ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.257 by root, Sun Jun 29 22:32:51 2008 UTC vs.
Revision 1.468 by root, Fri Sep 5 16:00:17 2014 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012,2013 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
52# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
55# endif 71# endif
56# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
58# endif 74# endif
59# else 75# else
60# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
62# endif 78# endif
63# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
65# endif 81# endif
66# endif 82# endif
67 83
84# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
71# else 88# else
89# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
74# endif 100# endif
75 101
102# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 105# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 106# else
107# undef EV_USE_POLL
88# define EV_USE_POLL 0 108# define EV_USE_POLL 0
89# endif
90# endif 109# endif
91 110
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
95# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
98# endif 118# endif
99 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
106# endif 127# endif
107 128
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
111# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
114# endif 136# endif
115 137
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
122# endif 145# endif
123 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 148# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 149# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
130# endif 163# endif
131 164
132#endif 165#endif
133 166
134#include <math.h>
135#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
136#include <fcntl.h> 169#include <fcntl.h>
137#include <stddef.h> 170#include <stddef.h>
138 171
139#include <stdio.h> 172#include <stdio.h>
140 173
141#include <assert.h> 174#include <assert.h>
142#include <errno.h> 175#include <errno.h>
143#include <sys/types.h> 176#include <sys/types.h>
144#include <time.h> 177#include <time.h>
178#include <limits.h>
145 179
146#include <signal.h> 180#include <signal.h>
147 181
148#ifdef EV_H 182#ifdef EV_H
149# include EV_H 183# include EV_H
150#else 184#else
151# include "ev.h" 185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
152#endif 197#endif
153 198
154#ifndef _WIN32 199#ifndef _WIN32
155# include <sys/time.h> 200# include <sys/time.h>
156# include <sys/wait.h> 201# include <sys/wait.h>
157# include <unistd.h> 202# include <unistd.h>
158#else 203#else
159# include <io.h> 204# include <io.h>
160# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
161# include <windows.h> 207# include <windows.h>
162# ifndef EV_SELECT_IS_WINSOCKET 208# ifndef EV_SELECT_IS_WINSOCKET
163# define EV_SELECT_IS_WINSOCKET 1 209# define EV_SELECT_IS_WINSOCKET 1
164# endif 210# endif
211# undef EV_AVOID_STDIO
165#endif 212#endif
213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
166 221
167/* this block tries to deduce configuration from header-defined symbols and defaults */ 222/* this block tries to deduce configuration from header-defined symbols and defaults */
168 223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# define EV_NSIG (8 * sizeof (sigset_t) + 1)
247#endif
248
249#ifndef EV_USE_FLOOR
250# define EV_USE_FLOOR 0
251#endif
252
253#ifndef EV_USE_CLOCK_SYSCALL
254# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
255# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
256# else
257# define EV_USE_CLOCK_SYSCALL 0
258# endif
259#endif
260
169#ifndef EV_USE_MONOTONIC 261#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0 262# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1 263# define EV_USE_MONOTONIC EV_FEATURE_OS
172# else 264# else
173# define EV_USE_MONOTONIC 0 265# define EV_USE_MONOTONIC 0
174# endif 266# endif
175#endif 267#endif
176 268
177#ifndef EV_USE_REALTIME 269#ifndef EV_USE_REALTIME
178# define EV_USE_REALTIME 0 270# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
179#endif 271#endif
180 272
181#ifndef EV_USE_NANOSLEEP 273#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L 274# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1 275# define EV_USE_NANOSLEEP EV_FEATURE_OS
184# else 276# else
185# define EV_USE_NANOSLEEP 0 277# define EV_USE_NANOSLEEP 0
186# endif 278# endif
187#endif 279#endif
188 280
189#ifndef EV_USE_SELECT 281#ifndef EV_USE_SELECT
190# define EV_USE_SELECT 1 282# define EV_USE_SELECT EV_FEATURE_BACKENDS
191#endif 283#endif
192 284
193#ifndef EV_USE_POLL 285#ifndef EV_USE_POLL
194# ifdef _WIN32 286# ifdef _WIN32
195# define EV_USE_POLL 0 287# define EV_USE_POLL 0
196# else 288# else
197# define EV_USE_POLL 1 289# define EV_USE_POLL EV_FEATURE_BACKENDS
198# endif 290# endif
199#endif 291#endif
200 292
201#ifndef EV_USE_EPOLL 293#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 294# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1 295# define EV_USE_EPOLL EV_FEATURE_BACKENDS
204# else 296# else
205# define EV_USE_EPOLL 0 297# define EV_USE_EPOLL 0
206# endif 298# endif
207#endif 299#endif
208 300
214# define EV_USE_PORT 0 306# define EV_USE_PORT 0
215#endif 307#endif
216 308
217#ifndef EV_USE_INOTIFY 309#ifndef EV_USE_INOTIFY
218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
219# define EV_USE_INOTIFY 1 311# define EV_USE_INOTIFY EV_FEATURE_OS
220# else 312# else
221# define EV_USE_INOTIFY 0 313# define EV_USE_INOTIFY 0
222# endif 314# endif
223#endif 315#endif
224 316
225#ifndef EV_PID_HASHSIZE 317#ifndef EV_PID_HASHSIZE
226# if EV_MINIMAL 318# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
227# define EV_PID_HASHSIZE 1
228# else
229# define EV_PID_HASHSIZE 16
230# endif
231#endif 319#endif
232 320
233#ifndef EV_INOTIFY_HASHSIZE 321#ifndef EV_INOTIFY_HASHSIZE
234# if EV_MINIMAL 322# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
235# define EV_INOTIFY_HASHSIZE 1
236# else
237# define EV_INOTIFY_HASHSIZE 16
238# endif
239#endif 323#endif
240 324
241#ifndef EV_USE_EVENTFD 325#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 326# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1 327# define EV_USE_EVENTFD EV_FEATURE_OS
244# else 328# else
245# define EV_USE_EVENTFD 0 329# define EV_USE_EVENTFD 0
330# endif
331#endif
332
333#ifndef EV_USE_SIGNALFD
334# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
335# define EV_USE_SIGNALFD EV_FEATURE_OS
336# else
337# define EV_USE_SIGNALFD 0
246# endif 338# endif
247#endif 339#endif
248 340
249#if 0 /* debugging */ 341#if 0 /* debugging */
250# define EV_VERIFY 3 342# define EV_VERIFY 3
251# define EV_USE_4HEAP 1 343# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1 344# define EV_HEAP_CACHE_AT 1
253#endif 345#endif
254 346
255#ifndef EV_VERIFY 347#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL 348# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
257#endif 349#endif
258 350
259#ifndef EV_USE_4HEAP 351#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL 352# define EV_USE_4HEAP EV_FEATURE_DATA
261#endif 353#endif
262 354
263#ifndef EV_HEAP_CACHE_AT 355#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL 356# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
357#endif
358
359#ifdef ANDROID
360/* supposedly, android doesn't typedef fd_mask */
361# undef EV_USE_SELECT
362# define EV_USE_SELECT 0
363/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
364# undef EV_USE_CLOCK_SYSCALL
365# define EV_USE_CLOCK_SYSCALL 0
366#endif
367
368/* aix's poll.h seems to cause lots of trouble */
369#ifdef _AIX
370/* AIX has a completely broken poll.h header */
371# undef EV_USE_POLL
372# define EV_USE_POLL 0
373#endif
374
375/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
376/* which makes programs even slower. might work on other unices, too. */
377#if EV_USE_CLOCK_SYSCALL
378# include <sys/syscall.h>
379# ifdef SYS_clock_gettime
380# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
381# undef EV_USE_MONOTONIC
382# define EV_USE_MONOTONIC 1
383# else
384# undef EV_USE_CLOCK_SYSCALL
385# define EV_USE_CLOCK_SYSCALL 0
386# endif
265#endif 387#endif
266 388
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 389/* this block fixes any misconfiguration where we know we run into trouble otherwise */
268 390
269#ifndef CLOCK_MONOTONIC 391#ifndef CLOCK_MONOTONIC
280# undef EV_USE_INOTIFY 402# undef EV_USE_INOTIFY
281# define EV_USE_INOTIFY 0 403# define EV_USE_INOTIFY 0
282#endif 404#endif
283 405
284#if !EV_USE_NANOSLEEP 406#if !EV_USE_NANOSLEEP
285# ifndef _WIN32 407/* hp-ux has it in sys/time.h, which we unconditionally include above */
408# if !defined _WIN32 && !defined __hpux
286# include <sys/select.h> 409# include <sys/select.h>
287# endif 410# endif
288#endif 411#endif
289 412
290#if EV_USE_INOTIFY 413#if EV_USE_INOTIFY
414# include <sys/statfs.h>
291# include <sys/inotify.h> 415# include <sys/inotify.h>
416/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
417# ifndef IN_DONT_FOLLOW
418# undef EV_USE_INOTIFY
419# define EV_USE_INOTIFY 0
292#endif 420# endif
293
294#if EV_SELECT_IS_WINSOCKET
295# include <winsock.h>
296#endif 421#endif
297 422
298#if EV_USE_EVENTFD 423#if EV_USE_EVENTFD
299/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 424/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
300# include <stdint.h> 425# include <stdint.h>
301# ifdef __cplusplus 426# ifndef EFD_NONBLOCK
302extern "C" { 427# define EFD_NONBLOCK O_NONBLOCK
303# endif 428# endif
304int eventfd (unsigned int initval, int flags); 429# ifndef EFD_CLOEXEC
305# ifdef __cplusplus 430# ifdef O_CLOEXEC
306} 431# define EFD_CLOEXEC O_CLOEXEC
432# else
433# define EFD_CLOEXEC 02000000
434# endif
307# endif 435# endif
436EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
437#endif
438
439#if EV_USE_SIGNALFD
440/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
441# include <stdint.h>
442# ifndef SFD_NONBLOCK
443# define SFD_NONBLOCK O_NONBLOCK
444# endif
445# ifndef SFD_CLOEXEC
446# ifdef O_CLOEXEC
447# define SFD_CLOEXEC O_CLOEXEC
448# else
449# define SFD_CLOEXEC 02000000
450# endif
451# endif
452EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
453
454struct signalfd_siginfo
455{
456 uint32_t ssi_signo;
457 char pad[128 - sizeof (uint32_t)];
458};
308#endif 459#endif
309 460
310/**/ 461/**/
311 462
312#if EV_VERIFY >= 3 463#if EV_VERIFY >= 3
313# define EV_FREQUENT_CHECK ev_loop_verify (EV_A) 464# define EV_FREQUENT_CHECK ev_verify (EV_A)
314#else 465#else
315# define EV_FREQUENT_CHECK do { } while (0) 466# define EV_FREQUENT_CHECK do { } while (0)
316#endif 467#endif
317 468
318/* 469/*
319 * This is used to avoid floating point rounding problems. 470 * This is used to work around floating point rounding problems.
320 * It is added to ev_rt_now when scheduling periodics
321 * to ensure progress, time-wise, even when rounding
322 * errors are against us.
323 * This value is good at least till the year 4000. 471 * This value is good at least till the year 4000.
324 * Better solutions welcome.
325 */ 472 */
326#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 473#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
474/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
327 475
328#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 476#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
329#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 477#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
330/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
331 478
479#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
480#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
481
482/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
483/* ECB.H BEGIN */
484/*
485 * libecb - http://software.schmorp.de/pkg/libecb
486 *
487 * Copyright (©) 2009-2014 Marc Alexander Lehmann <libecb@schmorp.de>
488 * Copyright (©) 2011 Emanuele Giaquinta
489 * All rights reserved.
490 *
491 * Redistribution and use in source and binary forms, with or without modifica-
492 * tion, are permitted provided that the following conditions are met:
493 *
494 * 1. Redistributions of source code must retain the above copyright notice,
495 * this list of conditions and the following disclaimer.
496 *
497 * 2. Redistributions in binary form must reproduce the above copyright
498 * notice, this list of conditions and the following disclaimer in the
499 * documentation and/or other materials provided with the distribution.
500 *
501 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
502 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
503 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
504 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
505 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
506 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
507 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
508 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
509 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
510 * OF THE POSSIBILITY OF SUCH DAMAGE.
511 *
512 * Alternatively, the contents of this file may be used under the terms of
513 * the GNU General Public License ("GPL") version 2 or any later version,
514 * in which case the provisions of the GPL are applicable instead of
515 * the above. If you wish to allow the use of your version of this file
516 * only under the terms of the GPL and not to allow others to use your
517 * version of this file under the BSD license, indicate your decision
518 * by deleting the provisions above and replace them with the notice
519 * and other provisions required by the GPL. If you do not delete the
520 * provisions above, a recipient may use your version of this file under
521 * either the BSD or the GPL.
522 */
523
524#ifndef ECB_H
525#define ECB_H
526
527/* 16 bits major, 16 bits minor */
528#define ECB_VERSION 0x00010003
529
530#ifdef _WIN32
531 typedef signed char int8_t;
532 typedef unsigned char uint8_t;
533 typedef signed short int16_t;
534 typedef unsigned short uint16_t;
535 typedef signed int int32_t;
536 typedef unsigned int uint32_t;
332#if __GNUC__ >= 4 537 #if __GNUC__
333# define expect(expr,value) __builtin_expect ((expr),(value)) 538 typedef signed long long int64_t;
334# define noinline __attribute__ ((noinline)) 539 typedef unsigned long long uint64_t;
540 #else /* _MSC_VER || __BORLANDC__ */
541 typedef signed __int64 int64_t;
542 typedef unsigned __int64 uint64_t;
543 #endif
544 #ifdef _WIN64
545 #define ECB_PTRSIZE 8
546 typedef uint64_t uintptr_t;
547 typedef int64_t intptr_t;
548 #else
549 #define ECB_PTRSIZE 4
550 typedef uint32_t uintptr_t;
551 typedef int32_t intptr_t;
552 #endif
335#else 553#else
336# define expect(expr,value) (expr) 554 #include <inttypes.h>
337# define noinline 555 #if UINTMAX_MAX > 0xffffffffU
338# if __STDC_VERSION__ < 199901L && __GNUC__ < 2 556 #define ECB_PTRSIZE 8
339# define inline 557 #else
558 #define ECB_PTRSIZE 4
559 #endif
340# endif 560#endif
561
562/* work around x32 idiocy by defining proper macros */
563#if __amd64 || __x86_64 || _M_AMD64 || _M_X64
564 #if _ILP32
565 #define ECB_AMD64_X32 1
566 #else
567 #define ECB_AMD64 1
341#endif 568 #endif
569#endif
342 570
571/* many compilers define _GNUC_ to some versions but then only implement
572 * what their idiot authors think are the "more important" extensions,
573 * causing enormous grief in return for some better fake benchmark numbers.
574 * or so.
575 * we try to detect these and simply assume they are not gcc - if they have
576 * an issue with that they should have done it right in the first place.
577 */
578#ifndef ECB_GCC_VERSION
579 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
580 #define ECB_GCC_VERSION(major,minor) 0
581 #else
582 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
583 #endif
584#endif
585
586#define ECB_CPP (__cplusplus+0)
587#define ECB_CPP11 (__cplusplus >= 201103L)
588
589#if ECB_CPP
590 #define ECB_C 0
591 #define ECB_STDC_VERSION 0
592#else
593 #define ECB_C 1
594 #define ECB_STDC_VERSION __STDC_VERSION__
595#endif
596
597#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
598#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
599
600#if ECB_CPP
601 #define ECB_EXTERN_C extern "C"
602 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
603 #define ECB_EXTERN_C_END }
604#else
605 #define ECB_EXTERN_C extern
606 #define ECB_EXTERN_C_BEG
607 #define ECB_EXTERN_C_END
608#endif
609
610/*****************************************************************************/
611
612/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
613/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
614
615#if ECB_NO_THREADS
616 #define ECB_NO_SMP 1
617#endif
618
619#if ECB_NO_SMP
620 #define ECB_MEMORY_FENCE do { } while (0)
621#endif
622
623#ifndef ECB_MEMORY_FENCE
624 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
625 #if __i386 || __i386__
626 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
627 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
628 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
629 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
630 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
631 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
632 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
633 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
634 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
635 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
636 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
637 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
638 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
639 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
640 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
641 #elif __aarch64__
642 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
643 #elif (__sparc || __sparc__) && !__sparcv8
644 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
645 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
646 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
647 #elif defined __s390__ || defined __s390x__
648 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
649 #elif defined __mips__
650 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
651 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
652 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
653 #elif defined __alpha__
654 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
655 #elif defined __hppa__
656 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
657 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
658 #elif defined __ia64__
659 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
660 #elif defined __m68k__
661 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
662 #elif defined __m88k__
663 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
664 #elif defined __sh__
665 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
666 #endif
667 #endif
668#endif
669
670#ifndef ECB_MEMORY_FENCE
671 #if ECB_GCC_VERSION(4,7)
672 /* see comment below (stdatomic.h) about the C11 memory model. */
673 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
674 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
675 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
676
677 /* The __has_feature syntax from clang is so misdesigned that we cannot use it
678 * without risking compile time errors with other compilers. We *could*
679 * define our own ecb_clang_has_feature, but I just can't be bothered to work
680 * around this shit time and again.
681 * #elif defined __clang && __has_feature (cxx_atomic)
682 * // see comment below (stdatomic.h) about the C11 memory model.
683 * #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
684 * #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
685 * #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
686 */
687
688 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
689 #define ECB_MEMORY_FENCE __sync_synchronize ()
690 #elif _MSC_VER >= 1500 /* VC++ 2008 */
691 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
692 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
693 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
694 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
695 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
696 #elif _MSC_VER >= 1400 /* VC++ 2005 */
697 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
698 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
699 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
700 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
701 #elif defined _WIN32
702 #include <WinNT.h>
703 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
704 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
705 #include <mbarrier.h>
706 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
707 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
708 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
709 #elif __xlC__
710 #define ECB_MEMORY_FENCE __sync ()
711 #endif
712#endif
713
714#ifndef ECB_MEMORY_FENCE
715 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
716 /* we assume that these memory fences work on all variables/all memory accesses, */
717 /* not just C11 atomics and atomic accesses */
718 #include <stdatomic.h>
719 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
720 /* any fence other than seq_cst, which isn't very efficient for us. */
721 /* Why that is, we don't know - either the C11 memory model is quite useless */
722 /* for most usages, or gcc and clang have a bug */
723 /* I *currently* lean towards the latter, and inefficiently implement */
724 /* all three of ecb's fences as a seq_cst fence */
725 /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */
726 /* for all __atomic_thread_fence's except seq_cst */
727 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
728 #endif
729#endif
730
731#ifndef ECB_MEMORY_FENCE
732 #if !ECB_AVOID_PTHREADS
733 /*
734 * if you get undefined symbol references to pthread_mutex_lock,
735 * or failure to find pthread.h, then you should implement
736 * the ECB_MEMORY_FENCE operations for your cpu/compiler
737 * OR provide pthread.h and link against the posix thread library
738 * of your system.
739 */
740 #include <pthread.h>
741 #define ECB_NEEDS_PTHREADS 1
742 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
743
744 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
745 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
746 #endif
747#endif
748
749#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
750 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
751#endif
752
753#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
754 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
755#endif
756
757/*****************************************************************************/
758
759#if __cplusplus
760 #define ecb_inline static inline
761#elif ECB_GCC_VERSION(2,5)
762 #define ecb_inline static __inline__
763#elif ECB_C99
764 #define ecb_inline static inline
765#else
766 #define ecb_inline static
767#endif
768
769#if ECB_GCC_VERSION(3,3)
770 #define ecb_restrict __restrict__
771#elif ECB_C99
772 #define ecb_restrict restrict
773#else
774 #define ecb_restrict
775#endif
776
777typedef int ecb_bool;
778
779#define ECB_CONCAT_(a, b) a ## b
780#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
781#define ECB_STRINGIFY_(a) # a
782#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
783
784#define ecb_function_ ecb_inline
785
786#if ECB_GCC_VERSION(3,1)
787 #define ecb_attribute(attrlist) __attribute__(attrlist)
788 #define ecb_is_constant(expr) __builtin_constant_p (expr)
789 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
790 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
791#else
792 #define ecb_attribute(attrlist)
793
794 /* possible C11 impl for integral types
795 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
796 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
797
798 #define ecb_is_constant(expr) 0
799 #define ecb_expect(expr,value) (expr)
800 #define ecb_prefetch(addr,rw,locality)
801#endif
802
803/* no emulation for ecb_decltype */
804#if ECB_GCC_VERSION(4,5)
805 #define ecb_decltype(x) __decltype(x)
806#elif ECB_GCC_VERSION(3,0)
807 #define ecb_decltype(x) __typeof(x)
808#endif
809
810#if _MSC_VER >= 1300
811 #define ecb_deprecated __declspec(deprecated)
812#else
813 #define ecb_deprecated ecb_attribute ((__deprecated__))
814#endif
815
816#define ecb_noinline ecb_attribute ((__noinline__))
817#define ecb_unused ecb_attribute ((__unused__))
818#define ecb_const ecb_attribute ((__const__))
819#define ecb_pure ecb_attribute ((__pure__))
820
821/* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx __declspec(noreturn) */
822#if ECB_C11
823 #define ecb_noreturn _Noreturn
824#else
825 #define ecb_noreturn ecb_attribute ((__noreturn__))
826#endif
827
828#if ECB_GCC_VERSION(4,3)
829 #define ecb_artificial ecb_attribute ((__artificial__))
830 #define ecb_hot ecb_attribute ((__hot__))
831 #define ecb_cold ecb_attribute ((__cold__))
832#else
833 #define ecb_artificial
834 #define ecb_hot
835 #define ecb_cold
836#endif
837
838/* put around conditional expressions if you are very sure that the */
839/* expression is mostly true or mostly false. note that these return */
840/* booleans, not the expression. */
343#define expect_false(expr) expect ((expr) != 0, 0) 841#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
344#define expect_true(expr) expect ((expr) != 0, 1) 842#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
843/* for compatibility to the rest of the world */
844#define ecb_likely(expr) ecb_expect_true (expr)
845#define ecb_unlikely(expr) ecb_expect_false (expr)
846
847/* count trailing zero bits and count # of one bits */
848#if ECB_GCC_VERSION(3,4)
849 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
850 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
851 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
852 #define ecb_ctz32(x) __builtin_ctz (x)
853 #define ecb_ctz64(x) __builtin_ctzll (x)
854 #define ecb_popcount32(x) __builtin_popcount (x)
855 /* no popcountll */
856#else
857 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
858 ecb_function_ int
859 ecb_ctz32 (uint32_t x)
860 {
861 int r = 0;
862
863 x &= ~x + 1; /* this isolates the lowest bit */
864
865#if ECB_branchless_on_i386
866 r += !!(x & 0xaaaaaaaa) << 0;
867 r += !!(x & 0xcccccccc) << 1;
868 r += !!(x & 0xf0f0f0f0) << 2;
869 r += !!(x & 0xff00ff00) << 3;
870 r += !!(x & 0xffff0000) << 4;
871#else
872 if (x & 0xaaaaaaaa) r += 1;
873 if (x & 0xcccccccc) r += 2;
874 if (x & 0xf0f0f0f0) r += 4;
875 if (x & 0xff00ff00) r += 8;
876 if (x & 0xffff0000) r += 16;
877#endif
878
879 return r;
880 }
881
882 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
883 ecb_function_ int
884 ecb_ctz64 (uint64_t x)
885 {
886 int shift = x & 0xffffffffU ? 0 : 32;
887 return ecb_ctz32 (x >> shift) + shift;
888 }
889
890 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
891 ecb_function_ int
892 ecb_popcount32 (uint32_t x)
893 {
894 x -= (x >> 1) & 0x55555555;
895 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
896 x = ((x >> 4) + x) & 0x0f0f0f0f;
897 x *= 0x01010101;
898
899 return x >> 24;
900 }
901
902 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
903 ecb_function_ int ecb_ld32 (uint32_t x)
904 {
905 int r = 0;
906
907 if (x >> 16) { x >>= 16; r += 16; }
908 if (x >> 8) { x >>= 8; r += 8; }
909 if (x >> 4) { x >>= 4; r += 4; }
910 if (x >> 2) { x >>= 2; r += 2; }
911 if (x >> 1) { r += 1; }
912
913 return r;
914 }
915
916 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
917 ecb_function_ int ecb_ld64 (uint64_t x)
918 {
919 int r = 0;
920
921 if (x >> 32) { x >>= 32; r += 32; }
922
923 return r + ecb_ld32 (x);
924 }
925#endif
926
927ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
928ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
929ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
930ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
931
932ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
933ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
934{
935 return ( (x * 0x0802U & 0x22110U)
936 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
937}
938
939ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
940ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
941{
942 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
943 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
944 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
945 x = ( x >> 8 ) | ( x << 8);
946
947 return x;
948}
949
950ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
951ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
952{
953 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
954 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
955 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
956 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
957 x = ( x >> 16 ) | ( x << 16);
958
959 return x;
960}
961
962/* popcount64 is only available on 64 bit cpus as gcc builtin */
963/* so for this version we are lazy */
964ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
965ecb_function_ int
966ecb_popcount64 (uint64_t x)
967{
968 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
969}
970
971ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
972ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
973ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
974ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
975ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
976ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
977ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
978ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
979
980ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
981ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
982ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
983ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
984ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
985ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
986ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
987ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
988
989#if ECB_GCC_VERSION(4,3)
990 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
991 #define ecb_bswap32(x) __builtin_bswap32 (x)
992 #define ecb_bswap64(x) __builtin_bswap64 (x)
993#else
994 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
995 ecb_function_ uint16_t
996 ecb_bswap16 (uint16_t x)
997 {
998 return ecb_rotl16 (x, 8);
999 }
1000
1001 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
1002 ecb_function_ uint32_t
1003 ecb_bswap32 (uint32_t x)
1004 {
1005 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1006 }
1007
1008 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
1009 ecb_function_ uint64_t
1010 ecb_bswap64 (uint64_t x)
1011 {
1012 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1013 }
1014#endif
1015
1016#if ECB_GCC_VERSION(4,5)
1017 #define ecb_unreachable() __builtin_unreachable ()
1018#else
1019 /* this seems to work fine, but gcc always emits a warning for it :/ */
1020 ecb_inline void ecb_unreachable (void) ecb_noreturn;
1021 ecb_inline void ecb_unreachable (void) { }
1022#endif
1023
1024/* try to tell the compiler that some condition is definitely true */
1025#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1026
1027ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
1028ecb_inline unsigned char
1029ecb_byteorder_helper (void)
1030{
1031 /* the union code still generates code under pressure in gcc, */
1032 /* but less than using pointers, and always seems to */
1033 /* successfully return a constant. */
1034 /* the reason why we have this horrible preprocessor mess */
1035 /* is to avoid it in all cases, at least on common architectures */
1036 /* or when using a recent enough gcc version (>= 4.6) */
1037#if __i386 || __i386__ || _M_X86 || __amd64 || __amd64__ || _M_X64
1038 return 0x44;
1039#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1040 return 0x44;
1041#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1042 return 0x11;
1043#else
1044 union
1045 {
1046 uint32_t i;
1047 uint8_t c;
1048 } u = { 0x11223344 };
1049 return u.c;
1050#endif
1051}
1052
1053ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
1054ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
1055ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
1056ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
1057
1058#if ECB_GCC_VERSION(3,0) || ECB_C99
1059 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1060#else
1061 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1062#endif
1063
1064#if __cplusplus
1065 template<typename T>
1066 static inline T ecb_div_rd (T val, T div)
1067 {
1068 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1069 }
1070 template<typename T>
1071 static inline T ecb_div_ru (T val, T div)
1072 {
1073 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1074 }
1075#else
1076 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1077 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1078#endif
1079
1080#if ecb_cplusplus_does_not_suck
1081 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1082 template<typename T, int N>
1083 static inline int ecb_array_length (const T (&arr)[N])
1084 {
1085 return N;
1086 }
1087#else
1088 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1089#endif
1090
1091/*******************************************************************************/
1092/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1093
1094/* basically, everything uses "ieee pure-endian" floating point numbers */
1095/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1096#if 0 \
1097 || __i386 || __i386__ \
1098 || __amd64 || __amd64__ || __x86_64 || __x86_64__ \
1099 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1100 || defined __s390__ || defined __s390x__ \
1101 || defined __mips__ \
1102 || defined __alpha__ \
1103 || defined __hppa__ \
1104 || defined __ia64__ \
1105 || defined __m68k__ \
1106 || defined __m88k__ \
1107 || defined __sh__ \
1108 || defined _M_IX86 || defined _M_AMD64 || defined _M_IA64 \
1109 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1110 || defined __aarch64__
1111 #define ECB_STDFP 1
1112 #include <string.h> /* for memcpy */
1113#else
1114 #define ECB_STDFP 0
1115#endif
1116
1117#ifndef ECB_NO_LIBM
1118
1119 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1120
1121 /* only the oldest of old doesn't have this one. solaris. */
1122 #ifdef INFINITY
1123 #define ECB_INFINITY INFINITY
1124 #else
1125 #define ECB_INFINITY HUGE_VAL
1126 #endif
1127
1128 #ifdef NAN
1129 #define ECB_NAN NAN
1130 #else
1131 #define ECB_NAN ECB_INFINITY
1132 #endif
1133
1134 /* converts an ieee half/binary16 to a float */
1135 ecb_function_ float ecb_binary16_to_float (uint16_t x) ecb_const;
1136 ecb_function_ float
1137 ecb_binary16_to_float (uint16_t x)
1138 {
1139 int e = (x >> 10) & 0x1f;
1140 int m = x & 0x3ff;
1141 float r;
1142
1143 if (!e ) r = ldexpf (m , -24);
1144 else if (e != 31) r = ldexpf (m + 0x400, e - 25);
1145 else if (m ) r = ECB_NAN;
1146 else r = ECB_INFINITY;
1147
1148 return x & 0x8000 ? -r : r;
1149 }
1150
1151 /* convert a float to ieee single/binary32 */
1152 ecb_function_ uint32_t ecb_float_to_binary32 (float x) ecb_const;
1153 ecb_function_ uint32_t
1154 ecb_float_to_binary32 (float x)
1155 {
1156 uint32_t r;
1157
1158 #if ECB_STDFP
1159 memcpy (&r, &x, 4);
1160 #else
1161 /* slow emulation, works for anything but -0 */
1162 uint32_t m;
1163 int e;
1164
1165 if (x == 0e0f ) return 0x00000000U;
1166 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1167 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1168 if (x != x ) return 0x7fbfffffU;
1169
1170 m = frexpf (x, &e) * 0x1000000U;
1171
1172 r = m & 0x80000000U;
1173
1174 if (r)
1175 m = -m;
1176
1177 if (e <= -126)
1178 {
1179 m &= 0xffffffU;
1180 m >>= (-125 - e);
1181 e = -126;
1182 }
1183
1184 r |= (e + 126) << 23;
1185 r |= m & 0x7fffffU;
1186 #endif
1187
1188 return r;
1189 }
1190
1191 /* converts an ieee single/binary32 to a float */
1192 ecb_function_ float ecb_binary32_to_float (uint32_t x) ecb_const;
1193 ecb_function_ float
1194 ecb_binary32_to_float (uint32_t x)
1195 {
1196 float r;
1197
1198 #if ECB_STDFP
1199 memcpy (&r, &x, 4);
1200 #else
1201 /* emulation, only works for normals and subnormals and +0 */
1202 int neg = x >> 31;
1203 int e = (x >> 23) & 0xffU;
1204
1205 x &= 0x7fffffU;
1206
1207 if (e)
1208 x |= 0x800000U;
1209 else
1210 e = 1;
1211
1212 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1213 r = ldexpf (x * (0.5f / 0x800000U), e - 126);
1214
1215 r = neg ? -r : r;
1216 #endif
1217
1218 return r;
1219 }
1220
1221 /* convert a double to ieee double/binary64 */
1222 ecb_function_ uint64_t ecb_double_to_binary64 (double x) ecb_const;
1223 ecb_function_ uint64_t
1224 ecb_double_to_binary64 (double x)
1225 {
1226 uint64_t r;
1227
1228 #if ECB_STDFP
1229 memcpy (&r, &x, 8);
1230 #else
1231 /* slow emulation, works for anything but -0 */
1232 uint64_t m;
1233 int e;
1234
1235 if (x == 0e0 ) return 0x0000000000000000U;
1236 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1237 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1238 if (x != x ) return 0X7ff7ffffffffffffU;
1239
1240 m = frexp (x, &e) * 0x20000000000000U;
1241
1242 r = m & 0x8000000000000000;;
1243
1244 if (r)
1245 m = -m;
1246
1247 if (e <= -1022)
1248 {
1249 m &= 0x1fffffffffffffU;
1250 m >>= (-1021 - e);
1251 e = -1022;
1252 }
1253
1254 r |= ((uint64_t)(e + 1022)) << 52;
1255 r |= m & 0xfffffffffffffU;
1256 #endif
1257
1258 return r;
1259 }
1260
1261 /* converts an ieee double/binary64 to a double */
1262 ecb_function_ double ecb_binary64_to_double (uint64_t x) ecb_const;
1263 ecb_function_ double
1264 ecb_binary64_to_double (uint64_t x)
1265 {
1266 double r;
1267
1268 #if ECB_STDFP
1269 memcpy (&r, &x, 8);
1270 #else
1271 /* emulation, only works for normals and subnormals and +0 */
1272 int neg = x >> 63;
1273 int e = (x >> 52) & 0x7ffU;
1274
1275 x &= 0xfffffffffffffU;
1276
1277 if (e)
1278 x |= 0x10000000000000U;
1279 else
1280 e = 1;
1281
1282 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1283 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1284
1285 r = neg ? -r : r;
1286 #endif
1287
1288 return r;
1289 }
1290
1291#endif
1292
1293#endif
1294
1295/* ECB.H END */
1296
1297#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1298/* if your architecture doesn't need memory fences, e.g. because it is
1299 * single-cpu/core, or if you use libev in a project that doesn't use libev
1300 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1301 * libev, in which cases the memory fences become nops.
1302 * alternatively, you can remove this #error and link against libpthread,
1303 * which will then provide the memory fences.
1304 */
1305# error "memory fences not defined for your architecture, please report"
1306#endif
1307
1308#ifndef ECB_MEMORY_FENCE
1309# define ECB_MEMORY_FENCE do { } while (0)
1310# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1311# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1312#endif
1313
1314#define expect_false(cond) ecb_expect_false (cond)
1315#define expect_true(cond) ecb_expect_true (cond)
1316#define noinline ecb_noinline
1317
345#define inline_size static inline 1318#define inline_size ecb_inline
346 1319
347#if EV_MINIMAL 1320#if EV_FEATURE_CODE
1321# define inline_speed ecb_inline
1322#else
348# define inline_speed static noinline 1323# define inline_speed static noinline
1324#endif
1325
1326#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1327
1328#if EV_MINPRI == EV_MAXPRI
1329# define ABSPRI(w) (((W)w), 0)
349#else 1330#else
350# define inline_speed static inline
351#endif
352
353#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
354#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1331# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1332#endif
355 1333
356#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1334#define EMPTY /* required for microsofts broken pseudo-c compiler */
357#define EMPTY2(a,b) /* used to suppress some warnings */ 1335#define EMPTY2(a,b) /* used to suppress some warnings */
358 1336
359typedef ev_watcher *W; 1337typedef ev_watcher *W;
361typedef ev_watcher_time *WT; 1339typedef ev_watcher_time *WT;
362 1340
363#define ev_active(w) ((W)(w))->active 1341#define ev_active(w) ((W)(w))->active
364#define ev_at(w) ((WT)(w))->at 1342#define ev_at(w) ((WT)(w))->at
365 1343
1344#if EV_USE_REALTIME
1345/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1346/* giving it a reasonably high chance of working on typical architectures */
1347static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1348#endif
1349
366#if EV_USE_MONOTONIC 1350#if EV_USE_MONOTONIC
367/* sig_atomic_t is used to avoid per-thread variables or locking but still */
368/* giving it a reasonably high chance of working on typical architetcures */
369static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1351static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1352#endif
1353
1354#ifndef EV_FD_TO_WIN32_HANDLE
1355# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1356#endif
1357#ifndef EV_WIN32_HANDLE_TO_FD
1358# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1359#endif
1360#ifndef EV_WIN32_CLOSE_FD
1361# define EV_WIN32_CLOSE_FD(fd) close (fd)
370#endif 1362#endif
371 1363
372#ifdef _WIN32 1364#ifdef _WIN32
373# include "ev_win32.c" 1365# include "ev_win32.c"
374#endif 1366#endif
375 1367
376/*****************************************************************************/ 1368/*****************************************************************************/
377 1369
1370/* define a suitable floor function (only used by periodics atm) */
1371
1372#if EV_USE_FLOOR
1373# include <math.h>
1374# define ev_floor(v) floor (v)
1375#else
1376
1377#include <float.h>
1378
1379/* a floor() replacement function, should be independent of ev_tstamp type */
1380static ev_tstamp noinline
1381ev_floor (ev_tstamp v)
1382{
1383 /* the choice of shift factor is not terribly important */
1384#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1385 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1386#else
1387 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1388#endif
1389
1390 /* argument too large for an unsigned long? */
1391 if (expect_false (v >= shift))
1392 {
1393 ev_tstamp f;
1394
1395 if (v == v - 1.)
1396 return v; /* very large number */
1397
1398 f = shift * ev_floor (v * (1. / shift));
1399 return f + ev_floor (v - f);
1400 }
1401
1402 /* special treatment for negative args? */
1403 if (expect_false (v < 0.))
1404 {
1405 ev_tstamp f = -ev_floor (-v);
1406
1407 return f - (f == v ? 0 : 1);
1408 }
1409
1410 /* fits into an unsigned long */
1411 return (unsigned long)v;
1412}
1413
1414#endif
1415
1416/*****************************************************************************/
1417
1418#ifdef __linux
1419# include <sys/utsname.h>
1420#endif
1421
1422static unsigned int noinline ecb_cold
1423ev_linux_version (void)
1424{
1425#ifdef __linux
1426 unsigned int v = 0;
1427 struct utsname buf;
1428 int i;
1429 char *p = buf.release;
1430
1431 if (uname (&buf))
1432 return 0;
1433
1434 for (i = 3+1; --i; )
1435 {
1436 unsigned int c = 0;
1437
1438 for (;;)
1439 {
1440 if (*p >= '0' && *p <= '9')
1441 c = c * 10 + *p++ - '0';
1442 else
1443 {
1444 p += *p == '.';
1445 break;
1446 }
1447 }
1448
1449 v = (v << 8) | c;
1450 }
1451
1452 return v;
1453#else
1454 return 0;
1455#endif
1456}
1457
1458/*****************************************************************************/
1459
1460#if EV_AVOID_STDIO
1461static void noinline ecb_cold
1462ev_printerr (const char *msg)
1463{
1464 write (STDERR_FILENO, msg, strlen (msg));
1465}
1466#endif
1467
378static void (*syserr_cb)(const char *msg); 1468static void (*syserr_cb)(const char *msg) EV_THROW;
379 1469
380void 1470void ecb_cold
381ev_set_syserr_cb (void (*cb)(const char *msg)) 1471ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
382{ 1472{
383 syserr_cb = cb; 1473 syserr_cb = cb;
384} 1474}
385 1475
386static void noinline 1476static void noinline ecb_cold
387syserr (const char *msg) 1477ev_syserr (const char *msg)
388{ 1478{
389 if (!msg) 1479 if (!msg)
390 msg = "(libev) system error"; 1480 msg = "(libev) system error";
391 1481
392 if (syserr_cb) 1482 if (syserr_cb)
393 syserr_cb (msg); 1483 syserr_cb (msg);
394 else 1484 else
395 { 1485 {
1486#if EV_AVOID_STDIO
1487 ev_printerr (msg);
1488 ev_printerr (": ");
1489 ev_printerr (strerror (errno));
1490 ev_printerr ("\n");
1491#else
396 perror (msg); 1492 perror (msg);
1493#endif
397 abort (); 1494 abort ();
398 } 1495 }
399} 1496}
400 1497
401static void * 1498static void *
402ev_realloc_emul (void *ptr, long size) 1499ev_realloc_emul (void *ptr, long size) EV_THROW
403{ 1500{
404 /* some systems, notably openbsd and darwin, fail to properly 1501 /* some systems, notably openbsd and darwin, fail to properly
405 * implement realloc (x, 0) (as required by both ansi c-98 and 1502 * implement realloc (x, 0) (as required by both ansi c-89 and
406 * the single unix specification, so work around them here. 1503 * the single unix specification, so work around them here.
1504 * recently, also (at least) fedora and debian started breaking it,
1505 * despite documenting it otherwise.
407 */ 1506 */
408 1507
409 if (size) 1508 if (size)
410 return realloc (ptr, size); 1509 return realloc (ptr, size);
411 1510
412 free (ptr); 1511 free (ptr);
413 return 0; 1512 return 0;
414} 1513}
415 1514
416static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 1515static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
417 1516
418void 1517void ecb_cold
419ev_set_allocator (void *(*cb)(void *ptr, long size)) 1518ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
420{ 1519{
421 alloc = cb; 1520 alloc = cb;
422} 1521}
423 1522
424inline_speed void * 1523inline_speed void *
426{ 1525{
427 ptr = alloc (ptr, size); 1526 ptr = alloc (ptr, size);
428 1527
429 if (!ptr && size) 1528 if (!ptr && size)
430 { 1529 {
1530#if EV_AVOID_STDIO
1531 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1532#else
431 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1533 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1534#endif
432 abort (); 1535 abort ();
433 } 1536 }
434 1537
435 return ptr; 1538 return ptr;
436} 1539}
438#define ev_malloc(size) ev_realloc (0, (size)) 1541#define ev_malloc(size) ev_realloc (0, (size))
439#define ev_free(ptr) ev_realloc ((ptr), 0) 1542#define ev_free(ptr) ev_realloc ((ptr), 0)
440 1543
441/*****************************************************************************/ 1544/*****************************************************************************/
442 1545
1546/* set in reify when reification needed */
1547#define EV_ANFD_REIFY 1
1548
1549/* file descriptor info structure */
443typedef struct 1550typedef struct
444{ 1551{
445 WL head; 1552 WL head;
446 unsigned char events; 1553 unsigned char events; /* the events watched for */
1554 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1555 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
447 unsigned char reify; 1556 unsigned char unused;
1557#if EV_USE_EPOLL
1558 unsigned int egen; /* generation counter to counter epoll bugs */
1559#endif
448#if EV_SELECT_IS_WINSOCKET 1560#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
449 SOCKET handle; 1561 SOCKET handle;
450#endif 1562#endif
1563#if EV_USE_IOCP
1564 OVERLAPPED or, ow;
1565#endif
451} ANFD; 1566} ANFD;
452 1567
1568/* stores the pending event set for a given watcher */
453typedef struct 1569typedef struct
454{ 1570{
455 W w; 1571 W w;
456 int events; 1572 int events; /* the pending event set for the given watcher */
457} ANPENDING; 1573} ANPENDING;
458 1574
459#if EV_USE_INOTIFY 1575#if EV_USE_INOTIFY
460/* hash table entry per inotify-id */ 1576/* hash table entry per inotify-id */
461typedef struct 1577typedef struct
464} ANFS; 1580} ANFS;
465#endif 1581#endif
466 1582
467/* Heap Entry */ 1583/* Heap Entry */
468#if EV_HEAP_CACHE_AT 1584#if EV_HEAP_CACHE_AT
1585 /* a heap element */
469 typedef struct { 1586 typedef struct {
470 ev_tstamp at; 1587 ev_tstamp at;
471 WT w; 1588 WT w;
472 } ANHE; 1589 } ANHE;
473 1590
474 #define ANHE_w(he) (he).w /* access watcher, read-write */ 1591 #define ANHE_w(he) (he).w /* access watcher, read-write */
475 #define ANHE_at(he) (he).at /* access cached at, read-only */ 1592 #define ANHE_at(he) (he).at /* access cached at, read-only */
476 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 1593 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
477#else 1594#else
1595 /* a heap element */
478 typedef WT ANHE; 1596 typedef WT ANHE;
479 1597
480 #define ANHE_w(he) (he) 1598 #define ANHE_w(he) (he)
481 #define ANHE_at(he) (he)->at 1599 #define ANHE_at(he) (he)->at
482 #define ANHE_at_cache(he) 1600 #define ANHE_at_cache(he)
493 #undef VAR 1611 #undef VAR
494 }; 1612 };
495 #include "ev_wrap.h" 1613 #include "ev_wrap.h"
496 1614
497 static struct ev_loop default_loop_struct; 1615 static struct ev_loop default_loop_struct;
498 struct ev_loop *ev_default_loop_ptr; 1616 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
499 1617
500#else 1618#else
501 1619
502 ev_tstamp ev_rt_now; 1620 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
503 #define VAR(name,decl) static decl; 1621 #define VAR(name,decl) static decl;
504 #include "ev_vars.h" 1622 #include "ev_vars.h"
505 #undef VAR 1623 #undef VAR
506 1624
507 static int ev_default_loop_ptr; 1625 static int ev_default_loop_ptr;
508 1626
509#endif 1627#endif
510 1628
1629#if EV_FEATURE_API
1630# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1631# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1632# define EV_INVOKE_PENDING invoke_cb (EV_A)
1633#else
1634# define EV_RELEASE_CB (void)0
1635# define EV_ACQUIRE_CB (void)0
1636# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1637#endif
1638
1639#define EVBREAK_RECURSE 0x80
1640
511/*****************************************************************************/ 1641/*****************************************************************************/
512 1642
1643#ifndef EV_HAVE_EV_TIME
513ev_tstamp 1644ev_tstamp
514ev_time (void) 1645ev_time (void) EV_THROW
515{ 1646{
516#if EV_USE_REALTIME 1647#if EV_USE_REALTIME
1648 if (expect_true (have_realtime))
1649 {
517 struct timespec ts; 1650 struct timespec ts;
518 clock_gettime (CLOCK_REALTIME, &ts); 1651 clock_gettime (CLOCK_REALTIME, &ts);
519 return ts.tv_sec + ts.tv_nsec * 1e-9; 1652 return ts.tv_sec + ts.tv_nsec * 1e-9;
520#else 1653 }
1654#endif
1655
521 struct timeval tv; 1656 struct timeval tv;
522 gettimeofday (&tv, 0); 1657 gettimeofday (&tv, 0);
523 return tv.tv_sec + tv.tv_usec * 1e-6; 1658 return tv.tv_sec + tv.tv_usec * 1e-6;
524#endif
525} 1659}
1660#endif
526 1661
527ev_tstamp inline_size 1662inline_size ev_tstamp
528get_clock (void) 1663get_clock (void)
529{ 1664{
530#if EV_USE_MONOTONIC 1665#if EV_USE_MONOTONIC
531 if (expect_true (have_monotonic)) 1666 if (expect_true (have_monotonic))
532 { 1667 {
539 return ev_time (); 1674 return ev_time ();
540} 1675}
541 1676
542#if EV_MULTIPLICITY 1677#if EV_MULTIPLICITY
543ev_tstamp 1678ev_tstamp
544ev_now (EV_P) 1679ev_now (EV_P) EV_THROW
545{ 1680{
546 return ev_rt_now; 1681 return ev_rt_now;
547} 1682}
548#endif 1683#endif
549 1684
550void 1685void
551ev_sleep (ev_tstamp delay) 1686ev_sleep (ev_tstamp delay) EV_THROW
552{ 1687{
553 if (delay > 0.) 1688 if (delay > 0.)
554 { 1689 {
555#if EV_USE_NANOSLEEP 1690#if EV_USE_NANOSLEEP
556 struct timespec ts; 1691 struct timespec ts;
557 1692
558 ts.tv_sec = (time_t)delay; 1693 EV_TS_SET (ts, delay);
559 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
560
561 nanosleep (&ts, 0); 1694 nanosleep (&ts, 0);
562#elif defined(_WIN32) 1695#elif defined _WIN32
563 Sleep ((unsigned long)(delay * 1e3)); 1696 Sleep ((unsigned long)(delay * 1e3));
564#else 1697#else
565 struct timeval tv; 1698 struct timeval tv;
566 1699
567 tv.tv_sec = (time_t)delay;
568 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
569
570 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */ 1700 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
571 /* somehting nto guaranteed by newer posix versions, but guaranteed */ 1701 /* something not guaranteed by newer posix versions, but guaranteed */
572 /* by older ones */ 1702 /* by older ones */
1703 EV_TV_SET (tv, delay);
573 select (0, 0, 0, 0, &tv); 1704 select (0, 0, 0, 0, &tv);
574#endif 1705#endif
575 } 1706 }
576} 1707}
577 1708
578/*****************************************************************************/ 1709/*****************************************************************************/
579 1710
580#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 1711#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
581 1712
582int inline_size 1713/* find a suitable new size for the given array, */
1714/* hopefully by rounding to a nice-to-malloc size */
1715inline_size int
583array_nextsize (int elem, int cur, int cnt) 1716array_nextsize (int elem, int cur, int cnt)
584{ 1717{
585 int ncur = cur + 1; 1718 int ncur = cur + 1;
586 1719
587 do 1720 do
588 ncur <<= 1; 1721 ncur <<= 1;
589 while (cnt > ncur); 1722 while (cnt > ncur);
590 1723
591 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */ 1724 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
592 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4) 1725 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
593 { 1726 {
594 ncur *= elem; 1727 ncur *= elem;
595 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1); 1728 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
596 ncur = ncur - sizeof (void *) * 4; 1729 ncur = ncur - sizeof (void *) * 4;
598 } 1731 }
599 1732
600 return ncur; 1733 return ncur;
601} 1734}
602 1735
603static noinline void * 1736static void * noinline ecb_cold
604array_realloc (int elem, void *base, int *cur, int cnt) 1737array_realloc (int elem, void *base, int *cur, int cnt)
605{ 1738{
606 *cur = array_nextsize (elem, *cur, cnt); 1739 *cur = array_nextsize (elem, *cur, cnt);
607 return ev_realloc (base, elem * *cur); 1740 return ev_realloc (base, elem * *cur);
608} 1741}
1742
1743#define array_init_zero(base,count) \
1744 memset ((void *)(base), 0, sizeof (*(base)) * (count))
609 1745
610#define array_needsize(type,base,cur,cnt,init) \ 1746#define array_needsize(type,base,cur,cnt,init) \
611 if (expect_false ((cnt) > (cur))) \ 1747 if (expect_false ((cnt) > (cur))) \
612 { \ 1748 { \
613 int ocur_ = (cur); \ 1749 int ecb_unused ocur_ = (cur); \
614 (base) = (type *)array_realloc \ 1750 (base) = (type *)array_realloc \
615 (sizeof (type), (base), &(cur), (cnt)); \ 1751 (sizeof (type), (base), &(cur), (cnt)); \
616 init ((base) + (ocur_), (cur) - ocur_); \ 1752 init ((base) + (ocur_), (cur) - ocur_); \
617 } 1753 }
618 1754
625 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1761 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
626 } 1762 }
627#endif 1763#endif
628 1764
629#define array_free(stem, idx) \ 1765#define array_free(stem, idx) \
630 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1766 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
631 1767
632/*****************************************************************************/ 1768/*****************************************************************************/
633 1769
1770/* dummy callback for pending events */
1771static void noinline
1772pendingcb (EV_P_ ev_prepare *w, int revents)
1773{
1774}
1775
634void noinline 1776void noinline
635ev_feed_event (EV_P_ void *w, int revents) 1777ev_feed_event (EV_P_ void *w, int revents) EV_THROW
636{ 1778{
637 W w_ = (W)w; 1779 W w_ = (W)w;
638 int pri = ABSPRI (w_); 1780 int pri = ABSPRI (w_);
639 1781
640 if (expect_false (w_->pending)) 1782 if (expect_false (w_->pending))
644 w_->pending = ++pendingcnt [pri]; 1786 w_->pending = ++pendingcnt [pri];
645 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 1787 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
646 pendings [pri][w_->pending - 1].w = w_; 1788 pendings [pri][w_->pending - 1].w = w_;
647 pendings [pri][w_->pending - 1].events = revents; 1789 pendings [pri][w_->pending - 1].events = revents;
648 } 1790 }
649}
650 1791
651void inline_speed 1792 pendingpri = NUMPRI - 1;
1793}
1794
1795inline_speed void
1796feed_reverse (EV_P_ W w)
1797{
1798 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1799 rfeeds [rfeedcnt++] = w;
1800}
1801
1802inline_size void
1803feed_reverse_done (EV_P_ int revents)
1804{
1805 do
1806 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1807 while (rfeedcnt);
1808}
1809
1810inline_speed void
652queue_events (EV_P_ W *events, int eventcnt, int type) 1811queue_events (EV_P_ W *events, int eventcnt, int type)
653{ 1812{
654 int i; 1813 int i;
655 1814
656 for (i = 0; i < eventcnt; ++i) 1815 for (i = 0; i < eventcnt; ++i)
657 ev_feed_event (EV_A_ events [i], type); 1816 ev_feed_event (EV_A_ events [i], type);
658} 1817}
659 1818
660/*****************************************************************************/ 1819/*****************************************************************************/
661 1820
662void inline_size 1821inline_speed void
663anfds_init (ANFD *base, int count)
664{
665 while (count--)
666 {
667 base->head = 0;
668 base->events = EV_NONE;
669 base->reify = 0;
670
671 ++base;
672 }
673}
674
675void inline_speed
676fd_event (EV_P_ int fd, int revents) 1822fd_event_nocheck (EV_P_ int fd, int revents)
677{ 1823{
678 ANFD *anfd = anfds + fd; 1824 ANFD *anfd = anfds + fd;
679 ev_io *w; 1825 ev_io *w;
680 1826
681 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1827 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
685 if (ev) 1831 if (ev)
686 ev_feed_event (EV_A_ (W)w, ev); 1832 ev_feed_event (EV_A_ (W)w, ev);
687 } 1833 }
688} 1834}
689 1835
1836/* do not submit kernel events for fds that have reify set */
1837/* because that means they changed while we were polling for new events */
1838inline_speed void
1839fd_event (EV_P_ int fd, int revents)
1840{
1841 ANFD *anfd = anfds + fd;
1842
1843 if (expect_true (!anfd->reify))
1844 fd_event_nocheck (EV_A_ fd, revents);
1845}
1846
690void 1847void
691ev_feed_fd_event (EV_P_ int fd, int revents) 1848ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
692{ 1849{
693 if (fd >= 0 && fd < anfdmax) 1850 if (fd >= 0 && fd < anfdmax)
694 fd_event (EV_A_ fd, revents); 1851 fd_event_nocheck (EV_A_ fd, revents);
695} 1852}
696 1853
697void inline_size 1854/* make sure the external fd watch events are in-sync */
1855/* with the kernel/libev internal state */
1856inline_size void
698fd_reify (EV_P) 1857fd_reify (EV_P)
699{ 1858{
700 int i; 1859 int i;
1860
1861#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1862 for (i = 0; i < fdchangecnt; ++i)
1863 {
1864 int fd = fdchanges [i];
1865 ANFD *anfd = anfds + fd;
1866
1867 if (anfd->reify & EV__IOFDSET && anfd->head)
1868 {
1869 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1870
1871 if (handle != anfd->handle)
1872 {
1873 unsigned long arg;
1874
1875 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1876
1877 /* handle changed, but fd didn't - we need to do it in two steps */
1878 backend_modify (EV_A_ fd, anfd->events, 0);
1879 anfd->events = 0;
1880 anfd->handle = handle;
1881 }
1882 }
1883 }
1884#endif
701 1885
702 for (i = 0; i < fdchangecnt; ++i) 1886 for (i = 0; i < fdchangecnt; ++i)
703 { 1887 {
704 int fd = fdchanges [i]; 1888 int fd = fdchanges [i];
705 ANFD *anfd = anfds + fd; 1889 ANFD *anfd = anfds + fd;
706 ev_io *w; 1890 ev_io *w;
707 1891
708 unsigned char events = 0; 1892 unsigned char o_events = anfd->events;
1893 unsigned char o_reify = anfd->reify;
709 1894
710 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1895 anfd->reify = 0;
711 events |= (unsigned char)w->events;
712 1896
713#if EV_SELECT_IS_WINSOCKET 1897 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
714 if (events)
715 { 1898 {
716 unsigned long arg; 1899 anfd->events = 0;
717 #ifdef EV_FD_TO_WIN32_HANDLE 1900
718 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1901 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
719 #else 1902 anfd->events |= (unsigned char)w->events;
720 anfd->handle = _get_osfhandle (fd); 1903
721 #endif 1904 if (o_events != anfd->events)
722 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0)); 1905 o_reify = EV__IOFDSET; /* actually |= */
723 } 1906 }
724#endif
725 1907
726 { 1908 if (o_reify & EV__IOFDSET)
727 unsigned char o_events = anfd->events;
728 unsigned char o_reify = anfd->reify;
729
730 anfd->reify = 0;
731 anfd->events = events;
732
733 if (o_events != events || o_reify & EV_IOFDSET)
734 backend_modify (EV_A_ fd, o_events, events); 1909 backend_modify (EV_A_ fd, o_events, anfd->events);
735 }
736 } 1910 }
737 1911
738 fdchangecnt = 0; 1912 fdchangecnt = 0;
739} 1913}
740 1914
741void inline_size 1915/* something about the given fd changed */
1916inline_size void
742fd_change (EV_P_ int fd, int flags) 1917fd_change (EV_P_ int fd, int flags)
743{ 1918{
744 unsigned char reify = anfds [fd].reify; 1919 unsigned char reify = anfds [fd].reify;
745 anfds [fd].reify |= flags; 1920 anfds [fd].reify |= flags;
746 1921
750 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1925 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
751 fdchanges [fdchangecnt - 1] = fd; 1926 fdchanges [fdchangecnt - 1] = fd;
752 } 1927 }
753} 1928}
754 1929
755void inline_speed 1930/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1931inline_speed void ecb_cold
756fd_kill (EV_P_ int fd) 1932fd_kill (EV_P_ int fd)
757{ 1933{
758 ev_io *w; 1934 ev_io *w;
759 1935
760 while ((w = (ev_io *)anfds [fd].head)) 1936 while ((w = (ev_io *)anfds [fd].head))
762 ev_io_stop (EV_A_ w); 1938 ev_io_stop (EV_A_ w);
763 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1939 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
764 } 1940 }
765} 1941}
766 1942
767int inline_size 1943/* check whether the given fd is actually valid, for error recovery */
1944inline_size int ecb_cold
768fd_valid (int fd) 1945fd_valid (int fd)
769{ 1946{
770#ifdef _WIN32 1947#ifdef _WIN32
771 return _get_osfhandle (fd) != -1; 1948 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
772#else 1949#else
773 return fcntl (fd, F_GETFD) != -1; 1950 return fcntl (fd, F_GETFD) != -1;
774#endif 1951#endif
775} 1952}
776 1953
777/* called on EBADF to verify fds */ 1954/* called on EBADF to verify fds */
778static void noinline 1955static void noinline ecb_cold
779fd_ebadf (EV_P) 1956fd_ebadf (EV_P)
780{ 1957{
781 int fd; 1958 int fd;
782 1959
783 for (fd = 0; fd < anfdmax; ++fd) 1960 for (fd = 0; fd < anfdmax; ++fd)
785 if (!fd_valid (fd) && errno == EBADF) 1962 if (!fd_valid (fd) && errno == EBADF)
786 fd_kill (EV_A_ fd); 1963 fd_kill (EV_A_ fd);
787} 1964}
788 1965
789/* called on ENOMEM in select/poll to kill some fds and retry */ 1966/* called on ENOMEM in select/poll to kill some fds and retry */
790static void noinline 1967static void noinline ecb_cold
791fd_enomem (EV_P) 1968fd_enomem (EV_P)
792{ 1969{
793 int fd; 1970 int fd;
794 1971
795 for (fd = anfdmax; fd--; ) 1972 for (fd = anfdmax; fd--; )
796 if (anfds [fd].events) 1973 if (anfds [fd].events)
797 { 1974 {
798 fd_kill (EV_A_ fd); 1975 fd_kill (EV_A_ fd);
799 return; 1976 break;
800 } 1977 }
801} 1978}
802 1979
803/* usually called after fork if backend needs to re-arm all fds from scratch */ 1980/* usually called after fork if backend needs to re-arm all fds from scratch */
804static void noinline 1981static void noinline
808 1985
809 for (fd = 0; fd < anfdmax; ++fd) 1986 for (fd = 0; fd < anfdmax; ++fd)
810 if (anfds [fd].events) 1987 if (anfds [fd].events)
811 { 1988 {
812 anfds [fd].events = 0; 1989 anfds [fd].events = 0;
1990 anfds [fd].emask = 0;
813 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1991 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
814 } 1992 }
815} 1993}
816 1994
1995/* used to prepare libev internal fd's */
1996/* this is not fork-safe */
1997inline_speed void
1998fd_intern (int fd)
1999{
2000#ifdef _WIN32
2001 unsigned long arg = 1;
2002 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2003#else
2004 fcntl (fd, F_SETFD, FD_CLOEXEC);
2005 fcntl (fd, F_SETFL, O_NONBLOCK);
2006#endif
2007}
2008
817/*****************************************************************************/ 2009/*****************************************************************************/
818 2010
819/* 2011/*
820 * the heap functions want a real array index. array index 0 uis guaranteed to not 2012 * the heap functions want a real array index. array index 0 is guaranteed to not
821 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 2013 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
822 * the branching factor of the d-tree. 2014 * the branching factor of the d-tree.
823 */ 2015 */
824 2016
825/* 2017/*
834#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 2026#define HEAP0 (DHEAP - 1) /* index of first element in heap */
835#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 2027#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
836#define UPHEAP_DONE(p,k) ((p) == (k)) 2028#define UPHEAP_DONE(p,k) ((p) == (k))
837 2029
838/* away from the root */ 2030/* away from the root */
839void inline_speed 2031inline_speed void
840downheap (ANHE *heap, int N, int k) 2032downheap (ANHE *heap, int N, int k)
841{ 2033{
842 ANHE he = heap [k]; 2034 ANHE he = heap [k];
843 ANHE *E = heap + N + HEAP0; 2035 ANHE *E = heap + N + HEAP0;
844 2036
884#define HEAP0 1 2076#define HEAP0 1
885#define HPARENT(k) ((k) >> 1) 2077#define HPARENT(k) ((k) >> 1)
886#define UPHEAP_DONE(p,k) (!(p)) 2078#define UPHEAP_DONE(p,k) (!(p))
887 2079
888/* away from the root */ 2080/* away from the root */
889void inline_speed 2081inline_speed void
890downheap (ANHE *heap, int N, int k) 2082downheap (ANHE *heap, int N, int k)
891{ 2083{
892 ANHE he = heap [k]; 2084 ANHE he = heap [k];
893 2085
894 for (;;) 2086 for (;;)
895 { 2087 {
896 int c = k << 1; 2088 int c = k << 1;
897 2089
898 if (c > N + HEAP0 - 1) 2090 if (c >= N + HEAP0)
899 break; 2091 break;
900 2092
901 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 2093 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
902 ? 1 : 0; 2094 ? 1 : 0;
903 2095
914 ev_active (ANHE_w (he)) = k; 2106 ev_active (ANHE_w (he)) = k;
915} 2107}
916#endif 2108#endif
917 2109
918/* towards the root */ 2110/* towards the root */
919void inline_speed 2111inline_speed void
920upheap (ANHE *heap, int k) 2112upheap (ANHE *heap, int k)
921{ 2113{
922 ANHE he = heap [k]; 2114 ANHE he = heap [k];
923 2115
924 for (;;) 2116 for (;;)
935 2127
936 heap [k] = he; 2128 heap [k] = he;
937 ev_active (ANHE_w (he)) = k; 2129 ev_active (ANHE_w (he)) = k;
938} 2130}
939 2131
940void inline_size 2132/* move an element suitably so it is in a correct place */
2133inline_size void
941adjustheap (ANHE *heap, int N, int k) 2134adjustheap (ANHE *heap, int N, int k)
942{ 2135{
943 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 2136 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
944 upheap (heap, k); 2137 upheap (heap, k);
945 else 2138 else
946 downheap (heap, N, k); 2139 downheap (heap, N, k);
947} 2140}
948 2141
949/* rebuild the heap: this function is used only once and executed rarely */ 2142/* rebuild the heap: this function is used only once and executed rarely */
950void inline_size 2143inline_size void
951reheap (ANHE *heap, int N) 2144reheap (ANHE *heap, int N)
952{ 2145{
953 int i; 2146 int i;
954 2147
955 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 2148 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
958 upheap (heap, i + HEAP0); 2151 upheap (heap, i + HEAP0);
959} 2152}
960 2153
961/*****************************************************************************/ 2154/*****************************************************************************/
962 2155
2156/* associate signal watchers to a signal signal */
963typedef struct 2157typedef struct
964{ 2158{
2159 EV_ATOMIC_T pending;
2160#if EV_MULTIPLICITY
2161 EV_P;
2162#endif
965 WL head; 2163 WL head;
966 EV_ATOMIC_T gotsig;
967} ANSIG; 2164} ANSIG;
968 2165
969static ANSIG *signals; 2166static ANSIG signals [EV_NSIG - 1];
970static int signalmax;
971
972static EV_ATOMIC_T gotsig;
973
974void inline_size
975signals_init (ANSIG *base, int count)
976{
977 while (count--)
978 {
979 base->head = 0;
980 base->gotsig = 0;
981
982 ++base;
983 }
984}
985 2167
986/*****************************************************************************/ 2168/*****************************************************************************/
987 2169
988void inline_speed 2170#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
989fd_intern (int fd)
990{
991#ifdef _WIN32
992 unsigned long arg = 1;
993 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
994#else
995 fcntl (fd, F_SETFD, FD_CLOEXEC);
996 fcntl (fd, F_SETFL, O_NONBLOCK);
997#endif
998}
999 2171
1000static void noinline 2172static void noinline ecb_cold
1001evpipe_init (EV_P) 2173evpipe_init (EV_P)
1002{ 2174{
1003 if (!ev_is_active (&pipeev)) 2175 if (!ev_is_active (&pipe_w))
2176 {
2177 int fds [2];
2178
2179# if EV_USE_EVENTFD
2180 fds [0] = -1;
2181 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2182 if (fds [1] < 0 && errno == EINVAL)
2183 fds [1] = eventfd (0, 0);
2184
2185 if (fds [1] < 0)
2186# endif
2187 {
2188 while (pipe (fds))
2189 ev_syserr ("(libev) error creating signal/async pipe");
2190
2191 fd_intern (fds [0]);
2192 }
2193
2194 evpipe [0] = fds [0];
2195
2196 if (evpipe [1] < 0)
2197 evpipe [1] = fds [1]; /* first call, set write fd */
2198 else
2199 {
2200 /* on subsequent calls, do not change evpipe [1] */
2201 /* so that evpipe_write can always rely on its value. */
2202 /* this branch does not do anything sensible on windows, */
2203 /* so must not be executed on windows */
2204
2205 dup2 (fds [1], evpipe [1]);
2206 close (fds [1]);
2207 }
2208
2209 fd_intern (evpipe [1]);
2210
2211 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2212 ev_io_start (EV_A_ &pipe_w);
2213 ev_unref (EV_A); /* watcher should not keep loop alive */
1004 { 2214 }
2215}
2216
2217inline_speed void
2218evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2219{
2220 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2221
2222 if (expect_true (*flag))
2223 return;
2224
2225 *flag = 1;
2226 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2227
2228 pipe_write_skipped = 1;
2229
2230 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2231
2232 if (pipe_write_wanted)
2233 {
2234 int old_errno;
2235
2236 pipe_write_skipped = 0;
2237 ECB_MEMORY_FENCE_RELEASE;
2238
2239 old_errno = errno; /* save errno because write will clobber it */
2240
1005#if EV_USE_EVENTFD 2241#if EV_USE_EVENTFD
1006 if ((evfd = eventfd (0, 0)) >= 0) 2242 if (evpipe [0] < 0)
1007 { 2243 {
1008 evpipe [0] = -1; 2244 uint64_t counter = 1;
1009 fd_intern (evfd); 2245 write (evpipe [1], &counter, sizeof (uint64_t));
1010 ev_io_set (&pipeev, evfd, EV_READ);
1011 } 2246 }
1012 else 2247 else
1013#endif 2248#endif
1014 { 2249 {
1015 while (pipe (evpipe)) 2250#ifdef _WIN32
1016 syserr ("(libev) error creating signal/async pipe"); 2251 WSABUF buf;
1017 2252 DWORD sent;
1018 fd_intern (evpipe [0]); 2253 buf.buf = &buf;
1019 fd_intern (evpipe [1]); 2254 buf.len = 1;
1020 ev_io_set (&pipeev, evpipe [0], EV_READ); 2255 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2256#else
2257 write (evpipe [1], &(evpipe [1]), 1);
2258#endif
1021 } 2259 }
1022 2260
1023 ev_io_start (EV_A_ &pipeev); 2261 errno = old_errno;
1024 ev_unref (EV_A); /* watcher should not keep loop alive */
1025 }
1026}
1027
1028void inline_size
1029evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1030{
1031 if (!*flag)
1032 { 2262 }
1033 int old_errno = errno; /* save errno because write might clobber it */ 2263}
1034 2264
1035 *flag = 1; 2265/* called whenever the libev signal pipe */
2266/* got some events (signal, async) */
2267static void
2268pipecb (EV_P_ ev_io *iow, int revents)
2269{
2270 int i;
1036 2271
2272 if (revents & EV_READ)
2273 {
1037#if EV_USE_EVENTFD 2274#if EV_USE_EVENTFD
1038 if (evfd >= 0) 2275 if (evpipe [0] < 0)
1039 { 2276 {
1040 uint64_t counter = 1; 2277 uint64_t counter;
1041 write (evfd, &counter, sizeof (uint64_t)); 2278 read (evpipe [1], &counter, sizeof (uint64_t));
1042 } 2279 }
1043 else 2280 else
1044#endif 2281#endif
1045 write (evpipe [1], &old_errno, 1); 2282 {
1046
1047 errno = old_errno;
1048 }
1049}
1050
1051static void
1052pipecb (EV_P_ ev_io *iow, int revents)
1053{
1054#if EV_USE_EVENTFD
1055 if (evfd >= 0)
1056 {
1057 uint64_t counter;
1058 read (evfd, &counter, sizeof (uint64_t));
1059 }
1060 else
1061#endif
1062 {
1063 char dummy; 2283 char dummy[4];
2284#ifdef _WIN32
2285 WSABUF buf;
2286 DWORD recvd;
2287 DWORD flags = 0;
2288 buf.buf = dummy;
2289 buf.len = sizeof (dummy);
2290 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2291#else
1064 read (evpipe [0], &dummy, 1); 2292 read (evpipe [0], &dummy, sizeof (dummy));
2293#endif
2294 }
2295 }
2296
2297 pipe_write_skipped = 0;
2298
2299 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2300
2301#if EV_SIGNAL_ENABLE
2302 if (sig_pending)
1065 } 2303 {
2304 sig_pending = 0;
1066 2305
1067 if (gotsig && ev_is_default_loop (EV_A)) 2306 ECB_MEMORY_FENCE;
1068 {
1069 int signum;
1070 gotsig = 0;
1071 2307
1072 for (signum = signalmax; signum--; ) 2308 for (i = EV_NSIG - 1; i--; )
1073 if (signals [signum].gotsig) 2309 if (expect_false (signals [i].pending))
1074 ev_feed_signal_event (EV_A_ signum + 1); 2310 ev_feed_signal_event (EV_A_ i + 1);
1075 } 2311 }
2312#endif
1076 2313
1077#if EV_ASYNC_ENABLE 2314#if EV_ASYNC_ENABLE
1078 if (gotasync) 2315 if (async_pending)
1079 { 2316 {
1080 int i; 2317 async_pending = 0;
1081 gotasync = 0; 2318
2319 ECB_MEMORY_FENCE;
1082 2320
1083 for (i = asynccnt; i--; ) 2321 for (i = asynccnt; i--; )
1084 if (asyncs [i]->sent) 2322 if (asyncs [i]->sent)
1085 { 2323 {
1086 asyncs [i]->sent = 0; 2324 asyncs [i]->sent = 0;
2325 ECB_MEMORY_FENCE_RELEASE;
1087 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); 2326 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1088 } 2327 }
1089 } 2328 }
1090#endif 2329#endif
1091} 2330}
1092 2331
1093/*****************************************************************************/ 2332/*****************************************************************************/
1094 2333
2334void
2335ev_feed_signal (int signum) EV_THROW
2336{
2337#if EV_MULTIPLICITY
2338 EV_P;
2339 ECB_MEMORY_FENCE_ACQUIRE;
2340 EV_A = signals [signum - 1].loop;
2341
2342 if (!EV_A)
2343 return;
2344#endif
2345
2346 signals [signum - 1].pending = 1;
2347 evpipe_write (EV_A_ &sig_pending);
2348}
2349
1095static void 2350static void
1096ev_sighandler (int signum) 2351ev_sighandler (int signum)
1097{ 2352{
2353#ifdef _WIN32
2354 signal (signum, ev_sighandler);
2355#endif
2356
2357 ev_feed_signal (signum);
2358}
2359
2360void noinline
2361ev_feed_signal_event (EV_P_ int signum) EV_THROW
2362{
2363 WL w;
2364
2365 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2366 return;
2367
2368 --signum;
2369
1098#if EV_MULTIPLICITY 2370#if EV_MULTIPLICITY
1099 struct ev_loop *loop = &default_loop_struct; 2371 /* it is permissible to try to feed a signal to the wrong loop */
1100#endif 2372 /* or, likely more useful, feeding a signal nobody is waiting for */
1101 2373
1102#if _WIN32 2374 if (expect_false (signals [signum].loop != EV_A))
1103 signal (signum, ev_sighandler);
1104#endif
1105
1106 signals [signum - 1].gotsig = 1;
1107 evpipe_write (EV_A_ &gotsig);
1108}
1109
1110void noinline
1111ev_feed_signal_event (EV_P_ int signum)
1112{
1113 WL w;
1114
1115#if EV_MULTIPLICITY
1116 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1117#endif
1118
1119 --signum;
1120
1121 if (signum < 0 || signum >= signalmax)
1122 return; 2375 return;
2376#endif
1123 2377
1124 signals [signum].gotsig = 0; 2378 signals [signum].pending = 0;
2379 ECB_MEMORY_FENCE_RELEASE;
1125 2380
1126 for (w = signals [signum].head; w; w = w->next) 2381 for (w = signals [signum].head; w; w = w->next)
1127 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2382 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1128} 2383}
1129 2384
2385#if EV_USE_SIGNALFD
2386static void
2387sigfdcb (EV_P_ ev_io *iow, int revents)
2388{
2389 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2390
2391 for (;;)
2392 {
2393 ssize_t res = read (sigfd, si, sizeof (si));
2394
2395 /* not ISO-C, as res might be -1, but works with SuS */
2396 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2397 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2398
2399 if (res < (ssize_t)sizeof (si))
2400 break;
2401 }
2402}
2403#endif
2404
2405#endif
2406
1130/*****************************************************************************/ 2407/*****************************************************************************/
1131 2408
2409#if EV_CHILD_ENABLE
1132static WL childs [EV_PID_HASHSIZE]; 2410static WL childs [EV_PID_HASHSIZE];
1133
1134#ifndef _WIN32
1135 2411
1136static ev_signal childev; 2412static ev_signal childev;
1137 2413
1138#ifndef WIFCONTINUED 2414#ifndef WIFCONTINUED
1139# define WIFCONTINUED(status) 0 2415# define WIFCONTINUED(status) 0
1140#endif 2416#endif
1141 2417
1142void inline_speed 2418/* handle a single child status event */
2419inline_speed void
1143child_reap (EV_P_ int chain, int pid, int status) 2420child_reap (EV_P_ int chain, int pid, int status)
1144{ 2421{
1145 ev_child *w; 2422 ev_child *w;
1146 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2423 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1147 2424
1148 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2425 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1149 { 2426 {
1150 if ((w->pid == pid || !w->pid) 2427 if ((w->pid == pid || !w->pid)
1151 && (!traced || (w->flags & 1))) 2428 && (!traced || (w->flags & 1)))
1152 { 2429 {
1153 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 2430 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1160 2437
1161#ifndef WCONTINUED 2438#ifndef WCONTINUED
1162# define WCONTINUED 0 2439# define WCONTINUED 0
1163#endif 2440#endif
1164 2441
2442/* called on sigchld etc., calls waitpid */
1165static void 2443static void
1166childcb (EV_P_ ev_signal *sw, int revents) 2444childcb (EV_P_ ev_signal *sw, int revents)
1167{ 2445{
1168 int pid, status; 2446 int pid, status;
1169 2447
1177 /* make sure we are called again until all children have been reaped */ 2455 /* make sure we are called again until all children have been reaped */
1178 /* we need to do it this way so that the callback gets called before we continue */ 2456 /* we need to do it this way so that the callback gets called before we continue */
1179 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2457 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1180 2458
1181 child_reap (EV_A_ pid, pid, status); 2459 child_reap (EV_A_ pid, pid, status);
1182 if (EV_PID_HASHSIZE > 1) 2460 if ((EV_PID_HASHSIZE) > 1)
1183 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2461 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1184} 2462}
1185 2463
1186#endif 2464#endif
1187 2465
1188/*****************************************************************************/ 2466/*****************************************************************************/
1189 2467
2468#if EV_USE_IOCP
2469# include "ev_iocp.c"
2470#endif
1190#if EV_USE_PORT 2471#if EV_USE_PORT
1191# include "ev_port.c" 2472# include "ev_port.c"
1192#endif 2473#endif
1193#if EV_USE_KQUEUE 2474#if EV_USE_KQUEUE
1194# include "ev_kqueue.c" 2475# include "ev_kqueue.c"
1201#endif 2482#endif
1202#if EV_USE_SELECT 2483#if EV_USE_SELECT
1203# include "ev_select.c" 2484# include "ev_select.c"
1204#endif 2485#endif
1205 2486
1206int 2487int ecb_cold
1207ev_version_major (void) 2488ev_version_major (void) EV_THROW
1208{ 2489{
1209 return EV_VERSION_MAJOR; 2490 return EV_VERSION_MAJOR;
1210} 2491}
1211 2492
1212int 2493int ecb_cold
1213ev_version_minor (void) 2494ev_version_minor (void) EV_THROW
1214{ 2495{
1215 return EV_VERSION_MINOR; 2496 return EV_VERSION_MINOR;
1216} 2497}
1217 2498
1218/* return true if we are running with elevated privileges and should ignore env variables */ 2499/* return true if we are running with elevated privileges and should ignore env variables */
1219int inline_size 2500int inline_size ecb_cold
1220enable_secure (void) 2501enable_secure (void)
1221{ 2502{
1222#ifdef _WIN32 2503#ifdef _WIN32
1223 return 0; 2504 return 0;
1224#else 2505#else
1225 return getuid () != geteuid () 2506 return getuid () != geteuid ()
1226 || getgid () != getegid (); 2507 || getgid () != getegid ();
1227#endif 2508#endif
1228} 2509}
1229 2510
1230unsigned int 2511unsigned int ecb_cold
1231ev_supported_backends (void) 2512ev_supported_backends (void) EV_THROW
1232{ 2513{
1233 unsigned int flags = 0; 2514 unsigned int flags = 0;
1234 2515
1235 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2516 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1236 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2517 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1239 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2520 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1240 2521
1241 return flags; 2522 return flags;
1242} 2523}
1243 2524
1244unsigned int 2525unsigned int ecb_cold
1245ev_recommended_backends (void) 2526ev_recommended_backends (void) EV_THROW
1246{ 2527{
1247 unsigned int flags = ev_supported_backends (); 2528 unsigned int flags = ev_supported_backends ();
1248 2529
1249#ifndef __NetBSD__ 2530#ifndef __NetBSD__
1250 /* kqueue is borked on everything but netbsd apparently */ 2531 /* kqueue is borked on everything but netbsd apparently */
1251 /* it usually doesn't work correctly on anything but sockets and pipes */ 2532 /* it usually doesn't work correctly on anything but sockets and pipes */
1252 flags &= ~EVBACKEND_KQUEUE; 2533 flags &= ~EVBACKEND_KQUEUE;
1253#endif 2534#endif
1254#ifdef __APPLE__ 2535#ifdef __APPLE__
1255 // flags &= ~EVBACKEND_KQUEUE; for documentation 2536 /* only select works correctly on that "unix-certified" platform */
1256 flags &= ~EVBACKEND_POLL; 2537 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2538 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2539#endif
2540#ifdef __FreeBSD__
2541 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1257#endif 2542#endif
1258 2543
1259 return flags; 2544 return flags;
1260} 2545}
1261 2546
2547unsigned int ecb_cold
2548ev_embeddable_backends (void) EV_THROW
2549{
2550 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2551
2552 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2553 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2554 flags &= ~EVBACKEND_EPOLL;
2555
2556 return flags;
2557}
2558
1262unsigned int 2559unsigned int
1263ev_embeddable_backends (void) 2560ev_backend (EV_P) EV_THROW
1264{ 2561{
1265 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2562 return backend;
1266
1267 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1268 /* please fix it and tell me how to detect the fix */
1269 flags &= ~EVBACKEND_EPOLL;
1270
1271 return flags;
1272} 2563}
1273 2564
2565#if EV_FEATURE_API
1274unsigned int 2566unsigned int
1275ev_backend (EV_P) 2567ev_iteration (EV_P) EV_THROW
1276{ 2568{
1277 return backend; 2569 return loop_count;
1278} 2570}
1279 2571
1280unsigned int 2572unsigned int
1281ev_loop_count (EV_P) 2573ev_depth (EV_P) EV_THROW
1282{ 2574{
1283 return loop_count; 2575 return loop_depth;
1284} 2576}
1285 2577
1286void 2578void
1287ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2579ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1288{ 2580{
1289 io_blocktime = interval; 2581 io_blocktime = interval;
1290} 2582}
1291 2583
1292void 2584void
1293ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2585ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1294{ 2586{
1295 timeout_blocktime = interval; 2587 timeout_blocktime = interval;
1296} 2588}
1297 2589
2590void
2591ev_set_userdata (EV_P_ void *data) EV_THROW
2592{
2593 userdata = data;
2594}
2595
2596void *
2597ev_userdata (EV_P) EV_THROW
2598{
2599 return userdata;
2600}
2601
2602void
2603ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_THROW
2604{
2605 invoke_cb = invoke_pending_cb;
2606}
2607
2608void
2609ev_set_loop_release_cb (EV_P_ ev_loop_callback_nothrow release, ev_loop_callback_nothrow acquire) EV_THROW
2610{
2611 release_cb = release;
2612 acquire_cb = acquire;
2613}
2614#endif
2615
2616/* initialise a loop structure, must be zero-initialised */
1298static void noinline 2617static void noinline ecb_cold
1299loop_init (EV_P_ unsigned int flags) 2618loop_init (EV_P_ unsigned int flags) EV_THROW
1300{ 2619{
1301 if (!backend) 2620 if (!backend)
1302 { 2621 {
2622 origflags = flags;
2623
2624#if EV_USE_REALTIME
2625 if (!have_realtime)
2626 {
2627 struct timespec ts;
2628
2629 if (!clock_gettime (CLOCK_REALTIME, &ts))
2630 have_realtime = 1;
2631 }
2632#endif
2633
1303#if EV_USE_MONOTONIC 2634#if EV_USE_MONOTONIC
2635 if (!have_monotonic)
1304 { 2636 {
1305 struct timespec ts; 2637 struct timespec ts;
2638
1306 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2639 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1307 have_monotonic = 1; 2640 have_monotonic = 1;
1308 } 2641 }
1309#endif
1310
1311 ev_rt_now = ev_time ();
1312 mn_now = get_clock ();
1313 now_floor = mn_now;
1314 rtmn_diff = ev_rt_now - mn_now;
1315
1316 io_blocktime = 0.;
1317 timeout_blocktime = 0.;
1318 backend = 0;
1319 backend_fd = -1;
1320 gotasync = 0;
1321#if EV_USE_INOTIFY
1322 fs_fd = -2;
1323#endif 2642#endif
1324 2643
1325 /* pid check not overridable via env */ 2644 /* pid check not overridable via env */
1326#ifndef _WIN32 2645#ifndef _WIN32
1327 if (flags & EVFLAG_FORKCHECK) 2646 if (flags & EVFLAG_FORKCHECK)
1331 if (!(flags & EVFLAG_NOENV) 2650 if (!(flags & EVFLAG_NOENV)
1332 && !enable_secure () 2651 && !enable_secure ()
1333 && getenv ("LIBEV_FLAGS")) 2652 && getenv ("LIBEV_FLAGS"))
1334 flags = atoi (getenv ("LIBEV_FLAGS")); 2653 flags = atoi (getenv ("LIBEV_FLAGS"));
1335 2654
1336 if (!(flags & 0x0000ffffU)) 2655 ev_rt_now = ev_time ();
2656 mn_now = get_clock ();
2657 now_floor = mn_now;
2658 rtmn_diff = ev_rt_now - mn_now;
2659#if EV_FEATURE_API
2660 invoke_cb = ev_invoke_pending;
2661#endif
2662
2663 io_blocktime = 0.;
2664 timeout_blocktime = 0.;
2665 backend = 0;
2666 backend_fd = -1;
2667 sig_pending = 0;
2668#if EV_ASYNC_ENABLE
2669 async_pending = 0;
2670#endif
2671 pipe_write_skipped = 0;
2672 pipe_write_wanted = 0;
2673 evpipe [0] = -1;
2674 evpipe [1] = -1;
2675#if EV_USE_INOTIFY
2676 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2677#endif
2678#if EV_USE_SIGNALFD
2679 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2680#endif
2681
2682 if (!(flags & EVBACKEND_MASK))
1337 flags |= ev_recommended_backends (); 2683 flags |= ev_recommended_backends ();
1338 2684
2685#if EV_USE_IOCP
2686 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2687#endif
1339#if EV_USE_PORT 2688#if EV_USE_PORT
1340 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2689 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1341#endif 2690#endif
1342#if EV_USE_KQUEUE 2691#if EV_USE_KQUEUE
1343 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2692 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1350#endif 2699#endif
1351#if EV_USE_SELECT 2700#if EV_USE_SELECT
1352 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2701 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1353#endif 2702#endif
1354 2703
2704 ev_prepare_init (&pending_w, pendingcb);
2705
2706#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1355 ev_init (&pipeev, pipecb); 2707 ev_init (&pipe_w, pipecb);
1356 ev_set_priority (&pipeev, EV_MAXPRI); 2708 ev_set_priority (&pipe_w, EV_MAXPRI);
2709#endif
1357 } 2710 }
1358} 2711}
1359 2712
1360static void noinline 2713/* free up a loop structure */
2714void ecb_cold
1361loop_destroy (EV_P) 2715ev_loop_destroy (EV_P)
1362{ 2716{
1363 int i; 2717 int i;
1364 2718
2719#if EV_MULTIPLICITY
2720 /* mimic free (0) */
2721 if (!EV_A)
2722 return;
2723#endif
2724
2725#if EV_CLEANUP_ENABLE
2726 /* queue cleanup watchers (and execute them) */
2727 if (expect_false (cleanupcnt))
2728 {
2729 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2730 EV_INVOKE_PENDING;
2731 }
2732#endif
2733
2734#if EV_CHILD_ENABLE
2735 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2736 {
2737 ev_ref (EV_A); /* child watcher */
2738 ev_signal_stop (EV_A_ &childev);
2739 }
2740#endif
2741
1365 if (ev_is_active (&pipeev)) 2742 if (ev_is_active (&pipe_w))
1366 { 2743 {
1367 ev_ref (EV_A); /* signal watcher */ 2744 /*ev_ref (EV_A);*/
1368 ev_io_stop (EV_A_ &pipeev); 2745 /*ev_io_stop (EV_A_ &pipe_w);*/
1369 2746
2747 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2748 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2749 }
2750
1370#if EV_USE_EVENTFD 2751#if EV_USE_SIGNALFD
1371 if (evfd >= 0) 2752 if (ev_is_active (&sigfd_w))
1372 close (evfd); 2753 close (sigfd);
1373#endif 2754#endif
1374
1375 if (evpipe [0] >= 0)
1376 {
1377 close (evpipe [0]);
1378 close (evpipe [1]);
1379 }
1380 }
1381 2755
1382#if EV_USE_INOTIFY 2756#if EV_USE_INOTIFY
1383 if (fs_fd >= 0) 2757 if (fs_fd >= 0)
1384 close (fs_fd); 2758 close (fs_fd);
1385#endif 2759#endif
1386 2760
1387 if (backend_fd >= 0) 2761 if (backend_fd >= 0)
1388 close (backend_fd); 2762 close (backend_fd);
1389 2763
2764#if EV_USE_IOCP
2765 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2766#endif
1390#if EV_USE_PORT 2767#if EV_USE_PORT
1391 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2768 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1392#endif 2769#endif
1393#if EV_USE_KQUEUE 2770#if EV_USE_KQUEUE
1394 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2771 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1409#if EV_IDLE_ENABLE 2786#if EV_IDLE_ENABLE
1410 array_free (idle, [i]); 2787 array_free (idle, [i]);
1411#endif 2788#endif
1412 } 2789 }
1413 2790
1414 ev_free (anfds); anfdmax = 0; 2791 ev_free (anfds); anfds = 0; anfdmax = 0;
1415 2792
1416 /* have to use the microsoft-never-gets-it-right macro */ 2793 /* have to use the microsoft-never-gets-it-right macro */
2794 array_free (rfeed, EMPTY);
1417 array_free (fdchange, EMPTY); 2795 array_free (fdchange, EMPTY);
1418 array_free (timer, EMPTY); 2796 array_free (timer, EMPTY);
1419#if EV_PERIODIC_ENABLE 2797#if EV_PERIODIC_ENABLE
1420 array_free (periodic, EMPTY); 2798 array_free (periodic, EMPTY);
1421#endif 2799#endif
1422#if EV_FORK_ENABLE 2800#if EV_FORK_ENABLE
1423 array_free (fork, EMPTY); 2801 array_free (fork, EMPTY);
1424#endif 2802#endif
2803#if EV_CLEANUP_ENABLE
2804 array_free (cleanup, EMPTY);
2805#endif
1425 array_free (prepare, EMPTY); 2806 array_free (prepare, EMPTY);
1426 array_free (check, EMPTY); 2807 array_free (check, EMPTY);
1427#if EV_ASYNC_ENABLE 2808#if EV_ASYNC_ENABLE
1428 array_free (async, EMPTY); 2809 array_free (async, EMPTY);
1429#endif 2810#endif
1430 2811
1431 backend = 0; 2812 backend = 0;
2813
2814#if EV_MULTIPLICITY
2815 if (ev_is_default_loop (EV_A))
2816#endif
2817 ev_default_loop_ptr = 0;
2818#if EV_MULTIPLICITY
2819 else
2820 ev_free (EV_A);
2821#endif
1432} 2822}
1433 2823
1434#if EV_USE_INOTIFY 2824#if EV_USE_INOTIFY
1435void inline_size infy_fork (EV_P); 2825inline_size void infy_fork (EV_P);
1436#endif 2826#endif
1437 2827
1438void inline_size 2828inline_size void
1439loop_fork (EV_P) 2829loop_fork (EV_P)
1440{ 2830{
1441#if EV_USE_PORT 2831#if EV_USE_PORT
1442 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2832 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1443#endif 2833#endif
1449#endif 2839#endif
1450#if EV_USE_INOTIFY 2840#if EV_USE_INOTIFY
1451 infy_fork (EV_A); 2841 infy_fork (EV_A);
1452#endif 2842#endif
1453 2843
2844#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1454 if (ev_is_active (&pipeev)) 2845 if (ev_is_active (&pipe_w))
1455 { 2846 {
1456 /* this "locks" the handlers against writing to the pipe */ 2847 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1457 /* while we modify the fd vars */
1458 gotsig = 1;
1459#if EV_ASYNC_ENABLE
1460 gotasync = 1;
1461#endif
1462 2848
1463 ev_ref (EV_A); 2849 ev_ref (EV_A);
1464 ev_io_stop (EV_A_ &pipeev); 2850 ev_io_stop (EV_A_ &pipe_w);
1465
1466#if EV_USE_EVENTFD
1467 if (evfd >= 0)
1468 close (evfd);
1469#endif
1470 2851
1471 if (evpipe [0] >= 0) 2852 if (evpipe [0] >= 0)
1472 { 2853 EV_WIN32_CLOSE_FD (evpipe [0]);
1473 close (evpipe [0]);
1474 close (evpipe [1]);
1475 }
1476 2854
1477 evpipe_init (EV_A); 2855 evpipe_init (EV_A);
1478 /* now iterate over everything, in case we missed something */ 2856 /* iterate over everything, in case we missed something before */
1479 pipecb (EV_A_ &pipeev, EV_READ); 2857 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
1480 } 2858 }
2859#endif
1481 2860
1482 postfork = 0; 2861 postfork = 0;
1483} 2862}
1484 2863
1485#if EV_MULTIPLICITY 2864#if EV_MULTIPLICITY
1486 2865
1487struct ev_loop * 2866struct ev_loop * ecb_cold
1488ev_loop_new (unsigned int flags) 2867ev_loop_new (unsigned int flags) EV_THROW
1489{ 2868{
1490 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2869 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1491 2870
1492 memset (loop, 0, sizeof (struct ev_loop)); 2871 memset (EV_A, 0, sizeof (struct ev_loop));
1493
1494 loop_init (EV_A_ flags); 2872 loop_init (EV_A_ flags);
1495 2873
1496 if (ev_backend (EV_A)) 2874 if (ev_backend (EV_A))
1497 return loop; 2875 return EV_A;
1498 2876
2877 ev_free (EV_A);
1499 return 0; 2878 return 0;
1500} 2879}
1501 2880
1502void 2881#endif /* multiplicity */
1503ev_loop_destroy (EV_P)
1504{
1505 loop_destroy (EV_A);
1506 ev_free (loop);
1507}
1508
1509void
1510ev_loop_fork (EV_P)
1511{
1512 postfork = 1; /* must be in line with ev_default_fork */
1513}
1514 2882
1515#if EV_VERIFY 2883#if EV_VERIFY
1516void noinline 2884static void noinline ecb_cold
1517verify_watcher (EV_P_ W w) 2885verify_watcher (EV_P_ W w)
1518{ 2886{
1519 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI)); 2887 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1520 2888
1521 if (w->pending) 2889 if (w->pending)
1522 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w)); 2890 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1523} 2891}
1524 2892
1525static void noinline 2893static void noinline ecb_cold
1526verify_heap (EV_P_ ANHE *heap, int N) 2894verify_heap (EV_P_ ANHE *heap, int N)
1527{ 2895{
1528 int i; 2896 int i;
1529 2897
1530 for (i = HEAP0; i < N + HEAP0; ++i) 2898 for (i = HEAP0; i < N + HEAP0; ++i)
1531 { 2899 {
1532 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i)); 2900 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1533 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i]))); 2901 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1534 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i])))); 2902 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1535 2903
1536 verify_watcher (EV_A_ (W)ANHE_w (heap [i])); 2904 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1537 } 2905 }
1538} 2906}
1539 2907
1540static void noinline 2908static void noinline ecb_cold
1541array_verify (EV_P_ W *ws, int cnt) 2909array_verify (EV_P_ W *ws, int cnt)
1542{ 2910{
1543 while (cnt--) 2911 while (cnt--)
1544 { 2912 {
1545 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1)); 2913 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1546 verify_watcher (EV_A_ ws [cnt]); 2914 verify_watcher (EV_A_ ws [cnt]);
1547 } 2915 }
1548} 2916}
1549#endif 2917#endif
1550 2918
1551void 2919#if EV_FEATURE_API
1552ev_loop_verify (EV_P) 2920void ecb_cold
2921ev_verify (EV_P) EV_THROW
1553{ 2922{
1554#if EV_VERIFY 2923#if EV_VERIFY
1555 int i; 2924 int i;
1556 WL w; 2925 WL w, w2;
1557 2926
1558 assert (activecnt >= -1); 2927 assert (activecnt >= -1);
1559 2928
1560 assert (fdchangemax >= fdchangecnt); 2929 assert (fdchangemax >= fdchangecnt);
1561 for (i = 0; i < fdchangecnt; ++i) 2930 for (i = 0; i < fdchangecnt; ++i)
1562 assert (("negative fd in fdchanges", fdchanges [i] >= 0)); 2931 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1563 2932
1564 assert (anfdmax >= 0); 2933 assert (anfdmax >= 0);
1565 for (i = 0; i < anfdmax; ++i) 2934 for (i = 0; i < anfdmax; ++i)
2935 {
2936 int j = 0;
2937
1566 for (w = anfds [i].head; w; w = w->next) 2938 for (w = w2 = anfds [i].head; w; w = w->next)
1567 { 2939 {
1568 verify_watcher (EV_A_ (W)w); 2940 verify_watcher (EV_A_ (W)w);
2941
2942 if (j++ & 1)
2943 {
2944 assert (("libev: io watcher list contains a loop", w != w2));
2945 w2 = w2->next;
2946 }
2947
1569 assert (("inactive fd watcher on anfd list", ev_active (w) == 1)); 2948 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1570 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i)); 2949 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1571 } 2950 }
2951 }
1572 2952
1573 assert (timermax >= timercnt); 2953 assert (timermax >= timercnt);
1574 verify_heap (EV_A_ timers, timercnt); 2954 verify_heap (EV_A_ timers, timercnt);
1575 2955
1576#if EV_PERIODIC_ENABLE 2956#if EV_PERIODIC_ENABLE
1591#if EV_FORK_ENABLE 2971#if EV_FORK_ENABLE
1592 assert (forkmax >= forkcnt); 2972 assert (forkmax >= forkcnt);
1593 array_verify (EV_A_ (W *)forks, forkcnt); 2973 array_verify (EV_A_ (W *)forks, forkcnt);
1594#endif 2974#endif
1595 2975
2976#if EV_CLEANUP_ENABLE
2977 assert (cleanupmax >= cleanupcnt);
2978 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2979#endif
2980
1596#if EV_ASYNC_ENABLE 2981#if EV_ASYNC_ENABLE
1597 assert (asyncmax >= asynccnt); 2982 assert (asyncmax >= asynccnt);
1598 array_verify (EV_A_ (W *)asyncs, asynccnt); 2983 array_verify (EV_A_ (W *)asyncs, asynccnt);
1599#endif 2984#endif
1600 2985
2986#if EV_PREPARE_ENABLE
1601 assert (preparemax >= preparecnt); 2987 assert (preparemax >= preparecnt);
1602 array_verify (EV_A_ (W *)prepares, preparecnt); 2988 array_verify (EV_A_ (W *)prepares, preparecnt);
2989#endif
1603 2990
2991#if EV_CHECK_ENABLE
1604 assert (checkmax >= checkcnt); 2992 assert (checkmax >= checkcnt);
1605 array_verify (EV_A_ (W *)checks, checkcnt); 2993 array_verify (EV_A_ (W *)checks, checkcnt);
2994#endif
1606 2995
1607# if 0 2996# if 0
2997#if EV_CHILD_ENABLE
1608 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2998 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1609 for (signum = signalmax; signum--; ) if (signals [signum].gotsig) 2999 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3000#endif
1610# endif 3001# endif
1611#endif 3002#endif
1612} 3003}
1613 3004#endif
1614#endif /* multiplicity */
1615 3005
1616#if EV_MULTIPLICITY 3006#if EV_MULTIPLICITY
1617struct ev_loop * 3007struct ev_loop * ecb_cold
1618ev_default_loop_init (unsigned int flags)
1619#else 3008#else
1620int 3009int
3010#endif
1621ev_default_loop (unsigned int flags) 3011ev_default_loop (unsigned int flags) EV_THROW
1622#endif
1623{ 3012{
1624 if (!ev_default_loop_ptr) 3013 if (!ev_default_loop_ptr)
1625 { 3014 {
1626#if EV_MULTIPLICITY 3015#if EV_MULTIPLICITY
1627 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 3016 EV_P = ev_default_loop_ptr = &default_loop_struct;
1628#else 3017#else
1629 ev_default_loop_ptr = 1; 3018 ev_default_loop_ptr = 1;
1630#endif 3019#endif
1631 3020
1632 loop_init (EV_A_ flags); 3021 loop_init (EV_A_ flags);
1633 3022
1634 if (ev_backend (EV_A)) 3023 if (ev_backend (EV_A))
1635 { 3024 {
1636#ifndef _WIN32 3025#if EV_CHILD_ENABLE
1637 ev_signal_init (&childev, childcb, SIGCHLD); 3026 ev_signal_init (&childev, childcb, SIGCHLD);
1638 ev_set_priority (&childev, EV_MAXPRI); 3027 ev_set_priority (&childev, EV_MAXPRI);
1639 ev_signal_start (EV_A_ &childev); 3028 ev_signal_start (EV_A_ &childev);
1640 ev_unref (EV_A); /* child watcher should not keep loop alive */ 3029 ev_unref (EV_A); /* child watcher should not keep loop alive */
1641#endif 3030#endif
1646 3035
1647 return ev_default_loop_ptr; 3036 return ev_default_loop_ptr;
1648} 3037}
1649 3038
1650void 3039void
1651ev_default_destroy (void) 3040ev_loop_fork (EV_P) EV_THROW
1652{ 3041{
1653#if EV_MULTIPLICITY 3042 postfork = 1;
1654 struct ev_loop *loop = ev_default_loop_ptr;
1655#endif
1656
1657#ifndef _WIN32
1658 ev_ref (EV_A); /* child watcher */
1659 ev_signal_stop (EV_A_ &childev);
1660#endif
1661
1662 loop_destroy (EV_A);
1663}
1664
1665void
1666ev_default_fork (void)
1667{
1668#if EV_MULTIPLICITY
1669 struct ev_loop *loop = ev_default_loop_ptr;
1670#endif
1671
1672 if (backend)
1673 postfork = 1; /* must be in line with ev_loop_fork */
1674} 3043}
1675 3044
1676/*****************************************************************************/ 3045/*****************************************************************************/
1677 3046
1678void 3047void
1679ev_invoke (EV_P_ void *w, int revents) 3048ev_invoke (EV_P_ void *w, int revents)
1680{ 3049{
1681 EV_CB_INVOKE ((W)w, revents); 3050 EV_CB_INVOKE ((W)w, revents);
1682} 3051}
1683 3052
1684void inline_speed 3053unsigned int
1685call_pending (EV_P) 3054ev_pending_count (EV_P) EV_THROW
1686{ 3055{
1687 int pri; 3056 int pri;
3057 unsigned int count = 0;
1688 3058
1689 for (pri = NUMPRI; pri--; ) 3059 for (pri = NUMPRI; pri--; )
3060 count += pendingcnt [pri];
3061
3062 return count;
3063}
3064
3065void noinline
3066ev_invoke_pending (EV_P)
3067{
3068 pendingpri = NUMPRI;
3069
3070 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
3071 {
3072 --pendingpri;
3073
1690 while (pendingcnt [pri]) 3074 while (pendingcnt [pendingpri])
1691 {
1692 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1693
1694 if (expect_true (p->w))
1695 { 3075 {
1696 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 3076 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1697 3077
1698 p->w->pending = 0; 3078 p->w->pending = 0;
1699 EV_CB_INVOKE (p->w, p->events); 3079 EV_CB_INVOKE (p->w, p->events);
1700 EV_FREQUENT_CHECK; 3080 EV_FREQUENT_CHECK;
1701 } 3081 }
1702 } 3082 }
1703} 3083}
1704 3084
1705#if EV_IDLE_ENABLE 3085#if EV_IDLE_ENABLE
1706void inline_size 3086/* make idle watchers pending. this handles the "call-idle */
3087/* only when higher priorities are idle" logic */
3088inline_size void
1707idle_reify (EV_P) 3089idle_reify (EV_P)
1708{ 3090{
1709 if (expect_false (idleall)) 3091 if (expect_false (idleall))
1710 { 3092 {
1711 int pri; 3093 int pri;
1723 } 3105 }
1724 } 3106 }
1725} 3107}
1726#endif 3108#endif
1727 3109
1728void inline_size 3110/* make timers pending */
3111inline_size void
1729timers_reify (EV_P) 3112timers_reify (EV_P)
1730{ 3113{
1731 EV_FREQUENT_CHECK; 3114 EV_FREQUENT_CHECK;
1732 3115
1733 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 3116 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1734 { 3117 {
1735 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 3118 do
1736
1737 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1738
1739 /* first reschedule or stop timer */
1740 if (w->repeat)
1741 { 3119 {
3120 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3121
3122 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3123
3124 /* first reschedule or stop timer */
3125 if (w->repeat)
3126 {
1742 ev_at (w) += w->repeat; 3127 ev_at (w) += w->repeat;
1743 if (ev_at (w) < mn_now) 3128 if (ev_at (w) < mn_now)
1744 ev_at (w) = mn_now; 3129 ev_at (w) = mn_now;
1745 3130
1746 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3131 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1747 3132
1748 ANHE_at_cache (timers [HEAP0]); 3133 ANHE_at_cache (timers [HEAP0]);
1749 downheap (timers, timercnt, HEAP0); 3134 downheap (timers, timercnt, HEAP0);
3135 }
3136 else
3137 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3138
3139 EV_FREQUENT_CHECK;
3140 feed_reverse (EV_A_ (W)w);
1750 } 3141 }
1751 else 3142 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1752 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1753 3143
1754 EV_FREQUENT_CHECK; 3144 feed_reverse_done (EV_A_ EV_TIMER);
1755 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1756 } 3145 }
1757} 3146}
1758 3147
1759#if EV_PERIODIC_ENABLE 3148#if EV_PERIODIC_ENABLE
1760void inline_size 3149
3150static void noinline
3151periodic_recalc (EV_P_ ev_periodic *w)
3152{
3153 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3154 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3155
3156 /* the above almost always errs on the low side */
3157 while (at <= ev_rt_now)
3158 {
3159 ev_tstamp nat = at + w->interval;
3160
3161 /* when resolution fails us, we use ev_rt_now */
3162 if (expect_false (nat == at))
3163 {
3164 at = ev_rt_now;
3165 break;
3166 }
3167
3168 at = nat;
3169 }
3170
3171 ev_at (w) = at;
3172}
3173
3174/* make periodics pending */
3175inline_size void
1761periodics_reify (EV_P) 3176periodics_reify (EV_P)
1762{ 3177{
1763 EV_FREQUENT_CHECK; 3178 EV_FREQUENT_CHECK;
1764 3179
1765 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 3180 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1766 { 3181 {
1767 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 3182 do
1768
1769 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1770
1771 /* first reschedule or stop timer */
1772 if (w->reschedule_cb)
1773 { 3183 {
3184 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3185
3186 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3187
3188 /* first reschedule or stop timer */
3189 if (w->reschedule_cb)
3190 {
1774 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3191 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1775 3192
1776 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 3193 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1777 3194
1778 ANHE_at_cache (periodics [HEAP0]); 3195 ANHE_at_cache (periodics [HEAP0]);
1779 downheap (periodics, periodiccnt, HEAP0); 3196 downheap (periodics, periodiccnt, HEAP0);
3197 }
3198 else if (w->interval)
3199 {
3200 periodic_recalc (EV_A_ w);
3201 ANHE_at_cache (periodics [HEAP0]);
3202 downheap (periodics, periodiccnt, HEAP0);
3203 }
3204 else
3205 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3206
3207 EV_FREQUENT_CHECK;
3208 feed_reverse (EV_A_ (W)w);
1780 } 3209 }
1781 else if (w->interval) 3210 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1782 {
1783 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1784 /* if next trigger time is not sufficiently in the future, put it there */
1785 /* this might happen because of floating point inexactness */
1786 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1787 {
1788 ev_at (w) += w->interval;
1789 3211
1790 /* if interval is unreasonably low we might still have a time in the past */
1791 /* so correct this. this will make the periodic very inexact, but the user */
1792 /* has effectively asked to get triggered more often than possible */
1793 if (ev_at (w) < ev_rt_now)
1794 ev_at (w) = ev_rt_now;
1795 }
1796
1797 ANHE_at_cache (periodics [HEAP0]);
1798 downheap (periodics, periodiccnt, HEAP0);
1799 }
1800 else
1801 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1802
1803 EV_FREQUENT_CHECK;
1804 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 3212 feed_reverse_done (EV_A_ EV_PERIODIC);
1805 } 3213 }
1806} 3214}
1807 3215
3216/* simply recalculate all periodics */
3217/* TODO: maybe ensure that at least one event happens when jumping forward? */
1808static void noinline 3218static void noinline ecb_cold
1809periodics_reschedule (EV_P) 3219periodics_reschedule (EV_P)
1810{ 3220{
1811 int i; 3221 int i;
1812 3222
1813 /* adjust periodics after time jump */ 3223 /* adjust periodics after time jump */
1816 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]); 3226 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1817 3227
1818 if (w->reschedule_cb) 3228 if (w->reschedule_cb)
1819 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3229 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1820 else if (w->interval) 3230 else if (w->interval)
1821 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 3231 periodic_recalc (EV_A_ w);
1822 3232
1823 ANHE_at_cache (periodics [i]); 3233 ANHE_at_cache (periodics [i]);
1824 } 3234 }
1825 3235
1826 reheap (periodics, periodiccnt); 3236 reheap (periodics, periodiccnt);
1827} 3237}
1828#endif 3238#endif
1829 3239
1830void inline_speed 3240/* adjust all timers by a given offset */
3241static void noinline ecb_cold
3242timers_reschedule (EV_P_ ev_tstamp adjust)
3243{
3244 int i;
3245
3246 for (i = 0; i < timercnt; ++i)
3247 {
3248 ANHE *he = timers + i + HEAP0;
3249 ANHE_w (*he)->at += adjust;
3250 ANHE_at_cache (*he);
3251 }
3252}
3253
3254/* fetch new monotonic and realtime times from the kernel */
3255/* also detect if there was a timejump, and act accordingly */
3256inline_speed void
1831time_update (EV_P_ ev_tstamp max_block) 3257time_update (EV_P_ ev_tstamp max_block)
1832{ 3258{
1833 int i;
1834
1835#if EV_USE_MONOTONIC 3259#if EV_USE_MONOTONIC
1836 if (expect_true (have_monotonic)) 3260 if (expect_true (have_monotonic))
1837 { 3261 {
3262 int i;
1838 ev_tstamp odiff = rtmn_diff; 3263 ev_tstamp odiff = rtmn_diff;
1839 3264
1840 mn_now = get_clock (); 3265 mn_now = get_clock ();
1841 3266
1842 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 3267 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1858 * doesn't hurt either as we only do this on time-jumps or 3283 * doesn't hurt either as we only do this on time-jumps or
1859 * in the unlikely event of having been preempted here. 3284 * in the unlikely event of having been preempted here.
1860 */ 3285 */
1861 for (i = 4; --i; ) 3286 for (i = 4; --i; )
1862 { 3287 {
3288 ev_tstamp diff;
1863 rtmn_diff = ev_rt_now - mn_now; 3289 rtmn_diff = ev_rt_now - mn_now;
1864 3290
3291 diff = odiff - rtmn_diff;
3292
1865 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)) 3293 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1866 return; /* all is well */ 3294 return; /* all is well */
1867 3295
1868 ev_rt_now = ev_time (); 3296 ev_rt_now = ev_time ();
1869 mn_now = get_clock (); 3297 mn_now = get_clock ();
1870 now_floor = mn_now; 3298 now_floor = mn_now;
1871 } 3299 }
1872 3300
3301 /* no timer adjustment, as the monotonic clock doesn't jump */
3302 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1873# if EV_PERIODIC_ENABLE 3303# if EV_PERIODIC_ENABLE
1874 periodics_reschedule (EV_A); 3304 periodics_reschedule (EV_A);
1875# endif 3305# endif
1876 /* no timer adjustment, as the monotonic clock doesn't jump */
1877 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1878 } 3306 }
1879 else 3307 else
1880#endif 3308#endif
1881 { 3309 {
1882 ev_rt_now = ev_time (); 3310 ev_rt_now = ev_time ();
1883 3311
1884 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 3312 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1885 { 3313 {
3314 /* adjust timers. this is easy, as the offset is the same for all of them */
3315 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1886#if EV_PERIODIC_ENABLE 3316#if EV_PERIODIC_ENABLE
1887 periodics_reschedule (EV_A); 3317 periodics_reschedule (EV_A);
1888#endif 3318#endif
1889 /* adjust timers. this is easy, as the offset is the same for all of them */
1890 for (i = 0; i < timercnt; ++i)
1891 {
1892 ANHE *he = timers + i + HEAP0;
1893 ANHE_w (*he)->at += ev_rt_now - mn_now;
1894 ANHE_at_cache (*he);
1895 }
1896 } 3319 }
1897 3320
1898 mn_now = ev_rt_now; 3321 mn_now = ev_rt_now;
1899 } 3322 }
1900} 3323}
1901 3324
1902void 3325int
1903ev_ref (EV_P)
1904{
1905 ++activecnt;
1906}
1907
1908void
1909ev_unref (EV_P)
1910{
1911 --activecnt;
1912}
1913
1914static int loop_done;
1915
1916void
1917ev_loop (EV_P_ int flags) 3326ev_run (EV_P_ int flags)
1918{ 3327{
3328#if EV_FEATURE_API
3329 ++loop_depth;
3330#endif
3331
3332 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3333
1919 loop_done = EVUNLOOP_CANCEL; 3334 loop_done = EVBREAK_CANCEL;
1920 3335
1921 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3336 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1922 3337
1923 do 3338 do
1924 { 3339 {
1925#if EV_VERIFY >= 2 3340#if EV_VERIFY >= 2
1926 ev_loop_verify (EV_A); 3341 ev_verify (EV_A);
1927#endif 3342#endif
1928 3343
1929#ifndef _WIN32 3344#ifndef _WIN32
1930 if (expect_false (curpid)) /* penalise the forking check even more */ 3345 if (expect_false (curpid)) /* penalise the forking check even more */
1931 if (expect_false (getpid () != curpid)) 3346 if (expect_false (getpid () != curpid))
1939 /* we might have forked, so queue fork handlers */ 3354 /* we might have forked, so queue fork handlers */
1940 if (expect_false (postfork)) 3355 if (expect_false (postfork))
1941 if (forkcnt) 3356 if (forkcnt)
1942 { 3357 {
1943 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3358 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1944 call_pending (EV_A); 3359 EV_INVOKE_PENDING;
1945 } 3360 }
1946#endif 3361#endif
1947 3362
3363#if EV_PREPARE_ENABLE
1948 /* queue prepare watchers (and execute them) */ 3364 /* queue prepare watchers (and execute them) */
1949 if (expect_false (preparecnt)) 3365 if (expect_false (preparecnt))
1950 { 3366 {
1951 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3367 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1952 call_pending (EV_A); 3368 EV_INVOKE_PENDING;
1953 } 3369 }
3370#endif
1954 3371
1955 if (expect_false (!activecnt)) 3372 if (expect_false (loop_done))
1956 break; 3373 break;
1957 3374
1958 /* we might have forked, so reify kernel state if necessary */ 3375 /* we might have forked, so reify kernel state if necessary */
1959 if (expect_false (postfork)) 3376 if (expect_false (postfork))
1960 loop_fork (EV_A); 3377 loop_fork (EV_A);
1965 /* calculate blocking time */ 3382 /* calculate blocking time */
1966 { 3383 {
1967 ev_tstamp waittime = 0.; 3384 ev_tstamp waittime = 0.;
1968 ev_tstamp sleeptime = 0.; 3385 ev_tstamp sleeptime = 0.;
1969 3386
3387 /* remember old timestamp for io_blocktime calculation */
3388 ev_tstamp prev_mn_now = mn_now;
3389
3390 /* update time to cancel out callback processing overhead */
3391 time_update (EV_A_ 1e100);
3392
3393 /* from now on, we want a pipe-wake-up */
3394 pipe_write_wanted = 1;
3395
3396 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3397
1970 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3398 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1971 { 3399 {
1972 /* update time to cancel out callback processing overhead */
1973 time_update (EV_A_ 1e100);
1974
1975 waittime = MAX_BLOCKTIME; 3400 waittime = MAX_BLOCKTIME;
1976 3401
1977 if (timercnt) 3402 if (timercnt)
1978 { 3403 {
1979 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 3404 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1980 if (waittime > to) waittime = to; 3405 if (waittime > to) waittime = to;
1981 } 3406 }
1982 3407
1983#if EV_PERIODIC_ENABLE 3408#if EV_PERIODIC_ENABLE
1984 if (periodiccnt) 3409 if (periodiccnt)
1985 { 3410 {
1986 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 3411 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1987 if (waittime > to) waittime = to; 3412 if (waittime > to) waittime = to;
1988 } 3413 }
1989#endif 3414#endif
1990 3415
3416 /* don't let timeouts decrease the waittime below timeout_blocktime */
1991 if (expect_false (waittime < timeout_blocktime)) 3417 if (expect_false (waittime < timeout_blocktime))
1992 waittime = timeout_blocktime; 3418 waittime = timeout_blocktime;
1993 3419
1994 sleeptime = waittime - backend_fudge; 3420 /* at this point, we NEED to wait, so we have to ensure */
3421 /* to pass a minimum nonzero value to the backend */
3422 if (expect_false (waittime < backend_mintime))
3423 waittime = backend_mintime;
1995 3424
3425 /* extra check because io_blocktime is commonly 0 */
1996 if (expect_true (sleeptime > io_blocktime)) 3426 if (expect_false (io_blocktime))
1997 sleeptime = io_blocktime;
1998
1999 if (sleeptime)
2000 { 3427 {
3428 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3429
3430 if (sleeptime > waittime - backend_mintime)
3431 sleeptime = waittime - backend_mintime;
3432
3433 if (expect_true (sleeptime > 0.))
3434 {
2001 ev_sleep (sleeptime); 3435 ev_sleep (sleeptime);
2002 waittime -= sleeptime; 3436 waittime -= sleeptime;
3437 }
2003 } 3438 }
2004 } 3439 }
2005 3440
3441#if EV_FEATURE_API
2006 ++loop_count; 3442 ++loop_count;
3443#endif
3444 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2007 backend_poll (EV_A_ waittime); 3445 backend_poll (EV_A_ waittime);
3446 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3447
3448 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3449
3450 ECB_MEMORY_FENCE_ACQUIRE;
3451 if (pipe_write_skipped)
3452 {
3453 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3454 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3455 }
3456
2008 3457
2009 /* update ev_rt_now, do magic */ 3458 /* update ev_rt_now, do magic */
2010 time_update (EV_A_ waittime + sleeptime); 3459 time_update (EV_A_ waittime + sleeptime);
2011 } 3460 }
2012 3461
2019#if EV_IDLE_ENABLE 3468#if EV_IDLE_ENABLE
2020 /* queue idle watchers unless other events are pending */ 3469 /* queue idle watchers unless other events are pending */
2021 idle_reify (EV_A); 3470 idle_reify (EV_A);
2022#endif 3471#endif
2023 3472
3473#if EV_CHECK_ENABLE
2024 /* queue check watchers, to be executed first */ 3474 /* queue check watchers, to be executed first */
2025 if (expect_false (checkcnt)) 3475 if (expect_false (checkcnt))
2026 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3476 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3477#endif
2027 3478
2028 call_pending (EV_A); 3479 EV_INVOKE_PENDING;
2029 } 3480 }
2030 while (expect_true ( 3481 while (expect_true (
2031 activecnt 3482 activecnt
2032 && !loop_done 3483 && !loop_done
2033 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 3484 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2034 )); 3485 ));
2035 3486
2036 if (loop_done == EVUNLOOP_ONE) 3487 if (loop_done == EVBREAK_ONE)
2037 loop_done = EVUNLOOP_CANCEL; 3488 loop_done = EVBREAK_CANCEL;
3489
3490#if EV_FEATURE_API
3491 --loop_depth;
3492#endif
3493
3494 return activecnt;
2038} 3495}
2039 3496
2040void 3497void
2041ev_unloop (EV_P_ int how) 3498ev_break (EV_P_ int how) EV_THROW
2042{ 3499{
2043 loop_done = how; 3500 loop_done = how;
2044} 3501}
2045 3502
3503void
3504ev_ref (EV_P) EV_THROW
3505{
3506 ++activecnt;
3507}
3508
3509void
3510ev_unref (EV_P) EV_THROW
3511{
3512 --activecnt;
3513}
3514
3515void
3516ev_now_update (EV_P) EV_THROW
3517{
3518 time_update (EV_A_ 1e100);
3519}
3520
3521void
3522ev_suspend (EV_P) EV_THROW
3523{
3524 ev_now_update (EV_A);
3525}
3526
3527void
3528ev_resume (EV_P) EV_THROW
3529{
3530 ev_tstamp mn_prev = mn_now;
3531
3532 ev_now_update (EV_A);
3533 timers_reschedule (EV_A_ mn_now - mn_prev);
3534#if EV_PERIODIC_ENABLE
3535 /* TODO: really do this? */
3536 periodics_reschedule (EV_A);
3537#endif
3538}
3539
2046/*****************************************************************************/ 3540/*****************************************************************************/
3541/* singly-linked list management, used when the expected list length is short */
2047 3542
2048void inline_size 3543inline_size void
2049wlist_add (WL *head, WL elem) 3544wlist_add (WL *head, WL elem)
2050{ 3545{
2051 elem->next = *head; 3546 elem->next = *head;
2052 *head = elem; 3547 *head = elem;
2053} 3548}
2054 3549
2055void inline_size 3550inline_size void
2056wlist_del (WL *head, WL elem) 3551wlist_del (WL *head, WL elem)
2057{ 3552{
2058 while (*head) 3553 while (*head)
2059 { 3554 {
2060 if (*head == elem) 3555 if (expect_true (*head == elem))
2061 { 3556 {
2062 *head = elem->next; 3557 *head = elem->next;
2063 return; 3558 break;
2064 } 3559 }
2065 3560
2066 head = &(*head)->next; 3561 head = &(*head)->next;
2067 } 3562 }
2068} 3563}
2069 3564
2070void inline_speed 3565/* internal, faster, version of ev_clear_pending */
3566inline_speed void
2071clear_pending (EV_P_ W w) 3567clear_pending (EV_P_ W w)
2072{ 3568{
2073 if (w->pending) 3569 if (w->pending)
2074 { 3570 {
2075 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3571 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2076 w->pending = 0; 3572 w->pending = 0;
2077 } 3573 }
2078} 3574}
2079 3575
2080int 3576int
2081ev_clear_pending (EV_P_ void *w) 3577ev_clear_pending (EV_P_ void *w) EV_THROW
2082{ 3578{
2083 W w_ = (W)w; 3579 W w_ = (W)w;
2084 int pending = w_->pending; 3580 int pending = w_->pending;
2085 3581
2086 if (expect_true (pending)) 3582 if (expect_true (pending))
2087 { 3583 {
2088 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3584 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3585 p->w = (W)&pending_w;
2089 w_->pending = 0; 3586 w_->pending = 0;
2090 p->w = 0;
2091 return p->events; 3587 return p->events;
2092 } 3588 }
2093 else 3589 else
2094 return 0; 3590 return 0;
2095} 3591}
2096 3592
2097void inline_size 3593inline_size void
2098pri_adjust (EV_P_ W w) 3594pri_adjust (EV_P_ W w)
2099{ 3595{
2100 int pri = w->priority; 3596 int pri = ev_priority (w);
2101 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3597 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2102 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3598 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2103 w->priority = pri; 3599 ev_set_priority (w, pri);
2104} 3600}
2105 3601
2106void inline_speed 3602inline_speed void
2107ev_start (EV_P_ W w, int active) 3603ev_start (EV_P_ W w, int active)
2108{ 3604{
2109 pri_adjust (EV_A_ w); 3605 pri_adjust (EV_A_ w);
2110 w->active = active; 3606 w->active = active;
2111 ev_ref (EV_A); 3607 ev_ref (EV_A);
2112} 3608}
2113 3609
2114void inline_size 3610inline_size void
2115ev_stop (EV_P_ W w) 3611ev_stop (EV_P_ W w)
2116{ 3612{
2117 ev_unref (EV_A); 3613 ev_unref (EV_A);
2118 w->active = 0; 3614 w->active = 0;
2119} 3615}
2120 3616
2121/*****************************************************************************/ 3617/*****************************************************************************/
2122 3618
2123void noinline 3619void noinline
2124ev_io_start (EV_P_ ev_io *w) 3620ev_io_start (EV_P_ ev_io *w) EV_THROW
2125{ 3621{
2126 int fd = w->fd; 3622 int fd = w->fd;
2127 3623
2128 if (expect_false (ev_is_active (w))) 3624 if (expect_false (ev_is_active (w)))
2129 return; 3625 return;
2130 3626
2131 assert (("ev_io_start called with negative fd", fd >= 0)); 3627 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3628 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2132 3629
2133 EV_FREQUENT_CHECK; 3630 EV_FREQUENT_CHECK;
2134 3631
2135 ev_start (EV_A_ (W)w, 1); 3632 ev_start (EV_A_ (W)w, 1);
2136 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3633 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2137 wlist_add (&anfds[fd].head, (WL)w); 3634 wlist_add (&anfds[fd].head, (WL)w);
2138 3635
3636 /* common bug, apparently */
3637 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3638
2139 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3639 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2140 w->events &= ~EV_IOFDSET; 3640 w->events &= ~EV__IOFDSET;
2141 3641
2142 EV_FREQUENT_CHECK; 3642 EV_FREQUENT_CHECK;
2143} 3643}
2144 3644
2145void noinline 3645void noinline
2146ev_io_stop (EV_P_ ev_io *w) 3646ev_io_stop (EV_P_ ev_io *w) EV_THROW
2147{ 3647{
2148 clear_pending (EV_A_ (W)w); 3648 clear_pending (EV_A_ (W)w);
2149 if (expect_false (!ev_is_active (w))) 3649 if (expect_false (!ev_is_active (w)))
2150 return; 3650 return;
2151 3651
2152 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3652 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2153 3653
2154 EV_FREQUENT_CHECK; 3654 EV_FREQUENT_CHECK;
2155 3655
2156 wlist_del (&anfds[w->fd].head, (WL)w); 3656 wlist_del (&anfds[w->fd].head, (WL)w);
2157 ev_stop (EV_A_ (W)w); 3657 ev_stop (EV_A_ (W)w);
2158 3658
2159 fd_change (EV_A_ w->fd, 1); 3659 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2160 3660
2161 EV_FREQUENT_CHECK; 3661 EV_FREQUENT_CHECK;
2162} 3662}
2163 3663
2164void noinline 3664void noinline
2165ev_timer_start (EV_P_ ev_timer *w) 3665ev_timer_start (EV_P_ ev_timer *w) EV_THROW
2166{ 3666{
2167 if (expect_false (ev_is_active (w))) 3667 if (expect_false (ev_is_active (w)))
2168 return; 3668 return;
2169 3669
2170 ev_at (w) += mn_now; 3670 ev_at (w) += mn_now;
2171 3671
2172 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3672 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2173 3673
2174 EV_FREQUENT_CHECK; 3674 EV_FREQUENT_CHECK;
2175 3675
2176 ++timercnt; 3676 ++timercnt;
2177 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1); 3677 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2180 ANHE_at_cache (timers [ev_active (w)]); 3680 ANHE_at_cache (timers [ev_active (w)]);
2181 upheap (timers, ev_active (w)); 3681 upheap (timers, ev_active (w));
2182 3682
2183 EV_FREQUENT_CHECK; 3683 EV_FREQUENT_CHECK;
2184 3684
2185 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 3685 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2186} 3686}
2187 3687
2188void noinline 3688void noinline
2189ev_timer_stop (EV_P_ ev_timer *w) 3689ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
2190{ 3690{
2191 clear_pending (EV_A_ (W)w); 3691 clear_pending (EV_A_ (W)w);
2192 if (expect_false (!ev_is_active (w))) 3692 if (expect_false (!ev_is_active (w)))
2193 return; 3693 return;
2194 3694
2195 EV_FREQUENT_CHECK; 3695 EV_FREQUENT_CHECK;
2196 3696
2197 { 3697 {
2198 int active = ev_active (w); 3698 int active = ev_active (w);
2199 3699
2200 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 3700 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2201 3701
2202 --timercnt; 3702 --timercnt;
2203 3703
2204 if (expect_true (active < timercnt + HEAP0)) 3704 if (expect_true (active < timercnt + HEAP0))
2205 { 3705 {
2206 timers [active] = timers [timercnt + HEAP0]; 3706 timers [active] = timers [timercnt + HEAP0];
2207 adjustheap (timers, timercnt, active); 3707 adjustheap (timers, timercnt, active);
2208 } 3708 }
2209 } 3709 }
2210 3710
2211 EV_FREQUENT_CHECK;
2212
2213 ev_at (w) -= mn_now; 3711 ev_at (w) -= mn_now;
2214 3712
2215 ev_stop (EV_A_ (W)w); 3713 ev_stop (EV_A_ (W)w);
3714
3715 EV_FREQUENT_CHECK;
2216} 3716}
2217 3717
2218void noinline 3718void noinline
2219ev_timer_again (EV_P_ ev_timer *w) 3719ev_timer_again (EV_P_ ev_timer *w) EV_THROW
2220{ 3720{
2221 EV_FREQUENT_CHECK; 3721 EV_FREQUENT_CHECK;
3722
3723 clear_pending (EV_A_ (W)w);
2222 3724
2223 if (ev_is_active (w)) 3725 if (ev_is_active (w))
2224 { 3726 {
2225 if (w->repeat) 3727 if (w->repeat)
2226 { 3728 {
2238 } 3740 }
2239 3741
2240 EV_FREQUENT_CHECK; 3742 EV_FREQUENT_CHECK;
2241} 3743}
2242 3744
3745ev_tstamp
3746ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3747{
3748 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3749}
3750
2243#if EV_PERIODIC_ENABLE 3751#if EV_PERIODIC_ENABLE
2244void noinline 3752void noinline
2245ev_periodic_start (EV_P_ ev_periodic *w) 3753ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
2246{ 3754{
2247 if (expect_false (ev_is_active (w))) 3755 if (expect_false (ev_is_active (w)))
2248 return; 3756 return;
2249 3757
2250 if (w->reschedule_cb) 3758 if (w->reschedule_cb)
2251 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3759 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2252 else if (w->interval) 3760 else if (w->interval)
2253 { 3761 {
2254 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3762 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2255 /* this formula differs from the one in periodic_reify because we do not always round up */ 3763 periodic_recalc (EV_A_ w);
2256 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2257 } 3764 }
2258 else 3765 else
2259 ev_at (w) = w->offset; 3766 ev_at (w) = w->offset;
2260 3767
2261 EV_FREQUENT_CHECK; 3768 EV_FREQUENT_CHECK;
2267 ANHE_at_cache (periodics [ev_active (w)]); 3774 ANHE_at_cache (periodics [ev_active (w)]);
2268 upheap (periodics, ev_active (w)); 3775 upheap (periodics, ev_active (w));
2269 3776
2270 EV_FREQUENT_CHECK; 3777 EV_FREQUENT_CHECK;
2271 3778
2272 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 3779 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2273} 3780}
2274 3781
2275void noinline 3782void noinline
2276ev_periodic_stop (EV_P_ ev_periodic *w) 3783ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
2277{ 3784{
2278 clear_pending (EV_A_ (W)w); 3785 clear_pending (EV_A_ (W)w);
2279 if (expect_false (!ev_is_active (w))) 3786 if (expect_false (!ev_is_active (w)))
2280 return; 3787 return;
2281 3788
2282 EV_FREQUENT_CHECK; 3789 EV_FREQUENT_CHECK;
2283 3790
2284 { 3791 {
2285 int active = ev_active (w); 3792 int active = ev_active (w);
2286 3793
2287 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 3794 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2288 3795
2289 --periodiccnt; 3796 --periodiccnt;
2290 3797
2291 if (expect_true (active < periodiccnt + HEAP0)) 3798 if (expect_true (active < periodiccnt + HEAP0))
2292 { 3799 {
2293 periodics [active] = periodics [periodiccnt + HEAP0]; 3800 periodics [active] = periodics [periodiccnt + HEAP0];
2294 adjustheap (periodics, periodiccnt, active); 3801 adjustheap (periodics, periodiccnt, active);
2295 } 3802 }
2296 } 3803 }
2297 3804
2298 EV_FREQUENT_CHECK;
2299
2300 ev_stop (EV_A_ (W)w); 3805 ev_stop (EV_A_ (W)w);
3806
3807 EV_FREQUENT_CHECK;
2301} 3808}
2302 3809
2303void noinline 3810void noinline
2304ev_periodic_again (EV_P_ ev_periodic *w) 3811ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
2305{ 3812{
2306 /* TODO: use adjustheap and recalculation */ 3813 /* TODO: use adjustheap and recalculation */
2307 ev_periodic_stop (EV_A_ w); 3814 ev_periodic_stop (EV_A_ w);
2308 ev_periodic_start (EV_A_ w); 3815 ev_periodic_start (EV_A_ w);
2309} 3816}
2311 3818
2312#ifndef SA_RESTART 3819#ifndef SA_RESTART
2313# define SA_RESTART 0 3820# define SA_RESTART 0
2314#endif 3821#endif
2315 3822
3823#if EV_SIGNAL_ENABLE
3824
2316void noinline 3825void noinline
2317ev_signal_start (EV_P_ ev_signal *w) 3826ev_signal_start (EV_P_ ev_signal *w) EV_THROW
2318{ 3827{
2319#if EV_MULTIPLICITY
2320 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2321#endif
2322 if (expect_false (ev_is_active (w))) 3828 if (expect_false (ev_is_active (w)))
2323 return; 3829 return;
2324 3830
2325 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3831 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2326 3832
2327 evpipe_init (EV_A); 3833#if EV_MULTIPLICITY
3834 assert (("libev: a signal must not be attached to two different loops",
3835 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2328 3836
2329 EV_FREQUENT_CHECK; 3837 signals [w->signum - 1].loop = EV_A;
3838 ECB_MEMORY_FENCE_RELEASE;
3839#endif
2330 3840
3841 EV_FREQUENT_CHECK;
3842
3843#if EV_USE_SIGNALFD
3844 if (sigfd == -2)
2331 { 3845 {
2332#ifndef _WIN32 3846 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2333 sigset_t full, prev; 3847 if (sigfd < 0 && errno == EINVAL)
2334 sigfillset (&full); 3848 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2335 sigprocmask (SIG_SETMASK, &full, &prev);
2336#endif
2337 3849
2338 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3850 if (sigfd >= 0)
3851 {
3852 fd_intern (sigfd); /* doing it twice will not hurt */
2339 3853
2340#ifndef _WIN32 3854 sigemptyset (&sigfd_set);
2341 sigprocmask (SIG_SETMASK, &prev, 0); 3855
2342#endif 3856 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3857 ev_set_priority (&sigfd_w, EV_MAXPRI);
3858 ev_io_start (EV_A_ &sigfd_w);
3859 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3860 }
2343 } 3861 }
3862
3863 if (sigfd >= 0)
3864 {
3865 /* TODO: check .head */
3866 sigaddset (&sigfd_set, w->signum);
3867 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3868
3869 signalfd (sigfd, &sigfd_set, 0);
3870 }
3871#endif
2344 3872
2345 ev_start (EV_A_ (W)w, 1); 3873 ev_start (EV_A_ (W)w, 1);
2346 wlist_add (&signals [w->signum - 1].head, (WL)w); 3874 wlist_add (&signals [w->signum - 1].head, (WL)w);
2347 3875
2348 if (!((WL)w)->next) 3876 if (!((WL)w)->next)
3877# if EV_USE_SIGNALFD
3878 if (sigfd < 0) /*TODO*/
3879# endif
2349 { 3880 {
2350#if _WIN32 3881# ifdef _WIN32
3882 evpipe_init (EV_A);
3883
2351 signal (w->signum, ev_sighandler); 3884 signal (w->signum, ev_sighandler);
2352#else 3885# else
2353 struct sigaction sa; 3886 struct sigaction sa;
3887
3888 evpipe_init (EV_A);
3889
2354 sa.sa_handler = ev_sighandler; 3890 sa.sa_handler = ev_sighandler;
2355 sigfillset (&sa.sa_mask); 3891 sigfillset (&sa.sa_mask);
2356 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3892 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2357 sigaction (w->signum, &sa, 0); 3893 sigaction (w->signum, &sa, 0);
3894
3895 if (origflags & EVFLAG_NOSIGMASK)
3896 {
3897 sigemptyset (&sa.sa_mask);
3898 sigaddset (&sa.sa_mask, w->signum);
3899 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3900 }
2358#endif 3901#endif
2359 } 3902 }
2360 3903
2361 EV_FREQUENT_CHECK; 3904 EV_FREQUENT_CHECK;
2362} 3905}
2363 3906
2364void noinline 3907void noinline
2365ev_signal_stop (EV_P_ ev_signal *w) 3908ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
2366{ 3909{
2367 clear_pending (EV_A_ (W)w); 3910 clear_pending (EV_A_ (W)w);
2368 if (expect_false (!ev_is_active (w))) 3911 if (expect_false (!ev_is_active (w)))
2369 return; 3912 return;
2370 3913
2372 3915
2373 wlist_del (&signals [w->signum - 1].head, (WL)w); 3916 wlist_del (&signals [w->signum - 1].head, (WL)w);
2374 ev_stop (EV_A_ (W)w); 3917 ev_stop (EV_A_ (W)w);
2375 3918
2376 if (!signals [w->signum - 1].head) 3919 if (!signals [w->signum - 1].head)
3920 {
3921#if EV_MULTIPLICITY
3922 signals [w->signum - 1].loop = 0; /* unattach from signal */
3923#endif
3924#if EV_USE_SIGNALFD
3925 if (sigfd >= 0)
3926 {
3927 sigset_t ss;
3928
3929 sigemptyset (&ss);
3930 sigaddset (&ss, w->signum);
3931 sigdelset (&sigfd_set, w->signum);
3932
3933 signalfd (sigfd, &sigfd_set, 0);
3934 sigprocmask (SIG_UNBLOCK, &ss, 0);
3935 }
3936 else
3937#endif
2377 signal (w->signum, SIG_DFL); 3938 signal (w->signum, SIG_DFL);
3939 }
2378 3940
2379 EV_FREQUENT_CHECK; 3941 EV_FREQUENT_CHECK;
2380} 3942}
3943
3944#endif
3945
3946#if EV_CHILD_ENABLE
2381 3947
2382void 3948void
2383ev_child_start (EV_P_ ev_child *w) 3949ev_child_start (EV_P_ ev_child *w) EV_THROW
2384{ 3950{
2385#if EV_MULTIPLICITY 3951#if EV_MULTIPLICITY
2386 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3952 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2387#endif 3953#endif
2388 if (expect_false (ev_is_active (w))) 3954 if (expect_false (ev_is_active (w)))
2389 return; 3955 return;
2390 3956
2391 EV_FREQUENT_CHECK; 3957 EV_FREQUENT_CHECK;
2392 3958
2393 ev_start (EV_A_ (W)w, 1); 3959 ev_start (EV_A_ (W)w, 1);
2394 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3960 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2395 3961
2396 EV_FREQUENT_CHECK; 3962 EV_FREQUENT_CHECK;
2397} 3963}
2398 3964
2399void 3965void
2400ev_child_stop (EV_P_ ev_child *w) 3966ev_child_stop (EV_P_ ev_child *w) EV_THROW
2401{ 3967{
2402 clear_pending (EV_A_ (W)w); 3968 clear_pending (EV_A_ (W)w);
2403 if (expect_false (!ev_is_active (w))) 3969 if (expect_false (!ev_is_active (w)))
2404 return; 3970 return;
2405 3971
2406 EV_FREQUENT_CHECK; 3972 EV_FREQUENT_CHECK;
2407 3973
2408 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3974 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2409 ev_stop (EV_A_ (W)w); 3975 ev_stop (EV_A_ (W)w);
2410 3976
2411 EV_FREQUENT_CHECK; 3977 EV_FREQUENT_CHECK;
2412} 3978}
3979
3980#endif
2413 3981
2414#if EV_STAT_ENABLE 3982#if EV_STAT_ENABLE
2415 3983
2416# ifdef _WIN32 3984# ifdef _WIN32
2417# undef lstat 3985# undef lstat
2418# define lstat(a,b) _stati64 (a,b) 3986# define lstat(a,b) _stati64 (a,b)
2419# endif 3987# endif
2420 3988
2421#define DEF_STAT_INTERVAL 5.0074891 3989#define DEF_STAT_INTERVAL 5.0074891
3990#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2422#define MIN_STAT_INTERVAL 0.1074891 3991#define MIN_STAT_INTERVAL 0.1074891
2423 3992
2424static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3993static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2425 3994
2426#if EV_USE_INOTIFY 3995#if EV_USE_INOTIFY
2427# define EV_INOTIFY_BUFSIZE 8192 3996
3997/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3998# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2428 3999
2429static void noinline 4000static void noinline
2430infy_add (EV_P_ ev_stat *w) 4001infy_add (EV_P_ ev_stat *w)
2431{ 4002{
2432 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 4003 w->wd = inotify_add_watch (fs_fd, w->path,
4004 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4005 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4006 | IN_DONT_FOLLOW | IN_MASK_ADD);
2433 4007
2434 if (w->wd < 0) 4008 if (w->wd >= 0)
4009 {
4010 struct statfs sfs;
4011
4012 /* now local changes will be tracked by inotify, but remote changes won't */
4013 /* unless the filesystem is known to be local, we therefore still poll */
4014 /* also do poll on <2.6.25, but with normal frequency */
4015
4016 if (!fs_2625)
4017 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4018 else if (!statfs (w->path, &sfs)
4019 && (sfs.f_type == 0x1373 /* devfs */
4020 || sfs.f_type == 0x4006 /* fat */
4021 || sfs.f_type == 0x4d44 /* msdos */
4022 || sfs.f_type == 0xEF53 /* ext2/3 */
4023 || sfs.f_type == 0x72b6 /* jffs2 */
4024 || sfs.f_type == 0x858458f6 /* ramfs */
4025 || sfs.f_type == 0x5346544e /* ntfs */
4026 || sfs.f_type == 0x3153464a /* jfs */
4027 || sfs.f_type == 0x9123683e /* btrfs */
4028 || sfs.f_type == 0x52654973 /* reiser3 */
4029 || sfs.f_type == 0x01021994 /* tmpfs */
4030 || sfs.f_type == 0x58465342 /* xfs */))
4031 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4032 else
4033 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2435 { 4034 }
2436 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 4035 else
4036 {
4037 /* can't use inotify, continue to stat */
4038 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2437 4039
2438 /* monitor some parent directory for speedup hints */ 4040 /* if path is not there, monitor some parent directory for speedup hints */
2439 /* note that exceeding the hardcoded limit is not a correctness issue, */ 4041 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2440 /* but an efficiency issue only */ 4042 /* but an efficiency issue only */
2441 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 4043 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2442 { 4044 {
2443 char path [4096]; 4045 char path [4096];
2444 strcpy (path, w->path); 4046 strcpy (path, w->path);
2448 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 4050 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2449 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 4051 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2450 4052
2451 char *pend = strrchr (path, '/'); 4053 char *pend = strrchr (path, '/');
2452 4054
2453 if (!pend) 4055 if (!pend || pend == path)
2454 break; /* whoops, no '/', complain to your admin */ 4056 break;
2455 4057
2456 *pend = 0; 4058 *pend = 0;
2457 w->wd = inotify_add_watch (fs_fd, path, mask); 4059 w->wd = inotify_add_watch (fs_fd, path, mask);
2458 } 4060 }
2459 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 4061 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2460 } 4062 }
2461 } 4063 }
2462 else
2463 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2464 4064
2465 if (w->wd >= 0) 4065 if (w->wd >= 0)
2466 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 4066 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4067
4068 /* now re-arm timer, if required */
4069 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4070 ev_timer_again (EV_A_ &w->timer);
4071 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2467} 4072}
2468 4073
2469static void noinline 4074static void noinline
2470infy_del (EV_P_ ev_stat *w) 4075infy_del (EV_P_ ev_stat *w)
2471{ 4076{
2474 4079
2475 if (wd < 0) 4080 if (wd < 0)
2476 return; 4081 return;
2477 4082
2478 w->wd = -2; 4083 w->wd = -2;
2479 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 4084 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2480 wlist_del (&fs_hash [slot].head, (WL)w); 4085 wlist_del (&fs_hash [slot].head, (WL)w);
2481 4086
2482 /* remove this watcher, if others are watching it, they will rearm */ 4087 /* remove this watcher, if others are watching it, they will rearm */
2483 inotify_rm_watch (fs_fd, wd); 4088 inotify_rm_watch (fs_fd, wd);
2484} 4089}
2485 4090
2486static void noinline 4091static void noinline
2487infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 4092infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2488{ 4093{
2489 if (slot < 0) 4094 if (slot < 0)
2490 /* overflow, need to check for all hahs slots */ 4095 /* overflow, need to check for all hash slots */
2491 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4096 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2492 infy_wd (EV_A_ slot, wd, ev); 4097 infy_wd (EV_A_ slot, wd, ev);
2493 else 4098 else
2494 { 4099 {
2495 WL w_; 4100 WL w_;
2496 4101
2497 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 4102 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2498 { 4103 {
2499 ev_stat *w = (ev_stat *)w_; 4104 ev_stat *w = (ev_stat *)w_;
2500 w_ = w_->next; /* lets us remove this watcher and all before it */ 4105 w_ = w_->next; /* lets us remove this watcher and all before it */
2501 4106
2502 if (w->wd == wd || wd == -1) 4107 if (w->wd == wd || wd == -1)
2503 { 4108 {
2504 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 4109 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2505 { 4110 {
4111 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2506 w->wd = -1; 4112 w->wd = -1;
2507 infy_add (EV_A_ w); /* re-add, no matter what */ 4113 infy_add (EV_A_ w); /* re-add, no matter what */
2508 } 4114 }
2509 4115
2510 stat_timer_cb (EV_A_ &w->timer, 0); 4116 stat_timer_cb (EV_A_ &w->timer, 0);
2515 4121
2516static void 4122static void
2517infy_cb (EV_P_ ev_io *w, int revents) 4123infy_cb (EV_P_ ev_io *w, int revents)
2518{ 4124{
2519 char buf [EV_INOTIFY_BUFSIZE]; 4125 char buf [EV_INOTIFY_BUFSIZE];
2520 struct inotify_event *ev = (struct inotify_event *)buf;
2521 int ofs; 4126 int ofs;
2522 int len = read (fs_fd, buf, sizeof (buf)); 4127 int len = read (fs_fd, buf, sizeof (buf));
2523 4128
2524 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 4129 for (ofs = 0; ofs < len; )
4130 {
4131 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2525 infy_wd (EV_A_ ev->wd, ev->wd, ev); 4132 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4133 ofs += sizeof (struct inotify_event) + ev->len;
4134 }
2526} 4135}
2527 4136
2528void inline_size 4137inline_size void ecb_cold
4138ev_check_2625 (EV_P)
4139{
4140 /* kernels < 2.6.25 are borked
4141 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4142 */
4143 if (ev_linux_version () < 0x020619)
4144 return;
4145
4146 fs_2625 = 1;
4147}
4148
4149inline_size int
4150infy_newfd (void)
4151{
4152#if defined IN_CLOEXEC && defined IN_NONBLOCK
4153 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4154 if (fd >= 0)
4155 return fd;
4156#endif
4157 return inotify_init ();
4158}
4159
4160inline_size void
2529infy_init (EV_P) 4161infy_init (EV_P)
2530{ 4162{
2531 if (fs_fd != -2) 4163 if (fs_fd != -2)
2532 return; 4164 return;
2533 4165
4166 fs_fd = -1;
4167
4168 ev_check_2625 (EV_A);
4169
2534 fs_fd = inotify_init (); 4170 fs_fd = infy_newfd ();
2535 4171
2536 if (fs_fd >= 0) 4172 if (fs_fd >= 0)
2537 { 4173 {
4174 fd_intern (fs_fd);
2538 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 4175 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2539 ev_set_priority (&fs_w, EV_MAXPRI); 4176 ev_set_priority (&fs_w, EV_MAXPRI);
2540 ev_io_start (EV_A_ &fs_w); 4177 ev_io_start (EV_A_ &fs_w);
4178 ev_unref (EV_A);
2541 } 4179 }
2542} 4180}
2543 4181
2544void inline_size 4182inline_size void
2545infy_fork (EV_P) 4183infy_fork (EV_P)
2546{ 4184{
2547 int slot; 4185 int slot;
2548 4186
2549 if (fs_fd < 0) 4187 if (fs_fd < 0)
2550 return; 4188 return;
2551 4189
4190 ev_ref (EV_A);
4191 ev_io_stop (EV_A_ &fs_w);
2552 close (fs_fd); 4192 close (fs_fd);
2553 fs_fd = inotify_init (); 4193 fs_fd = infy_newfd ();
2554 4194
4195 if (fs_fd >= 0)
4196 {
4197 fd_intern (fs_fd);
4198 ev_io_set (&fs_w, fs_fd, EV_READ);
4199 ev_io_start (EV_A_ &fs_w);
4200 ev_unref (EV_A);
4201 }
4202
2555 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4203 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2556 { 4204 {
2557 WL w_ = fs_hash [slot].head; 4205 WL w_ = fs_hash [slot].head;
2558 fs_hash [slot].head = 0; 4206 fs_hash [slot].head = 0;
2559 4207
2560 while (w_) 4208 while (w_)
2565 w->wd = -1; 4213 w->wd = -1;
2566 4214
2567 if (fs_fd >= 0) 4215 if (fs_fd >= 0)
2568 infy_add (EV_A_ w); /* re-add, no matter what */ 4216 infy_add (EV_A_ w); /* re-add, no matter what */
2569 else 4217 else
4218 {
4219 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4220 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2570 ev_timer_start (EV_A_ &w->timer); 4221 ev_timer_again (EV_A_ &w->timer);
4222 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4223 }
2571 } 4224 }
2572
2573 } 4225 }
2574} 4226}
2575 4227
2576#endif 4228#endif
2577 4229
2580#else 4232#else
2581# define EV_LSTAT(p,b) lstat (p, b) 4233# define EV_LSTAT(p,b) lstat (p, b)
2582#endif 4234#endif
2583 4235
2584void 4236void
2585ev_stat_stat (EV_P_ ev_stat *w) 4237ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
2586{ 4238{
2587 if (lstat (w->path, &w->attr) < 0) 4239 if (lstat (w->path, &w->attr) < 0)
2588 w->attr.st_nlink = 0; 4240 w->attr.st_nlink = 0;
2589 else if (!w->attr.st_nlink) 4241 else if (!w->attr.st_nlink)
2590 w->attr.st_nlink = 1; 4242 w->attr.st_nlink = 1;
2593static void noinline 4245static void noinline
2594stat_timer_cb (EV_P_ ev_timer *w_, int revents) 4246stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2595{ 4247{
2596 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 4248 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2597 4249
2598 /* we copy this here each the time so that */ 4250 ev_statdata prev = w->attr;
2599 /* prev has the old value when the callback gets invoked */
2600 w->prev = w->attr;
2601 ev_stat_stat (EV_A_ w); 4251 ev_stat_stat (EV_A_ w);
2602 4252
2603 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 4253 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2604 if ( 4254 if (
2605 w->prev.st_dev != w->attr.st_dev 4255 prev.st_dev != w->attr.st_dev
2606 || w->prev.st_ino != w->attr.st_ino 4256 || prev.st_ino != w->attr.st_ino
2607 || w->prev.st_mode != w->attr.st_mode 4257 || prev.st_mode != w->attr.st_mode
2608 || w->prev.st_nlink != w->attr.st_nlink 4258 || prev.st_nlink != w->attr.st_nlink
2609 || w->prev.st_uid != w->attr.st_uid 4259 || prev.st_uid != w->attr.st_uid
2610 || w->prev.st_gid != w->attr.st_gid 4260 || prev.st_gid != w->attr.st_gid
2611 || w->prev.st_rdev != w->attr.st_rdev 4261 || prev.st_rdev != w->attr.st_rdev
2612 || w->prev.st_size != w->attr.st_size 4262 || prev.st_size != w->attr.st_size
2613 || w->prev.st_atime != w->attr.st_atime 4263 || prev.st_atime != w->attr.st_atime
2614 || w->prev.st_mtime != w->attr.st_mtime 4264 || prev.st_mtime != w->attr.st_mtime
2615 || w->prev.st_ctime != w->attr.st_ctime 4265 || prev.st_ctime != w->attr.st_ctime
2616 ) { 4266 ) {
4267 /* we only update w->prev on actual differences */
4268 /* in case we test more often than invoke the callback, */
4269 /* to ensure that prev is always different to attr */
4270 w->prev = prev;
4271
2617 #if EV_USE_INOTIFY 4272 #if EV_USE_INOTIFY
4273 if (fs_fd >= 0)
4274 {
2618 infy_del (EV_A_ w); 4275 infy_del (EV_A_ w);
2619 infy_add (EV_A_ w); 4276 infy_add (EV_A_ w);
2620 ev_stat_stat (EV_A_ w); /* avoid race... */ 4277 ev_stat_stat (EV_A_ w); /* avoid race... */
4278 }
2621 #endif 4279 #endif
2622 4280
2623 ev_feed_event (EV_A_ w, EV_STAT); 4281 ev_feed_event (EV_A_ w, EV_STAT);
2624 } 4282 }
2625} 4283}
2626 4284
2627void 4285void
2628ev_stat_start (EV_P_ ev_stat *w) 4286ev_stat_start (EV_P_ ev_stat *w) EV_THROW
2629{ 4287{
2630 if (expect_false (ev_is_active (w))) 4288 if (expect_false (ev_is_active (w)))
2631 return; 4289 return;
2632 4290
2633 /* since we use memcmp, we need to clear any padding data etc. */
2634 memset (&w->prev, 0, sizeof (ev_statdata));
2635 memset (&w->attr, 0, sizeof (ev_statdata));
2636
2637 ev_stat_stat (EV_A_ w); 4291 ev_stat_stat (EV_A_ w);
2638 4292
4293 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2639 if (w->interval < MIN_STAT_INTERVAL) 4294 w->interval = MIN_STAT_INTERVAL;
2640 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2641 4295
2642 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 4296 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2643 ev_set_priority (&w->timer, ev_priority (w)); 4297 ev_set_priority (&w->timer, ev_priority (w));
2644 4298
2645#if EV_USE_INOTIFY 4299#if EV_USE_INOTIFY
2646 infy_init (EV_A); 4300 infy_init (EV_A);
2647 4301
2648 if (fs_fd >= 0) 4302 if (fs_fd >= 0)
2649 infy_add (EV_A_ w); 4303 infy_add (EV_A_ w);
2650 else 4304 else
2651#endif 4305#endif
4306 {
2652 ev_timer_start (EV_A_ &w->timer); 4307 ev_timer_again (EV_A_ &w->timer);
4308 ev_unref (EV_A);
4309 }
2653 4310
2654 ev_start (EV_A_ (W)w, 1); 4311 ev_start (EV_A_ (W)w, 1);
2655 4312
2656 EV_FREQUENT_CHECK; 4313 EV_FREQUENT_CHECK;
2657} 4314}
2658 4315
2659void 4316void
2660ev_stat_stop (EV_P_ ev_stat *w) 4317ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
2661{ 4318{
2662 clear_pending (EV_A_ (W)w); 4319 clear_pending (EV_A_ (W)w);
2663 if (expect_false (!ev_is_active (w))) 4320 if (expect_false (!ev_is_active (w)))
2664 return; 4321 return;
2665 4322
2666 EV_FREQUENT_CHECK; 4323 EV_FREQUENT_CHECK;
2667 4324
2668#if EV_USE_INOTIFY 4325#if EV_USE_INOTIFY
2669 infy_del (EV_A_ w); 4326 infy_del (EV_A_ w);
2670#endif 4327#endif
4328
4329 if (ev_is_active (&w->timer))
4330 {
4331 ev_ref (EV_A);
2671 ev_timer_stop (EV_A_ &w->timer); 4332 ev_timer_stop (EV_A_ &w->timer);
4333 }
2672 4334
2673 ev_stop (EV_A_ (W)w); 4335 ev_stop (EV_A_ (W)w);
2674 4336
2675 EV_FREQUENT_CHECK; 4337 EV_FREQUENT_CHECK;
2676} 4338}
2677#endif 4339#endif
2678 4340
2679#if EV_IDLE_ENABLE 4341#if EV_IDLE_ENABLE
2680void 4342void
2681ev_idle_start (EV_P_ ev_idle *w) 4343ev_idle_start (EV_P_ ev_idle *w) EV_THROW
2682{ 4344{
2683 if (expect_false (ev_is_active (w))) 4345 if (expect_false (ev_is_active (w)))
2684 return; 4346 return;
2685 4347
2686 pri_adjust (EV_A_ (W)w); 4348 pri_adjust (EV_A_ (W)w);
2699 4361
2700 EV_FREQUENT_CHECK; 4362 EV_FREQUENT_CHECK;
2701} 4363}
2702 4364
2703void 4365void
2704ev_idle_stop (EV_P_ ev_idle *w) 4366ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
2705{ 4367{
2706 clear_pending (EV_A_ (W)w); 4368 clear_pending (EV_A_ (W)w);
2707 if (expect_false (!ev_is_active (w))) 4369 if (expect_false (!ev_is_active (w)))
2708 return; 4370 return;
2709 4371
2721 4383
2722 EV_FREQUENT_CHECK; 4384 EV_FREQUENT_CHECK;
2723} 4385}
2724#endif 4386#endif
2725 4387
4388#if EV_PREPARE_ENABLE
2726void 4389void
2727ev_prepare_start (EV_P_ ev_prepare *w) 4390ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
2728{ 4391{
2729 if (expect_false (ev_is_active (w))) 4392 if (expect_false (ev_is_active (w)))
2730 return; 4393 return;
2731 4394
2732 EV_FREQUENT_CHECK; 4395 EV_FREQUENT_CHECK;
2737 4400
2738 EV_FREQUENT_CHECK; 4401 EV_FREQUENT_CHECK;
2739} 4402}
2740 4403
2741void 4404void
2742ev_prepare_stop (EV_P_ ev_prepare *w) 4405ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
2743{ 4406{
2744 clear_pending (EV_A_ (W)w); 4407 clear_pending (EV_A_ (W)w);
2745 if (expect_false (!ev_is_active (w))) 4408 if (expect_false (!ev_is_active (w)))
2746 return; 4409 return;
2747 4410
2756 4419
2757 ev_stop (EV_A_ (W)w); 4420 ev_stop (EV_A_ (W)w);
2758 4421
2759 EV_FREQUENT_CHECK; 4422 EV_FREQUENT_CHECK;
2760} 4423}
4424#endif
2761 4425
4426#if EV_CHECK_ENABLE
2762void 4427void
2763ev_check_start (EV_P_ ev_check *w) 4428ev_check_start (EV_P_ ev_check *w) EV_THROW
2764{ 4429{
2765 if (expect_false (ev_is_active (w))) 4430 if (expect_false (ev_is_active (w)))
2766 return; 4431 return;
2767 4432
2768 EV_FREQUENT_CHECK; 4433 EV_FREQUENT_CHECK;
2773 4438
2774 EV_FREQUENT_CHECK; 4439 EV_FREQUENT_CHECK;
2775} 4440}
2776 4441
2777void 4442void
2778ev_check_stop (EV_P_ ev_check *w) 4443ev_check_stop (EV_P_ ev_check *w) EV_THROW
2779{ 4444{
2780 clear_pending (EV_A_ (W)w); 4445 clear_pending (EV_A_ (W)w);
2781 if (expect_false (!ev_is_active (w))) 4446 if (expect_false (!ev_is_active (w)))
2782 return; 4447 return;
2783 4448
2792 4457
2793 ev_stop (EV_A_ (W)w); 4458 ev_stop (EV_A_ (W)w);
2794 4459
2795 EV_FREQUENT_CHECK; 4460 EV_FREQUENT_CHECK;
2796} 4461}
4462#endif
2797 4463
2798#if EV_EMBED_ENABLE 4464#if EV_EMBED_ENABLE
2799void noinline 4465void noinline
2800ev_embed_sweep (EV_P_ ev_embed *w) 4466ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
2801{ 4467{
2802 ev_loop (w->other, EVLOOP_NONBLOCK); 4468 ev_run (w->other, EVRUN_NOWAIT);
2803} 4469}
2804 4470
2805static void 4471static void
2806embed_io_cb (EV_P_ ev_io *io, int revents) 4472embed_io_cb (EV_P_ ev_io *io, int revents)
2807{ 4473{
2808 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4474 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2809 4475
2810 if (ev_cb (w)) 4476 if (ev_cb (w))
2811 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4477 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2812 else 4478 else
2813 ev_loop (w->other, EVLOOP_NONBLOCK); 4479 ev_run (w->other, EVRUN_NOWAIT);
2814} 4480}
2815 4481
2816static void 4482static void
2817embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4483embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2818{ 4484{
2819 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4485 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2820 4486
2821 { 4487 {
2822 struct ev_loop *loop = w->other; 4488 EV_P = w->other;
2823 4489
2824 while (fdchangecnt) 4490 while (fdchangecnt)
2825 { 4491 {
2826 fd_reify (EV_A); 4492 fd_reify (EV_A);
2827 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4493 ev_run (EV_A_ EVRUN_NOWAIT);
2828 } 4494 }
2829 } 4495 }
4496}
4497
4498static void
4499embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4500{
4501 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4502
4503 ev_embed_stop (EV_A_ w);
4504
4505 {
4506 EV_P = w->other;
4507
4508 ev_loop_fork (EV_A);
4509 ev_run (EV_A_ EVRUN_NOWAIT);
4510 }
4511
4512 ev_embed_start (EV_A_ w);
2830} 4513}
2831 4514
2832#if 0 4515#if 0
2833static void 4516static void
2834embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4517embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2836 ev_idle_stop (EV_A_ idle); 4519 ev_idle_stop (EV_A_ idle);
2837} 4520}
2838#endif 4521#endif
2839 4522
2840void 4523void
2841ev_embed_start (EV_P_ ev_embed *w) 4524ev_embed_start (EV_P_ ev_embed *w) EV_THROW
2842{ 4525{
2843 if (expect_false (ev_is_active (w))) 4526 if (expect_false (ev_is_active (w)))
2844 return; 4527 return;
2845 4528
2846 { 4529 {
2847 struct ev_loop *loop = w->other; 4530 EV_P = w->other;
2848 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4531 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2849 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4532 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2850 } 4533 }
2851 4534
2852 EV_FREQUENT_CHECK; 4535 EV_FREQUENT_CHECK;
2853 4536
2856 4539
2857 ev_prepare_init (&w->prepare, embed_prepare_cb); 4540 ev_prepare_init (&w->prepare, embed_prepare_cb);
2858 ev_set_priority (&w->prepare, EV_MINPRI); 4541 ev_set_priority (&w->prepare, EV_MINPRI);
2859 ev_prepare_start (EV_A_ &w->prepare); 4542 ev_prepare_start (EV_A_ &w->prepare);
2860 4543
4544 ev_fork_init (&w->fork, embed_fork_cb);
4545 ev_fork_start (EV_A_ &w->fork);
4546
2861 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 4547 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2862 4548
2863 ev_start (EV_A_ (W)w, 1); 4549 ev_start (EV_A_ (W)w, 1);
2864 4550
2865 EV_FREQUENT_CHECK; 4551 EV_FREQUENT_CHECK;
2866} 4552}
2867 4553
2868void 4554void
2869ev_embed_stop (EV_P_ ev_embed *w) 4555ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
2870{ 4556{
2871 clear_pending (EV_A_ (W)w); 4557 clear_pending (EV_A_ (W)w);
2872 if (expect_false (!ev_is_active (w))) 4558 if (expect_false (!ev_is_active (w)))
2873 return; 4559 return;
2874 4560
2875 EV_FREQUENT_CHECK; 4561 EV_FREQUENT_CHECK;
2876 4562
2877 ev_io_stop (EV_A_ &w->io); 4563 ev_io_stop (EV_A_ &w->io);
2878 ev_prepare_stop (EV_A_ &w->prepare); 4564 ev_prepare_stop (EV_A_ &w->prepare);
4565 ev_fork_stop (EV_A_ &w->fork);
2879 4566
2880 ev_stop (EV_A_ (W)w); 4567 ev_stop (EV_A_ (W)w);
2881 4568
2882 EV_FREQUENT_CHECK; 4569 EV_FREQUENT_CHECK;
2883} 4570}
2884#endif 4571#endif
2885 4572
2886#if EV_FORK_ENABLE 4573#if EV_FORK_ENABLE
2887void 4574void
2888ev_fork_start (EV_P_ ev_fork *w) 4575ev_fork_start (EV_P_ ev_fork *w) EV_THROW
2889{ 4576{
2890 if (expect_false (ev_is_active (w))) 4577 if (expect_false (ev_is_active (w)))
2891 return; 4578 return;
2892 4579
2893 EV_FREQUENT_CHECK; 4580 EV_FREQUENT_CHECK;
2898 4585
2899 EV_FREQUENT_CHECK; 4586 EV_FREQUENT_CHECK;
2900} 4587}
2901 4588
2902void 4589void
2903ev_fork_stop (EV_P_ ev_fork *w) 4590ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
2904{ 4591{
2905 clear_pending (EV_A_ (W)w); 4592 clear_pending (EV_A_ (W)w);
2906 if (expect_false (!ev_is_active (w))) 4593 if (expect_false (!ev_is_active (w)))
2907 return; 4594 return;
2908 4595
2919 4606
2920 EV_FREQUENT_CHECK; 4607 EV_FREQUENT_CHECK;
2921} 4608}
2922#endif 4609#endif
2923 4610
4611#if EV_CLEANUP_ENABLE
4612void
4613ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4614{
4615 if (expect_false (ev_is_active (w)))
4616 return;
4617
4618 EV_FREQUENT_CHECK;
4619
4620 ev_start (EV_A_ (W)w, ++cleanupcnt);
4621 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4622 cleanups [cleanupcnt - 1] = w;
4623
4624 /* cleanup watchers should never keep a refcount on the loop */
4625 ev_unref (EV_A);
4626 EV_FREQUENT_CHECK;
4627}
4628
4629void
4630ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4631{
4632 clear_pending (EV_A_ (W)w);
4633 if (expect_false (!ev_is_active (w)))
4634 return;
4635
4636 EV_FREQUENT_CHECK;
4637 ev_ref (EV_A);
4638
4639 {
4640 int active = ev_active (w);
4641
4642 cleanups [active - 1] = cleanups [--cleanupcnt];
4643 ev_active (cleanups [active - 1]) = active;
4644 }
4645
4646 ev_stop (EV_A_ (W)w);
4647
4648 EV_FREQUENT_CHECK;
4649}
4650#endif
4651
2924#if EV_ASYNC_ENABLE 4652#if EV_ASYNC_ENABLE
2925void 4653void
2926ev_async_start (EV_P_ ev_async *w) 4654ev_async_start (EV_P_ ev_async *w) EV_THROW
2927{ 4655{
2928 if (expect_false (ev_is_active (w))) 4656 if (expect_false (ev_is_active (w)))
2929 return; 4657 return;
4658
4659 w->sent = 0;
2930 4660
2931 evpipe_init (EV_A); 4661 evpipe_init (EV_A);
2932 4662
2933 EV_FREQUENT_CHECK; 4663 EV_FREQUENT_CHECK;
2934 4664
2938 4668
2939 EV_FREQUENT_CHECK; 4669 EV_FREQUENT_CHECK;
2940} 4670}
2941 4671
2942void 4672void
2943ev_async_stop (EV_P_ ev_async *w) 4673ev_async_stop (EV_P_ ev_async *w) EV_THROW
2944{ 4674{
2945 clear_pending (EV_A_ (W)w); 4675 clear_pending (EV_A_ (W)w);
2946 if (expect_false (!ev_is_active (w))) 4676 if (expect_false (!ev_is_active (w)))
2947 return; 4677 return;
2948 4678
2959 4689
2960 EV_FREQUENT_CHECK; 4690 EV_FREQUENT_CHECK;
2961} 4691}
2962 4692
2963void 4693void
2964ev_async_send (EV_P_ ev_async *w) 4694ev_async_send (EV_P_ ev_async *w) EV_THROW
2965{ 4695{
2966 w->sent = 1; 4696 w->sent = 1;
2967 evpipe_write (EV_A_ &gotasync); 4697 evpipe_write (EV_A_ &async_pending);
2968} 4698}
2969#endif 4699#endif
2970 4700
2971/*****************************************************************************/ 4701/*****************************************************************************/
2972 4702
2982once_cb (EV_P_ struct ev_once *once, int revents) 4712once_cb (EV_P_ struct ev_once *once, int revents)
2983{ 4713{
2984 void (*cb)(int revents, void *arg) = once->cb; 4714 void (*cb)(int revents, void *arg) = once->cb;
2985 void *arg = once->arg; 4715 void *arg = once->arg;
2986 4716
2987 ev_io_stop (EV_A_ &once->io); 4717 ev_io_stop (EV_A_ &once->io);
2988 ev_timer_stop (EV_A_ &once->to); 4718 ev_timer_stop (EV_A_ &once->to);
2989 ev_free (once); 4719 ev_free (once);
2990 4720
2991 cb (revents, arg); 4721 cb (revents, arg);
2992} 4722}
2993 4723
2994static void 4724static void
2995once_cb_io (EV_P_ ev_io *w, int revents) 4725once_cb_io (EV_P_ ev_io *w, int revents)
2996{ 4726{
2997 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4727 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4728
4729 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2998} 4730}
2999 4731
3000static void 4732static void
3001once_cb_to (EV_P_ ev_timer *w, int revents) 4733once_cb_to (EV_P_ ev_timer *w, int revents)
3002{ 4734{
3003 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4735 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4736
4737 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3004} 4738}
3005 4739
3006void 4740void
3007ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4741ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
3008{ 4742{
3009 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4743 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3010 4744
3011 if (expect_false (!once)) 4745 if (expect_false (!once))
3012 { 4746 {
3013 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4747 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
3014 return; 4748 return;
3015 } 4749 }
3016 4750
3017 once->cb = cb; 4751 once->cb = cb;
3018 once->arg = arg; 4752 once->arg = arg;
3030 ev_timer_set (&once->to, timeout, 0.); 4764 ev_timer_set (&once->to, timeout, 0.);
3031 ev_timer_start (EV_A_ &once->to); 4765 ev_timer_start (EV_A_ &once->to);
3032 } 4766 }
3033} 4767}
3034 4768
4769/*****************************************************************************/
4770
4771#if EV_WALK_ENABLE
4772void ecb_cold
4773ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4774{
4775 int i, j;
4776 ev_watcher_list *wl, *wn;
4777
4778 if (types & (EV_IO | EV_EMBED))
4779 for (i = 0; i < anfdmax; ++i)
4780 for (wl = anfds [i].head; wl; )
4781 {
4782 wn = wl->next;
4783
4784#if EV_EMBED_ENABLE
4785 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4786 {
4787 if (types & EV_EMBED)
4788 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4789 }
4790 else
4791#endif
4792#if EV_USE_INOTIFY
4793 if (ev_cb ((ev_io *)wl) == infy_cb)
4794 ;
4795 else
4796#endif
4797 if ((ev_io *)wl != &pipe_w)
4798 if (types & EV_IO)
4799 cb (EV_A_ EV_IO, wl);
4800
4801 wl = wn;
4802 }
4803
4804 if (types & (EV_TIMER | EV_STAT))
4805 for (i = timercnt + HEAP0; i-- > HEAP0; )
4806#if EV_STAT_ENABLE
4807 /*TODO: timer is not always active*/
4808 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4809 {
4810 if (types & EV_STAT)
4811 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4812 }
4813 else
4814#endif
4815 if (types & EV_TIMER)
4816 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4817
4818#if EV_PERIODIC_ENABLE
4819 if (types & EV_PERIODIC)
4820 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4821 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4822#endif
4823
4824#if EV_IDLE_ENABLE
4825 if (types & EV_IDLE)
4826 for (j = NUMPRI; j--; )
4827 for (i = idlecnt [j]; i--; )
4828 cb (EV_A_ EV_IDLE, idles [j][i]);
4829#endif
4830
4831#if EV_FORK_ENABLE
4832 if (types & EV_FORK)
4833 for (i = forkcnt; i--; )
4834 if (ev_cb (forks [i]) != embed_fork_cb)
4835 cb (EV_A_ EV_FORK, forks [i]);
4836#endif
4837
4838#if EV_ASYNC_ENABLE
4839 if (types & EV_ASYNC)
4840 for (i = asynccnt; i--; )
4841 cb (EV_A_ EV_ASYNC, asyncs [i]);
4842#endif
4843
4844#if EV_PREPARE_ENABLE
4845 if (types & EV_PREPARE)
4846 for (i = preparecnt; i--; )
4847# if EV_EMBED_ENABLE
4848 if (ev_cb (prepares [i]) != embed_prepare_cb)
4849# endif
4850 cb (EV_A_ EV_PREPARE, prepares [i]);
4851#endif
4852
4853#if EV_CHECK_ENABLE
4854 if (types & EV_CHECK)
4855 for (i = checkcnt; i--; )
4856 cb (EV_A_ EV_CHECK, checks [i]);
4857#endif
4858
4859#if EV_SIGNAL_ENABLE
4860 if (types & EV_SIGNAL)
4861 for (i = 0; i < EV_NSIG - 1; ++i)
4862 for (wl = signals [i].head; wl; )
4863 {
4864 wn = wl->next;
4865 cb (EV_A_ EV_SIGNAL, wl);
4866 wl = wn;
4867 }
4868#endif
4869
4870#if EV_CHILD_ENABLE
4871 if (types & EV_CHILD)
4872 for (i = (EV_PID_HASHSIZE); i--; )
4873 for (wl = childs [i]; wl; )
4874 {
4875 wn = wl->next;
4876 cb (EV_A_ EV_CHILD, wl);
4877 wl = wn;
4878 }
4879#endif
4880/* EV_STAT 0x00001000 /* stat data changed */
4881/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4882}
4883#endif
4884
3035#if EV_MULTIPLICITY 4885#if EV_MULTIPLICITY
3036 #include "ev_wrap.h" 4886 #include "ev_wrap.h"
3037#endif 4887#endif
3038 4888
3039#ifdef __cplusplus
3040}
3041#endif
3042

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines