ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.47 by root, Sat Nov 3 11:44:44 2007 UTC vs.
Revision 1.62 by root, Sun Nov 4 20:38:07 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31#if EV_USE_CONFIG_H 31#ifndef EV_STANDALONE
32# include "config.h" 32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
33#endif 55#endif
34 56
35#include <math.h> 57#include <math.h>
36#include <stdlib.h> 58#include <stdlib.h>
37#include <unistd.h> 59#include <unistd.h>
70 92
71#ifndef EV_USE_KQUEUE 93#ifndef EV_USE_KQUEUE
72# define EV_USE_KQUEUE 0 94# define EV_USE_KQUEUE 0
73#endif 95#endif
74 96
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
102# endif
103#endif
104
75#ifndef EV_USE_REALTIME 105#ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 1 106# define EV_USE_REALTIME 1
77#endif 107#endif
78 108
79/**/ 109/**/
113 143
114typedef struct ev_watcher *W; 144typedef struct ev_watcher *W;
115typedef struct ev_watcher_list *WL; 145typedef struct ev_watcher_list *WL;
116typedef struct ev_watcher_time *WT; 146typedef struct ev_watcher_time *WT;
117 147
118static ev_tstamp now_floor, now, diff; /* monotonic clock */ 148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
119ev_tstamp ev_now;
120int ev_method;
121
122static int have_monotonic; /* runtime */
123
124static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */
125static void (*method_modify)(int fd, int oev, int nev);
126static void (*method_poll)(ev_tstamp timeout);
127 149
128/*****************************************************************************/ 150/*****************************************************************************/
129 151
130ev_tstamp 152typedef struct
153{
154 struct ev_watcher_list *head;
155 unsigned char events;
156 unsigned char reify;
157} ANFD;
158
159typedef struct
160{
161 W w;
162 int events;
163} ANPENDING;
164
165#if EV_MULTIPLICITY
166
167struct ev_loop
168{
169# define VAR(name,decl) decl;
170# include "ev_vars.h"
171};
172# undef VAR
173# include "ev_wrap.h"
174
175#else
176
177# define VAR(name,decl) static decl;
178# include "ev_vars.h"
179# undef VAR
180
181#endif
182
183/*****************************************************************************/
184
185inline ev_tstamp
131ev_time (void) 186ev_time (void)
132{ 187{
133#if EV_USE_REALTIME 188#if EV_USE_REALTIME
134 struct timespec ts; 189 struct timespec ts;
135 clock_gettime (CLOCK_REALTIME, &ts); 190 clock_gettime (CLOCK_REALTIME, &ts);
139 gettimeofday (&tv, 0); 194 gettimeofday (&tv, 0);
140 return tv.tv_sec + tv.tv_usec * 1e-6; 195 return tv.tv_sec + tv.tv_usec * 1e-6;
141#endif 196#endif
142} 197}
143 198
144static ev_tstamp 199inline ev_tstamp
145get_clock (void) 200get_clock (void)
146{ 201{
147#if EV_USE_MONOTONIC 202#if EV_USE_MONOTONIC
148 if (expect_true (have_monotonic)) 203 if (expect_true (have_monotonic))
149 { 204 {
152 return ts.tv_sec + ts.tv_nsec * 1e-9; 207 return ts.tv_sec + ts.tv_nsec * 1e-9;
153 } 208 }
154#endif 209#endif
155 210
156 return ev_time (); 211 return ev_time ();
212}
213
214ev_tstamp
215ev_now (EV_P)
216{
217 return rt_now;
157} 218}
158 219
159#define array_roundsize(base,n) ((n) | 4 & ~3) 220#define array_roundsize(base,n) ((n) | 4 & ~3)
160 221
161#define array_needsize(base,cur,cnt,init) \ 222#define array_needsize(base,cur,cnt,init) \
173 cur = newcnt; \ 234 cur = newcnt; \
174 } 235 }
175 236
176/*****************************************************************************/ 237/*****************************************************************************/
177 238
178typedef struct
179{
180 struct ev_io *head;
181 unsigned char events;
182 unsigned char reify;
183} ANFD;
184
185static ANFD *anfds;
186static int anfdmax;
187
188static void 239static void
189anfds_init (ANFD *base, int count) 240anfds_init (ANFD *base, int count)
190{ 241{
191 while (count--) 242 while (count--)
192 { 243 {
196 247
197 ++base; 248 ++base;
198 } 249 }
199} 250}
200 251
201typedef struct
202{
203 W w;
204 int events;
205} ANPENDING;
206
207static ANPENDING *pendings [NUMPRI];
208static int pendingmax [NUMPRI], pendingcnt [NUMPRI];
209
210static void 252static void
211event (W w, int events) 253event (EV_P_ W w, int events)
212{ 254{
213 if (w->pending) 255 if (w->pending)
214 { 256 {
215 pendings [ABSPRI (w)][w->pending - 1].events |= events; 257 pendings [ABSPRI (w)][w->pending - 1].events |= events;
216 return; 258 return;
221 pendings [ABSPRI (w)][w->pending - 1].w = w; 263 pendings [ABSPRI (w)][w->pending - 1].w = w;
222 pendings [ABSPRI (w)][w->pending - 1].events = events; 264 pendings [ABSPRI (w)][w->pending - 1].events = events;
223} 265}
224 266
225static void 267static void
226queue_events (W *events, int eventcnt, int type) 268queue_events (EV_P_ W *events, int eventcnt, int type)
227{ 269{
228 int i; 270 int i;
229 271
230 for (i = 0; i < eventcnt; ++i) 272 for (i = 0; i < eventcnt; ++i)
231 event (events [i], type); 273 event (EV_A_ events [i], type);
232} 274}
233 275
234static void 276static void
235fd_event (int fd, int events) 277fd_event (EV_P_ int fd, int events)
236{ 278{
237 ANFD *anfd = anfds + fd; 279 ANFD *anfd = anfds + fd;
238 struct ev_io *w; 280 struct ev_io *w;
239 281
240 for (w = anfd->head; w; w = w->next) 282 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
241 { 283 {
242 int ev = w->events & events; 284 int ev = w->events & events;
243 285
244 if (ev) 286 if (ev)
245 event ((W)w, ev); 287 event (EV_A_ (W)w, ev);
246 } 288 }
247} 289}
248 290
249/*****************************************************************************/ 291/*****************************************************************************/
250 292
251static int *fdchanges;
252static int fdchangemax, fdchangecnt;
253
254static void 293static void
255fd_reify (void) 294fd_reify (EV_P)
256{ 295{
257 int i; 296 int i;
258 297
259 for (i = 0; i < fdchangecnt; ++i) 298 for (i = 0; i < fdchangecnt; ++i)
260 { 299 {
262 ANFD *anfd = anfds + fd; 301 ANFD *anfd = anfds + fd;
263 struct ev_io *w; 302 struct ev_io *w;
264 303
265 int events = 0; 304 int events = 0;
266 305
267 for (w = anfd->head; w; w = w->next) 306 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
268 events |= w->events; 307 events |= w->events;
269 308
270 anfd->reify = 0; 309 anfd->reify = 0;
271 310
272 if (anfd->events != events) 311 if (anfd->events != events)
273 { 312 {
274 method_modify (fd, anfd->events, events); 313 method_modify (EV_A_ fd, anfd->events, events);
275 anfd->events = events; 314 anfd->events = events;
276 } 315 }
277 } 316 }
278 317
279 fdchangecnt = 0; 318 fdchangecnt = 0;
280} 319}
281 320
282static void 321static void
283fd_change (int fd) 322fd_change (EV_P_ int fd)
284{ 323{
285 if (anfds [fd].reify || fdchangecnt < 0) 324 if (anfds [fd].reify || fdchangecnt < 0)
286 return; 325 return;
287 326
288 anfds [fd].reify = 1; 327 anfds [fd].reify = 1;
291 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 330 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
292 fdchanges [fdchangecnt - 1] = fd; 331 fdchanges [fdchangecnt - 1] = fd;
293} 332}
294 333
295static void 334static void
296fd_kill (int fd) 335fd_kill (EV_P_ int fd)
297{ 336{
298 struct ev_io *w; 337 struct ev_io *w;
299 338
300 printf ("killing fd %d\n", fd);//D
301 while ((w = anfds [fd].head)) 339 while ((w = (struct ev_io *)anfds [fd].head))
302 { 340 {
303 ev_io_stop (w); 341 ev_io_stop (EV_A_ w);
304 event ((W)w, EV_ERROR | EV_READ | EV_WRITE); 342 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
305 } 343 }
306} 344}
307 345
308/* called on EBADF to verify fds */ 346/* called on EBADF to verify fds */
309static void 347static void
310fd_ebadf (void) 348fd_ebadf (EV_P)
311{ 349{
312 int fd; 350 int fd;
313 351
314 for (fd = 0; fd < anfdmax; ++fd) 352 for (fd = 0; fd < anfdmax; ++fd)
315 if (anfds [fd].events) 353 if (anfds [fd].events)
316 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 354 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
317 fd_kill (fd); 355 fd_kill (EV_A_ fd);
318} 356}
319 357
320/* called on ENOMEM in select/poll to kill some fds and retry */ 358/* called on ENOMEM in select/poll to kill some fds and retry */
321static void 359static void
322fd_enomem (void) 360fd_enomem (EV_P)
323{ 361{
324 int fd = anfdmax; 362 int fd;
325 363
326 while (fd--) 364 for (fd = anfdmax; fd--; )
327 if (anfds [fd].events) 365 if (anfds [fd].events)
328 { 366 {
329 close (fd); 367 close (fd);
330 fd_kill (fd); 368 fd_kill (EV_A_ fd);
331 return; 369 return;
332 } 370 }
333} 371}
334 372
373/* susually called after fork if method needs to re-arm all fds from scratch */
374static void
375fd_rearm_all (EV_P)
376{
377 int fd;
378
379 /* this should be highly optimised to not do anything but set a flag */
380 for (fd = 0; fd < anfdmax; ++fd)
381 if (anfds [fd].events)
382 {
383 anfds [fd].events = 0;
384 fd_change (EV_A_ fd);
385 }
386}
387
335/*****************************************************************************/ 388/*****************************************************************************/
336 389
337static struct ev_timer **timers;
338static int timermax, timercnt;
339
340static struct ev_periodic **periodics;
341static int periodicmax, periodiccnt;
342
343static void 390static void
344upheap (WT *timers, int k) 391upheap (WT *heap, int k)
345{ 392{
346 WT w = timers [k]; 393 WT w = heap [k];
347 394
348 while (k && timers [k >> 1]->at > w->at) 395 while (k && heap [k >> 1]->at > w->at)
349 { 396 {
350 timers [k] = timers [k >> 1]; 397 heap [k] = heap [k >> 1];
351 timers [k]->active = k + 1; 398 ((W)heap [k])->active = k + 1;
352 k >>= 1; 399 k >>= 1;
353 } 400 }
354 401
355 timers [k] = w; 402 heap [k] = w;
356 timers [k]->active = k + 1; 403 ((W)heap [k])->active = k + 1;
357 404
358} 405}
359 406
360static void 407static void
361downheap (WT *timers, int N, int k) 408downheap (WT *heap, int N, int k)
362{ 409{
363 WT w = timers [k]; 410 WT w = heap [k];
364 411
365 while (k < (N >> 1)) 412 while (k < (N >> 1))
366 { 413 {
367 int j = k << 1; 414 int j = k << 1;
368 415
369 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 416 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
370 ++j; 417 ++j;
371 418
372 if (w->at <= timers [j]->at) 419 if (w->at <= heap [j]->at)
373 break; 420 break;
374 421
375 timers [k] = timers [j]; 422 heap [k] = heap [j];
376 timers [k]->active = k + 1; 423 ((W)heap [k])->active = k + 1;
377 k = j; 424 k = j;
378 } 425 }
379 426
380 timers [k] = w; 427 heap [k] = w;
381 timers [k]->active = k + 1; 428 ((W)heap [k])->active = k + 1;
382} 429}
383 430
384/*****************************************************************************/ 431/*****************************************************************************/
385 432
386typedef struct 433typedef struct
387{ 434{
388 struct ev_signal *head; 435 struct ev_watcher_list *head;
389 sig_atomic_t volatile gotsig; 436 sig_atomic_t volatile gotsig;
390} ANSIG; 437} ANSIG;
391 438
392static ANSIG *signals; 439static ANSIG *signals;
393static int signalmax; 440static int signalmax;
413{ 460{
414 signals [signum - 1].gotsig = 1; 461 signals [signum - 1].gotsig = 1;
415 462
416 if (!gotsig) 463 if (!gotsig)
417 { 464 {
465 int old_errno = errno;
418 gotsig = 1; 466 gotsig = 1;
419 write (sigpipe [1], &signum, 1); 467 write (sigpipe [1], &signum, 1);
468 errno = old_errno;
420 } 469 }
421} 470}
422 471
423static void 472static void
424sigcb (struct ev_io *iow, int revents) 473sigcb (EV_P_ struct ev_io *iow, int revents)
425{ 474{
426 struct ev_signal *w; 475 struct ev_watcher_list *w;
427 int signum; 476 int signum;
428 477
429 read (sigpipe [0], &revents, 1); 478 read (sigpipe [0], &revents, 1);
430 gotsig = 0; 479 gotsig = 0;
431 480
433 if (signals [signum].gotsig) 482 if (signals [signum].gotsig)
434 { 483 {
435 signals [signum].gotsig = 0; 484 signals [signum].gotsig = 0;
436 485
437 for (w = signals [signum].head; w; w = w->next) 486 for (w = signals [signum].head; w; w = w->next)
438 event ((W)w, EV_SIGNAL); 487 event (EV_A_ (W)w, EV_SIGNAL);
439 } 488 }
440} 489}
441 490
442static void 491static void
443siginit (void) 492siginit (EV_P)
444{ 493{
445#ifndef WIN32 494#ifndef WIN32
446 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 495 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
447 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 496 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
448 497
450 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 499 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
451 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 500 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
452#endif 501#endif
453 502
454 ev_io_set (&sigev, sigpipe [0], EV_READ); 503 ev_io_set (&sigev, sigpipe [0], EV_READ);
455 ev_io_start (&sigev); 504 ev_io_start (EV_A_ &sigev);
505 ev_unref (EV_A); /* child watcher should not keep loop alive */
456} 506}
457 507
458/*****************************************************************************/ 508/*****************************************************************************/
459 509
460static struct ev_idle **idles; 510#ifndef WIN32
461static int idlemax, idlecnt;
462
463static struct ev_prepare **prepares;
464static int preparemax, preparecnt;
465
466static struct ev_check **checks;
467static int checkmax, checkcnt;
468
469/*****************************************************************************/
470 511
471static struct ev_child *childs [PID_HASHSIZE]; 512static struct ev_child *childs [PID_HASHSIZE];
472static struct ev_signal childev; 513static struct ev_signal childev;
473 514
474#ifndef WIN32
475
476#ifndef WCONTINUED 515#ifndef WCONTINUED
477# define WCONTINUED 0 516# define WCONTINUED 0
478#endif 517#endif
479 518
480static void 519static void
481child_reap (struct ev_signal *sw, int chain, int pid, int status) 520child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
482{ 521{
483 struct ev_child *w; 522 struct ev_child *w;
484 523
485 for (w = childs [chain & (PID_HASHSIZE - 1)]; w; w = w->next) 524 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
486 if (w->pid == pid || !w->pid) 525 if (w->pid == pid || !w->pid)
487 { 526 {
488 w->priority = sw->priority; /* need to do it *now* */ 527 w->priority = sw->priority; /* need to do it *now* */
489 w->rpid = pid; 528 w->rpid = pid;
490 w->rstatus = status; 529 w->rstatus = status;
491 printf ("rpid %p %d %d\n", w, pid, w->pid);//D
492 event ((W)w, EV_CHILD); 530 event (EV_A_ (W)w, EV_CHILD);
493 } 531 }
494} 532}
495 533
496static void 534static void
497childcb (struct ev_signal *sw, int revents) 535childcb (EV_P_ struct ev_signal *sw, int revents)
498{ 536{
499 int pid, status; 537 int pid, status;
500 538
501 printf ("chld %x\n", revents);//D
502 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 539 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
503 { 540 {
504 /* make sure we are called again until all childs have been reaped */ 541 /* make sure we are called again until all childs have been reaped */
505 event ((W)sw, EV_SIGNAL); 542 event (EV_A_ (W)sw, EV_SIGNAL);
506 543
507 child_reap (sw, pid, pid, status); 544 child_reap (EV_A_ sw, pid, pid, status);
508 child_reap (sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 545 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
509 } 546 }
510} 547}
511 548
512#endif 549#endif
513 550
536ev_version_minor (void) 573ev_version_minor (void)
537{ 574{
538 return EV_VERSION_MINOR; 575 return EV_VERSION_MINOR;
539} 576}
540 577
541/* return true if we are running with elevated privileges and ignore env variables */ 578/* return true if we are running with elevated privileges and should ignore env variables */
542static int 579static int
543enable_secure () 580enable_secure (void)
544{ 581{
582#ifdef WIN32
583 return 0;
584#else
545 return getuid () != geteuid () 585 return getuid () != geteuid ()
546 || getgid () != getegid (); 586 || getgid () != getegid ();
587#endif
547} 588}
548 589
549int ev_init (int methods) 590int
591ev_method (EV_P)
550{ 592{
593 return method;
594}
595
596static void
597loop_init (EV_P_ int methods)
598{
551 if (!ev_method) 599 if (!method)
552 { 600 {
553#if EV_USE_MONOTONIC 601#if EV_USE_MONOTONIC
554 { 602 {
555 struct timespec ts; 603 struct timespec ts;
556 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 604 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
557 have_monotonic = 1; 605 have_monotonic = 1;
558 } 606 }
559#endif 607#endif
560 608
561 ev_now = ev_time (); 609 rt_now = ev_time ();
562 now = get_clock (); 610 mn_now = get_clock ();
563 now_floor = now; 611 now_floor = mn_now;
564 diff = ev_now - now; 612 rtmn_diff = rt_now - mn_now;
565
566 if (pipe (sigpipe))
567 return 0;
568 613
569 if (methods == EVMETHOD_AUTO) 614 if (methods == EVMETHOD_AUTO)
570 if (!enable_secure () && getenv ("LIBEV_METHODS")) 615 if (!enable_secure () && getenv ("LIBEV_METHODS"))
571 methods = atoi (getenv ("LIBEV_METHODS")); 616 methods = atoi (getenv ("LIBEV_METHODS"));
572 else 617 else
573 methods = EVMETHOD_ANY; 618 methods = EVMETHOD_ANY;
574 619
575 ev_method = 0; 620 method = 0;
621#if EV_USE_WIN32
622 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
623#endif
576#if EV_USE_KQUEUE 624#if EV_USE_KQUEUE
577 if (!ev_method && (methods & EVMETHOD_KQUEUE)) kqueue_init (methods); 625 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
578#endif 626#endif
579#if EV_USE_EPOLL 627#if EV_USE_EPOLL
580 if (!ev_method && (methods & EVMETHOD_EPOLL )) epoll_init (methods); 628 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
581#endif 629#endif
582#if EV_USE_POLL 630#if EV_USE_POLL
583 if (!ev_method && (methods & EVMETHOD_POLL )) poll_init (methods); 631 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
584#endif 632#endif
585#if EV_USE_SELECT 633#if EV_USE_SELECT
586 if (!ev_method && (methods & EVMETHOD_SELECT)) select_init (methods); 634 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
587#endif 635#endif
636 }
637}
588 638
639void
640loop_destroy (EV_P)
641{
642#if EV_USE_WIN32
643 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
644#endif
645#if EV_USE_KQUEUE
646 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
647#endif
648#if EV_USE_EPOLL
649 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
650#endif
651#if EV_USE_POLL
652 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
653#endif
654#if EV_USE_SELECT
655 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
656#endif
657
658 method = 0;
659 /*TODO*/
660}
661
662void
663loop_fork (EV_P)
664{
665 /*TODO*/
666#if EV_USE_EPOLL
667 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
668#endif
669#if EV_USE_KQUEUE
670 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
671#endif
672}
673
674#if EV_MULTIPLICITY
675struct ev_loop *
676ev_loop_new (int methods)
677{
678 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
679
680 loop_init (EV_A_ methods);
681
682 if (ev_method (EV_A))
683 return loop;
684
685 return 0;
686}
687
688void
689ev_loop_destroy (EV_P)
690{
691 loop_destroy (EV_A);
692 free (loop);
693}
694
695void
696ev_loop_fork (EV_P)
697{
698 loop_fork (EV_A);
699}
700
701#endif
702
703#if EV_MULTIPLICITY
704struct ev_loop default_loop_struct;
705static struct ev_loop *default_loop;
706
707struct ev_loop *
708#else
709static int default_loop;
710
711int
712#endif
713ev_default_loop (int methods)
714{
715 if (sigpipe [0] == sigpipe [1])
716 if (pipe (sigpipe))
717 return 0;
718
719 if (!default_loop)
720 {
721#if EV_MULTIPLICITY
722 struct ev_loop *loop = default_loop = &default_loop_struct;
723#else
724 default_loop = 1;
725#endif
726
727 loop_init (EV_A_ methods);
728
589 if (ev_method) 729 if (ev_method (EV_A))
590 { 730 {
591 ev_watcher_init (&sigev, sigcb); 731 ev_watcher_init (&sigev, sigcb);
592 ev_set_priority (&sigev, EV_MAXPRI); 732 ev_set_priority (&sigev, EV_MAXPRI);
593 siginit (); 733 siginit (EV_A);
594 734
595#ifndef WIN32 735#ifndef WIN32
596 ev_signal_init (&childev, childcb, SIGCHLD); 736 ev_signal_init (&childev, childcb, SIGCHLD);
597 ev_set_priority (&childev, EV_MAXPRI); 737 ev_set_priority (&childev, EV_MAXPRI);
598 ev_signal_start (&childev); 738 ev_signal_start (EV_A_ &childev);
739 ev_unref (EV_A); /* child watcher should not keep loop alive */
599#endif 740#endif
600 } 741 }
742 else
743 default_loop = 0;
601 } 744 }
602 745
603 return ev_method; 746 return default_loop;
604} 747}
605 748
606/*****************************************************************************/
607
608void 749void
609ev_fork_prepare (void) 750ev_default_destroy (void)
610{ 751{
611 /* nop */ 752#if EV_MULTIPLICITY
612} 753 struct ev_loop *loop = default_loop;
613
614void
615ev_fork_parent (void)
616{
617 /* nop */
618}
619
620void
621ev_fork_child (void)
622{
623#if EV_USE_EPOLL
624 if (ev_method == EVMETHOD_EPOLL)
625 epoll_postfork_child ();
626#endif 754#endif
627 755
756 ev_ref (EV_A); /* child watcher */
757 ev_signal_stop (EV_A_ &childev);
758
759 ev_ref (EV_A); /* signal watcher */
628 ev_io_stop (&sigev); 760 ev_io_stop (EV_A_ &sigev);
761
762 close (sigpipe [0]); sigpipe [0] = 0;
763 close (sigpipe [1]); sigpipe [1] = 0;
764
765 loop_destroy (EV_A);
766}
767
768void
769ev_default_fork (void)
770{
771#if EV_MULTIPLICITY
772 struct ev_loop *loop = default_loop;
773#endif
774
775 loop_fork (EV_A);
776
777 ev_io_stop (EV_A_ &sigev);
629 close (sigpipe [0]); 778 close (sigpipe [0]);
630 close (sigpipe [1]); 779 close (sigpipe [1]);
631 pipe (sigpipe); 780 pipe (sigpipe);
781
782 ev_ref (EV_A); /* signal watcher */
632 siginit (); 783 siginit (EV_A);
633} 784}
634 785
635/*****************************************************************************/ 786/*****************************************************************************/
636 787
637static void 788static void
638call_pending (void) 789call_pending (EV_P)
639{ 790{
640 int pri; 791 int pri;
641 792
642 for (pri = NUMPRI; pri--; ) 793 for (pri = NUMPRI; pri--; )
643 while (pendingcnt [pri]) 794 while (pendingcnt [pri])
645 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 796 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
646 797
647 if (p->w) 798 if (p->w)
648 { 799 {
649 p->w->pending = 0; 800 p->w->pending = 0;
650 p->w->cb (p->w, p->events); 801 p->w->cb (EV_A_ p->w, p->events);
651 } 802 }
652 } 803 }
653} 804}
654 805
655static void 806static void
656timers_reify (void) 807timers_reify (EV_P)
657{ 808{
658 while (timercnt && timers [0]->at <= now) 809 while (timercnt && timers [0]->at <= mn_now)
659 { 810 {
660 struct ev_timer *w = timers [0]; 811 struct ev_timer *w = timers [0];
812
813 assert (("inactive timer on timer heap detected", ev_is_active (w)));
661 814
662 /* first reschedule or stop timer */ 815 /* first reschedule or stop timer */
663 if (w->repeat) 816 if (w->repeat)
664 { 817 {
665 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 818 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
666 w->at = now + w->repeat; 819 w->at = mn_now + w->repeat;
667 downheap ((WT *)timers, timercnt, 0); 820 downheap ((WT *)timers, timercnt, 0);
668 } 821 }
669 else 822 else
670 ev_timer_stop (w); /* nonrepeating: stop timer */ 823 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
671 824
672 event ((W)w, EV_TIMEOUT); 825 event (EV_A_ (W)w, EV_TIMEOUT);
673 } 826 }
674} 827}
675 828
676static void 829static void
677periodics_reify (void) 830periodics_reify (EV_P)
678{ 831{
679 while (periodiccnt && periodics [0]->at <= ev_now) 832 while (periodiccnt && periodics [0]->at <= rt_now)
680 { 833 {
681 struct ev_periodic *w = periodics [0]; 834 struct ev_periodic *w = periodics [0];
835
836 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
682 837
683 /* first reschedule or stop timer */ 838 /* first reschedule or stop timer */
684 if (w->interval) 839 if (w->interval)
685 { 840 {
686 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 841 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval;
687 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now)); 842 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now));
688 downheap ((WT *)periodics, periodiccnt, 0); 843 downheap ((WT *)periodics, periodiccnt, 0);
689 } 844 }
690 else 845 else
691 ev_periodic_stop (w); /* nonrepeating: stop timer */ 846 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
692 847
693 event ((W)w, EV_PERIODIC); 848 event (EV_A_ (W)w, EV_PERIODIC);
694 } 849 }
695} 850}
696 851
697static void 852static void
698periodics_reschedule (ev_tstamp diff) 853periodics_reschedule (EV_P)
699{ 854{
700 int i; 855 int i;
701 856
702 /* adjust periodics after time jump */ 857 /* adjust periodics after time jump */
703 for (i = 0; i < periodiccnt; ++i) 858 for (i = 0; i < periodiccnt; ++i)
704 { 859 {
705 struct ev_periodic *w = periodics [i]; 860 struct ev_periodic *w = periodics [i];
706 861
707 if (w->interval) 862 if (w->interval)
708 { 863 {
709 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 864 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval;
710 865
711 if (fabs (diff) >= 1e-4) 866 if (fabs (diff) >= 1e-4)
712 { 867 {
713 ev_periodic_stop (w); 868 ev_periodic_stop (EV_A_ w);
714 ev_periodic_start (w); 869 ev_periodic_start (EV_A_ w);
715 870
716 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 871 i = 0; /* restart loop, inefficient, but time jumps should be rare */
717 } 872 }
718 } 873 }
719 } 874 }
720} 875}
721 876
722static int 877inline int
723time_update_monotonic (void) 878time_update_monotonic (EV_P)
724{ 879{
725 now = get_clock (); 880 mn_now = get_clock ();
726 881
727 if (expect_true (now - now_floor < MIN_TIMEJUMP * .5)) 882 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
728 { 883 {
729 ev_now = now + diff; 884 rt_now = rtmn_diff + mn_now;
730 return 0; 885 return 0;
731 } 886 }
732 else 887 else
733 { 888 {
734 now_floor = now; 889 now_floor = mn_now;
735 ev_now = ev_time (); 890 rt_now = ev_time ();
736 return 1; 891 return 1;
737 } 892 }
738} 893}
739 894
740static void 895static void
741time_update (void) 896time_update (EV_P)
742{ 897{
743 int i; 898 int i;
744 899
745#if EV_USE_MONOTONIC 900#if EV_USE_MONOTONIC
746 if (expect_true (have_monotonic)) 901 if (expect_true (have_monotonic))
747 { 902 {
748 if (time_update_monotonic ()) 903 if (time_update_monotonic (EV_A))
749 { 904 {
750 ev_tstamp odiff = diff; 905 ev_tstamp odiff = rtmn_diff;
751 906
752 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 907 for (i = 4; --i; ) /* loop a few times, before making important decisions */
753 { 908 {
754 diff = ev_now - now; 909 rtmn_diff = rt_now - mn_now;
755 910
756 if (fabs (odiff - diff) < MIN_TIMEJUMP) 911 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
757 return; /* all is well */ 912 return; /* all is well */
758 913
759 ev_now = ev_time (); 914 rt_now = ev_time ();
760 now = get_clock (); 915 mn_now = get_clock ();
761 now_floor = now; 916 now_floor = mn_now;
762 } 917 }
763 918
764 periodics_reschedule (diff - odiff); 919 periodics_reschedule (EV_A);
765 /* no timer adjustment, as the monotonic clock doesn't jump */ 920 /* no timer adjustment, as the monotonic clock doesn't jump */
921 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
766 } 922 }
767 } 923 }
768 else 924 else
769#endif 925#endif
770 { 926 {
771 ev_now = ev_time (); 927 rt_now = ev_time ();
772 928
773 if (expect_false (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 929 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
774 { 930 {
775 periodics_reschedule (ev_now - now); 931 periodics_reschedule (EV_A);
776 932
777 /* adjust timers. this is easy, as the offset is the same for all */ 933 /* adjust timers. this is easy, as the offset is the same for all */
778 for (i = 0; i < timercnt; ++i) 934 for (i = 0; i < timercnt; ++i)
779 timers [i]->at += diff; 935 timers [i]->at += rt_now - mn_now;
780 } 936 }
781 937
782 now = ev_now; 938 mn_now = rt_now;
783 } 939 }
784} 940}
785 941
786int ev_loop_done; 942void
943ev_ref (EV_P)
944{
945 ++activecnt;
946}
787 947
948void
949ev_unref (EV_P)
950{
951 --activecnt;
952}
953
954static int loop_done;
955
956void
788void ev_loop (int flags) 957ev_loop (EV_P_ int flags)
789{ 958{
790 double block; 959 double block;
791 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 960 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
792 961
793 do 962 do
794 { 963 {
795 /* queue check watchers (and execute them) */ 964 /* queue check watchers (and execute them) */
796 if (expect_false (preparecnt)) 965 if (expect_false (preparecnt))
797 { 966 {
798 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 967 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
799 call_pending (); 968 call_pending (EV_A);
800 } 969 }
801 970
802 /* update fd-related kernel structures */ 971 /* update fd-related kernel structures */
803 fd_reify (); 972 fd_reify (EV_A);
804 973
805 /* calculate blocking time */ 974 /* calculate blocking time */
806 975
807 /* we only need this for !monotonic clockor timers, but as we basically 976 /* we only need this for !monotonic clockor timers, but as we basically
808 always have timers, we just calculate it always */ 977 always have timers, we just calculate it always */
809#if EV_USE_MONOTONIC 978#if EV_USE_MONOTONIC
810 if (expect_true (have_monotonic)) 979 if (expect_true (have_monotonic))
811 time_update_monotonic (); 980 time_update_monotonic (EV_A);
812 else 981 else
813#endif 982#endif
814 { 983 {
815 ev_now = ev_time (); 984 rt_now = ev_time ();
816 now = ev_now; 985 mn_now = rt_now;
817 } 986 }
818 987
819 if (flags & EVLOOP_NONBLOCK || idlecnt) 988 if (flags & EVLOOP_NONBLOCK || idlecnt)
820 block = 0.; 989 block = 0.;
821 else 990 else
822 { 991 {
823 block = MAX_BLOCKTIME; 992 block = MAX_BLOCKTIME;
824 993
825 if (timercnt) 994 if (timercnt)
826 { 995 {
827 ev_tstamp to = timers [0]->at - now + method_fudge; 996 ev_tstamp to = timers [0]->at - mn_now + method_fudge;
828 if (block > to) block = to; 997 if (block > to) block = to;
829 } 998 }
830 999
831 if (periodiccnt) 1000 if (periodiccnt)
832 { 1001 {
833 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1002 ev_tstamp to = periodics [0]->at - rt_now + method_fudge;
834 if (block > to) block = to; 1003 if (block > to) block = to;
835 } 1004 }
836 1005
837 if (block < 0.) block = 0.; 1006 if (block < 0.) block = 0.;
838 } 1007 }
839 1008
840 method_poll (block); 1009 method_poll (EV_A_ block);
841 1010
842 /* update ev_now, do magic */ 1011 /* update rt_now, do magic */
843 time_update (); 1012 time_update (EV_A);
844 1013
845 /* queue pending timers and reschedule them */ 1014 /* queue pending timers and reschedule them */
846 timers_reify (); /* relative timers called last */ 1015 timers_reify (EV_A); /* relative timers called last */
847 periodics_reify (); /* absolute timers called first */ 1016 periodics_reify (EV_A); /* absolute timers called first */
848 1017
849 /* queue idle watchers unless io or timers are pending */ 1018 /* queue idle watchers unless io or timers are pending */
850 if (!pendingcnt) 1019 if (!pendingcnt)
851 queue_events ((W *)idles, idlecnt, EV_IDLE); 1020 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
852 1021
853 /* queue check watchers, to be executed first */ 1022 /* queue check watchers, to be executed first */
854 if (checkcnt) 1023 if (checkcnt)
855 queue_events ((W *)checks, checkcnt, EV_CHECK); 1024 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
856 1025
857 call_pending (); 1026 call_pending (EV_A);
858 } 1027 }
859 while (!ev_loop_done); 1028 while (activecnt && !loop_done);
860 1029
861 if (ev_loop_done != 2) 1030 if (loop_done != 2)
862 ev_loop_done = 0; 1031 loop_done = 0;
1032}
1033
1034void
1035ev_unloop (EV_P_ int how)
1036{
1037 loop_done = how;
863} 1038}
864 1039
865/*****************************************************************************/ 1040/*****************************************************************************/
866 1041
867static void 1042inline void
868wlist_add (WL *head, WL elem) 1043wlist_add (WL *head, WL elem)
869{ 1044{
870 elem->next = *head; 1045 elem->next = *head;
871 *head = elem; 1046 *head = elem;
872} 1047}
873 1048
874static void 1049inline void
875wlist_del (WL *head, WL elem) 1050wlist_del (WL *head, WL elem)
876{ 1051{
877 while (*head) 1052 while (*head)
878 { 1053 {
879 if (*head == elem) 1054 if (*head == elem)
884 1059
885 head = &(*head)->next; 1060 head = &(*head)->next;
886 } 1061 }
887} 1062}
888 1063
889static void 1064inline void
890ev_clear_pending (W w) 1065ev_clear_pending (EV_P_ W w)
891{ 1066{
892 if (w->pending) 1067 if (w->pending)
893 { 1068 {
894 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1069 pendings [ABSPRI (w)][w->pending - 1].w = 0;
895 w->pending = 0; 1070 w->pending = 0;
896 } 1071 }
897} 1072}
898 1073
899static void 1074inline void
900ev_start (W w, int active) 1075ev_start (EV_P_ W w, int active)
901{ 1076{
902 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1077 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
903 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI; 1078 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
904 1079
905 w->active = active; 1080 w->active = active;
1081 ev_ref (EV_A);
906} 1082}
907 1083
908static void 1084inline void
909ev_stop (W w) 1085ev_stop (EV_P_ W w)
910{ 1086{
1087 ev_unref (EV_A);
911 w->active = 0; 1088 w->active = 0;
912} 1089}
913 1090
914/*****************************************************************************/ 1091/*****************************************************************************/
915 1092
916void 1093void
917ev_io_start (struct ev_io *w) 1094ev_io_start (EV_P_ struct ev_io *w)
918{ 1095{
919 int fd = w->fd; 1096 int fd = w->fd;
920 1097
921 if (ev_is_active (w)) 1098 if (ev_is_active (w))
922 return; 1099 return;
923 1100
924 assert (("ev_io_start called with negative fd", fd >= 0)); 1101 assert (("ev_io_start called with negative fd", fd >= 0));
925 1102
926 ev_start ((W)w, 1); 1103 ev_start (EV_A_ (W)w, 1);
927 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1104 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
928 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1105 wlist_add ((WL *)&anfds[fd].head, (WL)w);
929 1106
930 fd_change (fd); 1107 fd_change (EV_A_ fd);
931} 1108}
932 1109
933void 1110void
934ev_io_stop (struct ev_io *w) 1111ev_io_stop (EV_P_ struct ev_io *w)
935{ 1112{
936 ev_clear_pending ((W)w); 1113 ev_clear_pending (EV_A_ (W)w);
937 if (!ev_is_active (w)) 1114 if (!ev_is_active (w))
938 return; 1115 return;
939 1116
940 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1117 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
941 ev_stop ((W)w); 1118 ev_stop (EV_A_ (W)w);
942 1119
943 fd_change (w->fd); 1120 fd_change (EV_A_ w->fd);
944} 1121}
945 1122
946void 1123void
947ev_timer_start (struct ev_timer *w) 1124ev_timer_start (EV_P_ struct ev_timer *w)
948{ 1125{
949 if (ev_is_active (w)) 1126 if (ev_is_active (w))
950 return; 1127 return;
951 1128
952 w->at += now; 1129 w->at += mn_now;
953 1130
954 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1131 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
955 1132
956 ev_start ((W)w, ++timercnt); 1133 ev_start (EV_A_ (W)w, ++timercnt);
957 array_needsize (timers, timermax, timercnt, ); 1134 array_needsize (timers, timermax, timercnt, );
958 timers [timercnt - 1] = w; 1135 timers [timercnt - 1] = w;
959 upheap ((WT *)timers, timercnt - 1); 1136 upheap ((WT *)timers, timercnt - 1);
960}
961 1137
1138 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1139}
1140
962void 1141void
963ev_timer_stop (struct ev_timer *w) 1142ev_timer_stop (EV_P_ struct ev_timer *w)
964{ 1143{
965 ev_clear_pending ((W)w); 1144 ev_clear_pending (EV_A_ (W)w);
966 if (!ev_is_active (w)) 1145 if (!ev_is_active (w))
967 return; 1146 return;
968 1147
1148 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1149
969 if (w->active < timercnt--) 1150 if (((W)w)->active < timercnt--)
970 { 1151 {
971 timers [w->active - 1] = timers [timercnt]; 1152 timers [((W)w)->active - 1] = timers [timercnt];
972 downheap ((WT *)timers, timercnt, w->active - 1); 1153 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
973 } 1154 }
974 1155
975 w->at = w->repeat; 1156 w->at = w->repeat;
976 1157
977 ev_stop ((W)w); 1158 ev_stop (EV_A_ (W)w);
978} 1159}
979 1160
980void 1161void
981ev_timer_again (struct ev_timer *w) 1162ev_timer_again (EV_P_ struct ev_timer *w)
982{ 1163{
983 if (ev_is_active (w)) 1164 if (ev_is_active (w))
984 { 1165 {
985 if (w->repeat) 1166 if (w->repeat)
986 { 1167 {
987 w->at = now + w->repeat; 1168 w->at = mn_now + w->repeat;
988 downheap ((WT *)timers, timercnt, w->active - 1); 1169 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
989 } 1170 }
990 else 1171 else
991 ev_timer_stop (w); 1172 ev_timer_stop (EV_A_ w);
992 } 1173 }
993 else if (w->repeat) 1174 else if (w->repeat)
994 ev_timer_start (w); 1175 ev_timer_start (EV_A_ w);
995} 1176}
996 1177
997void 1178void
998ev_periodic_start (struct ev_periodic *w) 1179ev_periodic_start (EV_P_ struct ev_periodic *w)
999{ 1180{
1000 if (ev_is_active (w)) 1181 if (ev_is_active (w))
1001 return; 1182 return;
1002 1183
1003 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1184 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1004 1185
1005 /* this formula differs from the one in periodic_reify because we do not always round up */ 1186 /* this formula differs from the one in periodic_reify because we do not always round up */
1006 if (w->interval) 1187 if (w->interval)
1007 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1188 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval;
1008 1189
1009 ev_start ((W)w, ++periodiccnt); 1190 ev_start (EV_A_ (W)w, ++periodiccnt);
1010 array_needsize (periodics, periodicmax, periodiccnt, ); 1191 array_needsize (periodics, periodicmax, periodiccnt, );
1011 periodics [periodiccnt - 1] = w; 1192 periodics [periodiccnt - 1] = w;
1012 upheap ((WT *)periodics, periodiccnt - 1); 1193 upheap ((WT *)periodics, periodiccnt - 1);
1013}
1014 1194
1195 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1196}
1197
1015void 1198void
1016ev_periodic_stop (struct ev_periodic *w) 1199ev_periodic_stop (EV_P_ struct ev_periodic *w)
1017{ 1200{
1018 ev_clear_pending ((W)w); 1201 ev_clear_pending (EV_A_ (W)w);
1019 if (!ev_is_active (w)) 1202 if (!ev_is_active (w))
1020 return; 1203 return;
1021 1204
1205 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1206
1022 if (w->active < periodiccnt--) 1207 if (((W)w)->active < periodiccnt--)
1023 { 1208 {
1024 periodics [w->active - 1] = periodics [periodiccnt]; 1209 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1025 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1210 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1026 } 1211 }
1027 1212
1028 ev_stop ((W)w); 1213 ev_stop (EV_A_ (W)w);
1214}
1215
1216void
1217ev_idle_start (EV_P_ struct ev_idle *w)
1218{
1219 if (ev_is_active (w))
1220 return;
1221
1222 ev_start (EV_A_ (W)w, ++idlecnt);
1223 array_needsize (idles, idlemax, idlecnt, );
1224 idles [idlecnt - 1] = w;
1225}
1226
1227void
1228ev_idle_stop (EV_P_ struct ev_idle *w)
1229{
1230 ev_clear_pending (EV_A_ (W)w);
1231 if (ev_is_active (w))
1232 return;
1233
1234 idles [((W)w)->active - 1] = idles [--idlecnt];
1235 ev_stop (EV_A_ (W)w);
1236}
1237
1238void
1239ev_prepare_start (EV_P_ struct ev_prepare *w)
1240{
1241 if (ev_is_active (w))
1242 return;
1243
1244 ev_start (EV_A_ (W)w, ++preparecnt);
1245 array_needsize (prepares, preparemax, preparecnt, );
1246 prepares [preparecnt - 1] = w;
1247}
1248
1249void
1250ev_prepare_stop (EV_P_ struct ev_prepare *w)
1251{
1252 ev_clear_pending (EV_A_ (W)w);
1253 if (ev_is_active (w))
1254 return;
1255
1256 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1257 ev_stop (EV_A_ (W)w);
1258}
1259
1260void
1261ev_check_start (EV_P_ struct ev_check *w)
1262{
1263 if (ev_is_active (w))
1264 return;
1265
1266 ev_start (EV_A_ (W)w, ++checkcnt);
1267 array_needsize (checks, checkmax, checkcnt, );
1268 checks [checkcnt - 1] = w;
1269}
1270
1271void
1272ev_check_stop (EV_P_ struct ev_check *w)
1273{
1274 ev_clear_pending (EV_A_ (W)w);
1275 if (ev_is_active (w))
1276 return;
1277
1278 checks [((W)w)->active - 1] = checks [--checkcnt];
1279 ev_stop (EV_A_ (W)w);
1029} 1280}
1030 1281
1031#ifndef SA_RESTART 1282#ifndef SA_RESTART
1032# define SA_RESTART 0 1283# define SA_RESTART 0
1033#endif 1284#endif
1034 1285
1035void 1286void
1036ev_signal_start (struct ev_signal *w) 1287ev_signal_start (EV_P_ struct ev_signal *w)
1037{ 1288{
1289#if EV_MULTIPLICITY
1290 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1291#endif
1038 if (ev_is_active (w)) 1292 if (ev_is_active (w))
1039 return; 1293 return;
1040 1294
1041 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1295 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1042 1296
1043 ev_start ((W)w, 1); 1297 ev_start (EV_A_ (W)w, 1);
1044 array_needsize (signals, signalmax, w->signum, signals_init); 1298 array_needsize (signals, signalmax, w->signum, signals_init);
1045 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1299 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1046 1300
1047 if (!w->next) 1301 if (!w->next)
1048 { 1302 {
1053 sigaction (w->signum, &sa, 0); 1307 sigaction (w->signum, &sa, 0);
1054 } 1308 }
1055} 1309}
1056 1310
1057void 1311void
1058ev_signal_stop (struct ev_signal *w) 1312ev_signal_stop (EV_P_ struct ev_signal *w)
1059{ 1313{
1060 ev_clear_pending ((W)w); 1314 ev_clear_pending (EV_A_ (W)w);
1061 if (!ev_is_active (w)) 1315 if (!ev_is_active (w))
1062 return; 1316 return;
1063 1317
1064 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1318 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1065 ev_stop ((W)w); 1319 ev_stop (EV_A_ (W)w);
1066 1320
1067 if (!signals [w->signum - 1].head) 1321 if (!signals [w->signum - 1].head)
1068 signal (w->signum, SIG_DFL); 1322 signal (w->signum, SIG_DFL);
1069} 1323}
1070 1324
1071void 1325void
1072ev_idle_start (struct ev_idle *w) 1326ev_child_start (EV_P_ struct ev_child *w)
1073{ 1327{
1328#if EV_MULTIPLICITY
1329 assert (("child watchers are only supported in the default loop", loop == default_loop));
1330#endif
1074 if (ev_is_active (w)) 1331 if (ev_is_active (w))
1075 return; 1332 return;
1076 1333
1077 ev_start ((W)w, ++idlecnt); 1334 ev_start (EV_A_ (W)w, 1);
1078 array_needsize (idles, idlemax, idlecnt, ); 1335 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1079 idles [idlecnt - 1] = w;
1080} 1336}
1081 1337
1082void 1338void
1083ev_idle_stop (struct ev_idle *w) 1339ev_child_stop (EV_P_ struct ev_child *w)
1084{ 1340{
1085 ev_clear_pending ((W)w); 1341 ev_clear_pending (EV_A_ (W)w);
1086 if (ev_is_active (w)) 1342 if (ev_is_active (w))
1087 return; 1343 return;
1088 1344
1089 idles [w->active - 1] = idles [--idlecnt];
1090 ev_stop ((W)w);
1091}
1092
1093void
1094ev_prepare_start (struct ev_prepare *w)
1095{
1096 if (ev_is_active (w))
1097 return;
1098
1099 ev_start ((W)w, ++preparecnt);
1100 array_needsize (prepares, preparemax, preparecnt, );
1101 prepares [preparecnt - 1] = w;
1102}
1103
1104void
1105ev_prepare_stop (struct ev_prepare *w)
1106{
1107 ev_clear_pending ((W)w);
1108 if (ev_is_active (w))
1109 return;
1110
1111 prepares [w->active - 1] = prepares [--preparecnt];
1112 ev_stop ((W)w);
1113}
1114
1115void
1116ev_check_start (struct ev_check *w)
1117{
1118 if (ev_is_active (w))
1119 return;
1120
1121 ev_start ((W)w, ++checkcnt);
1122 array_needsize (checks, checkmax, checkcnt, );
1123 checks [checkcnt - 1] = w;
1124}
1125
1126void
1127ev_check_stop (struct ev_check *w)
1128{
1129 ev_clear_pending ((W)w);
1130 if (ev_is_active (w))
1131 return;
1132
1133 checks [w->active - 1] = checks [--checkcnt];
1134 ev_stop ((W)w);
1135}
1136
1137void
1138ev_child_start (struct ev_child *w)
1139{
1140 if (ev_is_active (w))
1141 return;
1142
1143 ev_start ((W)w, 1);
1144 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1145}
1146
1147void
1148ev_child_stop (struct ev_child *w)
1149{
1150 ev_clear_pending ((W)w);
1151 if (ev_is_active (w))
1152 return;
1153
1154 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1345 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1155 ev_stop ((W)w); 1346 ev_stop (EV_A_ (W)w);
1156} 1347}
1157 1348
1158/*****************************************************************************/ 1349/*****************************************************************************/
1159 1350
1160struct ev_once 1351struct ev_once
1164 void (*cb)(int revents, void *arg); 1355 void (*cb)(int revents, void *arg);
1165 void *arg; 1356 void *arg;
1166}; 1357};
1167 1358
1168static void 1359static void
1169once_cb (struct ev_once *once, int revents) 1360once_cb (EV_P_ struct ev_once *once, int revents)
1170{ 1361{
1171 void (*cb)(int revents, void *arg) = once->cb; 1362 void (*cb)(int revents, void *arg) = once->cb;
1172 void *arg = once->arg; 1363 void *arg = once->arg;
1173 1364
1174 ev_io_stop (&once->io); 1365 ev_io_stop (EV_A_ &once->io);
1175 ev_timer_stop (&once->to); 1366 ev_timer_stop (EV_A_ &once->to);
1176 free (once); 1367 free (once);
1177 1368
1178 cb (revents, arg); 1369 cb (revents, arg);
1179} 1370}
1180 1371
1181static void 1372static void
1182once_cb_io (struct ev_io *w, int revents) 1373once_cb_io (EV_P_ struct ev_io *w, int revents)
1183{ 1374{
1184 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1375 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1185} 1376}
1186 1377
1187static void 1378static void
1188once_cb_to (struct ev_timer *w, int revents) 1379once_cb_to (EV_P_ struct ev_timer *w, int revents)
1189{ 1380{
1190 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1381 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1191} 1382}
1192 1383
1193void 1384void
1194ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1385ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1195{ 1386{
1196 struct ev_once *once = malloc (sizeof (struct ev_once)); 1387 struct ev_once *once = malloc (sizeof (struct ev_once));
1197 1388
1198 if (!once) 1389 if (!once)
1199 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1390 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1204 1395
1205 ev_watcher_init (&once->io, once_cb_io); 1396 ev_watcher_init (&once->io, once_cb_io);
1206 if (fd >= 0) 1397 if (fd >= 0)
1207 { 1398 {
1208 ev_io_set (&once->io, fd, events); 1399 ev_io_set (&once->io, fd, events);
1209 ev_io_start (&once->io); 1400 ev_io_start (EV_A_ &once->io);
1210 } 1401 }
1211 1402
1212 ev_watcher_init (&once->to, once_cb_to); 1403 ev_watcher_init (&once->to, once_cb_to);
1213 if (timeout >= 0.) 1404 if (timeout >= 0.)
1214 { 1405 {
1215 ev_timer_set (&once->to, timeout, 0.); 1406 ev_timer_set (&once->to, timeout, 0.);
1216 ev_timer_start (&once->to); 1407 ev_timer_start (EV_A_ &once->to);
1217 } 1408 }
1218 } 1409 }
1219} 1410}
1220 1411
1221/*****************************************************************************/
1222
1223#if 0
1224
1225struct ev_io wio;
1226
1227static void
1228sin_cb (struct ev_io *w, int revents)
1229{
1230 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1231}
1232
1233static void
1234ocb (struct ev_timer *w, int revents)
1235{
1236 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1237 ev_timer_stop (w);
1238 ev_timer_start (w);
1239}
1240
1241static void
1242scb (struct ev_signal *w, int revents)
1243{
1244 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1245 ev_io_stop (&wio);
1246 ev_io_start (&wio);
1247}
1248
1249static void
1250gcb (struct ev_signal *w, int revents)
1251{
1252 fprintf (stderr, "generic %x\n", revents);
1253
1254}
1255
1256int main (void)
1257{
1258 ev_init (0);
1259
1260 ev_io_init (&wio, sin_cb, 0, EV_READ);
1261 ev_io_start (&wio);
1262
1263 struct ev_timer t[10000];
1264
1265#if 0
1266 int i;
1267 for (i = 0; i < 10000; ++i)
1268 {
1269 struct ev_timer *w = t + i;
1270 ev_watcher_init (w, ocb, i);
1271 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1272 ev_timer_start (w);
1273 if (drand48 () < 0.5)
1274 ev_timer_stop (w);
1275 }
1276#endif
1277
1278 struct ev_timer t1;
1279 ev_timer_init (&t1, ocb, 5, 10);
1280 ev_timer_start (&t1);
1281
1282 struct ev_signal sig;
1283 ev_signal_init (&sig, scb, SIGQUIT);
1284 ev_signal_start (&sig);
1285
1286 struct ev_check cw;
1287 ev_check_init (&cw, gcb);
1288 ev_check_start (&cw);
1289
1290 struct ev_idle iw;
1291 ev_idle_init (&iw, gcb);
1292 ev_idle_start (&iw);
1293
1294 ev_loop (0);
1295
1296 return 0;
1297}
1298
1299#endif
1300
1301
1302
1303

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines