ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.47 by root, Sat Nov 3 11:44:44 2007 UTC vs.
Revision 1.72 by root, Tue Nov 6 16:09:37 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31#if EV_USE_CONFIG_H 31#ifndef EV_STANDALONE
32# include "config.h" 32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
33#endif 55#endif
34 56
35#include <math.h> 57#include <math.h>
36#include <stdlib.h> 58#include <stdlib.h>
37#include <unistd.h>
38#include <fcntl.h> 59#include <fcntl.h>
39#include <signal.h>
40#include <stddef.h> 60#include <stddef.h>
41 61
42#include <stdio.h> 62#include <stdio.h>
43 63
44#include <assert.h> 64#include <assert.h>
45#include <errno.h> 65#include <errno.h>
46#include <sys/types.h> 66#include <sys/types.h>
67#include <time.h>
68
69#include <signal.h>
70
47#ifndef WIN32 71#ifndef WIN32
72# include <unistd.h>
73# include <sys/time.h>
48# include <sys/wait.h> 74# include <sys/wait.h>
49#endif 75#endif
50#include <sys/time.h>
51#include <time.h>
52
53/**/ 76/**/
54 77
55#ifndef EV_USE_MONOTONIC 78#ifndef EV_USE_MONOTONIC
56# define EV_USE_MONOTONIC 1 79# define EV_USE_MONOTONIC 1
57#endif 80#endif
68# define EV_USE_EPOLL 0 91# define EV_USE_EPOLL 0
69#endif 92#endif
70 93
71#ifndef EV_USE_KQUEUE 94#ifndef EV_USE_KQUEUE
72# define EV_USE_KQUEUE 0 95# define EV_USE_KQUEUE 0
96#endif
97
98#ifndef EV_USE_WIN32
99# ifdef WIN32
100# define EV_USE_WIN32 0 /* it does not exist, use select */
101# undef EV_USE_SELECT
102# define EV_USE_SELECT 1
103# else
104# define EV_USE_WIN32 0
105# endif
73#endif 106#endif
74 107
75#ifndef EV_USE_REALTIME 108#ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 1 109# define EV_USE_REALTIME 1
77#endif 110#endif
113 146
114typedef struct ev_watcher *W; 147typedef struct ev_watcher *W;
115typedef struct ev_watcher_list *WL; 148typedef struct ev_watcher_list *WL;
116typedef struct ev_watcher_time *WT; 149typedef struct ev_watcher_time *WT;
117 150
118static ev_tstamp now_floor, now, diff; /* monotonic clock */ 151static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
119ev_tstamp ev_now;
120int ev_method;
121 152
122static int have_monotonic; /* runtime */ 153#if WIN32
154/* note: the comment below could not be substantiated, but what would I care */
155/* MSDN says this is required to handle SIGFPE */
156volatile double SIGFPE_REQ = 0.0f;
123 157
124static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 158static int
125static void (*method_modify)(int fd, int oev, int nev); 159ev_socketpair_tcp (int filedes [2])
126static void (*method_poll)(ev_tstamp timeout); 160{
161 struct sockaddr_in addr = { 0 };
162 int addr_size = sizeof (addr);
163 SOCKET listener;
164 SOCKET sock [2] = { -1, -1 };
165
166 if ((listener = socket (AF_INET, SOCK_STREAM, 0)) == INVALID_SOCKET)
167 return -1;
168
169 addr.sin_family = AF_INET;
170 addr.sin_addr.s_addr = htonl (INADDR_LOOPBACK);
171 addr.sin_port = 0;
172
173 if (bind (listener, (struct sockaddr *)&addr, addr_size))
174 goto fail;
175
176 if (getsockname(listener, (struct sockaddr *)&addr, &addr_size))
177 goto fail;
178
179 if (listen (listener, 1))
180 goto fail;
181
182 if ((sock [0] = socket (AF_INET, SOCK_STREAM, 0)) == INVALID_SOCKET)
183 goto fail;
184
185 if (connect (sock[0], (struct sockaddr *)&addr, addr_size))
186 goto fail;
187
188 if ((sock[1] = accept (listener, 0, 0)) < 0)
189 goto fail;
190
191 closesocket (listener);
192
193 filedes [0] = sock [0];
194 filedes [1] = sock [1];
195
196 return 0;
197
198fail:
199 closesocket (listener);
200
201 if (sock [0] != INVALID_SOCKET) closesocket (sock [0]);
202 if (sock [1] != INVALID_SOCKET) closesocket (sock [1]);
203
204 return -1;
205}
206
207# define ev_pipe(filedes) ev_socketpair_tcp (filedes)
208#else
209# define ev_pipe(filedes) pipe (filedes)
210#endif
127 211
128/*****************************************************************************/ 212/*****************************************************************************/
129 213
130ev_tstamp 214static void (*syserr_cb)(const char *msg);
215
216void ev_set_syserr_cb (void (*cb)(const char *msg))
217{
218 syserr_cb = cb;
219}
220
221static void
222syserr (const char *msg)
223{
224 if (!msg)
225 msg = "(libev) system error";
226
227 if (syserr_cb)
228 syserr_cb (msg);
229 else
230 {
231 perror (msg);
232 abort ();
233 }
234}
235
236static void *(*alloc)(void *ptr, long size);
237
238void ev_set_allocator (void *(*cb)(void *ptr, long size))
239{
240 alloc = cb;
241}
242
243static void *
244ev_realloc (void *ptr, long size)
245{
246 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
247
248 if (!ptr && size)
249 {
250 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
251 abort ();
252 }
253
254 return ptr;
255}
256
257#define ev_malloc(size) ev_realloc (0, (size))
258#define ev_free(ptr) ev_realloc ((ptr), 0)
259
260/*****************************************************************************/
261
262typedef struct
263{
264 WL head;
265 unsigned char events;
266 unsigned char reify;
267} ANFD;
268
269typedef struct
270{
271 W w;
272 int events;
273} ANPENDING;
274
275#if EV_MULTIPLICITY
276
277struct ev_loop
278{
279# define VAR(name,decl) decl;
280# include "ev_vars.h"
281};
282# undef VAR
283# include "ev_wrap.h"
284
285#else
286
287# define VAR(name,decl) static decl;
288# include "ev_vars.h"
289# undef VAR
290
291#endif
292
293/*****************************************************************************/
294
295inline ev_tstamp
131ev_time (void) 296ev_time (void)
132{ 297{
133#if EV_USE_REALTIME 298#if EV_USE_REALTIME
134 struct timespec ts; 299 struct timespec ts;
135 clock_gettime (CLOCK_REALTIME, &ts); 300 clock_gettime (CLOCK_REALTIME, &ts);
139 gettimeofday (&tv, 0); 304 gettimeofday (&tv, 0);
140 return tv.tv_sec + tv.tv_usec * 1e-6; 305 return tv.tv_sec + tv.tv_usec * 1e-6;
141#endif 306#endif
142} 307}
143 308
144static ev_tstamp 309inline ev_tstamp
145get_clock (void) 310get_clock (void)
146{ 311{
147#if EV_USE_MONOTONIC 312#if EV_USE_MONOTONIC
148 if (expect_true (have_monotonic)) 313 if (expect_true (have_monotonic))
149 { 314 {
154#endif 319#endif
155 320
156 return ev_time (); 321 return ev_time ();
157} 322}
158 323
324ev_tstamp
325ev_now (EV_P)
326{
327 return rt_now;
328}
329
159#define array_roundsize(base,n) ((n) | 4 & ~3) 330#define array_roundsize(base,n) ((n) | 4 & ~3)
160 331
161#define array_needsize(base,cur,cnt,init) \ 332#define array_needsize(base,cur,cnt,init) \
162 if (expect_false ((cnt) > cur)) \ 333 if (expect_false ((cnt) > cur)) \
163 { \ 334 { \
164 int newcnt = cur; \ 335 int newcnt = cur; \
165 do \ 336 do \
166 { \ 337 { \
167 newcnt = array_roundsize (base, newcnt << 1); \ 338 newcnt = array_roundsize (base, newcnt << 1); \
168 } \ 339 } \
169 while ((cnt) > newcnt); \ 340 while ((cnt) > newcnt); \
170 \ 341 \
171 base = realloc (base, sizeof (*base) * (newcnt)); \ 342 base = ev_realloc (base, sizeof (*base) * (newcnt)); \
172 init (base + cur, newcnt - cur); \ 343 init (base + cur, newcnt - cur); \
173 cur = newcnt; \ 344 cur = newcnt; \
174 } 345 }
346
347#define array_slim(stem) \
348 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
349 { \
350 stem ## max = array_roundsize (stem ## cnt >> 1); \
351 base = ev_realloc (base, sizeof (*base) * (stem ## max)); \
352 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
353 }
354
355/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
356/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
357#define array_free_microshit(stem) \
358 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
359
360#define array_free(stem, idx) \
361 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
175 362
176/*****************************************************************************/ 363/*****************************************************************************/
177
178typedef struct
179{
180 struct ev_io *head;
181 unsigned char events;
182 unsigned char reify;
183} ANFD;
184
185static ANFD *anfds;
186static int anfdmax;
187 364
188static void 365static void
189anfds_init (ANFD *base, int count) 366anfds_init (ANFD *base, int count)
190{ 367{
191 while (count--) 368 while (count--)
196 373
197 ++base; 374 ++base;
198 } 375 }
199} 376}
200 377
201typedef struct
202{
203 W w;
204 int events;
205} ANPENDING;
206
207static ANPENDING *pendings [NUMPRI];
208static int pendingmax [NUMPRI], pendingcnt [NUMPRI];
209
210static void 378static void
211event (W w, int events) 379event (EV_P_ W w, int events)
212{ 380{
213 if (w->pending) 381 if (w->pending)
214 { 382 {
215 pendings [ABSPRI (w)][w->pending - 1].events |= events; 383 pendings [ABSPRI (w)][w->pending - 1].events |= events;
216 return; 384 return;
217 } 385 }
218 386
219 w->pending = ++pendingcnt [ABSPRI (w)]; 387 w->pending = ++pendingcnt [ABSPRI (w)];
220 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 388 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], (void));
221 pendings [ABSPRI (w)][w->pending - 1].w = w; 389 pendings [ABSPRI (w)][w->pending - 1].w = w;
222 pendings [ABSPRI (w)][w->pending - 1].events = events; 390 pendings [ABSPRI (w)][w->pending - 1].events = events;
223} 391}
224 392
225static void 393static void
226queue_events (W *events, int eventcnt, int type) 394queue_events (EV_P_ W *events, int eventcnt, int type)
227{ 395{
228 int i; 396 int i;
229 397
230 for (i = 0; i < eventcnt; ++i) 398 for (i = 0; i < eventcnt; ++i)
231 event (events [i], type); 399 event (EV_A_ events [i], type);
232} 400}
233 401
234static void 402static void
235fd_event (int fd, int events) 403fd_event (EV_P_ int fd, int events)
236{ 404{
237 ANFD *anfd = anfds + fd; 405 ANFD *anfd = anfds + fd;
238 struct ev_io *w; 406 struct ev_io *w;
239 407
240 for (w = anfd->head; w; w = w->next) 408 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
241 { 409 {
242 int ev = w->events & events; 410 int ev = w->events & events;
243 411
244 if (ev) 412 if (ev)
245 event ((W)w, ev); 413 event (EV_A_ (W)w, ev);
246 } 414 }
247} 415}
248 416
249/*****************************************************************************/ 417/*****************************************************************************/
250 418
251static int *fdchanges;
252static int fdchangemax, fdchangecnt;
253
254static void 419static void
255fd_reify (void) 420fd_reify (EV_P)
256{ 421{
257 int i; 422 int i;
258 423
259 for (i = 0; i < fdchangecnt; ++i) 424 for (i = 0; i < fdchangecnt; ++i)
260 { 425 {
262 ANFD *anfd = anfds + fd; 427 ANFD *anfd = anfds + fd;
263 struct ev_io *w; 428 struct ev_io *w;
264 429
265 int events = 0; 430 int events = 0;
266 431
267 for (w = anfd->head; w; w = w->next) 432 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
268 events |= w->events; 433 events |= w->events;
269 434
270 anfd->reify = 0; 435 anfd->reify = 0;
271 436
272 if (anfd->events != events)
273 {
274 method_modify (fd, anfd->events, events); 437 method_modify (EV_A_ fd, anfd->events, events);
275 anfd->events = events; 438 anfd->events = events;
276 }
277 } 439 }
278 440
279 fdchangecnt = 0; 441 fdchangecnt = 0;
280} 442}
281 443
282static void 444static void
283fd_change (int fd) 445fd_change (EV_P_ int fd)
284{ 446{
285 if (anfds [fd].reify || fdchangecnt < 0) 447 if (anfds [fd].reify)
286 return; 448 return;
287 449
288 anfds [fd].reify = 1; 450 anfds [fd].reify = 1;
289 451
290 ++fdchangecnt; 452 ++fdchangecnt;
291 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 453 array_needsize (fdchanges, fdchangemax, fdchangecnt, (void));
292 fdchanges [fdchangecnt - 1] = fd; 454 fdchanges [fdchangecnt - 1] = fd;
293} 455}
294 456
295static void 457static void
296fd_kill (int fd) 458fd_kill (EV_P_ int fd)
297{ 459{
298 struct ev_io *w; 460 struct ev_io *w;
299 461
300 printf ("killing fd %d\n", fd);//D
301 while ((w = anfds [fd].head)) 462 while ((w = (struct ev_io *)anfds [fd].head))
302 { 463 {
303 ev_io_stop (w); 464 ev_io_stop (EV_A_ w);
304 event ((W)w, EV_ERROR | EV_READ | EV_WRITE); 465 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
305 } 466 }
467}
468
469static int
470fd_valid (int fd)
471{
472#ifdef WIN32
473 return !!win32_get_osfhandle (fd);
474#else
475 return fcntl (fd, F_GETFD) != -1;
476#endif
306} 477}
307 478
308/* called on EBADF to verify fds */ 479/* called on EBADF to verify fds */
309static void 480static void
310fd_ebadf (void) 481fd_ebadf (EV_P)
311{ 482{
312 int fd; 483 int fd;
313 484
314 for (fd = 0; fd < anfdmax; ++fd) 485 for (fd = 0; fd < anfdmax; ++fd)
315 if (anfds [fd].events) 486 if (anfds [fd].events)
316 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 487 if (!fd_valid (fd) == -1 && errno == EBADF)
317 fd_kill (fd); 488 fd_kill (EV_A_ fd);
318} 489}
319 490
320/* called on ENOMEM in select/poll to kill some fds and retry */ 491/* called on ENOMEM in select/poll to kill some fds and retry */
321static void 492static void
322fd_enomem (void) 493fd_enomem (EV_P)
323{ 494{
324 int fd = anfdmax; 495 int fd;
325 496
326 while (fd--) 497 for (fd = anfdmax; fd--; )
327 if (anfds [fd].events) 498 if (anfds [fd].events)
328 { 499 {
329 close (fd);
330 fd_kill (fd); 500 fd_kill (EV_A_ fd);
331 return; 501 return;
332 } 502 }
333} 503}
334 504
505/* usually called after fork if method needs to re-arm all fds from scratch */
506static void
507fd_rearm_all (EV_P)
508{
509 int fd;
510
511 /* this should be highly optimised to not do anything but set a flag */
512 for (fd = 0; fd < anfdmax; ++fd)
513 if (anfds [fd].events)
514 {
515 anfds [fd].events = 0;
516 fd_change (EV_A_ fd);
517 }
518}
519
335/*****************************************************************************/ 520/*****************************************************************************/
336 521
337static struct ev_timer **timers;
338static int timermax, timercnt;
339
340static struct ev_periodic **periodics;
341static int periodicmax, periodiccnt;
342
343static void 522static void
344upheap (WT *timers, int k) 523upheap (WT *heap, int k)
345{ 524{
346 WT w = timers [k]; 525 WT w = heap [k];
347 526
348 while (k && timers [k >> 1]->at > w->at) 527 while (k && heap [k >> 1]->at > w->at)
349 { 528 {
350 timers [k] = timers [k >> 1]; 529 heap [k] = heap [k >> 1];
351 timers [k]->active = k + 1; 530 ((W)heap [k])->active = k + 1;
352 k >>= 1; 531 k >>= 1;
353 } 532 }
354 533
355 timers [k] = w; 534 heap [k] = w;
356 timers [k]->active = k + 1; 535 ((W)heap [k])->active = k + 1;
357 536
358} 537}
359 538
360static void 539static void
361downheap (WT *timers, int N, int k) 540downheap (WT *heap, int N, int k)
362{ 541{
363 WT w = timers [k]; 542 WT w = heap [k];
364 543
365 while (k < (N >> 1)) 544 while (k < (N >> 1))
366 { 545 {
367 int j = k << 1; 546 int j = k << 1;
368 547
369 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 548 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
370 ++j; 549 ++j;
371 550
372 if (w->at <= timers [j]->at) 551 if (w->at <= heap [j]->at)
373 break; 552 break;
374 553
375 timers [k] = timers [j]; 554 heap [k] = heap [j];
376 timers [k]->active = k + 1; 555 ((W)heap [k])->active = k + 1;
377 k = j; 556 k = j;
378 } 557 }
379 558
380 timers [k] = w; 559 heap [k] = w;
381 timers [k]->active = k + 1; 560 ((W)heap [k])->active = k + 1;
382} 561}
383 562
384/*****************************************************************************/ 563/*****************************************************************************/
385 564
386typedef struct 565typedef struct
387{ 566{
388 struct ev_signal *head; 567 WL head;
389 sig_atomic_t volatile gotsig; 568 sig_atomic_t volatile gotsig;
390} ANSIG; 569} ANSIG;
391 570
392static ANSIG *signals; 571static ANSIG *signals;
393static int signalmax; 572static int signalmax;
409} 588}
410 589
411static void 590static void
412sighandler (int signum) 591sighandler (int signum)
413{ 592{
593#if WIN32
594 signal (signum, sighandler);
595#endif
596
414 signals [signum - 1].gotsig = 1; 597 signals [signum - 1].gotsig = 1;
415 598
416 if (!gotsig) 599 if (!gotsig)
417 { 600 {
601 int old_errno = errno;
418 gotsig = 1; 602 gotsig = 1;
419 write (sigpipe [1], &signum, 1); 603 write (sigpipe [1], &signum, 1);
604 errno = old_errno;
420 } 605 }
421} 606}
422 607
423static void 608static void
424sigcb (struct ev_io *iow, int revents) 609sigcb (EV_P_ struct ev_io *iow, int revents)
425{ 610{
426 struct ev_signal *w; 611 WL w;
427 int signum; 612 int signum;
428 613
429 read (sigpipe [0], &revents, 1); 614 read (sigpipe [0], &revents, 1);
430 gotsig = 0; 615 gotsig = 0;
431 616
433 if (signals [signum].gotsig) 618 if (signals [signum].gotsig)
434 { 619 {
435 signals [signum].gotsig = 0; 620 signals [signum].gotsig = 0;
436 621
437 for (w = signals [signum].head; w; w = w->next) 622 for (w = signals [signum].head; w; w = w->next)
438 event ((W)w, EV_SIGNAL); 623 event (EV_A_ (W)w, EV_SIGNAL);
439 } 624 }
440} 625}
441 626
442static void 627static void
443siginit (void) 628siginit (EV_P)
444{ 629{
445#ifndef WIN32 630#ifndef WIN32
446 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 631 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
447 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 632 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
448 633
450 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 635 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
451 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 636 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
452#endif 637#endif
453 638
454 ev_io_set (&sigev, sigpipe [0], EV_READ); 639 ev_io_set (&sigev, sigpipe [0], EV_READ);
455 ev_io_start (&sigev); 640 ev_io_start (EV_A_ &sigev);
641 ev_unref (EV_A); /* child watcher should not keep loop alive */
456} 642}
457 643
458/*****************************************************************************/ 644/*****************************************************************************/
459 645
460static struct ev_idle **idles;
461static int idlemax, idlecnt;
462
463static struct ev_prepare **prepares;
464static int preparemax, preparecnt;
465
466static struct ev_check **checks;
467static int checkmax, checkcnt;
468
469/*****************************************************************************/
470
471static struct ev_child *childs [PID_HASHSIZE]; 646static struct ev_child *childs [PID_HASHSIZE];
647
648#ifndef WIN32
649
472static struct ev_signal childev; 650static struct ev_signal childev;
473
474#ifndef WIN32
475 651
476#ifndef WCONTINUED 652#ifndef WCONTINUED
477# define WCONTINUED 0 653# define WCONTINUED 0
478#endif 654#endif
479 655
480static void 656static void
481child_reap (struct ev_signal *sw, int chain, int pid, int status) 657child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
482{ 658{
483 struct ev_child *w; 659 struct ev_child *w;
484 660
485 for (w = childs [chain & (PID_HASHSIZE - 1)]; w; w = w->next) 661 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
486 if (w->pid == pid || !w->pid) 662 if (w->pid == pid || !w->pid)
487 { 663 {
488 w->priority = sw->priority; /* need to do it *now* */ 664 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
489 w->rpid = pid; 665 w->rpid = pid;
490 w->rstatus = status; 666 w->rstatus = status;
491 printf ("rpid %p %d %d\n", w, pid, w->pid);//D
492 event ((W)w, EV_CHILD); 667 event (EV_A_ (W)w, EV_CHILD);
493 } 668 }
494} 669}
495 670
496static void 671static void
497childcb (struct ev_signal *sw, int revents) 672childcb (EV_P_ struct ev_signal *sw, int revents)
498{ 673{
499 int pid, status; 674 int pid, status;
500 675
501 printf ("chld %x\n", revents);//D
502 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 676 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
503 { 677 {
504 /* make sure we are called again until all childs have been reaped */ 678 /* make sure we are called again until all childs have been reaped */
505 event ((W)sw, EV_SIGNAL); 679 event (EV_A_ (W)sw, EV_SIGNAL);
506 680
507 child_reap (sw, pid, pid, status); 681 child_reap (EV_A_ sw, pid, pid, status);
508 child_reap (sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 682 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
509 } 683 }
510} 684}
511 685
512#endif 686#endif
513 687
536ev_version_minor (void) 710ev_version_minor (void)
537{ 711{
538 return EV_VERSION_MINOR; 712 return EV_VERSION_MINOR;
539} 713}
540 714
541/* return true if we are running with elevated privileges and ignore env variables */ 715/* return true if we are running with elevated privileges and should ignore env variables */
542static int 716static int
543enable_secure () 717enable_secure (void)
544{ 718{
719#ifdef WIN32
720 return 0;
721#else
545 return getuid () != geteuid () 722 return getuid () != geteuid ()
546 || getgid () != getegid (); 723 || getgid () != getegid ();
724#endif
547} 725}
548 726
549int ev_init (int methods) 727int
728ev_method (EV_P)
550{ 729{
730 return method;
731}
732
733static void
734loop_init (EV_P_ int methods)
735{
551 if (!ev_method) 736 if (!method)
552 { 737 {
553#if EV_USE_MONOTONIC 738#if EV_USE_MONOTONIC
554 { 739 {
555 struct timespec ts; 740 struct timespec ts;
556 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 741 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
557 have_monotonic = 1; 742 have_monotonic = 1;
558 } 743 }
559#endif 744#endif
560 745
561 ev_now = ev_time (); 746 rt_now = ev_time ();
562 now = get_clock (); 747 mn_now = get_clock ();
563 now_floor = now; 748 now_floor = mn_now;
564 diff = ev_now - now; 749 rtmn_diff = rt_now - mn_now;
565
566 if (pipe (sigpipe))
567 return 0;
568 750
569 if (methods == EVMETHOD_AUTO) 751 if (methods == EVMETHOD_AUTO)
570 if (!enable_secure () && getenv ("LIBEV_METHODS")) 752 if (!enable_secure () && getenv ("LIBEV_METHODS"))
571 methods = atoi (getenv ("LIBEV_METHODS")); 753 methods = atoi (getenv ("LIBEV_METHODS"));
572 else 754 else
573 methods = EVMETHOD_ANY; 755 methods = EVMETHOD_ANY;
574 756
575 ev_method = 0; 757 method = 0;
758#if EV_USE_WIN32
759 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
760#endif
576#if EV_USE_KQUEUE 761#if EV_USE_KQUEUE
577 if (!ev_method && (methods & EVMETHOD_KQUEUE)) kqueue_init (methods); 762 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
578#endif 763#endif
579#if EV_USE_EPOLL 764#if EV_USE_EPOLL
580 if (!ev_method && (methods & EVMETHOD_EPOLL )) epoll_init (methods); 765 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
581#endif 766#endif
582#if EV_USE_POLL 767#if EV_USE_POLL
583 if (!ev_method && (methods & EVMETHOD_POLL )) poll_init (methods); 768 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
584#endif 769#endif
585#if EV_USE_SELECT 770#if EV_USE_SELECT
586 if (!ev_method && (methods & EVMETHOD_SELECT)) select_init (methods); 771 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
587#endif 772#endif
588 773
774 ev_watcher_init (&sigev, sigcb);
775 ev_set_priority (&sigev, EV_MAXPRI);
776 }
777}
778
779void
780loop_destroy (EV_P)
781{
782 int i;
783
784#if EV_USE_WIN32
785 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
786#endif
787#if EV_USE_KQUEUE
788 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
789#endif
790#if EV_USE_EPOLL
791 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
792#endif
793#if EV_USE_POLL
794 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
795#endif
796#if EV_USE_SELECT
797 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
798#endif
799
800 for (i = NUMPRI; i--; )
801 array_free (pending, [i]);
802
803 /* have to use the microsoft-never-gets-it-right macro */
804 array_free_microshit (fdchange);
805 array_free_microshit (timer);
806 array_free_microshit (periodic);
807 array_free_microshit (idle);
808 array_free_microshit (prepare);
809 array_free_microshit (check);
810
811 method = 0;
812}
813
814static void
815loop_fork (EV_P)
816{
817#if EV_USE_EPOLL
818 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
819#endif
820#if EV_USE_KQUEUE
821 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
822#endif
823
824 if (ev_is_active (&sigev))
825 {
826 /* default loop */
827
828 ev_ref (EV_A);
829 ev_io_stop (EV_A_ &sigev);
830 close (sigpipe [0]);
831 close (sigpipe [1]);
832
833 while (ev_pipe (sigpipe))
834 syserr ("(libev) error creating pipe");
835
836 siginit (EV_A);
837 }
838
839 postfork = 0;
840}
841
842#if EV_MULTIPLICITY
843struct ev_loop *
844ev_loop_new (int methods)
845{
846 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
847
848 memset (loop, 0, sizeof (struct ev_loop));
849
850 loop_init (EV_A_ methods);
851
852 if (ev_method (EV_A))
853 return loop;
854
855 return 0;
856}
857
858void
859ev_loop_destroy (EV_P)
860{
861 loop_destroy (EV_A);
862 ev_free (loop);
863}
864
865void
866ev_loop_fork (EV_P)
867{
868 postfork = 1;
869}
870
871#endif
872
873#if EV_MULTIPLICITY
874struct ev_loop default_loop_struct;
875static struct ev_loop *default_loop;
876
877struct ev_loop *
878#else
879static int default_loop;
880
881int
882#endif
883ev_default_loop (int methods)
884{
885 if (sigpipe [0] == sigpipe [1])
886 if (ev_pipe (sigpipe))
887 return 0;
888
889 if (!default_loop)
890 {
891#if EV_MULTIPLICITY
892 struct ev_loop *loop = default_loop = &default_loop_struct;
893#else
894 default_loop = 1;
895#endif
896
897 loop_init (EV_A_ methods);
898
589 if (ev_method) 899 if (ev_method (EV_A))
590 { 900 {
591 ev_watcher_init (&sigev, sigcb);
592 ev_set_priority (&sigev, EV_MAXPRI);
593 siginit (); 901 siginit (EV_A);
594 902
595#ifndef WIN32 903#ifndef WIN32
596 ev_signal_init (&childev, childcb, SIGCHLD); 904 ev_signal_init (&childev, childcb, SIGCHLD);
597 ev_set_priority (&childev, EV_MAXPRI); 905 ev_set_priority (&childev, EV_MAXPRI);
598 ev_signal_start (&childev); 906 ev_signal_start (EV_A_ &childev);
907 ev_unref (EV_A); /* child watcher should not keep loop alive */
599#endif 908#endif
600 } 909 }
910 else
911 default_loop = 0;
601 } 912 }
602 913
603 return ev_method; 914 return default_loop;
915}
916
917void
918ev_default_destroy (void)
919{
920#if EV_MULTIPLICITY
921 struct ev_loop *loop = default_loop;
922#endif
923
924#ifndef WIN32
925 ev_ref (EV_A); /* child watcher */
926 ev_signal_stop (EV_A_ &childev);
927#endif
928
929 ev_ref (EV_A); /* signal watcher */
930 ev_io_stop (EV_A_ &sigev);
931
932 close (sigpipe [0]); sigpipe [0] = 0;
933 close (sigpipe [1]); sigpipe [1] = 0;
934
935 loop_destroy (EV_A);
936}
937
938void
939ev_default_fork (void)
940{
941#if EV_MULTIPLICITY
942 struct ev_loop *loop = default_loop;
943#endif
944
945 if (method)
946 postfork = 1;
604} 947}
605 948
606/*****************************************************************************/ 949/*****************************************************************************/
607 950
608void
609ev_fork_prepare (void)
610{
611 /* nop */
612}
613
614void
615ev_fork_parent (void)
616{
617 /* nop */
618}
619
620void
621ev_fork_child (void)
622{
623#if EV_USE_EPOLL
624 if (ev_method == EVMETHOD_EPOLL)
625 epoll_postfork_child ();
626#endif
627
628 ev_io_stop (&sigev);
629 close (sigpipe [0]);
630 close (sigpipe [1]);
631 pipe (sigpipe);
632 siginit ();
633}
634
635/*****************************************************************************/
636
637static void 951static void
638call_pending (void) 952call_pending (EV_P)
639{ 953{
640 int pri; 954 int pri;
641 955
642 for (pri = NUMPRI; pri--; ) 956 for (pri = NUMPRI; pri--; )
643 while (pendingcnt [pri]) 957 while (pendingcnt [pri])
645 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 959 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
646 960
647 if (p->w) 961 if (p->w)
648 { 962 {
649 p->w->pending = 0; 963 p->w->pending = 0;
650 p->w->cb (p->w, p->events); 964 p->w->cb (EV_A_ p->w, p->events);
651 } 965 }
652 } 966 }
653} 967}
654 968
655static void 969static void
656timers_reify (void) 970timers_reify (EV_P)
657{ 971{
658 while (timercnt && timers [0]->at <= now) 972 while (timercnt && ((WT)timers [0])->at <= mn_now)
659 { 973 {
660 struct ev_timer *w = timers [0]; 974 struct ev_timer *w = timers [0];
975
976 assert (("inactive timer on timer heap detected", ev_is_active (w)));
661 977
662 /* first reschedule or stop timer */ 978 /* first reschedule or stop timer */
663 if (w->repeat) 979 if (w->repeat)
664 { 980 {
665 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 981 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
666 w->at = now + w->repeat; 982 ((WT)w)->at = mn_now + w->repeat;
667 downheap ((WT *)timers, timercnt, 0); 983 downheap ((WT *)timers, timercnt, 0);
668 } 984 }
669 else 985 else
670 ev_timer_stop (w); /* nonrepeating: stop timer */ 986 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
671 987
672 event ((W)w, EV_TIMEOUT); 988 event (EV_A_ (W)w, EV_TIMEOUT);
673 } 989 }
674} 990}
675 991
676static void 992static void
677periodics_reify (void) 993periodics_reify (EV_P)
678{ 994{
679 while (periodiccnt && periodics [0]->at <= ev_now) 995 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
680 { 996 {
681 struct ev_periodic *w = periodics [0]; 997 struct ev_periodic *w = periodics [0];
998
999 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
682 1000
683 /* first reschedule or stop timer */ 1001 /* first reschedule or stop timer */
684 if (w->interval) 1002 if (w->interval)
685 { 1003 {
686 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 1004 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
687 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now)); 1005 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
688 downheap ((WT *)periodics, periodiccnt, 0); 1006 downheap ((WT *)periodics, periodiccnt, 0);
689 } 1007 }
690 else 1008 else
691 ev_periodic_stop (w); /* nonrepeating: stop timer */ 1009 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
692 1010
693 event ((W)w, EV_PERIODIC); 1011 event (EV_A_ (W)w, EV_PERIODIC);
694 } 1012 }
695} 1013}
696 1014
697static void 1015static void
698periodics_reschedule (ev_tstamp diff) 1016periodics_reschedule (EV_P)
699{ 1017{
700 int i; 1018 int i;
701 1019
702 /* adjust periodics after time jump */ 1020 /* adjust periodics after time jump */
703 for (i = 0; i < periodiccnt; ++i) 1021 for (i = 0; i < periodiccnt; ++i)
704 { 1022 {
705 struct ev_periodic *w = periodics [i]; 1023 struct ev_periodic *w = periodics [i];
706 1024
707 if (w->interval) 1025 if (w->interval)
708 { 1026 {
709 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 1027 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
710 1028
711 if (fabs (diff) >= 1e-4) 1029 if (fabs (diff) >= 1e-4)
712 { 1030 {
713 ev_periodic_stop (w); 1031 ev_periodic_stop (EV_A_ w);
714 ev_periodic_start (w); 1032 ev_periodic_start (EV_A_ w);
715 1033
716 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 1034 i = 0; /* restart loop, inefficient, but time jumps should be rare */
717 } 1035 }
718 } 1036 }
719 } 1037 }
720} 1038}
721 1039
722static int 1040inline int
723time_update_monotonic (void) 1041time_update_monotonic (EV_P)
724{ 1042{
725 now = get_clock (); 1043 mn_now = get_clock ();
726 1044
727 if (expect_true (now - now_floor < MIN_TIMEJUMP * .5)) 1045 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
728 { 1046 {
729 ev_now = now + diff; 1047 rt_now = rtmn_diff + mn_now;
730 return 0; 1048 return 0;
731 } 1049 }
732 else 1050 else
733 { 1051 {
734 now_floor = now; 1052 now_floor = mn_now;
735 ev_now = ev_time (); 1053 rt_now = ev_time ();
736 return 1; 1054 return 1;
737 } 1055 }
738} 1056}
739 1057
740static void 1058static void
741time_update (void) 1059time_update (EV_P)
742{ 1060{
743 int i; 1061 int i;
744 1062
745#if EV_USE_MONOTONIC 1063#if EV_USE_MONOTONIC
746 if (expect_true (have_monotonic)) 1064 if (expect_true (have_monotonic))
747 { 1065 {
748 if (time_update_monotonic ()) 1066 if (time_update_monotonic (EV_A))
749 { 1067 {
750 ev_tstamp odiff = diff; 1068 ev_tstamp odiff = rtmn_diff;
751 1069
752 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1070 for (i = 4; --i; ) /* loop a few times, before making important decisions */
753 { 1071 {
754 diff = ev_now - now; 1072 rtmn_diff = rt_now - mn_now;
755 1073
756 if (fabs (odiff - diff) < MIN_TIMEJUMP) 1074 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
757 return; /* all is well */ 1075 return; /* all is well */
758 1076
759 ev_now = ev_time (); 1077 rt_now = ev_time ();
760 now = get_clock (); 1078 mn_now = get_clock ();
761 now_floor = now; 1079 now_floor = mn_now;
762 } 1080 }
763 1081
764 periodics_reschedule (diff - odiff); 1082 periodics_reschedule (EV_A);
765 /* no timer adjustment, as the monotonic clock doesn't jump */ 1083 /* no timer adjustment, as the monotonic clock doesn't jump */
1084 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
766 } 1085 }
767 } 1086 }
768 else 1087 else
769#endif 1088#endif
770 { 1089 {
771 ev_now = ev_time (); 1090 rt_now = ev_time ();
772 1091
773 if (expect_false (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1092 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
774 { 1093 {
775 periodics_reschedule (ev_now - now); 1094 periodics_reschedule (EV_A);
776 1095
777 /* adjust timers. this is easy, as the offset is the same for all */ 1096 /* adjust timers. this is easy, as the offset is the same for all */
778 for (i = 0; i < timercnt; ++i) 1097 for (i = 0; i < timercnt; ++i)
779 timers [i]->at += diff; 1098 ((WT)timers [i])->at += rt_now - mn_now;
780 } 1099 }
781 1100
782 now = ev_now; 1101 mn_now = rt_now;
783 } 1102 }
784} 1103}
785 1104
786int ev_loop_done; 1105void
1106ev_ref (EV_P)
1107{
1108 ++activecnt;
1109}
787 1110
1111void
1112ev_unref (EV_P)
1113{
1114 --activecnt;
1115}
1116
1117static int loop_done;
1118
1119void
788void ev_loop (int flags) 1120ev_loop (EV_P_ int flags)
789{ 1121{
790 double block; 1122 double block;
791 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1123 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
792 1124
793 do 1125 do
794 { 1126 {
795 /* queue check watchers (and execute them) */ 1127 /* queue check watchers (and execute them) */
796 if (expect_false (preparecnt)) 1128 if (expect_false (preparecnt))
797 { 1129 {
798 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 1130 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
799 call_pending (); 1131 call_pending (EV_A);
800 } 1132 }
801 1133
1134 /* we might have forked, so reify kernel state if necessary */
1135 if (expect_false (postfork))
1136 loop_fork (EV_A);
1137
802 /* update fd-related kernel structures */ 1138 /* update fd-related kernel structures */
803 fd_reify (); 1139 fd_reify (EV_A);
804 1140
805 /* calculate blocking time */ 1141 /* calculate blocking time */
806 1142
807 /* we only need this for !monotonic clockor timers, but as we basically 1143 /* we only need this for !monotonic clockor timers, but as we basically
808 always have timers, we just calculate it always */ 1144 always have timers, we just calculate it always */
809#if EV_USE_MONOTONIC 1145#if EV_USE_MONOTONIC
810 if (expect_true (have_monotonic)) 1146 if (expect_true (have_monotonic))
811 time_update_monotonic (); 1147 time_update_monotonic (EV_A);
812 else 1148 else
813#endif 1149#endif
814 { 1150 {
815 ev_now = ev_time (); 1151 rt_now = ev_time ();
816 now = ev_now; 1152 mn_now = rt_now;
817 } 1153 }
818 1154
819 if (flags & EVLOOP_NONBLOCK || idlecnt) 1155 if (flags & EVLOOP_NONBLOCK || idlecnt)
820 block = 0.; 1156 block = 0.;
821 else 1157 else
822 { 1158 {
823 block = MAX_BLOCKTIME; 1159 block = MAX_BLOCKTIME;
824 1160
825 if (timercnt) 1161 if (timercnt)
826 { 1162 {
827 ev_tstamp to = timers [0]->at - now + method_fudge; 1163 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
828 if (block > to) block = to; 1164 if (block > to) block = to;
829 } 1165 }
830 1166
831 if (periodiccnt) 1167 if (periodiccnt)
832 { 1168 {
833 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1169 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
834 if (block > to) block = to; 1170 if (block > to) block = to;
835 } 1171 }
836 1172
837 if (block < 0.) block = 0.; 1173 if (block < 0.) block = 0.;
838 } 1174 }
839 1175
840 method_poll (block); 1176 method_poll (EV_A_ block);
841 1177
842 /* update ev_now, do magic */ 1178 /* update rt_now, do magic */
843 time_update (); 1179 time_update (EV_A);
844 1180
845 /* queue pending timers and reschedule them */ 1181 /* queue pending timers and reschedule them */
846 timers_reify (); /* relative timers called last */ 1182 timers_reify (EV_A); /* relative timers called last */
847 periodics_reify (); /* absolute timers called first */ 1183 periodics_reify (EV_A); /* absolute timers called first */
848 1184
849 /* queue idle watchers unless io or timers are pending */ 1185 /* queue idle watchers unless io or timers are pending */
850 if (!pendingcnt) 1186 if (!pendingcnt)
851 queue_events ((W *)idles, idlecnt, EV_IDLE); 1187 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
852 1188
853 /* queue check watchers, to be executed first */ 1189 /* queue check watchers, to be executed first */
854 if (checkcnt) 1190 if (checkcnt)
855 queue_events ((W *)checks, checkcnt, EV_CHECK); 1191 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
856 1192
857 call_pending (); 1193 call_pending (EV_A);
858 } 1194 }
859 while (!ev_loop_done); 1195 while (activecnt && !loop_done);
860 1196
861 if (ev_loop_done != 2) 1197 if (loop_done != 2)
862 ev_loop_done = 0; 1198 loop_done = 0;
1199}
1200
1201void
1202ev_unloop (EV_P_ int how)
1203{
1204 loop_done = how;
863} 1205}
864 1206
865/*****************************************************************************/ 1207/*****************************************************************************/
866 1208
867static void 1209inline void
868wlist_add (WL *head, WL elem) 1210wlist_add (WL *head, WL elem)
869{ 1211{
870 elem->next = *head; 1212 elem->next = *head;
871 *head = elem; 1213 *head = elem;
872} 1214}
873 1215
874static void 1216inline void
875wlist_del (WL *head, WL elem) 1217wlist_del (WL *head, WL elem)
876{ 1218{
877 while (*head) 1219 while (*head)
878 { 1220 {
879 if (*head == elem) 1221 if (*head == elem)
884 1226
885 head = &(*head)->next; 1227 head = &(*head)->next;
886 } 1228 }
887} 1229}
888 1230
889static void 1231inline void
890ev_clear_pending (W w) 1232ev_clear_pending (EV_P_ W w)
891{ 1233{
892 if (w->pending) 1234 if (w->pending)
893 { 1235 {
894 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1236 pendings [ABSPRI (w)][w->pending - 1].w = 0;
895 w->pending = 0; 1237 w->pending = 0;
896 } 1238 }
897} 1239}
898 1240
899static void 1241inline void
900ev_start (W w, int active) 1242ev_start (EV_P_ W w, int active)
901{ 1243{
902 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1244 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
903 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI; 1245 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
904 1246
905 w->active = active; 1247 w->active = active;
1248 ev_ref (EV_A);
906} 1249}
907 1250
908static void 1251inline void
909ev_stop (W w) 1252ev_stop (EV_P_ W w)
910{ 1253{
1254 ev_unref (EV_A);
911 w->active = 0; 1255 w->active = 0;
912} 1256}
913 1257
914/*****************************************************************************/ 1258/*****************************************************************************/
915 1259
916void 1260void
917ev_io_start (struct ev_io *w) 1261ev_io_start (EV_P_ struct ev_io *w)
918{ 1262{
919 int fd = w->fd; 1263 int fd = w->fd;
920 1264
921 if (ev_is_active (w)) 1265 if (ev_is_active (w))
922 return; 1266 return;
923 1267
924 assert (("ev_io_start called with negative fd", fd >= 0)); 1268 assert (("ev_io_start called with negative fd", fd >= 0));
925 1269
926 ev_start ((W)w, 1); 1270 ev_start (EV_A_ (W)w, 1);
927 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1271 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
928 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1272 wlist_add ((WL *)&anfds[fd].head, (WL)w);
929 1273
930 fd_change (fd); 1274 fd_change (EV_A_ fd);
931} 1275}
932 1276
933void 1277void
934ev_io_stop (struct ev_io *w) 1278ev_io_stop (EV_P_ struct ev_io *w)
935{ 1279{
936 ev_clear_pending ((W)w); 1280 ev_clear_pending (EV_A_ (W)w);
937 if (!ev_is_active (w)) 1281 if (!ev_is_active (w))
938 return; 1282 return;
939 1283
940 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1284 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
941 ev_stop ((W)w); 1285 ev_stop (EV_A_ (W)w);
942 1286
943 fd_change (w->fd); 1287 fd_change (EV_A_ w->fd);
944} 1288}
945 1289
946void 1290void
947ev_timer_start (struct ev_timer *w) 1291ev_timer_start (EV_P_ struct ev_timer *w)
948{ 1292{
949 if (ev_is_active (w)) 1293 if (ev_is_active (w))
950 return; 1294 return;
951 1295
952 w->at += now; 1296 ((WT)w)->at += mn_now;
953 1297
954 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1298 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
955 1299
956 ev_start ((W)w, ++timercnt); 1300 ev_start (EV_A_ (W)w, ++timercnt);
957 array_needsize (timers, timermax, timercnt, ); 1301 array_needsize (timers, timermax, timercnt, (void));
958 timers [timercnt - 1] = w; 1302 timers [timercnt - 1] = w;
959 upheap ((WT *)timers, timercnt - 1); 1303 upheap ((WT *)timers, timercnt - 1);
960}
961 1304
1305 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1306}
1307
962void 1308void
963ev_timer_stop (struct ev_timer *w) 1309ev_timer_stop (EV_P_ struct ev_timer *w)
964{ 1310{
965 ev_clear_pending ((W)w); 1311 ev_clear_pending (EV_A_ (W)w);
966 if (!ev_is_active (w)) 1312 if (!ev_is_active (w))
967 return; 1313 return;
968 1314
1315 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1316
969 if (w->active < timercnt--) 1317 if (((W)w)->active < timercnt--)
970 { 1318 {
971 timers [w->active - 1] = timers [timercnt]; 1319 timers [((W)w)->active - 1] = timers [timercnt];
972 downheap ((WT *)timers, timercnt, w->active - 1); 1320 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
973 } 1321 }
974 1322
975 w->at = w->repeat; 1323 ((WT)w)->at = w->repeat;
976 1324
977 ev_stop ((W)w); 1325 ev_stop (EV_A_ (W)w);
978} 1326}
979 1327
980void 1328void
981ev_timer_again (struct ev_timer *w) 1329ev_timer_again (EV_P_ struct ev_timer *w)
982{ 1330{
983 if (ev_is_active (w)) 1331 if (ev_is_active (w))
984 { 1332 {
985 if (w->repeat) 1333 if (w->repeat)
986 { 1334 {
987 w->at = now + w->repeat; 1335 ((WT)w)->at = mn_now + w->repeat;
988 downheap ((WT *)timers, timercnt, w->active - 1); 1336 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
989 } 1337 }
990 else 1338 else
991 ev_timer_stop (w); 1339 ev_timer_stop (EV_A_ w);
992 } 1340 }
993 else if (w->repeat) 1341 else if (w->repeat)
994 ev_timer_start (w); 1342 ev_timer_start (EV_A_ w);
995} 1343}
996 1344
997void 1345void
998ev_periodic_start (struct ev_periodic *w) 1346ev_periodic_start (EV_P_ struct ev_periodic *w)
999{ 1347{
1000 if (ev_is_active (w)) 1348 if (ev_is_active (w))
1001 return; 1349 return;
1002 1350
1003 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1351 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1004 1352
1005 /* this formula differs from the one in periodic_reify because we do not always round up */ 1353 /* this formula differs from the one in periodic_reify because we do not always round up */
1006 if (w->interval) 1354 if (w->interval)
1007 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1355 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1008 1356
1009 ev_start ((W)w, ++periodiccnt); 1357 ev_start (EV_A_ (W)w, ++periodiccnt);
1010 array_needsize (periodics, periodicmax, periodiccnt, ); 1358 array_needsize (periodics, periodicmax, periodiccnt, (void));
1011 periodics [periodiccnt - 1] = w; 1359 periodics [periodiccnt - 1] = w;
1012 upheap ((WT *)periodics, periodiccnt - 1); 1360 upheap ((WT *)periodics, periodiccnt - 1);
1013}
1014 1361
1362 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1363}
1364
1015void 1365void
1016ev_periodic_stop (struct ev_periodic *w) 1366ev_periodic_stop (EV_P_ struct ev_periodic *w)
1017{ 1367{
1018 ev_clear_pending ((W)w); 1368 ev_clear_pending (EV_A_ (W)w);
1019 if (!ev_is_active (w)) 1369 if (!ev_is_active (w))
1020 return; 1370 return;
1021 1371
1372 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1373
1022 if (w->active < periodiccnt--) 1374 if (((W)w)->active < periodiccnt--)
1023 { 1375 {
1024 periodics [w->active - 1] = periodics [periodiccnt]; 1376 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1025 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1377 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1026 } 1378 }
1027 1379
1028 ev_stop ((W)w); 1380 ev_stop (EV_A_ (W)w);
1381}
1382
1383void
1384ev_idle_start (EV_P_ struct ev_idle *w)
1385{
1386 if (ev_is_active (w))
1387 return;
1388
1389 ev_start (EV_A_ (W)w, ++idlecnt);
1390 array_needsize (idles, idlemax, idlecnt, (void));
1391 idles [idlecnt - 1] = w;
1392}
1393
1394void
1395ev_idle_stop (EV_P_ struct ev_idle *w)
1396{
1397 ev_clear_pending (EV_A_ (W)w);
1398 if (ev_is_active (w))
1399 return;
1400
1401 idles [((W)w)->active - 1] = idles [--idlecnt];
1402 ev_stop (EV_A_ (W)w);
1403}
1404
1405void
1406ev_prepare_start (EV_P_ struct ev_prepare *w)
1407{
1408 if (ev_is_active (w))
1409 return;
1410
1411 ev_start (EV_A_ (W)w, ++preparecnt);
1412 array_needsize (prepares, preparemax, preparecnt, (void));
1413 prepares [preparecnt - 1] = w;
1414}
1415
1416void
1417ev_prepare_stop (EV_P_ struct ev_prepare *w)
1418{
1419 ev_clear_pending (EV_A_ (W)w);
1420 if (ev_is_active (w))
1421 return;
1422
1423 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1424 ev_stop (EV_A_ (W)w);
1425}
1426
1427void
1428ev_check_start (EV_P_ struct ev_check *w)
1429{
1430 if (ev_is_active (w))
1431 return;
1432
1433 ev_start (EV_A_ (W)w, ++checkcnt);
1434 array_needsize (checks, checkmax, checkcnt, (void));
1435 checks [checkcnt - 1] = w;
1436}
1437
1438void
1439ev_check_stop (EV_P_ struct ev_check *w)
1440{
1441 ev_clear_pending (EV_A_ (W)w);
1442 if (ev_is_active (w))
1443 return;
1444
1445 checks [((W)w)->active - 1] = checks [--checkcnt];
1446 ev_stop (EV_A_ (W)w);
1029} 1447}
1030 1448
1031#ifndef SA_RESTART 1449#ifndef SA_RESTART
1032# define SA_RESTART 0 1450# define SA_RESTART 0
1033#endif 1451#endif
1034 1452
1035void 1453void
1036ev_signal_start (struct ev_signal *w) 1454ev_signal_start (EV_P_ struct ev_signal *w)
1037{ 1455{
1456#if EV_MULTIPLICITY
1457 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1458#endif
1038 if (ev_is_active (w)) 1459 if (ev_is_active (w))
1039 return; 1460 return;
1040 1461
1041 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1462 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1042 1463
1043 ev_start ((W)w, 1); 1464 ev_start (EV_A_ (W)w, 1);
1044 array_needsize (signals, signalmax, w->signum, signals_init); 1465 array_needsize (signals, signalmax, w->signum, signals_init);
1045 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1466 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1046 1467
1047 if (!w->next) 1468 if (!((WL)w)->next)
1048 { 1469 {
1470#if WIN32
1471 signal (w->signum, sighandler);
1472#else
1049 struct sigaction sa; 1473 struct sigaction sa;
1050 sa.sa_handler = sighandler; 1474 sa.sa_handler = sighandler;
1051 sigfillset (&sa.sa_mask); 1475 sigfillset (&sa.sa_mask);
1052 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1476 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1053 sigaction (w->signum, &sa, 0); 1477 sigaction (w->signum, &sa, 0);
1478#endif
1054 } 1479 }
1055} 1480}
1056 1481
1057void 1482void
1058ev_signal_stop (struct ev_signal *w) 1483ev_signal_stop (EV_P_ struct ev_signal *w)
1059{ 1484{
1060 ev_clear_pending ((W)w); 1485 ev_clear_pending (EV_A_ (W)w);
1061 if (!ev_is_active (w)) 1486 if (!ev_is_active (w))
1062 return; 1487 return;
1063 1488
1064 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1489 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1065 ev_stop ((W)w); 1490 ev_stop (EV_A_ (W)w);
1066 1491
1067 if (!signals [w->signum - 1].head) 1492 if (!signals [w->signum - 1].head)
1068 signal (w->signum, SIG_DFL); 1493 signal (w->signum, SIG_DFL);
1069} 1494}
1070 1495
1071void 1496void
1072ev_idle_start (struct ev_idle *w) 1497ev_child_start (EV_P_ struct ev_child *w)
1073{ 1498{
1499#if EV_MULTIPLICITY
1500 assert (("child watchers are only supported in the default loop", loop == default_loop));
1501#endif
1074 if (ev_is_active (w)) 1502 if (ev_is_active (w))
1075 return; 1503 return;
1076 1504
1077 ev_start ((W)w, ++idlecnt); 1505 ev_start (EV_A_ (W)w, 1);
1078 array_needsize (idles, idlemax, idlecnt, ); 1506 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1079 idles [idlecnt - 1] = w;
1080} 1507}
1081 1508
1082void 1509void
1083ev_idle_stop (struct ev_idle *w) 1510ev_child_stop (EV_P_ struct ev_child *w)
1084{ 1511{
1085 ev_clear_pending ((W)w); 1512 ev_clear_pending (EV_A_ (W)w);
1086 if (ev_is_active (w)) 1513 if (ev_is_active (w))
1087 return; 1514 return;
1088 1515
1089 idles [w->active - 1] = idles [--idlecnt];
1090 ev_stop ((W)w);
1091}
1092
1093void
1094ev_prepare_start (struct ev_prepare *w)
1095{
1096 if (ev_is_active (w))
1097 return;
1098
1099 ev_start ((W)w, ++preparecnt);
1100 array_needsize (prepares, preparemax, preparecnt, );
1101 prepares [preparecnt - 1] = w;
1102}
1103
1104void
1105ev_prepare_stop (struct ev_prepare *w)
1106{
1107 ev_clear_pending ((W)w);
1108 if (ev_is_active (w))
1109 return;
1110
1111 prepares [w->active - 1] = prepares [--preparecnt];
1112 ev_stop ((W)w);
1113}
1114
1115void
1116ev_check_start (struct ev_check *w)
1117{
1118 if (ev_is_active (w))
1119 return;
1120
1121 ev_start ((W)w, ++checkcnt);
1122 array_needsize (checks, checkmax, checkcnt, );
1123 checks [checkcnt - 1] = w;
1124}
1125
1126void
1127ev_check_stop (struct ev_check *w)
1128{
1129 ev_clear_pending ((W)w);
1130 if (ev_is_active (w))
1131 return;
1132
1133 checks [w->active - 1] = checks [--checkcnt];
1134 ev_stop ((W)w);
1135}
1136
1137void
1138ev_child_start (struct ev_child *w)
1139{
1140 if (ev_is_active (w))
1141 return;
1142
1143 ev_start ((W)w, 1);
1144 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1145}
1146
1147void
1148ev_child_stop (struct ev_child *w)
1149{
1150 ev_clear_pending ((W)w);
1151 if (ev_is_active (w))
1152 return;
1153
1154 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1516 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1155 ev_stop ((W)w); 1517 ev_stop (EV_A_ (W)w);
1156} 1518}
1157 1519
1158/*****************************************************************************/ 1520/*****************************************************************************/
1159 1521
1160struct ev_once 1522struct ev_once
1164 void (*cb)(int revents, void *arg); 1526 void (*cb)(int revents, void *arg);
1165 void *arg; 1527 void *arg;
1166}; 1528};
1167 1529
1168static void 1530static void
1169once_cb (struct ev_once *once, int revents) 1531once_cb (EV_P_ struct ev_once *once, int revents)
1170{ 1532{
1171 void (*cb)(int revents, void *arg) = once->cb; 1533 void (*cb)(int revents, void *arg) = once->cb;
1172 void *arg = once->arg; 1534 void *arg = once->arg;
1173 1535
1174 ev_io_stop (&once->io); 1536 ev_io_stop (EV_A_ &once->io);
1175 ev_timer_stop (&once->to); 1537 ev_timer_stop (EV_A_ &once->to);
1176 free (once); 1538 ev_free (once);
1177 1539
1178 cb (revents, arg); 1540 cb (revents, arg);
1179} 1541}
1180 1542
1181static void 1543static void
1182once_cb_io (struct ev_io *w, int revents) 1544once_cb_io (EV_P_ struct ev_io *w, int revents)
1183{ 1545{
1184 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1546 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1185} 1547}
1186 1548
1187static void 1549static void
1188once_cb_to (struct ev_timer *w, int revents) 1550once_cb_to (EV_P_ struct ev_timer *w, int revents)
1189{ 1551{
1190 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1552 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1191} 1553}
1192 1554
1193void 1555void
1194ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1556ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1195{ 1557{
1196 struct ev_once *once = malloc (sizeof (struct ev_once)); 1558 struct ev_once *once = ev_malloc (sizeof (struct ev_once));
1197 1559
1198 if (!once) 1560 if (!once)
1199 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1561 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1200 else 1562 else
1201 { 1563 {
1204 1566
1205 ev_watcher_init (&once->io, once_cb_io); 1567 ev_watcher_init (&once->io, once_cb_io);
1206 if (fd >= 0) 1568 if (fd >= 0)
1207 { 1569 {
1208 ev_io_set (&once->io, fd, events); 1570 ev_io_set (&once->io, fd, events);
1209 ev_io_start (&once->io); 1571 ev_io_start (EV_A_ &once->io);
1210 } 1572 }
1211 1573
1212 ev_watcher_init (&once->to, once_cb_to); 1574 ev_watcher_init (&once->to, once_cb_to);
1213 if (timeout >= 0.) 1575 if (timeout >= 0.)
1214 { 1576 {
1215 ev_timer_set (&once->to, timeout, 0.); 1577 ev_timer_set (&once->to, timeout, 0.);
1216 ev_timer_start (&once->to); 1578 ev_timer_start (EV_A_ &once->to);
1217 } 1579 }
1218 } 1580 }
1219} 1581}
1220 1582
1221/*****************************************************************************/
1222
1223#if 0
1224
1225struct ev_io wio;
1226
1227static void
1228sin_cb (struct ev_io *w, int revents)
1229{
1230 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1231}
1232
1233static void
1234ocb (struct ev_timer *w, int revents)
1235{
1236 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1237 ev_timer_stop (w);
1238 ev_timer_start (w);
1239}
1240
1241static void
1242scb (struct ev_signal *w, int revents)
1243{
1244 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1245 ev_io_stop (&wio);
1246 ev_io_start (&wio);
1247}
1248
1249static void
1250gcb (struct ev_signal *w, int revents)
1251{
1252 fprintf (stderr, "generic %x\n", revents);
1253
1254}
1255
1256int main (void)
1257{
1258 ev_init (0);
1259
1260 ev_io_init (&wio, sin_cb, 0, EV_READ);
1261 ev_io_start (&wio);
1262
1263 struct ev_timer t[10000];
1264
1265#if 0
1266 int i;
1267 for (i = 0; i < 10000; ++i)
1268 {
1269 struct ev_timer *w = t + i;
1270 ev_watcher_init (w, ocb, i);
1271 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1272 ev_timer_start (w);
1273 if (drand48 () < 0.5)
1274 ev_timer_stop (w);
1275 }
1276#endif
1277
1278 struct ev_timer t1;
1279 ev_timer_init (&t1, ocb, 5, 10);
1280 ev_timer_start (&t1);
1281
1282 struct ev_signal sig;
1283 ev_signal_init (&sig, scb, SIGQUIT);
1284 ev_signal_start (&sig);
1285
1286 struct ev_check cw;
1287 ev_check_init (&cw, gcb);
1288 ev_check_start (&cw);
1289
1290 struct ev_idle iw;
1291 ev_idle_init (&iw, gcb);
1292 ev_idle_start (&iw);
1293
1294 ev_loop (0);
1295
1296 return 0;
1297}
1298
1299#endif
1300
1301
1302
1303

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines