ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.282 by root, Sat Mar 28 22:17:17 2009 UTC vs.
Revision 1.469 by root, Fri Sep 5 16:21:19 2014 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012,2013 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
46# endif
47
48# if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
50# endif 52# endif
51 53
52# if HAVE_CLOCK_SYSCALL 54# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL 55# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1 56# define EV_USE_CLOCK_SYSCALL 1
57# endif 59# endif
58# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1 61# define EV_USE_MONOTONIC 1
60# endif 62# endif
61# endif 63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
62# endif 66# endif
63 67
64# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
65# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
66# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
75# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
77# endif 81# endif
78# endif 82# endif
79 83
84# if HAVE_NANOSLEEP
80# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
81# if HAVE_NANOSLEEP
82# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
83# else 88# else
89# undef EV_USE_NANOSLEEP
84# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
85# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
86# endif 100# endif
87 101
102# if HAVE_POLL && HAVE_POLL_H
88# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
89# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
90# define EV_USE_SELECT 1
91# else
92# define EV_USE_SELECT 0
93# endif 105# endif
94# endif
95
96# ifndef EV_USE_POLL
97# if HAVE_POLL && HAVE_POLL_H
98# define EV_USE_POLL 1
99# else 106# else
107# undef EV_USE_POLL
100# define EV_USE_POLL 0 108# define EV_USE_POLL 0
101# endif
102# endif 109# endif
103 110
104# ifndef EV_USE_EPOLL
105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
106# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
107# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
108# define EV_USE_EPOLL 0
109# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
110# endif 118# endif
111 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
112# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
113# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
114# define EV_USE_KQUEUE 1
115# else
116# define EV_USE_KQUEUE 0
117# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
118# endif 127# endif
119 128
120# ifndef EV_USE_PORT
121# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
122# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
123# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
124# define EV_USE_PORT 0
125# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
126# endif 136# endif
127 137
128# ifndef EV_USE_INOTIFY
129# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
130# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
131# else
132# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
133# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
134# endif 145# endif
135 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
136# ifndef EV_USE_EVENTFD 148# ifndef EV_USE_SIGNALFD
137# if HAVE_EVENTFD 149# define EV_USE_SIGNALFD EV_FEATURE_OS
138# define EV_USE_EVENTFD 1
139# else
140# define EV_USE_EVENTFD 0
141# endif 150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
142# endif 163# endif
143 164
144#endif 165#endif
145 166
146#include <math.h>
147#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
148#include <fcntl.h> 169#include <fcntl.h>
149#include <stddef.h> 170#include <stddef.h>
150 171
151#include <stdio.h> 172#include <stdio.h>
152 173
153#include <assert.h> 174#include <assert.h>
154#include <errno.h> 175#include <errno.h>
155#include <sys/types.h> 176#include <sys/types.h>
156#include <time.h> 177#include <time.h>
178#include <limits.h>
157 179
158#include <signal.h> 180#include <signal.h>
159 181
160#ifdef EV_H 182#ifdef EV_H
161# include EV_H 183# include EV_H
162#else 184#else
163# include "ev.h" 185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
164#endif 197#endif
165 198
166#ifndef _WIN32 199#ifndef _WIN32
167# include <sys/time.h> 200# include <sys/time.h>
168# include <sys/wait.h> 201# include <sys/wait.h>
169# include <unistd.h> 202# include <unistd.h>
170#else 203#else
171# include <io.h> 204# include <io.h>
172# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
173# include <windows.h> 207# include <windows.h>
174# ifndef EV_SELECT_IS_WINSOCKET 208# ifndef EV_SELECT_IS_WINSOCKET
175# define EV_SELECT_IS_WINSOCKET 1 209# define EV_SELECT_IS_WINSOCKET 1
176# endif 210# endif
211# undef EV_AVOID_STDIO
177#endif 212#endif
213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
178 221
179/* this block tries to deduce configuration from header-defined symbols and defaults */ 222/* this block tries to deduce configuration from header-defined symbols and defaults */
180 223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# define EV_NSIG (8 * sizeof (sigset_t) + 1)
247#endif
248
249#ifndef EV_USE_FLOOR
250# define EV_USE_FLOOR 0
251#endif
252
181#ifndef EV_USE_CLOCK_SYSCALL 253#ifndef EV_USE_CLOCK_SYSCALL
182# if __linux && __GLIBC__ >= 2 254# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
183# define EV_USE_CLOCK_SYSCALL 1 255# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
184# else 256# else
185# define EV_USE_CLOCK_SYSCALL 0 257# define EV_USE_CLOCK_SYSCALL 0
186# endif 258# endif
187#endif 259#endif
188 260
189#ifndef EV_USE_MONOTONIC 261#ifndef EV_USE_MONOTONIC
190# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0 262# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
191# define EV_USE_MONOTONIC 1 263# define EV_USE_MONOTONIC EV_FEATURE_OS
192# else 264# else
193# define EV_USE_MONOTONIC 0 265# define EV_USE_MONOTONIC 0
194# endif 266# endif
195#endif 267#endif
196 268
198# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL 270# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
199#endif 271#endif
200 272
201#ifndef EV_USE_NANOSLEEP 273#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L 274# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1 275# define EV_USE_NANOSLEEP EV_FEATURE_OS
204# else 276# else
205# define EV_USE_NANOSLEEP 0 277# define EV_USE_NANOSLEEP 0
206# endif 278# endif
207#endif 279#endif
208 280
209#ifndef EV_USE_SELECT 281#ifndef EV_USE_SELECT
210# define EV_USE_SELECT 1 282# define EV_USE_SELECT EV_FEATURE_BACKENDS
211#endif 283#endif
212 284
213#ifndef EV_USE_POLL 285#ifndef EV_USE_POLL
214# ifdef _WIN32 286# ifdef _WIN32
215# define EV_USE_POLL 0 287# define EV_USE_POLL 0
216# else 288# else
217# define EV_USE_POLL 1 289# define EV_USE_POLL EV_FEATURE_BACKENDS
218# endif 290# endif
219#endif 291#endif
220 292
221#ifndef EV_USE_EPOLL 293#ifndef EV_USE_EPOLL
222# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 294# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
223# define EV_USE_EPOLL 1 295# define EV_USE_EPOLL EV_FEATURE_BACKENDS
224# else 296# else
225# define EV_USE_EPOLL 0 297# define EV_USE_EPOLL 0
226# endif 298# endif
227#endif 299#endif
228 300
234# define EV_USE_PORT 0 306# define EV_USE_PORT 0
235#endif 307#endif
236 308
237#ifndef EV_USE_INOTIFY 309#ifndef EV_USE_INOTIFY
238# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
239# define EV_USE_INOTIFY 1 311# define EV_USE_INOTIFY EV_FEATURE_OS
240# else 312# else
241# define EV_USE_INOTIFY 0 313# define EV_USE_INOTIFY 0
242# endif 314# endif
243#endif 315#endif
244 316
245#ifndef EV_PID_HASHSIZE 317#ifndef EV_PID_HASHSIZE
246# if EV_MINIMAL 318# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
247# define EV_PID_HASHSIZE 1
248# else
249# define EV_PID_HASHSIZE 16
250# endif
251#endif 319#endif
252 320
253#ifndef EV_INOTIFY_HASHSIZE 321#ifndef EV_INOTIFY_HASHSIZE
254# if EV_MINIMAL 322# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
255# define EV_INOTIFY_HASHSIZE 1
256# else
257# define EV_INOTIFY_HASHSIZE 16
258# endif
259#endif 323#endif
260 324
261#ifndef EV_USE_EVENTFD 325#ifndef EV_USE_EVENTFD
262# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 326# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
263# define EV_USE_EVENTFD 1 327# define EV_USE_EVENTFD EV_FEATURE_OS
264# else 328# else
265# define EV_USE_EVENTFD 0 329# define EV_USE_EVENTFD 0
330# endif
331#endif
332
333#ifndef EV_USE_SIGNALFD
334# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
335# define EV_USE_SIGNALFD EV_FEATURE_OS
336# else
337# define EV_USE_SIGNALFD 0
266# endif 338# endif
267#endif 339#endif
268 340
269#if 0 /* debugging */ 341#if 0 /* debugging */
270# define EV_VERIFY 3 342# define EV_VERIFY 3
271# define EV_USE_4HEAP 1 343# define EV_USE_4HEAP 1
272# define EV_HEAP_CACHE_AT 1 344# define EV_HEAP_CACHE_AT 1
273#endif 345#endif
274 346
275#ifndef EV_VERIFY 347#ifndef EV_VERIFY
276# define EV_VERIFY !EV_MINIMAL 348# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
277#endif 349#endif
278 350
279#ifndef EV_USE_4HEAP 351#ifndef EV_USE_4HEAP
280# define EV_USE_4HEAP !EV_MINIMAL 352# define EV_USE_4HEAP EV_FEATURE_DATA
281#endif 353#endif
282 354
283#ifndef EV_HEAP_CACHE_AT 355#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL 356# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
357#endif
358
359#ifdef ANDROID
360/* supposedly, android doesn't typedef fd_mask */
361# undef EV_USE_SELECT
362# define EV_USE_SELECT 0
363/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
364# undef EV_USE_CLOCK_SYSCALL
365# define EV_USE_CLOCK_SYSCALL 0
366#endif
367
368/* aix's poll.h seems to cause lots of trouble */
369#ifdef _AIX
370/* AIX has a completely broken poll.h header */
371# undef EV_USE_POLL
372# define EV_USE_POLL 0
373#endif
374
375/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
376/* which makes programs even slower. might work on other unices, too. */
377#if EV_USE_CLOCK_SYSCALL
378# include <sys/syscall.h>
379# ifdef SYS_clock_gettime
380# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
381# undef EV_USE_MONOTONIC
382# define EV_USE_MONOTONIC 1
383# else
384# undef EV_USE_CLOCK_SYSCALL
385# define EV_USE_CLOCK_SYSCALL 0
386# endif
285#endif 387#endif
286 388
287/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 389/* this block fixes any misconfiguration where we know we run into trouble otherwise */
288 390
289#ifndef CLOCK_MONOTONIC 391#ifndef CLOCK_MONOTONIC
300# undef EV_USE_INOTIFY 402# undef EV_USE_INOTIFY
301# define EV_USE_INOTIFY 0 403# define EV_USE_INOTIFY 0
302#endif 404#endif
303 405
304#if !EV_USE_NANOSLEEP 406#if !EV_USE_NANOSLEEP
305# ifndef _WIN32 407/* hp-ux has it in sys/time.h, which we unconditionally include above */
408# if !defined _WIN32 && !defined __hpux
306# include <sys/select.h> 409# include <sys/select.h>
307# endif 410# endif
308#endif 411#endif
309 412
310#if EV_USE_INOTIFY 413#if EV_USE_INOTIFY
311# include <sys/utsname.h>
312# include <sys/statfs.h> 414# include <sys/statfs.h>
313# include <sys/inotify.h> 415# include <sys/inotify.h>
314/* some very old inotify.h headers don't have IN_DONT_FOLLOW */ 416/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
315# ifndef IN_DONT_FOLLOW 417# ifndef IN_DONT_FOLLOW
316# undef EV_USE_INOTIFY 418# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0 419# define EV_USE_INOTIFY 0
318# endif 420# endif
319#endif 421#endif
320 422
321#if EV_SELECT_IS_WINSOCKET
322# include <winsock.h>
323#endif
324
325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
331# define EV_USE_MONOTONIC 1
332#endif
333
334#if EV_USE_EVENTFD 423#if EV_USE_EVENTFD
335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 424/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336# include <stdint.h> 425# include <stdint.h>
337# ifdef __cplusplus 426# ifndef EFD_NONBLOCK
338extern "C" { 427# define EFD_NONBLOCK O_NONBLOCK
339# endif 428# endif
340int eventfd (unsigned int initval, int flags); 429# ifndef EFD_CLOEXEC
341# ifdef __cplusplus 430# ifdef O_CLOEXEC
342} 431# define EFD_CLOEXEC O_CLOEXEC
432# else
433# define EFD_CLOEXEC 02000000
434# endif
343# endif 435# endif
436EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
437#endif
438
439#if EV_USE_SIGNALFD
440/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
441# include <stdint.h>
442# ifndef SFD_NONBLOCK
443# define SFD_NONBLOCK O_NONBLOCK
444# endif
445# ifndef SFD_CLOEXEC
446# ifdef O_CLOEXEC
447# define SFD_CLOEXEC O_CLOEXEC
448# else
449# define SFD_CLOEXEC 02000000
450# endif
451# endif
452EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
453
454struct signalfd_siginfo
455{
456 uint32_t ssi_signo;
457 char pad[128 - sizeof (uint32_t)];
458};
344#endif 459#endif
345 460
346/**/ 461/**/
347 462
348#if EV_VERIFY >= 3 463#if EV_VERIFY >= 3
349# define EV_FREQUENT_CHECK ev_loop_verify (EV_A) 464# define EV_FREQUENT_CHECK ev_verify (EV_A)
350#else 465#else
351# define EV_FREQUENT_CHECK do { } while (0) 466# define EV_FREQUENT_CHECK do { } while (0)
352#endif 467#endif
353 468
354/* 469/*
355 * This is used to avoid floating point rounding problems. 470 * This is used to work around floating point rounding problems.
356 * It is added to ev_rt_now when scheduling periodics
357 * to ensure progress, time-wise, even when rounding
358 * errors are against us.
359 * This value is good at least till the year 4000. 471 * This value is good at least till the year 4000.
360 * Better solutions welcome.
361 */ 472 */
362#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 473#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
474/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
363 475
364#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 476#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
365#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 477#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
366/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
367 478
479#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
480#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
481
482/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
483/* ECB.H BEGIN */
484/*
485 * libecb - http://software.schmorp.de/pkg/libecb
486 *
487 * Copyright (©) 2009-2014 Marc Alexander Lehmann <libecb@schmorp.de>
488 * Copyright (©) 2011 Emanuele Giaquinta
489 * All rights reserved.
490 *
491 * Redistribution and use in source and binary forms, with or without modifica-
492 * tion, are permitted provided that the following conditions are met:
493 *
494 * 1. Redistributions of source code must retain the above copyright notice,
495 * this list of conditions and the following disclaimer.
496 *
497 * 2. Redistributions in binary form must reproduce the above copyright
498 * notice, this list of conditions and the following disclaimer in the
499 * documentation and/or other materials provided with the distribution.
500 *
501 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
502 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
503 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
504 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
505 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
506 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
507 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
508 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
509 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
510 * OF THE POSSIBILITY OF SUCH DAMAGE.
511 *
512 * Alternatively, the contents of this file may be used under the terms of
513 * the GNU General Public License ("GPL") version 2 or any later version,
514 * in which case the provisions of the GPL are applicable instead of
515 * the above. If you wish to allow the use of your version of this file
516 * only under the terms of the GPL and not to allow others to use your
517 * version of this file under the BSD license, indicate your decision
518 * by deleting the provisions above and replace them with the notice
519 * and other provisions required by the GPL. If you do not delete the
520 * provisions above, a recipient may use your version of this file under
521 * either the BSD or the GPL.
522 */
523
524#ifndef ECB_H
525#define ECB_H
526
527/* 16 bits major, 16 bits minor */
528#define ECB_VERSION 0x00010003
529
530#ifdef _WIN32
531 typedef signed char int8_t;
532 typedef unsigned char uint8_t;
533 typedef signed short int16_t;
534 typedef unsigned short uint16_t;
535 typedef signed int int32_t;
536 typedef unsigned int uint32_t;
368#if __GNUC__ >= 4 537 #if __GNUC__
369# define expect(expr,value) __builtin_expect ((expr),(value)) 538 typedef signed long long int64_t;
370# define noinline __attribute__ ((noinline)) 539 typedef unsigned long long uint64_t;
540 #else /* _MSC_VER || __BORLANDC__ */
541 typedef signed __int64 int64_t;
542 typedef unsigned __int64 uint64_t;
543 #endif
544 #ifdef _WIN64
545 #define ECB_PTRSIZE 8
546 typedef uint64_t uintptr_t;
547 typedef int64_t intptr_t;
548 #else
549 #define ECB_PTRSIZE 4
550 typedef uint32_t uintptr_t;
551 typedef int32_t intptr_t;
552 #endif
371#else 553#else
372# define expect(expr,value) (expr) 554 #include <inttypes.h>
373# define noinline 555 #if UINTMAX_MAX > 0xffffffffU
374# if __STDC_VERSION__ < 199901L && __GNUC__ < 2 556 #define ECB_PTRSIZE 8
375# define inline 557 #else
558 #define ECB_PTRSIZE 4
559 #endif
376# endif 560#endif
561
562/* work around x32 idiocy by defining proper macros */
563#if __amd64 || __x86_64 || _M_AMD64 || _M_X64
564 #if _ILP32
565 #define ECB_AMD64_X32 1
566 #else
567 #define ECB_AMD64 1
377#endif 568 #endif
569#endif
378 570
571/* many compilers define _GNUC_ to some versions but then only implement
572 * what their idiot authors think are the "more important" extensions,
573 * causing enormous grief in return for some better fake benchmark numbers.
574 * or so.
575 * we try to detect these and simply assume they are not gcc - if they have
576 * an issue with that they should have done it right in the first place.
577 */
578#ifndef ECB_GCC_VERSION
579 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
580 #define ECB_GCC_VERSION(major,minor) 0
581 #else
582 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
583 #endif
584#endif
585
586#define ECB_CPP (__cplusplus+0)
587#define ECB_CPP11 (__cplusplus >= 201103L)
588
589#if ECB_CPP
590 #define ECB_C 0
591 #define ECB_STDC_VERSION 0
592#else
593 #define ECB_C 1
594 #define ECB_STDC_VERSION __STDC_VERSION__
595#endif
596
597#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
598#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
599
600#if ECB_CPP
601 #define ECB_EXTERN_C extern "C"
602 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
603 #define ECB_EXTERN_C_END }
604#else
605 #define ECB_EXTERN_C extern
606 #define ECB_EXTERN_C_BEG
607 #define ECB_EXTERN_C_END
608#endif
609
610/*****************************************************************************/
611
612/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
613/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
614
615#if ECB_NO_THREADS
616 #define ECB_NO_SMP 1
617#endif
618
619#if ECB_NO_SMP
620 #define ECB_MEMORY_FENCE do { } while (0)
621#endif
622
623#ifndef ECB_MEMORY_FENCE
624 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
625 #if __i386 || __i386__
626 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
627 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
628 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
629 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
630 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
631 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
632 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
633 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
634 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
635 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
636 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
637 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
638 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
639 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
640 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
641 #elif __aarch64__
642 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
643 #elif (__sparc || __sparc__) && !__sparcv8
644 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
645 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
646 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
647 #elif defined __s390__ || defined __s390x__
648 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
649 #elif defined __mips__
650 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
651 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
652 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
653 #elif defined __alpha__
654 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
655 #elif defined __hppa__
656 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
657 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
658 #elif defined __ia64__
659 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
660 #elif defined __m68k__
661 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
662 #elif defined __m88k__
663 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
664 #elif defined __sh__
665 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
666 #endif
667 #endif
668#endif
669
670#ifndef ECB_MEMORY_FENCE
671 #if ECB_GCC_VERSION(4,7)
672 /* see comment below (stdatomic.h) about the C11 memory model. */
673 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
674 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
675 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
676
677 /* The __has_feature syntax from clang is so misdesigned that we cannot use it
678 * without risking compile time errors with other compilers. We *could*
679 * define our own ecb_clang_has_feature, but I just can't be bothered to work
680 * around this shit time and again.
681 * #elif defined __clang && __has_feature (cxx_atomic)
682 * // see comment below (stdatomic.h) about the C11 memory model.
683 * #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
684 * #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
685 * #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
686 */
687
688 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
689 #define ECB_MEMORY_FENCE __sync_synchronize ()
690 #elif _MSC_VER >= 1500 /* VC++ 2008 */
691 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
692 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
693 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
694 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
695 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
696 #elif _MSC_VER >= 1400 /* VC++ 2005 */
697 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
698 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
699 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
700 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
701 #elif defined _WIN32
702 #include <WinNT.h>
703 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
704 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
705 #include <mbarrier.h>
706 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
707 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
708 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
709 #elif __xlC__
710 #define ECB_MEMORY_FENCE __sync ()
711 #endif
712#endif
713
714#ifndef ECB_MEMORY_FENCE
715 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
716 /* we assume that these memory fences work on all variables/all memory accesses, */
717 /* not just C11 atomics and atomic accesses */
718 #include <stdatomic.h>
719 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
720 /* any fence other than seq_cst, which isn't very efficient for us. */
721 /* Why that is, we don't know - either the C11 memory model is quite useless */
722 /* for most usages, or gcc and clang have a bug */
723 /* I *currently* lean towards the latter, and inefficiently implement */
724 /* all three of ecb's fences as a seq_cst fence */
725 /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */
726 /* for all __atomic_thread_fence's except seq_cst */
727 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
728 #endif
729#endif
730
731#ifndef ECB_MEMORY_FENCE
732 #if !ECB_AVOID_PTHREADS
733 /*
734 * if you get undefined symbol references to pthread_mutex_lock,
735 * or failure to find pthread.h, then you should implement
736 * the ECB_MEMORY_FENCE operations for your cpu/compiler
737 * OR provide pthread.h and link against the posix thread library
738 * of your system.
739 */
740 #include <pthread.h>
741 #define ECB_NEEDS_PTHREADS 1
742 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
743
744 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
745 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
746 #endif
747#endif
748
749#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
750 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
751#endif
752
753#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
754 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
755#endif
756
757/*****************************************************************************/
758
759#if __cplusplus
760 #define ecb_inline static inline
761#elif ECB_GCC_VERSION(2,5)
762 #define ecb_inline static __inline__
763#elif ECB_C99
764 #define ecb_inline static inline
765#else
766 #define ecb_inline static
767#endif
768
769#if ECB_GCC_VERSION(3,3)
770 #define ecb_restrict __restrict__
771#elif ECB_C99
772 #define ecb_restrict restrict
773#else
774 #define ecb_restrict
775#endif
776
777typedef int ecb_bool;
778
779#define ECB_CONCAT_(a, b) a ## b
780#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
781#define ECB_STRINGIFY_(a) # a
782#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
783
784#define ecb_function_ ecb_inline
785
786#if ECB_GCC_VERSION(3,1)
787 #define ecb_attribute(attrlist) __attribute__(attrlist)
788 #define ecb_is_constant(expr) __builtin_constant_p (expr)
789 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
790 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
791#else
792 #define ecb_attribute(attrlist)
793
794 /* possible C11 impl for integral types
795 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
796 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
797
798 #define ecb_is_constant(expr) 0
799 #define ecb_expect(expr,value) (expr)
800 #define ecb_prefetch(addr,rw,locality)
801#endif
802
803/* no emulation for ecb_decltype */
804#if ECB_GCC_VERSION(4,5)
805 #define ecb_decltype(x) __decltype(x)
806#elif ECB_GCC_VERSION(3,0)
807 #define ecb_decltype(x) __typeof(x)
808#endif
809
810#if _MSC_VER >= 1300
811 #define ecb_deprecated __declspec(deprecated)
812#else
813 #define ecb_deprecated ecb_attribute ((__deprecated__))
814#endif
815
816#define ecb_noinline ecb_attribute ((__noinline__))
817#define ecb_unused ecb_attribute ((__unused__))
818#define ecb_const ecb_attribute ((__const__))
819#define ecb_pure ecb_attribute ((__pure__))
820
821/* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx __declspec(noreturn) */
822#if ECB_C11
823 #define ecb_noreturn _Noreturn
824#else
825 #define ecb_noreturn ecb_attribute ((__noreturn__))
826#endif
827
828#if ECB_GCC_VERSION(4,3)
829 #define ecb_artificial ecb_attribute ((__artificial__))
830 #define ecb_hot ecb_attribute ((__hot__))
831 #define ecb_cold ecb_attribute ((__cold__))
832#else
833 #define ecb_artificial
834 #define ecb_hot
835 #define ecb_cold
836#endif
837
838/* put around conditional expressions if you are very sure that the */
839/* expression is mostly true or mostly false. note that these return */
840/* booleans, not the expression. */
379#define expect_false(expr) expect ((expr) != 0, 0) 841#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
380#define expect_true(expr) expect ((expr) != 0, 1) 842#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
843/* for compatibility to the rest of the world */
844#define ecb_likely(expr) ecb_expect_true (expr)
845#define ecb_unlikely(expr) ecb_expect_false (expr)
846
847/* count trailing zero bits and count # of one bits */
848#if ECB_GCC_VERSION(3,4)
849 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
850 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
851 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
852 #define ecb_ctz32(x) __builtin_ctz (x)
853 #define ecb_ctz64(x) __builtin_ctzll (x)
854 #define ecb_popcount32(x) __builtin_popcount (x)
855 /* no popcountll */
856#else
857 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
858 ecb_function_ int
859 ecb_ctz32 (uint32_t x)
860 {
861 int r = 0;
862
863 x &= ~x + 1; /* this isolates the lowest bit */
864
865#if ECB_branchless_on_i386
866 r += !!(x & 0xaaaaaaaa) << 0;
867 r += !!(x & 0xcccccccc) << 1;
868 r += !!(x & 0xf0f0f0f0) << 2;
869 r += !!(x & 0xff00ff00) << 3;
870 r += !!(x & 0xffff0000) << 4;
871#else
872 if (x & 0xaaaaaaaa) r += 1;
873 if (x & 0xcccccccc) r += 2;
874 if (x & 0xf0f0f0f0) r += 4;
875 if (x & 0xff00ff00) r += 8;
876 if (x & 0xffff0000) r += 16;
877#endif
878
879 return r;
880 }
881
882 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
883 ecb_function_ int
884 ecb_ctz64 (uint64_t x)
885 {
886 int shift = x & 0xffffffffU ? 0 : 32;
887 return ecb_ctz32 (x >> shift) + shift;
888 }
889
890 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
891 ecb_function_ int
892 ecb_popcount32 (uint32_t x)
893 {
894 x -= (x >> 1) & 0x55555555;
895 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
896 x = ((x >> 4) + x) & 0x0f0f0f0f;
897 x *= 0x01010101;
898
899 return x >> 24;
900 }
901
902 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
903 ecb_function_ int ecb_ld32 (uint32_t x)
904 {
905 int r = 0;
906
907 if (x >> 16) { x >>= 16; r += 16; }
908 if (x >> 8) { x >>= 8; r += 8; }
909 if (x >> 4) { x >>= 4; r += 4; }
910 if (x >> 2) { x >>= 2; r += 2; }
911 if (x >> 1) { r += 1; }
912
913 return r;
914 }
915
916 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
917 ecb_function_ int ecb_ld64 (uint64_t x)
918 {
919 int r = 0;
920
921 if (x >> 32) { x >>= 32; r += 32; }
922
923 return r + ecb_ld32 (x);
924 }
925#endif
926
927ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
928ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
929ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
930ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
931
932ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
933ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
934{
935 return ( (x * 0x0802U & 0x22110U)
936 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
937}
938
939ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
940ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
941{
942 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
943 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
944 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
945 x = ( x >> 8 ) | ( x << 8);
946
947 return x;
948}
949
950ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
951ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
952{
953 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
954 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
955 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
956 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
957 x = ( x >> 16 ) | ( x << 16);
958
959 return x;
960}
961
962/* popcount64 is only available on 64 bit cpus as gcc builtin */
963/* so for this version we are lazy */
964ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
965ecb_function_ int
966ecb_popcount64 (uint64_t x)
967{
968 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
969}
970
971ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
972ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
973ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
974ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
975ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
976ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
977ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
978ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
979
980ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
981ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
982ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
983ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
984ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
985ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
986ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
987ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
988
989#if ECB_GCC_VERSION(4,3)
990 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
991 #define ecb_bswap32(x) __builtin_bswap32 (x)
992 #define ecb_bswap64(x) __builtin_bswap64 (x)
993#else
994 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
995 ecb_function_ uint16_t
996 ecb_bswap16 (uint16_t x)
997 {
998 return ecb_rotl16 (x, 8);
999 }
1000
1001 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
1002 ecb_function_ uint32_t
1003 ecb_bswap32 (uint32_t x)
1004 {
1005 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1006 }
1007
1008 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
1009 ecb_function_ uint64_t
1010 ecb_bswap64 (uint64_t x)
1011 {
1012 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1013 }
1014#endif
1015
1016#if ECB_GCC_VERSION(4,5)
1017 #define ecb_unreachable() __builtin_unreachable ()
1018#else
1019 /* this seems to work fine, but gcc always emits a warning for it :/ */
1020 ecb_inline void ecb_unreachable (void) ecb_noreturn;
1021 ecb_inline void ecb_unreachable (void) { }
1022#endif
1023
1024/* try to tell the compiler that some condition is definitely true */
1025#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1026
1027ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
1028ecb_inline unsigned char
1029ecb_byteorder_helper (void)
1030{
1031 /* the union code still generates code under pressure in gcc, */
1032 /* but less than using pointers, and always seems to */
1033 /* successfully return a constant. */
1034 /* the reason why we have this horrible preprocessor mess */
1035 /* is to avoid it in all cases, at least on common architectures */
1036 /* or when using a recent enough gcc version (>= 4.6) */
1037#if __i386 || __i386__ || _M_X86 || __amd64 || __amd64__ || _M_X64
1038 return 0x44;
1039#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1040 return 0x44;
1041#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1042 return 0x11;
1043#else
1044 union
1045 {
1046 uint32_t i;
1047 uint8_t c;
1048 } u = { 0x11223344 };
1049 return u.c;
1050#endif
1051}
1052
1053ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
1054ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
1055ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
1056ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
1057
1058#if ECB_GCC_VERSION(3,0) || ECB_C99
1059 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1060#else
1061 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1062#endif
1063
1064#if __cplusplus
1065 template<typename T>
1066 static inline T ecb_div_rd (T val, T div)
1067 {
1068 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1069 }
1070 template<typename T>
1071 static inline T ecb_div_ru (T val, T div)
1072 {
1073 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1074 }
1075#else
1076 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1077 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1078#endif
1079
1080#if ecb_cplusplus_does_not_suck
1081 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1082 template<typename T, int N>
1083 static inline int ecb_array_length (const T (&arr)[N])
1084 {
1085 return N;
1086 }
1087#else
1088 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1089#endif
1090
1091/*******************************************************************************/
1092/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1093
1094/* basically, everything uses "ieee pure-endian" floating point numbers */
1095/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1096#if 0 \
1097 || __i386 || __i386__ \
1098 || __amd64 || __amd64__ || __x86_64 || __x86_64__ \
1099 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1100 || defined __s390__ || defined __s390x__ \
1101 || defined __mips__ \
1102 || defined __alpha__ \
1103 || defined __hppa__ \
1104 || defined __ia64__ \
1105 || defined __m68k__ \
1106 || defined __m88k__ \
1107 || defined __sh__ \
1108 || defined _M_IX86 || defined _M_AMD64 || defined _M_IA64 \
1109 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1110 || defined __aarch64__
1111 #define ECB_STDFP 1
1112 #include <string.h> /* for memcpy */
1113#else
1114 #define ECB_STDFP 0
1115#endif
1116
1117#ifndef ECB_NO_LIBM
1118
1119 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1120
1121 /* only the oldest of old doesn't have this one. solaris. */
1122 #ifdef INFINITY
1123 #define ECB_INFINITY INFINITY
1124 #else
1125 #define ECB_INFINITY HUGE_VAL
1126 #endif
1127
1128 #ifdef NAN
1129 #define ECB_NAN NAN
1130 #else
1131 #define ECB_NAN ECB_INFINITY
1132 #endif
1133
1134 /* converts an ieee half/binary16 to a float */
1135 ecb_function_ float ecb_binary16_to_float (uint16_t x) ecb_const;
1136 ecb_function_ float
1137 ecb_binary16_to_float (uint16_t x)
1138 {
1139 int e = (x >> 10) & 0x1f;
1140 int m = x & 0x3ff;
1141 float r;
1142
1143 if (!e ) r = ldexpf (m , -24);
1144 else if (e != 31) r = ldexpf (m + 0x400, e - 25);
1145 else if (m ) r = ECB_NAN;
1146 else r = ECB_INFINITY;
1147
1148 return x & 0x8000 ? -r : r;
1149 }
1150
1151 /* convert a float to ieee single/binary32 */
1152 ecb_function_ uint32_t ecb_float_to_binary32 (float x) ecb_const;
1153 ecb_function_ uint32_t
1154 ecb_float_to_binary32 (float x)
1155 {
1156 uint32_t r;
1157
1158 #if ECB_STDFP
1159 memcpy (&r, &x, 4);
1160 #else
1161 /* slow emulation, works for anything but -0 */
1162 uint32_t m;
1163 int e;
1164
1165 if (x == 0e0f ) return 0x00000000U;
1166 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1167 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1168 if (x != x ) return 0x7fbfffffU;
1169
1170 m = frexpf (x, &e) * 0x1000000U;
1171
1172 r = m & 0x80000000U;
1173
1174 if (r)
1175 m = -m;
1176
1177 if (e <= -126)
1178 {
1179 m &= 0xffffffU;
1180 m >>= (-125 - e);
1181 e = -126;
1182 }
1183
1184 r |= (e + 126) << 23;
1185 r |= m & 0x7fffffU;
1186 #endif
1187
1188 return r;
1189 }
1190
1191 /* converts an ieee single/binary32 to a float */
1192 ecb_function_ float ecb_binary32_to_float (uint32_t x) ecb_const;
1193 ecb_function_ float
1194 ecb_binary32_to_float (uint32_t x)
1195 {
1196 float r;
1197
1198 #if ECB_STDFP
1199 memcpy (&r, &x, 4);
1200 #else
1201 /* emulation, only works for normals and subnormals and +0 */
1202 int neg = x >> 31;
1203 int e = (x >> 23) & 0xffU;
1204
1205 x &= 0x7fffffU;
1206
1207 if (e)
1208 x |= 0x800000U;
1209 else
1210 e = 1;
1211
1212 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1213 r = ldexpf (x * (0.5f / 0x800000U), e - 126);
1214
1215 r = neg ? -r : r;
1216 #endif
1217
1218 return r;
1219 }
1220
1221 /* convert a double to ieee double/binary64 */
1222 ecb_function_ uint64_t ecb_double_to_binary64 (double x) ecb_const;
1223 ecb_function_ uint64_t
1224 ecb_double_to_binary64 (double x)
1225 {
1226 uint64_t r;
1227
1228 #if ECB_STDFP
1229 memcpy (&r, &x, 8);
1230 #else
1231 /* slow emulation, works for anything but -0 */
1232 uint64_t m;
1233 int e;
1234
1235 if (x == 0e0 ) return 0x0000000000000000U;
1236 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1237 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1238 if (x != x ) return 0X7ff7ffffffffffffU;
1239
1240 m = frexp (x, &e) * 0x20000000000000U;
1241
1242 r = m & 0x8000000000000000;;
1243
1244 if (r)
1245 m = -m;
1246
1247 if (e <= -1022)
1248 {
1249 m &= 0x1fffffffffffffU;
1250 m >>= (-1021 - e);
1251 e = -1022;
1252 }
1253
1254 r |= ((uint64_t)(e + 1022)) << 52;
1255 r |= m & 0xfffffffffffffU;
1256 #endif
1257
1258 return r;
1259 }
1260
1261 /* converts an ieee double/binary64 to a double */
1262 ecb_function_ double ecb_binary64_to_double (uint64_t x) ecb_const;
1263 ecb_function_ double
1264 ecb_binary64_to_double (uint64_t x)
1265 {
1266 double r;
1267
1268 #if ECB_STDFP
1269 memcpy (&r, &x, 8);
1270 #else
1271 /* emulation, only works for normals and subnormals and +0 */
1272 int neg = x >> 63;
1273 int e = (x >> 52) & 0x7ffU;
1274
1275 x &= 0xfffffffffffffU;
1276
1277 if (e)
1278 x |= 0x10000000000000U;
1279 else
1280 e = 1;
1281
1282 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1283 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1284
1285 r = neg ? -r : r;
1286 #endif
1287
1288 return r;
1289 }
1290
1291#endif
1292
1293#endif
1294
1295/* ECB.H END */
1296
1297#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1298/* if your architecture doesn't need memory fences, e.g. because it is
1299 * single-cpu/core, or if you use libev in a project that doesn't use libev
1300 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1301 * libev, in which cases the memory fences become nops.
1302 * alternatively, you can remove this #error and link against libpthread,
1303 * which will then provide the memory fences.
1304 */
1305# error "memory fences not defined for your architecture, please report"
1306#endif
1307
1308#ifndef ECB_MEMORY_FENCE
1309# define ECB_MEMORY_FENCE do { } while (0)
1310# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1311# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1312#endif
1313
1314#define expect_false(cond) ecb_expect_false (cond)
1315#define expect_true(cond) ecb_expect_true (cond)
1316#define noinline ecb_noinline
1317
381#define inline_size static inline 1318#define inline_size ecb_inline
382 1319
383#if EV_MINIMAL 1320#if EV_FEATURE_CODE
1321# define inline_speed ecb_inline
1322#else
384# define inline_speed static noinline 1323# define inline_speed static noinline
1324#endif
1325
1326#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1327
1328#if EV_MINPRI == EV_MAXPRI
1329# define ABSPRI(w) (((W)w), 0)
385#else 1330#else
386# define inline_speed static inline
387#endif
388
389#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
390#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1331# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1332#endif
391 1333
392#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1334#define EMPTY /* required for microsofts broken pseudo-c compiler */
393#define EMPTY2(a,b) /* used to suppress some warnings */ 1335#define EMPTY2(a,b) /* used to suppress some warnings */
394 1336
395typedef ev_watcher *W; 1337typedef ev_watcher *W;
399#define ev_active(w) ((W)(w))->active 1341#define ev_active(w) ((W)(w))->active
400#define ev_at(w) ((WT)(w))->at 1342#define ev_at(w) ((WT)(w))->at
401 1343
402#if EV_USE_REALTIME 1344#if EV_USE_REALTIME
403/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 1345/* sig_atomic_t is used to avoid per-thread variables or locking but still */
404/* giving it a reasonably high chance of working on typical architetcures */ 1346/* giving it a reasonably high chance of working on typical architectures */
405static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */ 1347static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
406#endif 1348#endif
407 1349
408#if EV_USE_MONOTONIC 1350#if EV_USE_MONOTONIC
409static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1351static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
410#endif 1352#endif
411 1353
1354#ifndef EV_FD_TO_WIN32_HANDLE
1355# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1356#endif
1357#ifndef EV_WIN32_HANDLE_TO_FD
1358# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1359#endif
1360#ifndef EV_WIN32_CLOSE_FD
1361# define EV_WIN32_CLOSE_FD(fd) close (fd)
1362#endif
1363
412#ifdef _WIN32 1364#ifdef _WIN32
413# include "ev_win32.c" 1365# include "ev_win32.c"
414#endif 1366#endif
415 1367
416/*****************************************************************************/ 1368/*****************************************************************************/
417 1369
1370/* define a suitable floor function (only used by periodics atm) */
1371
1372#if EV_USE_FLOOR
1373# include <math.h>
1374# define ev_floor(v) floor (v)
1375#else
1376
1377#include <float.h>
1378
1379/* a floor() replacement function, should be independent of ev_tstamp type */
1380static ev_tstamp noinline
1381ev_floor (ev_tstamp v)
1382{
1383 /* the choice of shift factor is not terribly important */
1384#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1385 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1386#else
1387 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1388#endif
1389
1390 /* argument too large for an unsigned long? */
1391 if (expect_false (v >= shift))
1392 {
1393 ev_tstamp f;
1394
1395 if (v == v - 1.)
1396 return v; /* very large number */
1397
1398 f = shift * ev_floor (v * (1. / shift));
1399 return f + ev_floor (v - f);
1400 }
1401
1402 /* special treatment for negative args? */
1403 if (expect_false (v < 0.))
1404 {
1405 ev_tstamp f = -ev_floor (-v);
1406
1407 return f - (f == v ? 0 : 1);
1408 }
1409
1410 /* fits into an unsigned long */
1411 return (unsigned long)v;
1412}
1413
1414#endif
1415
1416/*****************************************************************************/
1417
1418#ifdef __linux
1419# include <sys/utsname.h>
1420#endif
1421
1422static unsigned int noinline ecb_cold
1423ev_linux_version (void)
1424{
1425#ifdef __linux
1426 unsigned int v = 0;
1427 struct utsname buf;
1428 int i;
1429 char *p = buf.release;
1430
1431 if (uname (&buf))
1432 return 0;
1433
1434 for (i = 3+1; --i; )
1435 {
1436 unsigned int c = 0;
1437
1438 for (;;)
1439 {
1440 if (*p >= '0' && *p <= '9')
1441 c = c * 10 + *p++ - '0';
1442 else
1443 {
1444 p += *p == '.';
1445 break;
1446 }
1447 }
1448
1449 v = (v << 8) | c;
1450 }
1451
1452 return v;
1453#else
1454 return 0;
1455#endif
1456}
1457
1458/*****************************************************************************/
1459
1460#if EV_AVOID_STDIO
1461static void noinline ecb_cold
1462ev_printerr (const char *msg)
1463{
1464 write (STDERR_FILENO, msg, strlen (msg));
1465}
1466#endif
1467
418static void (*syserr_cb)(const char *msg); 1468static void (*syserr_cb)(const char *msg) EV_THROW;
419 1469
420void 1470void ecb_cold
421ev_set_syserr_cb (void (*cb)(const char *msg)) 1471ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
422{ 1472{
423 syserr_cb = cb; 1473 syserr_cb = cb;
424} 1474}
425 1475
426static void noinline 1476static void noinline ecb_cold
427ev_syserr (const char *msg) 1477ev_syserr (const char *msg)
428{ 1478{
429 if (!msg) 1479 if (!msg)
430 msg = "(libev) system error"; 1480 msg = "(libev) system error";
431 1481
432 if (syserr_cb) 1482 if (syserr_cb)
433 syserr_cb (msg); 1483 syserr_cb (msg);
434 else 1484 else
435 { 1485 {
1486#if EV_AVOID_STDIO
1487 ev_printerr (msg);
1488 ev_printerr (": ");
1489 ev_printerr (strerror (errno));
1490 ev_printerr ("\n");
1491#else
436 perror (msg); 1492 perror (msg);
1493#endif
437 abort (); 1494 abort ();
438 } 1495 }
439} 1496}
440 1497
441static void * 1498static void *
442ev_realloc_emul (void *ptr, long size) 1499ev_realloc_emul (void *ptr, long size) EV_THROW
443{ 1500{
444 /* some systems, notably openbsd and darwin, fail to properly 1501 /* some systems, notably openbsd and darwin, fail to properly
445 * implement realloc (x, 0) (as required by both ansi c-98 and 1502 * implement realloc (x, 0) (as required by both ansi c-89 and
446 * the single unix specification, so work around them here. 1503 * the single unix specification, so work around them here.
1504 * recently, also (at least) fedora and debian started breaking it,
1505 * despite documenting it otherwise.
447 */ 1506 */
448 1507
449 if (size) 1508 if (size)
450 return realloc (ptr, size); 1509 return realloc (ptr, size);
451 1510
452 free (ptr); 1511 free (ptr);
453 return 0; 1512 return 0;
454} 1513}
455 1514
456static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 1515static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
457 1516
458void 1517void ecb_cold
459ev_set_allocator (void *(*cb)(void *ptr, long size)) 1518ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
460{ 1519{
461 alloc = cb; 1520 alloc = cb;
462} 1521}
463 1522
464inline_speed void * 1523inline_speed void *
466{ 1525{
467 ptr = alloc (ptr, size); 1526 ptr = alloc (ptr, size);
468 1527
469 if (!ptr && size) 1528 if (!ptr && size)
470 { 1529 {
1530#if EV_AVOID_STDIO
1531 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1532#else
471 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1533 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1534#endif
472 abort (); 1535 abort ();
473 } 1536 }
474 1537
475 return ptr; 1538 return ptr;
476} 1539}
478#define ev_malloc(size) ev_realloc (0, (size)) 1541#define ev_malloc(size) ev_realloc (0, (size))
479#define ev_free(ptr) ev_realloc ((ptr), 0) 1542#define ev_free(ptr) ev_realloc ((ptr), 0)
480 1543
481/*****************************************************************************/ 1544/*****************************************************************************/
482 1545
1546/* set in reify when reification needed */
1547#define EV_ANFD_REIFY 1
1548
1549/* file descriptor info structure */
483typedef struct 1550typedef struct
484{ 1551{
485 WL head; 1552 WL head;
486 unsigned char events; 1553 unsigned char events; /* the events watched for */
487 unsigned char reify; 1554 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
488 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */ 1555 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
489 unsigned char unused; 1556 unsigned char unused;
490#if EV_USE_EPOLL 1557#if EV_USE_EPOLL
491 unsigned int egen; /* generation counter to counter epoll bugs */ 1558 unsigned int egen; /* generation counter to counter epoll bugs */
492#endif 1559#endif
493#if EV_SELECT_IS_WINSOCKET 1560#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
494 SOCKET handle; 1561 SOCKET handle;
495#endif 1562#endif
1563#if EV_USE_IOCP
1564 OVERLAPPED or, ow;
1565#endif
496} ANFD; 1566} ANFD;
497 1567
1568/* stores the pending event set for a given watcher */
498typedef struct 1569typedef struct
499{ 1570{
500 W w; 1571 W w;
501 int events; 1572 int events; /* the pending event set for the given watcher */
502} ANPENDING; 1573} ANPENDING;
503 1574
504#if EV_USE_INOTIFY 1575#if EV_USE_INOTIFY
505/* hash table entry per inotify-id */ 1576/* hash table entry per inotify-id */
506typedef struct 1577typedef struct
509} ANFS; 1580} ANFS;
510#endif 1581#endif
511 1582
512/* Heap Entry */ 1583/* Heap Entry */
513#if EV_HEAP_CACHE_AT 1584#if EV_HEAP_CACHE_AT
1585 /* a heap element */
514 typedef struct { 1586 typedef struct {
515 ev_tstamp at; 1587 ev_tstamp at;
516 WT w; 1588 WT w;
517 } ANHE; 1589 } ANHE;
518 1590
519 #define ANHE_w(he) (he).w /* access watcher, read-write */ 1591 #define ANHE_w(he) (he).w /* access watcher, read-write */
520 #define ANHE_at(he) (he).at /* access cached at, read-only */ 1592 #define ANHE_at(he) (he).at /* access cached at, read-only */
521 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 1593 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
522#else 1594#else
1595 /* a heap element */
523 typedef WT ANHE; 1596 typedef WT ANHE;
524 1597
525 #define ANHE_w(he) (he) 1598 #define ANHE_w(he) (he)
526 #define ANHE_at(he) (he)->at 1599 #define ANHE_at(he) (he)->at
527 #define ANHE_at_cache(he) 1600 #define ANHE_at_cache(he)
538 #undef VAR 1611 #undef VAR
539 }; 1612 };
540 #include "ev_wrap.h" 1613 #include "ev_wrap.h"
541 1614
542 static struct ev_loop default_loop_struct; 1615 static struct ev_loop default_loop_struct;
543 struct ev_loop *ev_default_loop_ptr; 1616 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
544 1617
545#else 1618#else
546 1619
547 ev_tstamp ev_rt_now; 1620 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
548 #define VAR(name,decl) static decl; 1621 #define VAR(name,decl) static decl;
549 #include "ev_vars.h" 1622 #include "ev_vars.h"
550 #undef VAR 1623 #undef VAR
551 1624
552 static int ev_default_loop_ptr; 1625 static int ev_default_loop_ptr;
553 1626
554#endif 1627#endif
555 1628
1629#if EV_FEATURE_API
1630# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1631# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1632# define EV_INVOKE_PENDING invoke_cb (EV_A)
1633#else
1634# define EV_RELEASE_CB (void)0
1635# define EV_ACQUIRE_CB (void)0
1636# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1637#endif
1638
1639#define EVBREAK_RECURSE 0x80
1640
556/*****************************************************************************/ 1641/*****************************************************************************/
557 1642
1643#ifndef EV_HAVE_EV_TIME
558ev_tstamp 1644ev_tstamp
559ev_time (void) 1645ev_time (void) EV_THROW
560{ 1646{
561#if EV_USE_REALTIME 1647#if EV_USE_REALTIME
562 if (expect_true (have_realtime)) 1648 if (expect_true (have_realtime))
563 { 1649 {
564 struct timespec ts; 1650 struct timespec ts;
569 1655
570 struct timeval tv; 1656 struct timeval tv;
571 gettimeofday (&tv, 0); 1657 gettimeofday (&tv, 0);
572 return tv.tv_sec + tv.tv_usec * 1e-6; 1658 return tv.tv_sec + tv.tv_usec * 1e-6;
573} 1659}
1660#endif
574 1661
575ev_tstamp inline_size 1662inline_size ev_tstamp
576get_clock (void) 1663get_clock (void)
577{ 1664{
578#if EV_USE_MONOTONIC 1665#if EV_USE_MONOTONIC
579 if (expect_true (have_monotonic)) 1666 if (expect_true (have_monotonic))
580 { 1667 {
587 return ev_time (); 1674 return ev_time ();
588} 1675}
589 1676
590#if EV_MULTIPLICITY 1677#if EV_MULTIPLICITY
591ev_tstamp 1678ev_tstamp
592ev_now (EV_P) 1679ev_now (EV_P) EV_THROW
593{ 1680{
594 return ev_rt_now; 1681 return ev_rt_now;
595} 1682}
596#endif 1683#endif
597 1684
598void 1685void
599ev_sleep (ev_tstamp delay) 1686ev_sleep (ev_tstamp delay) EV_THROW
600{ 1687{
601 if (delay > 0.) 1688 if (delay > 0.)
602 { 1689 {
603#if EV_USE_NANOSLEEP 1690#if EV_USE_NANOSLEEP
604 struct timespec ts; 1691 struct timespec ts;
605 1692
606 ts.tv_sec = (time_t)delay; 1693 EV_TS_SET (ts, delay);
607 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
608
609 nanosleep (&ts, 0); 1694 nanosleep (&ts, 0);
610#elif defined(_WIN32) 1695#elif defined _WIN32
611 Sleep ((unsigned long)(delay * 1e3)); 1696 Sleep ((unsigned long)(delay * 1e3));
612#else 1697#else
613 struct timeval tv; 1698 struct timeval tv;
614 1699
615 tv.tv_sec = (time_t)delay;
616 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
617
618 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */ 1700 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
619 /* somehting nto guaranteed by newer posix versions, but guaranteed */ 1701 /* something not guaranteed by newer posix versions, but guaranteed */
620 /* by older ones */ 1702 /* by older ones */
1703 EV_TV_SET (tv, delay);
621 select (0, 0, 0, 0, &tv); 1704 select (0, 0, 0, 0, &tv);
622#endif 1705#endif
623 } 1706 }
624} 1707}
625 1708
626/*****************************************************************************/ 1709/*****************************************************************************/
627 1710
628#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 1711#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
629 1712
630int inline_size 1713/* find a suitable new size for the given array, */
1714/* hopefully by rounding to a nice-to-malloc size */
1715inline_size int
631array_nextsize (int elem, int cur, int cnt) 1716array_nextsize (int elem, int cur, int cnt)
632{ 1717{
633 int ncur = cur + 1; 1718 int ncur = cur + 1;
634 1719
635 do 1720 do
636 ncur <<= 1; 1721 ncur <<= 1;
637 while (cnt > ncur); 1722 while (cnt > ncur);
638 1723
639 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */ 1724 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
640 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4) 1725 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
641 { 1726 {
642 ncur *= elem; 1727 ncur *= elem;
643 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1); 1728 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
644 ncur = ncur - sizeof (void *) * 4; 1729 ncur = ncur - sizeof (void *) * 4;
646 } 1731 }
647 1732
648 return ncur; 1733 return ncur;
649} 1734}
650 1735
651static noinline void * 1736static void * noinline ecb_cold
652array_realloc (int elem, void *base, int *cur, int cnt) 1737array_realloc (int elem, void *base, int *cur, int cnt)
653{ 1738{
654 *cur = array_nextsize (elem, *cur, cnt); 1739 *cur = array_nextsize (elem, *cur, cnt);
655 return ev_realloc (base, elem * *cur); 1740 return ev_realloc (base, elem * *cur);
656} 1741}
659 memset ((void *)(base), 0, sizeof (*(base)) * (count)) 1744 memset ((void *)(base), 0, sizeof (*(base)) * (count))
660 1745
661#define array_needsize(type,base,cur,cnt,init) \ 1746#define array_needsize(type,base,cur,cnt,init) \
662 if (expect_false ((cnt) > (cur))) \ 1747 if (expect_false ((cnt) > (cur))) \
663 { \ 1748 { \
664 int ocur_ = (cur); \ 1749 int ecb_unused ocur_ = (cur); \
665 (base) = (type *)array_realloc \ 1750 (base) = (type *)array_realloc \
666 (sizeof (type), (base), &(cur), (cnt)); \ 1751 (sizeof (type), (base), &(cur), (cnt)); \
667 init ((base) + (ocur_), (cur) - ocur_); \ 1752 init ((base) + (ocur_), (cur) - ocur_); \
668 } 1753 }
669 1754
680#define array_free(stem, idx) \ 1765#define array_free(stem, idx) \
681 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0 1766 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
682 1767
683/*****************************************************************************/ 1768/*****************************************************************************/
684 1769
1770/* dummy callback for pending events */
1771static void noinline
1772pendingcb (EV_P_ ev_prepare *w, int revents)
1773{
1774}
1775
685void noinline 1776void noinline
686ev_feed_event (EV_P_ void *w, int revents) 1777ev_feed_event (EV_P_ void *w, int revents) EV_THROW
687{ 1778{
688 W w_ = (W)w; 1779 W w_ = (W)w;
689 int pri = ABSPRI (w_); 1780 int pri = ABSPRI (w_);
690 1781
691 if (expect_false (w_->pending)) 1782 if (expect_false (w_->pending))
695 w_->pending = ++pendingcnt [pri]; 1786 w_->pending = ++pendingcnt [pri];
696 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 1787 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
697 pendings [pri][w_->pending - 1].w = w_; 1788 pendings [pri][w_->pending - 1].w = w_;
698 pendings [pri][w_->pending - 1].events = revents; 1789 pendings [pri][w_->pending - 1].events = revents;
699 } 1790 }
700}
701 1791
702void inline_speed 1792 pendingpri = NUMPRI - 1;
1793}
1794
1795inline_speed void
1796feed_reverse (EV_P_ W w)
1797{
1798 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1799 rfeeds [rfeedcnt++] = w;
1800}
1801
1802inline_size void
1803feed_reverse_done (EV_P_ int revents)
1804{
1805 do
1806 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1807 while (rfeedcnt);
1808}
1809
1810inline_speed void
703queue_events (EV_P_ W *events, int eventcnt, int type) 1811queue_events (EV_P_ W *events, int eventcnt, int type)
704{ 1812{
705 int i; 1813 int i;
706 1814
707 for (i = 0; i < eventcnt; ++i) 1815 for (i = 0; i < eventcnt; ++i)
708 ev_feed_event (EV_A_ events [i], type); 1816 ev_feed_event (EV_A_ events [i], type);
709} 1817}
710 1818
711/*****************************************************************************/ 1819/*****************************************************************************/
712 1820
713void inline_speed 1821inline_speed void
714fd_event (EV_P_ int fd, int revents) 1822fd_event_nocheck (EV_P_ int fd, int revents)
715{ 1823{
716 ANFD *anfd = anfds + fd; 1824 ANFD *anfd = anfds + fd;
717 ev_io *w; 1825 ev_io *w;
718 1826
719 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1827 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
723 if (ev) 1831 if (ev)
724 ev_feed_event (EV_A_ (W)w, ev); 1832 ev_feed_event (EV_A_ (W)w, ev);
725 } 1833 }
726} 1834}
727 1835
1836/* do not submit kernel events for fds that have reify set */
1837/* because that means they changed while we were polling for new events */
1838inline_speed void
1839fd_event (EV_P_ int fd, int revents)
1840{
1841 ANFD *anfd = anfds + fd;
1842
1843 if (expect_true (!anfd->reify))
1844 fd_event_nocheck (EV_A_ fd, revents);
1845}
1846
728void 1847void
729ev_feed_fd_event (EV_P_ int fd, int revents) 1848ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
730{ 1849{
731 if (fd >= 0 && fd < anfdmax) 1850 if (fd >= 0 && fd < anfdmax)
732 fd_event (EV_A_ fd, revents); 1851 fd_event_nocheck (EV_A_ fd, revents);
733} 1852}
734 1853
735void inline_size 1854/* make sure the external fd watch events are in-sync */
1855/* with the kernel/libev internal state */
1856inline_size void
736fd_reify (EV_P) 1857fd_reify (EV_P)
737{ 1858{
738 int i; 1859 int i;
1860
1861#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1862 for (i = 0; i < fdchangecnt; ++i)
1863 {
1864 int fd = fdchanges [i];
1865 ANFD *anfd = anfds + fd;
1866
1867 if (anfd->reify & EV__IOFDSET && anfd->head)
1868 {
1869 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1870
1871 if (handle != anfd->handle)
1872 {
1873 unsigned long arg;
1874
1875 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1876
1877 /* handle changed, but fd didn't - we need to do it in two steps */
1878 backend_modify (EV_A_ fd, anfd->events, 0);
1879 anfd->events = 0;
1880 anfd->handle = handle;
1881 }
1882 }
1883 }
1884#endif
739 1885
740 for (i = 0; i < fdchangecnt; ++i) 1886 for (i = 0; i < fdchangecnt; ++i)
741 { 1887 {
742 int fd = fdchanges [i]; 1888 int fd = fdchanges [i];
743 ANFD *anfd = anfds + fd; 1889 ANFD *anfd = anfds + fd;
744 ev_io *w; 1890 ev_io *w;
745 1891
746 unsigned char events = 0; 1892 unsigned char o_events = anfd->events;
1893 unsigned char o_reify = anfd->reify;
747 1894
748 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1895 anfd->reify = 0;
749 events |= (unsigned char)w->events;
750 1896
751#if EV_SELECT_IS_WINSOCKET 1897 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
752 if (events)
753 { 1898 {
754 unsigned long arg; 1899 anfd->events = 0;
755 #ifdef EV_FD_TO_WIN32_HANDLE 1900
756 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1901 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
757 #else 1902 anfd->events |= (unsigned char)w->events;
758 anfd->handle = _get_osfhandle (fd); 1903
759 #endif 1904 if (o_events != anfd->events)
760 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0)); 1905 o_reify = EV__IOFDSET; /* actually |= */
761 } 1906 }
762#endif
763 1907
764 { 1908 if (o_reify & EV__IOFDSET)
765 unsigned char o_events = anfd->events;
766 unsigned char o_reify = anfd->reify;
767
768 anfd->reify = 0;
769 anfd->events = events;
770
771 if (o_events != events || o_reify & EV__IOFDSET)
772 backend_modify (EV_A_ fd, o_events, events); 1909 backend_modify (EV_A_ fd, o_events, anfd->events);
773 }
774 } 1910 }
775 1911
776 fdchangecnt = 0; 1912 fdchangecnt = 0;
777} 1913}
778 1914
779void inline_size 1915/* something about the given fd changed */
1916inline_size void
780fd_change (EV_P_ int fd, int flags) 1917fd_change (EV_P_ int fd, int flags)
781{ 1918{
782 unsigned char reify = anfds [fd].reify; 1919 unsigned char reify = anfds [fd].reify;
783 anfds [fd].reify |= flags; 1920 anfds [fd].reify |= flags;
784 1921
788 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1925 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
789 fdchanges [fdchangecnt - 1] = fd; 1926 fdchanges [fdchangecnt - 1] = fd;
790 } 1927 }
791} 1928}
792 1929
793void inline_speed 1930/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1931inline_speed void ecb_cold
794fd_kill (EV_P_ int fd) 1932fd_kill (EV_P_ int fd)
795{ 1933{
796 ev_io *w; 1934 ev_io *w;
797 1935
798 while ((w = (ev_io *)anfds [fd].head)) 1936 while ((w = (ev_io *)anfds [fd].head))
800 ev_io_stop (EV_A_ w); 1938 ev_io_stop (EV_A_ w);
801 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1939 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
802 } 1940 }
803} 1941}
804 1942
805int inline_size 1943/* check whether the given fd is actually valid, for error recovery */
1944inline_size int ecb_cold
806fd_valid (int fd) 1945fd_valid (int fd)
807{ 1946{
808#ifdef _WIN32 1947#ifdef _WIN32
809 return _get_osfhandle (fd) != -1; 1948 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
810#else 1949#else
811 return fcntl (fd, F_GETFD) != -1; 1950 return fcntl (fd, F_GETFD) != -1;
812#endif 1951#endif
813} 1952}
814 1953
815/* called on EBADF to verify fds */ 1954/* called on EBADF to verify fds */
816static void noinline 1955static void noinline ecb_cold
817fd_ebadf (EV_P) 1956fd_ebadf (EV_P)
818{ 1957{
819 int fd; 1958 int fd;
820 1959
821 for (fd = 0; fd < anfdmax; ++fd) 1960 for (fd = 0; fd < anfdmax; ++fd)
823 if (!fd_valid (fd) && errno == EBADF) 1962 if (!fd_valid (fd) && errno == EBADF)
824 fd_kill (EV_A_ fd); 1963 fd_kill (EV_A_ fd);
825} 1964}
826 1965
827/* called on ENOMEM in select/poll to kill some fds and retry */ 1966/* called on ENOMEM in select/poll to kill some fds and retry */
828static void noinline 1967static void noinline ecb_cold
829fd_enomem (EV_P) 1968fd_enomem (EV_P)
830{ 1969{
831 int fd; 1970 int fd;
832 1971
833 for (fd = anfdmax; fd--; ) 1972 for (fd = anfdmax; fd--; )
834 if (anfds [fd].events) 1973 if (anfds [fd].events)
835 { 1974 {
836 fd_kill (EV_A_ fd); 1975 fd_kill (EV_A_ fd);
837 return; 1976 break;
838 } 1977 }
839} 1978}
840 1979
841/* usually called after fork if backend needs to re-arm all fds from scratch */ 1980/* usually called after fork if backend needs to re-arm all fds from scratch */
842static void noinline 1981static void noinline
847 for (fd = 0; fd < anfdmax; ++fd) 1986 for (fd = 0; fd < anfdmax; ++fd)
848 if (anfds [fd].events) 1987 if (anfds [fd].events)
849 { 1988 {
850 anfds [fd].events = 0; 1989 anfds [fd].events = 0;
851 anfds [fd].emask = 0; 1990 anfds [fd].emask = 0;
852 fd_change (EV_A_ fd, EV__IOFDSET | 1); 1991 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
853 } 1992 }
854} 1993}
855 1994
1995/* used to prepare libev internal fd's */
1996/* this is not fork-safe */
1997inline_speed void
1998fd_intern (int fd)
1999{
2000#ifdef _WIN32
2001 unsigned long arg = 1;
2002 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2003#else
2004 fcntl (fd, F_SETFD, FD_CLOEXEC);
2005 fcntl (fd, F_SETFL, O_NONBLOCK);
2006#endif
2007}
2008
856/*****************************************************************************/ 2009/*****************************************************************************/
857 2010
858/* 2011/*
859 * the heap functions want a real array index. array index 0 uis guaranteed to not 2012 * the heap functions want a real array index. array index 0 is guaranteed to not
860 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 2013 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
861 * the branching factor of the d-tree. 2014 * the branching factor of the d-tree.
862 */ 2015 */
863 2016
864/* 2017/*
873#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 2026#define HEAP0 (DHEAP - 1) /* index of first element in heap */
874#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 2027#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
875#define UPHEAP_DONE(p,k) ((p) == (k)) 2028#define UPHEAP_DONE(p,k) ((p) == (k))
876 2029
877/* away from the root */ 2030/* away from the root */
878void inline_speed 2031inline_speed void
879downheap (ANHE *heap, int N, int k) 2032downheap (ANHE *heap, int N, int k)
880{ 2033{
881 ANHE he = heap [k]; 2034 ANHE he = heap [k];
882 ANHE *E = heap + N + HEAP0; 2035 ANHE *E = heap + N + HEAP0;
883 2036
923#define HEAP0 1 2076#define HEAP0 1
924#define HPARENT(k) ((k) >> 1) 2077#define HPARENT(k) ((k) >> 1)
925#define UPHEAP_DONE(p,k) (!(p)) 2078#define UPHEAP_DONE(p,k) (!(p))
926 2079
927/* away from the root */ 2080/* away from the root */
928void inline_speed 2081inline_speed void
929downheap (ANHE *heap, int N, int k) 2082downheap (ANHE *heap, int N, int k)
930{ 2083{
931 ANHE he = heap [k]; 2084 ANHE he = heap [k];
932 2085
933 for (;;) 2086 for (;;)
934 { 2087 {
935 int c = k << 1; 2088 int c = k << 1;
936 2089
937 if (c > N + HEAP0 - 1) 2090 if (c >= N + HEAP0)
938 break; 2091 break;
939 2092
940 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 2093 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
941 ? 1 : 0; 2094 ? 1 : 0;
942 2095
953 ev_active (ANHE_w (he)) = k; 2106 ev_active (ANHE_w (he)) = k;
954} 2107}
955#endif 2108#endif
956 2109
957/* towards the root */ 2110/* towards the root */
958void inline_speed 2111inline_speed void
959upheap (ANHE *heap, int k) 2112upheap (ANHE *heap, int k)
960{ 2113{
961 ANHE he = heap [k]; 2114 ANHE he = heap [k];
962 2115
963 for (;;) 2116 for (;;)
974 2127
975 heap [k] = he; 2128 heap [k] = he;
976 ev_active (ANHE_w (he)) = k; 2129 ev_active (ANHE_w (he)) = k;
977} 2130}
978 2131
979void inline_size 2132/* move an element suitably so it is in a correct place */
2133inline_size void
980adjustheap (ANHE *heap, int N, int k) 2134adjustheap (ANHE *heap, int N, int k)
981{ 2135{
982 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 2136 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
983 upheap (heap, k); 2137 upheap (heap, k);
984 else 2138 else
985 downheap (heap, N, k); 2139 downheap (heap, N, k);
986} 2140}
987 2141
988/* rebuild the heap: this function is used only once and executed rarely */ 2142/* rebuild the heap: this function is used only once and executed rarely */
989void inline_size 2143inline_size void
990reheap (ANHE *heap, int N) 2144reheap (ANHE *heap, int N)
991{ 2145{
992 int i; 2146 int i;
993 2147
994 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 2148 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
997 upheap (heap, i + HEAP0); 2151 upheap (heap, i + HEAP0);
998} 2152}
999 2153
1000/*****************************************************************************/ 2154/*****************************************************************************/
1001 2155
2156/* associate signal watchers to a signal signal */
1002typedef struct 2157typedef struct
1003{ 2158{
2159 EV_ATOMIC_T pending;
2160#if EV_MULTIPLICITY
2161 EV_P;
2162#endif
1004 WL head; 2163 WL head;
1005 EV_ATOMIC_T gotsig;
1006} ANSIG; 2164} ANSIG;
1007 2165
1008static ANSIG *signals; 2166static ANSIG signals [EV_NSIG - 1];
1009static int signalmax;
1010
1011static EV_ATOMIC_T gotsig;
1012 2167
1013/*****************************************************************************/ 2168/*****************************************************************************/
1014 2169
1015void inline_speed 2170#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1016fd_intern (int fd)
1017{
1018#ifdef _WIN32
1019 unsigned long arg = 1;
1020 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1021#else
1022 fcntl (fd, F_SETFD, FD_CLOEXEC);
1023 fcntl (fd, F_SETFL, O_NONBLOCK);
1024#endif
1025}
1026 2171
1027static void noinline 2172static void noinline ecb_cold
1028evpipe_init (EV_P) 2173evpipe_init (EV_P)
1029{ 2174{
1030 if (!ev_is_active (&pipeev)) 2175 if (!ev_is_active (&pipe_w))
2176 {
2177 int fds [2];
2178
2179# if EV_USE_EVENTFD
2180 fds [0] = -1;
2181 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2182 if (fds [1] < 0 && errno == EINVAL)
2183 fds [1] = eventfd (0, 0);
2184
2185 if (fds [1] < 0)
2186# endif
2187 {
2188 while (pipe (fds))
2189 ev_syserr ("(libev) error creating signal/async pipe");
2190
2191 fd_intern (fds [0]);
2192 }
2193
2194 evpipe [0] = fds [0];
2195
2196 if (evpipe [1] < 0)
2197 evpipe [1] = fds [1]; /* first call, set write fd */
2198 else
2199 {
2200 /* on subsequent calls, do not change evpipe [1] */
2201 /* so that evpipe_write can always rely on its value. */
2202 /* this branch does not do anything sensible on windows, */
2203 /* so must not be executed on windows */
2204
2205 dup2 (fds [1], evpipe [1]);
2206 close (fds [1]);
2207 }
2208
2209 fd_intern (evpipe [1]);
2210
2211 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2212 ev_io_start (EV_A_ &pipe_w);
2213 ev_unref (EV_A); /* watcher should not keep loop alive */
1031 { 2214 }
2215}
2216
2217inline_speed void
2218evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2219{
2220 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2221
2222 if (expect_true (*flag))
2223 return;
2224
2225 *flag = 1;
2226 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2227
2228 pipe_write_skipped = 1;
2229
2230 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2231
2232 if (pipe_write_wanted)
2233 {
2234 int old_errno;
2235
2236 pipe_write_skipped = 0;
2237 ECB_MEMORY_FENCE_RELEASE;
2238
2239 old_errno = errno; /* save errno because write will clobber it */
2240
1032#if EV_USE_EVENTFD 2241#if EV_USE_EVENTFD
1033 if ((evfd = eventfd (0, 0)) >= 0) 2242 if (evpipe [0] < 0)
1034 { 2243 {
1035 evpipe [0] = -1; 2244 uint64_t counter = 1;
1036 fd_intern (evfd); 2245 write (evpipe [1], &counter, sizeof (uint64_t));
1037 ev_io_set (&pipeev, evfd, EV_READ);
1038 } 2246 }
1039 else 2247 else
1040#endif 2248#endif
1041 { 2249 {
1042 while (pipe (evpipe)) 2250#ifdef _WIN32
1043 ev_syserr ("(libev) error creating signal/async pipe"); 2251 WSABUF buf;
1044 2252 DWORD sent;
1045 fd_intern (evpipe [0]); 2253 buf.buf = &buf;
1046 fd_intern (evpipe [1]); 2254 buf.len = 1;
1047 ev_io_set (&pipeev, evpipe [0], EV_READ); 2255 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2256#else
2257 write (evpipe [1], &(evpipe [1]), 1);
2258#endif
1048 } 2259 }
1049 2260
1050 ev_io_start (EV_A_ &pipeev); 2261 errno = old_errno;
1051 ev_unref (EV_A); /* watcher should not keep loop alive */
1052 }
1053}
1054
1055void inline_size
1056evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1057{
1058 if (!*flag)
1059 { 2262 }
1060 int old_errno = errno; /* save errno because write might clobber it */ 2263}
1061 2264
1062 *flag = 1; 2265/* called whenever the libev signal pipe */
2266/* got some events (signal, async) */
2267static void
2268pipecb (EV_P_ ev_io *iow, int revents)
2269{
2270 int i;
1063 2271
2272 if (revents & EV_READ)
2273 {
1064#if EV_USE_EVENTFD 2274#if EV_USE_EVENTFD
1065 if (evfd >= 0) 2275 if (evpipe [0] < 0)
1066 { 2276 {
1067 uint64_t counter = 1; 2277 uint64_t counter;
1068 write (evfd, &counter, sizeof (uint64_t)); 2278 read (evpipe [1], &counter, sizeof (uint64_t));
1069 } 2279 }
1070 else 2280 else
1071#endif 2281#endif
1072 write (evpipe [1], &old_errno, 1); 2282 {
1073
1074 errno = old_errno;
1075 }
1076}
1077
1078static void
1079pipecb (EV_P_ ev_io *iow, int revents)
1080{
1081#if EV_USE_EVENTFD
1082 if (evfd >= 0)
1083 {
1084 uint64_t counter;
1085 read (evfd, &counter, sizeof (uint64_t));
1086 }
1087 else
1088#endif
1089 {
1090 char dummy; 2283 char dummy[4];
2284#ifdef _WIN32
2285 WSABUF buf;
2286 DWORD recvd;
2287 DWORD flags = 0;
2288 buf.buf = dummy;
2289 buf.len = sizeof (dummy);
2290 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2291#else
1091 read (evpipe [0], &dummy, 1); 2292 read (evpipe [0], &dummy, sizeof (dummy));
2293#endif
2294 }
2295 }
2296
2297 pipe_write_skipped = 0;
2298
2299 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2300
2301#if EV_SIGNAL_ENABLE
2302 if (sig_pending)
1092 } 2303 {
2304 sig_pending = 0;
1093 2305
1094 if (gotsig && ev_is_default_loop (EV_A)) 2306 ECB_MEMORY_FENCE;
1095 {
1096 int signum;
1097 gotsig = 0;
1098 2307
1099 for (signum = signalmax; signum--; ) 2308 for (i = EV_NSIG - 1; i--; )
1100 if (signals [signum].gotsig) 2309 if (expect_false (signals [i].pending))
1101 ev_feed_signal_event (EV_A_ signum + 1); 2310 ev_feed_signal_event (EV_A_ i + 1);
1102 } 2311 }
2312#endif
1103 2313
1104#if EV_ASYNC_ENABLE 2314#if EV_ASYNC_ENABLE
1105 if (gotasync) 2315 if (async_pending)
1106 { 2316 {
1107 int i; 2317 async_pending = 0;
1108 gotasync = 0; 2318
2319 ECB_MEMORY_FENCE;
1109 2320
1110 for (i = asynccnt; i--; ) 2321 for (i = asynccnt; i--; )
1111 if (asyncs [i]->sent) 2322 if (asyncs [i]->sent)
1112 { 2323 {
1113 asyncs [i]->sent = 0; 2324 asyncs [i]->sent = 0;
2325 ECB_MEMORY_FENCE_RELEASE;
1114 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); 2326 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1115 } 2327 }
1116 } 2328 }
1117#endif 2329#endif
1118} 2330}
1119 2331
1120/*****************************************************************************/ 2332/*****************************************************************************/
1121 2333
2334void
2335ev_feed_signal (int signum) EV_THROW
2336{
2337#if EV_MULTIPLICITY
2338 EV_P;
2339 ECB_MEMORY_FENCE_ACQUIRE;
2340 EV_A = signals [signum - 1].loop;
2341
2342 if (!EV_A)
2343 return;
2344#endif
2345
2346 signals [signum - 1].pending = 1;
2347 evpipe_write (EV_A_ &sig_pending);
2348}
2349
1122static void 2350static void
1123ev_sighandler (int signum) 2351ev_sighandler (int signum)
1124{ 2352{
2353#ifdef _WIN32
2354 signal (signum, ev_sighandler);
2355#endif
2356
2357 ev_feed_signal (signum);
2358}
2359
2360void noinline
2361ev_feed_signal_event (EV_P_ int signum) EV_THROW
2362{
2363 WL w;
2364
2365 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2366 return;
2367
2368 --signum;
2369
1125#if EV_MULTIPLICITY 2370#if EV_MULTIPLICITY
1126 struct ev_loop *loop = &default_loop_struct; 2371 /* it is permissible to try to feed a signal to the wrong loop */
1127#endif 2372 /* or, likely more useful, feeding a signal nobody is waiting for */
1128 2373
1129#if _WIN32 2374 if (expect_false (signals [signum].loop != EV_A))
1130 signal (signum, ev_sighandler);
1131#endif
1132
1133 signals [signum - 1].gotsig = 1;
1134 evpipe_write (EV_A_ &gotsig);
1135}
1136
1137void noinline
1138ev_feed_signal_event (EV_P_ int signum)
1139{
1140 WL w;
1141
1142#if EV_MULTIPLICITY
1143 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1144#endif
1145
1146 --signum;
1147
1148 if (signum < 0 || signum >= signalmax)
1149 return; 2375 return;
2376#endif
1150 2377
1151 signals [signum].gotsig = 0; 2378 signals [signum].pending = 0;
2379 ECB_MEMORY_FENCE_RELEASE;
1152 2380
1153 for (w = signals [signum].head; w; w = w->next) 2381 for (w = signals [signum].head; w; w = w->next)
1154 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2382 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1155} 2383}
1156 2384
2385#if EV_USE_SIGNALFD
2386static void
2387sigfdcb (EV_P_ ev_io *iow, int revents)
2388{
2389 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2390
2391 for (;;)
2392 {
2393 ssize_t res = read (sigfd, si, sizeof (si));
2394
2395 /* not ISO-C, as res might be -1, but works with SuS */
2396 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2397 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2398
2399 if (res < (ssize_t)sizeof (si))
2400 break;
2401 }
2402}
2403#endif
2404
2405#endif
2406
1157/*****************************************************************************/ 2407/*****************************************************************************/
1158 2408
2409#if EV_CHILD_ENABLE
1159static WL childs [EV_PID_HASHSIZE]; 2410static WL childs [EV_PID_HASHSIZE];
1160
1161#ifndef _WIN32
1162 2411
1163static ev_signal childev; 2412static ev_signal childev;
1164 2413
1165#ifndef WIFCONTINUED 2414#ifndef WIFCONTINUED
1166# define WIFCONTINUED(status) 0 2415# define WIFCONTINUED(status) 0
1167#endif 2416#endif
1168 2417
1169void inline_speed 2418/* handle a single child status event */
2419inline_speed void
1170child_reap (EV_P_ int chain, int pid, int status) 2420child_reap (EV_P_ int chain, int pid, int status)
1171{ 2421{
1172 ev_child *w; 2422 ev_child *w;
1173 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2423 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1174 2424
1175 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2425 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1176 { 2426 {
1177 if ((w->pid == pid || !w->pid) 2427 if ((w->pid == pid || !w->pid)
1178 && (!traced || (w->flags & 1))) 2428 && (!traced || (w->flags & 1)))
1179 { 2429 {
1180 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 2430 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1187 2437
1188#ifndef WCONTINUED 2438#ifndef WCONTINUED
1189# define WCONTINUED 0 2439# define WCONTINUED 0
1190#endif 2440#endif
1191 2441
2442/* called on sigchld etc., calls waitpid */
1192static void 2443static void
1193childcb (EV_P_ ev_signal *sw, int revents) 2444childcb (EV_P_ ev_signal *sw, int revents)
1194{ 2445{
1195 int pid, status; 2446 int pid, status;
1196 2447
1204 /* make sure we are called again until all children have been reaped */ 2455 /* make sure we are called again until all children have been reaped */
1205 /* we need to do it this way so that the callback gets called before we continue */ 2456 /* we need to do it this way so that the callback gets called before we continue */
1206 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2457 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1207 2458
1208 child_reap (EV_A_ pid, pid, status); 2459 child_reap (EV_A_ pid, pid, status);
1209 if (EV_PID_HASHSIZE > 1) 2460 if ((EV_PID_HASHSIZE) > 1)
1210 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2461 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1211} 2462}
1212 2463
1213#endif 2464#endif
1214 2465
1215/*****************************************************************************/ 2466/*****************************************************************************/
1216 2467
2468#if EV_USE_IOCP
2469# include "ev_iocp.c"
2470#endif
1217#if EV_USE_PORT 2471#if EV_USE_PORT
1218# include "ev_port.c" 2472# include "ev_port.c"
1219#endif 2473#endif
1220#if EV_USE_KQUEUE 2474#if EV_USE_KQUEUE
1221# include "ev_kqueue.c" 2475# include "ev_kqueue.c"
1228#endif 2482#endif
1229#if EV_USE_SELECT 2483#if EV_USE_SELECT
1230# include "ev_select.c" 2484# include "ev_select.c"
1231#endif 2485#endif
1232 2486
1233int 2487int ecb_cold
1234ev_version_major (void) 2488ev_version_major (void) EV_THROW
1235{ 2489{
1236 return EV_VERSION_MAJOR; 2490 return EV_VERSION_MAJOR;
1237} 2491}
1238 2492
1239int 2493int ecb_cold
1240ev_version_minor (void) 2494ev_version_minor (void) EV_THROW
1241{ 2495{
1242 return EV_VERSION_MINOR; 2496 return EV_VERSION_MINOR;
1243} 2497}
1244 2498
1245/* return true if we are running with elevated privileges and should ignore env variables */ 2499/* return true if we are running with elevated privileges and should ignore env variables */
1246int inline_size 2500int inline_size ecb_cold
1247enable_secure (void) 2501enable_secure (void)
1248{ 2502{
1249#ifdef _WIN32 2503#ifdef _WIN32
1250 return 0; 2504 return 0;
1251#else 2505#else
1252 return getuid () != geteuid () 2506 return getuid () != geteuid ()
1253 || getgid () != getegid (); 2507 || getgid () != getegid ();
1254#endif 2508#endif
1255} 2509}
1256 2510
1257unsigned int 2511unsigned int ecb_cold
1258ev_supported_backends (void) 2512ev_supported_backends (void) EV_THROW
1259{ 2513{
1260 unsigned int flags = 0; 2514 unsigned int flags = 0;
1261 2515
1262 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2516 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1263 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2517 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1266 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2520 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1267 2521
1268 return flags; 2522 return flags;
1269} 2523}
1270 2524
1271unsigned int 2525unsigned int ecb_cold
1272ev_recommended_backends (void) 2526ev_recommended_backends (void) EV_THROW
1273{ 2527{
1274 unsigned int flags = ev_supported_backends (); 2528 unsigned int flags = ev_supported_backends ();
1275 2529
1276#ifndef __NetBSD__ 2530#ifndef __NetBSD__
1277 /* kqueue is borked on everything but netbsd apparently */ 2531 /* kqueue is borked on everything but netbsd apparently */
1281#ifdef __APPLE__ 2535#ifdef __APPLE__
1282 /* only select works correctly on that "unix-certified" platform */ 2536 /* only select works correctly on that "unix-certified" platform */
1283 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */ 2537 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1284 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */ 2538 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1285#endif 2539#endif
2540#ifdef __FreeBSD__
2541 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2542#endif
1286 2543
1287 return flags; 2544 return flags;
1288} 2545}
1289 2546
2547unsigned int ecb_cold
2548ev_embeddable_backends (void) EV_THROW
2549{
2550 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2551
2552 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2553 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2554 flags &= ~EVBACKEND_EPOLL;
2555
2556 return flags;
2557}
2558
1290unsigned int 2559unsigned int
1291ev_embeddable_backends (void) 2560ev_backend (EV_P) EV_THROW
1292{ 2561{
1293 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2562 return backend;
1294
1295 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1296 /* please fix it and tell me how to detect the fix */
1297 flags &= ~EVBACKEND_EPOLL;
1298
1299 return flags;
1300} 2563}
1301 2564
2565#if EV_FEATURE_API
1302unsigned int 2566unsigned int
1303ev_backend (EV_P) 2567ev_iteration (EV_P) EV_THROW
1304{ 2568{
1305 return backend; 2569 return loop_count;
1306} 2570}
1307 2571
1308unsigned int 2572unsigned int
1309ev_loop_count (EV_P) 2573ev_depth (EV_P) EV_THROW
1310{ 2574{
1311 return loop_count; 2575 return loop_depth;
1312} 2576}
1313 2577
1314void 2578void
1315ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2579ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1316{ 2580{
1317 io_blocktime = interval; 2581 io_blocktime = interval;
1318} 2582}
1319 2583
1320void 2584void
1321ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2585ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1322{ 2586{
1323 timeout_blocktime = interval; 2587 timeout_blocktime = interval;
1324} 2588}
1325 2589
2590void
2591ev_set_userdata (EV_P_ void *data) EV_THROW
2592{
2593 userdata = data;
2594}
2595
2596void *
2597ev_userdata (EV_P) EV_THROW
2598{
2599 return userdata;
2600}
2601
2602void
2603ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_THROW
2604{
2605 invoke_cb = invoke_pending_cb;
2606}
2607
2608void
2609ev_set_loop_release_cb (EV_P_ ev_loop_callback_nothrow release, ev_loop_callback_nothrow acquire) EV_THROW
2610{
2611 release_cb = release;
2612 acquire_cb = acquire;
2613}
2614#endif
2615
2616/* initialise a loop structure, must be zero-initialised */
1326static void noinline 2617static void noinline ecb_cold
1327loop_init (EV_P_ unsigned int flags) 2618loop_init (EV_P_ unsigned int flags) EV_THROW
1328{ 2619{
1329 if (!backend) 2620 if (!backend)
1330 { 2621 {
2622 origflags = flags;
2623
1331#if EV_USE_REALTIME 2624#if EV_USE_REALTIME
1332 if (!have_realtime) 2625 if (!have_realtime)
1333 { 2626 {
1334 struct timespec ts; 2627 struct timespec ts;
1335 2628
1346 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2639 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1347 have_monotonic = 1; 2640 have_monotonic = 1;
1348 } 2641 }
1349#endif 2642#endif
1350 2643
1351 ev_rt_now = ev_time ();
1352 mn_now = get_clock ();
1353 now_floor = mn_now;
1354 rtmn_diff = ev_rt_now - mn_now;
1355
1356 io_blocktime = 0.;
1357 timeout_blocktime = 0.;
1358 backend = 0;
1359 backend_fd = -1;
1360 gotasync = 0;
1361#if EV_USE_INOTIFY
1362 fs_fd = -2;
1363#endif
1364
1365 /* pid check not overridable via env */ 2644 /* pid check not overridable via env */
1366#ifndef _WIN32 2645#ifndef _WIN32
1367 if (flags & EVFLAG_FORKCHECK) 2646 if (flags & EVFLAG_FORKCHECK)
1368 curpid = getpid (); 2647 curpid = getpid ();
1369#endif 2648#endif
1371 if (!(flags & EVFLAG_NOENV) 2650 if (!(flags & EVFLAG_NOENV)
1372 && !enable_secure () 2651 && !enable_secure ()
1373 && getenv ("LIBEV_FLAGS")) 2652 && getenv ("LIBEV_FLAGS"))
1374 flags = atoi (getenv ("LIBEV_FLAGS")); 2653 flags = atoi (getenv ("LIBEV_FLAGS"));
1375 2654
1376 if (!(flags & 0x0000ffffU)) 2655 ev_rt_now = ev_time ();
2656 mn_now = get_clock ();
2657 now_floor = mn_now;
2658 rtmn_diff = ev_rt_now - mn_now;
2659#if EV_FEATURE_API
2660 invoke_cb = ev_invoke_pending;
2661#endif
2662
2663 io_blocktime = 0.;
2664 timeout_blocktime = 0.;
2665 backend = 0;
2666 backend_fd = -1;
2667 sig_pending = 0;
2668#if EV_ASYNC_ENABLE
2669 async_pending = 0;
2670#endif
2671 pipe_write_skipped = 0;
2672 pipe_write_wanted = 0;
2673 evpipe [0] = -1;
2674 evpipe [1] = -1;
2675#if EV_USE_INOTIFY
2676 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2677#endif
2678#if EV_USE_SIGNALFD
2679 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2680#endif
2681
2682 if (!(flags & EVBACKEND_MASK))
1377 flags |= ev_recommended_backends (); 2683 flags |= ev_recommended_backends ();
1378 2684
2685#if EV_USE_IOCP
2686 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2687#endif
1379#if EV_USE_PORT 2688#if EV_USE_PORT
1380 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2689 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1381#endif 2690#endif
1382#if EV_USE_KQUEUE 2691#if EV_USE_KQUEUE
1383 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2692 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1390#endif 2699#endif
1391#if EV_USE_SELECT 2700#if EV_USE_SELECT
1392 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2701 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1393#endif 2702#endif
1394 2703
2704 ev_prepare_init (&pending_w, pendingcb);
2705
2706#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1395 ev_init (&pipeev, pipecb); 2707 ev_init (&pipe_w, pipecb);
1396 ev_set_priority (&pipeev, EV_MAXPRI); 2708 ev_set_priority (&pipe_w, EV_MAXPRI);
2709#endif
1397 } 2710 }
1398} 2711}
1399 2712
1400static void noinline 2713/* free up a loop structure */
2714void ecb_cold
1401loop_destroy (EV_P) 2715ev_loop_destroy (EV_P)
1402{ 2716{
1403 int i; 2717 int i;
1404 2718
2719#if EV_MULTIPLICITY
2720 /* mimic free (0) */
2721 if (!EV_A)
2722 return;
2723#endif
2724
2725#if EV_CLEANUP_ENABLE
2726 /* queue cleanup watchers (and execute them) */
2727 if (expect_false (cleanupcnt))
2728 {
2729 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2730 EV_INVOKE_PENDING;
2731 }
2732#endif
2733
2734#if EV_CHILD_ENABLE
2735 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2736 {
2737 ev_ref (EV_A); /* child watcher */
2738 ev_signal_stop (EV_A_ &childev);
2739 }
2740#endif
2741
1405 if (ev_is_active (&pipeev)) 2742 if (ev_is_active (&pipe_w))
1406 { 2743 {
1407 ev_ref (EV_A); /* signal watcher */ 2744 /*ev_ref (EV_A);*/
1408 ev_io_stop (EV_A_ &pipeev); 2745 /*ev_io_stop (EV_A_ &pipe_w);*/
1409 2746
2747 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2748 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2749 }
2750
1410#if EV_USE_EVENTFD 2751#if EV_USE_SIGNALFD
1411 if (evfd >= 0) 2752 if (ev_is_active (&sigfd_w))
1412 close (evfd); 2753 close (sigfd);
1413#endif 2754#endif
1414
1415 if (evpipe [0] >= 0)
1416 {
1417 close (evpipe [0]);
1418 close (evpipe [1]);
1419 }
1420 }
1421 2755
1422#if EV_USE_INOTIFY 2756#if EV_USE_INOTIFY
1423 if (fs_fd >= 0) 2757 if (fs_fd >= 0)
1424 close (fs_fd); 2758 close (fs_fd);
1425#endif 2759#endif
1426 2760
1427 if (backend_fd >= 0) 2761 if (backend_fd >= 0)
1428 close (backend_fd); 2762 close (backend_fd);
1429 2763
2764#if EV_USE_IOCP
2765 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2766#endif
1430#if EV_USE_PORT 2767#if EV_USE_PORT
1431 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2768 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1432#endif 2769#endif
1433#if EV_USE_KQUEUE 2770#if EV_USE_KQUEUE
1434 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2771 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1449#if EV_IDLE_ENABLE 2786#if EV_IDLE_ENABLE
1450 array_free (idle, [i]); 2787 array_free (idle, [i]);
1451#endif 2788#endif
1452 } 2789 }
1453 2790
1454 ev_free (anfds); anfdmax = 0; 2791 ev_free (anfds); anfds = 0; anfdmax = 0;
1455 2792
1456 /* have to use the microsoft-never-gets-it-right macro */ 2793 /* have to use the microsoft-never-gets-it-right macro */
2794 array_free (rfeed, EMPTY);
1457 array_free (fdchange, EMPTY); 2795 array_free (fdchange, EMPTY);
1458 array_free (timer, EMPTY); 2796 array_free (timer, EMPTY);
1459#if EV_PERIODIC_ENABLE 2797#if EV_PERIODIC_ENABLE
1460 array_free (periodic, EMPTY); 2798 array_free (periodic, EMPTY);
1461#endif 2799#endif
1462#if EV_FORK_ENABLE 2800#if EV_FORK_ENABLE
1463 array_free (fork, EMPTY); 2801 array_free (fork, EMPTY);
1464#endif 2802#endif
2803#if EV_CLEANUP_ENABLE
2804 array_free (cleanup, EMPTY);
2805#endif
1465 array_free (prepare, EMPTY); 2806 array_free (prepare, EMPTY);
1466 array_free (check, EMPTY); 2807 array_free (check, EMPTY);
1467#if EV_ASYNC_ENABLE 2808#if EV_ASYNC_ENABLE
1468 array_free (async, EMPTY); 2809 array_free (async, EMPTY);
1469#endif 2810#endif
1470 2811
1471 backend = 0; 2812 backend = 0;
2813
2814#if EV_MULTIPLICITY
2815 if (ev_is_default_loop (EV_A))
2816#endif
2817 ev_default_loop_ptr = 0;
2818#if EV_MULTIPLICITY
2819 else
2820 ev_free (EV_A);
2821#endif
1472} 2822}
1473 2823
1474#if EV_USE_INOTIFY 2824#if EV_USE_INOTIFY
1475void inline_size infy_fork (EV_P); 2825inline_size void infy_fork (EV_P);
1476#endif 2826#endif
1477 2827
1478void inline_size 2828inline_size void
1479loop_fork (EV_P) 2829loop_fork (EV_P)
1480{ 2830{
1481#if EV_USE_PORT 2831#if EV_USE_PORT
1482 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2832 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1483#endif 2833#endif
1489#endif 2839#endif
1490#if EV_USE_INOTIFY 2840#if EV_USE_INOTIFY
1491 infy_fork (EV_A); 2841 infy_fork (EV_A);
1492#endif 2842#endif
1493 2843
2844#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1494 if (ev_is_active (&pipeev)) 2845 if (ev_is_active (&pipe_w))
1495 { 2846 {
1496 /* this "locks" the handlers against writing to the pipe */ 2847 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1497 /* while we modify the fd vars */
1498 gotsig = 1;
1499#if EV_ASYNC_ENABLE
1500 gotasync = 1;
1501#endif
1502 2848
1503 ev_ref (EV_A); 2849 ev_ref (EV_A);
1504 ev_io_stop (EV_A_ &pipeev); 2850 ev_io_stop (EV_A_ &pipe_w);
1505
1506#if EV_USE_EVENTFD
1507 if (evfd >= 0)
1508 close (evfd);
1509#endif
1510 2851
1511 if (evpipe [0] >= 0) 2852 if (evpipe [0] >= 0)
1512 { 2853 EV_WIN32_CLOSE_FD (evpipe [0]);
1513 close (evpipe [0]);
1514 close (evpipe [1]);
1515 }
1516 2854
1517 evpipe_init (EV_A); 2855 evpipe_init (EV_A);
1518 /* now iterate over everything, in case we missed something */ 2856 /* iterate over everything, in case we missed something before */
1519 pipecb (EV_A_ &pipeev, EV_READ); 2857 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
1520 } 2858 }
2859#endif
1521 2860
1522 postfork = 0; 2861 postfork = 0;
1523} 2862}
1524 2863
1525#if EV_MULTIPLICITY 2864#if EV_MULTIPLICITY
1526 2865
1527struct ev_loop * 2866struct ev_loop * ecb_cold
1528ev_loop_new (unsigned int flags) 2867ev_loop_new (unsigned int flags) EV_THROW
1529{ 2868{
1530 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2869 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1531 2870
1532 memset (loop, 0, sizeof (struct ev_loop)); 2871 memset (EV_A, 0, sizeof (struct ev_loop));
1533
1534 loop_init (EV_A_ flags); 2872 loop_init (EV_A_ flags);
1535 2873
1536 if (ev_backend (EV_A)) 2874 if (ev_backend (EV_A))
1537 return loop; 2875 return EV_A;
1538 2876
2877 ev_free (EV_A);
1539 return 0; 2878 return 0;
1540} 2879}
1541 2880
1542void 2881#endif /* multiplicity */
1543ev_loop_destroy (EV_P)
1544{
1545 loop_destroy (EV_A);
1546 ev_free (loop);
1547}
1548
1549void
1550ev_loop_fork (EV_P)
1551{
1552 postfork = 1; /* must be in line with ev_default_fork */
1553}
1554 2882
1555#if EV_VERIFY 2883#if EV_VERIFY
1556static void noinline 2884static void noinline ecb_cold
1557verify_watcher (EV_P_ W w) 2885verify_watcher (EV_P_ W w)
1558{ 2886{
1559 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI)); 2887 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1560 2888
1561 if (w->pending) 2889 if (w->pending)
1562 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w)); 2890 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1563} 2891}
1564 2892
1565static void noinline 2893static void noinline ecb_cold
1566verify_heap (EV_P_ ANHE *heap, int N) 2894verify_heap (EV_P_ ANHE *heap, int N)
1567{ 2895{
1568 int i; 2896 int i;
1569 2897
1570 for (i = HEAP0; i < N + HEAP0; ++i) 2898 for (i = HEAP0; i < N + HEAP0; ++i)
1575 2903
1576 verify_watcher (EV_A_ (W)ANHE_w (heap [i])); 2904 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1577 } 2905 }
1578} 2906}
1579 2907
1580static void noinline 2908static void noinline ecb_cold
1581array_verify (EV_P_ W *ws, int cnt) 2909array_verify (EV_P_ W *ws, int cnt)
1582{ 2910{
1583 while (cnt--) 2911 while (cnt--)
1584 { 2912 {
1585 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1)); 2913 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1586 verify_watcher (EV_A_ ws [cnt]); 2914 verify_watcher (EV_A_ ws [cnt]);
1587 } 2915 }
1588} 2916}
1589#endif 2917#endif
1590 2918
1591void 2919#if EV_FEATURE_API
1592ev_loop_verify (EV_P) 2920void ecb_cold
2921ev_verify (EV_P) EV_THROW
1593{ 2922{
1594#if EV_VERIFY 2923#if EV_VERIFY
1595 int i; 2924 int i;
1596 WL w; 2925 WL w, w2;
1597 2926
1598 assert (activecnt >= -1); 2927 assert (activecnt >= -1);
1599 2928
1600 assert (fdchangemax >= fdchangecnt); 2929 assert (fdchangemax >= fdchangecnt);
1601 for (i = 0; i < fdchangecnt; ++i) 2930 for (i = 0; i < fdchangecnt; ++i)
1602 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0)); 2931 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1603 2932
1604 assert (anfdmax >= 0); 2933 assert (anfdmax >= 0);
1605 for (i = 0; i < anfdmax; ++i) 2934 for (i = 0; i < anfdmax; ++i)
2935 {
2936 int j = 0;
2937
1606 for (w = anfds [i].head; w; w = w->next) 2938 for (w = w2 = anfds [i].head; w; w = w->next)
1607 { 2939 {
1608 verify_watcher (EV_A_ (W)w); 2940 verify_watcher (EV_A_ (W)w);
2941
2942 if (j++ & 1)
2943 {
2944 assert (("libev: io watcher list contains a loop", w != w2));
2945 w2 = w2->next;
2946 }
2947
1609 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1)); 2948 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1610 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i)); 2949 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1611 } 2950 }
2951 }
1612 2952
1613 assert (timermax >= timercnt); 2953 assert (timermax >= timercnt);
1614 verify_heap (EV_A_ timers, timercnt); 2954 verify_heap (EV_A_ timers, timercnt);
1615 2955
1616#if EV_PERIODIC_ENABLE 2956#if EV_PERIODIC_ENABLE
1631#if EV_FORK_ENABLE 2971#if EV_FORK_ENABLE
1632 assert (forkmax >= forkcnt); 2972 assert (forkmax >= forkcnt);
1633 array_verify (EV_A_ (W *)forks, forkcnt); 2973 array_verify (EV_A_ (W *)forks, forkcnt);
1634#endif 2974#endif
1635 2975
2976#if EV_CLEANUP_ENABLE
2977 assert (cleanupmax >= cleanupcnt);
2978 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2979#endif
2980
1636#if EV_ASYNC_ENABLE 2981#if EV_ASYNC_ENABLE
1637 assert (asyncmax >= asynccnt); 2982 assert (asyncmax >= asynccnt);
1638 array_verify (EV_A_ (W *)asyncs, asynccnt); 2983 array_verify (EV_A_ (W *)asyncs, asynccnt);
1639#endif 2984#endif
1640 2985
2986#if EV_PREPARE_ENABLE
1641 assert (preparemax >= preparecnt); 2987 assert (preparemax >= preparecnt);
1642 array_verify (EV_A_ (W *)prepares, preparecnt); 2988 array_verify (EV_A_ (W *)prepares, preparecnt);
2989#endif
1643 2990
2991#if EV_CHECK_ENABLE
1644 assert (checkmax >= checkcnt); 2992 assert (checkmax >= checkcnt);
1645 array_verify (EV_A_ (W *)checks, checkcnt); 2993 array_verify (EV_A_ (W *)checks, checkcnt);
2994#endif
1646 2995
1647# if 0 2996# if 0
2997#if EV_CHILD_ENABLE
1648 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2998 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1649 for (signum = signalmax; signum--; ) if (signals [signum].gotsig) 2999 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3000#endif
1650# endif 3001# endif
1651#endif 3002#endif
1652} 3003}
1653 3004#endif
1654#endif /* multiplicity */
1655 3005
1656#if EV_MULTIPLICITY 3006#if EV_MULTIPLICITY
1657struct ev_loop * 3007struct ev_loop * ecb_cold
1658ev_default_loop_init (unsigned int flags)
1659#else 3008#else
1660int 3009int
3010#endif
1661ev_default_loop (unsigned int flags) 3011ev_default_loop (unsigned int flags) EV_THROW
1662#endif
1663{ 3012{
1664 if (!ev_default_loop_ptr) 3013 if (!ev_default_loop_ptr)
1665 { 3014 {
1666#if EV_MULTIPLICITY 3015#if EV_MULTIPLICITY
1667 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 3016 EV_P = ev_default_loop_ptr = &default_loop_struct;
1668#else 3017#else
1669 ev_default_loop_ptr = 1; 3018 ev_default_loop_ptr = 1;
1670#endif 3019#endif
1671 3020
1672 loop_init (EV_A_ flags); 3021 loop_init (EV_A_ flags);
1673 3022
1674 if (ev_backend (EV_A)) 3023 if (ev_backend (EV_A))
1675 { 3024 {
1676#ifndef _WIN32 3025#if EV_CHILD_ENABLE
1677 ev_signal_init (&childev, childcb, SIGCHLD); 3026 ev_signal_init (&childev, childcb, SIGCHLD);
1678 ev_set_priority (&childev, EV_MAXPRI); 3027 ev_set_priority (&childev, EV_MAXPRI);
1679 ev_signal_start (EV_A_ &childev); 3028 ev_signal_start (EV_A_ &childev);
1680 ev_unref (EV_A); /* child watcher should not keep loop alive */ 3029 ev_unref (EV_A); /* child watcher should not keep loop alive */
1681#endif 3030#endif
1686 3035
1687 return ev_default_loop_ptr; 3036 return ev_default_loop_ptr;
1688} 3037}
1689 3038
1690void 3039void
1691ev_default_destroy (void) 3040ev_loop_fork (EV_P) EV_THROW
1692{ 3041{
1693#if EV_MULTIPLICITY 3042 postfork = 1;
1694 struct ev_loop *loop = ev_default_loop_ptr;
1695#endif
1696
1697 ev_default_loop_ptr = 0;
1698
1699#ifndef _WIN32
1700 ev_ref (EV_A); /* child watcher */
1701 ev_signal_stop (EV_A_ &childev);
1702#endif
1703
1704 loop_destroy (EV_A);
1705}
1706
1707void
1708ev_default_fork (void)
1709{
1710#if EV_MULTIPLICITY
1711 struct ev_loop *loop = ev_default_loop_ptr;
1712#endif
1713
1714 postfork = 1; /* must be in line with ev_loop_fork */
1715} 3043}
1716 3044
1717/*****************************************************************************/ 3045/*****************************************************************************/
1718 3046
1719void 3047void
1720ev_invoke (EV_P_ void *w, int revents) 3048ev_invoke (EV_P_ void *w, int revents)
1721{ 3049{
1722 EV_CB_INVOKE ((W)w, revents); 3050 EV_CB_INVOKE ((W)w, revents);
1723} 3051}
1724 3052
1725void inline_speed 3053unsigned int
1726call_pending (EV_P) 3054ev_pending_count (EV_P) EV_THROW
1727{ 3055{
1728 int pri; 3056 int pri;
3057 unsigned int count = 0;
1729 3058
1730 for (pri = NUMPRI; pri--; ) 3059 for (pri = NUMPRI; pri--; )
3060 count += pendingcnt [pri];
3061
3062 return count;
3063}
3064
3065void noinline
3066ev_invoke_pending (EV_P)
3067{
3068 pendingpri = NUMPRI;
3069
3070 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
3071 {
3072 --pendingpri;
3073
1731 while (pendingcnt [pri]) 3074 while (pendingcnt [pendingpri])
1732 {
1733 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1734
1735 if (expect_true (p->w))
1736 { 3075 {
1737 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/ 3076 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1738 3077
1739 p->w->pending = 0; 3078 p->w->pending = 0;
1740 EV_CB_INVOKE (p->w, p->events); 3079 EV_CB_INVOKE (p->w, p->events);
1741 EV_FREQUENT_CHECK; 3080 EV_FREQUENT_CHECK;
1742 } 3081 }
1743 } 3082 }
1744} 3083}
1745 3084
1746#if EV_IDLE_ENABLE 3085#if EV_IDLE_ENABLE
1747void inline_size 3086/* make idle watchers pending. this handles the "call-idle */
3087/* only when higher priorities are idle" logic */
3088inline_size void
1748idle_reify (EV_P) 3089idle_reify (EV_P)
1749{ 3090{
1750 if (expect_false (idleall)) 3091 if (expect_false (idleall))
1751 { 3092 {
1752 int pri; 3093 int pri;
1764 } 3105 }
1765 } 3106 }
1766} 3107}
1767#endif 3108#endif
1768 3109
1769void inline_size 3110/* make timers pending */
3111inline_size void
1770timers_reify (EV_P) 3112timers_reify (EV_P)
1771{ 3113{
1772 EV_FREQUENT_CHECK; 3114 EV_FREQUENT_CHECK;
1773 3115
1774 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 3116 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1775 { 3117 {
1776 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 3118 do
1777
1778 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1779
1780 /* first reschedule or stop timer */
1781 if (w->repeat)
1782 { 3119 {
3120 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3121
3122 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3123
3124 /* first reschedule or stop timer */
3125 if (w->repeat)
3126 {
1783 ev_at (w) += w->repeat; 3127 ev_at (w) += w->repeat;
1784 if (ev_at (w) < mn_now) 3128 if (ev_at (w) < mn_now)
1785 ev_at (w) = mn_now; 3129 ev_at (w) = mn_now;
1786 3130
1787 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3131 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1788 3132
1789 ANHE_at_cache (timers [HEAP0]); 3133 ANHE_at_cache (timers [HEAP0]);
1790 downheap (timers, timercnt, HEAP0); 3134 downheap (timers, timercnt, HEAP0);
3135 }
3136 else
3137 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3138
3139 EV_FREQUENT_CHECK;
3140 feed_reverse (EV_A_ (W)w);
1791 } 3141 }
1792 else 3142 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1793 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1794 3143
1795 EV_FREQUENT_CHECK; 3144 feed_reverse_done (EV_A_ EV_TIMER);
1796 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1797 } 3145 }
1798} 3146}
1799 3147
1800#if EV_PERIODIC_ENABLE 3148#if EV_PERIODIC_ENABLE
1801void inline_size 3149
3150static void noinline
3151periodic_recalc (EV_P_ ev_periodic *w)
3152{
3153 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3154 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3155
3156 /* the above almost always errs on the low side */
3157 while (at <= ev_rt_now)
3158 {
3159 ev_tstamp nat = at + w->interval;
3160
3161 /* when resolution fails us, we use ev_rt_now */
3162 if (expect_false (nat == at))
3163 {
3164 at = ev_rt_now;
3165 break;
3166 }
3167
3168 at = nat;
3169 }
3170
3171 ev_at (w) = at;
3172}
3173
3174/* make periodics pending */
3175inline_size void
1802periodics_reify (EV_P) 3176periodics_reify (EV_P)
1803{ 3177{
1804 EV_FREQUENT_CHECK; 3178 EV_FREQUENT_CHECK;
1805 3179
1806 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 3180 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1807 { 3181 {
1808 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 3182 do
1809
1810 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1811
1812 /* first reschedule or stop timer */
1813 if (w->reschedule_cb)
1814 { 3183 {
3184 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3185
3186 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3187
3188 /* first reschedule or stop timer */
3189 if (w->reschedule_cb)
3190 {
1815 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3191 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1816 3192
1817 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 3193 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1818 3194
1819 ANHE_at_cache (periodics [HEAP0]); 3195 ANHE_at_cache (periodics [HEAP0]);
1820 downheap (periodics, periodiccnt, HEAP0); 3196 downheap (periodics, periodiccnt, HEAP0);
3197 }
3198 else if (w->interval)
3199 {
3200 periodic_recalc (EV_A_ w);
3201 ANHE_at_cache (periodics [HEAP0]);
3202 downheap (periodics, periodiccnt, HEAP0);
3203 }
3204 else
3205 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3206
3207 EV_FREQUENT_CHECK;
3208 feed_reverse (EV_A_ (W)w);
1821 } 3209 }
1822 else if (w->interval) 3210 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1823 {
1824 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1825 /* if next trigger time is not sufficiently in the future, put it there */
1826 /* this might happen because of floating point inexactness */
1827 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1828 {
1829 ev_at (w) += w->interval;
1830 3211
1831 /* if interval is unreasonably low we might still have a time in the past */
1832 /* so correct this. this will make the periodic very inexact, but the user */
1833 /* has effectively asked to get triggered more often than possible */
1834 if (ev_at (w) < ev_rt_now)
1835 ev_at (w) = ev_rt_now;
1836 }
1837
1838 ANHE_at_cache (periodics [HEAP0]);
1839 downheap (periodics, periodiccnt, HEAP0);
1840 }
1841 else
1842 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1843
1844 EV_FREQUENT_CHECK;
1845 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 3212 feed_reverse_done (EV_A_ EV_PERIODIC);
1846 } 3213 }
1847} 3214}
1848 3215
3216/* simply recalculate all periodics */
3217/* TODO: maybe ensure that at least one event happens when jumping forward? */
1849static void noinline 3218static void noinline ecb_cold
1850periodics_reschedule (EV_P) 3219periodics_reschedule (EV_P)
1851{ 3220{
1852 int i; 3221 int i;
1853 3222
1854 /* adjust periodics after time jump */ 3223 /* adjust periodics after time jump */
1857 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]); 3226 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1858 3227
1859 if (w->reschedule_cb) 3228 if (w->reschedule_cb)
1860 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3229 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1861 else if (w->interval) 3230 else if (w->interval)
1862 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 3231 periodic_recalc (EV_A_ w);
1863 3232
1864 ANHE_at_cache (periodics [i]); 3233 ANHE_at_cache (periodics [i]);
1865 } 3234 }
1866 3235
1867 reheap (periodics, periodiccnt); 3236 reheap (periodics, periodiccnt);
1868} 3237}
1869#endif 3238#endif
1870 3239
1871void inline_speed 3240/* adjust all timers by a given offset */
3241static void noinline ecb_cold
3242timers_reschedule (EV_P_ ev_tstamp adjust)
3243{
3244 int i;
3245
3246 for (i = 0; i < timercnt; ++i)
3247 {
3248 ANHE *he = timers + i + HEAP0;
3249 ANHE_w (*he)->at += adjust;
3250 ANHE_at_cache (*he);
3251 }
3252}
3253
3254/* fetch new monotonic and realtime times from the kernel */
3255/* also detect if there was a timejump, and act accordingly */
3256inline_speed void
1872time_update (EV_P_ ev_tstamp max_block) 3257time_update (EV_P_ ev_tstamp max_block)
1873{ 3258{
1874 int i;
1875
1876#if EV_USE_MONOTONIC 3259#if EV_USE_MONOTONIC
1877 if (expect_true (have_monotonic)) 3260 if (expect_true (have_monotonic))
1878 { 3261 {
3262 int i;
1879 ev_tstamp odiff = rtmn_diff; 3263 ev_tstamp odiff = rtmn_diff;
1880 3264
1881 mn_now = get_clock (); 3265 mn_now = get_clock ();
1882 3266
1883 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 3267 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1899 * doesn't hurt either as we only do this on time-jumps or 3283 * doesn't hurt either as we only do this on time-jumps or
1900 * in the unlikely event of having been preempted here. 3284 * in the unlikely event of having been preempted here.
1901 */ 3285 */
1902 for (i = 4; --i; ) 3286 for (i = 4; --i; )
1903 { 3287 {
3288 ev_tstamp diff;
1904 rtmn_diff = ev_rt_now - mn_now; 3289 rtmn_diff = ev_rt_now - mn_now;
1905 3290
3291 diff = odiff - rtmn_diff;
3292
1906 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)) 3293 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1907 return; /* all is well */ 3294 return; /* all is well */
1908 3295
1909 ev_rt_now = ev_time (); 3296 ev_rt_now = ev_time ();
1910 mn_now = get_clock (); 3297 mn_now = get_clock ();
1911 now_floor = mn_now; 3298 now_floor = mn_now;
1912 } 3299 }
1913 3300
3301 /* no timer adjustment, as the monotonic clock doesn't jump */
3302 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1914# if EV_PERIODIC_ENABLE 3303# if EV_PERIODIC_ENABLE
1915 periodics_reschedule (EV_A); 3304 periodics_reschedule (EV_A);
1916# endif 3305# endif
1917 /* no timer adjustment, as the monotonic clock doesn't jump */
1918 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1919 } 3306 }
1920 else 3307 else
1921#endif 3308#endif
1922 { 3309 {
1923 ev_rt_now = ev_time (); 3310 ev_rt_now = ev_time ();
1924 3311
1925 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 3312 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1926 { 3313 {
3314 /* adjust timers. this is easy, as the offset is the same for all of them */
3315 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1927#if EV_PERIODIC_ENABLE 3316#if EV_PERIODIC_ENABLE
1928 periodics_reschedule (EV_A); 3317 periodics_reschedule (EV_A);
1929#endif 3318#endif
1930 /* adjust timers. this is easy, as the offset is the same for all of them */
1931 for (i = 0; i < timercnt; ++i)
1932 {
1933 ANHE *he = timers + i + HEAP0;
1934 ANHE_w (*he)->at += ev_rt_now - mn_now;
1935 ANHE_at_cache (*he);
1936 }
1937 } 3319 }
1938 3320
1939 mn_now = ev_rt_now; 3321 mn_now = ev_rt_now;
1940 } 3322 }
1941} 3323}
1942 3324
1943void 3325int
1944ev_ref (EV_P)
1945{
1946 ++activecnt;
1947}
1948
1949void
1950ev_unref (EV_P)
1951{
1952 --activecnt;
1953}
1954
1955void
1956ev_now_update (EV_P)
1957{
1958 time_update (EV_A_ 1e100);
1959}
1960
1961static int loop_done;
1962
1963void
1964ev_loop (EV_P_ int flags) 3326ev_run (EV_P_ int flags)
1965{ 3327{
3328#if EV_FEATURE_API
3329 ++loop_depth;
3330#endif
3331
3332 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3333
1966 loop_done = EVUNLOOP_CANCEL; 3334 loop_done = EVBREAK_CANCEL;
1967 3335
1968 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3336 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1969 3337
1970 do 3338 do
1971 { 3339 {
1972#if EV_VERIFY >= 2 3340#if EV_VERIFY >= 2
1973 ev_loop_verify (EV_A); 3341 ev_verify (EV_A);
1974#endif 3342#endif
1975 3343
1976#ifndef _WIN32 3344#ifndef _WIN32
1977 if (expect_false (curpid)) /* penalise the forking check even more */ 3345 if (expect_false (curpid)) /* penalise the forking check even more */
1978 if (expect_false (getpid () != curpid)) 3346 if (expect_false (getpid () != curpid))
1986 /* we might have forked, so queue fork handlers */ 3354 /* we might have forked, so queue fork handlers */
1987 if (expect_false (postfork)) 3355 if (expect_false (postfork))
1988 if (forkcnt) 3356 if (forkcnt)
1989 { 3357 {
1990 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3358 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1991 call_pending (EV_A); 3359 EV_INVOKE_PENDING;
1992 } 3360 }
1993#endif 3361#endif
1994 3362
3363#if EV_PREPARE_ENABLE
1995 /* queue prepare watchers (and execute them) */ 3364 /* queue prepare watchers (and execute them) */
1996 if (expect_false (preparecnt)) 3365 if (expect_false (preparecnt))
1997 { 3366 {
1998 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3367 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1999 call_pending (EV_A); 3368 EV_INVOKE_PENDING;
2000 } 3369 }
3370#endif
2001 3371
2002 if (expect_false (!activecnt)) 3372 if (expect_false (loop_done))
2003 break; 3373 break;
2004 3374
2005 /* we might have forked, so reify kernel state if necessary */ 3375 /* we might have forked, so reify kernel state if necessary */
2006 if (expect_false (postfork)) 3376 if (expect_false (postfork))
2007 loop_fork (EV_A); 3377 loop_fork (EV_A);
2012 /* calculate blocking time */ 3382 /* calculate blocking time */
2013 { 3383 {
2014 ev_tstamp waittime = 0.; 3384 ev_tstamp waittime = 0.;
2015 ev_tstamp sleeptime = 0.; 3385 ev_tstamp sleeptime = 0.;
2016 3386
3387 /* remember old timestamp for io_blocktime calculation */
3388 ev_tstamp prev_mn_now = mn_now;
3389
3390 /* update time to cancel out callback processing overhead */
3391 time_update (EV_A_ 1e100);
3392
3393 /* from now on, we want a pipe-wake-up */
3394 pipe_write_wanted = 1;
3395
3396 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3397
2017 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3398 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
2018 { 3399 {
2019 /* update time to cancel out callback processing overhead */
2020 time_update (EV_A_ 1e100);
2021
2022 waittime = MAX_BLOCKTIME; 3400 waittime = MAX_BLOCKTIME;
2023 3401
2024 if (timercnt) 3402 if (timercnt)
2025 { 3403 {
2026 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 3404 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
2027 if (waittime > to) waittime = to; 3405 if (waittime > to) waittime = to;
2028 } 3406 }
2029 3407
2030#if EV_PERIODIC_ENABLE 3408#if EV_PERIODIC_ENABLE
2031 if (periodiccnt) 3409 if (periodiccnt)
2032 { 3410 {
2033 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 3411 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
2034 if (waittime > to) waittime = to; 3412 if (waittime > to) waittime = to;
2035 } 3413 }
2036#endif 3414#endif
2037 3415
3416 /* don't let timeouts decrease the waittime below timeout_blocktime */
2038 if (expect_false (waittime < timeout_blocktime)) 3417 if (expect_false (waittime < timeout_blocktime))
2039 waittime = timeout_blocktime; 3418 waittime = timeout_blocktime;
2040 3419
2041 sleeptime = waittime - backend_fudge; 3420 /* at this point, we NEED to wait, so we have to ensure */
3421 /* to pass a minimum nonzero value to the backend */
3422 if (expect_false (waittime < backend_mintime))
3423 waittime = backend_mintime;
2042 3424
3425 /* extra check because io_blocktime is commonly 0 */
2043 if (expect_true (sleeptime > io_blocktime)) 3426 if (expect_false (io_blocktime))
2044 sleeptime = io_blocktime;
2045
2046 if (sleeptime)
2047 { 3427 {
3428 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3429
3430 if (sleeptime > waittime - backend_mintime)
3431 sleeptime = waittime - backend_mintime;
3432
3433 if (expect_true (sleeptime > 0.))
3434 {
2048 ev_sleep (sleeptime); 3435 ev_sleep (sleeptime);
2049 waittime -= sleeptime; 3436 waittime -= sleeptime;
3437 }
2050 } 3438 }
2051 } 3439 }
2052 3440
3441#if EV_FEATURE_API
2053 ++loop_count; 3442 ++loop_count;
3443#endif
3444 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2054 backend_poll (EV_A_ waittime); 3445 backend_poll (EV_A_ waittime);
3446 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3447
3448 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3449
3450 ECB_MEMORY_FENCE_ACQUIRE;
3451 if (pipe_write_skipped)
3452 {
3453 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3454 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3455 }
3456
2055 3457
2056 /* update ev_rt_now, do magic */ 3458 /* update ev_rt_now, do magic */
2057 time_update (EV_A_ waittime + sleeptime); 3459 time_update (EV_A_ waittime + sleeptime);
2058 } 3460 }
2059 3461
2066#if EV_IDLE_ENABLE 3468#if EV_IDLE_ENABLE
2067 /* queue idle watchers unless other events are pending */ 3469 /* queue idle watchers unless other events are pending */
2068 idle_reify (EV_A); 3470 idle_reify (EV_A);
2069#endif 3471#endif
2070 3472
3473#if EV_CHECK_ENABLE
2071 /* queue check watchers, to be executed first */ 3474 /* queue check watchers, to be executed first */
2072 if (expect_false (checkcnt)) 3475 if (expect_false (checkcnt))
2073 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3476 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3477#endif
2074 3478
2075 call_pending (EV_A); 3479 EV_INVOKE_PENDING;
2076 } 3480 }
2077 while (expect_true ( 3481 while (expect_true (
2078 activecnt 3482 activecnt
2079 && !loop_done 3483 && !loop_done
2080 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 3484 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2081 )); 3485 ));
2082 3486
2083 if (loop_done == EVUNLOOP_ONE) 3487 if (loop_done == EVBREAK_ONE)
2084 loop_done = EVUNLOOP_CANCEL; 3488 loop_done = EVBREAK_CANCEL;
3489
3490#if EV_FEATURE_API
3491 --loop_depth;
3492#endif
3493
3494 return activecnt;
2085} 3495}
2086 3496
2087void 3497void
2088ev_unloop (EV_P_ int how) 3498ev_break (EV_P_ int how) EV_THROW
2089{ 3499{
2090 loop_done = how; 3500 loop_done = how;
2091} 3501}
2092 3502
3503void
3504ev_ref (EV_P) EV_THROW
3505{
3506 ++activecnt;
3507}
3508
3509void
3510ev_unref (EV_P) EV_THROW
3511{
3512 --activecnt;
3513}
3514
3515void
3516ev_now_update (EV_P) EV_THROW
3517{
3518 time_update (EV_A_ 1e100);
3519}
3520
3521void
3522ev_suspend (EV_P) EV_THROW
3523{
3524 ev_now_update (EV_A);
3525}
3526
3527void
3528ev_resume (EV_P) EV_THROW
3529{
3530 ev_tstamp mn_prev = mn_now;
3531
3532 ev_now_update (EV_A);
3533 timers_reschedule (EV_A_ mn_now - mn_prev);
3534#if EV_PERIODIC_ENABLE
3535 /* TODO: really do this? */
3536 periodics_reschedule (EV_A);
3537#endif
3538}
3539
2093/*****************************************************************************/ 3540/*****************************************************************************/
3541/* singly-linked list management, used when the expected list length is short */
2094 3542
2095void inline_size 3543inline_size void
2096wlist_add (WL *head, WL elem) 3544wlist_add (WL *head, WL elem)
2097{ 3545{
2098 elem->next = *head; 3546 elem->next = *head;
2099 *head = elem; 3547 *head = elem;
2100} 3548}
2101 3549
2102void inline_size 3550inline_size void
2103wlist_del (WL *head, WL elem) 3551wlist_del (WL *head, WL elem)
2104{ 3552{
2105 while (*head) 3553 while (*head)
2106 { 3554 {
2107 if (*head == elem) 3555 if (expect_true (*head == elem))
2108 { 3556 {
2109 *head = elem->next; 3557 *head = elem->next;
2110 return; 3558 break;
2111 } 3559 }
2112 3560
2113 head = &(*head)->next; 3561 head = &(*head)->next;
2114 } 3562 }
2115} 3563}
2116 3564
2117void inline_speed 3565/* internal, faster, version of ev_clear_pending */
3566inline_speed void
2118clear_pending (EV_P_ W w) 3567clear_pending (EV_P_ W w)
2119{ 3568{
2120 if (w->pending) 3569 if (w->pending)
2121 { 3570 {
2122 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3571 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2123 w->pending = 0; 3572 w->pending = 0;
2124 } 3573 }
2125} 3574}
2126 3575
2127int 3576int
2128ev_clear_pending (EV_P_ void *w) 3577ev_clear_pending (EV_P_ void *w) EV_THROW
2129{ 3578{
2130 W w_ = (W)w; 3579 W w_ = (W)w;
2131 int pending = w_->pending; 3580 int pending = w_->pending;
2132 3581
2133 if (expect_true (pending)) 3582 if (expect_true (pending))
2134 { 3583 {
2135 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3584 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3585 p->w = (W)&pending_w;
2136 w_->pending = 0; 3586 w_->pending = 0;
2137 p->w = 0;
2138 return p->events; 3587 return p->events;
2139 } 3588 }
2140 else 3589 else
2141 return 0; 3590 return 0;
2142} 3591}
2143 3592
2144void inline_size 3593inline_size void
2145pri_adjust (EV_P_ W w) 3594pri_adjust (EV_P_ W w)
2146{ 3595{
2147 int pri = w->priority; 3596 int pri = ev_priority (w);
2148 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3597 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2149 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3598 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2150 w->priority = pri; 3599 ev_set_priority (w, pri);
2151} 3600}
2152 3601
2153void inline_speed 3602inline_speed void
2154ev_start (EV_P_ W w, int active) 3603ev_start (EV_P_ W w, int active)
2155{ 3604{
2156 pri_adjust (EV_A_ w); 3605 pri_adjust (EV_A_ w);
2157 w->active = active; 3606 w->active = active;
2158 ev_ref (EV_A); 3607 ev_ref (EV_A);
2159} 3608}
2160 3609
2161void inline_size 3610inline_size void
2162ev_stop (EV_P_ W w) 3611ev_stop (EV_P_ W w)
2163{ 3612{
2164 ev_unref (EV_A); 3613 ev_unref (EV_A);
2165 w->active = 0; 3614 w->active = 0;
2166} 3615}
2167 3616
2168/*****************************************************************************/ 3617/*****************************************************************************/
2169 3618
2170void noinline 3619void noinline
2171ev_io_start (EV_P_ ev_io *w) 3620ev_io_start (EV_P_ ev_io *w) EV_THROW
2172{ 3621{
2173 int fd = w->fd; 3622 int fd = w->fd;
2174 3623
2175 if (expect_false (ev_is_active (w))) 3624 if (expect_false (ev_is_active (w)))
2176 return; 3625 return;
2177 3626
2178 assert (("libev: ev_io_start called with negative fd", fd >= 0)); 3627 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2179 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE)))); 3628 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2180 3629
2181 EV_FREQUENT_CHECK; 3630 EV_FREQUENT_CHECK;
2182 3631
2183 ev_start (EV_A_ (W)w, 1); 3632 ev_start (EV_A_ (W)w, 1);
2184 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero); 3633 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2185 wlist_add (&anfds[fd].head, (WL)w); 3634 wlist_add (&anfds[fd].head, (WL)w);
2186 3635
3636 /* common bug, apparently */
3637 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3638
2187 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1); 3639 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2188 w->events &= ~EV__IOFDSET; 3640 w->events &= ~EV__IOFDSET;
2189 3641
2190 EV_FREQUENT_CHECK; 3642 EV_FREQUENT_CHECK;
2191} 3643}
2192 3644
2193void noinline 3645void noinline
2194ev_io_stop (EV_P_ ev_io *w) 3646ev_io_stop (EV_P_ ev_io *w) EV_THROW
2195{ 3647{
2196 clear_pending (EV_A_ (W)w); 3648 clear_pending (EV_A_ (W)w);
2197 if (expect_false (!ev_is_active (w))) 3649 if (expect_false (!ev_is_active (w)))
2198 return; 3650 return;
2199 3651
2202 EV_FREQUENT_CHECK; 3654 EV_FREQUENT_CHECK;
2203 3655
2204 wlist_del (&anfds[w->fd].head, (WL)w); 3656 wlist_del (&anfds[w->fd].head, (WL)w);
2205 ev_stop (EV_A_ (W)w); 3657 ev_stop (EV_A_ (W)w);
2206 3658
2207 fd_change (EV_A_ w->fd, 1); 3659 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2208 3660
2209 EV_FREQUENT_CHECK; 3661 EV_FREQUENT_CHECK;
2210} 3662}
2211 3663
2212void noinline 3664void noinline
2213ev_timer_start (EV_P_ ev_timer *w) 3665ev_timer_start (EV_P_ ev_timer *w) EV_THROW
2214{ 3666{
2215 if (expect_false (ev_is_active (w))) 3667 if (expect_false (ev_is_active (w)))
2216 return; 3668 return;
2217 3669
2218 ev_at (w) += mn_now; 3670 ev_at (w) += mn_now;
2232 3684
2233 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 3685 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2234} 3686}
2235 3687
2236void noinline 3688void noinline
2237ev_timer_stop (EV_P_ ev_timer *w) 3689ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
2238{ 3690{
2239 clear_pending (EV_A_ (W)w); 3691 clear_pending (EV_A_ (W)w);
2240 if (expect_false (!ev_is_active (w))) 3692 if (expect_false (!ev_is_active (w)))
2241 return; 3693 return;
2242 3694
2254 timers [active] = timers [timercnt + HEAP0]; 3706 timers [active] = timers [timercnt + HEAP0];
2255 adjustheap (timers, timercnt, active); 3707 adjustheap (timers, timercnt, active);
2256 } 3708 }
2257 } 3709 }
2258 3710
2259 EV_FREQUENT_CHECK;
2260
2261 ev_at (w) -= mn_now; 3711 ev_at (w) -= mn_now;
2262 3712
2263 ev_stop (EV_A_ (W)w); 3713 ev_stop (EV_A_ (W)w);
3714
3715 EV_FREQUENT_CHECK;
2264} 3716}
2265 3717
2266void noinline 3718void noinline
2267ev_timer_again (EV_P_ ev_timer *w) 3719ev_timer_again (EV_P_ ev_timer *w) EV_THROW
2268{ 3720{
2269 EV_FREQUENT_CHECK; 3721 EV_FREQUENT_CHECK;
3722
3723 clear_pending (EV_A_ (W)w);
2270 3724
2271 if (ev_is_active (w)) 3725 if (ev_is_active (w))
2272 { 3726 {
2273 if (w->repeat) 3727 if (w->repeat)
2274 { 3728 {
2286 } 3740 }
2287 3741
2288 EV_FREQUENT_CHECK; 3742 EV_FREQUENT_CHECK;
2289} 3743}
2290 3744
3745ev_tstamp
3746ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3747{
3748 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3749}
3750
2291#if EV_PERIODIC_ENABLE 3751#if EV_PERIODIC_ENABLE
2292void noinline 3752void noinline
2293ev_periodic_start (EV_P_ ev_periodic *w) 3753ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
2294{ 3754{
2295 if (expect_false (ev_is_active (w))) 3755 if (expect_false (ev_is_active (w)))
2296 return; 3756 return;
2297 3757
2298 if (w->reschedule_cb) 3758 if (w->reschedule_cb)
2299 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3759 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2300 else if (w->interval) 3760 else if (w->interval)
2301 { 3761 {
2302 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.)); 3762 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2303 /* this formula differs from the one in periodic_reify because we do not always round up */ 3763 periodic_recalc (EV_A_ w);
2304 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2305 } 3764 }
2306 else 3765 else
2307 ev_at (w) = w->offset; 3766 ev_at (w) = w->offset;
2308 3767
2309 EV_FREQUENT_CHECK; 3768 EV_FREQUENT_CHECK;
2319 3778
2320 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 3779 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2321} 3780}
2322 3781
2323void noinline 3782void noinline
2324ev_periodic_stop (EV_P_ ev_periodic *w) 3783ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
2325{ 3784{
2326 clear_pending (EV_A_ (W)w); 3785 clear_pending (EV_A_ (W)w);
2327 if (expect_false (!ev_is_active (w))) 3786 if (expect_false (!ev_is_active (w)))
2328 return; 3787 return;
2329 3788
2341 periodics [active] = periodics [periodiccnt + HEAP0]; 3800 periodics [active] = periodics [periodiccnt + HEAP0];
2342 adjustheap (periodics, periodiccnt, active); 3801 adjustheap (periodics, periodiccnt, active);
2343 } 3802 }
2344 } 3803 }
2345 3804
2346 EV_FREQUENT_CHECK;
2347
2348 ev_stop (EV_A_ (W)w); 3805 ev_stop (EV_A_ (W)w);
3806
3807 EV_FREQUENT_CHECK;
2349} 3808}
2350 3809
2351void noinline 3810void noinline
2352ev_periodic_again (EV_P_ ev_periodic *w) 3811ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
2353{ 3812{
2354 /* TODO: use adjustheap and recalculation */ 3813 /* TODO: use adjustheap and recalculation */
2355 ev_periodic_stop (EV_A_ w); 3814 ev_periodic_stop (EV_A_ w);
2356 ev_periodic_start (EV_A_ w); 3815 ev_periodic_start (EV_A_ w);
2357} 3816}
2359 3818
2360#ifndef SA_RESTART 3819#ifndef SA_RESTART
2361# define SA_RESTART 0 3820# define SA_RESTART 0
2362#endif 3821#endif
2363 3822
3823#if EV_SIGNAL_ENABLE
3824
2364void noinline 3825void noinline
2365ev_signal_start (EV_P_ ev_signal *w) 3826ev_signal_start (EV_P_ ev_signal *w) EV_THROW
2366{ 3827{
2367#if EV_MULTIPLICITY
2368 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2369#endif
2370 if (expect_false (ev_is_active (w))) 3828 if (expect_false (ev_is_active (w)))
2371 return; 3829 return;
2372 3830
2373 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0)); 3831 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2374 3832
2375 evpipe_init (EV_A); 3833#if EV_MULTIPLICITY
3834 assert (("libev: a signal must not be attached to two different loops",
3835 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2376 3836
2377 EV_FREQUENT_CHECK; 3837 signals [w->signum - 1].loop = EV_A;
3838 ECB_MEMORY_FENCE_RELEASE;
3839#endif
2378 3840
3841 EV_FREQUENT_CHECK;
3842
3843#if EV_USE_SIGNALFD
3844 if (sigfd == -2)
2379 { 3845 {
2380#ifndef _WIN32 3846 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2381 sigset_t full, prev; 3847 if (sigfd < 0 && errno == EINVAL)
2382 sigfillset (&full); 3848 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2383 sigprocmask (SIG_SETMASK, &full, &prev);
2384#endif
2385 3849
2386 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero); 3850 if (sigfd >= 0)
3851 {
3852 fd_intern (sigfd); /* doing it twice will not hurt */
2387 3853
2388#ifndef _WIN32 3854 sigemptyset (&sigfd_set);
2389 sigprocmask (SIG_SETMASK, &prev, 0); 3855
2390#endif 3856 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3857 ev_set_priority (&sigfd_w, EV_MAXPRI);
3858 ev_io_start (EV_A_ &sigfd_w);
3859 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3860 }
2391 } 3861 }
3862
3863 if (sigfd >= 0)
3864 {
3865 /* TODO: check .head */
3866 sigaddset (&sigfd_set, w->signum);
3867 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3868
3869 signalfd (sigfd, &sigfd_set, 0);
3870 }
3871#endif
2392 3872
2393 ev_start (EV_A_ (W)w, 1); 3873 ev_start (EV_A_ (W)w, 1);
2394 wlist_add (&signals [w->signum - 1].head, (WL)w); 3874 wlist_add (&signals [w->signum - 1].head, (WL)w);
2395 3875
2396 if (!((WL)w)->next) 3876 if (!((WL)w)->next)
3877# if EV_USE_SIGNALFD
3878 if (sigfd < 0) /*TODO*/
3879# endif
2397 { 3880 {
2398#if _WIN32 3881# ifdef _WIN32
3882 evpipe_init (EV_A);
3883
2399 signal (w->signum, ev_sighandler); 3884 signal (w->signum, ev_sighandler);
2400#else 3885# else
2401 struct sigaction sa; 3886 struct sigaction sa;
3887
3888 evpipe_init (EV_A);
3889
2402 sa.sa_handler = ev_sighandler; 3890 sa.sa_handler = ev_sighandler;
2403 sigfillset (&sa.sa_mask); 3891 sigfillset (&sa.sa_mask);
2404 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3892 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2405 sigaction (w->signum, &sa, 0); 3893 sigaction (w->signum, &sa, 0);
3894
3895 if (origflags & EVFLAG_NOSIGMASK)
3896 {
3897 sigemptyset (&sa.sa_mask);
3898 sigaddset (&sa.sa_mask, w->signum);
3899 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3900 }
2406#endif 3901#endif
2407 } 3902 }
2408 3903
2409 EV_FREQUENT_CHECK; 3904 EV_FREQUENT_CHECK;
2410} 3905}
2411 3906
2412void noinline 3907void noinline
2413ev_signal_stop (EV_P_ ev_signal *w) 3908ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
2414{ 3909{
2415 clear_pending (EV_A_ (W)w); 3910 clear_pending (EV_A_ (W)w);
2416 if (expect_false (!ev_is_active (w))) 3911 if (expect_false (!ev_is_active (w)))
2417 return; 3912 return;
2418 3913
2420 3915
2421 wlist_del (&signals [w->signum - 1].head, (WL)w); 3916 wlist_del (&signals [w->signum - 1].head, (WL)w);
2422 ev_stop (EV_A_ (W)w); 3917 ev_stop (EV_A_ (W)w);
2423 3918
2424 if (!signals [w->signum - 1].head) 3919 if (!signals [w->signum - 1].head)
3920 {
3921#if EV_MULTIPLICITY
3922 signals [w->signum - 1].loop = 0; /* unattach from signal */
3923#endif
3924#if EV_USE_SIGNALFD
3925 if (sigfd >= 0)
3926 {
3927 sigset_t ss;
3928
3929 sigemptyset (&ss);
3930 sigaddset (&ss, w->signum);
3931 sigdelset (&sigfd_set, w->signum);
3932
3933 signalfd (sigfd, &sigfd_set, 0);
3934 sigprocmask (SIG_UNBLOCK, &ss, 0);
3935 }
3936 else
3937#endif
2425 signal (w->signum, SIG_DFL); 3938 signal (w->signum, SIG_DFL);
3939 }
2426 3940
2427 EV_FREQUENT_CHECK; 3941 EV_FREQUENT_CHECK;
2428} 3942}
3943
3944#endif
3945
3946#if EV_CHILD_ENABLE
2429 3947
2430void 3948void
2431ev_child_start (EV_P_ ev_child *w) 3949ev_child_start (EV_P_ ev_child *w) EV_THROW
2432{ 3950{
2433#if EV_MULTIPLICITY 3951#if EV_MULTIPLICITY
2434 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3952 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2435#endif 3953#endif
2436 if (expect_false (ev_is_active (w))) 3954 if (expect_false (ev_is_active (w)))
2437 return; 3955 return;
2438 3956
2439 EV_FREQUENT_CHECK; 3957 EV_FREQUENT_CHECK;
2440 3958
2441 ev_start (EV_A_ (W)w, 1); 3959 ev_start (EV_A_ (W)w, 1);
2442 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3960 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2443 3961
2444 EV_FREQUENT_CHECK; 3962 EV_FREQUENT_CHECK;
2445} 3963}
2446 3964
2447void 3965void
2448ev_child_stop (EV_P_ ev_child *w) 3966ev_child_stop (EV_P_ ev_child *w) EV_THROW
2449{ 3967{
2450 clear_pending (EV_A_ (W)w); 3968 clear_pending (EV_A_ (W)w);
2451 if (expect_false (!ev_is_active (w))) 3969 if (expect_false (!ev_is_active (w)))
2452 return; 3970 return;
2453 3971
2454 EV_FREQUENT_CHECK; 3972 EV_FREQUENT_CHECK;
2455 3973
2456 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3974 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2457 ev_stop (EV_A_ (W)w); 3975 ev_stop (EV_A_ (W)w);
2458 3976
2459 EV_FREQUENT_CHECK; 3977 EV_FREQUENT_CHECK;
2460} 3978}
3979
3980#endif
2461 3981
2462#if EV_STAT_ENABLE 3982#if EV_STAT_ENABLE
2463 3983
2464# ifdef _WIN32 3984# ifdef _WIN32
2465# undef lstat 3985# undef lstat
2471#define MIN_STAT_INTERVAL 0.1074891 3991#define MIN_STAT_INTERVAL 0.1074891
2472 3992
2473static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3993static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2474 3994
2475#if EV_USE_INOTIFY 3995#if EV_USE_INOTIFY
2476# define EV_INOTIFY_BUFSIZE 8192 3996
3997/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3998# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2477 3999
2478static void noinline 4000static void noinline
2479infy_add (EV_P_ ev_stat *w) 4001infy_add (EV_P_ ev_stat *w)
2480{ 4002{
2481 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 4003 w->wd = inotify_add_watch (fs_fd, w->path,
4004 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4005 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4006 | IN_DONT_FOLLOW | IN_MASK_ADD);
2482 4007
2483 if (w->wd < 0) 4008 if (w->wd >= 0)
4009 {
4010 struct statfs sfs;
4011
4012 /* now local changes will be tracked by inotify, but remote changes won't */
4013 /* unless the filesystem is known to be local, we therefore still poll */
4014 /* also do poll on <2.6.25, but with normal frequency */
4015
4016 if (!fs_2625)
4017 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4018 else if (!statfs (w->path, &sfs)
4019 && (sfs.f_type == 0x1373 /* devfs */
4020 || sfs.f_type == 0x4006 /* fat */
4021 || sfs.f_type == 0x4d44 /* msdos */
4022 || sfs.f_type == 0xEF53 /* ext2/3 */
4023 || sfs.f_type == 0x72b6 /* jffs2 */
4024 || sfs.f_type == 0x858458f6 /* ramfs */
4025 || sfs.f_type == 0x5346544e /* ntfs */
4026 || sfs.f_type == 0x3153464a /* jfs */
4027 || sfs.f_type == 0x9123683e /* btrfs */
4028 || sfs.f_type == 0x52654973 /* reiser3 */
4029 || sfs.f_type == 0x01021994 /* tmpfs */
4030 || sfs.f_type == 0x58465342 /* xfs */))
4031 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4032 else
4033 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2484 { 4034 }
4035 else
4036 {
4037 /* can't use inotify, continue to stat */
2485 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL; 4038 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2486 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2487 4039
2488 /* monitor some parent directory for speedup hints */ 4040 /* if path is not there, monitor some parent directory for speedup hints */
2489 /* note that exceeding the hardcoded path limit is not a correctness issue, */ 4041 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2490 /* but an efficiency issue only */ 4042 /* but an efficiency issue only */
2491 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 4043 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2492 { 4044 {
2493 char path [4096]; 4045 char path [4096];
2503 if (!pend || pend == path) 4055 if (!pend || pend == path)
2504 break; 4056 break;
2505 4057
2506 *pend = 0; 4058 *pend = 0;
2507 w->wd = inotify_add_watch (fs_fd, path, mask); 4059 w->wd = inotify_add_watch (fs_fd, path, mask);
2508 } 4060 }
2509 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 4061 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2510 } 4062 }
2511 } 4063 }
2512 4064
2513 if (w->wd >= 0) 4065 if (w->wd >= 0)
2514 {
2515 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 4066 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2516 4067
2517 /* now local changes will be tracked by inotify, but remote changes won't */ 4068 /* now re-arm timer, if required */
2518 /* unless the filesystem it known to be local, we therefore still poll */ 4069 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2519 /* also do poll on <2.6.25, but with normal frequency */
2520 struct statfs sfs;
2521
2522 if (fs_2625 && !statfs (w->path, &sfs))
2523 if (sfs.f_type == 0x1373 /* devfs */
2524 || sfs.f_type == 0xEF53 /* ext2/3 */
2525 || sfs.f_type == 0x3153464a /* jfs */
2526 || sfs.f_type == 0x52654973 /* reiser3 */
2527 || sfs.f_type == 0x01021994 /* tempfs */
2528 || sfs.f_type == 0x58465342 /* xfs */)
2529 return;
2530
2531 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2532 ev_timer_again (EV_A_ &w->timer); 4070 ev_timer_again (EV_A_ &w->timer);
2533 } 4071 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2534} 4072}
2535 4073
2536static void noinline 4074static void noinline
2537infy_del (EV_P_ ev_stat *w) 4075infy_del (EV_P_ ev_stat *w)
2538{ 4076{
2541 4079
2542 if (wd < 0) 4080 if (wd < 0)
2543 return; 4081 return;
2544 4082
2545 w->wd = -2; 4083 w->wd = -2;
2546 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 4084 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2547 wlist_del (&fs_hash [slot].head, (WL)w); 4085 wlist_del (&fs_hash [slot].head, (WL)w);
2548 4086
2549 /* remove this watcher, if others are watching it, they will rearm */ 4087 /* remove this watcher, if others are watching it, they will rearm */
2550 inotify_rm_watch (fs_fd, wd); 4088 inotify_rm_watch (fs_fd, wd);
2551} 4089}
2553static void noinline 4091static void noinline
2554infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 4092infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2555{ 4093{
2556 if (slot < 0) 4094 if (slot < 0)
2557 /* overflow, need to check for all hash slots */ 4095 /* overflow, need to check for all hash slots */
2558 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4096 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2559 infy_wd (EV_A_ slot, wd, ev); 4097 infy_wd (EV_A_ slot, wd, ev);
2560 else 4098 else
2561 { 4099 {
2562 WL w_; 4100 WL w_;
2563 4101
2564 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 4102 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2565 { 4103 {
2566 ev_stat *w = (ev_stat *)w_; 4104 ev_stat *w = (ev_stat *)w_;
2567 w_ = w_->next; /* lets us remove this watcher and all before it */ 4105 w_ = w_->next; /* lets us remove this watcher and all before it */
2568 4106
2569 if (w->wd == wd || wd == -1) 4107 if (w->wd == wd || wd == -1)
2570 { 4108 {
2571 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 4109 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2572 { 4110 {
2573 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 4111 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2574 w->wd = -1; 4112 w->wd = -1;
2575 infy_add (EV_A_ w); /* re-add, no matter what */ 4113 infy_add (EV_A_ w); /* re-add, no matter what */
2576 } 4114 }
2577 4115
2578 stat_timer_cb (EV_A_ &w->timer, 0); 4116 stat_timer_cb (EV_A_ &w->timer, 0);
2583 4121
2584static void 4122static void
2585infy_cb (EV_P_ ev_io *w, int revents) 4123infy_cb (EV_P_ ev_io *w, int revents)
2586{ 4124{
2587 char buf [EV_INOTIFY_BUFSIZE]; 4125 char buf [EV_INOTIFY_BUFSIZE];
2588 struct inotify_event *ev = (struct inotify_event *)buf;
2589 int ofs; 4126 int ofs;
2590 int len = read (fs_fd, buf, sizeof (buf)); 4127 int len = read (fs_fd, buf, sizeof (buf));
2591 4128
2592 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 4129 for (ofs = 0; ofs < len; )
4130 {
4131 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2593 infy_wd (EV_A_ ev->wd, ev->wd, ev); 4132 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4133 ofs += sizeof (struct inotify_event) + ev->len;
4134 }
2594} 4135}
2595 4136
2596void inline_size 4137inline_size void ecb_cold
2597check_2625 (EV_P) 4138ev_check_2625 (EV_P)
2598{ 4139{
2599 /* kernels < 2.6.25 are borked 4140 /* kernels < 2.6.25 are borked
2600 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html 4141 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2601 */ 4142 */
2602 struct utsname buf; 4143 if (ev_linux_version () < 0x020619)
2603 int major, minor, micro;
2604
2605 if (uname (&buf))
2606 return; 4144 return;
2607 4145
2608 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2609 return;
2610
2611 if (major < 2
2612 || (major == 2 && minor < 6)
2613 || (major == 2 && minor == 6 && micro < 25))
2614 return;
2615
2616 fs_2625 = 1; 4146 fs_2625 = 1;
2617} 4147}
2618 4148
2619void inline_size 4149inline_size int
4150infy_newfd (void)
4151{
4152#if defined IN_CLOEXEC && defined IN_NONBLOCK
4153 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4154 if (fd >= 0)
4155 return fd;
4156#endif
4157 return inotify_init ();
4158}
4159
4160inline_size void
2620infy_init (EV_P) 4161infy_init (EV_P)
2621{ 4162{
2622 if (fs_fd != -2) 4163 if (fs_fd != -2)
2623 return; 4164 return;
2624 4165
2625 fs_fd = -1; 4166 fs_fd = -1;
2626 4167
2627 check_2625 (EV_A); 4168 ev_check_2625 (EV_A);
2628 4169
2629 fs_fd = inotify_init (); 4170 fs_fd = infy_newfd ();
2630 4171
2631 if (fs_fd >= 0) 4172 if (fs_fd >= 0)
2632 { 4173 {
4174 fd_intern (fs_fd);
2633 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 4175 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2634 ev_set_priority (&fs_w, EV_MAXPRI); 4176 ev_set_priority (&fs_w, EV_MAXPRI);
2635 ev_io_start (EV_A_ &fs_w); 4177 ev_io_start (EV_A_ &fs_w);
4178 ev_unref (EV_A);
2636 } 4179 }
2637} 4180}
2638 4181
2639void inline_size 4182inline_size void
2640infy_fork (EV_P) 4183infy_fork (EV_P)
2641{ 4184{
2642 int slot; 4185 int slot;
2643 4186
2644 if (fs_fd < 0) 4187 if (fs_fd < 0)
2645 return; 4188 return;
2646 4189
4190 ev_ref (EV_A);
4191 ev_io_stop (EV_A_ &fs_w);
2647 close (fs_fd); 4192 close (fs_fd);
2648 fs_fd = inotify_init (); 4193 fs_fd = infy_newfd ();
2649 4194
4195 if (fs_fd >= 0)
4196 {
4197 fd_intern (fs_fd);
4198 ev_io_set (&fs_w, fs_fd, EV_READ);
4199 ev_io_start (EV_A_ &fs_w);
4200 ev_unref (EV_A);
4201 }
4202
2650 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4203 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2651 { 4204 {
2652 WL w_ = fs_hash [slot].head; 4205 WL w_ = fs_hash [slot].head;
2653 fs_hash [slot].head = 0; 4206 fs_hash [slot].head = 0;
2654 4207
2655 while (w_) 4208 while (w_)
2660 w->wd = -1; 4213 w->wd = -1;
2661 4214
2662 if (fs_fd >= 0) 4215 if (fs_fd >= 0)
2663 infy_add (EV_A_ w); /* re-add, no matter what */ 4216 infy_add (EV_A_ w); /* re-add, no matter what */
2664 else 4217 else
4218 {
4219 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4220 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2665 ev_timer_again (EV_A_ &w->timer); 4221 ev_timer_again (EV_A_ &w->timer);
4222 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4223 }
2666 } 4224 }
2667 } 4225 }
2668} 4226}
2669 4227
2670#endif 4228#endif
2674#else 4232#else
2675# define EV_LSTAT(p,b) lstat (p, b) 4233# define EV_LSTAT(p,b) lstat (p, b)
2676#endif 4234#endif
2677 4235
2678void 4236void
2679ev_stat_stat (EV_P_ ev_stat *w) 4237ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
2680{ 4238{
2681 if (lstat (w->path, &w->attr) < 0) 4239 if (lstat (w->path, &w->attr) < 0)
2682 w->attr.st_nlink = 0; 4240 w->attr.st_nlink = 0;
2683 else if (!w->attr.st_nlink) 4241 else if (!w->attr.st_nlink)
2684 w->attr.st_nlink = 1; 4242 w->attr.st_nlink = 1;
2687static void noinline 4245static void noinline
2688stat_timer_cb (EV_P_ ev_timer *w_, int revents) 4246stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2689{ 4247{
2690 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 4248 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2691 4249
2692 /* we copy this here each the time so that */ 4250 ev_statdata prev = w->attr;
2693 /* prev has the old value when the callback gets invoked */
2694 w->prev = w->attr;
2695 ev_stat_stat (EV_A_ w); 4251 ev_stat_stat (EV_A_ w);
2696 4252
2697 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 4253 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2698 if ( 4254 if (
2699 w->prev.st_dev != w->attr.st_dev 4255 prev.st_dev != w->attr.st_dev
2700 || w->prev.st_ino != w->attr.st_ino 4256 || prev.st_ino != w->attr.st_ino
2701 || w->prev.st_mode != w->attr.st_mode 4257 || prev.st_mode != w->attr.st_mode
2702 || w->prev.st_nlink != w->attr.st_nlink 4258 || prev.st_nlink != w->attr.st_nlink
2703 || w->prev.st_uid != w->attr.st_uid 4259 || prev.st_uid != w->attr.st_uid
2704 || w->prev.st_gid != w->attr.st_gid 4260 || prev.st_gid != w->attr.st_gid
2705 || w->prev.st_rdev != w->attr.st_rdev 4261 || prev.st_rdev != w->attr.st_rdev
2706 || w->prev.st_size != w->attr.st_size 4262 || prev.st_size != w->attr.st_size
2707 || w->prev.st_atime != w->attr.st_atime 4263 || prev.st_atime != w->attr.st_atime
2708 || w->prev.st_mtime != w->attr.st_mtime 4264 || prev.st_mtime != w->attr.st_mtime
2709 || w->prev.st_ctime != w->attr.st_ctime 4265 || prev.st_ctime != w->attr.st_ctime
2710 ) { 4266 ) {
4267 /* we only update w->prev on actual differences */
4268 /* in case we test more often than invoke the callback, */
4269 /* to ensure that prev is always different to attr */
4270 w->prev = prev;
4271
2711 #if EV_USE_INOTIFY 4272 #if EV_USE_INOTIFY
2712 if (fs_fd >= 0) 4273 if (fs_fd >= 0)
2713 { 4274 {
2714 infy_del (EV_A_ w); 4275 infy_del (EV_A_ w);
2715 infy_add (EV_A_ w); 4276 infy_add (EV_A_ w);
2720 ev_feed_event (EV_A_ w, EV_STAT); 4281 ev_feed_event (EV_A_ w, EV_STAT);
2721 } 4282 }
2722} 4283}
2723 4284
2724void 4285void
2725ev_stat_start (EV_P_ ev_stat *w) 4286ev_stat_start (EV_P_ ev_stat *w) EV_THROW
2726{ 4287{
2727 if (expect_false (ev_is_active (w))) 4288 if (expect_false (ev_is_active (w)))
2728 return; 4289 return;
2729 4290
2730 ev_stat_stat (EV_A_ w); 4291 ev_stat_stat (EV_A_ w);
2740 4301
2741 if (fs_fd >= 0) 4302 if (fs_fd >= 0)
2742 infy_add (EV_A_ w); 4303 infy_add (EV_A_ w);
2743 else 4304 else
2744#endif 4305#endif
4306 {
2745 ev_timer_again (EV_A_ &w->timer); 4307 ev_timer_again (EV_A_ &w->timer);
4308 ev_unref (EV_A);
4309 }
2746 4310
2747 ev_start (EV_A_ (W)w, 1); 4311 ev_start (EV_A_ (W)w, 1);
2748 4312
2749 EV_FREQUENT_CHECK; 4313 EV_FREQUENT_CHECK;
2750} 4314}
2751 4315
2752void 4316void
2753ev_stat_stop (EV_P_ ev_stat *w) 4317ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
2754{ 4318{
2755 clear_pending (EV_A_ (W)w); 4319 clear_pending (EV_A_ (W)w);
2756 if (expect_false (!ev_is_active (w))) 4320 if (expect_false (!ev_is_active (w)))
2757 return; 4321 return;
2758 4322
2759 EV_FREQUENT_CHECK; 4323 EV_FREQUENT_CHECK;
2760 4324
2761#if EV_USE_INOTIFY 4325#if EV_USE_INOTIFY
2762 infy_del (EV_A_ w); 4326 infy_del (EV_A_ w);
2763#endif 4327#endif
4328
4329 if (ev_is_active (&w->timer))
4330 {
4331 ev_ref (EV_A);
2764 ev_timer_stop (EV_A_ &w->timer); 4332 ev_timer_stop (EV_A_ &w->timer);
4333 }
2765 4334
2766 ev_stop (EV_A_ (W)w); 4335 ev_stop (EV_A_ (W)w);
2767 4336
2768 EV_FREQUENT_CHECK; 4337 EV_FREQUENT_CHECK;
2769} 4338}
2770#endif 4339#endif
2771 4340
2772#if EV_IDLE_ENABLE 4341#if EV_IDLE_ENABLE
2773void 4342void
2774ev_idle_start (EV_P_ ev_idle *w) 4343ev_idle_start (EV_P_ ev_idle *w) EV_THROW
2775{ 4344{
2776 if (expect_false (ev_is_active (w))) 4345 if (expect_false (ev_is_active (w)))
2777 return; 4346 return;
2778 4347
2779 pri_adjust (EV_A_ (W)w); 4348 pri_adjust (EV_A_ (W)w);
2792 4361
2793 EV_FREQUENT_CHECK; 4362 EV_FREQUENT_CHECK;
2794} 4363}
2795 4364
2796void 4365void
2797ev_idle_stop (EV_P_ ev_idle *w) 4366ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
2798{ 4367{
2799 clear_pending (EV_A_ (W)w); 4368 clear_pending (EV_A_ (W)w);
2800 if (expect_false (!ev_is_active (w))) 4369 if (expect_false (!ev_is_active (w)))
2801 return; 4370 return;
2802 4371
2814 4383
2815 EV_FREQUENT_CHECK; 4384 EV_FREQUENT_CHECK;
2816} 4385}
2817#endif 4386#endif
2818 4387
4388#if EV_PREPARE_ENABLE
2819void 4389void
2820ev_prepare_start (EV_P_ ev_prepare *w) 4390ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
2821{ 4391{
2822 if (expect_false (ev_is_active (w))) 4392 if (expect_false (ev_is_active (w)))
2823 return; 4393 return;
2824 4394
2825 EV_FREQUENT_CHECK; 4395 EV_FREQUENT_CHECK;
2830 4400
2831 EV_FREQUENT_CHECK; 4401 EV_FREQUENT_CHECK;
2832} 4402}
2833 4403
2834void 4404void
2835ev_prepare_stop (EV_P_ ev_prepare *w) 4405ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
2836{ 4406{
2837 clear_pending (EV_A_ (W)w); 4407 clear_pending (EV_A_ (W)w);
2838 if (expect_false (!ev_is_active (w))) 4408 if (expect_false (!ev_is_active (w)))
2839 return; 4409 return;
2840 4410
2849 4419
2850 ev_stop (EV_A_ (W)w); 4420 ev_stop (EV_A_ (W)w);
2851 4421
2852 EV_FREQUENT_CHECK; 4422 EV_FREQUENT_CHECK;
2853} 4423}
4424#endif
2854 4425
4426#if EV_CHECK_ENABLE
2855void 4427void
2856ev_check_start (EV_P_ ev_check *w) 4428ev_check_start (EV_P_ ev_check *w) EV_THROW
2857{ 4429{
2858 if (expect_false (ev_is_active (w))) 4430 if (expect_false (ev_is_active (w)))
2859 return; 4431 return;
2860 4432
2861 EV_FREQUENT_CHECK; 4433 EV_FREQUENT_CHECK;
2866 4438
2867 EV_FREQUENT_CHECK; 4439 EV_FREQUENT_CHECK;
2868} 4440}
2869 4441
2870void 4442void
2871ev_check_stop (EV_P_ ev_check *w) 4443ev_check_stop (EV_P_ ev_check *w) EV_THROW
2872{ 4444{
2873 clear_pending (EV_A_ (W)w); 4445 clear_pending (EV_A_ (W)w);
2874 if (expect_false (!ev_is_active (w))) 4446 if (expect_false (!ev_is_active (w)))
2875 return; 4447 return;
2876 4448
2885 4457
2886 ev_stop (EV_A_ (W)w); 4458 ev_stop (EV_A_ (W)w);
2887 4459
2888 EV_FREQUENT_CHECK; 4460 EV_FREQUENT_CHECK;
2889} 4461}
4462#endif
2890 4463
2891#if EV_EMBED_ENABLE 4464#if EV_EMBED_ENABLE
2892void noinline 4465void noinline
2893ev_embed_sweep (EV_P_ ev_embed *w) 4466ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
2894{ 4467{
2895 ev_loop (w->other, EVLOOP_NONBLOCK); 4468 ev_run (w->other, EVRUN_NOWAIT);
2896} 4469}
2897 4470
2898static void 4471static void
2899embed_io_cb (EV_P_ ev_io *io, int revents) 4472embed_io_cb (EV_P_ ev_io *io, int revents)
2900{ 4473{
2901 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4474 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2902 4475
2903 if (ev_cb (w)) 4476 if (ev_cb (w))
2904 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4477 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2905 else 4478 else
2906 ev_loop (w->other, EVLOOP_NONBLOCK); 4479 ev_run (w->other, EVRUN_NOWAIT);
2907} 4480}
2908 4481
2909static void 4482static void
2910embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4483embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2911{ 4484{
2912 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4485 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2913 4486
2914 { 4487 {
2915 struct ev_loop *loop = w->other; 4488 EV_P = w->other;
2916 4489
2917 while (fdchangecnt) 4490 while (fdchangecnt)
2918 { 4491 {
2919 fd_reify (EV_A); 4492 fd_reify (EV_A);
2920 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4493 ev_run (EV_A_ EVRUN_NOWAIT);
2921 } 4494 }
2922 } 4495 }
2923} 4496}
2924 4497
2925static void 4498static void
2928 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork)); 4501 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2929 4502
2930 ev_embed_stop (EV_A_ w); 4503 ev_embed_stop (EV_A_ w);
2931 4504
2932 { 4505 {
2933 struct ev_loop *loop = w->other; 4506 EV_P = w->other;
2934 4507
2935 ev_loop_fork (EV_A); 4508 ev_loop_fork (EV_A);
2936 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4509 ev_run (EV_A_ EVRUN_NOWAIT);
2937 } 4510 }
2938 4511
2939 ev_embed_start (EV_A_ w); 4512 ev_embed_start (EV_A_ w);
2940} 4513}
2941 4514
2946 ev_idle_stop (EV_A_ idle); 4519 ev_idle_stop (EV_A_ idle);
2947} 4520}
2948#endif 4521#endif
2949 4522
2950void 4523void
2951ev_embed_start (EV_P_ ev_embed *w) 4524ev_embed_start (EV_P_ ev_embed *w) EV_THROW
2952{ 4525{
2953 if (expect_false (ev_is_active (w))) 4526 if (expect_false (ev_is_active (w)))
2954 return; 4527 return;
2955 4528
2956 { 4529 {
2957 struct ev_loop *loop = w->other; 4530 EV_P = w->other;
2958 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4531 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2959 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4532 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2960 } 4533 }
2961 4534
2962 EV_FREQUENT_CHECK; 4535 EV_FREQUENT_CHECK;
2977 4550
2978 EV_FREQUENT_CHECK; 4551 EV_FREQUENT_CHECK;
2979} 4552}
2980 4553
2981void 4554void
2982ev_embed_stop (EV_P_ ev_embed *w) 4555ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
2983{ 4556{
2984 clear_pending (EV_A_ (W)w); 4557 clear_pending (EV_A_ (W)w);
2985 if (expect_false (!ev_is_active (w))) 4558 if (expect_false (!ev_is_active (w)))
2986 return; 4559 return;
2987 4560
2989 4562
2990 ev_io_stop (EV_A_ &w->io); 4563 ev_io_stop (EV_A_ &w->io);
2991 ev_prepare_stop (EV_A_ &w->prepare); 4564 ev_prepare_stop (EV_A_ &w->prepare);
2992 ev_fork_stop (EV_A_ &w->fork); 4565 ev_fork_stop (EV_A_ &w->fork);
2993 4566
4567 ev_stop (EV_A_ (W)w);
4568
2994 EV_FREQUENT_CHECK; 4569 EV_FREQUENT_CHECK;
2995} 4570}
2996#endif 4571#endif
2997 4572
2998#if EV_FORK_ENABLE 4573#if EV_FORK_ENABLE
2999void 4574void
3000ev_fork_start (EV_P_ ev_fork *w) 4575ev_fork_start (EV_P_ ev_fork *w) EV_THROW
3001{ 4576{
3002 if (expect_false (ev_is_active (w))) 4577 if (expect_false (ev_is_active (w)))
3003 return; 4578 return;
3004 4579
3005 EV_FREQUENT_CHECK; 4580 EV_FREQUENT_CHECK;
3010 4585
3011 EV_FREQUENT_CHECK; 4586 EV_FREQUENT_CHECK;
3012} 4587}
3013 4588
3014void 4589void
3015ev_fork_stop (EV_P_ ev_fork *w) 4590ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
3016{ 4591{
3017 clear_pending (EV_A_ (W)w); 4592 clear_pending (EV_A_ (W)w);
3018 if (expect_false (!ev_is_active (w))) 4593 if (expect_false (!ev_is_active (w)))
3019 return; 4594 return;
3020 4595
3031 4606
3032 EV_FREQUENT_CHECK; 4607 EV_FREQUENT_CHECK;
3033} 4608}
3034#endif 4609#endif
3035 4610
4611#if EV_CLEANUP_ENABLE
4612void
4613ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4614{
4615 if (expect_false (ev_is_active (w)))
4616 return;
4617
4618 EV_FREQUENT_CHECK;
4619
4620 ev_start (EV_A_ (W)w, ++cleanupcnt);
4621 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4622 cleanups [cleanupcnt - 1] = w;
4623
4624 /* cleanup watchers should never keep a refcount on the loop */
4625 ev_unref (EV_A);
4626 EV_FREQUENT_CHECK;
4627}
4628
4629void
4630ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4631{
4632 clear_pending (EV_A_ (W)w);
4633 if (expect_false (!ev_is_active (w)))
4634 return;
4635
4636 EV_FREQUENT_CHECK;
4637 ev_ref (EV_A);
4638
4639 {
4640 int active = ev_active (w);
4641
4642 cleanups [active - 1] = cleanups [--cleanupcnt];
4643 ev_active (cleanups [active - 1]) = active;
4644 }
4645
4646 ev_stop (EV_A_ (W)w);
4647
4648 EV_FREQUENT_CHECK;
4649}
4650#endif
4651
3036#if EV_ASYNC_ENABLE 4652#if EV_ASYNC_ENABLE
3037void 4653void
3038ev_async_start (EV_P_ ev_async *w) 4654ev_async_start (EV_P_ ev_async *w) EV_THROW
3039{ 4655{
3040 if (expect_false (ev_is_active (w))) 4656 if (expect_false (ev_is_active (w)))
3041 return; 4657 return;
4658
4659 w->sent = 0;
3042 4660
3043 evpipe_init (EV_A); 4661 evpipe_init (EV_A);
3044 4662
3045 EV_FREQUENT_CHECK; 4663 EV_FREQUENT_CHECK;
3046 4664
3050 4668
3051 EV_FREQUENT_CHECK; 4669 EV_FREQUENT_CHECK;
3052} 4670}
3053 4671
3054void 4672void
3055ev_async_stop (EV_P_ ev_async *w) 4673ev_async_stop (EV_P_ ev_async *w) EV_THROW
3056{ 4674{
3057 clear_pending (EV_A_ (W)w); 4675 clear_pending (EV_A_ (W)w);
3058 if (expect_false (!ev_is_active (w))) 4676 if (expect_false (!ev_is_active (w)))
3059 return; 4677 return;
3060 4678
3071 4689
3072 EV_FREQUENT_CHECK; 4690 EV_FREQUENT_CHECK;
3073} 4691}
3074 4692
3075void 4693void
3076ev_async_send (EV_P_ ev_async *w) 4694ev_async_send (EV_P_ ev_async *w) EV_THROW
3077{ 4695{
3078 w->sent = 1; 4696 w->sent = 1;
3079 evpipe_write (EV_A_ &gotasync); 4697 evpipe_write (EV_A_ &async_pending);
3080} 4698}
3081#endif 4699#endif
3082 4700
3083/*****************************************************************************/ 4701/*****************************************************************************/
3084 4702
3118 4736
3119 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io)); 4737 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3120} 4738}
3121 4739
3122void 4740void
3123ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4741ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
3124{ 4742{
3125 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4743 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3126 4744
3127 if (expect_false (!once)) 4745 if (expect_false (!once))
3128 { 4746 {
3129 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4747 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
3130 return; 4748 return;
3131 } 4749 }
3132 4750
3133 once->cb = cb; 4751 once->cb = cb;
3134 once->arg = arg; 4752 once->arg = arg;
3148 } 4766 }
3149} 4767}
3150 4768
3151/*****************************************************************************/ 4769/*****************************************************************************/
3152 4770
3153#if 0 4771#if EV_WALK_ENABLE
3154void 4772void ecb_cold
3155ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) 4773ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
3156{ 4774{
3157 int i, j; 4775 int i, j;
3158 ev_watcher_list *wl, *wn; 4776 ev_watcher_list *wl, *wn;
3159 4777
3160 if (types & (EV_IO | EV_EMBED)) 4778 if (types & (EV_IO | EV_EMBED))
3174#if EV_USE_INOTIFY 4792#if EV_USE_INOTIFY
3175 if (ev_cb ((ev_io *)wl) == infy_cb) 4793 if (ev_cb ((ev_io *)wl) == infy_cb)
3176 ; 4794 ;
3177 else 4795 else
3178#endif 4796#endif
3179 if ((ev_io *)wl != &pipeev) 4797 if ((ev_io *)wl != &pipe_w)
3180 if (types & EV_IO) 4798 if (types & EV_IO)
3181 cb (EV_A_ EV_IO, wl); 4799 cb (EV_A_ EV_IO, wl);
3182 4800
3183 wl = wn; 4801 wl = wn;
3184 } 4802 }
3203 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i])); 4821 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3204#endif 4822#endif
3205 4823
3206#if EV_IDLE_ENABLE 4824#if EV_IDLE_ENABLE
3207 if (types & EV_IDLE) 4825 if (types & EV_IDLE)
3208 for (j = NUMPRI; i--; ) 4826 for (j = NUMPRI; j--; )
3209 for (i = idlecnt [j]; i--; ) 4827 for (i = idlecnt [j]; i--; )
3210 cb (EV_A_ EV_IDLE, idles [j][i]); 4828 cb (EV_A_ EV_IDLE, idles [j][i]);
3211#endif 4829#endif
3212 4830
3213#if EV_FORK_ENABLE 4831#if EV_FORK_ENABLE
3221 if (types & EV_ASYNC) 4839 if (types & EV_ASYNC)
3222 for (i = asynccnt; i--; ) 4840 for (i = asynccnt; i--; )
3223 cb (EV_A_ EV_ASYNC, asyncs [i]); 4841 cb (EV_A_ EV_ASYNC, asyncs [i]);
3224#endif 4842#endif
3225 4843
4844#if EV_PREPARE_ENABLE
3226 if (types & EV_PREPARE) 4845 if (types & EV_PREPARE)
3227 for (i = preparecnt; i--; ) 4846 for (i = preparecnt; i--; )
3228#if EV_EMBED_ENABLE 4847# if EV_EMBED_ENABLE
3229 if (ev_cb (prepares [i]) != embed_prepare_cb) 4848 if (ev_cb (prepares [i]) != embed_prepare_cb)
3230#endif 4849# endif
3231 cb (EV_A_ EV_PREPARE, prepares [i]); 4850 cb (EV_A_ EV_PREPARE, prepares [i]);
4851#endif
3232 4852
4853#if EV_CHECK_ENABLE
3233 if (types & EV_CHECK) 4854 if (types & EV_CHECK)
3234 for (i = checkcnt; i--; ) 4855 for (i = checkcnt; i--; )
3235 cb (EV_A_ EV_CHECK, checks [i]); 4856 cb (EV_A_ EV_CHECK, checks [i]);
4857#endif
3236 4858
4859#if EV_SIGNAL_ENABLE
3237 if (types & EV_SIGNAL) 4860 if (types & EV_SIGNAL)
3238 for (i = 0; i < signalmax; ++i) 4861 for (i = 0; i < EV_NSIG - 1; ++i)
3239 for (wl = signals [i].head; wl; ) 4862 for (wl = signals [i].head; wl; )
3240 { 4863 {
3241 wn = wl->next; 4864 wn = wl->next;
3242 cb (EV_A_ EV_SIGNAL, wl); 4865 cb (EV_A_ EV_SIGNAL, wl);
3243 wl = wn; 4866 wl = wn;
3244 } 4867 }
4868#endif
3245 4869
4870#if EV_CHILD_ENABLE
3246 if (types & EV_CHILD) 4871 if (types & EV_CHILD)
3247 for (i = EV_PID_HASHSIZE; i--; ) 4872 for (i = (EV_PID_HASHSIZE); i--; )
3248 for (wl = childs [i]; wl; ) 4873 for (wl = childs [i]; wl; )
3249 { 4874 {
3250 wn = wl->next; 4875 wn = wl->next;
3251 cb (EV_A_ EV_CHILD, wl); 4876 cb (EV_A_ EV_CHILD, wl);
3252 wl = wn; 4877 wl = wn;
3253 } 4878 }
4879#endif
3254/* EV_STAT 0x00001000 /* stat data changed */ 4880/* EV_STAT 0x00001000 /* stat data changed */
3255/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */ 4881/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3256} 4882}
3257#endif 4883#endif
3258 4884
3259#if EV_MULTIPLICITY 4885#if EV_MULTIPLICITY
3260 #include "ev_wrap.h" 4886 #include "ev_wrap.h"
3261#endif 4887#endif
3262 4888
3263#ifdef __cplusplus
3264}
3265#endif
3266

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines