ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.47 by root, Sat Nov 3 11:44:44 2007 UTC vs.
Revision 1.97 by root, Sun Nov 11 01:53:07 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31#if EV_USE_CONFIG_H 31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE
32# include "config.h" 37# include "config.h"
38
39# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1
42# endif
43# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1
45# endif
46# endif
47
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT)
49# define EV_USE_SELECT 1
50# endif
51
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL)
53# define EV_USE_POLL 1
54# endif
55
56# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL)
57# define EV_USE_EPOLL 1
58# endif
59
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE)
61# define EV_USE_KQUEUE 1
62# endif
63
33#endif 64#endif
34 65
35#include <math.h> 66#include <math.h>
36#include <stdlib.h> 67#include <stdlib.h>
37#include <unistd.h>
38#include <fcntl.h> 68#include <fcntl.h>
39#include <signal.h>
40#include <stddef.h> 69#include <stddef.h>
41 70
42#include <stdio.h> 71#include <stdio.h>
43 72
44#include <assert.h> 73#include <assert.h>
45#include <errno.h> 74#include <errno.h>
46#include <sys/types.h> 75#include <sys/types.h>
76#include <time.h>
77
78#include <signal.h>
79
47#ifndef WIN32 80#ifndef WIN32
81# include <unistd.h>
82# include <sys/time.h>
48# include <sys/wait.h> 83# include <sys/wait.h>
49#endif 84#endif
50#include <sys/time.h>
51#include <time.h>
52
53/**/ 85/**/
54 86
55#ifndef EV_USE_MONOTONIC 87#ifndef EV_USE_MONOTONIC
56# define EV_USE_MONOTONIC 1 88# define EV_USE_MONOTONIC 1
57#endif 89#endif
68# define EV_USE_EPOLL 0 100# define EV_USE_EPOLL 0
69#endif 101#endif
70 102
71#ifndef EV_USE_KQUEUE 103#ifndef EV_USE_KQUEUE
72# define EV_USE_KQUEUE 0 104# define EV_USE_KQUEUE 0
105#endif
106
107#ifndef EV_USE_WIN32
108# ifdef WIN32
109# define EV_USE_WIN32 0 /* it does not exist, use select */
110# undef EV_USE_SELECT
111# define EV_USE_SELECT 1
112# else
113# define EV_USE_WIN32 0
114# endif
73#endif 115#endif
74 116
75#ifndef EV_USE_REALTIME 117#ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 1 118# define EV_USE_REALTIME 1
77#endif 119#endif
93#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 135#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
94#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 136#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
95#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 137#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
96/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 138/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
97 139
140#ifdef EV_H
141# include EV_H
142#else
98#include "ev.h" 143# include "ev.h"
144#endif
99 145
100#if __GNUC__ >= 3 146#if __GNUC__ >= 3
101# define expect(expr,value) __builtin_expect ((expr),(value)) 147# define expect(expr,value) __builtin_expect ((expr),(value))
102# define inline inline 148# define inline inline
103#else 149#else
113 159
114typedef struct ev_watcher *W; 160typedef struct ev_watcher *W;
115typedef struct ev_watcher_list *WL; 161typedef struct ev_watcher_list *WL;
116typedef struct ev_watcher_time *WT; 162typedef struct ev_watcher_time *WT;
117 163
118static ev_tstamp now_floor, now, diff; /* monotonic clock */ 164static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
165
166#include "ev_win32.c"
167
168/*****************************************************************************/
169
170static void (*syserr_cb)(const char *msg);
171
172void ev_set_syserr_cb (void (*cb)(const char *msg))
173{
174 syserr_cb = cb;
175}
176
177static void
178syserr (const char *msg)
179{
180 if (!msg)
181 msg = "(libev) system error";
182
183 if (syserr_cb)
184 syserr_cb (msg);
185 else
186 {
187 perror (msg);
188 abort ();
189 }
190}
191
192static void *(*alloc)(void *ptr, long size);
193
194void ev_set_allocator (void *(*cb)(void *ptr, long size))
195{
196 alloc = cb;
197}
198
199static void *
200ev_realloc (void *ptr, long size)
201{
202 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
203
204 if (!ptr && size)
205 {
206 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
207 abort ();
208 }
209
210 return ptr;
211}
212
213#define ev_malloc(size) ev_realloc (0, (size))
214#define ev_free(ptr) ev_realloc ((ptr), 0)
215
216/*****************************************************************************/
217
218typedef struct
219{
220 WL head;
221 unsigned char events;
222 unsigned char reify;
223} ANFD;
224
225typedef struct
226{
227 W w;
228 int events;
229} ANPENDING;
230
231#if EV_MULTIPLICITY
232
233 struct ev_loop
234 {
235 ev_tstamp ev_rt_now;
236 #define VAR(name,decl) decl;
237 #include "ev_vars.h"
238 #undef VAR
239 };
240 #include "ev_wrap.h"
241
242 struct ev_loop default_loop_struct;
243 static struct ev_loop *default_loop;
244
245#else
246
119ev_tstamp ev_now; 247 ev_tstamp ev_rt_now;
120int ev_method; 248 #define VAR(name,decl) static decl;
249 #include "ev_vars.h"
250 #undef VAR
121 251
122static int have_monotonic; /* runtime */ 252 static int default_loop;
123 253
124static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 254#endif
125static void (*method_modify)(int fd, int oev, int nev);
126static void (*method_poll)(ev_tstamp timeout);
127 255
128/*****************************************************************************/ 256/*****************************************************************************/
129 257
130ev_tstamp 258ev_tstamp
131ev_time (void) 259ev_time (void)
139 gettimeofday (&tv, 0); 267 gettimeofday (&tv, 0);
140 return tv.tv_sec + tv.tv_usec * 1e-6; 268 return tv.tv_sec + tv.tv_usec * 1e-6;
141#endif 269#endif
142} 270}
143 271
144static ev_tstamp 272inline ev_tstamp
145get_clock (void) 273get_clock (void)
146{ 274{
147#if EV_USE_MONOTONIC 275#if EV_USE_MONOTONIC
148 if (expect_true (have_monotonic)) 276 if (expect_true (have_monotonic))
149 { 277 {
154#endif 282#endif
155 283
156 return ev_time (); 284 return ev_time ();
157} 285}
158 286
287#if EV_MULTIPLICITY
288ev_tstamp
289ev_now (EV_P)
290{
291 return ev_rt_now;
292}
293#endif
294
159#define array_roundsize(base,n) ((n) | 4 & ~3) 295#define array_roundsize(type,n) ((n) | 4 & ~3)
160 296
161#define array_needsize(base,cur,cnt,init) \ 297#define array_needsize(type,base,cur,cnt,init) \
162 if (expect_false ((cnt) > cur)) \ 298 if (expect_false ((cnt) > cur)) \
163 { \ 299 { \
164 int newcnt = cur; \ 300 int newcnt = cur; \
165 do \ 301 do \
166 { \ 302 { \
167 newcnt = array_roundsize (base, newcnt << 1); \ 303 newcnt = array_roundsize (type, newcnt << 1); \
168 } \ 304 } \
169 while ((cnt) > newcnt); \ 305 while ((cnt) > newcnt); \
170 \ 306 \
171 base = realloc (base, sizeof (*base) * (newcnt)); \ 307 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
172 init (base + cur, newcnt - cur); \ 308 init (base + cur, newcnt - cur); \
173 cur = newcnt; \ 309 cur = newcnt; \
174 } 310 }
311
312#define array_slim(type,stem) \
313 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
314 { \
315 stem ## max = array_roundsize (stem ## cnt >> 1); \
316 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
317 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
318 }
319
320/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
321/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
322#define array_free_microshit(stem) \
323 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
324
325#define array_free(stem, idx) \
326 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
175 327
176/*****************************************************************************/ 328/*****************************************************************************/
177
178typedef struct
179{
180 struct ev_io *head;
181 unsigned char events;
182 unsigned char reify;
183} ANFD;
184
185static ANFD *anfds;
186static int anfdmax;
187 329
188static void 330static void
189anfds_init (ANFD *base, int count) 331anfds_init (ANFD *base, int count)
190{ 332{
191 while (count--) 333 while (count--)
196 338
197 ++base; 339 ++base;
198 } 340 }
199} 341}
200 342
201typedef struct 343void
344ev_feed_event (EV_P_ void *w, int revents)
202{ 345{
203 W w; 346 W w_ = (W)w;
204 int events;
205} ANPENDING;
206 347
207static ANPENDING *pendings [NUMPRI];
208static int pendingmax [NUMPRI], pendingcnt [NUMPRI];
209
210static void
211event (W w, int events)
212{
213 if (w->pending) 348 if (w_->pending)
214 { 349 {
215 pendings [ABSPRI (w)][w->pending - 1].events |= events; 350 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
216 return; 351 return;
217 } 352 }
218 353
219 w->pending = ++pendingcnt [ABSPRI (w)]; 354 w_->pending = ++pendingcnt [ABSPRI (w_)];
220 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 355 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
221 pendings [ABSPRI (w)][w->pending - 1].w = w; 356 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
222 pendings [ABSPRI (w)][w->pending - 1].events = events; 357 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
223} 358}
224 359
225static void 360static void
226queue_events (W *events, int eventcnt, int type) 361queue_events (EV_P_ W *events, int eventcnt, int type)
227{ 362{
228 int i; 363 int i;
229 364
230 for (i = 0; i < eventcnt; ++i) 365 for (i = 0; i < eventcnt; ++i)
231 event (events [i], type); 366 ev_feed_event (EV_A_ events [i], type);
232} 367}
233 368
234static void 369inline void
235fd_event (int fd, int events) 370fd_event (EV_P_ int fd, int revents)
236{ 371{
237 ANFD *anfd = anfds + fd; 372 ANFD *anfd = anfds + fd;
238 struct ev_io *w; 373 struct ev_io *w;
239 374
240 for (w = anfd->head; w; w = w->next) 375 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
241 { 376 {
242 int ev = w->events & events; 377 int ev = w->events & revents;
243 378
244 if (ev) 379 if (ev)
245 event ((W)w, ev); 380 ev_feed_event (EV_A_ (W)w, ev);
246 } 381 }
382}
383
384void
385ev_feed_fd_event (EV_P_ int fd, int revents)
386{
387 fd_event (EV_A_ fd, revents);
247} 388}
248 389
249/*****************************************************************************/ 390/*****************************************************************************/
250 391
251static int *fdchanges;
252static int fdchangemax, fdchangecnt;
253
254static void 392static void
255fd_reify (void) 393fd_reify (EV_P)
256{ 394{
257 int i; 395 int i;
258 396
259 for (i = 0; i < fdchangecnt; ++i) 397 for (i = 0; i < fdchangecnt; ++i)
260 { 398 {
262 ANFD *anfd = anfds + fd; 400 ANFD *anfd = anfds + fd;
263 struct ev_io *w; 401 struct ev_io *w;
264 402
265 int events = 0; 403 int events = 0;
266 404
267 for (w = anfd->head; w; w = w->next) 405 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
268 events |= w->events; 406 events |= w->events;
269 407
270 anfd->reify = 0; 408 anfd->reify = 0;
271 409
272 if (anfd->events != events)
273 {
274 method_modify (fd, anfd->events, events); 410 method_modify (EV_A_ fd, anfd->events, events);
275 anfd->events = events; 411 anfd->events = events;
276 }
277 } 412 }
278 413
279 fdchangecnt = 0; 414 fdchangecnt = 0;
280} 415}
281 416
282static void 417static void
283fd_change (int fd) 418fd_change (EV_P_ int fd)
284{ 419{
285 if (anfds [fd].reify || fdchangecnt < 0) 420 if (anfds [fd].reify)
286 return; 421 return;
287 422
288 anfds [fd].reify = 1; 423 anfds [fd].reify = 1;
289 424
290 ++fdchangecnt; 425 ++fdchangecnt;
291 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 426 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
292 fdchanges [fdchangecnt - 1] = fd; 427 fdchanges [fdchangecnt - 1] = fd;
293} 428}
294 429
295static void 430static void
296fd_kill (int fd) 431fd_kill (EV_P_ int fd)
297{ 432{
298 struct ev_io *w; 433 struct ev_io *w;
299 434
300 printf ("killing fd %d\n", fd);//D
301 while ((w = anfds [fd].head)) 435 while ((w = (struct ev_io *)anfds [fd].head))
302 { 436 {
303 ev_io_stop (w); 437 ev_io_stop (EV_A_ w);
304 event ((W)w, EV_ERROR | EV_READ | EV_WRITE); 438 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
305 } 439 }
440}
441
442static int
443fd_valid (int fd)
444{
445#ifdef WIN32
446 return !!win32_get_osfhandle (fd);
447#else
448 return fcntl (fd, F_GETFD) != -1;
449#endif
306} 450}
307 451
308/* called on EBADF to verify fds */ 452/* called on EBADF to verify fds */
309static void 453static void
310fd_ebadf (void) 454fd_ebadf (EV_P)
311{ 455{
312 int fd; 456 int fd;
313 457
314 for (fd = 0; fd < anfdmax; ++fd) 458 for (fd = 0; fd < anfdmax; ++fd)
315 if (anfds [fd].events) 459 if (anfds [fd].events)
316 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 460 if (!fd_valid (fd) == -1 && errno == EBADF)
317 fd_kill (fd); 461 fd_kill (EV_A_ fd);
318} 462}
319 463
320/* called on ENOMEM in select/poll to kill some fds and retry */ 464/* called on ENOMEM in select/poll to kill some fds and retry */
321static void 465static void
322fd_enomem (void) 466fd_enomem (EV_P)
323{ 467{
324 int fd = anfdmax; 468 int fd;
325 469
326 while (fd--) 470 for (fd = anfdmax; fd--; )
327 if (anfds [fd].events) 471 if (anfds [fd].events)
328 { 472 {
329 close (fd);
330 fd_kill (fd); 473 fd_kill (EV_A_ fd);
331 return; 474 return;
332 } 475 }
333} 476}
334 477
478/* usually called after fork if method needs to re-arm all fds from scratch */
479static void
480fd_rearm_all (EV_P)
481{
482 int fd;
483
484 /* this should be highly optimised to not do anything but set a flag */
485 for (fd = 0; fd < anfdmax; ++fd)
486 if (anfds [fd].events)
487 {
488 anfds [fd].events = 0;
489 fd_change (EV_A_ fd);
490 }
491}
492
335/*****************************************************************************/ 493/*****************************************************************************/
336 494
337static struct ev_timer **timers;
338static int timermax, timercnt;
339
340static struct ev_periodic **periodics;
341static int periodicmax, periodiccnt;
342
343static void 495static void
344upheap (WT *timers, int k) 496upheap (WT *heap, int k)
345{ 497{
346 WT w = timers [k]; 498 WT w = heap [k];
347 499
348 while (k && timers [k >> 1]->at > w->at) 500 while (k && heap [k >> 1]->at > w->at)
349 { 501 {
350 timers [k] = timers [k >> 1]; 502 heap [k] = heap [k >> 1];
351 timers [k]->active = k + 1; 503 ((W)heap [k])->active = k + 1;
352 k >>= 1; 504 k >>= 1;
353 } 505 }
354 506
355 timers [k] = w; 507 heap [k] = w;
356 timers [k]->active = k + 1; 508 ((W)heap [k])->active = k + 1;
357 509
358} 510}
359 511
360static void 512static void
361downheap (WT *timers, int N, int k) 513downheap (WT *heap, int N, int k)
362{ 514{
363 WT w = timers [k]; 515 WT w = heap [k];
364 516
365 while (k < (N >> 1)) 517 while (k < (N >> 1))
366 { 518 {
367 int j = k << 1; 519 int j = k << 1;
368 520
369 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 521 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
370 ++j; 522 ++j;
371 523
372 if (w->at <= timers [j]->at) 524 if (w->at <= heap [j]->at)
373 break; 525 break;
374 526
375 timers [k] = timers [j]; 527 heap [k] = heap [j];
376 timers [k]->active = k + 1; 528 ((W)heap [k])->active = k + 1;
377 k = j; 529 k = j;
378 } 530 }
379 531
380 timers [k] = w; 532 heap [k] = w;
381 timers [k]->active = k + 1; 533 ((W)heap [k])->active = k + 1;
534}
535
536inline void
537adjustheap (WT *heap, int N, int k, ev_tstamp at)
538{
539 ev_tstamp old_at = heap [k]->at;
540 heap [k]->at = at;
541
542 if (old_at < at)
543 downheap (heap, N, k);
544 else
545 upheap (heap, k);
382} 546}
383 547
384/*****************************************************************************/ 548/*****************************************************************************/
385 549
386typedef struct 550typedef struct
387{ 551{
388 struct ev_signal *head; 552 WL head;
389 sig_atomic_t volatile gotsig; 553 sig_atomic_t volatile gotsig;
390} ANSIG; 554} ANSIG;
391 555
392static ANSIG *signals; 556static ANSIG *signals;
393static int signalmax; 557static int signalmax;
409} 573}
410 574
411static void 575static void
412sighandler (int signum) 576sighandler (int signum)
413{ 577{
578#if WIN32
579 signal (signum, sighandler);
580#endif
581
414 signals [signum - 1].gotsig = 1; 582 signals [signum - 1].gotsig = 1;
415 583
416 if (!gotsig) 584 if (!gotsig)
417 { 585 {
586 int old_errno = errno;
418 gotsig = 1; 587 gotsig = 1;
588#ifdef WIN32
589 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
590#else
419 write (sigpipe [1], &signum, 1); 591 write (sigpipe [1], &signum, 1);
592#endif
593 errno = old_errno;
420 } 594 }
421} 595}
422 596
597void
598ev_feed_signal_event (EV_P_ int signum)
599{
600 WL w;
601
602#if EV_MULTIPLICITY
603 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
604#endif
605
606 --signum;
607
608 if (signum < 0 || signum >= signalmax)
609 return;
610
611 signals [signum].gotsig = 0;
612
613 for (w = signals [signum].head; w; w = w->next)
614 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
615}
616
423static void 617static void
424sigcb (struct ev_io *iow, int revents) 618sigcb (EV_P_ struct ev_io *iow, int revents)
425{ 619{
426 struct ev_signal *w;
427 int signum; 620 int signum;
428 621
622#ifdef WIN32
623 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
624#else
429 read (sigpipe [0], &revents, 1); 625 read (sigpipe [0], &revents, 1);
626#endif
430 gotsig = 0; 627 gotsig = 0;
431 628
432 for (signum = signalmax; signum--; ) 629 for (signum = signalmax; signum--; )
433 if (signals [signum].gotsig) 630 if (signals [signum].gotsig)
434 { 631 ev_feed_signal_event (EV_A_ signum + 1);
435 signals [signum].gotsig = 0;
436
437 for (w = signals [signum].head; w; w = w->next)
438 event ((W)w, EV_SIGNAL);
439 }
440} 632}
441 633
442static void 634static void
443siginit (void) 635siginit (EV_P)
444{ 636{
445#ifndef WIN32 637#ifndef WIN32
446 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 638 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
447 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 639 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
448 640
450 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 642 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
451 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 643 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
452#endif 644#endif
453 645
454 ev_io_set (&sigev, sigpipe [0], EV_READ); 646 ev_io_set (&sigev, sigpipe [0], EV_READ);
455 ev_io_start (&sigev); 647 ev_io_start (EV_A_ &sigev);
648 ev_unref (EV_A); /* child watcher should not keep loop alive */
456} 649}
457 650
458/*****************************************************************************/ 651/*****************************************************************************/
459 652
460static struct ev_idle **idles;
461static int idlemax, idlecnt;
462
463static struct ev_prepare **prepares;
464static int preparemax, preparecnt;
465
466static struct ev_check **checks;
467static int checkmax, checkcnt;
468
469/*****************************************************************************/
470
471static struct ev_child *childs [PID_HASHSIZE]; 653static struct ev_child *childs [PID_HASHSIZE];
654
655#ifndef WIN32
656
472static struct ev_signal childev; 657static struct ev_signal childev;
473
474#ifndef WIN32
475 658
476#ifndef WCONTINUED 659#ifndef WCONTINUED
477# define WCONTINUED 0 660# define WCONTINUED 0
478#endif 661#endif
479 662
480static void 663static void
481child_reap (struct ev_signal *sw, int chain, int pid, int status) 664child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
482{ 665{
483 struct ev_child *w; 666 struct ev_child *w;
484 667
485 for (w = childs [chain & (PID_HASHSIZE - 1)]; w; w = w->next) 668 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
486 if (w->pid == pid || !w->pid) 669 if (w->pid == pid || !w->pid)
487 { 670 {
488 w->priority = sw->priority; /* need to do it *now* */ 671 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
489 w->rpid = pid; 672 w->rpid = pid;
490 w->rstatus = status; 673 w->rstatus = status;
491 printf ("rpid %p %d %d\n", w, pid, w->pid);//D
492 event ((W)w, EV_CHILD); 674 ev_feed_event (EV_A_ (W)w, EV_CHILD);
493 } 675 }
494} 676}
495 677
496static void 678static void
497childcb (struct ev_signal *sw, int revents) 679childcb (EV_P_ struct ev_signal *sw, int revents)
498{ 680{
499 int pid, status; 681 int pid, status;
500 682
501 printf ("chld %x\n", revents);//D
502 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 683 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
503 { 684 {
504 /* make sure we are called again until all childs have been reaped */ 685 /* make sure we are called again until all childs have been reaped */
505 event ((W)sw, EV_SIGNAL); 686 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
506 687
507 child_reap (sw, pid, pid, status); 688 child_reap (EV_A_ sw, pid, pid, status);
508 child_reap (sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 689 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
509 } 690 }
510} 691}
511 692
512#endif 693#endif
513 694
536ev_version_minor (void) 717ev_version_minor (void)
537{ 718{
538 return EV_VERSION_MINOR; 719 return EV_VERSION_MINOR;
539} 720}
540 721
541/* return true if we are running with elevated privileges and ignore env variables */ 722/* return true if we are running with elevated privileges and should ignore env variables */
542static int 723static int
543enable_secure () 724enable_secure (void)
544{ 725{
726#ifdef WIN32
727 return 0;
728#else
545 return getuid () != geteuid () 729 return getuid () != geteuid ()
546 || getgid () != getegid (); 730 || getgid () != getegid ();
731#endif
547} 732}
548 733
549int ev_init (int methods) 734int
735ev_method (EV_P)
550{ 736{
737 return method;
738}
739
740static void
741loop_init (EV_P_ int methods)
742{
551 if (!ev_method) 743 if (!method)
552 { 744 {
553#if EV_USE_MONOTONIC 745#if EV_USE_MONOTONIC
554 { 746 {
555 struct timespec ts; 747 struct timespec ts;
556 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 748 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
557 have_monotonic = 1; 749 have_monotonic = 1;
558 } 750 }
559#endif 751#endif
560 752
561 ev_now = ev_time (); 753 ev_rt_now = ev_time ();
562 now = get_clock (); 754 mn_now = get_clock ();
563 now_floor = now; 755 now_floor = mn_now;
564 diff = ev_now - now; 756 rtmn_diff = ev_rt_now - mn_now;
565
566 if (pipe (sigpipe))
567 return 0;
568 757
569 if (methods == EVMETHOD_AUTO) 758 if (methods == EVMETHOD_AUTO)
570 if (!enable_secure () && getenv ("LIBEV_METHODS")) 759 if (!enable_secure () && getenv ("LIBEV_METHODS"))
571 methods = atoi (getenv ("LIBEV_METHODS")); 760 methods = atoi (getenv ("LIBEV_METHODS"));
572 else 761 else
573 methods = EVMETHOD_ANY; 762 methods = EVMETHOD_ANY;
574 763
575 ev_method = 0; 764 method = 0;
765#if EV_USE_WIN32
766 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
767#endif
576#if EV_USE_KQUEUE 768#if EV_USE_KQUEUE
577 if (!ev_method && (methods & EVMETHOD_KQUEUE)) kqueue_init (methods); 769 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
578#endif 770#endif
579#if EV_USE_EPOLL 771#if EV_USE_EPOLL
580 if (!ev_method && (methods & EVMETHOD_EPOLL )) epoll_init (methods); 772 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
581#endif 773#endif
582#if EV_USE_POLL 774#if EV_USE_POLL
583 if (!ev_method && (methods & EVMETHOD_POLL )) poll_init (methods); 775 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
584#endif 776#endif
585#if EV_USE_SELECT 777#if EV_USE_SELECT
586 if (!ev_method && (methods & EVMETHOD_SELECT)) select_init (methods); 778 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
587#endif 779#endif
588 780
781 ev_init (&sigev, sigcb);
782 ev_set_priority (&sigev, EV_MAXPRI);
783 }
784}
785
786void
787loop_destroy (EV_P)
788{
789 int i;
790
791#if EV_USE_WIN32
792 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
793#endif
794#if EV_USE_KQUEUE
795 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
796#endif
797#if EV_USE_EPOLL
798 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
799#endif
800#if EV_USE_POLL
801 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
802#endif
803#if EV_USE_SELECT
804 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
805#endif
806
807 for (i = NUMPRI; i--; )
808 array_free (pending, [i]);
809
810 /* have to use the microsoft-never-gets-it-right macro */
811 array_free_microshit (fdchange);
812 array_free_microshit (timer);
813#if EV_PERIODICS
814 array_free_microshit (periodic);
815#endif
816 array_free_microshit (idle);
817 array_free_microshit (prepare);
818 array_free_microshit (check);
819
820 method = 0;
821}
822
823static void
824loop_fork (EV_P)
825{
826#if EV_USE_EPOLL
827 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
828#endif
829#if EV_USE_KQUEUE
830 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
831#endif
832
833 if (ev_is_active (&sigev))
834 {
835 /* default loop */
836
837 ev_ref (EV_A);
838 ev_io_stop (EV_A_ &sigev);
839 close (sigpipe [0]);
840 close (sigpipe [1]);
841
842 while (pipe (sigpipe))
843 syserr ("(libev) error creating pipe");
844
845 siginit (EV_A);
846 }
847
848 postfork = 0;
849}
850
851#if EV_MULTIPLICITY
852struct ev_loop *
853ev_loop_new (int methods)
854{
855 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
856
857 memset (loop, 0, sizeof (struct ev_loop));
858
859 loop_init (EV_A_ methods);
860
861 if (ev_method (EV_A))
862 return loop;
863
864 return 0;
865}
866
867void
868ev_loop_destroy (EV_P)
869{
870 loop_destroy (EV_A);
871 ev_free (loop);
872}
873
874void
875ev_loop_fork (EV_P)
876{
877 postfork = 1;
878}
879
880#endif
881
882#if EV_MULTIPLICITY
883struct ev_loop *
884#else
885int
886#endif
887ev_default_loop (int methods)
888{
889 if (sigpipe [0] == sigpipe [1])
890 if (pipe (sigpipe))
891 return 0;
892
893 if (!default_loop)
894 {
895#if EV_MULTIPLICITY
896 struct ev_loop *loop = default_loop = &default_loop_struct;
897#else
898 default_loop = 1;
899#endif
900
901 loop_init (EV_A_ methods);
902
589 if (ev_method) 903 if (ev_method (EV_A))
590 { 904 {
591 ev_watcher_init (&sigev, sigcb);
592 ev_set_priority (&sigev, EV_MAXPRI);
593 siginit (); 905 siginit (EV_A);
594 906
595#ifndef WIN32 907#ifndef WIN32
596 ev_signal_init (&childev, childcb, SIGCHLD); 908 ev_signal_init (&childev, childcb, SIGCHLD);
597 ev_set_priority (&childev, EV_MAXPRI); 909 ev_set_priority (&childev, EV_MAXPRI);
598 ev_signal_start (&childev); 910 ev_signal_start (EV_A_ &childev);
911 ev_unref (EV_A); /* child watcher should not keep loop alive */
599#endif 912#endif
600 } 913 }
914 else
915 default_loop = 0;
601 } 916 }
602 917
603 return ev_method; 918 return default_loop;
919}
920
921void
922ev_default_destroy (void)
923{
924#if EV_MULTIPLICITY
925 struct ev_loop *loop = default_loop;
926#endif
927
928#ifndef WIN32
929 ev_ref (EV_A); /* child watcher */
930 ev_signal_stop (EV_A_ &childev);
931#endif
932
933 ev_ref (EV_A); /* signal watcher */
934 ev_io_stop (EV_A_ &sigev);
935
936 close (sigpipe [0]); sigpipe [0] = 0;
937 close (sigpipe [1]); sigpipe [1] = 0;
938
939 loop_destroy (EV_A);
940}
941
942void
943ev_default_fork (void)
944{
945#if EV_MULTIPLICITY
946 struct ev_loop *loop = default_loop;
947#endif
948
949 if (method)
950 postfork = 1;
604} 951}
605 952
606/*****************************************************************************/ 953/*****************************************************************************/
607 954
608void
609ev_fork_prepare (void)
610{
611 /* nop */
612}
613
614void
615ev_fork_parent (void)
616{
617 /* nop */
618}
619
620void
621ev_fork_child (void)
622{
623#if EV_USE_EPOLL
624 if (ev_method == EVMETHOD_EPOLL)
625 epoll_postfork_child ();
626#endif
627
628 ev_io_stop (&sigev);
629 close (sigpipe [0]);
630 close (sigpipe [1]);
631 pipe (sigpipe);
632 siginit ();
633}
634
635/*****************************************************************************/
636
637static void 955static int
956any_pending (EV_P)
957{
958 int pri;
959
960 for (pri = NUMPRI; pri--; )
961 if (pendingcnt [pri])
962 return 1;
963
964 return 0;
965}
966
967static void
638call_pending (void) 968call_pending (EV_P)
639{ 969{
640 int pri; 970 int pri;
641 971
642 for (pri = NUMPRI; pri--; ) 972 for (pri = NUMPRI; pri--; )
643 while (pendingcnt [pri]) 973 while (pendingcnt [pri])
645 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 975 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
646 976
647 if (p->w) 977 if (p->w)
648 { 978 {
649 p->w->pending = 0; 979 p->w->pending = 0;
650 p->w->cb (p->w, p->events); 980 EV_CB_INVOKE (p->w, p->events);
651 } 981 }
652 } 982 }
653} 983}
654 984
655static void 985static void
656timers_reify (void) 986timers_reify (EV_P)
657{ 987{
658 while (timercnt && timers [0]->at <= now) 988 while (timercnt && ((WT)timers [0])->at <= mn_now)
659 { 989 {
660 struct ev_timer *w = timers [0]; 990 struct ev_timer *w = timers [0];
991
992 assert (("inactive timer on timer heap detected", ev_is_active (w)));
661 993
662 /* first reschedule or stop timer */ 994 /* first reschedule or stop timer */
663 if (w->repeat) 995 if (w->repeat)
664 { 996 {
665 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 997 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
998
666 w->at = now + w->repeat; 999 ((WT)w)->at += w->repeat;
1000 if (((WT)w)->at < mn_now)
1001 ((WT)w)->at = mn_now;
1002
667 downheap ((WT *)timers, timercnt, 0); 1003 downheap ((WT *)timers, timercnt, 0);
668 } 1004 }
669 else 1005 else
670 ev_timer_stop (w); /* nonrepeating: stop timer */ 1006 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
671 1007
672 event ((W)w, EV_TIMEOUT); 1008 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
673 } 1009 }
674} 1010}
675 1011
1012#if EV_PERIODICS
676static void 1013static void
677periodics_reify (void) 1014periodics_reify (EV_P)
678{ 1015{
679 while (periodiccnt && periodics [0]->at <= ev_now) 1016 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
680 { 1017 {
681 struct ev_periodic *w = periodics [0]; 1018 struct ev_periodic *w = periodics [0];
682 1019
1020 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
1021
683 /* first reschedule or stop timer */ 1022 /* first reschedule or stop timer */
684 if (w->interval) 1023 if (w->reschedule_cb)
685 { 1024 {
1025 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1026
1027 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1028 downheap ((WT *)periodics, periodiccnt, 0);
1029 }
1030 else if (w->interval)
1031 {
686 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 1032 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
687 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now)); 1033 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
688 downheap ((WT *)periodics, periodiccnt, 0); 1034 downheap ((WT *)periodics, periodiccnt, 0);
689 } 1035 }
690 else 1036 else
691 ev_periodic_stop (w); /* nonrepeating: stop timer */ 1037 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
692 1038
693 event ((W)w, EV_PERIODIC); 1039 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
694 } 1040 }
695} 1041}
696 1042
697static void 1043static void
698periodics_reschedule (ev_tstamp diff) 1044periodics_reschedule (EV_P)
699{ 1045{
700 int i; 1046 int i;
701 1047
702 /* adjust periodics after time jump */ 1048 /* adjust periodics after time jump */
703 for (i = 0; i < periodiccnt; ++i) 1049 for (i = 0; i < periodiccnt; ++i)
704 { 1050 {
705 struct ev_periodic *w = periodics [i]; 1051 struct ev_periodic *w = periodics [i];
706 1052
1053 if (w->reschedule_cb)
1054 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
707 if (w->interval) 1055 else if (w->interval)
708 {
709 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 1056 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
710
711 if (fabs (diff) >= 1e-4)
712 {
713 ev_periodic_stop (w);
714 ev_periodic_start (w);
715
716 i = 0; /* restart loop, inefficient, but time jumps should be rare */
717 }
718 }
719 } 1057 }
720}
721 1058
722static int 1059 /* now rebuild the heap */
1060 for (i = periodiccnt >> 1; i--; )
1061 downheap ((WT *)periodics, periodiccnt, i);
1062}
1063#endif
1064
1065inline int
723time_update_monotonic (void) 1066time_update_monotonic (EV_P)
724{ 1067{
725 now = get_clock (); 1068 mn_now = get_clock ();
726 1069
727 if (expect_true (now - now_floor < MIN_TIMEJUMP * .5)) 1070 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
728 { 1071 {
729 ev_now = now + diff; 1072 ev_rt_now = rtmn_diff + mn_now;
730 return 0; 1073 return 0;
731 } 1074 }
732 else 1075 else
733 { 1076 {
734 now_floor = now; 1077 now_floor = mn_now;
735 ev_now = ev_time (); 1078 ev_rt_now = ev_time ();
736 return 1; 1079 return 1;
737 } 1080 }
738} 1081}
739 1082
740static void 1083static void
741time_update (void) 1084time_update (EV_P)
742{ 1085{
743 int i; 1086 int i;
744 1087
745#if EV_USE_MONOTONIC 1088#if EV_USE_MONOTONIC
746 if (expect_true (have_monotonic)) 1089 if (expect_true (have_monotonic))
747 { 1090 {
748 if (time_update_monotonic ()) 1091 if (time_update_monotonic (EV_A))
749 { 1092 {
750 ev_tstamp odiff = diff; 1093 ev_tstamp odiff = rtmn_diff;
751 1094
752 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1095 for (i = 4; --i; ) /* loop a few times, before making important decisions */
753 { 1096 {
754 diff = ev_now - now; 1097 rtmn_diff = ev_rt_now - mn_now;
755 1098
756 if (fabs (odiff - diff) < MIN_TIMEJUMP) 1099 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
757 return; /* all is well */ 1100 return; /* all is well */
758 1101
759 ev_now = ev_time (); 1102 ev_rt_now = ev_time ();
760 now = get_clock (); 1103 mn_now = get_clock ();
761 now_floor = now; 1104 now_floor = mn_now;
762 } 1105 }
763 1106
1107# if EV_PERIODICS
764 periodics_reschedule (diff - odiff); 1108 periodics_reschedule (EV_A);
1109# endif
765 /* no timer adjustment, as the monotonic clock doesn't jump */ 1110 /* no timer adjustment, as the monotonic clock doesn't jump */
1111 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
766 } 1112 }
767 } 1113 }
768 else 1114 else
769#endif 1115#endif
770 { 1116 {
771 ev_now = ev_time (); 1117 ev_rt_now = ev_time ();
772 1118
773 if (expect_false (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1119 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
774 { 1120 {
1121#if EV_PERIODICS
775 periodics_reschedule (ev_now - now); 1122 periodics_reschedule (EV_A);
1123#endif
776 1124
777 /* adjust timers. this is easy, as the offset is the same for all */ 1125 /* adjust timers. this is easy, as the offset is the same for all */
778 for (i = 0; i < timercnt; ++i) 1126 for (i = 0; i < timercnt; ++i)
779 timers [i]->at += diff; 1127 ((WT)timers [i])->at += ev_rt_now - mn_now;
780 } 1128 }
781 1129
782 now = ev_now; 1130 mn_now = ev_rt_now;
783 } 1131 }
784} 1132}
785 1133
786int ev_loop_done; 1134void
1135ev_ref (EV_P)
1136{
1137 ++activecnt;
1138}
787 1139
1140void
1141ev_unref (EV_P)
1142{
1143 --activecnt;
1144}
1145
1146static int loop_done;
1147
1148void
788void ev_loop (int flags) 1149ev_loop (EV_P_ int flags)
789{ 1150{
790 double block; 1151 double block;
791 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1152 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
792 1153
793 do 1154 do
794 { 1155 {
795 /* queue check watchers (and execute them) */ 1156 /* queue check watchers (and execute them) */
796 if (expect_false (preparecnt)) 1157 if (expect_false (preparecnt))
797 { 1158 {
798 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 1159 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
799 call_pending (); 1160 call_pending (EV_A);
800 } 1161 }
801 1162
1163 /* we might have forked, so reify kernel state if necessary */
1164 if (expect_false (postfork))
1165 loop_fork (EV_A);
1166
802 /* update fd-related kernel structures */ 1167 /* update fd-related kernel structures */
803 fd_reify (); 1168 fd_reify (EV_A);
804 1169
805 /* calculate blocking time */ 1170 /* calculate blocking time */
806 1171
807 /* we only need this for !monotonic clockor timers, but as we basically 1172 /* we only need this for !monotonic clock or timers, but as we basically
808 always have timers, we just calculate it always */ 1173 always have timers, we just calculate it always */
809#if EV_USE_MONOTONIC 1174#if EV_USE_MONOTONIC
810 if (expect_true (have_monotonic)) 1175 if (expect_true (have_monotonic))
811 time_update_monotonic (); 1176 time_update_monotonic (EV_A);
812 else 1177 else
813#endif 1178#endif
814 { 1179 {
815 ev_now = ev_time (); 1180 ev_rt_now = ev_time ();
816 now = ev_now; 1181 mn_now = ev_rt_now;
817 } 1182 }
818 1183
819 if (flags & EVLOOP_NONBLOCK || idlecnt) 1184 if (flags & EVLOOP_NONBLOCK || idlecnt)
820 block = 0.; 1185 block = 0.;
821 else 1186 else
822 { 1187 {
823 block = MAX_BLOCKTIME; 1188 block = MAX_BLOCKTIME;
824 1189
825 if (timercnt) 1190 if (timercnt)
826 { 1191 {
827 ev_tstamp to = timers [0]->at - now + method_fudge; 1192 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
828 if (block > to) block = to; 1193 if (block > to) block = to;
829 } 1194 }
830 1195
1196#if EV_PERIODICS
831 if (periodiccnt) 1197 if (periodiccnt)
832 { 1198 {
833 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1199 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
834 if (block > to) block = to; 1200 if (block > to) block = to;
835 } 1201 }
1202#endif
836 1203
837 if (block < 0.) block = 0.; 1204 if (block < 0.) block = 0.;
838 } 1205 }
839 1206
840 method_poll (block); 1207 method_poll (EV_A_ block);
841 1208
842 /* update ev_now, do magic */ 1209 /* update ev_rt_now, do magic */
843 time_update (); 1210 time_update (EV_A);
844 1211
845 /* queue pending timers and reschedule them */ 1212 /* queue pending timers and reschedule them */
846 timers_reify (); /* relative timers called last */ 1213 timers_reify (EV_A); /* relative timers called last */
1214#if EV_PERIODICS
847 periodics_reify (); /* absolute timers called first */ 1215 periodics_reify (EV_A); /* absolute timers called first */
1216#endif
848 1217
849 /* queue idle watchers unless io or timers are pending */ 1218 /* queue idle watchers unless io or timers are pending */
850 if (!pendingcnt) 1219 if (idlecnt && !any_pending (EV_A))
851 queue_events ((W *)idles, idlecnt, EV_IDLE); 1220 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
852 1221
853 /* queue check watchers, to be executed first */ 1222 /* queue check watchers, to be executed first */
854 if (checkcnt) 1223 if (checkcnt)
855 queue_events ((W *)checks, checkcnt, EV_CHECK); 1224 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
856 1225
857 call_pending (); 1226 call_pending (EV_A);
858 } 1227 }
859 while (!ev_loop_done); 1228 while (activecnt && !loop_done);
860 1229
861 if (ev_loop_done != 2) 1230 if (loop_done != 2)
862 ev_loop_done = 0; 1231 loop_done = 0;
1232}
1233
1234void
1235ev_unloop (EV_P_ int how)
1236{
1237 loop_done = how;
863} 1238}
864 1239
865/*****************************************************************************/ 1240/*****************************************************************************/
866 1241
867static void 1242inline void
868wlist_add (WL *head, WL elem) 1243wlist_add (WL *head, WL elem)
869{ 1244{
870 elem->next = *head; 1245 elem->next = *head;
871 *head = elem; 1246 *head = elem;
872} 1247}
873 1248
874static void 1249inline void
875wlist_del (WL *head, WL elem) 1250wlist_del (WL *head, WL elem)
876{ 1251{
877 while (*head) 1252 while (*head)
878 { 1253 {
879 if (*head == elem) 1254 if (*head == elem)
884 1259
885 head = &(*head)->next; 1260 head = &(*head)->next;
886 } 1261 }
887} 1262}
888 1263
889static void 1264inline void
890ev_clear_pending (W w) 1265ev_clear_pending (EV_P_ W w)
891{ 1266{
892 if (w->pending) 1267 if (w->pending)
893 { 1268 {
894 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1269 pendings [ABSPRI (w)][w->pending - 1].w = 0;
895 w->pending = 0; 1270 w->pending = 0;
896 } 1271 }
897} 1272}
898 1273
899static void 1274inline void
900ev_start (W w, int active) 1275ev_start (EV_P_ W w, int active)
901{ 1276{
902 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1277 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
903 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI; 1278 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
904 1279
905 w->active = active; 1280 w->active = active;
1281 ev_ref (EV_A);
906} 1282}
907 1283
908static void 1284inline void
909ev_stop (W w) 1285ev_stop (EV_P_ W w)
910{ 1286{
1287 ev_unref (EV_A);
911 w->active = 0; 1288 w->active = 0;
912} 1289}
913 1290
914/*****************************************************************************/ 1291/*****************************************************************************/
915 1292
916void 1293void
917ev_io_start (struct ev_io *w) 1294ev_io_start (EV_P_ struct ev_io *w)
918{ 1295{
919 int fd = w->fd; 1296 int fd = w->fd;
920 1297
921 if (ev_is_active (w)) 1298 if (ev_is_active (w))
922 return; 1299 return;
923 1300
924 assert (("ev_io_start called with negative fd", fd >= 0)); 1301 assert (("ev_io_start called with negative fd", fd >= 0));
925 1302
926 ev_start ((W)w, 1); 1303 ev_start (EV_A_ (W)w, 1);
927 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1304 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
928 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1305 wlist_add ((WL *)&anfds[fd].head, (WL)w);
929 1306
930 fd_change (fd); 1307 fd_change (EV_A_ fd);
931} 1308}
932 1309
933void 1310void
934ev_io_stop (struct ev_io *w) 1311ev_io_stop (EV_P_ struct ev_io *w)
935{ 1312{
936 ev_clear_pending ((W)w); 1313 ev_clear_pending (EV_A_ (W)w);
937 if (!ev_is_active (w)) 1314 if (!ev_is_active (w))
938 return; 1315 return;
939 1316
1317 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1318
940 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1319 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
941 ev_stop ((W)w); 1320 ev_stop (EV_A_ (W)w);
942 1321
943 fd_change (w->fd); 1322 fd_change (EV_A_ w->fd);
944} 1323}
945 1324
946void 1325void
947ev_timer_start (struct ev_timer *w) 1326ev_timer_start (EV_P_ struct ev_timer *w)
948{ 1327{
949 if (ev_is_active (w)) 1328 if (ev_is_active (w))
950 return; 1329 return;
951 1330
952 w->at += now; 1331 ((WT)w)->at += mn_now;
953 1332
954 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1333 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
955 1334
956 ev_start ((W)w, ++timercnt); 1335 ev_start (EV_A_ (W)w, ++timercnt);
957 array_needsize (timers, timermax, timercnt, ); 1336 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
958 timers [timercnt - 1] = w; 1337 timers [timercnt - 1] = w;
959 upheap ((WT *)timers, timercnt - 1); 1338 upheap ((WT *)timers, timercnt - 1);
960}
961 1339
1340 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1341}
1342
962void 1343void
963ev_timer_stop (struct ev_timer *w) 1344ev_timer_stop (EV_P_ struct ev_timer *w)
964{ 1345{
965 ev_clear_pending ((W)w); 1346 ev_clear_pending (EV_A_ (W)w);
966 if (!ev_is_active (w)) 1347 if (!ev_is_active (w))
967 return; 1348 return;
968 1349
1350 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1351
969 if (w->active < timercnt--) 1352 if (((W)w)->active < timercnt--)
970 { 1353 {
971 timers [w->active - 1] = timers [timercnt]; 1354 timers [((W)w)->active - 1] = timers [timercnt];
972 downheap ((WT *)timers, timercnt, w->active - 1); 1355 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
973 } 1356 }
974 1357
975 w->at = w->repeat; 1358 ((WT)w)->at -= mn_now;
976 1359
977 ev_stop ((W)w); 1360 ev_stop (EV_A_ (W)w);
978} 1361}
979 1362
980void 1363void
981ev_timer_again (struct ev_timer *w) 1364ev_timer_again (EV_P_ struct ev_timer *w)
982{ 1365{
983 if (ev_is_active (w)) 1366 if (ev_is_active (w))
984 { 1367 {
985 if (w->repeat) 1368 if (w->repeat)
986 {
987 w->at = now + w->repeat;
988 downheap ((WT *)timers, timercnt, w->active - 1); 1369 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1, mn_now + w->repeat);
989 }
990 else 1370 else
991 ev_timer_stop (w); 1371 ev_timer_stop (EV_A_ w);
992 } 1372 }
993 else if (w->repeat) 1373 else if (w->repeat)
994 ev_timer_start (w); 1374 ev_timer_start (EV_A_ w);
995} 1375}
996 1376
1377#if EV_PERIODICS
997void 1378void
998ev_periodic_start (struct ev_periodic *w) 1379ev_periodic_start (EV_P_ struct ev_periodic *w)
999{ 1380{
1000 if (ev_is_active (w)) 1381 if (ev_is_active (w))
1001 return; 1382 return;
1002 1383
1384 if (w->reschedule_cb)
1385 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1386 else if (w->interval)
1387 {
1003 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1388 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1004
1005 /* this formula differs from the one in periodic_reify because we do not always round up */ 1389 /* this formula differs from the one in periodic_reify because we do not always round up */
1006 if (w->interval)
1007 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1390 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1391 }
1008 1392
1009 ev_start ((W)w, ++periodiccnt); 1393 ev_start (EV_A_ (W)w, ++periodiccnt);
1010 array_needsize (periodics, periodicmax, periodiccnt, ); 1394 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1011 periodics [periodiccnt - 1] = w; 1395 periodics [periodiccnt - 1] = w;
1012 upheap ((WT *)periodics, periodiccnt - 1); 1396 upheap ((WT *)periodics, periodiccnt - 1);
1013}
1014 1397
1398 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1399}
1400
1015void 1401void
1016ev_periodic_stop (struct ev_periodic *w) 1402ev_periodic_stop (EV_P_ struct ev_periodic *w)
1017{ 1403{
1018 ev_clear_pending ((W)w); 1404 ev_clear_pending (EV_A_ (W)w);
1019 if (!ev_is_active (w)) 1405 if (!ev_is_active (w))
1020 return; 1406 return;
1021 1407
1408 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1409
1022 if (w->active < periodiccnt--) 1410 if (((W)w)->active < periodiccnt--)
1023 { 1411 {
1024 periodics [w->active - 1] = periodics [periodiccnt]; 1412 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1025 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1413 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1026 } 1414 }
1027 1415
1028 ev_stop ((W)w); 1416 ev_stop (EV_A_ (W)w);
1417}
1418
1419void
1420ev_periodic_again (EV_P_ struct ev_periodic *w)
1421{
1422 /* TODO: use adjustheap and recalculation */
1423 ev_periodic_stop (EV_A_ w);
1424 ev_periodic_start (EV_A_ w);
1425}
1426#endif
1427
1428void
1429ev_idle_start (EV_P_ struct ev_idle *w)
1430{
1431 if (ev_is_active (w))
1432 return;
1433
1434 ev_start (EV_A_ (W)w, ++idlecnt);
1435 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1436 idles [idlecnt - 1] = w;
1437}
1438
1439void
1440ev_idle_stop (EV_P_ struct ev_idle *w)
1441{
1442 ev_clear_pending (EV_A_ (W)w);
1443 if (ev_is_active (w))
1444 return;
1445
1446 idles [((W)w)->active - 1] = idles [--idlecnt];
1447 ev_stop (EV_A_ (W)w);
1448}
1449
1450void
1451ev_prepare_start (EV_P_ struct ev_prepare *w)
1452{
1453 if (ev_is_active (w))
1454 return;
1455
1456 ev_start (EV_A_ (W)w, ++preparecnt);
1457 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1458 prepares [preparecnt - 1] = w;
1459}
1460
1461void
1462ev_prepare_stop (EV_P_ struct ev_prepare *w)
1463{
1464 ev_clear_pending (EV_A_ (W)w);
1465 if (ev_is_active (w))
1466 return;
1467
1468 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1469 ev_stop (EV_A_ (W)w);
1470}
1471
1472void
1473ev_check_start (EV_P_ struct ev_check *w)
1474{
1475 if (ev_is_active (w))
1476 return;
1477
1478 ev_start (EV_A_ (W)w, ++checkcnt);
1479 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1480 checks [checkcnt - 1] = w;
1481}
1482
1483void
1484ev_check_stop (EV_P_ struct ev_check *w)
1485{
1486 ev_clear_pending (EV_A_ (W)w);
1487 if (!ev_is_active (w))
1488 return;
1489
1490 checks [((W)w)->active - 1] = checks [--checkcnt];
1491 ev_stop (EV_A_ (W)w);
1029} 1492}
1030 1493
1031#ifndef SA_RESTART 1494#ifndef SA_RESTART
1032# define SA_RESTART 0 1495# define SA_RESTART 0
1033#endif 1496#endif
1034 1497
1035void 1498void
1036ev_signal_start (struct ev_signal *w) 1499ev_signal_start (EV_P_ struct ev_signal *w)
1037{ 1500{
1501#if EV_MULTIPLICITY
1502 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1503#endif
1038 if (ev_is_active (w)) 1504 if (ev_is_active (w))
1039 return; 1505 return;
1040 1506
1041 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1507 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1042 1508
1043 ev_start ((W)w, 1); 1509 ev_start (EV_A_ (W)w, 1);
1044 array_needsize (signals, signalmax, w->signum, signals_init); 1510 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1045 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1511 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1046 1512
1047 if (!w->next) 1513 if (!((WL)w)->next)
1048 { 1514 {
1515#if WIN32
1516 signal (w->signum, sighandler);
1517#else
1049 struct sigaction sa; 1518 struct sigaction sa;
1050 sa.sa_handler = sighandler; 1519 sa.sa_handler = sighandler;
1051 sigfillset (&sa.sa_mask); 1520 sigfillset (&sa.sa_mask);
1052 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1521 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1053 sigaction (w->signum, &sa, 0); 1522 sigaction (w->signum, &sa, 0);
1523#endif
1054 } 1524 }
1055} 1525}
1056 1526
1057void 1527void
1058ev_signal_stop (struct ev_signal *w) 1528ev_signal_stop (EV_P_ struct ev_signal *w)
1059{ 1529{
1060 ev_clear_pending ((W)w); 1530 ev_clear_pending (EV_A_ (W)w);
1061 if (!ev_is_active (w)) 1531 if (!ev_is_active (w))
1062 return; 1532 return;
1063 1533
1064 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1534 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1065 ev_stop ((W)w); 1535 ev_stop (EV_A_ (W)w);
1066 1536
1067 if (!signals [w->signum - 1].head) 1537 if (!signals [w->signum - 1].head)
1068 signal (w->signum, SIG_DFL); 1538 signal (w->signum, SIG_DFL);
1069} 1539}
1070 1540
1071void 1541void
1072ev_idle_start (struct ev_idle *w) 1542ev_child_start (EV_P_ struct ev_child *w)
1073{ 1543{
1544#if EV_MULTIPLICITY
1545 assert (("child watchers are only supported in the default loop", loop == default_loop));
1546#endif
1074 if (ev_is_active (w)) 1547 if (ev_is_active (w))
1075 return; 1548 return;
1076 1549
1077 ev_start ((W)w, ++idlecnt);
1078 array_needsize (idles, idlemax, idlecnt, );
1079 idles [idlecnt - 1] = w;
1080}
1081
1082void
1083ev_idle_stop (struct ev_idle *w)
1084{
1085 ev_clear_pending ((W)w);
1086 if (ev_is_active (w))
1087 return;
1088
1089 idles [w->active - 1] = idles [--idlecnt];
1090 ev_stop ((W)w);
1091}
1092
1093void
1094ev_prepare_start (struct ev_prepare *w)
1095{
1096 if (ev_is_active (w))
1097 return;
1098
1099 ev_start ((W)w, ++preparecnt);
1100 array_needsize (prepares, preparemax, preparecnt, );
1101 prepares [preparecnt - 1] = w;
1102}
1103
1104void
1105ev_prepare_stop (struct ev_prepare *w)
1106{
1107 ev_clear_pending ((W)w);
1108 if (ev_is_active (w))
1109 return;
1110
1111 prepares [w->active - 1] = prepares [--preparecnt];
1112 ev_stop ((W)w);
1113}
1114
1115void
1116ev_check_start (struct ev_check *w)
1117{
1118 if (ev_is_active (w))
1119 return;
1120
1121 ev_start ((W)w, ++checkcnt);
1122 array_needsize (checks, checkmax, checkcnt, );
1123 checks [checkcnt - 1] = w;
1124}
1125
1126void
1127ev_check_stop (struct ev_check *w)
1128{
1129 ev_clear_pending ((W)w);
1130 if (ev_is_active (w))
1131 return;
1132
1133 checks [w->active - 1] = checks [--checkcnt];
1134 ev_stop ((W)w);
1135}
1136
1137void
1138ev_child_start (struct ev_child *w)
1139{
1140 if (ev_is_active (w))
1141 return;
1142
1143 ev_start ((W)w, 1); 1550 ev_start (EV_A_ (W)w, 1);
1144 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1551 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1145} 1552}
1146 1553
1147void 1554void
1148ev_child_stop (struct ev_child *w) 1555ev_child_stop (EV_P_ struct ev_child *w)
1149{ 1556{
1150 ev_clear_pending ((W)w); 1557 ev_clear_pending (EV_A_ (W)w);
1151 if (ev_is_active (w)) 1558 if (!ev_is_active (w))
1152 return; 1559 return;
1153 1560
1154 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1561 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1155 ev_stop ((W)w); 1562 ev_stop (EV_A_ (W)w);
1156} 1563}
1157 1564
1158/*****************************************************************************/ 1565/*****************************************************************************/
1159 1566
1160struct ev_once 1567struct ev_once
1164 void (*cb)(int revents, void *arg); 1571 void (*cb)(int revents, void *arg);
1165 void *arg; 1572 void *arg;
1166}; 1573};
1167 1574
1168static void 1575static void
1169once_cb (struct ev_once *once, int revents) 1576once_cb (EV_P_ struct ev_once *once, int revents)
1170{ 1577{
1171 void (*cb)(int revents, void *arg) = once->cb; 1578 void (*cb)(int revents, void *arg) = once->cb;
1172 void *arg = once->arg; 1579 void *arg = once->arg;
1173 1580
1174 ev_io_stop (&once->io); 1581 ev_io_stop (EV_A_ &once->io);
1175 ev_timer_stop (&once->to); 1582 ev_timer_stop (EV_A_ &once->to);
1176 free (once); 1583 ev_free (once);
1177 1584
1178 cb (revents, arg); 1585 cb (revents, arg);
1179} 1586}
1180 1587
1181static void 1588static void
1182once_cb_io (struct ev_io *w, int revents) 1589once_cb_io (EV_P_ struct ev_io *w, int revents)
1183{ 1590{
1184 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1591 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1185} 1592}
1186 1593
1187static void 1594static void
1188once_cb_to (struct ev_timer *w, int revents) 1595once_cb_to (EV_P_ struct ev_timer *w, int revents)
1189{ 1596{
1190 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1597 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1191} 1598}
1192 1599
1193void 1600void
1194ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1601ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1195{ 1602{
1196 struct ev_once *once = malloc (sizeof (struct ev_once)); 1603 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1197 1604
1198 if (!once) 1605 if (!once)
1199 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1606 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1200 else 1607 else
1201 { 1608 {
1202 once->cb = cb; 1609 once->cb = cb;
1203 once->arg = arg; 1610 once->arg = arg;
1204 1611
1205 ev_watcher_init (&once->io, once_cb_io); 1612 ev_init (&once->io, once_cb_io);
1206 if (fd >= 0) 1613 if (fd >= 0)
1207 { 1614 {
1208 ev_io_set (&once->io, fd, events); 1615 ev_io_set (&once->io, fd, events);
1209 ev_io_start (&once->io); 1616 ev_io_start (EV_A_ &once->io);
1210 } 1617 }
1211 1618
1212 ev_watcher_init (&once->to, once_cb_to); 1619 ev_init (&once->to, once_cb_to);
1213 if (timeout >= 0.) 1620 if (timeout >= 0.)
1214 { 1621 {
1215 ev_timer_set (&once->to, timeout, 0.); 1622 ev_timer_set (&once->to, timeout, 0.);
1216 ev_timer_start (&once->to); 1623 ev_timer_start (EV_A_ &once->to);
1217 } 1624 }
1218 } 1625 }
1219} 1626}
1220 1627
1221/*****************************************************************************/ 1628#ifdef __cplusplus
1222
1223#if 0
1224
1225struct ev_io wio;
1226
1227static void
1228sin_cb (struct ev_io *w, int revents)
1229{
1230 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1231} 1629}
1232
1233static void
1234ocb (struct ev_timer *w, int revents)
1235{
1236 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1237 ev_timer_stop (w);
1238 ev_timer_start (w);
1239}
1240
1241static void
1242scb (struct ev_signal *w, int revents)
1243{
1244 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1245 ev_io_stop (&wio);
1246 ev_io_start (&wio);
1247}
1248
1249static void
1250gcb (struct ev_signal *w, int revents)
1251{
1252 fprintf (stderr, "generic %x\n", revents);
1253
1254}
1255
1256int main (void)
1257{
1258 ev_init (0);
1259
1260 ev_io_init (&wio, sin_cb, 0, EV_READ);
1261 ev_io_start (&wio);
1262
1263 struct ev_timer t[10000];
1264
1265#if 0
1266 int i;
1267 for (i = 0; i < 10000; ++i)
1268 {
1269 struct ev_timer *w = t + i;
1270 ev_watcher_init (w, ocb, i);
1271 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1272 ev_timer_start (w);
1273 if (drand48 () < 0.5)
1274 ev_timer_stop (w);
1275 }
1276#endif 1630#endif
1277 1631
1278 struct ev_timer t1;
1279 ev_timer_init (&t1, ocb, 5, 10);
1280 ev_timer_start (&t1);
1281
1282 struct ev_signal sig;
1283 ev_signal_init (&sig, scb, SIGQUIT);
1284 ev_signal_start (&sig);
1285
1286 struct ev_check cw;
1287 ev_check_init (&cw, gcb);
1288 ev_check_start (&cw);
1289
1290 struct ev_idle iw;
1291 ev_idle_init (&iw, gcb);
1292 ev_idle_start (&iw);
1293
1294 ev_loop (0);
1295
1296 return 0;
1297}
1298
1299#endif
1300
1301
1302
1303

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines