ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.47 by root, Sat Nov 3 11:44:44 2007 UTC vs.
Revision 1.69 by root, Tue Nov 6 00:10:04 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31#if EV_USE_CONFIG_H 31#ifndef EV_STANDALONE
32# include "config.h" 32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
33#endif 55#endif
34 56
35#include <math.h> 57#include <math.h>
36#include <stdlib.h> 58#include <stdlib.h>
37#include <unistd.h> 59#include <unistd.h>
70 92
71#ifndef EV_USE_KQUEUE 93#ifndef EV_USE_KQUEUE
72# define EV_USE_KQUEUE 0 94# define EV_USE_KQUEUE 0
73#endif 95#endif
74 96
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
102# endif
103#endif
104
75#ifndef EV_USE_REALTIME 105#ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 1 106# define EV_USE_REALTIME 1
77#endif 107#endif
78 108
79/**/ 109/**/
113 143
114typedef struct ev_watcher *W; 144typedef struct ev_watcher *W;
115typedef struct ev_watcher_list *WL; 145typedef struct ev_watcher_list *WL;
116typedef struct ev_watcher_time *WT; 146typedef struct ev_watcher_time *WT;
117 147
118static ev_tstamp now_floor, now, diff; /* monotonic clock */ 148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
119ev_tstamp ev_now;
120int ev_method;
121 149
122static int have_monotonic; /* runtime */ 150#if WIN32
123 151/* note: the comment below could not be substantiated, but what would I care */
124static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 152/* MSDN says this is required to handle SIGFPE */
125static void (*method_modify)(int fd, int oev, int nev); 153volatile double SIGFPE_REQ = 0.0f;
126static void (*method_poll)(ev_tstamp timeout); 154#endif
127 155
128/*****************************************************************************/ 156/*****************************************************************************/
129 157
130ev_tstamp 158static void (*syserr_cb)(void);
159
160void ev_set_syserr_cb (void (*cb)(void))
161{
162 syserr_cb = cb;
163}
164
165static void
166syserr (void)
167{
168 if (syserr_cb)
169 syserr_cb ();
170 else
171 {
172 perror ("libev");
173 abort ();
174 }
175}
176
177static void *(*alloc)(void *ptr, long size);
178
179void ev_set_allocator (void *(*cb)(void *ptr, long size))
180{
181 alloc = cb;
182}
183
184static void *
185ev_realloc (void *ptr, long size)
186{
187 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
188
189 if (!ptr && size)
190 {
191 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
192 abort ();
193 }
194
195 return ptr;
196}
197
198#define ev_malloc(size) ev_realloc (0, (size))
199#define ev_free(ptr) ev_realloc ((ptr), 0)
200
201/*****************************************************************************/
202
203typedef struct
204{
205 WL head;
206 unsigned char events;
207 unsigned char reify;
208} ANFD;
209
210typedef struct
211{
212 W w;
213 int events;
214} ANPENDING;
215
216#if EV_MULTIPLICITY
217
218struct ev_loop
219{
220# define VAR(name,decl) decl;
221# include "ev_vars.h"
222};
223# undef VAR
224# include "ev_wrap.h"
225
226#else
227
228# define VAR(name,decl) static decl;
229# include "ev_vars.h"
230# undef VAR
231
232#endif
233
234/*****************************************************************************/
235
236inline ev_tstamp
131ev_time (void) 237ev_time (void)
132{ 238{
133#if EV_USE_REALTIME 239#if EV_USE_REALTIME
134 struct timespec ts; 240 struct timespec ts;
135 clock_gettime (CLOCK_REALTIME, &ts); 241 clock_gettime (CLOCK_REALTIME, &ts);
139 gettimeofday (&tv, 0); 245 gettimeofday (&tv, 0);
140 return tv.tv_sec + tv.tv_usec * 1e-6; 246 return tv.tv_sec + tv.tv_usec * 1e-6;
141#endif 247#endif
142} 248}
143 249
144static ev_tstamp 250inline ev_tstamp
145get_clock (void) 251get_clock (void)
146{ 252{
147#if EV_USE_MONOTONIC 253#if EV_USE_MONOTONIC
148 if (expect_true (have_monotonic)) 254 if (expect_true (have_monotonic))
149 { 255 {
154#endif 260#endif
155 261
156 return ev_time (); 262 return ev_time ();
157} 263}
158 264
265ev_tstamp
266ev_now (EV_P)
267{
268 return rt_now;
269}
270
159#define array_roundsize(base,n) ((n) | 4 & ~3) 271#define array_roundsize(base,n) ((n) | 4 & ~3)
160 272
161#define array_needsize(base,cur,cnt,init) \ 273#define array_needsize(base,cur,cnt,init) \
162 if (expect_false ((cnt) > cur)) \ 274 if (expect_false ((cnt) > cur)) \
163 { \ 275 { \
164 int newcnt = cur; \ 276 int newcnt = cur; \
165 do \ 277 do \
166 { \ 278 { \
167 newcnt = array_roundsize (base, newcnt << 1); \ 279 newcnt = array_roundsize (base, newcnt << 1); \
168 } \ 280 } \
169 while ((cnt) > newcnt); \ 281 while ((cnt) > newcnt); \
170 \ 282 \
171 base = realloc (base, sizeof (*base) * (newcnt)); \ 283 base = ev_realloc (base, sizeof (*base) * (newcnt)); \
172 init (base + cur, newcnt - cur); \ 284 init (base + cur, newcnt - cur); \
173 cur = newcnt; \ 285 cur = newcnt; \
174 } 286 }
287
288#define array_slim(stem) \
289 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
290 { \
291 stem ## max = array_roundsize (stem ## cnt >> 1); \
292 base = ev_realloc (base, sizeof (*base) * (stem ## max)); \
293 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
294 }
295
296#define array_free(stem, idx) \
297 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
175 298
176/*****************************************************************************/ 299/*****************************************************************************/
177
178typedef struct
179{
180 struct ev_io *head;
181 unsigned char events;
182 unsigned char reify;
183} ANFD;
184
185static ANFD *anfds;
186static int anfdmax;
187 300
188static void 301static void
189anfds_init (ANFD *base, int count) 302anfds_init (ANFD *base, int count)
190{ 303{
191 while (count--) 304 while (count--)
196 309
197 ++base; 310 ++base;
198 } 311 }
199} 312}
200 313
201typedef struct
202{
203 W w;
204 int events;
205} ANPENDING;
206
207static ANPENDING *pendings [NUMPRI];
208static int pendingmax [NUMPRI], pendingcnt [NUMPRI];
209
210static void 314static void
211event (W w, int events) 315event (EV_P_ W w, int events)
212{ 316{
213 if (w->pending) 317 if (w->pending)
214 { 318 {
215 pendings [ABSPRI (w)][w->pending - 1].events |= events; 319 pendings [ABSPRI (w)][w->pending - 1].events |= events;
216 return; 320 return;
221 pendings [ABSPRI (w)][w->pending - 1].w = w; 325 pendings [ABSPRI (w)][w->pending - 1].w = w;
222 pendings [ABSPRI (w)][w->pending - 1].events = events; 326 pendings [ABSPRI (w)][w->pending - 1].events = events;
223} 327}
224 328
225static void 329static void
226queue_events (W *events, int eventcnt, int type) 330queue_events (EV_P_ W *events, int eventcnt, int type)
227{ 331{
228 int i; 332 int i;
229 333
230 for (i = 0; i < eventcnt; ++i) 334 for (i = 0; i < eventcnt; ++i)
231 event (events [i], type); 335 event (EV_A_ events [i], type);
232} 336}
233 337
234static void 338static void
235fd_event (int fd, int events) 339fd_event (EV_P_ int fd, int events)
236{ 340{
237 ANFD *anfd = anfds + fd; 341 ANFD *anfd = anfds + fd;
238 struct ev_io *w; 342 struct ev_io *w;
239 343
240 for (w = anfd->head; w; w = w->next) 344 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
241 { 345 {
242 int ev = w->events & events; 346 int ev = w->events & events;
243 347
244 if (ev) 348 if (ev)
245 event ((W)w, ev); 349 event (EV_A_ (W)w, ev);
246 } 350 }
247} 351}
248 352
249/*****************************************************************************/ 353/*****************************************************************************/
250 354
251static int *fdchanges;
252static int fdchangemax, fdchangecnt;
253
254static void 355static void
255fd_reify (void) 356fd_reify (EV_P)
256{ 357{
257 int i; 358 int i;
258 359
259 for (i = 0; i < fdchangecnt; ++i) 360 for (i = 0; i < fdchangecnt; ++i)
260 { 361 {
262 ANFD *anfd = anfds + fd; 363 ANFD *anfd = anfds + fd;
263 struct ev_io *w; 364 struct ev_io *w;
264 365
265 int events = 0; 366 int events = 0;
266 367
267 for (w = anfd->head; w; w = w->next) 368 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
268 events |= w->events; 369 events |= w->events;
269 370
270 anfd->reify = 0; 371 anfd->reify = 0;
271 372
272 if (anfd->events != events)
273 {
274 method_modify (fd, anfd->events, events); 373 method_modify (EV_A_ fd, anfd->events, events);
275 anfd->events = events; 374 anfd->events = events;
276 }
277 } 375 }
278 376
279 fdchangecnt = 0; 377 fdchangecnt = 0;
280} 378}
281 379
282static void 380static void
283fd_change (int fd) 381fd_change (EV_P_ int fd)
284{ 382{
285 if (anfds [fd].reify || fdchangecnt < 0) 383 if (anfds [fd].reify || fdchangecnt < 0)
286 return; 384 return;
287 385
288 anfds [fd].reify = 1; 386 anfds [fd].reify = 1;
291 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 389 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
292 fdchanges [fdchangecnt - 1] = fd; 390 fdchanges [fdchangecnt - 1] = fd;
293} 391}
294 392
295static void 393static void
296fd_kill (int fd) 394fd_kill (EV_P_ int fd)
297{ 395{
298 struct ev_io *w; 396 struct ev_io *w;
299 397
300 printf ("killing fd %d\n", fd);//D
301 while ((w = anfds [fd].head)) 398 while ((w = (struct ev_io *)anfds [fd].head))
302 { 399 {
303 ev_io_stop (w); 400 ev_io_stop (EV_A_ w);
304 event ((W)w, EV_ERROR | EV_READ | EV_WRITE); 401 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
305 } 402 }
306} 403}
307 404
308/* called on EBADF to verify fds */ 405/* called on EBADF to verify fds */
309static void 406static void
310fd_ebadf (void) 407fd_ebadf (EV_P)
311{ 408{
312 int fd; 409 int fd;
313 410
314 for (fd = 0; fd < anfdmax; ++fd) 411 for (fd = 0; fd < anfdmax; ++fd)
315 if (anfds [fd].events) 412 if (anfds [fd].events)
316 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 413 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
317 fd_kill (fd); 414 fd_kill (EV_A_ fd);
318} 415}
319 416
320/* called on ENOMEM in select/poll to kill some fds and retry */ 417/* called on ENOMEM in select/poll to kill some fds and retry */
321static void 418static void
322fd_enomem (void) 419fd_enomem (EV_P)
323{ 420{
324 int fd = anfdmax; 421 int fd;
325 422
326 while (fd--) 423 for (fd = anfdmax; fd--; )
327 if (anfds [fd].events) 424 if (anfds [fd].events)
328 { 425 {
329 close (fd);
330 fd_kill (fd); 426 fd_kill (EV_A_ fd);
331 return; 427 return;
332 } 428 }
333} 429}
334 430
431/* susually called after fork if method needs to re-arm all fds from scratch */
432static void
433fd_rearm_all (EV_P)
434{
435 int fd;
436
437 /* this should be highly optimised to not do anything but set a flag */
438 for (fd = 0; fd < anfdmax; ++fd)
439 if (anfds [fd].events)
440 {
441 anfds [fd].events = 0;
442 fd_change (EV_A_ fd);
443 }
444}
445
335/*****************************************************************************/ 446/*****************************************************************************/
336 447
337static struct ev_timer **timers;
338static int timermax, timercnt;
339
340static struct ev_periodic **periodics;
341static int periodicmax, periodiccnt;
342
343static void 448static void
344upheap (WT *timers, int k) 449upheap (WT *heap, int k)
345{ 450{
346 WT w = timers [k]; 451 WT w = heap [k];
347 452
348 while (k && timers [k >> 1]->at > w->at) 453 while (k && heap [k >> 1]->at > w->at)
349 { 454 {
350 timers [k] = timers [k >> 1]; 455 heap [k] = heap [k >> 1];
351 timers [k]->active = k + 1; 456 ((W)heap [k])->active = k + 1;
352 k >>= 1; 457 k >>= 1;
353 } 458 }
354 459
355 timers [k] = w; 460 heap [k] = w;
356 timers [k]->active = k + 1; 461 ((W)heap [k])->active = k + 1;
357 462
358} 463}
359 464
360static void 465static void
361downheap (WT *timers, int N, int k) 466downheap (WT *heap, int N, int k)
362{ 467{
363 WT w = timers [k]; 468 WT w = heap [k];
364 469
365 while (k < (N >> 1)) 470 while (k < (N >> 1))
366 { 471 {
367 int j = k << 1; 472 int j = k << 1;
368 473
369 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 474 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
370 ++j; 475 ++j;
371 476
372 if (w->at <= timers [j]->at) 477 if (w->at <= heap [j]->at)
373 break; 478 break;
374 479
375 timers [k] = timers [j]; 480 heap [k] = heap [j];
376 timers [k]->active = k + 1; 481 ((W)heap [k])->active = k + 1;
377 k = j; 482 k = j;
378 } 483 }
379 484
380 timers [k] = w; 485 heap [k] = w;
381 timers [k]->active = k + 1; 486 ((W)heap [k])->active = k + 1;
382} 487}
383 488
384/*****************************************************************************/ 489/*****************************************************************************/
385 490
386typedef struct 491typedef struct
387{ 492{
388 struct ev_signal *head; 493 WL head;
389 sig_atomic_t volatile gotsig; 494 sig_atomic_t volatile gotsig;
390} ANSIG; 495} ANSIG;
391 496
392static ANSIG *signals; 497static ANSIG *signals;
393static int signalmax; 498static int signalmax;
409} 514}
410 515
411static void 516static void
412sighandler (int signum) 517sighandler (int signum)
413{ 518{
519#if WIN32
520 signal (signum, sighandler);
521#endif
522
414 signals [signum - 1].gotsig = 1; 523 signals [signum - 1].gotsig = 1;
415 524
416 if (!gotsig) 525 if (!gotsig)
417 { 526 {
527 int old_errno = errno;
418 gotsig = 1; 528 gotsig = 1;
419 write (sigpipe [1], &signum, 1); 529 write (sigpipe [1], &signum, 1);
530 errno = old_errno;
420 } 531 }
421} 532}
422 533
423static void 534static void
424sigcb (struct ev_io *iow, int revents) 535sigcb (EV_P_ struct ev_io *iow, int revents)
425{ 536{
426 struct ev_signal *w; 537 WL w;
427 int signum; 538 int signum;
428 539
429 read (sigpipe [0], &revents, 1); 540 read (sigpipe [0], &revents, 1);
430 gotsig = 0; 541 gotsig = 0;
431 542
433 if (signals [signum].gotsig) 544 if (signals [signum].gotsig)
434 { 545 {
435 signals [signum].gotsig = 0; 546 signals [signum].gotsig = 0;
436 547
437 for (w = signals [signum].head; w; w = w->next) 548 for (w = signals [signum].head; w; w = w->next)
438 event ((W)w, EV_SIGNAL); 549 event (EV_A_ (W)w, EV_SIGNAL);
439 } 550 }
440} 551}
441 552
442static void 553static void
443siginit (void) 554siginit (EV_P)
444{ 555{
445#ifndef WIN32 556#ifndef WIN32
446 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 557 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
447 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 558 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
448 559
450 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 561 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
451 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 562 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
452#endif 563#endif
453 564
454 ev_io_set (&sigev, sigpipe [0], EV_READ); 565 ev_io_set (&sigev, sigpipe [0], EV_READ);
455 ev_io_start (&sigev); 566 ev_io_start (EV_A_ &sigev);
567 ev_unref (EV_A); /* child watcher should not keep loop alive */
456} 568}
457 569
458/*****************************************************************************/ 570/*****************************************************************************/
459 571
460static struct ev_idle **idles; 572#ifndef WIN32
461static int idlemax, idlecnt;
462
463static struct ev_prepare **prepares;
464static int preparemax, preparecnt;
465
466static struct ev_check **checks;
467static int checkmax, checkcnt;
468
469/*****************************************************************************/
470 573
471static struct ev_child *childs [PID_HASHSIZE]; 574static struct ev_child *childs [PID_HASHSIZE];
472static struct ev_signal childev; 575static struct ev_signal childev;
473 576
474#ifndef WIN32
475
476#ifndef WCONTINUED 577#ifndef WCONTINUED
477# define WCONTINUED 0 578# define WCONTINUED 0
478#endif 579#endif
479 580
480static void 581static void
481child_reap (struct ev_signal *sw, int chain, int pid, int status) 582child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
482{ 583{
483 struct ev_child *w; 584 struct ev_child *w;
484 585
485 for (w = childs [chain & (PID_HASHSIZE - 1)]; w; w = w->next) 586 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
486 if (w->pid == pid || !w->pid) 587 if (w->pid == pid || !w->pid)
487 { 588 {
488 w->priority = sw->priority; /* need to do it *now* */ 589 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
489 w->rpid = pid; 590 w->rpid = pid;
490 w->rstatus = status; 591 w->rstatus = status;
491 printf ("rpid %p %d %d\n", w, pid, w->pid);//D
492 event ((W)w, EV_CHILD); 592 event (EV_A_ (W)w, EV_CHILD);
493 } 593 }
494} 594}
495 595
496static void 596static void
497childcb (struct ev_signal *sw, int revents) 597childcb (EV_P_ struct ev_signal *sw, int revents)
498{ 598{
499 int pid, status; 599 int pid, status;
500 600
501 printf ("chld %x\n", revents);//D
502 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 601 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
503 { 602 {
504 /* make sure we are called again until all childs have been reaped */ 603 /* make sure we are called again until all childs have been reaped */
505 event ((W)sw, EV_SIGNAL); 604 event (EV_A_ (W)sw, EV_SIGNAL);
506 605
507 child_reap (sw, pid, pid, status); 606 child_reap (EV_A_ sw, pid, pid, status);
508 child_reap (sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 607 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
509 } 608 }
510} 609}
511 610
512#endif 611#endif
513 612
536ev_version_minor (void) 635ev_version_minor (void)
537{ 636{
538 return EV_VERSION_MINOR; 637 return EV_VERSION_MINOR;
539} 638}
540 639
541/* return true if we are running with elevated privileges and ignore env variables */ 640/* return true if we are running with elevated privileges and should ignore env variables */
542static int 641static int
543enable_secure () 642enable_secure (void)
544{ 643{
644#ifdef WIN32
645 return 0;
646#else
545 return getuid () != geteuid () 647 return getuid () != geteuid ()
546 || getgid () != getegid (); 648 || getgid () != getegid ();
649#endif
547} 650}
548 651
549int ev_init (int methods) 652int
653ev_method (EV_P)
550{ 654{
655 return method;
656}
657
658static void
659loop_init (EV_P_ int methods)
660{
551 if (!ev_method) 661 if (!method)
552 { 662 {
553#if EV_USE_MONOTONIC 663#if EV_USE_MONOTONIC
554 { 664 {
555 struct timespec ts; 665 struct timespec ts;
556 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 666 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
557 have_monotonic = 1; 667 have_monotonic = 1;
558 } 668 }
559#endif 669#endif
560 670
561 ev_now = ev_time (); 671 rt_now = ev_time ();
562 now = get_clock (); 672 mn_now = get_clock ();
563 now_floor = now; 673 now_floor = mn_now;
564 diff = ev_now - now; 674 rtmn_diff = rt_now - mn_now;
565
566 if (pipe (sigpipe))
567 return 0;
568 675
569 if (methods == EVMETHOD_AUTO) 676 if (methods == EVMETHOD_AUTO)
570 if (!enable_secure () && getenv ("LIBEV_METHODS")) 677 if (!enable_secure () && getenv ("LIBEV_METHODS"))
571 methods = atoi (getenv ("LIBEV_METHODS")); 678 methods = atoi (getenv ("LIBEV_METHODS"));
572 else 679 else
573 methods = EVMETHOD_ANY; 680 methods = EVMETHOD_ANY;
574 681
575 ev_method = 0; 682 method = 0;
683#if EV_USE_WIN32
684 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
685#endif
576#if EV_USE_KQUEUE 686#if EV_USE_KQUEUE
577 if (!ev_method && (methods & EVMETHOD_KQUEUE)) kqueue_init (methods); 687 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
578#endif 688#endif
579#if EV_USE_EPOLL 689#if EV_USE_EPOLL
580 if (!ev_method && (methods & EVMETHOD_EPOLL )) epoll_init (methods); 690 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
581#endif 691#endif
582#if EV_USE_POLL 692#if EV_USE_POLL
583 if (!ev_method && (methods & EVMETHOD_POLL )) poll_init (methods); 693 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
584#endif 694#endif
585#if EV_USE_SELECT 695#if EV_USE_SELECT
586 if (!ev_method && (methods & EVMETHOD_SELECT)) select_init (methods); 696 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
587#endif 697#endif
698 }
699}
588 700
701void
702loop_destroy (EV_P)
703{
704 int i;
705
706#if EV_USE_WIN32
707 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
708#endif
709#if EV_USE_KQUEUE
710 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
711#endif
712#if EV_USE_EPOLL
713 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
714#endif
715#if EV_USE_POLL
716 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
717#endif
718#if EV_USE_SELECT
719 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
720#endif
721
722 for (i = NUMPRI; i--; )
723 array_free (pending, [i]);
724
725 array_free (fdchange, );
726 array_free (timer, );
727 array_free (periodic, );
728 array_free (idle, );
729 array_free (prepare, );
730 array_free (check, );
731
732 method = 0;
733 /*TODO*/
734}
735
736void
737loop_fork (EV_P)
738{
739 /*TODO*/
740#if EV_USE_EPOLL
741 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
742#endif
743#if EV_USE_KQUEUE
744 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
745#endif
746}
747
748#if EV_MULTIPLICITY
749struct ev_loop *
750ev_loop_new (int methods)
751{
752 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
753
754 memset (loop, 0, sizeof (struct ev_loop));
755
756 loop_init (EV_A_ methods);
757
758 if (ev_method (EV_A))
759 return loop;
760
761 return 0;
762}
763
764void
765ev_loop_destroy (EV_P)
766{
767 loop_destroy (EV_A);
768 ev_free (loop);
769}
770
771void
772ev_loop_fork (EV_P)
773{
774 loop_fork (EV_A);
775}
776
777#endif
778
779#if EV_MULTIPLICITY
780struct ev_loop default_loop_struct;
781static struct ev_loop *default_loop;
782
783struct ev_loop *
784#else
785static int default_loop;
786
787int
788#endif
789ev_default_loop (int methods)
790{
791 if (sigpipe [0] == sigpipe [1])
792 if (pipe (sigpipe))
793 return 0;
794
795 if (!default_loop)
796 {
797#if EV_MULTIPLICITY
798 struct ev_loop *loop = default_loop = &default_loop_struct;
799#else
800 default_loop = 1;
801#endif
802
803 loop_init (EV_A_ methods);
804
589 if (ev_method) 805 if (ev_method (EV_A))
590 { 806 {
591 ev_watcher_init (&sigev, sigcb); 807 ev_watcher_init (&sigev, sigcb);
592 ev_set_priority (&sigev, EV_MAXPRI); 808 ev_set_priority (&sigev, EV_MAXPRI);
593 siginit (); 809 siginit (EV_A);
594 810
595#ifndef WIN32 811#ifndef WIN32
596 ev_signal_init (&childev, childcb, SIGCHLD); 812 ev_signal_init (&childev, childcb, SIGCHLD);
597 ev_set_priority (&childev, EV_MAXPRI); 813 ev_set_priority (&childev, EV_MAXPRI);
598 ev_signal_start (&childev); 814 ev_signal_start (EV_A_ &childev);
815 ev_unref (EV_A); /* child watcher should not keep loop alive */
599#endif 816#endif
600 } 817 }
818 else
819 default_loop = 0;
601 } 820 }
602 821
603 return ev_method; 822 return default_loop;
604} 823}
605 824
606/*****************************************************************************/
607
608void 825void
609ev_fork_prepare (void) 826ev_default_destroy (void)
610{ 827{
611 /* nop */ 828#if EV_MULTIPLICITY
612} 829 struct ev_loop *loop = default_loop;
613
614void
615ev_fork_parent (void)
616{
617 /* nop */
618}
619
620void
621ev_fork_child (void)
622{
623#if EV_USE_EPOLL
624 if (ev_method == EVMETHOD_EPOLL)
625 epoll_postfork_child ();
626#endif 830#endif
627 831
832 ev_ref (EV_A); /* child watcher */
833 ev_signal_stop (EV_A_ &childev);
834
835 ev_ref (EV_A); /* signal watcher */
628 ev_io_stop (&sigev); 836 ev_io_stop (EV_A_ &sigev);
837
838 close (sigpipe [0]); sigpipe [0] = 0;
839 close (sigpipe [1]); sigpipe [1] = 0;
840
841 loop_destroy (EV_A);
842}
843
844void
845ev_default_fork (void)
846{
847#if EV_MULTIPLICITY
848 struct ev_loop *loop = default_loop;
849#endif
850
851 loop_fork (EV_A);
852
853 ev_io_stop (EV_A_ &sigev);
629 close (sigpipe [0]); 854 close (sigpipe [0]);
630 close (sigpipe [1]); 855 close (sigpipe [1]);
631 pipe (sigpipe); 856 pipe (sigpipe);
857
858 ev_ref (EV_A); /* signal watcher */
632 siginit (); 859 siginit (EV_A);
633} 860}
634 861
635/*****************************************************************************/ 862/*****************************************************************************/
636 863
637static void 864static void
638call_pending (void) 865call_pending (EV_P)
639{ 866{
640 int pri; 867 int pri;
641 868
642 for (pri = NUMPRI; pri--; ) 869 for (pri = NUMPRI; pri--; )
643 while (pendingcnt [pri]) 870 while (pendingcnt [pri])
645 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 872 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
646 873
647 if (p->w) 874 if (p->w)
648 { 875 {
649 p->w->pending = 0; 876 p->w->pending = 0;
650 p->w->cb (p->w, p->events); 877 p->w->cb (EV_A_ p->w, p->events);
651 } 878 }
652 } 879 }
653} 880}
654 881
655static void 882static void
656timers_reify (void) 883timers_reify (EV_P)
657{ 884{
658 while (timercnt && timers [0]->at <= now) 885 while (timercnt && ((WT)timers [0])->at <= mn_now)
659 { 886 {
660 struct ev_timer *w = timers [0]; 887 struct ev_timer *w = timers [0];
888
889 assert (("inactive timer on timer heap detected", ev_is_active (w)));
661 890
662 /* first reschedule or stop timer */ 891 /* first reschedule or stop timer */
663 if (w->repeat) 892 if (w->repeat)
664 { 893 {
665 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 894 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
666 w->at = now + w->repeat; 895 ((WT)w)->at = mn_now + w->repeat;
667 downheap ((WT *)timers, timercnt, 0); 896 downheap ((WT *)timers, timercnt, 0);
668 } 897 }
669 else 898 else
670 ev_timer_stop (w); /* nonrepeating: stop timer */ 899 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
671 900
672 event ((W)w, EV_TIMEOUT); 901 event (EV_A_ (W)w, EV_TIMEOUT);
673 } 902 }
674} 903}
675 904
676static void 905static void
677periodics_reify (void) 906periodics_reify (EV_P)
678{ 907{
679 while (periodiccnt && periodics [0]->at <= ev_now) 908 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
680 { 909 {
681 struct ev_periodic *w = periodics [0]; 910 struct ev_periodic *w = periodics [0];
911
912 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
682 913
683 /* first reschedule or stop timer */ 914 /* first reschedule or stop timer */
684 if (w->interval) 915 if (w->interval)
685 { 916 {
686 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 917 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
687 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now)); 918 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
688 downheap ((WT *)periodics, periodiccnt, 0); 919 downheap ((WT *)periodics, periodiccnt, 0);
689 } 920 }
690 else 921 else
691 ev_periodic_stop (w); /* nonrepeating: stop timer */ 922 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
692 923
693 event ((W)w, EV_PERIODIC); 924 event (EV_A_ (W)w, EV_PERIODIC);
694 } 925 }
695} 926}
696 927
697static void 928static void
698periodics_reschedule (ev_tstamp diff) 929periodics_reschedule (EV_P)
699{ 930{
700 int i; 931 int i;
701 932
702 /* adjust periodics after time jump */ 933 /* adjust periodics after time jump */
703 for (i = 0; i < periodiccnt; ++i) 934 for (i = 0; i < periodiccnt; ++i)
704 { 935 {
705 struct ev_periodic *w = periodics [i]; 936 struct ev_periodic *w = periodics [i];
706 937
707 if (w->interval) 938 if (w->interval)
708 { 939 {
709 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 940 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
710 941
711 if (fabs (diff) >= 1e-4) 942 if (fabs (diff) >= 1e-4)
712 { 943 {
713 ev_periodic_stop (w); 944 ev_periodic_stop (EV_A_ w);
714 ev_periodic_start (w); 945 ev_periodic_start (EV_A_ w);
715 946
716 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 947 i = 0; /* restart loop, inefficient, but time jumps should be rare */
717 } 948 }
718 } 949 }
719 } 950 }
720} 951}
721 952
722static int 953inline int
723time_update_monotonic (void) 954time_update_monotonic (EV_P)
724{ 955{
725 now = get_clock (); 956 mn_now = get_clock ();
726 957
727 if (expect_true (now - now_floor < MIN_TIMEJUMP * .5)) 958 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
728 { 959 {
729 ev_now = now + diff; 960 rt_now = rtmn_diff + mn_now;
730 return 0; 961 return 0;
731 } 962 }
732 else 963 else
733 { 964 {
734 now_floor = now; 965 now_floor = mn_now;
735 ev_now = ev_time (); 966 rt_now = ev_time ();
736 return 1; 967 return 1;
737 } 968 }
738} 969}
739 970
740static void 971static void
741time_update (void) 972time_update (EV_P)
742{ 973{
743 int i; 974 int i;
744 975
745#if EV_USE_MONOTONIC 976#if EV_USE_MONOTONIC
746 if (expect_true (have_monotonic)) 977 if (expect_true (have_monotonic))
747 { 978 {
748 if (time_update_monotonic ()) 979 if (time_update_monotonic (EV_A))
749 { 980 {
750 ev_tstamp odiff = diff; 981 ev_tstamp odiff = rtmn_diff;
751 982
752 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 983 for (i = 4; --i; ) /* loop a few times, before making important decisions */
753 { 984 {
754 diff = ev_now - now; 985 rtmn_diff = rt_now - mn_now;
755 986
756 if (fabs (odiff - diff) < MIN_TIMEJUMP) 987 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
757 return; /* all is well */ 988 return; /* all is well */
758 989
759 ev_now = ev_time (); 990 rt_now = ev_time ();
760 now = get_clock (); 991 mn_now = get_clock ();
761 now_floor = now; 992 now_floor = mn_now;
762 } 993 }
763 994
764 periodics_reschedule (diff - odiff); 995 periodics_reschedule (EV_A);
765 /* no timer adjustment, as the monotonic clock doesn't jump */ 996 /* no timer adjustment, as the monotonic clock doesn't jump */
997 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
766 } 998 }
767 } 999 }
768 else 1000 else
769#endif 1001#endif
770 { 1002 {
771 ev_now = ev_time (); 1003 rt_now = ev_time ();
772 1004
773 if (expect_false (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1005 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
774 { 1006 {
775 periodics_reschedule (ev_now - now); 1007 periodics_reschedule (EV_A);
776 1008
777 /* adjust timers. this is easy, as the offset is the same for all */ 1009 /* adjust timers. this is easy, as the offset is the same for all */
778 for (i = 0; i < timercnt; ++i) 1010 for (i = 0; i < timercnt; ++i)
779 timers [i]->at += diff; 1011 ((WT)timers [i])->at += rt_now - mn_now;
780 } 1012 }
781 1013
782 now = ev_now; 1014 mn_now = rt_now;
783 } 1015 }
784} 1016}
785 1017
786int ev_loop_done; 1018void
1019ev_ref (EV_P)
1020{
1021 ++activecnt;
1022}
787 1023
1024void
1025ev_unref (EV_P)
1026{
1027 --activecnt;
1028}
1029
1030static int loop_done;
1031
1032void
788void ev_loop (int flags) 1033ev_loop (EV_P_ int flags)
789{ 1034{
790 double block; 1035 double block;
791 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1036 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
792 1037
793 do 1038 do
794 { 1039 {
795 /* queue check watchers (and execute them) */ 1040 /* queue check watchers (and execute them) */
796 if (expect_false (preparecnt)) 1041 if (expect_false (preparecnt))
797 { 1042 {
798 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 1043 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
799 call_pending (); 1044 call_pending (EV_A);
800 } 1045 }
801 1046
802 /* update fd-related kernel structures */ 1047 /* update fd-related kernel structures */
803 fd_reify (); 1048 fd_reify (EV_A);
804 1049
805 /* calculate blocking time */ 1050 /* calculate blocking time */
806 1051
807 /* we only need this for !monotonic clockor timers, but as we basically 1052 /* we only need this for !monotonic clockor timers, but as we basically
808 always have timers, we just calculate it always */ 1053 always have timers, we just calculate it always */
809#if EV_USE_MONOTONIC 1054#if EV_USE_MONOTONIC
810 if (expect_true (have_monotonic)) 1055 if (expect_true (have_monotonic))
811 time_update_monotonic (); 1056 time_update_monotonic (EV_A);
812 else 1057 else
813#endif 1058#endif
814 { 1059 {
815 ev_now = ev_time (); 1060 rt_now = ev_time ();
816 now = ev_now; 1061 mn_now = rt_now;
817 } 1062 }
818 1063
819 if (flags & EVLOOP_NONBLOCK || idlecnt) 1064 if (flags & EVLOOP_NONBLOCK || idlecnt)
820 block = 0.; 1065 block = 0.;
821 else 1066 else
822 { 1067 {
823 block = MAX_BLOCKTIME; 1068 block = MAX_BLOCKTIME;
824 1069
825 if (timercnt) 1070 if (timercnt)
826 { 1071 {
827 ev_tstamp to = timers [0]->at - now + method_fudge; 1072 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
828 if (block > to) block = to; 1073 if (block > to) block = to;
829 } 1074 }
830 1075
831 if (periodiccnt) 1076 if (periodiccnt)
832 { 1077 {
833 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1078 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
834 if (block > to) block = to; 1079 if (block > to) block = to;
835 } 1080 }
836 1081
837 if (block < 0.) block = 0.; 1082 if (block < 0.) block = 0.;
838 } 1083 }
839 1084
840 method_poll (block); 1085 method_poll (EV_A_ block);
841 1086
842 /* update ev_now, do magic */ 1087 /* update rt_now, do magic */
843 time_update (); 1088 time_update (EV_A);
844 1089
845 /* queue pending timers and reschedule them */ 1090 /* queue pending timers and reschedule them */
846 timers_reify (); /* relative timers called last */ 1091 timers_reify (EV_A); /* relative timers called last */
847 periodics_reify (); /* absolute timers called first */ 1092 periodics_reify (EV_A); /* absolute timers called first */
848 1093
849 /* queue idle watchers unless io or timers are pending */ 1094 /* queue idle watchers unless io or timers are pending */
850 if (!pendingcnt) 1095 if (!pendingcnt)
851 queue_events ((W *)idles, idlecnt, EV_IDLE); 1096 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
852 1097
853 /* queue check watchers, to be executed first */ 1098 /* queue check watchers, to be executed first */
854 if (checkcnt) 1099 if (checkcnt)
855 queue_events ((W *)checks, checkcnt, EV_CHECK); 1100 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
856 1101
857 call_pending (); 1102 call_pending (EV_A);
858 } 1103 }
859 while (!ev_loop_done); 1104 while (activecnt && !loop_done);
860 1105
861 if (ev_loop_done != 2) 1106 if (loop_done != 2)
862 ev_loop_done = 0; 1107 loop_done = 0;
1108}
1109
1110void
1111ev_unloop (EV_P_ int how)
1112{
1113 loop_done = how;
863} 1114}
864 1115
865/*****************************************************************************/ 1116/*****************************************************************************/
866 1117
867static void 1118inline void
868wlist_add (WL *head, WL elem) 1119wlist_add (WL *head, WL elem)
869{ 1120{
870 elem->next = *head; 1121 elem->next = *head;
871 *head = elem; 1122 *head = elem;
872} 1123}
873 1124
874static void 1125inline void
875wlist_del (WL *head, WL elem) 1126wlist_del (WL *head, WL elem)
876{ 1127{
877 while (*head) 1128 while (*head)
878 { 1129 {
879 if (*head == elem) 1130 if (*head == elem)
884 1135
885 head = &(*head)->next; 1136 head = &(*head)->next;
886 } 1137 }
887} 1138}
888 1139
889static void 1140inline void
890ev_clear_pending (W w) 1141ev_clear_pending (EV_P_ W w)
891{ 1142{
892 if (w->pending) 1143 if (w->pending)
893 { 1144 {
894 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1145 pendings [ABSPRI (w)][w->pending - 1].w = 0;
895 w->pending = 0; 1146 w->pending = 0;
896 } 1147 }
897} 1148}
898 1149
899static void 1150inline void
900ev_start (W w, int active) 1151ev_start (EV_P_ W w, int active)
901{ 1152{
902 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1153 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
903 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI; 1154 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
904 1155
905 w->active = active; 1156 w->active = active;
1157 ev_ref (EV_A);
906} 1158}
907 1159
908static void 1160inline void
909ev_stop (W w) 1161ev_stop (EV_P_ W w)
910{ 1162{
1163 ev_unref (EV_A);
911 w->active = 0; 1164 w->active = 0;
912} 1165}
913 1166
914/*****************************************************************************/ 1167/*****************************************************************************/
915 1168
916void 1169void
917ev_io_start (struct ev_io *w) 1170ev_io_start (EV_P_ struct ev_io *w)
918{ 1171{
919 int fd = w->fd; 1172 int fd = w->fd;
920 1173
921 if (ev_is_active (w)) 1174 if (ev_is_active (w))
922 return; 1175 return;
923 1176
924 assert (("ev_io_start called with negative fd", fd >= 0)); 1177 assert (("ev_io_start called with negative fd", fd >= 0));
925 1178
926 ev_start ((W)w, 1); 1179 ev_start (EV_A_ (W)w, 1);
927 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1180 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
928 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1181 wlist_add ((WL *)&anfds[fd].head, (WL)w);
929 1182
930 fd_change (fd); 1183 fd_change (EV_A_ fd);
931} 1184}
932 1185
933void 1186void
934ev_io_stop (struct ev_io *w) 1187ev_io_stop (EV_P_ struct ev_io *w)
935{ 1188{
936 ev_clear_pending ((W)w); 1189 ev_clear_pending (EV_A_ (W)w);
937 if (!ev_is_active (w)) 1190 if (!ev_is_active (w))
938 return; 1191 return;
939 1192
940 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1193 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
941 ev_stop ((W)w); 1194 ev_stop (EV_A_ (W)w);
942 1195
943 fd_change (w->fd); 1196 fd_change (EV_A_ w->fd);
944} 1197}
945 1198
946void 1199void
947ev_timer_start (struct ev_timer *w) 1200ev_timer_start (EV_P_ struct ev_timer *w)
948{ 1201{
949 if (ev_is_active (w)) 1202 if (ev_is_active (w))
950 return; 1203 return;
951 1204
952 w->at += now; 1205 ((WT)w)->at += mn_now;
953 1206
954 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1207 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
955 1208
956 ev_start ((W)w, ++timercnt); 1209 ev_start (EV_A_ (W)w, ++timercnt);
957 array_needsize (timers, timermax, timercnt, ); 1210 array_needsize (timers, timermax, timercnt, );
958 timers [timercnt - 1] = w; 1211 timers [timercnt - 1] = w;
959 upheap ((WT *)timers, timercnt - 1); 1212 upheap ((WT *)timers, timercnt - 1);
960}
961 1213
1214 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1215}
1216
962void 1217void
963ev_timer_stop (struct ev_timer *w) 1218ev_timer_stop (EV_P_ struct ev_timer *w)
964{ 1219{
965 ev_clear_pending ((W)w); 1220 ev_clear_pending (EV_A_ (W)w);
966 if (!ev_is_active (w)) 1221 if (!ev_is_active (w))
967 return; 1222 return;
968 1223
1224 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1225
969 if (w->active < timercnt--) 1226 if (((W)w)->active < timercnt--)
970 { 1227 {
971 timers [w->active - 1] = timers [timercnt]; 1228 timers [((W)w)->active - 1] = timers [timercnt];
972 downheap ((WT *)timers, timercnt, w->active - 1); 1229 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
973 } 1230 }
974 1231
975 w->at = w->repeat; 1232 ((WT)w)->at = w->repeat;
976 1233
977 ev_stop ((W)w); 1234 ev_stop (EV_A_ (W)w);
978} 1235}
979 1236
980void 1237void
981ev_timer_again (struct ev_timer *w) 1238ev_timer_again (EV_P_ struct ev_timer *w)
982{ 1239{
983 if (ev_is_active (w)) 1240 if (ev_is_active (w))
984 { 1241 {
985 if (w->repeat) 1242 if (w->repeat)
986 { 1243 {
987 w->at = now + w->repeat; 1244 ((WT)w)->at = mn_now + w->repeat;
988 downheap ((WT *)timers, timercnt, w->active - 1); 1245 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
989 } 1246 }
990 else 1247 else
991 ev_timer_stop (w); 1248 ev_timer_stop (EV_A_ w);
992 } 1249 }
993 else if (w->repeat) 1250 else if (w->repeat)
994 ev_timer_start (w); 1251 ev_timer_start (EV_A_ w);
995} 1252}
996 1253
997void 1254void
998ev_periodic_start (struct ev_periodic *w) 1255ev_periodic_start (EV_P_ struct ev_periodic *w)
999{ 1256{
1000 if (ev_is_active (w)) 1257 if (ev_is_active (w))
1001 return; 1258 return;
1002 1259
1003 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1260 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1004 1261
1005 /* this formula differs from the one in periodic_reify because we do not always round up */ 1262 /* this formula differs from the one in periodic_reify because we do not always round up */
1006 if (w->interval) 1263 if (w->interval)
1007 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1264 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1008 1265
1009 ev_start ((W)w, ++periodiccnt); 1266 ev_start (EV_A_ (W)w, ++periodiccnt);
1010 array_needsize (periodics, periodicmax, periodiccnt, ); 1267 array_needsize (periodics, periodicmax, periodiccnt, );
1011 periodics [periodiccnt - 1] = w; 1268 periodics [periodiccnt - 1] = w;
1012 upheap ((WT *)periodics, periodiccnt - 1); 1269 upheap ((WT *)periodics, periodiccnt - 1);
1013}
1014 1270
1271 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1272}
1273
1015void 1274void
1016ev_periodic_stop (struct ev_periodic *w) 1275ev_periodic_stop (EV_P_ struct ev_periodic *w)
1017{ 1276{
1018 ev_clear_pending ((W)w); 1277 ev_clear_pending (EV_A_ (W)w);
1019 if (!ev_is_active (w)) 1278 if (!ev_is_active (w))
1020 return; 1279 return;
1021 1280
1281 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1282
1022 if (w->active < periodiccnt--) 1283 if (((W)w)->active < periodiccnt--)
1023 { 1284 {
1024 periodics [w->active - 1] = periodics [periodiccnt]; 1285 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1025 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1286 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1026 } 1287 }
1027 1288
1028 ev_stop ((W)w); 1289 ev_stop (EV_A_ (W)w);
1290}
1291
1292void
1293ev_idle_start (EV_P_ struct ev_idle *w)
1294{
1295 if (ev_is_active (w))
1296 return;
1297
1298 ev_start (EV_A_ (W)w, ++idlecnt);
1299 array_needsize (idles, idlemax, idlecnt, );
1300 idles [idlecnt - 1] = w;
1301}
1302
1303void
1304ev_idle_stop (EV_P_ struct ev_idle *w)
1305{
1306 ev_clear_pending (EV_A_ (W)w);
1307 if (ev_is_active (w))
1308 return;
1309
1310 idles [((W)w)->active - 1] = idles [--idlecnt];
1311 ev_stop (EV_A_ (W)w);
1312}
1313
1314void
1315ev_prepare_start (EV_P_ struct ev_prepare *w)
1316{
1317 if (ev_is_active (w))
1318 return;
1319
1320 ev_start (EV_A_ (W)w, ++preparecnt);
1321 array_needsize (prepares, preparemax, preparecnt, );
1322 prepares [preparecnt - 1] = w;
1323}
1324
1325void
1326ev_prepare_stop (EV_P_ struct ev_prepare *w)
1327{
1328 ev_clear_pending (EV_A_ (W)w);
1329 if (ev_is_active (w))
1330 return;
1331
1332 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1333 ev_stop (EV_A_ (W)w);
1334}
1335
1336void
1337ev_check_start (EV_P_ struct ev_check *w)
1338{
1339 if (ev_is_active (w))
1340 return;
1341
1342 ev_start (EV_A_ (W)w, ++checkcnt);
1343 array_needsize (checks, checkmax, checkcnt, );
1344 checks [checkcnt - 1] = w;
1345}
1346
1347void
1348ev_check_stop (EV_P_ struct ev_check *w)
1349{
1350 ev_clear_pending (EV_A_ (W)w);
1351 if (ev_is_active (w))
1352 return;
1353
1354 checks [((W)w)->active - 1] = checks [--checkcnt];
1355 ev_stop (EV_A_ (W)w);
1029} 1356}
1030 1357
1031#ifndef SA_RESTART 1358#ifndef SA_RESTART
1032# define SA_RESTART 0 1359# define SA_RESTART 0
1033#endif 1360#endif
1034 1361
1035void 1362void
1036ev_signal_start (struct ev_signal *w) 1363ev_signal_start (EV_P_ struct ev_signal *w)
1037{ 1364{
1365#if EV_MULTIPLICITY
1366 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1367#endif
1038 if (ev_is_active (w)) 1368 if (ev_is_active (w))
1039 return; 1369 return;
1040 1370
1041 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1371 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1042 1372
1043 ev_start ((W)w, 1); 1373 ev_start (EV_A_ (W)w, 1);
1044 array_needsize (signals, signalmax, w->signum, signals_init); 1374 array_needsize (signals, signalmax, w->signum, signals_init);
1045 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1375 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1046 1376
1047 if (!w->next) 1377 if (!((WL)w)->next)
1048 { 1378 {
1379#if WIN32
1380 signal (w->signum, sighandler);
1381#else
1049 struct sigaction sa; 1382 struct sigaction sa;
1050 sa.sa_handler = sighandler; 1383 sa.sa_handler = sighandler;
1051 sigfillset (&sa.sa_mask); 1384 sigfillset (&sa.sa_mask);
1052 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1385 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1053 sigaction (w->signum, &sa, 0); 1386 sigaction (w->signum, &sa, 0);
1387#endif
1054 } 1388 }
1055} 1389}
1056 1390
1057void 1391void
1058ev_signal_stop (struct ev_signal *w) 1392ev_signal_stop (EV_P_ struct ev_signal *w)
1059{ 1393{
1060 ev_clear_pending ((W)w); 1394 ev_clear_pending (EV_A_ (W)w);
1061 if (!ev_is_active (w)) 1395 if (!ev_is_active (w))
1062 return; 1396 return;
1063 1397
1064 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1398 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1065 ev_stop ((W)w); 1399 ev_stop (EV_A_ (W)w);
1066 1400
1067 if (!signals [w->signum - 1].head) 1401 if (!signals [w->signum - 1].head)
1068 signal (w->signum, SIG_DFL); 1402 signal (w->signum, SIG_DFL);
1069} 1403}
1070 1404
1071void 1405void
1072ev_idle_start (struct ev_idle *w) 1406ev_child_start (EV_P_ struct ev_child *w)
1073{ 1407{
1408#if EV_MULTIPLICITY
1409 assert (("child watchers are only supported in the default loop", loop == default_loop));
1410#endif
1074 if (ev_is_active (w)) 1411 if (ev_is_active (w))
1075 return; 1412 return;
1076 1413
1077 ev_start ((W)w, ++idlecnt); 1414 ev_start (EV_A_ (W)w, 1);
1078 array_needsize (idles, idlemax, idlecnt, ); 1415 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1079 idles [idlecnt - 1] = w;
1080} 1416}
1081 1417
1082void 1418void
1083ev_idle_stop (struct ev_idle *w) 1419ev_child_stop (EV_P_ struct ev_child *w)
1084{ 1420{
1085 ev_clear_pending ((W)w); 1421 ev_clear_pending (EV_A_ (W)w);
1086 if (ev_is_active (w)) 1422 if (ev_is_active (w))
1087 return; 1423 return;
1088 1424
1089 idles [w->active - 1] = idles [--idlecnt];
1090 ev_stop ((W)w);
1091}
1092
1093void
1094ev_prepare_start (struct ev_prepare *w)
1095{
1096 if (ev_is_active (w))
1097 return;
1098
1099 ev_start ((W)w, ++preparecnt);
1100 array_needsize (prepares, preparemax, preparecnt, );
1101 prepares [preparecnt - 1] = w;
1102}
1103
1104void
1105ev_prepare_stop (struct ev_prepare *w)
1106{
1107 ev_clear_pending ((W)w);
1108 if (ev_is_active (w))
1109 return;
1110
1111 prepares [w->active - 1] = prepares [--preparecnt];
1112 ev_stop ((W)w);
1113}
1114
1115void
1116ev_check_start (struct ev_check *w)
1117{
1118 if (ev_is_active (w))
1119 return;
1120
1121 ev_start ((W)w, ++checkcnt);
1122 array_needsize (checks, checkmax, checkcnt, );
1123 checks [checkcnt - 1] = w;
1124}
1125
1126void
1127ev_check_stop (struct ev_check *w)
1128{
1129 ev_clear_pending ((W)w);
1130 if (ev_is_active (w))
1131 return;
1132
1133 checks [w->active - 1] = checks [--checkcnt];
1134 ev_stop ((W)w);
1135}
1136
1137void
1138ev_child_start (struct ev_child *w)
1139{
1140 if (ev_is_active (w))
1141 return;
1142
1143 ev_start ((W)w, 1);
1144 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1145}
1146
1147void
1148ev_child_stop (struct ev_child *w)
1149{
1150 ev_clear_pending ((W)w);
1151 if (ev_is_active (w))
1152 return;
1153
1154 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1425 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1155 ev_stop ((W)w); 1426 ev_stop (EV_A_ (W)w);
1156} 1427}
1157 1428
1158/*****************************************************************************/ 1429/*****************************************************************************/
1159 1430
1160struct ev_once 1431struct ev_once
1164 void (*cb)(int revents, void *arg); 1435 void (*cb)(int revents, void *arg);
1165 void *arg; 1436 void *arg;
1166}; 1437};
1167 1438
1168static void 1439static void
1169once_cb (struct ev_once *once, int revents) 1440once_cb (EV_P_ struct ev_once *once, int revents)
1170{ 1441{
1171 void (*cb)(int revents, void *arg) = once->cb; 1442 void (*cb)(int revents, void *arg) = once->cb;
1172 void *arg = once->arg; 1443 void *arg = once->arg;
1173 1444
1174 ev_io_stop (&once->io); 1445 ev_io_stop (EV_A_ &once->io);
1175 ev_timer_stop (&once->to); 1446 ev_timer_stop (EV_A_ &once->to);
1176 free (once); 1447 ev_free (once);
1177 1448
1178 cb (revents, arg); 1449 cb (revents, arg);
1179} 1450}
1180 1451
1181static void 1452static void
1182once_cb_io (struct ev_io *w, int revents) 1453once_cb_io (EV_P_ struct ev_io *w, int revents)
1183{ 1454{
1184 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1455 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1185} 1456}
1186 1457
1187static void 1458static void
1188once_cb_to (struct ev_timer *w, int revents) 1459once_cb_to (EV_P_ struct ev_timer *w, int revents)
1189{ 1460{
1190 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1461 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1191} 1462}
1192 1463
1193void 1464void
1194ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1465ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1195{ 1466{
1196 struct ev_once *once = malloc (sizeof (struct ev_once)); 1467 struct ev_once *once = ev_malloc (sizeof (struct ev_once));
1197 1468
1198 if (!once) 1469 if (!once)
1199 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1470 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1200 else 1471 else
1201 { 1472 {
1204 1475
1205 ev_watcher_init (&once->io, once_cb_io); 1476 ev_watcher_init (&once->io, once_cb_io);
1206 if (fd >= 0) 1477 if (fd >= 0)
1207 { 1478 {
1208 ev_io_set (&once->io, fd, events); 1479 ev_io_set (&once->io, fd, events);
1209 ev_io_start (&once->io); 1480 ev_io_start (EV_A_ &once->io);
1210 } 1481 }
1211 1482
1212 ev_watcher_init (&once->to, once_cb_to); 1483 ev_watcher_init (&once->to, once_cb_to);
1213 if (timeout >= 0.) 1484 if (timeout >= 0.)
1214 { 1485 {
1215 ev_timer_set (&once->to, timeout, 0.); 1486 ev_timer_set (&once->to, timeout, 0.);
1216 ev_timer_start (&once->to); 1487 ev_timer_start (EV_A_ &once->to);
1217 } 1488 }
1218 } 1489 }
1219} 1490}
1220 1491
1221/*****************************************************************************/
1222
1223#if 0
1224
1225struct ev_io wio;
1226
1227static void
1228sin_cb (struct ev_io *w, int revents)
1229{
1230 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1231}
1232
1233static void
1234ocb (struct ev_timer *w, int revents)
1235{
1236 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1237 ev_timer_stop (w);
1238 ev_timer_start (w);
1239}
1240
1241static void
1242scb (struct ev_signal *w, int revents)
1243{
1244 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1245 ev_io_stop (&wio);
1246 ev_io_start (&wio);
1247}
1248
1249static void
1250gcb (struct ev_signal *w, int revents)
1251{
1252 fprintf (stderr, "generic %x\n", revents);
1253
1254}
1255
1256int main (void)
1257{
1258 ev_init (0);
1259
1260 ev_io_init (&wio, sin_cb, 0, EV_READ);
1261 ev_io_start (&wio);
1262
1263 struct ev_timer t[10000];
1264
1265#if 0
1266 int i;
1267 for (i = 0; i < 10000; ++i)
1268 {
1269 struct ev_timer *w = t + i;
1270 ev_watcher_init (w, ocb, i);
1271 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1272 ev_timer_start (w);
1273 if (drand48 () < 0.5)
1274 ev_timer_stop (w);
1275 }
1276#endif
1277
1278 struct ev_timer t1;
1279 ev_timer_init (&t1, ocb, 5, 10);
1280 ev_timer_start (&t1);
1281
1282 struct ev_signal sig;
1283 ev_signal_init (&sig, scb, SIGQUIT);
1284 ev_signal_start (&sig);
1285
1286 struct ev_check cw;
1287 ev_check_init (&cw, gcb);
1288 ev_check_start (&cw);
1289
1290 struct ev_idle iw;
1291 ev_idle_init (&iw, gcb);
1292 ev_idle_start (&iw);
1293
1294 ev_loop (0);
1295
1296 return 0;
1297}
1298
1299#endif
1300
1301
1302
1303

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines