 1771{
892 W w_ = (W)w; 1772 W w_ = (W)w;
893 int pri = ABSPRI (w_); 1773 int pri = ABSPRI (w_);
894 1774
895 if (expect_false (w_->pending)) 1775 if (expect_false (w_->pending))
899 w_->pending = ++pendingcnt [pri]; 1779 w_->pending = ++pendingcnt [pri];
900 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 1780 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
901 pendings [pri][w_->pending - 1].w = w_; 1781 pendings [pri][w_->pending - 1].w = w_;
902 pendings [pri][w_->pending - 1].events = revents; 1782 pendings [pri][w_->pending - 1].events = revents;
903 } 1783 }
1784
1785 pendingpri = NUMPRI - 1;
904} 1786}
905 1787
906inline_speed void 1788inline_speed void
907feed_reverse (EV_P_ W w) 1789feed_reverse (EV_P_ W w)
908{ 1790{
954 if (expect_true (!anfd->reify)) 1836 if (expect_true (!anfd->reify))
955 fd_event_nocheck (EV_A_ fd, revents); 1837 fd_event_nocheck (EV_A_ fd, revents);
956} 1838}
957 1839
958void 1840void
959ev_feed_fd_event (EV_P_ int fd, int revents) 1841ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
960{ 1842{
961 if (fd >= 0 && fd < anfdmax) 1843 if (fd >= 0 && fd < anfdmax)
962 fd_event_nocheck (EV_A_ fd, revents); 1844 fd_event_nocheck (EV_A_ fd, revents);
963} 1845}
964 1846
967inline_size void 1849inline_size void
968fd_reify (EV_P) 1850fd_reify (EV_P)
969{ 1851{
970 int i; 1852 int i;
971 1853
1854#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1855 for (i = 0; i < fdchangecnt; ++i)
1856 {
1857 int fd = fdchanges [i];
1858 ANFD *anfd = anfds + fd;
1859
1860 if (anfd->reify & EV__IOFDSET && anfd->head)
1861 {
1862 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1863
1864 if (handle != anfd->handle)
1865 {
1866 unsigned long arg;
1867
1868 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1869
1870 /* handle changed, but fd didn't - we need to do it in two steps */
1871 backend_modify (EV_A_ fd, anfd->events, 0);
1872 anfd->events = 0;
1873 anfd->handle = handle;
1874 }
1875 }
1876 }
1877#endif
1878
972 for (i = 0; i < fdchangecnt; ++i) 1879 for (i = 0; i < fdchangecnt; ++i)
973 { 1880 {
974 int fd = fdchanges [i]; 1881 int fd = fdchanges [i];
975 ANFD *anfd = anfds + fd; 1882 ANFD *anfd = anfds + fd;
976 ev_io *w; 1883 ev_io *w;
978 unsigned char o_events = anfd->events; 1885 unsigned char o_events = anfd->events;
979 unsigned char o_reify = anfd->reify; 1886 unsigned char o_reify = anfd->reify;
980 1887
981 anfd->reify = 0; 1888 anfd->reify = 0;
982 1889
983#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
984 if (o_reify & EV__IOFDSET)
985 {
986 unsigned long arg;
987 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
988 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
989 printf ("oi %d %x\n", fd, anfd->handle);//D
990 }
991#endif
992
993 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */ 1890 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
994 { 1891 {
995 anfd->events = 0; 1892 anfd->events = 0;
996 1893
997 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1894 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1022 fdchanges [fdchangecnt - 1] = fd; 1919 fdchanges [fdchangecnt - 1] = fd;
1023 } 1920 }
1024} 1921}
1025 1922
1026/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */ 1923/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1027inline_speed void 1924inline_speed void ecb_cold
1028fd_kill (EV_P_ int fd) 1925fd_kill (EV_P_ int fd)
1029{ 1926{
1030 ev_io *w; 1927 ev_io *w;
1031 1928
1032 while ((w = (ev_io *)anfds [fd].head)) 1929 while ((w = (ev_io *)anfds [fd].head))
1035 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1932 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
1036 } 1933 }
1037} 1934}
1038 1935
1039/* check whether the given fd is actually valid, for error recovery */ 1936/* check whether the given fd is actually valid, for error recovery */
1040inline_size int 1937inline_size int ecb_cold
1041fd_valid (int fd) 1938fd_valid (int fd)
1042{ 1939{
1043#ifdef _WIN32 1940#ifdef _WIN32
1044 return EV_FD_TO_WIN32_HANDLE (fd) != -1; 1941 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
1045#else 1942#else
1046 return fcntl (fd, F_GETFD) != -1; 1943 return fcntl (fd, F_GETFD) != -1;
1047#endif 1944#endif
1048} 1945}
1049 1946
1050/* called on EBADF to verify fds */ 1947/* called on EBADF to verify fds */
1051static void noinline 1948static void noinline ecb_cold
1052fd_ebadf (EV_P) 1949fd_ebadf (EV_P)
1053{ 1950{
1054 int fd; 1951 int fd;
1055 1952
1056 for (fd = 0; fd < anfdmax; ++fd) 1953 for (fd = 0; fd < anfdmax; ++fd)
1058 if (!fd_valid (fd) && errno == EBADF) 1955 if (!fd_valid (fd) && errno == EBADF)
1059 fd_kill (EV_A_ fd); 1956 fd_kill (EV_A_ fd);
1060} 1957}
1061 1958
1062/* called on ENOMEM in select/poll to kill some fds and retry */ 1959/* called on ENOMEM in select/poll to kill some fds and retry */
1063static void noinline 1960static void noinline ecb_cold
1064fd_enomem (EV_P) 1961fd_enomem (EV_P)
1065{ 1962{
1066 int fd; 1963 int fd;
1067 1964
1068 for (fd = anfdmax; fd--; ) 1965 for (fd = anfdmax; fd--; )
1263 2160
1264/*****************************************************************************/ 2161/*****************************************************************************/
1265 2162
1266#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE 2163#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1267 2164
1268static void noinline 2165static void noinline ecb_cold
1269evpipe_init (EV_P) 2166evpipe_init (EV_P)
1270{ 2167{
1271 if (!ev_is_active (&pipe_w)) 2168 if (!ev_is_active (&pipe_w))
1272 { 2169 {
2170 int fds [2];
2171
1273# if EV_USE_EVENTFD 2172# if EV_USE_EVENTFD
2173 fds [0] = -1;
1274 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC); 2174 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1275 if (evfd < 0 && errno == EINVAL) 2175 if (fds [1] < 0 && errno == EINVAL)
1276 evfd = eventfd (0, 0); 2176 fds [1] = eventfd (0, 0);
1277 2177
1278 if (evfd >= 0) 2178 if (fds [1] < 0)
2179# endif
1279 { 2180 {
2181 while (pipe (fds))
2182 ev_syserr ("(libev) error creating signal/async pipe");
2183
2184 fd_intern (fds [0]);
2185 }
2186
1280 evpipe [0] = -1; 2187 evpipe [0] = fds [0];
1281 fd_intern (evfd); /* doing it twice doesn't hurt */ 2188
1282 ev_io_set (&pipe_w, evfd, EV_READ); 2189 if (evpipe [1] < 0)
2190 evpipe [1] = fds [1]; /* first call, set write fd */
2191 else
2192 {
2193 /* on subsequent calls, do not change evpipe [1] */
2194 /* so that evpipe_write can always rely on its value. */
2195 /* this branch does not do anything sensible on windows, */
2196 /* so must not be executed on windows */
2197
2198 dup2 (fds [1], evpipe [1]);
2199 close (fds [1]);
2200 }
2201
2202 fd_intern (evpipe [1]);
2203
2204 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2205 ev_io_start (EV_A_ &pipe_w);
2206 ev_unref (EV_A); /* watcher should not keep loop alive */
2207 }
2208}
2209
2210inline_speed void
2211evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2212{
2213 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2214
2215 if (expect_true (*flag))
2216 return;
2217
2218 *flag = 1;
2219 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2220
2221 pipe_write_skipped = 1;
2222
2223 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2224
2225 if (pipe_write_wanted)
2226 {
2227 int old_errno;
2228
2229 pipe_write_skipped = 0;
2230 ECB_MEMORY_FENCE_RELEASE;
2231
2232 old_errno = errno; /* save errno because write will clobber it */
2233
2234#if EV_USE_EVENTFD
2235 if (evpipe [0] < 0)
2236 {
2237 uint64_t counter = 1;
2238 write (evpipe [1], &counter, sizeof (uint64_t));
1283 } 2239 }
1284 else 2240 else
1285# endif 2241#endif
1286 { 2242 {
1287 while (pipe (evpipe)) 2243#ifdef _WIN32
1288 ev_syserr ("(libev) error creating signal/async pipe"); 2244 WSABUF buf;
1289 2245 DWORD sent;
1290 fd_intern (evpipe [0]); 2246 buf.buf = &buf;
1291 fd_intern (evpipe [1]); 2247 buf.len = 1;
1292 ev_io_set (&pipe_w, evpipe [0], EV_READ); 2248 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2249#else
2250 write (evpipe [1], &(evpipe [1]), 1);
2251#endif
1293 } 2252 }
1294
1295 ev_io_start (EV_A_ &pipe_w);
1296 ev_unref (EV_A); /* watcher should not keep loop alive */
1297 }
1298}
1299
1300inline_size void
1301evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1302{
1303 if (!*flag)
1304 {
1305 int old_errno = errno; /* save errno because write might clobber it */
1306 char dummy;
1307
1308 *flag = 1;
1309
1310#if EV_USE_EVENTFD
1311 if (evfd >= 0)
1312 {
1313 uint64_t counter = 1;
1314 write (evfd, &counter, sizeof (uint64_t));
1315 }
1316 else
1317#endif
1318 /* win32 people keep sending patches that change this write() to send() */
1319 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1320 /* so when you think this write should be a send instead, please find out */
1321 /* where your send() is from - it's definitely not the microsoft send, and */
1322 /* tell me. thank you. */
1323 write (evpipe [1], &dummy, 1);
1324 2253
1325 errno = old_errno; 2254 errno = old_errno;
1326 } 2255 }
1327} 2256}
1328 2257
1331static void 2260static void
1332pipecb (EV_P_ ev_io *iow, int revents) 2261pipecb (EV_P_ ev_io *iow, int revents)
1333{ 2262{
1334 int i; 2263 int i;
1335 2264
2265 if (revents & EV_READ)
2266 {
1336#if EV_USE_EVENTFD 2267#if EV_USE_EVENTFD
1337 if (evfd >= 0) 2268 if (evpipe [0] < 0)
1338 { 2269 {
1339 uint64_t counter; 2270 uint64_t counter;
1340 read (evfd, &counter, sizeof (uint64_t)); 2271 read (evpipe [1], &counter, sizeof (uint64_t));
1341 } 2272 }
1342 else 2273 else
1343#endif 2274#endif
1344 { 2275 {
1345 char dummy; 2276 char dummy[4];
1346 /* see discussion in evpipe_write when you think this read should be recv in win32 */ 2277#ifdef _WIN32
2278 WSABUF buf;
2279 DWORD recvd;
2280 DWORD flags = 0;
2281 buf.buf = dummy;
2282 buf.len = sizeof (dummy);
2283 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2284#else
1347 read (evpipe [0], &dummy, 1); 2285 read (evpipe [0], &dummy, sizeof (dummy));
2286#endif
2287 }
1348 } 2288 }
1349 2289
2290 pipe_write_skipped = 0;
2291
2292 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2293
2294#if EV_SIGNAL_ENABLE
1350 if (sig_pending) 2295 if (sig_pending)
1351 { 2296 {
1352 sig_pending = 0; 2297 sig_pending = 0;
2298
2299 ECB_MEMORY_FENCE;
1353 2300
1354 for (i = EV_NSIG - 1; i--; ) 2301 for (i = EV_NSIG - 1; i--; )
1355 if (expect_false (signals [i].pending)) 2302 if (expect_false (signals [i].pending))
1356 ev_feed_signal_event (EV_A_ i + 1); 2303 ev_feed_signal_event (EV_A_ i + 1);
1357 } 2304 }
2305#endif
1358 2306
1359#if EV_ASYNC_ENABLE 2307#if EV_ASYNC_ENABLE
1360 if (async_pending) 2308 if (async_pending)
1361 { 2309 {
1362 async_pending = 0; 2310 async_pending = 0;
2311
2312 ECB_MEMORY_FENCE;
1363 2313
1364 for (i = asynccnt; i--; ) 2314 for (i = asynccnt; i--; )
1365 if (asyncs [i]->sent) 2315 if (asyncs [i]->sent)
1366 { 2316 {
1367 asyncs [i]->sent = 0; 2317 asyncs [i]->sent = 0;
2318 ECB_MEMORY_FENCE_RELEASE;
1368 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); 2319 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1369 } 2320 }
1370 } 2321 }
1371#endif 2322#endif
1372} 2323}
1373 2324
1374/*****************************************************************************/ 2325/*****************************************************************************/
1375 2326
2327void
2328ev_feed_signal (int signum) EV_THROW
2329{
2330#if EV_MULTIPLICITY
2331 EV_P;
2332 ECB_MEMORY_FENCE_ACQUIRE;
2333 EV_A = signals [signum - 1].loop;
2334
2335 if (!EV_A)
2336 return;
2337#endif
2338
2339 signals [signum - 1].pending = 1;
2340 evpipe_write (EV_A_ &sig_pending);
2341}
2342
1376static void 2343static void
1377ev_sighandler (int signum) 2344ev_sighandler (int signum)
1378{ 2345{
1379#if EV_MULTIPLICITY
1380 EV_P = signals [signum - 1].loop;
1381#endif
1382
1383#ifdef _WIN32 2346#ifdef _WIN32
1384 signal (signum, ev_sighandler); 2347 signal (signum, ev_sighandler);
1385#endif 2348#endif
1386 2349
1387 signals [signum - 1].pending = 1; 2350 ev_feed_signal (signum);
1388 evpipe_write (EV_A_ &sig_pending);
1389} 2351}
1390 2352
1391void noinline 2353void noinline
1392ev_feed_signal_event (EV_P_ int signum) 2354ev_feed_signal_event (EV_P_ int signum) EV_THROW
1393{ 2355{
1394 WL w; 2356 WL w;
1395 2357
1396 if (expect_false (signum <= 0 || signum > EV_NSIG)) 2358 if (expect_false (signum <= 0 || signum >= EV_NSIG))
1397 return; 2359 return;
1398 2360
1399 --signum; 2361 --signum;
1400 2362
1401#if EV_MULTIPLICITY 2363#if EV_MULTIPLICITY
1405 if (expect_false (signals [signum].loop != EV_A)) 2367 if (expect_false (signals [signum].loop != EV_A))
1406 return; 2368 return;
1407#endif 2369#endif
1408 2370
1409 signals [signum].pending = 0; 2371 signals [signum].pending = 0;
2372 ECB_MEMORY_FENCE_RELEASE;
1410 2373
1411 for (w = signals [signum].head; w; w = w->next) 2374 for (w = signals [signum].head; w; w = w->next)
1412 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2375 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1413} 2376}
1414 2377
1512#endif 2475#endif
1513#if EV_USE_SELECT 2476#if EV_USE_SELECT
1514# include "ev_select.c" 2477# include "ev_select.c"
1515#endif 2478#endif
1516 2479
1517int 2480int ecb_cold
1518ev_version_major (void) 2481ev_version_major (void) EV_THROW
1519{ 2482{
1520 return EV_VERSION_MAJOR; 2483 return EV_VERSION_MAJOR;
1521} 2484}
1522 2485
1523int 2486int ecb_cold
1524ev_version_minor (void) 2487ev_version_minor (void) EV_THROW
1525{ 2488{
1526 return EV_VERSION_MINOR; 2489 return EV_VERSION_MINOR;
1527} 2490}
1528 2491
1529/* return true if we are running with elevated privileges and should ignore env variables */ 2492/* return true if we are running with elevated privileges and should ignore env variables */
1530int inline_size 2493int inline_size ecb_cold
1531enable_secure (void) 2494enable_secure (void)
1532{ 2495{
1533#ifdef _WIN32 2496#ifdef _WIN32
1534 return 0; 2497 return 0;
1535#else 2498#else
1536 return getuid () != geteuid () 2499 return getuid () != geteuid ()
1537 || getgid () != getegid (); 2500 || getgid () != getegid ();
1538#endif 2501#endif
1539} 2502}
1540 2503
1541unsigned int 2504unsigned int ecb_cold
1542ev_supported_backends (void) 2505ev_supported_backends (void) EV_THROW
1543{ 2506{
1544 unsigned int flags = 0; 2507 unsigned int flags = 0;
1545 2508
1546 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2509 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1547 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2510 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1550 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2513 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1551 2514
1552 return flags; 2515 return flags;
1553} 2516}
1554 2517
1555unsigned int 2518unsigned int ecb_cold
1556ev_recommended_backends (void) 2519ev_recommended_backends (void) EV_THROW
1557{ 2520{
1558 unsigned int flags = ev_supported_backends (); 2521 unsigned int flags = ev_supported_backends ();
1559 2522
1560#ifndef __NetBSD__ 2523#ifndef __NetBSD__
1561 /* kqueue is borked on everything but netbsd apparently */ 2524 /* kqueue is borked on everything but netbsd apparently */
1572#endif 2535#endif
1573 2536
1574 return flags; 2537 return flags;
1575} 2538}
1576 2539
1577unsigned int 2540unsigned int ecb_cold
1578ev_embeddable_backends (void) 2541ev_embeddable_backends (void) EV_THROW
1579{ 2542{
1580 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2543 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1581 2544
1582 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 2545 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1583 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */ 2546 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1585 2548
1586 return flags; 2549 return flags;
1587} 2550}
1588 2551
1589unsigned int 2552unsigned int
1590ev_backend (EV_P) 2553ev_backend (EV_P) EV_THROW
1591{ 2554{
1592 return backend; 2555 return backend;
1593} 2556}
1594 2557
1595#if EV_FEATURE_API 2558#if EV_FEATURE_API
1596unsigned int 2559unsigned int
1597ev_iteration (EV_P) 2560ev_iteration (EV_P) EV_THROW
1598{ 2561{
1599 return loop_count; 2562 return loop_count;
1600} 2563}
1601 2564
1602unsigned int 2565unsigned int
1603ev_depth (EV_P) 2566ev_depth (EV_P) EV_THROW
1604{ 2567{
1605 return loop_depth; 2568 return loop_depth;
1606} 2569}
1607 2570
1608void 2571void
1609ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2572ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1610{ 2573{
1611 io_blocktime = interval; 2574 io_blocktime = interval;
1612} 2575}
1613 2576
1614void 2577void
1615ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2578ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1616{ 2579{
1617 timeout_blocktime = interval; 2580 timeout_blocktime = interval;
1618} 2581}
1619 2582
1620void 2583void
1621ev_set_userdata (EV_P_ void *data) 2584ev_set_userdata (EV_P_ void *data) EV_THROW
1622{ 2585{
1623 userdata = data; 2586 userdata = data;
1624} 2587}
1625 2588
1626void * 2589void *
1627ev_userdata (EV_P) 2590ev_userdata (EV_P) EV_THROW
1628{ 2591{
1629 return userdata; 2592 return userdata;
1630} 2593}
1631 2594
2595void
1632void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) 2596ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_THROW
1633{ 2597{
1634 invoke_cb = invoke_pending_cb; 2598 invoke_cb = invoke_pending_cb;
1635} 2599}
1636 2600
1637void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P)) 2601void
2602ev_set_loop_release_cb (EV_P_ ev_loop_callback_nothrow release, ev_loop_callback_nothrow acquire) EV_THROW
1638{ 2603{
1639 release_cb = release; 2604 release_cb = release;
1640 acquire_cb = acquire; 2605 acquire_cb = acquire;
1641} 2606}
1642#endif 2607#endif
1643 2608
1644/* initialise a loop structure, must be zero-initialised */ 2609/* initialise a loop structure, must be zero-initialised */
1645static void noinline 2610static void noinline ecb_cold
1646loop_init (EV_P_ unsigned int flags) 2611loop_init (EV_P_ unsigned int flags) EV_THROW
1647{ 2612{
1648 if (!backend) 2613 if (!backend)
1649 { 2614 {
2615 origflags = flags;
2616
1650#if EV_USE_REALTIME 2617#if EV_USE_REALTIME
1651 if (!have_realtime) 2618 if (!have_realtime)
1652 { 2619 {
1653 struct timespec ts; 2620 struct timespec ts;
1654 2621
1676 if (!(flags & EVFLAG_NOENV) 2643 if (!(flags & EVFLAG_NOENV)
1677 && !enable_secure () 2644 && !enable_secure ()
1678 && getenv ("LIBEV_FLAGS")) 2645 && getenv ("LIBEV_FLAGS"))
1679 flags = atoi (getenv ("LIBEV_FLAGS")); 2646 flags = atoi (getenv ("LIBEV_FLAGS"));
1680 2647
1681 ev_rt_now = ev_time (); 2648 ev_rt_now = ev_time ();
1682 mn_now = get_clock (); 2649 mn_now = get_clock ();
1683 now_floor = mn_now; 2650 now_floor = mn_now;
1684 rtmn_diff = ev_rt_now - mn_now; 2651 rtmn_diff = ev_rt_now - mn_now;
1685#if EV_FEATURE_API 2652#if EV_FEATURE_API
1686 invoke_cb = ev_invoke_pending; 2653 invoke_cb = ev_invoke_pending;
1687#endif 2654#endif
1688 2655
1689 io_blocktime = 0.; 2656 io_blocktime = 0.;
1690 timeout_blocktime = 0.; 2657 timeout_blocktime = 0.;
1691 backend = 0; 2658 backend = 0;
1692 backend_fd = -1; 2659 backend_fd = -1;
1693 sig_pending = 0; 2660 sig_pending = 0;
1694#if EV_ASYNC_ENABLE 2661#if EV_ASYNC_ENABLE
1695 async_pending = 0; 2662 async_pending = 0;
1696#endif 2663#endif
2664 pipe_write_skipped = 0;
2665 pipe_write_wanted = 0;
2666 evpipe [0] = -1;
2667 evpipe [1] = -1;
1697#if EV_USE_INOTIFY 2668#if EV_USE_INOTIFY
1698 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2; 2669 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1699#endif 2670#endif
1700#if EV_USE_SIGNALFD 2671#if EV_USE_SIGNALFD
1701 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1; 2672 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1702#endif 2673#endif
1703 2674
1704 if (!(flags & 0x0000ffffU)) 2675 if (!(flags & EVBACKEND_MASK))
1705 flags |= ev_recommended_backends (); 2676 flags |= ev_recommended_backends ();
1706 2677
1707#if EV_USE_IOCP 2678#if EV_USE_IOCP
1708 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags); 2679 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1709#endif 2680#endif
1731#endif 2702#endif
1732 } 2703 }
1733} 2704}
1734 2705
1735/* free up a loop structure */ 2706/* free up a loop structure */
1736static void noinline 2707void ecb_cold
1737loop_destroy (EV_P) 2708ev_loop_destroy (EV_P)
1738{ 2709{
1739 int i; 2710 int i;
2711
2712#if EV_MULTIPLICITY
2713 /* mimic free (0) */
2714 if (!EV_A)
2715 return;
2716#endif
2717
2718#if EV_CLEANUP_ENABLE
2719 /* queue cleanup watchers (and execute them) */
2720 if (expect_false (cleanupcnt))
2721 {
2722 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2723 EV_INVOKE_PENDING;
2724 }
2725#endif
2726
2727#if EV_CHILD_ENABLE
2728 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2729 {
2730 ev_ref (EV_A); /* child watcher */
2731 ev_signal_stop (EV_A_ &childev);
2732 }
2733#endif
1740 2734
1741 if (ev_is_active (&pipe_w)) 2735 if (ev_is_active (&pipe_w))
1742 { 2736 {
1743 /*ev_ref (EV_A);*/ 2737 /*ev_ref (EV_A);*/
1744 /*ev_io_stop (EV_A_ &pipe_w);*/ 2738 /*ev_io_stop (EV_A_ &pipe_w);*/
1745 2739
1746#if EV_USE_EVENTFD
1747 if (evfd >= 0)
1748 close (evfd);
1749#endif
1750
1751 if (evpipe [0] >= 0)
1752 {
1753 EV_WIN32_CLOSE_FD (evpipe [0]); 2740 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
1754 EV_WIN32_CLOSE_FD (evpipe [1]); 2741 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
1755 }
1756 } 2742 }
1757 2743
1758#if EV_USE_SIGNALFD 2744#if EV_USE_SIGNALFD
1759 if (ev_is_active (&sigfd_w)) 2745 if (ev_is_active (&sigfd_w))
1760 close (sigfd); 2746 close (sigfd);
1805 array_free (periodic, EMPTY); 2791 array_free (periodic, EMPTY);
1806#endif 2792#endif
1807#if EV_FORK_ENABLE 2793#if EV_FORK_ENABLE
1808 array_free (fork, EMPTY); 2794 array_free (fork, EMPTY);
1809#endif 2795#endif
2796#if EV_CLEANUP_ENABLE
2797 array_free (cleanup, EMPTY);
2798#endif
1810 array_free (prepare, EMPTY); 2799 array_free (prepare, EMPTY);
1811 array_free (check, EMPTY); 2800 array_free (check, EMPTY);
1812#if EV_ASYNC_ENABLE 2801#if EV_ASYNC_ENABLE
1813 array_free (async, EMPTY); 2802 array_free (async, EMPTY);
1814#endif 2803#endif
1815 2804
1816 backend = 0; 2805 backend = 0;
2806
2807#if EV_MULTIPLICITY
2808 if (ev_is_default_loop (EV_A))
2809#endif
2810 ev_default_loop_ptr = 0;
2811#if EV_MULTIPLICITY
2812 else
2813 ev_free (EV_A);
2814#endif
1817} 2815}
1818 2816
1819#if EV_USE_INOTIFY 2817#if EV_USE_INOTIFY
1820inline_size void infy_fork (EV_P); 2818inline_size void infy_fork (EV_P);
1821#endif 2819#endif
1834#endif 2832#endif
1835#if EV_USE_INOTIFY 2833#if EV_USE_INOTIFY
1836 infy_fork (EV_A); 2834 infy_fork (EV_A);
1837#endif 2835#endif
1838 2836
2837#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1839 if (ev_is_active (&pipe_w)) 2838 if (ev_is_active (&pipe_w))
1840 { 2839 {
1841 /* this "locks" the handlers against writing to the pipe */ 2840 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1842 /* while we modify the fd vars */
1843 sig_pending = 1;
1844#if EV_ASYNC_ENABLE
1845 async_pending = 1;
1846#endif
1847 2841
1848 ev_ref (EV_A); 2842 ev_ref (EV_A);
1849 ev_io_stop (EV_A_ &pipe_w); 2843 ev_io_stop (EV_A_ &pipe_w);
1850 2844
1851#if EV_USE_EVENTFD
1852 if (evfd >= 0)
1853 close (evfd);
1854#endif
1855
1856 if (evpipe [0] >= 0) 2845 if (evpipe [0] >= 0)
1857 {
1858 EV_WIN32_CLOSE_FD (evpipe [0]); 2846 EV_WIN32_CLOSE_FD (evpipe [0]);
1859 EV_WIN32_CLOSE_FD (evpipe [1]);
1860 }
1861 2847
1862#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1863 evpipe_init (EV_A); 2848 evpipe_init (EV_A);
1864 /* now iterate over everything, in case we missed something */ 2849 /* iterate over everything, in case we missed something before */
1865 pipecb (EV_A_ &pipe_w, EV_READ); 2850 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
1866#endif
1867 } 2851 }
2852#endif
1868 2853
1869 postfork = 0; 2854 postfork = 0;
1870} 2855}
1871 2856
1872#if EV_MULTIPLICITY 2857#if EV_MULTIPLICITY
1873 2858
1874struct ev_loop * 2859struct ev_loop * ecb_cold
1875ev_loop_new (unsigned int flags) 2860ev_loop_new (unsigned int flags) EV_THROW
1876{ 2861{
1877 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2862 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1878 2863
1879 memset (EV_A, 0, sizeof (struct ev_loop)); 2864 memset (EV_A, 0, sizeof (struct ev_loop));
1880 loop_init (EV_A_ flags); 2865 loop_init (EV_A_ flags);
1881 2866
1882 if (ev_backend (EV_A)) 2867 if (ev_backend (EV_A))
1883 return EV_A; 2868 return EV_A;
1884 2869
2870 ev_free (EV_A);
1885 return 0; 2871 return 0;
1886} 2872}
1887 2873
1888void
1889ev_loop_destroy (EV_P)
1890{
1891 loop_destroy (EV_A);
1892 ev_free (loop);
1893}
1894
1895void
1896ev_loop_fork (EV_P)
1897{
1898 postfork = 1; /* must be in line with ev_default_fork */
1899}
1900#endif /* multiplicity */ 2874#endif /* multiplicity */
1901 2875
1902#if EV_VERIFY 2876#if EV_VERIFY
1903static void noinline 2877static void noinline ecb_cold
1904verify_watcher (EV_P_ W w) 2878verify_watcher (EV_P_ W w)
1905{ 2879{
1906 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI)); 2880 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1907 2881
1908 if (w->pending) 2882 if (w->pending)
1909 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w)); 2883 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1910} 2884}
1911 2885
1912static void noinline 2886static void noinline ecb_cold
1913verify_heap (EV_P_ ANHE *heap, int N) 2887verify_heap (EV_P_ ANHE *heap, int N)
1914{ 2888{
1915 int i; 2889 int i;
1916 2890
1917 for (i = HEAP0; i < N + HEAP0; ++i) 2891 for (i = HEAP0; i < N + HEAP0; ++i)
1922 2896
1923 verify_watcher (EV_A_ (W)ANHE_w (heap [i])); 2897 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1924 } 2898 }
1925} 2899}
1926 2900
1927static void noinline 2901static void noinline ecb_cold
1928array_verify (EV_P_ W *ws, int cnt) 2902array_verify (EV_P_ W *ws, int cnt)
1929{ 2903{
1930 while (cnt--) 2904 while (cnt--)
1931 { 2905 {
1932 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1)); 2906 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1934 } 2908 }
1935} 2909}
1936#endif 2910#endif
1937 2911
1938#if EV_FEATURE_API 2912#if EV_FEATURE_API
1939void 2913void ecb_cold
1940ev_verify (EV_P) 2914ev_verify (EV_P) EV_THROW
1941{ 2915{
1942#if EV_VERIFY 2916#if EV_VERIFY
1943 int i; 2917 int i;
1944 WL w; 2918 WL w, w2;
1945 2919
1946 assert (activecnt >= -1); 2920 assert (activecnt >= -1);
1947 2921
1948 assert (fdchangemax >= fdchangecnt); 2922 assert (fdchangemax >= fdchangecnt);
1949 for (i = 0; i < fdchangecnt; ++i) 2923 for (i = 0; i < fdchangecnt; ++i)
1950 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0)); 2924 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1951 2925
1952 assert (anfdmax >= 0); 2926 assert (anfdmax >= 0);
1953 for (i = 0; i < anfdmax; ++i) 2927 for (i = 0; i < anfdmax; ++i)
2928 {
2929 int j = 0;
2930
1954 for (w = anfds [i].head; w; w = w->next) 2931 for (w = w2 = anfds [i].head; w; w = w->next)
1955 { 2932 {
1956 verify_watcher (EV_A_ (W)w); 2933 verify_watcher (EV_A_ (W)w);
2934
2935 if (j++ & 1)
2936 {
2937 assert (("libev: io watcher list contains a loop", w != w2));
2938 w2 = w2->next;
2939 }
2940
1957 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1)); 2941 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1958 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i)); 2942 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1959 } 2943 }
2944 }
1960 2945
1961 assert (timermax >= timercnt); 2946 assert (timermax >= timercnt);
1962 verify_heap (EV_A_ timers, timercnt); 2947 verify_heap (EV_A_ timers, timercnt);
1963 2948
1964#if EV_PERIODIC_ENABLE 2949#if EV_PERIODIC_ENABLE
1979#if EV_FORK_ENABLE 2964#if EV_FORK_ENABLE
1980 assert (forkmax >= forkcnt); 2965 assert (forkmax >= forkcnt);
1981 array_verify (EV_A_ (W *)forks, forkcnt); 2966 array_verify (EV_A_ (W *)forks, forkcnt);
1982#endif 2967#endif
1983 2968
2969#if EV_CLEANUP_ENABLE
2970 assert (cleanupmax >= cleanupcnt);
2971 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2972#endif
2973
1984#if EV_ASYNC_ENABLE 2974#if EV_ASYNC_ENABLE
1985 assert (asyncmax >= asynccnt); 2975 assert (asyncmax >= asynccnt);
1986 array_verify (EV_A_ (W *)asyncs, asynccnt); 2976 array_verify (EV_A_ (W *)asyncs, asynccnt);
1987#endif 2977#endif
1988 2978
2005#endif 2995#endif
2006} 2996}
2007#endif 2997#endif
2008 2998
2009#if EV_MULTIPLICITY 2999#if EV_MULTIPLICITY
2010struct ev_loop * 3000struct ev_loop * ecb_cold
2011ev_default_loop_init (unsigned int flags)
2012#else 3001#else
2013int 3002int
3003#endif
2014ev_default_loop (unsigned int flags) 3004ev_default_loop (unsigned int flags) EV_THROW
2015#endif
2016{ 3005{
2017 if (!ev_default_loop_ptr) 3006 if (!ev_default_loop_ptr)
2018 { 3007 {
2019#if EV_MULTIPLICITY 3008#if EV_MULTIPLICITY
2020 EV_P = ev_default_loop_ptr = &default_loop_struct; 3009 EV_P = ev_default_loop_ptr = &default_loop_struct;
2039 3028
2040 return ev_default_loop_ptr; 3029 return ev_default_loop_ptr;
2041} 3030}
2042 3031
2043void 3032void
2044ev_default_destroy (void) 3033ev_loop_fork (EV_P) EV_THROW
2045{ 3034{
2046#if EV_MULTIPLICITY 3035 postfork = 1;
2047 EV_P = ev_default_loop_ptr;
2048#endif
2049
2050 ev_default_loop_ptr = 0;
2051
2052#if EV_CHILD_ENABLE
2053 ev_ref (EV_A); /* child watcher */
2054 ev_signal_stop (EV_A_ &childev);
2055#endif
2056
2057 loop_destroy (EV_A);
2058}
2059
2060void
2061ev_default_fork (void)
2062{
2063#if EV_MULTIPLICITY
2064 EV_P = ev_default_loop_ptr;
2065#endif
2066
2067 postfork = 1; /* must be in line with ev_loop_fork */
2068} 3036}
2069 3037
2070/*****************************************************************************/ 3038/*****************************************************************************/
2071 3039
2072void 3040void
2074{ 3042{
2075 EV_CB_INVOKE ((W)w, revents); 3043 EV_CB_INVOKE ((W)w, revents);
2076} 3044}
2077 3045
2078unsigned int 3046unsigned int
2079ev_pending_count (EV_P) 3047ev_pending_count (EV_P) EV_THROW
2080{ 3048{
2081 int pri; 3049 int pri;
2082 unsigned int count = 0; 3050 unsigned int count = 0;
2083 3051
2084 for (pri = NUMPRI; pri--; ) 3052 for (pri = NUMPRI; pri--; )
2088} 3056}
2089 3057
2090void noinline 3058void noinline
2091ev_invoke_pending (EV_P) 3059ev_invoke_pending (EV_P)
2092{ 3060{
2093 int pri; 3061 pendingpri = NUMPRI;
2094 3062
2095 for (pri = NUMPRI; pri--; ) 3063 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
3064 {
3065 --pendingpri;
3066
2096 while (pendingcnt [pri]) 3067 while (pendingcnt [pendingpri])
2097 { 3068 {
2098 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 3069 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
2099 3070
2100 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2101 /* ^ this is no longer true, as pending_w could be here */
2102
2103 p->w->pending = 0; 3071 p->w->pending = 0;
2104 EV_CB_INVOKE (p->w, p->events); 3072 EV_CB_INVOKE (p->w, p->events);
2105 EV_FREQUENT_CHECK; 3073 EV_FREQUENT_CHECK;
2106 } 3074 }
3075 }
2107} 3076}
2108 3077
2109#if EV_IDLE_ENABLE 3078#if EV_IDLE_ENABLE
2110/* make idle watchers pending. this handles the "call-idle */ 3079/* make idle watchers pending. this handles the "call-idle */
2111/* only when higher priorities are idle" logic */ 3080/* only when higher priorities are idle" logic */
2168 feed_reverse_done (EV_A_ EV_TIMER); 3137 feed_reverse_done (EV_A_ EV_TIMER);
2169 } 3138 }
2170} 3139}
2171 3140
2172#if EV_PERIODIC_ENABLE 3141#if EV_PERIODIC_ENABLE
3142
3143static void noinline
3144periodic_recalc (EV_P_ ev_periodic *w)
3145{
3146 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3147 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3148
3149 /* the above almost always errs on the low side */
3150 while (at <= ev_rt_now)
3151 {
3152 ev_tstamp nat = at + w->interval;
3153
3154 /* when resolution fails us, we use ev_rt_now */
3155 if (expect_false (nat == at))
3156 {
3157 at = ev_rt_now;
3158 break;
3159 }
3160
3161 at = nat;
3162 }
3163
3164 ev_at (w) = at;
3165}
3166
2173/* make periodics pending */ 3167/* make periodics pending */
2174inline_size void 3168inline_size void
2175periodics_reify (EV_P) 3169periodics_reify (EV_P)
2176{ 3170{
2177 EV_FREQUENT_CHECK; 3171 EV_FREQUENT_CHECK;
2178 3172
2179 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 3173 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2180 { 3174 {
2181 int feed_count = 0;
2182
2183 do 3175 do
2184 { 3176 {
2185 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 3177 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2186 3178
2187 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/ 3179 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2196 ANHE_at_cache (periodics [HEAP0]); 3188 ANHE_at_cache (periodics [HEAP0]);
2197 downheap (periodics, periodiccnt, HEAP0); 3189 downheap (periodics, periodiccnt, HEAP0);
2198 } 3190 }
2199 else if (w->interval) 3191 else if (w->interval)
2200 { 3192 {
2201 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 3193 periodic_recalc (EV_A_ w);
2202 /* if next trigger time is not sufficiently in the future, put it there */
2203 /* this might happen because of floating point inexactness */
2204 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2205 {
2206 ev_at (w) += w->interval;
2207
2208 /* if interval is unreasonably low we might still have a time in the past */
2209 /* so correct this. this will make the periodic very inexact, but the user */
2210 /* has effectively asked to get triggered more often than possible */
2211 if (ev_at (w) < ev_rt_now)
2212 ev_at (w) = ev_rt_now;
2213 }
2214
2215 ANHE_at_cache (periodics [HEAP0]); 3194 ANHE_at_cache (periodics [HEAP0]);
2216 downheap (periodics, periodiccnt, HEAP0); 3195 downheap (periodics, periodiccnt, HEAP0);
2217 } 3196 }
2218 else 3197 else
2219 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 3198 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2227 } 3206 }
2228} 3207}
2229 3208
2230/* simply recalculate all periodics */ 3209/* simply recalculate all periodics */
2231/* TODO: maybe ensure that at least one event happens when jumping forward? */ 3210/* TODO: maybe ensure that at least one event happens when jumping forward? */
2232static void noinline 3211static void noinline ecb_cold
2233periodics_reschedule (EV_P) 3212periodics_reschedule (EV_P)
2234{ 3213{
2235 int i; 3214 int i;
2236 3215
2237 /* adjust periodics after time jump */ 3216 /* adjust periodics after time jump */
2240 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]); 3219 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2241 3220
2242 if (w->reschedule_cb) 3221 if (w->reschedule_cb)
2243 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3222 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2244 else if (w->interval) 3223 else if (w->interval)
2245 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 3224 periodic_recalc (EV_A_ w);
2246 3225
2247 ANHE_at_cache (periodics [i]); 3226 ANHE_at_cache (periodics [i]);
2248 } 3227 }
2249 3228
2250 reheap (periodics, periodiccnt); 3229 reheap (periodics, periodiccnt);
2251} 3230}
2252#endif 3231#endif
2253 3232
2254/* adjust all timers by a given offset */ 3233/* adjust all timers by a given offset */
2255static void noinline 3234static void noinline ecb_cold
2256timers_reschedule (EV_P_ ev_tstamp adjust) 3235timers_reschedule (EV_P_ ev_tstamp adjust)
2257{ 3236{
2258 int i; 3237 int i;
2259 3238
2260 for (i = 0; i < timercnt; ++i) 3239 for (i = 0; i < timercnt; ++i)
2297 * doesn't hurt either as we only do this on time-jumps or 3276 * doesn't hurt either as we only do this on time-jumps or
2298 * in the unlikely event of having been preempted here. 3277 * in the unlikely event of having been preempted here.
2299 */ 3278 */
2300 for (i = 4; --i; ) 3279 for (i = 4; --i; )
2301 { 3280 {
3281 ev_tstamp diff;
2302 rtmn_diff = ev_rt_now - mn_now; 3282 rtmn_diff = ev_rt_now - mn_now;
2303 3283
3284 diff = odiff - rtmn_diff;
3285
2304 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)) 3286 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
2305 return; /* all is well */ 3287 return; /* all is well */
2306 3288
2307 ev_rt_now = ev_time (); 3289 ev_rt_now = ev_time ();
2308 mn_now = get_clock (); 3290 mn_now = get_clock ();
2309 now_floor = mn_now; 3291 now_floor = mn_now;
2331 3313
2332 mn_now = ev_rt_now; 3314 mn_now = ev_rt_now;
2333 } 3315 }
2334} 3316}
2335 3317
2336void 3318int
2337ev_run (EV_P_ int flags) 3319ev_run (EV_P_ int flags)
2338{ 3320{
2339#if EV_FEATURE_API 3321#if EV_FEATURE_API
2340 ++loop_depth; 3322 ++loop_depth;
2341#endif 3323#endif
2399 ev_tstamp prev_mn_now = mn_now; 3381 ev_tstamp prev_mn_now = mn_now;
2400 3382
2401 /* update time to cancel out callback processing overhead */ 3383 /* update time to cancel out callback processing overhead */
2402 time_update (EV_A_ 1e100); 3384 time_update (EV_A_ 1e100);
2403 3385
3386 /* from now on, we want a pipe-wake-up */
3387 pipe_write_wanted = 1;
3388
3389 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3390
2404 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt))) 3391 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
2405 { 3392 {
2406 waittime = MAX_BLOCKTIME; 3393 waittime = MAX_BLOCKTIME;
2407 3394
2408 if (timercnt) 3395 if (timercnt)
2409 { 3396 {
2410 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 3397 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
2411 if (waittime > to) waittime = to; 3398 if (waittime > to) waittime = to;
2412 } 3399 }
2413 3400
2414#if EV_PERIODIC_ENABLE 3401#if EV_PERIODIC_ENABLE
2415 if (periodiccnt) 3402 if (periodiccnt)
2416 { 3403 {
2417 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 3404 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
2418 if (waittime > to) waittime = to; 3405 if (waittime > to) waittime = to;
2419 } 3406 }
2420#endif 3407#endif
2421 3408
2422 /* don't let timeouts decrease the waittime below timeout_blocktime */ 3409 /* don't let timeouts decrease the waittime below timeout_blocktime */
2423 if (expect_false (waittime < timeout_blocktime)) 3410 if (expect_false (waittime < timeout_blocktime))
2424 waittime = timeout_blocktime; 3411 waittime = timeout_blocktime;
3412
3413 /* at this point, we NEED to wait, so we have to ensure */
3414 /* to pass a minimum nonzero value to the backend */
3415 if (expect_false (waittime < backend_mintime))
3416 waittime = backend_mintime;
2425 3417
2426 /* extra check because io_blocktime is commonly 0 */ 3418 /* extra check because io_blocktime is commonly 0 */
2427 if (expect_false (io_blocktime)) 3419 if (expect_false (io_blocktime))
2428 { 3420 {
2429 sleeptime = io_blocktime - (mn_now - prev_mn_now); 3421 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2430 3422
2431 if (sleeptime > waittime - backend_fudge) 3423 if (sleeptime > waittime - backend_mintime)
2432 sleeptime = waittime - backend_fudge; 3424 sleeptime = waittime - backend_mintime;
2433 3425
2434 if (expect_true (sleeptime > 0.)) 3426 if (expect_true (sleeptime > 0.))
2435 { 3427 {
2436 ev_sleep (sleeptime); 3428 ev_sleep (sleeptime);
2437 waittime -= sleeptime; 3429 waittime -= sleeptime;
2444#endif 3436#endif
2445 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */ 3437 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2446 backend_poll (EV_A_ waittime); 3438 backend_poll (EV_A_ waittime);
2447 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */ 3439 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
2448 3440
3441 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3442
3443 ECB_MEMORY_FENCE_ACQUIRE;
3444 if (pipe_write_skipped)
3445 {
3446 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3447 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3448 }
3449
3450
2449 /* update ev_rt_now, do magic */ 3451 /* update ev_rt_now, do magic */
2450 time_update (EV_A_ waittime + sleeptime); 3452 time_update (EV_A_ waittime + sleeptime);
2451 } 3453 }
2452 3454
2453 /* queue pending timers and reschedule them */ 3455 /* queue pending timers and reschedule them */
2479 loop_done = EVBREAK_CANCEL; 3481 loop_done = EVBREAK_CANCEL;
2480 3482
2481#if EV_FEATURE_API 3483#if EV_FEATURE_API
2482 --loop_depth; 3484 --loop_depth;
2483#endif 3485#endif
3486
3487 return activecnt;
2484} 3488}
2485 3489
2486void 3490void
2487ev_break (EV_P_ int how) 3491ev_break (EV_P_ int how) EV_THROW
2488{ 3492{
2489 loop_done = how; 3493 loop_done = how;
2490} 3494}
2491 3495
2492void 3496void
2493ev_ref (EV_P) 3497ev_ref (EV_P) EV_THROW
2494{ 3498{
2495 ++activecnt; 3499 ++activecnt;
2496} 3500}
2497 3501
2498void 3502void
2499ev_unref (EV_P) 3503ev_unref (EV_P) EV_THROW
2500{ 3504{
2501 --activecnt; 3505 --activecnt;
2502} 3506}
2503 3507
2504void 3508void
2505ev_now_update (EV_P) 3509ev_now_update (EV_P) EV_THROW
2506{ 3510{
2507 time_update (EV_A_ 1e100); 3511 time_update (EV_A_ 1e100);
2508} 3512}
2509 3513
2510void 3514void
2511ev_suspend (EV_P) 3515ev_suspend (EV_P) EV_THROW
2512{ 3516{
2513 ev_now_update (EV_A); 3517 ev_now_update (EV_A);
2514} 3518}
2515 3519
2516void 3520void
2517ev_resume (EV_P) 3521ev_resume (EV_P) EV_THROW
2518{ 3522{
2519 ev_tstamp mn_prev = mn_now; 3523 ev_tstamp mn_prev = mn_now;
2520 3524
2521 ev_now_update (EV_A); 3525 ev_now_update (EV_A);
2522 timers_reschedule (EV_A_ mn_now - mn_prev); 3526 timers_reschedule (EV_A_ mn_now - mn_prev);
2561 w->pending = 0; 3565 w->pending = 0;
2562 } 3566 }
2563} 3567}
2564 3568
2565int 3569int
2566ev_clear_pending (EV_P_ void *w) 3570ev_clear_pending (EV_P_ void *w) EV_THROW
2567{ 3571{
2568 W w_ = (W)w; 3572 W w_ = (W)w;
2569 int pending = w_->pending; 3573 int pending = w_->pending;
2570 3574
2571 if (expect_true (pending)) 3575 if (expect_true (pending))
2604} 3608}
2605 3609
2606/*****************************************************************************/ 3610/*****************************************************************************/
2607 3611
2608void noinline 3612void noinline
2609ev_io_start (EV_P_ ev_io *w) 3613ev_io_start (EV_P_ ev_io *w) EV_THROW
2610{ 3614{
2611 int fd = w->fd; 3615 int fd = w->fd;
2612 3616
2613 if (expect_false (ev_is_active (w))) 3617 if (expect_false (ev_is_active (w)))
2614 return; 3618 return;
2620 3624
2621 ev_start (EV_A_ (W)w, 1); 3625 ev_start (EV_A_ (W)w, 1);
2622 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero); 3626 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2623 wlist_add (&anfds[fd].head, (WL)w); 3627 wlist_add (&anfds[fd].head, (WL)w);
2624 3628
3629 /* common bug, apparently */
3630 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3631
2625 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY); 3632 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2626 w->events &= ~EV__IOFDSET; 3633 w->events &= ~EV__IOFDSET;
2627 3634
2628 EV_FREQUENT_CHECK; 3635 EV_FREQUENT_CHECK;
2629} 3636}
2630 3637
2631void noinline 3638void noinline
2632ev_io_stop (EV_P_ ev_io *w) 3639ev_io_stop (EV_P_ ev_io *w) EV_THROW
2633{ 3640{
2634 clear_pending (EV_A_ (W)w); 3641 clear_pending (EV_A_ (W)w);
2635 if (expect_false (!ev_is_active (w))) 3642 if (expect_false (!ev_is_active (w)))
2636 return; 3643 return;
2637 3644
2646 3653
2647 EV_FREQUENT_CHECK; 3654 EV_FREQUENT_CHECK;
2648} 3655}
2649 3656
2650void noinline 3657void noinline
2651ev_timer_start (EV_P_ ev_timer *w) 3658ev_timer_start (EV_P_ ev_timer *w) EV_THROW
2652{ 3659{
2653 if (expect_false (ev_is_active (w))) 3660 if (expect_false (ev_is_active (w)))
2654 return; 3661 return;
2655 3662
2656 ev_at (w) += mn_now; 3663 ev_at (w) += mn_now;
2670 3677
2671 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 3678 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2672} 3679}
2673 3680
2674void noinline 3681void noinline
2675ev_timer_stop (EV_P_ ev_timer *w) 3682ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
2676{ 3683{
2677 clear_pending (EV_A_ (W)w); 3684 clear_pending (EV_A_ (W)w);
2678 if (expect_false (!ev_is_active (w))) 3685 if (expect_false (!ev_is_active (w)))
2679 return; 3686 return;
2680 3687
2700 3707
2701 EV_FREQUENT_CHECK; 3708 EV_FREQUENT_CHECK;
2702} 3709}
2703 3710
2704void noinline 3711void noinline
2705ev_timer_again (EV_P_ ev_timer *w) 3712ev_timer_again (EV_P_ ev_timer *w) EV_THROW
2706{ 3713{
2707 EV_FREQUENT_CHECK; 3714 EV_FREQUENT_CHECK;
3715
3716 clear_pending (EV_A_ (W)w);
2708 3717
2709 if (ev_is_active (w)) 3718 if (ev_is_active (w))
2710 { 3719 {
2711 if (w->repeat) 3720 if (w->repeat)
2712 { 3721 {
2725 3734
2726 EV_FREQUENT_CHECK; 3735 EV_FREQUENT_CHECK;
2727} 3736}
2728 3737
2729ev_tstamp 3738ev_tstamp
2730ev_timer_remaining (EV_P_ ev_timer *w) 3739ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
2731{ 3740{
2732 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.); 3741 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2733} 3742}
2734 3743
2735#if EV_PERIODIC_ENABLE 3744#if EV_PERIODIC_ENABLE
2736void noinline 3745void noinline
2737ev_periodic_start (EV_P_ ev_periodic *w) 3746ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
2738{ 3747{
2739 if (expect_false (ev_is_active (w))) 3748 if (expect_false (ev_is_active (w)))
2740 return; 3749 return;
2741 3750
2742 if (w->reschedule_cb) 3751 if (w->reschedule_cb)
2743 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3752 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2744 else if (w->interval) 3753 else if (w->interval)
2745 { 3754 {
2746 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.)); 3755 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2747 /* this formula differs from the one in periodic_reify because we do not always round up */ 3756 periodic_recalc (EV_A_ w);
2748 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2749 } 3757 }
2750 else 3758 else
2751 ev_at (w) = w->offset; 3759 ev_at (w) = w->offset;
2752 3760
2753 EV_FREQUENT_CHECK; 3761 EV_FREQUENT_CHECK;
2763 3771
2764 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 3772 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2765} 3773}
2766 3774
2767void noinline 3775void noinline
2768ev_periodic_stop (EV_P_ ev_periodic *w) 3776ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
2769{ 3777{
2770 clear_pending (EV_A_ (W)w); 3778 clear_pending (EV_A_ (W)w);
2771 if (expect_false (!ev_is_active (w))) 3779 if (expect_false (!ev_is_active (w)))
2772 return; 3780 return;
2773 3781
2791 3799
2792 EV_FREQUENT_CHECK; 3800 EV_FREQUENT_CHECK;
2793} 3801}
2794 3802
2795void noinline 3803void noinline
2796ev_periodic_again (EV_P_ ev_periodic *w) 3804ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
2797{ 3805{
2798 /* TODO: use adjustheap and recalculation */ 3806 /* TODO: use adjustheap and recalculation */
2799 ev_periodic_stop (EV_A_ w); 3807 ev_periodic_stop (EV_A_ w);
2800 ev_periodic_start (EV_A_ w); 3808 ev_periodic_start (EV_A_ w);
2801} 3809}
2806#endif 3814#endif
2807 3815
2808#if EV_SIGNAL_ENABLE 3816#if EV_SIGNAL_ENABLE
2809 3817
2810void noinline 3818void noinline
2811ev_signal_start (EV_P_ ev_signal *w) 3819ev_signal_start (EV_P_ ev_signal *w) EV_THROW
2812{ 3820{
2813 if (expect_false (ev_is_active (w))) 3821 if (expect_false (ev_is_active (w)))
2814 return; 3822 return;
2815 3823
2816 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG)); 3824 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2818#if EV_MULTIPLICITY 3826#if EV_MULTIPLICITY
2819 assert (("libev: a signal must not be attached to two different loops", 3827 assert (("libev: a signal must not be attached to two different loops",
2820 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop)); 3828 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2821 3829
2822 signals [w->signum - 1].loop = EV_A; 3830 signals [w->signum - 1].loop = EV_A;
3831 ECB_MEMORY_FENCE_RELEASE;
2823#endif 3832#endif
2824 3833
2825 EV_FREQUENT_CHECK; 3834 EV_FREQUENT_CHECK;
2826 3835
2827#if EV_USE_SIGNALFD 3836#if EV_USE_SIGNALFD
2874 sa.sa_handler = ev_sighandler; 3883 sa.sa_handler = ev_sighandler;
2875 sigfillset (&sa.sa_mask); 3884 sigfillset (&sa.sa_mask);
2876 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3885 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2877 sigaction (w->signum, &sa, 0); 3886 sigaction (w->signum, &sa, 0);
2878 3887
3888 if (origflags & EVFLAG_NOSIGMASK)
3889 {
2879 sigemptyset (&sa.sa_mask); 3890 sigemptyset (&sa.sa_mask);
2880 sigaddset (&sa.sa_mask, w->signum); 3891 sigaddset (&sa.sa_mask, w->signum);
2881 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0); 3892 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3893 }
2882#endif 3894#endif
2883 } 3895 }
2884 3896
2885 EV_FREQUENT_CHECK; 3897 EV_FREQUENT_CHECK;
2886} 3898}
2887 3899
2888void noinline 3900void noinline
2889ev_signal_stop (EV_P_ ev_signal *w) 3901ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
2890{ 3902{
2891 clear_pending (EV_A_ (W)w); 3903 clear_pending (EV_A_ (W)w);
2892 if (expect_false (!ev_is_active (w))) 3904 if (expect_false (!ev_is_active (w)))
2893 return; 3905 return;
2894 3906
2925#endif 3937#endif
2926 3938
2927#if EV_CHILD_ENABLE 3939#if EV_CHILD_ENABLE
2928 3940
2929void 3941void
2930ev_child_start (EV_P_ ev_child *w) 3942ev_child_start (EV_P_ ev_child *w) EV_THROW
2931{ 3943{
2932#if EV_MULTIPLICITY 3944#if EV_MULTIPLICITY
2933 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3945 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2934#endif 3946#endif
2935 if (expect_false (ev_is_active (w))) 3947 if (expect_false (ev_is_active (w)))
2942 3954
2943 EV_FREQUENT_CHECK; 3955 EV_FREQUENT_CHECK;
2944} 3956}
2945 3957
2946void 3958void
2947ev_child_stop (EV_P_ ev_child *w) 3959ev_child_stop (EV_P_ ev_child *w) EV_THROW
2948{ 3960{
2949 clear_pending (EV_A_ (W)w); 3961 clear_pending (EV_A_ (W)w);
2950 if (expect_false (!ev_is_active (w))) 3962 if (expect_false (!ev_is_active (w)))
2951 return; 3963 return;
2952 3964
2979# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX) 3991# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2980 3992
2981static void noinline 3993static void noinline
2982infy_add (EV_P_ ev_stat *w) 3994infy_add (EV_P_ ev_stat *w)
2983{ 3995{
2984 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3996 w->wd = inotify_add_watch (fs_fd, w->path,
3997 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
3998 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
3999 | IN_DONT_FOLLOW | IN_MASK_ADD);
2985 4000
2986 if (w->wd >= 0) 4001 if (w->wd >= 0)
2987 { 4002 {
2988 struct statfs sfs; 4003 struct statfs sfs;
2989 4004
2993 4008
2994 if (!fs_2625) 4009 if (!fs_2625)
2995 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL; 4010 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2996 else if (!statfs (w->path, &sfs) 4011 else if (!statfs (w->path, &sfs)
2997 && (sfs.f_type == 0x1373 /* devfs */ 4012 && (sfs.f_type == 0x1373 /* devfs */
4013 || sfs.f_type == 0x4006 /* fat */
4014 || sfs.f_type == 0x4d44 /* msdos */
2998 || sfs.f_type == 0xEF53 /* ext2/3 */ 4015 || sfs.f_type == 0xEF53 /* ext2/3 */
4016 || sfs.f_type == 0x72b6 /* jffs2 */
4017 || sfs.f_type == 0x858458f6 /* ramfs */
4018 || sfs.f_type == 0x5346544e /* ntfs */
2999 || sfs.f_type == 0x3153464a /* jfs */ 4019 || sfs.f_type == 0x3153464a /* jfs */
4020 || sfs.f_type == 0x9123683e /* btrfs */
3000 || sfs.f_type == 0x52654973 /* reiser3 */ 4021 || sfs.f_type == 0x52654973 /* reiser3 */
3001 || sfs.f_type == 0x01021994 /* tempfs */ 4022 || sfs.f_type == 0x01021994 /* tmpfs */
3002 || sfs.f_type == 0x58465342 /* xfs */)) 4023 || sfs.f_type == 0x58465342 /* xfs */))
3003 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */ 4024 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3004 else 4025 else
3005 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */ 4026 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3006 } 4027 }
3027 if (!pend || pend == path) 4048 if (!pend || pend == path)
3028 break; 4049 break;
3029 4050
3030 *pend = 0; 4051 *pend = 0;
3031 w->wd = inotify_add_watch (fs_fd, path, mask); 4052 w->wd = inotify_add_watch (fs_fd, path, mask);
3032 } 4053 }
3033 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 4054 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3034 } 4055 }
3035 } 4056 }
3036 4057
3037 if (w->wd >= 0) 4058 if (w->wd >= 0)
3104 infy_wd (EV_A_ ev->wd, ev->wd, ev); 4125 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3105 ofs += sizeof (struct inotify_event) + ev->len; 4126 ofs += sizeof (struct inotify_event) + ev->len;
3106 } 4127 }
3107} 4128}
3108 4129
3109inline_size void 4130inline_size void ecb_cold
3110ev_check_2625 (EV_P) 4131ev_check_2625 (EV_P)
3111{ 4132{
3112 /* kernels < 2.6.25 are borked 4133 /* kernels < 2.6.25 are borked
3113 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html 4134 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3114 */ 4135 */
3119} 4140}
3120 4141
3121inline_size int 4142inline_size int
3122infy_newfd (void) 4143infy_newfd (void)
3123{ 4144{
3124#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK) 4145#if defined IN_CLOEXEC && defined IN_NONBLOCK
3125 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK); 4146 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3126 if (fd >= 0) 4147 if (fd >= 0)
3127 return fd; 4148 return fd;
3128#endif 4149#endif
3129 return inotify_init (); 4150 return inotify_init ();
3204#else 4225#else
3205# define EV_LSTAT(p,b) lstat (p, b) 4226# define EV_LSTAT(p,b) lstat (p, b)
3206#endif 4227#endif
3207 4228
3208void 4229void
3209ev_stat_stat (EV_P_ ev_stat *w) 4230ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
3210{ 4231{
3211 if (lstat (w->path, &w->attr) < 0) 4232 if (lstat (w->path, &w->attr) < 0)
3212 w->attr.st_nlink = 0; 4233 w->attr.st_nlink = 0;
3213 else if (!w->attr.st_nlink) 4234 else if (!w->attr.st_nlink)
3214 w->attr.st_nlink = 1; 4235 w->attr.st_nlink = 1;
3253 ev_feed_event (EV_A_ w, EV_STAT); 4274 ev_feed_event (EV_A_ w, EV_STAT);
3254 } 4275 }
3255} 4276}
3256 4277
3257void 4278void
3258ev_stat_start (EV_P_ ev_stat *w) 4279ev_stat_start (EV_P_ ev_stat *w) EV_THROW
3259{ 4280{
3260 if (expect_false (ev_is_active (w))) 4281 if (expect_false (ev_is_active (w)))
3261 return; 4282 return;
3262 4283
3263 ev_stat_stat (EV_A_ w); 4284 ev_stat_stat (EV_A_ w);
3284 4305
3285 EV_FREQUENT_CHECK; 4306 EV_FREQUENT_CHECK;
3286} 4307}
3287 4308
3288void 4309void
3289ev_stat_stop (EV_P_ ev_stat *w) 4310ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
3290{ 4311{
3291 clear_pending (EV_A_ (W)w); 4312 clear_pending (EV_A_ (W)w);
3292 if (expect_false (!ev_is_active (w))) 4313 if (expect_false (!ev_is_active (w)))
3293 return; 4314 return;
3294 4315
3310} 4331}
3311#endif 4332#endif
3312 4333
3313#if EV_IDLE_ENABLE 4334#if EV_IDLE_ENABLE
3314void 4335void
3315ev_idle_start (EV_P_ ev_idle *w) 4336ev_idle_start (EV_P_ ev_idle *w) EV_THROW
3316{ 4337{
3317 if (expect_false (ev_is_active (w))) 4338 if (expect_false (ev_is_active (w)))
3318 return; 4339 return;
3319 4340
3320 pri_adjust (EV_A_ (W)w); 4341 pri_adjust (EV_A_ (W)w);
3333 4354
3334 EV_FREQUENT_CHECK; 4355 EV_FREQUENT_CHECK;
3335} 4356}
3336 4357
3337void 4358void
3338ev_idle_stop (EV_P_ ev_idle *w) 4359ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
3339{ 4360{
3340 clear_pending (EV_A_ (W)w); 4361 clear_pending (EV_A_ (W)w);
3341 if (expect_false (!ev_is_active (w))) 4362 if (expect_false (!ev_is_active (w)))
3342 return; 4363 return;
3343 4364
3357} 4378}
3358#endif 4379#endif
3359 4380
3360#if EV_PREPARE_ENABLE 4381#if EV_PREPARE_ENABLE
3361void 4382void
3362ev_prepare_start (EV_P_ ev_prepare *w) 4383ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
3363{ 4384{
3364 if (expect_false (ev_is_active (w))) 4385 if (expect_false (ev_is_active (w)))
3365 return; 4386 return;
3366 4387
3367 EV_FREQUENT_CHECK; 4388 EV_FREQUENT_CHECK;
3372 4393
3373 EV_FREQUENT_CHECK; 4394 EV_FREQUENT_CHECK;
3374} 4395}
3375 4396
3376void 4397void
3377ev_prepare_stop (EV_P_ ev_prepare *w) 4398ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
3378{ 4399{
3379 clear_pending (EV_A_ (W)w); 4400 clear_pending (EV_A_ (W)w);
3380 if (expect_false (!ev_is_active (w))) 4401 if (expect_false (!ev_is_active (w)))
3381 return; 4402 return;
3382 4403
3395} 4416}
3396#endif 4417#endif
3397 4418
3398#if EV_CHECK_ENABLE 4419#if EV_CHECK_ENABLE
3399void 4420void
3400ev_check_start (EV_P_ ev_check *w) 4421ev_check_start (EV_P_ ev_check *w) EV_THROW
3401{ 4422{
3402 if (expect_false (ev_is_active (w))) 4423 if (expect_false (ev_is_active (w)))
3403 return; 4424 return;
3404 4425
3405 EV_FREQUENT_CHECK; 4426 EV_FREQUENT_CHECK;
3410 4431
3411 EV_FREQUENT_CHECK; 4432 EV_FREQUENT_CHECK;
3412} 4433}
3413 4434
3414void 4435void
3415ev_check_stop (EV_P_ ev_check *w) 4436ev_check_stop (EV_P_ ev_check *w) EV_THROW
3416{ 4437{
3417 clear_pending (EV_A_ (W)w); 4438 clear_pending (EV_A_ (W)w);
3418 if (expect_false (!ev_is_active (w))) 4439 if (expect_false (!ev_is_active (w)))
3419 return; 4440 return;
3420 4441
3433} 4454}
3434#endif 4455#endif
3435 4456
3436#if EV_EMBED_ENABLE 4457#if EV_EMBED_ENABLE
3437void noinline 4458void noinline
3438ev_embed_sweep (EV_P_ ev_embed *w) 4459ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
3439{ 4460{
3440 ev_run (w->other, EVRUN_NOWAIT); 4461 ev_run (w->other, EVRUN_NOWAIT);
3441} 4462}
3442 4463
3443static void 4464static void
3491 ev_idle_stop (EV_A_ idle); 4512 ev_idle_stop (EV_A_ idle);
3492} 4513}
3493#endif 4514#endif
3494 4515
3495void 4516void
3496ev_embed_start (EV_P_ ev_embed *w) 4517ev_embed_start (EV_P_ ev_embed *w) EV_THROW
3497{ 4518{
3498 if (expect_false (ev_is_active (w))) 4519 if (expect_false (ev_is_active (w)))
3499 return; 4520 return;
3500 4521
3501 { 4522 {
3522 4543
3523 EV_FREQUENT_CHECK; 4544 EV_FREQUENT_CHECK;
3524} 4545}
3525 4546
3526void 4547void
3527ev_embed_stop (EV_P_ ev_embed *w) 4548ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
3528{ 4549{
3529 clear_pending (EV_A_ (W)w); 4550 clear_pending (EV_A_ (W)w);
3530 if (expect_false (!ev_is_active (w))) 4551 if (expect_false (!ev_is_active (w)))
3531 return; 4552 return;
3532 4553
3542} 4563}
3543#endif 4564#endif
3544 4565
3545#if EV_FORK_ENABLE 4566#if EV_FORK_ENABLE
3546void 4567void
3547ev_fork_start (EV_P_ ev_fork *w) 4568ev_fork_start (EV_P_ ev_fork *w) EV_THROW
3548{ 4569{
3549 if (expect_false (ev_is_active (w))) 4570 if (expect_false (ev_is_active (w)))
3550 return; 4571 return;
3551 4572
3552 EV_FREQUENT_CHECK; 4573 EV_FREQUENT_CHECK;
3557 4578
3558 EV_FREQUENT_CHECK; 4579 EV_FREQUENT_CHECK;
3559} 4580}
3560 4581
3561void 4582void
3562ev_fork_stop (EV_P_ ev_fork *w) 4583ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
3563{ 4584{
3564 clear_pending (EV_A_ (W)w); 4585 clear_pending (EV_A_ (W)w);
3565 if (expect_false (!ev_is_active (w))) 4586 if (expect_false (!ev_is_active (w)))
3566 return; 4587 return;
3567 4588
3578 4599
3579 EV_FREQUENT_CHECK; 4600 EV_FREQUENT_CHECK;
3580} 4601}
3581#endif 4602#endif
3582 4603
4604#if EV_CLEANUP_ENABLE
4605void
4606ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4607{
4608 if (expect_false (ev_is_active (w)))
4609 return;
4610
4611 EV_FREQUENT_CHECK;
4612
4613 ev_start (EV_A_ (W)w, ++cleanupcnt);
4614 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4615 cleanups [cleanupcnt - 1] = w;
4616
4617 /* cleanup watchers should never keep a refcount on the loop */
4618 ev_unref (EV_A);
4619 EV_FREQUENT_CHECK;
4620}
4621
4622void
4623ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4624{
4625 clear_pending (EV_A_ (W)w);
4626 if (expect_false (!ev_is_active (w)))
4627 return;
4628
4629 EV_FREQUENT_CHECK;
4630 ev_ref (EV_A);
4631
4632 {
4633 int active = ev_active (w);
4634
4635 cleanups [active - 1] = cleanups [--cleanupcnt];
4636 ev_active (cleanups [active - 1]) = active;
4637 }
4638
4639 ev_stop (EV_A_ (W)w);
4640
4641 EV_FREQUENT_CHECK;
4642}
4643#endif
4644
3583#if EV_ASYNC_ENABLE 4645#if EV_ASYNC_ENABLE
3584void 4646void
3585ev_async_start (EV_P_ ev_async *w) 4647ev_async_start (EV_P_ ev_async *w) EV_THROW
3586{ 4648{
3587 if (expect_false (ev_is_active (w))) 4649 if (expect_false (ev_is_active (w)))
3588 return; 4650 return;
3589 4651
3590 w->sent = 0; 4652 w->sent = 0;
3599 4661
3600 EV_FREQUENT_CHECK; 4662 EV_FREQUENT_CHECK;
3601} 4663}
3602 4664
3603void 4665void
3604ev_async_stop (EV_P_ ev_async *w) 4666ev_async_stop (EV_P_ ev_async *w) EV_THROW
3605{ 4667{
3606 clear_pending (EV_A_ (W)w); 4668 clear_pending (EV_A_ (W)w);
3607 if (expect_false (!ev_is_active (w))) 4669 if (expect_false (!ev_is_active (w)))
3608 return; 4670 return;
3609 4671
3620 4682
3621 EV_FREQUENT_CHECK; 4683 EV_FREQUENT_CHECK;
3622} 4684}
3623 4685
3624void 4686void
3625ev_async_send (EV_P_ ev_async *w) 4687ev_async_send (EV_P_ ev_async *w) EV_THROW
3626{ 4688{
3627 w->sent = 1; 4689 w->sent = 1;
3628 evpipe_write (EV_A_ &async_pending); 4690 evpipe_write (EV_A_ &async_pending);
3629} 4691}
3630#endif 4692#endif
3667 4729
3668 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io)); 4730 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3669} 4731}
3670 4732
3671void 4733void
3672ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4734ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
3673{ 4735{
3674 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4736 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3675 4737
3676 if (expect_false (!once)) 4738 if (expect_false (!once))
3677 { 4739 {
3698} 4760}
3699 4761
3700/*****************************************************************************/ 4762/*****************************************************************************/
3701 4763
3702#if EV_WALK_ENABLE 4764#if EV_WALK_ENABLE
3703void 4765void ecb_cold
3704ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) 4766ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
3705{ 4767{
3706 int i, j; 4768 int i, j;
3707 ev_watcher_list *wl, *wn; 4769 ev_watcher_list *wl, *wn;
3708 4770
3709 if (types & (EV_IO | EV_EMBED)) 4771 if (types & (EV_IO | EV_EMBED))
3752 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i])); 4814 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3753#endif 4815#endif
3754 4816
3755#if EV_IDLE_ENABLE 4817#if EV_IDLE_ENABLE
3756 if (types & EV_IDLE) 4818 if (types & EV_IDLE)
3757 for (j = NUMPRI; i--; ) 4819 for (j = NUMPRI; j--; )
3758 for (i = idlecnt [j]; i--; ) 4820 for (i = idlecnt [j]; i--; )
3759 cb (EV_A_ EV_IDLE, idles [j][i]); 4821 cb (EV_A_ EV_IDLE, idles [j][i]);
3760#endif 4822#endif
3761 4823
3762#if EV_FORK_ENABLE 4824#if EV_FORK_ENABLE
3815 4877
3816#if EV_MULTIPLICITY 4878#if EV_MULTIPLICITY
3817 #include "ev_wrap.h" 4879 #include "ev_wrap.h"
3818#endif 4880#endif
3819 4881
3820EV_CPP(})
3821

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines