ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.47 by root, Sat Nov 3 11:44:44 2007 UTC vs.
Revision 1.82 by root, Fri Nov 9 20:55:09 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31#if EV_USE_CONFIG_H 31#ifndef EV_STANDALONE
32# include "config.h" 32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
33#endif 55#endif
34 56
35#include <math.h> 57#include <math.h>
36#include <stdlib.h> 58#include <stdlib.h>
37#include <unistd.h>
38#include <fcntl.h> 59#include <fcntl.h>
39#include <signal.h>
40#include <stddef.h> 60#include <stddef.h>
41 61
42#include <stdio.h> 62#include <stdio.h>
43 63
44#include <assert.h> 64#include <assert.h>
45#include <errno.h> 65#include <errno.h>
46#include <sys/types.h> 66#include <sys/types.h>
67#include <time.h>
68
69#include <signal.h>
70
47#ifndef WIN32 71#ifndef WIN32
72# include <unistd.h>
73# include <sys/time.h>
48# include <sys/wait.h> 74# include <sys/wait.h>
49#endif 75#endif
50#include <sys/time.h>
51#include <time.h>
52
53/**/ 76/**/
54 77
55#ifndef EV_USE_MONOTONIC 78#ifndef EV_USE_MONOTONIC
56# define EV_USE_MONOTONIC 1 79# define EV_USE_MONOTONIC 1
57#endif 80#endif
68# define EV_USE_EPOLL 0 91# define EV_USE_EPOLL 0
69#endif 92#endif
70 93
71#ifndef EV_USE_KQUEUE 94#ifndef EV_USE_KQUEUE
72# define EV_USE_KQUEUE 0 95# define EV_USE_KQUEUE 0
96#endif
97
98#ifndef EV_USE_WIN32
99# ifdef WIN32
100# define EV_USE_WIN32 0 /* it does not exist, use select */
101# undef EV_USE_SELECT
102# define EV_USE_SELECT 1
103# else
104# define EV_USE_WIN32 0
105# endif
73#endif 106#endif
74 107
75#ifndef EV_USE_REALTIME 108#ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 1 109# define EV_USE_REALTIME 1
77#endif 110#endif
93#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
94#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
95#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
96/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
97 130
131#ifdef EV_H
132# include EV_H
133#else
98#include "ev.h" 134# include "ev.h"
135#endif
99 136
100#if __GNUC__ >= 3 137#if __GNUC__ >= 3
101# define expect(expr,value) __builtin_expect ((expr),(value)) 138# define expect(expr,value) __builtin_expect ((expr),(value))
102# define inline inline 139# define inline inline
103#else 140#else
113 150
114typedef struct ev_watcher *W; 151typedef struct ev_watcher *W;
115typedef struct ev_watcher_list *WL; 152typedef struct ev_watcher_list *WL;
116typedef struct ev_watcher_time *WT; 153typedef struct ev_watcher_time *WT;
117 154
118static ev_tstamp now_floor, now, diff; /* monotonic clock */ 155static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
119ev_tstamp ev_now;
120int ev_method;
121 156
122static int have_monotonic; /* runtime */ 157#include "ev_win32.c"
123
124static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */
125static void (*method_modify)(int fd, int oev, int nev);
126static void (*method_poll)(ev_tstamp timeout);
127 158
128/*****************************************************************************/ 159/*****************************************************************************/
129 160
130ev_tstamp 161static void (*syserr_cb)(const char *msg);
162
163void ev_set_syserr_cb (void (*cb)(const char *msg))
164{
165 syserr_cb = cb;
166}
167
168static void
169syserr (const char *msg)
170{
171 if (!msg)
172 msg = "(libev) system error";
173
174 if (syserr_cb)
175 syserr_cb (msg);
176 else
177 {
178 perror (msg);
179 abort ();
180 }
181}
182
183static void *(*alloc)(void *ptr, long size);
184
185void ev_set_allocator (void *(*cb)(void *ptr, long size))
186{
187 alloc = cb;
188}
189
190static void *
191ev_realloc (void *ptr, long size)
192{
193 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
194
195 if (!ptr && size)
196 {
197 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
198 abort ();
199 }
200
201 return ptr;
202}
203
204#define ev_malloc(size) ev_realloc (0, (size))
205#define ev_free(ptr) ev_realloc ((ptr), 0)
206
207/*****************************************************************************/
208
209typedef struct
210{
211 WL head;
212 unsigned char events;
213 unsigned char reify;
214} ANFD;
215
216typedef struct
217{
218 W w;
219 int events;
220} ANPENDING;
221
222#if EV_MULTIPLICITY
223
224 struct ev_loop
225 {
226 #define VAR(name,decl) decl;
227 #include "ev_vars.h"
228 #undef VAR
229 };
230 #include "ev_wrap.h"
231
232 struct ev_loop default_loop_struct;
233 static struct ev_loop *default_loop;
234
235#else
236
237 #define VAR(name,decl) static decl;
238 #include "ev_vars.h"
239 #undef VAR
240
241 static int default_loop;
242
243#endif
244
245/*****************************************************************************/
246
247inline ev_tstamp
131ev_time (void) 248ev_time (void)
132{ 249{
133#if EV_USE_REALTIME 250#if EV_USE_REALTIME
134 struct timespec ts; 251 struct timespec ts;
135 clock_gettime (CLOCK_REALTIME, &ts); 252 clock_gettime (CLOCK_REALTIME, &ts);
139 gettimeofday (&tv, 0); 256 gettimeofday (&tv, 0);
140 return tv.tv_sec + tv.tv_usec * 1e-6; 257 return tv.tv_sec + tv.tv_usec * 1e-6;
141#endif 258#endif
142} 259}
143 260
144static ev_tstamp 261inline ev_tstamp
145get_clock (void) 262get_clock (void)
146{ 263{
147#if EV_USE_MONOTONIC 264#if EV_USE_MONOTONIC
148 if (expect_true (have_monotonic)) 265 if (expect_true (have_monotonic))
149 { 266 {
154#endif 271#endif
155 272
156 return ev_time (); 273 return ev_time ();
157} 274}
158 275
276ev_tstamp
277ev_now (EV_P)
278{
279 return rt_now;
280}
281
159#define array_roundsize(base,n) ((n) | 4 & ~3) 282#define array_roundsize(type,n) ((n) | 4 & ~3)
160 283
161#define array_needsize(base,cur,cnt,init) \ 284#define array_needsize(type,base,cur,cnt,init) \
162 if (expect_false ((cnt) > cur)) \ 285 if (expect_false ((cnt) > cur)) \
163 { \ 286 { \
164 int newcnt = cur; \ 287 int newcnt = cur; \
165 do \ 288 do \
166 { \ 289 { \
167 newcnt = array_roundsize (base, newcnt << 1); \ 290 newcnt = array_roundsize (type, newcnt << 1); \
168 } \ 291 } \
169 while ((cnt) > newcnt); \ 292 while ((cnt) > newcnt); \
170 \ 293 \
171 base = realloc (base, sizeof (*base) * (newcnt)); \ 294 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
172 init (base + cur, newcnt - cur); \ 295 init (base + cur, newcnt - cur); \
173 cur = newcnt; \ 296 cur = newcnt; \
174 } 297 }
298
299#define array_slim(type,stem) \
300 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
301 { \
302 stem ## max = array_roundsize (stem ## cnt >> 1); \
303 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
304 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
305 }
306
307/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
308/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
309#define array_free_microshit(stem) \
310 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
311
312#define array_free(stem, idx) \
313 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
175 314
176/*****************************************************************************/ 315/*****************************************************************************/
177
178typedef struct
179{
180 struct ev_io *head;
181 unsigned char events;
182 unsigned char reify;
183} ANFD;
184
185static ANFD *anfds;
186static int anfdmax;
187 316
188static void 317static void
189anfds_init (ANFD *base, int count) 318anfds_init (ANFD *base, int count)
190{ 319{
191 while (count--) 320 while (count--)
196 325
197 ++base; 326 ++base;
198 } 327 }
199} 328}
200 329
201typedef struct 330void
331ev_feed_event (EV_P_ void *w, int revents)
202{ 332{
203 W w; 333 W w_ = (W)w;
204 int events;
205} ANPENDING;
206 334
207static ANPENDING *pendings [NUMPRI];
208static int pendingmax [NUMPRI], pendingcnt [NUMPRI];
209
210static void
211event (W w, int events)
212{
213 if (w->pending) 335 if (w_->pending)
214 { 336 {
215 pendings [ABSPRI (w)][w->pending - 1].events |= events; 337 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
216 return; 338 return;
217 } 339 }
218 340
219 w->pending = ++pendingcnt [ABSPRI (w)]; 341 w_->pending = ++pendingcnt [ABSPRI (w_)];
220 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 342 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
221 pendings [ABSPRI (w)][w->pending - 1].w = w; 343 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
222 pendings [ABSPRI (w)][w->pending - 1].events = events; 344 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
223} 345}
224 346
225static void 347static void
226queue_events (W *events, int eventcnt, int type) 348queue_events (EV_P_ W *events, int eventcnt, int type)
227{ 349{
228 int i; 350 int i;
229 351
230 for (i = 0; i < eventcnt; ++i) 352 for (i = 0; i < eventcnt; ++i)
231 event (events [i], type); 353 ev_feed_event (EV_A_ events [i], type);
232} 354}
233 355
234static void 356inline void
235fd_event (int fd, int events) 357fd_event (EV_P_ int fd, int revents)
236{ 358{
237 ANFD *anfd = anfds + fd; 359 ANFD *anfd = anfds + fd;
238 struct ev_io *w; 360 struct ev_io *w;
239 361
240 for (w = anfd->head; w; w = w->next) 362 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
241 { 363 {
242 int ev = w->events & events; 364 int ev = w->events & revents;
243 365
244 if (ev) 366 if (ev)
245 event ((W)w, ev); 367 ev_feed_event (EV_A_ (W)w, ev);
246 } 368 }
369}
370
371void
372ev_feed_fd_event (EV_P_ int fd, int revents)
373{
374 fd_event (EV_A_ fd, revents);
247} 375}
248 376
249/*****************************************************************************/ 377/*****************************************************************************/
250 378
251static int *fdchanges;
252static int fdchangemax, fdchangecnt;
253
254static void 379static void
255fd_reify (void) 380fd_reify (EV_P)
256{ 381{
257 int i; 382 int i;
258 383
259 for (i = 0; i < fdchangecnt; ++i) 384 for (i = 0; i < fdchangecnt; ++i)
260 { 385 {
262 ANFD *anfd = anfds + fd; 387 ANFD *anfd = anfds + fd;
263 struct ev_io *w; 388 struct ev_io *w;
264 389
265 int events = 0; 390 int events = 0;
266 391
267 for (w = anfd->head; w; w = w->next) 392 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
268 events |= w->events; 393 events |= w->events;
269 394
270 anfd->reify = 0; 395 anfd->reify = 0;
271 396
272 if (anfd->events != events)
273 {
274 method_modify (fd, anfd->events, events); 397 method_modify (EV_A_ fd, anfd->events, events);
275 anfd->events = events; 398 anfd->events = events;
276 }
277 } 399 }
278 400
279 fdchangecnt = 0; 401 fdchangecnt = 0;
280} 402}
281 403
282static void 404static void
283fd_change (int fd) 405fd_change (EV_P_ int fd)
284{ 406{
285 if (anfds [fd].reify || fdchangecnt < 0) 407 if (anfds [fd].reify)
286 return; 408 return;
287 409
288 anfds [fd].reify = 1; 410 anfds [fd].reify = 1;
289 411
290 ++fdchangecnt; 412 ++fdchangecnt;
291 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 413 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
292 fdchanges [fdchangecnt - 1] = fd; 414 fdchanges [fdchangecnt - 1] = fd;
293} 415}
294 416
295static void 417static void
296fd_kill (int fd) 418fd_kill (EV_P_ int fd)
297{ 419{
298 struct ev_io *w; 420 struct ev_io *w;
299 421
300 printf ("killing fd %d\n", fd);//D
301 while ((w = anfds [fd].head)) 422 while ((w = (struct ev_io *)anfds [fd].head))
302 { 423 {
303 ev_io_stop (w); 424 ev_io_stop (EV_A_ w);
304 event ((W)w, EV_ERROR | EV_READ | EV_WRITE); 425 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
305 } 426 }
427}
428
429static int
430fd_valid (int fd)
431{
432#ifdef WIN32
433 return !!win32_get_osfhandle (fd);
434#else
435 return fcntl (fd, F_GETFD) != -1;
436#endif
306} 437}
307 438
308/* called on EBADF to verify fds */ 439/* called on EBADF to verify fds */
309static void 440static void
310fd_ebadf (void) 441fd_ebadf (EV_P)
311{ 442{
312 int fd; 443 int fd;
313 444
314 for (fd = 0; fd < anfdmax; ++fd) 445 for (fd = 0; fd < anfdmax; ++fd)
315 if (anfds [fd].events) 446 if (anfds [fd].events)
316 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 447 if (!fd_valid (fd) == -1 && errno == EBADF)
317 fd_kill (fd); 448 fd_kill (EV_A_ fd);
318} 449}
319 450
320/* called on ENOMEM in select/poll to kill some fds and retry */ 451/* called on ENOMEM in select/poll to kill some fds and retry */
321static void 452static void
322fd_enomem (void) 453fd_enomem (EV_P)
323{ 454{
324 int fd = anfdmax; 455 int fd;
325 456
326 while (fd--) 457 for (fd = anfdmax; fd--; )
327 if (anfds [fd].events) 458 if (anfds [fd].events)
328 { 459 {
329 close (fd);
330 fd_kill (fd); 460 fd_kill (EV_A_ fd);
331 return; 461 return;
332 } 462 }
333} 463}
334 464
465/* usually called after fork if method needs to re-arm all fds from scratch */
466static void
467fd_rearm_all (EV_P)
468{
469 int fd;
470
471 /* this should be highly optimised to not do anything but set a flag */
472 for (fd = 0; fd < anfdmax; ++fd)
473 if (anfds [fd].events)
474 {
475 anfds [fd].events = 0;
476 fd_change (EV_A_ fd);
477 }
478}
479
335/*****************************************************************************/ 480/*****************************************************************************/
336 481
337static struct ev_timer **timers;
338static int timermax, timercnt;
339
340static struct ev_periodic **periodics;
341static int periodicmax, periodiccnt;
342
343static void 482static void
344upheap (WT *timers, int k) 483upheap (WT *heap, int k)
345{ 484{
346 WT w = timers [k]; 485 WT w = heap [k];
347 486
348 while (k && timers [k >> 1]->at > w->at) 487 while (k && heap [k >> 1]->at > w->at)
349 { 488 {
350 timers [k] = timers [k >> 1]; 489 heap [k] = heap [k >> 1];
351 timers [k]->active = k + 1; 490 ((W)heap [k])->active = k + 1;
352 k >>= 1; 491 k >>= 1;
353 } 492 }
354 493
355 timers [k] = w; 494 heap [k] = w;
356 timers [k]->active = k + 1; 495 ((W)heap [k])->active = k + 1;
357 496
358} 497}
359 498
360static void 499static void
361downheap (WT *timers, int N, int k) 500downheap (WT *heap, int N, int k)
362{ 501{
363 WT w = timers [k]; 502 WT w = heap [k];
364 503
365 while (k < (N >> 1)) 504 while (k < (N >> 1))
366 { 505 {
367 int j = k << 1; 506 int j = k << 1;
368 507
369 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 508 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
370 ++j; 509 ++j;
371 510
372 if (w->at <= timers [j]->at) 511 if (w->at <= heap [j]->at)
373 break; 512 break;
374 513
375 timers [k] = timers [j]; 514 heap [k] = heap [j];
376 timers [k]->active = k + 1; 515 ((W)heap [k])->active = k + 1;
377 k = j; 516 k = j;
378 } 517 }
379 518
380 timers [k] = w; 519 heap [k] = w;
381 timers [k]->active = k + 1; 520 ((W)heap [k])->active = k + 1;
382} 521}
383 522
384/*****************************************************************************/ 523/*****************************************************************************/
385 524
386typedef struct 525typedef struct
387{ 526{
388 struct ev_signal *head; 527 WL head;
389 sig_atomic_t volatile gotsig; 528 sig_atomic_t volatile gotsig;
390} ANSIG; 529} ANSIG;
391 530
392static ANSIG *signals; 531static ANSIG *signals;
393static int signalmax; 532static int signalmax;
409} 548}
410 549
411static void 550static void
412sighandler (int signum) 551sighandler (int signum)
413{ 552{
553#if WIN32
554 signal (signum, sighandler);
555#endif
556
414 signals [signum - 1].gotsig = 1; 557 signals [signum - 1].gotsig = 1;
415 558
416 if (!gotsig) 559 if (!gotsig)
417 { 560 {
561 int old_errno = errno;
418 gotsig = 1; 562 gotsig = 1;
563#ifdef WIN32
564 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
565#else
419 write (sigpipe [1], &signum, 1); 566 write (sigpipe [1], &signum, 1);
567#endif
568 errno = old_errno;
420 } 569 }
421} 570}
422 571
572void
573ev_feed_signal_event (EV_P_ int signum)
574{
575 WL w;
576
577#if EV_MULTIPLICITY
578 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
579#endif
580
581 --signum;
582
583 if (signum < 0 || signum >= signalmax)
584 return;
585
586 signals [signum].gotsig = 0;
587
588 for (w = signals [signum].head; w; w = w->next)
589 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
590}
591
423static void 592static void
424sigcb (struct ev_io *iow, int revents) 593sigcb (EV_P_ struct ev_io *iow, int revents)
425{ 594{
426 struct ev_signal *w;
427 int signum; 595 int signum;
428 596
597#ifdef WIN32
598 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
599#else
429 read (sigpipe [0], &revents, 1); 600 read (sigpipe [0], &revents, 1);
601#endif
430 gotsig = 0; 602 gotsig = 0;
431 603
432 for (signum = signalmax; signum--; ) 604 for (signum = signalmax; signum--; )
433 if (signals [signum].gotsig) 605 if (signals [signum].gotsig)
434 { 606 ev_feed_signal_event (EV_A_ signum + 1);
435 signals [signum].gotsig = 0;
436
437 for (w = signals [signum].head; w; w = w->next)
438 event ((W)w, EV_SIGNAL);
439 }
440} 607}
441 608
442static void 609static void
443siginit (void) 610siginit (EV_P)
444{ 611{
445#ifndef WIN32 612#ifndef WIN32
446 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 613 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
447 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 614 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
448 615
450 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 617 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
451 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 618 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
452#endif 619#endif
453 620
454 ev_io_set (&sigev, sigpipe [0], EV_READ); 621 ev_io_set (&sigev, sigpipe [0], EV_READ);
455 ev_io_start (&sigev); 622 ev_io_start (EV_A_ &sigev);
623 ev_unref (EV_A); /* child watcher should not keep loop alive */
456} 624}
457 625
458/*****************************************************************************/ 626/*****************************************************************************/
459 627
460static struct ev_idle **idles;
461static int idlemax, idlecnt;
462
463static struct ev_prepare **prepares;
464static int preparemax, preparecnt;
465
466static struct ev_check **checks;
467static int checkmax, checkcnt;
468
469/*****************************************************************************/
470
471static struct ev_child *childs [PID_HASHSIZE]; 628static struct ev_child *childs [PID_HASHSIZE];
629
630#ifndef WIN32
631
472static struct ev_signal childev; 632static struct ev_signal childev;
473
474#ifndef WIN32
475 633
476#ifndef WCONTINUED 634#ifndef WCONTINUED
477# define WCONTINUED 0 635# define WCONTINUED 0
478#endif 636#endif
479 637
480static void 638static void
481child_reap (struct ev_signal *sw, int chain, int pid, int status) 639child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
482{ 640{
483 struct ev_child *w; 641 struct ev_child *w;
484 642
485 for (w = childs [chain & (PID_HASHSIZE - 1)]; w; w = w->next) 643 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
486 if (w->pid == pid || !w->pid) 644 if (w->pid == pid || !w->pid)
487 { 645 {
488 w->priority = sw->priority; /* need to do it *now* */ 646 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
489 w->rpid = pid; 647 w->rpid = pid;
490 w->rstatus = status; 648 w->rstatus = status;
491 printf ("rpid %p %d %d\n", w, pid, w->pid);//D
492 event ((W)w, EV_CHILD); 649 ev_feed_event (EV_A_ (W)w, EV_CHILD);
493 } 650 }
494} 651}
495 652
496static void 653static void
497childcb (struct ev_signal *sw, int revents) 654childcb (EV_P_ struct ev_signal *sw, int revents)
498{ 655{
499 int pid, status; 656 int pid, status;
500 657
501 printf ("chld %x\n", revents);//D
502 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 658 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
503 { 659 {
504 /* make sure we are called again until all childs have been reaped */ 660 /* make sure we are called again until all childs have been reaped */
505 event ((W)sw, EV_SIGNAL); 661 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
506 662
507 child_reap (sw, pid, pid, status); 663 child_reap (EV_A_ sw, pid, pid, status);
508 child_reap (sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 664 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
509 } 665 }
510} 666}
511 667
512#endif 668#endif
513 669
536ev_version_minor (void) 692ev_version_minor (void)
537{ 693{
538 return EV_VERSION_MINOR; 694 return EV_VERSION_MINOR;
539} 695}
540 696
541/* return true if we are running with elevated privileges and ignore env variables */ 697/* return true if we are running with elevated privileges and should ignore env variables */
542static int 698static int
543enable_secure () 699enable_secure (void)
544{ 700{
701#ifdef WIN32
702 return 0;
703#else
545 return getuid () != geteuid () 704 return getuid () != geteuid ()
546 || getgid () != getegid (); 705 || getgid () != getegid ();
706#endif
547} 707}
548 708
549int ev_init (int methods) 709int
710ev_method (EV_P)
550{ 711{
712 return method;
713}
714
715static void
716loop_init (EV_P_ int methods)
717{
551 if (!ev_method) 718 if (!method)
552 { 719 {
553#if EV_USE_MONOTONIC 720#if EV_USE_MONOTONIC
554 { 721 {
555 struct timespec ts; 722 struct timespec ts;
556 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 723 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
557 have_monotonic = 1; 724 have_monotonic = 1;
558 } 725 }
559#endif 726#endif
560 727
561 ev_now = ev_time (); 728 rt_now = ev_time ();
562 now = get_clock (); 729 mn_now = get_clock ();
563 now_floor = now; 730 now_floor = mn_now;
564 diff = ev_now - now; 731 rtmn_diff = rt_now - mn_now;
565
566 if (pipe (sigpipe))
567 return 0;
568 732
569 if (methods == EVMETHOD_AUTO) 733 if (methods == EVMETHOD_AUTO)
570 if (!enable_secure () && getenv ("LIBEV_METHODS")) 734 if (!enable_secure () && getenv ("LIBEV_METHODS"))
571 methods = atoi (getenv ("LIBEV_METHODS")); 735 methods = atoi (getenv ("LIBEV_METHODS"));
572 else 736 else
573 methods = EVMETHOD_ANY; 737 methods = EVMETHOD_ANY;
574 738
575 ev_method = 0; 739 method = 0;
740#if EV_USE_WIN32
741 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
742#endif
576#if EV_USE_KQUEUE 743#if EV_USE_KQUEUE
577 if (!ev_method && (methods & EVMETHOD_KQUEUE)) kqueue_init (methods); 744 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
578#endif 745#endif
579#if EV_USE_EPOLL 746#if EV_USE_EPOLL
580 if (!ev_method && (methods & EVMETHOD_EPOLL )) epoll_init (methods); 747 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
581#endif 748#endif
582#if EV_USE_POLL 749#if EV_USE_POLL
583 if (!ev_method && (methods & EVMETHOD_POLL )) poll_init (methods); 750 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
584#endif 751#endif
585#if EV_USE_SELECT 752#if EV_USE_SELECT
586 if (!ev_method && (methods & EVMETHOD_SELECT)) select_init (methods); 753 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
587#endif 754#endif
588 755
756 ev_watcher_init (&sigev, sigcb);
757 ev_set_priority (&sigev, EV_MAXPRI);
758 }
759}
760
761void
762loop_destroy (EV_P)
763{
764 int i;
765
766#if EV_USE_WIN32
767 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
768#endif
769#if EV_USE_KQUEUE
770 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
771#endif
772#if EV_USE_EPOLL
773 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
774#endif
775#if EV_USE_POLL
776 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
777#endif
778#if EV_USE_SELECT
779 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
780#endif
781
782 for (i = NUMPRI; i--; )
783 array_free (pending, [i]);
784
785 /* have to use the microsoft-never-gets-it-right macro */
786 array_free_microshit (fdchange);
787 array_free_microshit (timer);
788 array_free_microshit (periodic);
789 array_free_microshit (idle);
790 array_free_microshit (prepare);
791 array_free_microshit (check);
792
793 method = 0;
794}
795
796static void
797loop_fork (EV_P)
798{
799#if EV_USE_EPOLL
800 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
801#endif
802#if EV_USE_KQUEUE
803 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
804#endif
805
806 if (ev_is_active (&sigev))
807 {
808 /* default loop */
809
810 ev_ref (EV_A);
811 ev_io_stop (EV_A_ &sigev);
812 close (sigpipe [0]);
813 close (sigpipe [1]);
814
815 while (pipe (sigpipe))
816 syserr ("(libev) error creating pipe");
817
818 siginit (EV_A);
819 }
820
821 postfork = 0;
822}
823
824#if EV_MULTIPLICITY
825struct ev_loop *
826ev_loop_new (int methods)
827{
828 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
829
830 memset (loop, 0, sizeof (struct ev_loop));
831
832 loop_init (EV_A_ methods);
833
834 if (ev_method (EV_A))
835 return loop;
836
837 return 0;
838}
839
840void
841ev_loop_destroy (EV_P)
842{
843 loop_destroy (EV_A);
844 ev_free (loop);
845}
846
847void
848ev_loop_fork (EV_P)
849{
850 postfork = 1;
851}
852
853#endif
854
855#if EV_MULTIPLICITY
856struct ev_loop *
857#else
858int
859#endif
860ev_default_loop (int methods)
861{
862 if (sigpipe [0] == sigpipe [1])
863 if (pipe (sigpipe))
864 return 0;
865
866 if (!default_loop)
867 {
868#if EV_MULTIPLICITY
869 struct ev_loop *loop = default_loop = &default_loop_struct;
870#else
871 default_loop = 1;
872#endif
873
874 loop_init (EV_A_ methods);
875
589 if (ev_method) 876 if (ev_method (EV_A))
590 { 877 {
591 ev_watcher_init (&sigev, sigcb);
592 ev_set_priority (&sigev, EV_MAXPRI);
593 siginit (); 878 siginit (EV_A);
594 879
595#ifndef WIN32 880#ifndef WIN32
596 ev_signal_init (&childev, childcb, SIGCHLD); 881 ev_signal_init (&childev, childcb, SIGCHLD);
597 ev_set_priority (&childev, EV_MAXPRI); 882 ev_set_priority (&childev, EV_MAXPRI);
598 ev_signal_start (&childev); 883 ev_signal_start (EV_A_ &childev);
884 ev_unref (EV_A); /* child watcher should not keep loop alive */
599#endif 885#endif
600 } 886 }
887 else
888 default_loop = 0;
601 } 889 }
602 890
603 return ev_method; 891 return default_loop;
892}
893
894void
895ev_default_destroy (void)
896{
897#if EV_MULTIPLICITY
898 struct ev_loop *loop = default_loop;
899#endif
900
901#ifndef WIN32
902 ev_ref (EV_A); /* child watcher */
903 ev_signal_stop (EV_A_ &childev);
904#endif
905
906 ev_ref (EV_A); /* signal watcher */
907 ev_io_stop (EV_A_ &sigev);
908
909 close (sigpipe [0]); sigpipe [0] = 0;
910 close (sigpipe [1]); sigpipe [1] = 0;
911
912 loop_destroy (EV_A);
913}
914
915void
916ev_default_fork (void)
917{
918#if EV_MULTIPLICITY
919 struct ev_loop *loop = default_loop;
920#endif
921
922 if (method)
923 postfork = 1;
604} 924}
605 925
606/*****************************************************************************/ 926/*****************************************************************************/
607 927
608void
609ev_fork_prepare (void)
610{
611 /* nop */
612}
613
614void
615ev_fork_parent (void)
616{
617 /* nop */
618}
619
620void
621ev_fork_child (void)
622{
623#if EV_USE_EPOLL
624 if (ev_method == EVMETHOD_EPOLL)
625 epoll_postfork_child ();
626#endif
627
628 ev_io_stop (&sigev);
629 close (sigpipe [0]);
630 close (sigpipe [1]);
631 pipe (sigpipe);
632 siginit ();
633}
634
635/*****************************************************************************/
636
637static void 928static int
929any_pending (EV_P)
930{
931 int pri;
932
933 for (pri = NUMPRI; pri--; )
934 if (pendingcnt [pri])
935 return 1;
936
937 return 0;
938}
939
940static void
638call_pending (void) 941call_pending (EV_P)
639{ 942{
640 int pri; 943 int pri;
641 944
642 for (pri = NUMPRI; pri--; ) 945 for (pri = NUMPRI; pri--; )
643 while (pendingcnt [pri]) 946 while (pendingcnt [pri])
645 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 948 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
646 949
647 if (p->w) 950 if (p->w)
648 { 951 {
649 p->w->pending = 0; 952 p->w->pending = 0;
650 p->w->cb (p->w, p->events); 953 EV_CB_INVOKE (p->w, p->events);
651 } 954 }
652 } 955 }
653} 956}
654 957
655static void 958static void
656timers_reify (void) 959timers_reify (EV_P)
657{ 960{
658 while (timercnt && timers [0]->at <= now) 961 while (timercnt && ((WT)timers [0])->at <= mn_now)
659 { 962 {
660 struct ev_timer *w = timers [0]; 963 struct ev_timer *w = timers [0];
964
965 assert (("inactive timer on timer heap detected", ev_is_active (w)));
661 966
662 /* first reschedule or stop timer */ 967 /* first reschedule or stop timer */
663 if (w->repeat) 968 if (w->repeat)
664 { 969 {
665 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 970 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
666 w->at = now + w->repeat; 971 ((WT)w)->at = mn_now + w->repeat;
667 downheap ((WT *)timers, timercnt, 0); 972 downheap ((WT *)timers, timercnt, 0);
668 } 973 }
669 else 974 else
670 ev_timer_stop (w); /* nonrepeating: stop timer */ 975 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
671 976
672 event ((W)w, EV_TIMEOUT); 977 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
673 } 978 }
674} 979}
675 980
676static void 981static void
677periodics_reify (void) 982periodics_reify (EV_P)
678{ 983{
679 while (periodiccnt && periodics [0]->at <= ev_now) 984 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
680 { 985 {
681 struct ev_periodic *w = periodics [0]; 986 struct ev_periodic *w = periodics [0];
682 987
988 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
989
683 /* first reschedule or stop timer */ 990 /* first reschedule or stop timer */
684 if (w->interval) 991 if (w->reschedule_cb)
685 { 992 {
993 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, rt_now + 0.0001);
994
995 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > rt_now));
996 downheap ((WT *)periodics, periodiccnt, 0);
997 }
998 else if (w->interval)
999 {
686 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 1000 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
687 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now)); 1001 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
688 downheap ((WT *)periodics, periodiccnt, 0); 1002 downheap ((WT *)periodics, periodiccnt, 0);
689 } 1003 }
690 else 1004 else
691 ev_periodic_stop (w); /* nonrepeating: stop timer */ 1005 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
692 1006
693 event ((W)w, EV_PERIODIC); 1007 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
694 } 1008 }
695} 1009}
696 1010
697static void 1011static void
698periodics_reschedule (ev_tstamp diff) 1012periodics_reschedule (EV_P)
699{ 1013{
700 int i; 1014 int i;
701 1015
702 /* adjust periodics after time jump */ 1016 /* adjust periodics after time jump */
703 for (i = 0; i < periodiccnt; ++i) 1017 for (i = 0; i < periodiccnt; ++i)
704 { 1018 {
705 struct ev_periodic *w = periodics [i]; 1019 struct ev_periodic *w = periodics [i];
706 1020
1021 if (w->reschedule_cb)
1022 ((WT)w)->at = w->reschedule_cb (w, rt_now);
707 if (w->interval) 1023 else if (w->interval)
708 {
709 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 1024 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
710
711 if (fabs (diff) >= 1e-4)
712 {
713 ev_periodic_stop (w);
714 ev_periodic_start (w);
715
716 i = 0; /* restart loop, inefficient, but time jumps should be rare */
717 }
718 }
719 } 1025 }
720}
721 1026
722static int 1027 /* now rebuild the heap */
1028 for (i = periodiccnt >> 1; i--; )
1029 downheap ((WT *)periodics, periodiccnt, i);
1030}
1031
1032inline int
723time_update_monotonic (void) 1033time_update_monotonic (EV_P)
724{ 1034{
725 now = get_clock (); 1035 mn_now = get_clock ();
726 1036
727 if (expect_true (now - now_floor < MIN_TIMEJUMP * .5)) 1037 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
728 { 1038 {
729 ev_now = now + diff; 1039 rt_now = rtmn_diff + mn_now;
730 return 0; 1040 return 0;
731 } 1041 }
732 else 1042 else
733 { 1043 {
734 now_floor = now; 1044 now_floor = mn_now;
735 ev_now = ev_time (); 1045 rt_now = ev_time ();
736 return 1; 1046 return 1;
737 } 1047 }
738} 1048}
739 1049
740static void 1050static void
741time_update (void) 1051time_update (EV_P)
742{ 1052{
743 int i; 1053 int i;
744 1054
745#if EV_USE_MONOTONIC 1055#if EV_USE_MONOTONIC
746 if (expect_true (have_monotonic)) 1056 if (expect_true (have_monotonic))
747 { 1057 {
748 if (time_update_monotonic ()) 1058 if (time_update_monotonic (EV_A))
749 { 1059 {
750 ev_tstamp odiff = diff; 1060 ev_tstamp odiff = rtmn_diff;
751 1061
752 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1062 for (i = 4; --i; ) /* loop a few times, before making important decisions */
753 { 1063 {
754 diff = ev_now - now; 1064 rtmn_diff = rt_now - mn_now;
755 1065
756 if (fabs (odiff - diff) < MIN_TIMEJUMP) 1066 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
757 return; /* all is well */ 1067 return; /* all is well */
758 1068
759 ev_now = ev_time (); 1069 rt_now = ev_time ();
760 now = get_clock (); 1070 mn_now = get_clock ();
761 now_floor = now; 1071 now_floor = mn_now;
762 } 1072 }
763 1073
764 periodics_reschedule (diff - odiff); 1074 periodics_reschedule (EV_A);
765 /* no timer adjustment, as the monotonic clock doesn't jump */ 1075 /* no timer adjustment, as the monotonic clock doesn't jump */
1076 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
766 } 1077 }
767 } 1078 }
768 else 1079 else
769#endif 1080#endif
770 { 1081 {
771 ev_now = ev_time (); 1082 rt_now = ev_time ();
772 1083
773 if (expect_false (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1084 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
774 { 1085 {
775 periodics_reschedule (ev_now - now); 1086 periodics_reschedule (EV_A);
776 1087
777 /* adjust timers. this is easy, as the offset is the same for all */ 1088 /* adjust timers. this is easy, as the offset is the same for all */
778 for (i = 0; i < timercnt; ++i) 1089 for (i = 0; i < timercnt; ++i)
779 timers [i]->at += diff; 1090 ((WT)timers [i])->at += rt_now - mn_now;
780 } 1091 }
781 1092
782 now = ev_now; 1093 mn_now = rt_now;
783 } 1094 }
784} 1095}
785 1096
786int ev_loop_done; 1097void
1098ev_ref (EV_P)
1099{
1100 ++activecnt;
1101}
787 1102
1103void
1104ev_unref (EV_P)
1105{
1106 --activecnt;
1107}
1108
1109static int loop_done;
1110
1111void
788void ev_loop (int flags) 1112ev_loop (EV_P_ int flags)
789{ 1113{
790 double block; 1114 double block;
791 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1115 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
792 1116
793 do 1117 do
794 { 1118 {
795 /* queue check watchers (and execute them) */ 1119 /* queue check watchers (and execute them) */
796 if (expect_false (preparecnt)) 1120 if (expect_false (preparecnt))
797 { 1121 {
798 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 1122 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
799 call_pending (); 1123 call_pending (EV_A);
800 } 1124 }
801 1125
1126 /* we might have forked, so reify kernel state if necessary */
1127 if (expect_false (postfork))
1128 loop_fork (EV_A);
1129
802 /* update fd-related kernel structures */ 1130 /* update fd-related kernel structures */
803 fd_reify (); 1131 fd_reify (EV_A);
804 1132
805 /* calculate blocking time */ 1133 /* calculate blocking time */
806 1134
807 /* we only need this for !monotonic clockor timers, but as we basically 1135 /* we only need this for !monotonic clock or timers, but as we basically
808 always have timers, we just calculate it always */ 1136 always have timers, we just calculate it always */
809#if EV_USE_MONOTONIC 1137#if EV_USE_MONOTONIC
810 if (expect_true (have_monotonic)) 1138 if (expect_true (have_monotonic))
811 time_update_monotonic (); 1139 time_update_monotonic (EV_A);
812 else 1140 else
813#endif 1141#endif
814 { 1142 {
815 ev_now = ev_time (); 1143 rt_now = ev_time ();
816 now = ev_now; 1144 mn_now = rt_now;
817 } 1145 }
818 1146
819 if (flags & EVLOOP_NONBLOCK || idlecnt) 1147 if (flags & EVLOOP_NONBLOCK || idlecnt)
820 block = 0.; 1148 block = 0.;
821 else 1149 else
822 { 1150 {
823 block = MAX_BLOCKTIME; 1151 block = MAX_BLOCKTIME;
824 1152
825 if (timercnt) 1153 if (timercnt)
826 { 1154 {
827 ev_tstamp to = timers [0]->at - now + method_fudge; 1155 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
828 if (block > to) block = to; 1156 if (block > to) block = to;
829 } 1157 }
830 1158
831 if (periodiccnt) 1159 if (periodiccnt)
832 { 1160 {
833 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1161 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
834 if (block > to) block = to; 1162 if (block > to) block = to;
835 } 1163 }
836 1164
837 if (block < 0.) block = 0.; 1165 if (block < 0.) block = 0.;
838 } 1166 }
839 1167
840 method_poll (block); 1168 method_poll (EV_A_ block);
841 1169
842 /* update ev_now, do magic */ 1170 /* update rt_now, do magic */
843 time_update (); 1171 time_update (EV_A);
844 1172
845 /* queue pending timers and reschedule them */ 1173 /* queue pending timers and reschedule them */
846 timers_reify (); /* relative timers called last */ 1174 timers_reify (EV_A); /* relative timers called last */
847 periodics_reify (); /* absolute timers called first */ 1175 periodics_reify (EV_A); /* absolute timers called first */
848 1176
849 /* queue idle watchers unless io or timers are pending */ 1177 /* queue idle watchers unless io or timers are pending */
850 if (!pendingcnt) 1178 if (idlecnt && !any_pending (EV_A))
851 queue_events ((W *)idles, idlecnt, EV_IDLE); 1179 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
852 1180
853 /* queue check watchers, to be executed first */ 1181 /* queue check watchers, to be executed first */
854 if (checkcnt) 1182 if (checkcnt)
855 queue_events ((W *)checks, checkcnt, EV_CHECK); 1183 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
856 1184
857 call_pending (); 1185 call_pending (EV_A);
858 } 1186 }
859 while (!ev_loop_done); 1187 while (activecnt && !loop_done);
860 1188
861 if (ev_loop_done != 2) 1189 if (loop_done != 2)
862 ev_loop_done = 0; 1190 loop_done = 0;
1191}
1192
1193void
1194ev_unloop (EV_P_ int how)
1195{
1196 loop_done = how;
863} 1197}
864 1198
865/*****************************************************************************/ 1199/*****************************************************************************/
866 1200
867static void 1201inline void
868wlist_add (WL *head, WL elem) 1202wlist_add (WL *head, WL elem)
869{ 1203{
870 elem->next = *head; 1204 elem->next = *head;
871 *head = elem; 1205 *head = elem;
872} 1206}
873 1207
874static void 1208inline void
875wlist_del (WL *head, WL elem) 1209wlist_del (WL *head, WL elem)
876{ 1210{
877 while (*head) 1211 while (*head)
878 { 1212 {
879 if (*head == elem) 1213 if (*head == elem)
884 1218
885 head = &(*head)->next; 1219 head = &(*head)->next;
886 } 1220 }
887} 1221}
888 1222
889static void 1223inline void
890ev_clear_pending (W w) 1224ev_clear_pending (EV_P_ W w)
891{ 1225{
892 if (w->pending) 1226 if (w->pending)
893 { 1227 {
894 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1228 pendings [ABSPRI (w)][w->pending - 1].w = 0;
895 w->pending = 0; 1229 w->pending = 0;
896 } 1230 }
897} 1231}
898 1232
899static void 1233inline void
900ev_start (W w, int active) 1234ev_start (EV_P_ W w, int active)
901{ 1235{
902 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1236 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
903 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI; 1237 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
904 1238
905 w->active = active; 1239 w->active = active;
1240 ev_ref (EV_A);
906} 1241}
907 1242
908static void 1243inline void
909ev_stop (W w) 1244ev_stop (EV_P_ W w)
910{ 1245{
1246 ev_unref (EV_A);
911 w->active = 0; 1247 w->active = 0;
912} 1248}
913 1249
914/*****************************************************************************/ 1250/*****************************************************************************/
915 1251
916void 1252void
917ev_io_start (struct ev_io *w) 1253ev_io_start (EV_P_ struct ev_io *w)
918{ 1254{
919 int fd = w->fd; 1255 int fd = w->fd;
920 1256
921 if (ev_is_active (w)) 1257 if (ev_is_active (w))
922 return; 1258 return;
923 1259
924 assert (("ev_io_start called with negative fd", fd >= 0)); 1260 assert (("ev_io_start called with negative fd", fd >= 0));
925 1261
926 ev_start ((W)w, 1); 1262 ev_start (EV_A_ (W)w, 1);
927 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1263 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
928 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1264 wlist_add ((WL *)&anfds[fd].head, (WL)w);
929 1265
930 fd_change (fd); 1266 fd_change (EV_A_ fd);
931} 1267}
932 1268
933void 1269void
934ev_io_stop (struct ev_io *w) 1270ev_io_stop (EV_P_ struct ev_io *w)
935{ 1271{
936 ev_clear_pending ((W)w); 1272 ev_clear_pending (EV_A_ (W)w);
937 if (!ev_is_active (w)) 1273 if (!ev_is_active (w))
938 return; 1274 return;
939 1275
940 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1276 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
941 ev_stop ((W)w); 1277 ev_stop (EV_A_ (W)w);
942 1278
943 fd_change (w->fd); 1279 fd_change (EV_A_ w->fd);
944} 1280}
945 1281
946void 1282void
947ev_timer_start (struct ev_timer *w) 1283ev_timer_start (EV_P_ struct ev_timer *w)
948{ 1284{
949 if (ev_is_active (w)) 1285 if (ev_is_active (w))
950 return; 1286 return;
951 1287
952 w->at += now; 1288 ((WT)w)->at += mn_now;
953 1289
954 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1290 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
955 1291
956 ev_start ((W)w, ++timercnt); 1292 ev_start (EV_A_ (W)w, ++timercnt);
957 array_needsize (timers, timermax, timercnt, ); 1293 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
958 timers [timercnt - 1] = w; 1294 timers [timercnt - 1] = w;
959 upheap ((WT *)timers, timercnt - 1); 1295 upheap ((WT *)timers, timercnt - 1);
960}
961 1296
1297 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1298}
1299
962void 1300void
963ev_timer_stop (struct ev_timer *w) 1301ev_timer_stop (EV_P_ struct ev_timer *w)
964{ 1302{
965 ev_clear_pending ((W)w); 1303 ev_clear_pending (EV_A_ (W)w);
966 if (!ev_is_active (w)) 1304 if (!ev_is_active (w))
967 return; 1305 return;
968 1306
1307 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1308
969 if (w->active < timercnt--) 1309 if (((W)w)->active < timercnt--)
970 { 1310 {
971 timers [w->active - 1] = timers [timercnt]; 1311 timers [((W)w)->active - 1] = timers [timercnt];
972 downheap ((WT *)timers, timercnt, w->active - 1); 1312 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
973 } 1313 }
974 1314
975 w->at = w->repeat; 1315 ((WT)w)->at = w->repeat;
976 1316
977 ev_stop ((W)w); 1317 ev_stop (EV_A_ (W)w);
978} 1318}
979 1319
980void 1320void
981ev_timer_again (struct ev_timer *w) 1321ev_timer_again (EV_P_ struct ev_timer *w)
982{ 1322{
983 if (ev_is_active (w)) 1323 if (ev_is_active (w))
984 { 1324 {
985 if (w->repeat) 1325 if (w->repeat)
986 { 1326 {
987 w->at = now + w->repeat; 1327 ((WT)w)->at = mn_now + w->repeat;
988 downheap ((WT *)timers, timercnt, w->active - 1); 1328 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
989 } 1329 }
990 else 1330 else
991 ev_timer_stop (w); 1331 ev_timer_stop (EV_A_ w);
992 } 1332 }
993 else if (w->repeat) 1333 else if (w->repeat)
994 ev_timer_start (w); 1334 ev_timer_start (EV_A_ w);
995} 1335}
996 1336
997void 1337void
998ev_periodic_start (struct ev_periodic *w) 1338ev_periodic_start (EV_P_ struct ev_periodic *w)
999{ 1339{
1000 if (ev_is_active (w)) 1340 if (ev_is_active (w))
1001 return; 1341 return;
1002 1342
1343 if (w->reschedule_cb)
1344 ((WT)w)->at = w->reschedule_cb (w, rt_now);
1345 else if (w->interval)
1346 {
1003 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1347 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1004
1005 /* this formula differs from the one in periodic_reify because we do not always round up */ 1348 /* this formula differs from the one in periodic_reify because we do not always round up */
1006 if (w->interval)
1007 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1349 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1350 }
1008 1351
1009 ev_start ((W)w, ++periodiccnt); 1352 ev_start (EV_A_ (W)w, ++periodiccnt);
1010 array_needsize (periodics, periodicmax, periodiccnt, ); 1353 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1011 periodics [periodiccnt - 1] = w; 1354 periodics [periodiccnt - 1] = w;
1012 upheap ((WT *)periodics, periodiccnt - 1); 1355 upheap ((WT *)periodics, periodiccnt - 1);
1013}
1014 1356
1357 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1358}
1359
1015void 1360void
1016ev_periodic_stop (struct ev_periodic *w) 1361ev_periodic_stop (EV_P_ struct ev_periodic *w)
1017{ 1362{
1018 ev_clear_pending ((W)w); 1363 ev_clear_pending (EV_A_ (W)w);
1019 if (!ev_is_active (w)) 1364 if (!ev_is_active (w))
1020 return; 1365 return;
1021 1366
1367 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1368
1022 if (w->active < periodiccnt--) 1369 if (((W)w)->active < periodiccnt--)
1023 { 1370 {
1024 periodics [w->active - 1] = periodics [periodiccnt]; 1371 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1025 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1372 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1026 } 1373 }
1027 1374
1028 ev_stop ((W)w); 1375 ev_stop (EV_A_ (W)w);
1376}
1377
1378void
1379ev_periodic_again (EV_P_ struct ev_periodic *w)
1380{
1381 ev_periodic_stop (EV_A_ w);
1382 ev_periodic_start (EV_A_ w);
1383}
1384
1385void
1386ev_idle_start (EV_P_ struct ev_idle *w)
1387{
1388 if (ev_is_active (w))
1389 return;
1390
1391 ev_start (EV_A_ (W)w, ++idlecnt);
1392 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1393 idles [idlecnt - 1] = w;
1394}
1395
1396void
1397ev_idle_stop (EV_P_ struct ev_idle *w)
1398{
1399 ev_clear_pending (EV_A_ (W)w);
1400 if (ev_is_active (w))
1401 return;
1402
1403 idles [((W)w)->active - 1] = idles [--idlecnt];
1404 ev_stop (EV_A_ (W)w);
1405}
1406
1407void
1408ev_prepare_start (EV_P_ struct ev_prepare *w)
1409{
1410 if (ev_is_active (w))
1411 return;
1412
1413 ev_start (EV_A_ (W)w, ++preparecnt);
1414 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1415 prepares [preparecnt - 1] = w;
1416}
1417
1418void
1419ev_prepare_stop (EV_P_ struct ev_prepare *w)
1420{
1421 ev_clear_pending (EV_A_ (W)w);
1422 if (ev_is_active (w))
1423 return;
1424
1425 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1426 ev_stop (EV_A_ (W)w);
1427}
1428
1429void
1430ev_check_start (EV_P_ struct ev_check *w)
1431{
1432 if (ev_is_active (w))
1433 return;
1434
1435 ev_start (EV_A_ (W)w, ++checkcnt);
1436 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1437 checks [checkcnt - 1] = w;
1438}
1439
1440void
1441ev_check_stop (EV_P_ struct ev_check *w)
1442{
1443 ev_clear_pending (EV_A_ (W)w);
1444 if (ev_is_active (w))
1445 return;
1446
1447 checks [((W)w)->active - 1] = checks [--checkcnt];
1448 ev_stop (EV_A_ (W)w);
1029} 1449}
1030 1450
1031#ifndef SA_RESTART 1451#ifndef SA_RESTART
1032# define SA_RESTART 0 1452# define SA_RESTART 0
1033#endif 1453#endif
1034 1454
1035void 1455void
1036ev_signal_start (struct ev_signal *w) 1456ev_signal_start (EV_P_ struct ev_signal *w)
1037{ 1457{
1458#if EV_MULTIPLICITY
1459 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1460#endif
1038 if (ev_is_active (w)) 1461 if (ev_is_active (w))
1039 return; 1462 return;
1040 1463
1041 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1464 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1042 1465
1043 ev_start ((W)w, 1); 1466 ev_start (EV_A_ (W)w, 1);
1044 array_needsize (signals, signalmax, w->signum, signals_init); 1467 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1045 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1468 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1046 1469
1047 if (!w->next) 1470 if (!((WL)w)->next)
1048 { 1471 {
1472#if WIN32
1473 signal (w->signum, sighandler);
1474#else
1049 struct sigaction sa; 1475 struct sigaction sa;
1050 sa.sa_handler = sighandler; 1476 sa.sa_handler = sighandler;
1051 sigfillset (&sa.sa_mask); 1477 sigfillset (&sa.sa_mask);
1052 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1478 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1053 sigaction (w->signum, &sa, 0); 1479 sigaction (w->signum, &sa, 0);
1480#endif
1054 } 1481 }
1055} 1482}
1056 1483
1057void 1484void
1058ev_signal_stop (struct ev_signal *w) 1485ev_signal_stop (EV_P_ struct ev_signal *w)
1059{ 1486{
1060 ev_clear_pending ((W)w); 1487 ev_clear_pending (EV_A_ (W)w);
1061 if (!ev_is_active (w)) 1488 if (!ev_is_active (w))
1062 return; 1489 return;
1063 1490
1064 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1491 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1065 ev_stop ((W)w); 1492 ev_stop (EV_A_ (W)w);
1066 1493
1067 if (!signals [w->signum - 1].head) 1494 if (!signals [w->signum - 1].head)
1068 signal (w->signum, SIG_DFL); 1495 signal (w->signum, SIG_DFL);
1069} 1496}
1070 1497
1071void 1498void
1072ev_idle_start (struct ev_idle *w) 1499ev_child_start (EV_P_ struct ev_child *w)
1073{ 1500{
1501#if EV_MULTIPLICITY
1502 assert (("child watchers are only supported in the default loop", loop == default_loop));
1503#endif
1074 if (ev_is_active (w)) 1504 if (ev_is_active (w))
1075 return; 1505 return;
1076 1506
1077 ev_start ((W)w, ++idlecnt); 1507 ev_start (EV_A_ (W)w, 1);
1078 array_needsize (idles, idlemax, idlecnt, ); 1508 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1079 idles [idlecnt - 1] = w;
1080} 1509}
1081 1510
1082void 1511void
1083ev_idle_stop (struct ev_idle *w) 1512ev_child_stop (EV_P_ struct ev_child *w)
1084{ 1513{
1085 ev_clear_pending ((W)w); 1514 ev_clear_pending (EV_A_ (W)w);
1086 if (ev_is_active (w)) 1515 if (ev_is_active (w))
1087 return; 1516 return;
1088 1517
1089 idles [w->active - 1] = idles [--idlecnt];
1090 ev_stop ((W)w);
1091}
1092
1093void
1094ev_prepare_start (struct ev_prepare *w)
1095{
1096 if (ev_is_active (w))
1097 return;
1098
1099 ev_start ((W)w, ++preparecnt);
1100 array_needsize (prepares, preparemax, preparecnt, );
1101 prepares [preparecnt - 1] = w;
1102}
1103
1104void
1105ev_prepare_stop (struct ev_prepare *w)
1106{
1107 ev_clear_pending ((W)w);
1108 if (ev_is_active (w))
1109 return;
1110
1111 prepares [w->active - 1] = prepares [--preparecnt];
1112 ev_stop ((W)w);
1113}
1114
1115void
1116ev_check_start (struct ev_check *w)
1117{
1118 if (ev_is_active (w))
1119 return;
1120
1121 ev_start ((W)w, ++checkcnt);
1122 array_needsize (checks, checkmax, checkcnt, );
1123 checks [checkcnt - 1] = w;
1124}
1125
1126void
1127ev_check_stop (struct ev_check *w)
1128{
1129 ev_clear_pending ((W)w);
1130 if (ev_is_active (w))
1131 return;
1132
1133 checks [w->active - 1] = checks [--checkcnt];
1134 ev_stop ((W)w);
1135}
1136
1137void
1138ev_child_start (struct ev_child *w)
1139{
1140 if (ev_is_active (w))
1141 return;
1142
1143 ev_start ((W)w, 1);
1144 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1145}
1146
1147void
1148ev_child_stop (struct ev_child *w)
1149{
1150 ev_clear_pending ((W)w);
1151 if (ev_is_active (w))
1152 return;
1153
1154 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1518 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1155 ev_stop ((W)w); 1519 ev_stop (EV_A_ (W)w);
1156} 1520}
1157 1521
1158/*****************************************************************************/ 1522/*****************************************************************************/
1159 1523
1160struct ev_once 1524struct ev_once
1164 void (*cb)(int revents, void *arg); 1528 void (*cb)(int revents, void *arg);
1165 void *arg; 1529 void *arg;
1166}; 1530};
1167 1531
1168static void 1532static void
1169once_cb (struct ev_once *once, int revents) 1533once_cb (EV_P_ struct ev_once *once, int revents)
1170{ 1534{
1171 void (*cb)(int revents, void *arg) = once->cb; 1535 void (*cb)(int revents, void *arg) = once->cb;
1172 void *arg = once->arg; 1536 void *arg = once->arg;
1173 1537
1174 ev_io_stop (&once->io); 1538 ev_io_stop (EV_A_ &once->io);
1175 ev_timer_stop (&once->to); 1539 ev_timer_stop (EV_A_ &once->to);
1176 free (once); 1540 ev_free (once);
1177 1541
1178 cb (revents, arg); 1542 cb (revents, arg);
1179} 1543}
1180 1544
1181static void 1545static void
1182once_cb_io (struct ev_io *w, int revents) 1546once_cb_io (EV_P_ struct ev_io *w, int revents)
1183{ 1547{
1184 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1548 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1185} 1549}
1186 1550
1187static void 1551static void
1188once_cb_to (struct ev_timer *w, int revents) 1552once_cb_to (EV_P_ struct ev_timer *w, int revents)
1189{ 1553{
1190 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1554 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1191} 1555}
1192 1556
1193void 1557void
1194ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1558ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1195{ 1559{
1196 struct ev_once *once = malloc (sizeof (struct ev_once)); 1560 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1197 1561
1198 if (!once) 1562 if (!once)
1199 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1563 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1200 else 1564 else
1201 { 1565 {
1204 1568
1205 ev_watcher_init (&once->io, once_cb_io); 1569 ev_watcher_init (&once->io, once_cb_io);
1206 if (fd >= 0) 1570 if (fd >= 0)
1207 { 1571 {
1208 ev_io_set (&once->io, fd, events); 1572 ev_io_set (&once->io, fd, events);
1209 ev_io_start (&once->io); 1573 ev_io_start (EV_A_ &once->io);
1210 } 1574 }
1211 1575
1212 ev_watcher_init (&once->to, once_cb_to); 1576 ev_watcher_init (&once->to, once_cb_to);
1213 if (timeout >= 0.) 1577 if (timeout >= 0.)
1214 { 1578 {
1215 ev_timer_set (&once->to, timeout, 0.); 1579 ev_timer_set (&once->to, timeout, 0.);
1216 ev_timer_start (&once->to); 1580 ev_timer_start (EV_A_ &once->to);
1217 } 1581 }
1218 } 1582 }
1219} 1583}
1220 1584
1221/*****************************************************************************/
1222
1223#if 0
1224
1225struct ev_io wio;
1226
1227static void
1228sin_cb (struct ev_io *w, int revents)
1229{
1230 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1231}
1232
1233static void
1234ocb (struct ev_timer *w, int revents)
1235{
1236 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1237 ev_timer_stop (w);
1238 ev_timer_start (w);
1239}
1240
1241static void
1242scb (struct ev_signal *w, int revents)
1243{
1244 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1245 ev_io_stop (&wio);
1246 ev_io_start (&wio);
1247}
1248
1249static void
1250gcb (struct ev_signal *w, int revents)
1251{
1252 fprintf (stderr, "generic %x\n", revents);
1253
1254}
1255
1256int main (void)
1257{
1258 ev_init (0);
1259
1260 ev_io_init (&wio, sin_cb, 0, EV_READ);
1261 ev_io_start (&wio);
1262
1263 struct ev_timer t[10000];
1264
1265#if 0
1266 int i;
1267 for (i = 0; i < 10000; ++i)
1268 {
1269 struct ev_timer *w = t + i;
1270 ev_watcher_init (w, ocb, i);
1271 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1272 ev_timer_start (w);
1273 if (drand48 () < 0.5)
1274 ev_timer_stop (w);
1275 }
1276#endif
1277
1278 struct ev_timer t1;
1279 ev_timer_init (&t1, ocb, 5, 10);
1280 ev_timer_start (&t1);
1281
1282 struct ev_signal sig;
1283 ev_signal_init (&sig, scb, SIGQUIT);
1284 ev_signal_start (&sig);
1285
1286 struct ev_check cw;
1287 ev_check_init (&cw, gcb);
1288 ev_check_start (&cw);
1289
1290 struct ev_idle iw;
1291 ev_idle_init (&iw, gcb);
1292 ev_idle_start (&iw);
1293
1294 ev_loop (0);
1295
1296 return 0;
1297}
1298
1299#endif
1300
1301
1302
1303

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines