ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.240 by root, Thu May 8 21:21:41 2008 UTC vs.
Revision 1.472 by root, Tue Sep 9 13:24:13 2014 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012,2013 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48# if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52# endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
52# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
55# endif 71# endif
56# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
58# endif 74# endif
59# else 75# else
60# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
62# endif 78# endif
63# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
65# endif 81# endif
66# endif 82# endif
67 83
84# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
71# else 88# else
89# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
74# endif 100# endif
75 101
102# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 105# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 106# else
107# undef EV_USE_POLL
88# define EV_USE_POLL 0 108# define EV_USE_POLL 0
89# endif
90# endif 109# endif
91 110
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
95# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
98# endif 118# endif
99 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
106# endif 127# endif
107 128
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
111# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
114# endif 136# endif
115 137
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
122# endif 145# endif
123 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 148# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 149# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
130# endif 154# endif
131 155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
132#endif 163# endif
164
165#endif
133 166
134#include <math.h>
135#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
136#include <fcntl.h> 169#include <fcntl.h>
137#include <stddef.h> 170#include <stddef.h>
138 171
139#include <stdio.h> 172#include <stdio.h>
140 173
141#include <assert.h> 174#include <assert.h>
142#include <errno.h> 175#include <errno.h>
143#include <sys/types.h> 176#include <sys/types.h>
144#include <time.h> 177#include <time.h>
178#include <limits.h>
145 179
146#include <signal.h> 180#include <signal.h>
147 181
148#ifdef EV_H 182#ifdef EV_H
149# include EV_H 183# include EV_H
150#else 184#else
151# include "ev.h" 185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
152#endif 197#endif
153 198
154#ifndef _WIN32 199#ifndef _WIN32
155# include <sys/time.h> 200# include <sys/time.h>
156# include <sys/wait.h> 201# include <sys/wait.h>
157# include <unistd.h> 202# include <unistd.h>
158#else 203#else
204# include <io.h>
159# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
160# include <windows.h> 207# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 208# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 209# define EV_SELECT_IS_WINSOCKET 1
163# endif 210# endif
211# undef EV_AVOID_STDIO
164#endif 212#endif
213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
165 221
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 222/* this block tries to deduce configuration from header-defined symbols and defaults */
167 223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# define EV_NSIG (8 * sizeof (sigset_t) + 1)
247#endif
248
249#ifndef EV_USE_FLOOR
250# define EV_USE_FLOOR 0
251#endif
252
253#ifndef EV_USE_CLOCK_SYSCALL
254# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
255# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
256# else
257# define EV_USE_CLOCK_SYSCALL 0
258# endif
259#endif
260
261#if !(_POSIX_TIMERS > 0)
262# ifndef EV_USE_MONOTONIC
263# define EV_USE_MONOTONIC 0
264# endif
265# ifndef EV_USE_REALTIME
266# define EV_USE_REALTIME 0
267# endif
268#endif
269
168#ifndef EV_USE_MONOTONIC 270#ifndef EV_USE_MONOTONIC
271# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
272# define EV_USE_MONOTONIC EV_FEATURE_OS
273# else
169# define EV_USE_MONOTONIC 0 274# define EV_USE_MONOTONIC 0
275# endif
170#endif 276#endif
171 277
172#ifndef EV_USE_REALTIME 278#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 279# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 280#endif
175 281
176#ifndef EV_USE_NANOSLEEP 282#ifndef EV_USE_NANOSLEEP
283# if _POSIX_C_SOURCE >= 199309L
284# define EV_USE_NANOSLEEP EV_FEATURE_OS
285# else
177# define EV_USE_NANOSLEEP 0 286# define EV_USE_NANOSLEEP 0
287# endif
178#endif 288#endif
179 289
180#ifndef EV_USE_SELECT 290#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 291# define EV_USE_SELECT EV_FEATURE_BACKENDS
182#endif 292#endif
183 293
184#ifndef EV_USE_POLL 294#ifndef EV_USE_POLL
185# ifdef _WIN32 295# ifdef _WIN32
186# define EV_USE_POLL 0 296# define EV_USE_POLL 0
187# else 297# else
188# define EV_USE_POLL 1 298# define EV_USE_POLL EV_FEATURE_BACKENDS
189# endif 299# endif
190#endif 300#endif
191 301
192#ifndef EV_USE_EPOLL 302#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 303# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1 304# define EV_USE_EPOLL EV_FEATURE_BACKENDS
195# else 305# else
196# define EV_USE_EPOLL 0 306# define EV_USE_EPOLL 0
197# endif 307# endif
198#endif 308#endif
199 309
205# define EV_USE_PORT 0 315# define EV_USE_PORT 0
206#endif 316#endif
207 317
208#ifndef EV_USE_INOTIFY 318#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 319# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1 320# define EV_USE_INOTIFY EV_FEATURE_OS
211# else 321# else
212# define EV_USE_INOTIFY 0 322# define EV_USE_INOTIFY 0
213# endif 323# endif
214#endif 324#endif
215 325
216#ifndef EV_PID_HASHSIZE 326#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL 327# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif 328#endif
223 329
224#ifndef EV_INOTIFY_HASHSIZE 330#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL 331# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif 332#endif
231 333
232#ifndef EV_USE_EVENTFD 334#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 335# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 336# define EV_USE_EVENTFD EV_FEATURE_OS
235# else 337# else
236# define EV_USE_EVENTFD 0 338# define EV_USE_EVENTFD 0
237# endif 339# endif
238#endif 340#endif
239 341
342#ifndef EV_USE_SIGNALFD
343# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
344# define EV_USE_SIGNALFD EV_FEATURE_OS
345# else
346# define EV_USE_SIGNALFD 0
347# endif
348#endif
349
350#if 0 /* debugging */
351# define EV_VERIFY 3
352# define EV_USE_4HEAP 1
353# define EV_HEAP_CACHE_AT 1
354#endif
355
356#ifndef EV_VERIFY
357# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
358#endif
359
360#ifndef EV_USE_4HEAP
361# define EV_USE_4HEAP EV_FEATURE_DATA
362#endif
363
364#ifndef EV_HEAP_CACHE_AT
365# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
366#endif
367
368#ifdef ANDROID
369/* supposedly, android doesn't typedef fd_mask */
370# undef EV_USE_SELECT
371# define EV_USE_SELECT 0
372/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
373# undef EV_USE_CLOCK_SYSCALL
374# define EV_USE_CLOCK_SYSCALL 0
375#endif
376
377/* aix's poll.h seems to cause lots of trouble */
378#ifdef _AIX
379/* AIX has a completely broken poll.h header */
380# undef EV_USE_POLL
381# define EV_USE_POLL 0
382#endif
383
384/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
385/* which makes programs even slower. might work on other unices, too. */
386#if EV_USE_CLOCK_SYSCALL
387# include <sys/syscall.h>
388# ifdef SYS_clock_gettime
389# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
390# undef EV_USE_MONOTONIC
391# define EV_USE_MONOTONIC 1
392# else
393# undef EV_USE_CLOCK_SYSCALL
394# define EV_USE_CLOCK_SYSCALL 0
395# endif
396#endif
397
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 398/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 399
242#ifndef CLOCK_MONOTONIC 400#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 401# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 402# define EV_USE_MONOTONIC 0
253# undef EV_USE_INOTIFY 411# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0 412# define EV_USE_INOTIFY 0
255#endif 413#endif
256 414
257#if !EV_USE_NANOSLEEP 415#if !EV_USE_NANOSLEEP
258# ifndef _WIN32 416/* hp-ux has it in sys/time.h, which we unconditionally include above */
417# if !defined _WIN32 && !defined __hpux
259# include <sys/select.h> 418# include <sys/select.h>
260# endif 419# endif
261#endif 420#endif
262 421
263#if EV_USE_INOTIFY 422#if EV_USE_INOTIFY
423# include <sys/statfs.h>
264# include <sys/inotify.h> 424# include <sys/inotify.h>
425/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
426# ifndef IN_DONT_FOLLOW
427# undef EV_USE_INOTIFY
428# define EV_USE_INOTIFY 0
265#endif 429# endif
266
267#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h>
269#endif 430#endif
270 431
271#if EV_USE_EVENTFD 432#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 433/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h> 434# include <stdint.h>
274# ifdef __cplusplus 435# ifndef EFD_NONBLOCK
275extern "C" { 436# define EFD_NONBLOCK O_NONBLOCK
276# endif 437# endif
277int eventfd (unsigned int initval, int flags); 438# ifndef EFD_CLOEXEC
278# ifdef __cplusplus 439# ifdef O_CLOEXEC
279} 440# define EFD_CLOEXEC O_CLOEXEC
441# else
442# define EFD_CLOEXEC 02000000
443# endif
280# endif 444# endif
445EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
446#endif
447
448#if EV_USE_SIGNALFD
449/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
450# include <stdint.h>
451# ifndef SFD_NONBLOCK
452# define SFD_NONBLOCK O_NONBLOCK
453# endif
454# ifndef SFD_CLOEXEC
455# ifdef O_CLOEXEC
456# define SFD_CLOEXEC O_CLOEXEC
457# else
458# define SFD_CLOEXEC 02000000
459# endif
460# endif
461EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
462
463struct signalfd_siginfo
464{
465 uint32_t ssi_signo;
466 char pad[128 - sizeof (uint32_t)];
467};
281#endif 468#endif
282 469
283/**/ 470/**/
284 471
472#if EV_VERIFY >= 3
473# define EV_FREQUENT_CHECK ev_verify (EV_A)
474#else
475# define EV_FREQUENT_CHECK do { } while (0)
476#endif
477
285/* 478/*
286 * This is used to avoid floating point rounding problems. 479 * This is used to work around floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding
289 * errors are against us.
290 * This value is good at least till the year 4000. 480 * This value is good at least till the year 4000.
291 * Better solutions welcome.
292 */ 481 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 482#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
483/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
294 484
295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 485#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 486#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
298 487
488#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
489#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
490
491/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
492/* ECB.H BEGIN */
493/*
494 * libecb - http://software.schmorp.de/pkg/libecb
495 *
496 * Copyright (©) 2009-2014 Marc Alexander Lehmann <libecb@schmorp.de>
497 * Copyright (©) 2011 Emanuele Giaquinta
498 * All rights reserved.
499 *
500 * Redistribution and use in source and binary forms, with or without modifica-
501 * tion, are permitted provided that the following conditions are met:
502 *
503 * 1. Redistributions of source code must retain the above copyright notice,
504 * this list of conditions and the following disclaimer.
505 *
506 * 2. Redistributions in binary form must reproduce the above copyright
507 * notice, this list of conditions and the following disclaimer in the
508 * documentation and/or other materials provided with the distribution.
509 *
510 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
511 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
512 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
513 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
514 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
515 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
516 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
517 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
518 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
519 * OF THE POSSIBILITY OF SUCH DAMAGE.
520 *
521 * Alternatively, the contents of this file may be used under the terms of
522 * the GNU General Public License ("GPL") version 2 or any later version,
523 * in which case the provisions of the GPL are applicable instead of
524 * the above. If you wish to allow the use of your version of this file
525 * only under the terms of the GPL and not to allow others to use your
526 * version of this file under the BSD license, indicate your decision
527 * by deleting the provisions above and replace them with the notice
528 * and other provisions required by the GPL. If you do not delete the
529 * provisions above, a recipient may use your version of this file under
530 * either the BSD or the GPL.
531 */
532
533#ifndef ECB_H
534#define ECB_H
535
536/* 16 bits major, 16 bits minor */
537#define ECB_VERSION 0x00010003
538
539#ifdef _WIN32
540 typedef signed char int8_t;
541 typedef unsigned char uint8_t;
542 typedef signed short int16_t;
543 typedef unsigned short uint16_t;
544 typedef signed int int32_t;
545 typedef unsigned int uint32_t;
299#if __GNUC__ >= 4 546 #if __GNUC__
300# define expect(expr,value) __builtin_expect ((expr),(value)) 547 typedef signed long long int64_t;
301# define noinline __attribute__ ((noinline)) 548 typedef unsigned long long uint64_t;
549 #else /* _MSC_VER || __BORLANDC__ */
550 typedef signed __int64 int64_t;
551 typedef unsigned __int64 uint64_t;
552 #endif
553 #ifdef _WIN64
554 #define ECB_PTRSIZE 8
555 typedef uint64_t uintptr_t;
556 typedef int64_t intptr_t;
557 #else
558 #define ECB_PTRSIZE 4
559 typedef uint32_t uintptr_t;
560 typedef int32_t intptr_t;
561 #endif
302#else 562#else
303# define expect(expr,value) (expr) 563 #include <inttypes.h>
304# define noinline 564 #if UINTMAX_MAX > 0xffffffffU
305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2 565 #define ECB_PTRSIZE 8
306# define inline 566 #else
567 #define ECB_PTRSIZE 4
568 #endif
307# endif 569#endif
570
571/* work around x32 idiocy by defining proper macros */
572#if __amd64 || __x86_64 || _M_AMD64 || _M_X64
573 #if _ILP32
574 #define ECB_AMD64_X32 1
575 #else
576 #define ECB_AMD64 1
308#endif 577 #endif
578#endif
309 579
580/* many compilers define _GNUC_ to some versions but then only implement
581 * what their idiot authors think are the "more important" extensions,
582 * causing enormous grief in return for some better fake benchmark numbers.
583 * or so.
584 * we try to detect these and simply assume they are not gcc - if they have
585 * an issue with that they should have done it right in the first place.
586 */
587#ifndef ECB_GCC_VERSION
588 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
589 #define ECB_GCC_VERSION(major,minor) 0
590 #else
591 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
592 #endif
593#endif
594
595#define ECB_CPP (__cplusplus+0)
596#define ECB_CPP11 (__cplusplus >= 201103L)
597
598#if ECB_CPP
599 #define ECB_C 0
600 #define ECB_STDC_VERSION 0
601#else
602 #define ECB_C 1
603 #define ECB_STDC_VERSION __STDC_VERSION__
604#endif
605
606#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
607#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
608
609#if ECB_CPP
610 #define ECB_EXTERN_C extern "C"
611 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
612 #define ECB_EXTERN_C_END }
613#else
614 #define ECB_EXTERN_C extern
615 #define ECB_EXTERN_C_BEG
616 #define ECB_EXTERN_C_END
617#endif
618
619/*****************************************************************************/
620
621/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
622/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
623
624#if ECB_NO_THREADS
625 #define ECB_NO_SMP 1
626#endif
627
628#if ECB_NO_SMP
629 #define ECB_MEMORY_FENCE do { } while (0)
630#endif
631
632#ifndef ECB_MEMORY_FENCE
633 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
634 #if __i386 || __i386__
635 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
636 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
637 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
638 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
639 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
640 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
641 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
642 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
643 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
644 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
645 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
646 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
647 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
648 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
649 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
650 #elif __aarch64__
651 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
652 #elif (__sparc || __sparc__) && !__sparcv8
653 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
654 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
655 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
656 #elif defined __s390__ || defined __s390x__
657 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
658 #elif defined __mips__
659 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
660 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
661 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
662 #elif defined __alpha__
663 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
664 #elif defined __hppa__
665 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
666 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
667 #elif defined __ia64__
668 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
669 #elif defined __m68k__
670 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
671 #elif defined __m88k__
672 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
673 #elif defined __sh__
674 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
675 #endif
676 #endif
677#endif
678
679#ifndef ECB_MEMORY_FENCE
680 #if ECB_GCC_VERSION(4,7)
681 /* see comment below (stdatomic.h) about the C11 memory model. */
682 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
683 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
684 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
685
686 /* The __has_feature syntax from clang is so misdesigned that we cannot use it
687 * without risking compile time errors with other compilers. We *could*
688 * define our own ecb_clang_has_feature, but I just can't be bothered to work
689 * around this shit time and again.
690 * #elif defined __clang && __has_feature (cxx_atomic)
691 * // see comment below (stdatomic.h) about the C11 memory model.
692 * #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
693 * #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
694 * #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
695 */
696
697 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
698 #define ECB_MEMORY_FENCE __sync_synchronize ()
699 #elif _MSC_VER >= 1500 /* VC++ 2008 */
700 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
701 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
702 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
703 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
704 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
705 #elif _MSC_VER >= 1400 /* VC++ 2005 */
706 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
707 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
708 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
709 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
710 #elif defined _WIN32
711 #include <WinNT.h>
712 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
713 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
714 #include <mbarrier.h>
715 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
716 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
717 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
718 #elif __xlC__
719 #define ECB_MEMORY_FENCE __sync ()
720 #endif
721#endif
722
723#ifndef ECB_MEMORY_FENCE
724 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
725 /* we assume that these memory fences work on all variables/all memory accesses, */
726 /* not just C11 atomics and atomic accesses */
727 #include <stdatomic.h>
728 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
729 /* any fence other than seq_cst, which isn't very efficient for us. */
730 /* Why that is, we don't know - either the C11 memory model is quite useless */
731 /* for most usages, or gcc and clang have a bug */
732 /* I *currently* lean towards the latter, and inefficiently implement */
733 /* all three of ecb's fences as a seq_cst fence */
734 /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */
735 /* for all __atomic_thread_fence's except seq_cst */
736 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
737 #endif
738#endif
739
740#ifndef ECB_MEMORY_FENCE
741 #if !ECB_AVOID_PTHREADS
742 /*
743 * if you get undefined symbol references to pthread_mutex_lock,
744 * or failure to find pthread.h, then you should implement
745 * the ECB_MEMORY_FENCE operations for your cpu/compiler
746 * OR provide pthread.h and link against the posix thread library
747 * of your system.
748 */
749 #include <pthread.h>
750 #define ECB_NEEDS_PTHREADS 1
751 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
752
753 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
754 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
755 #endif
756#endif
757
758#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
759 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
760#endif
761
762#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
763 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
764#endif
765
766/*****************************************************************************/
767
768#if __cplusplus
769 #define ecb_inline static inline
770#elif ECB_GCC_VERSION(2,5)
771 #define ecb_inline static __inline__
772#elif ECB_C99
773 #define ecb_inline static inline
774#else
775 #define ecb_inline static
776#endif
777
778#if ECB_GCC_VERSION(3,3)
779 #define ecb_restrict __restrict__
780#elif ECB_C99
781 #define ecb_restrict restrict
782#else
783 #define ecb_restrict
784#endif
785
786typedef int ecb_bool;
787
788#define ECB_CONCAT_(a, b) a ## b
789#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
790#define ECB_STRINGIFY_(a) # a
791#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
792
793#define ecb_function_ ecb_inline
794
795#if ECB_GCC_VERSION(3,1)
796 #define ecb_attribute(attrlist) __attribute__(attrlist)
797 #define ecb_is_constant(expr) __builtin_constant_p (expr)
798 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
799 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
800#else
801 #define ecb_attribute(attrlist)
802
803 /* possible C11 impl for integral types
804 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
805 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
806
807 #define ecb_is_constant(expr) 0
808 #define ecb_expect(expr,value) (expr)
809 #define ecb_prefetch(addr,rw,locality)
810#endif
811
812/* no emulation for ecb_decltype */
813#if ECB_GCC_VERSION(4,5)
814 #define ecb_decltype(x) __decltype(x)
815#elif ECB_GCC_VERSION(3,0)
816 #define ecb_decltype(x) __typeof(x)
817#endif
818
819#if _MSC_VER >= 1300
820 #define ecb_deprecated __declspec(deprecated)
821#else
822 #define ecb_deprecated ecb_attribute ((__deprecated__))
823#endif
824
825#define ecb_noinline ecb_attribute ((__noinline__))
826#define ecb_unused ecb_attribute ((__unused__))
827#define ecb_const ecb_attribute ((__const__))
828#define ecb_pure ecb_attribute ((__pure__))
829
830/* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx __declspec(noreturn) */
831#if ECB_C11
832 #define ecb_noreturn _Noreturn
833#else
834 #define ecb_noreturn ecb_attribute ((__noreturn__))
835#endif
836
837#if ECB_GCC_VERSION(4,3)
838 #define ecb_artificial ecb_attribute ((__artificial__))
839 #define ecb_hot ecb_attribute ((__hot__))
840 #define ecb_cold ecb_attribute ((__cold__))
841#else
842 #define ecb_artificial
843 #define ecb_hot
844 #define ecb_cold
845#endif
846
847/* put around conditional expressions if you are very sure that the */
848/* expression is mostly true or mostly false. note that these return */
849/* booleans, not the expression. */
310#define expect_false(expr) expect ((expr) != 0, 0) 850#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
311#define expect_true(expr) expect ((expr) != 0, 1) 851#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
852/* for compatibility to the rest of the world */
853#define ecb_likely(expr) ecb_expect_true (expr)
854#define ecb_unlikely(expr) ecb_expect_false (expr)
855
856/* count trailing zero bits and count # of one bits */
857#if ECB_GCC_VERSION(3,4)
858 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
859 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
860 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
861 #define ecb_ctz32(x) __builtin_ctz (x)
862 #define ecb_ctz64(x) __builtin_ctzll (x)
863 #define ecb_popcount32(x) __builtin_popcount (x)
864 /* no popcountll */
865#else
866 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
867 ecb_function_ int
868 ecb_ctz32 (uint32_t x)
869 {
870 int r = 0;
871
872 x &= ~x + 1; /* this isolates the lowest bit */
873
874#if ECB_branchless_on_i386
875 r += !!(x & 0xaaaaaaaa) << 0;
876 r += !!(x & 0xcccccccc) << 1;
877 r += !!(x & 0xf0f0f0f0) << 2;
878 r += !!(x & 0xff00ff00) << 3;
879 r += !!(x & 0xffff0000) << 4;
880#else
881 if (x & 0xaaaaaaaa) r += 1;
882 if (x & 0xcccccccc) r += 2;
883 if (x & 0xf0f0f0f0) r += 4;
884 if (x & 0xff00ff00) r += 8;
885 if (x & 0xffff0000) r += 16;
886#endif
887
888 return r;
889 }
890
891 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
892 ecb_function_ int
893 ecb_ctz64 (uint64_t x)
894 {
895 int shift = x & 0xffffffffU ? 0 : 32;
896 return ecb_ctz32 (x >> shift) + shift;
897 }
898
899 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
900 ecb_function_ int
901 ecb_popcount32 (uint32_t x)
902 {
903 x -= (x >> 1) & 0x55555555;
904 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
905 x = ((x >> 4) + x) & 0x0f0f0f0f;
906 x *= 0x01010101;
907
908 return x >> 24;
909 }
910
911 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
912 ecb_function_ int ecb_ld32 (uint32_t x)
913 {
914 int r = 0;
915
916 if (x >> 16) { x >>= 16; r += 16; }
917 if (x >> 8) { x >>= 8; r += 8; }
918 if (x >> 4) { x >>= 4; r += 4; }
919 if (x >> 2) { x >>= 2; r += 2; }
920 if (x >> 1) { r += 1; }
921
922 return r;
923 }
924
925 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
926 ecb_function_ int ecb_ld64 (uint64_t x)
927 {
928 int r = 0;
929
930 if (x >> 32) { x >>= 32; r += 32; }
931
932 return r + ecb_ld32 (x);
933 }
934#endif
935
936ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
937ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
938ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
939ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
940
941ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
942ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
943{
944 return ( (x * 0x0802U & 0x22110U)
945 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
946}
947
948ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
949ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
950{
951 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
952 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
953 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
954 x = ( x >> 8 ) | ( x << 8);
955
956 return x;
957}
958
959ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
960ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
961{
962 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
963 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
964 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
965 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
966 x = ( x >> 16 ) | ( x << 16);
967
968 return x;
969}
970
971/* popcount64 is only available on 64 bit cpus as gcc builtin */
972/* so for this version we are lazy */
973ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
974ecb_function_ int
975ecb_popcount64 (uint64_t x)
976{
977 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
978}
979
980ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
981ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
982ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
983ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
984ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
985ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
986ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
987ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
988
989ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
990ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
991ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
992ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
993ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
994ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
995ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
996ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
997
998#if ECB_GCC_VERSION(4,3)
999 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1000 #define ecb_bswap32(x) __builtin_bswap32 (x)
1001 #define ecb_bswap64(x) __builtin_bswap64 (x)
1002#else
1003 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
1004 ecb_function_ uint16_t
1005 ecb_bswap16 (uint16_t x)
1006 {
1007 return ecb_rotl16 (x, 8);
1008 }
1009
1010 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
1011 ecb_function_ uint32_t
1012 ecb_bswap32 (uint32_t x)
1013 {
1014 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1015 }
1016
1017 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
1018 ecb_function_ uint64_t
1019 ecb_bswap64 (uint64_t x)
1020 {
1021 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1022 }
1023#endif
1024
1025#if ECB_GCC_VERSION(4,5)
1026 #define ecb_unreachable() __builtin_unreachable ()
1027#else
1028 /* this seems to work fine, but gcc always emits a warning for it :/ */
1029 ecb_inline void ecb_unreachable (void) ecb_noreturn;
1030 ecb_inline void ecb_unreachable (void) { }
1031#endif
1032
1033/* try to tell the compiler that some condition is definitely true */
1034#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1035
1036ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
1037ecb_inline unsigned char
1038ecb_byteorder_helper (void)
1039{
1040 /* the union code still generates code under pressure in gcc, */
1041 /* but less than using pointers, and always seems to */
1042 /* successfully return a constant. */
1043 /* the reason why we have this horrible preprocessor mess */
1044 /* is to avoid it in all cases, at least on common architectures */
1045 /* or when using a recent enough gcc version (>= 4.6) */
1046#if __i386 || __i386__ || _M_X86 || __amd64 || __amd64__ || _M_X64
1047 return 0x44;
1048#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1049 return 0x44;
1050#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1051 return 0x11;
1052#else
1053 union
1054 {
1055 uint32_t i;
1056 uint8_t c;
1057 } u = { 0x11223344 };
1058 return u.c;
1059#endif
1060}
1061
1062ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
1063ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
1064ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
1065ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
1066
1067#if ECB_GCC_VERSION(3,0) || ECB_C99
1068 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1069#else
1070 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1071#endif
1072
1073#if __cplusplus
1074 template<typename T>
1075 static inline T ecb_div_rd (T val, T div)
1076 {
1077 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1078 }
1079 template<typename T>
1080 static inline T ecb_div_ru (T val, T div)
1081 {
1082 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1083 }
1084#else
1085 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1086 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1087#endif
1088
1089#if ecb_cplusplus_does_not_suck
1090 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1091 template<typename T, int N>
1092 static inline int ecb_array_length (const T (&arr)[N])
1093 {
1094 return N;
1095 }
1096#else
1097 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1098#endif
1099
1100/*******************************************************************************/
1101/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1102
1103/* basically, everything uses "ieee pure-endian" floating point numbers */
1104/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1105#if 0 \
1106 || __i386 || __i386__ \
1107 || __amd64 || __amd64__ || __x86_64 || __x86_64__ \
1108 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1109 || defined __s390__ || defined __s390x__ \
1110 || defined __mips__ \
1111 || defined __alpha__ \
1112 || defined __hppa__ \
1113 || defined __ia64__ \
1114 || defined __m68k__ \
1115 || defined __m88k__ \
1116 || defined __sh__ \
1117 || defined _M_IX86 || defined _M_AMD64 || defined _M_IA64 \
1118 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1119 || defined __aarch64__
1120 #define ECB_STDFP 1
1121 #include <string.h> /* for memcpy */
1122#else
1123 #define ECB_STDFP 0
1124#endif
1125
1126#ifndef ECB_NO_LIBM
1127
1128 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1129
1130 /* only the oldest of old doesn't have this one. solaris. */
1131 #ifdef INFINITY
1132 #define ECB_INFINITY INFINITY
1133 #else
1134 #define ECB_INFINITY HUGE_VAL
1135 #endif
1136
1137 #ifdef NAN
1138 #define ECB_NAN NAN
1139 #else
1140 #define ECB_NAN ECB_INFINITY
1141 #endif
1142
1143 /* converts an ieee half/binary16 to a float */
1144 ecb_function_ float ecb_binary16_to_float (uint16_t x) ecb_const;
1145 ecb_function_ float
1146 ecb_binary16_to_float (uint16_t x)
1147 {
1148 int e = (x >> 10) & 0x1f;
1149 int m = x & 0x3ff;
1150 float r;
1151
1152 if (!e ) r = ldexpf (m , -24);
1153 else if (e != 31) r = ldexpf (m + 0x400, e - 25);
1154 else if (m ) r = ECB_NAN;
1155 else r = ECB_INFINITY;
1156
1157 return x & 0x8000 ? -r : r;
1158 }
1159
1160 /* convert a float to ieee single/binary32 */
1161 ecb_function_ uint32_t ecb_float_to_binary32 (float x) ecb_const;
1162 ecb_function_ uint32_t
1163 ecb_float_to_binary32 (float x)
1164 {
1165 uint32_t r;
1166
1167 #if ECB_STDFP
1168 memcpy (&r, &x, 4);
1169 #else
1170 /* slow emulation, works for anything but -0 */
1171 uint32_t m;
1172 int e;
1173
1174 if (x == 0e0f ) return 0x00000000U;
1175 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1176 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1177 if (x != x ) return 0x7fbfffffU;
1178
1179 m = frexpf (x, &e) * 0x1000000U;
1180
1181 r = m & 0x80000000U;
1182
1183 if (r)
1184 m = -m;
1185
1186 if (e <= -126)
1187 {
1188 m &= 0xffffffU;
1189 m >>= (-125 - e);
1190 e = -126;
1191 }
1192
1193 r |= (e + 126) << 23;
1194 r |= m & 0x7fffffU;
1195 #endif
1196
1197 return r;
1198 }
1199
1200 /* converts an ieee single/binary32 to a float */
1201 ecb_function_ float ecb_binary32_to_float (uint32_t x) ecb_const;
1202 ecb_function_ float
1203 ecb_binary32_to_float (uint32_t x)
1204 {
1205 float r;
1206
1207 #if ECB_STDFP
1208 memcpy (&r, &x, 4);
1209 #else
1210 /* emulation, only works for normals and subnormals and +0 */
1211 int neg = x >> 31;
1212 int e = (x >> 23) & 0xffU;
1213
1214 x &= 0x7fffffU;
1215
1216 if (e)
1217 x |= 0x800000U;
1218 else
1219 e = 1;
1220
1221 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1222 r = ldexpf (x * (0.5f / 0x800000U), e - 126);
1223
1224 r = neg ? -r : r;
1225 #endif
1226
1227 return r;
1228 }
1229
1230 /* convert a double to ieee double/binary64 */
1231 ecb_function_ uint64_t ecb_double_to_binary64 (double x) ecb_const;
1232 ecb_function_ uint64_t
1233 ecb_double_to_binary64 (double x)
1234 {
1235 uint64_t r;
1236
1237 #if ECB_STDFP
1238 memcpy (&r, &x, 8);
1239 #else
1240 /* slow emulation, works for anything but -0 */
1241 uint64_t m;
1242 int e;
1243
1244 if (x == 0e0 ) return 0x0000000000000000U;
1245 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1246 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1247 if (x != x ) return 0X7ff7ffffffffffffU;
1248
1249 m = frexp (x, &e) * 0x20000000000000U;
1250
1251 r = m & 0x8000000000000000;;
1252
1253 if (r)
1254 m = -m;
1255
1256 if (e <= -1022)
1257 {
1258 m &= 0x1fffffffffffffU;
1259 m >>= (-1021 - e);
1260 e = -1022;
1261 }
1262
1263 r |= ((uint64_t)(e + 1022)) << 52;
1264 r |= m & 0xfffffffffffffU;
1265 #endif
1266
1267 return r;
1268 }
1269
1270 /* converts an ieee double/binary64 to a double */
1271 ecb_function_ double ecb_binary64_to_double (uint64_t x) ecb_const;
1272 ecb_function_ double
1273 ecb_binary64_to_double (uint64_t x)
1274 {
1275 double r;
1276
1277 #if ECB_STDFP
1278 memcpy (&r, &x, 8);
1279 #else
1280 /* emulation, only works for normals and subnormals and +0 */
1281 int neg = x >> 63;
1282 int e = (x >> 52) & 0x7ffU;
1283
1284 x &= 0xfffffffffffffU;
1285
1286 if (e)
1287 x |= 0x10000000000000U;
1288 else
1289 e = 1;
1290
1291 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1292 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1293
1294 r = neg ? -r : r;
1295 #endif
1296
1297 return r;
1298 }
1299
1300#endif
1301
1302#endif
1303
1304/* ECB.H END */
1305
1306#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1307/* if your architecture doesn't need memory fences, e.g. because it is
1308 * single-cpu/core, or if you use libev in a project that doesn't use libev
1309 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1310 * libev, in which cases the memory fences become nops.
1311 * alternatively, you can remove this #error and link against libpthread,
1312 * which will then provide the memory fences.
1313 */
1314# error "memory fences not defined for your architecture, please report"
1315#endif
1316
1317#ifndef ECB_MEMORY_FENCE
1318# define ECB_MEMORY_FENCE do { } while (0)
1319# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1320# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1321#endif
1322
1323#define expect_false(cond) ecb_expect_false (cond)
1324#define expect_true(cond) ecb_expect_true (cond)
1325#define noinline ecb_noinline
1326
312#define inline_size static inline 1327#define inline_size ecb_inline
313 1328
314#if EV_MINIMAL 1329#if EV_FEATURE_CODE
1330# define inline_speed ecb_inline
1331#else
315# define inline_speed static noinline 1332# define inline_speed static noinline
1333#endif
1334
1335#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1336
1337#if EV_MINPRI == EV_MAXPRI
1338# define ABSPRI(w) (((W)w), 0)
316#else 1339#else
317# define inline_speed static inline
318#endif
319
320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1340# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1341#endif
322 1342
323#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1343#define EMPTY /* required for microsofts broken pseudo-c compiler */
324#define EMPTY2(a,b) /* used to suppress some warnings */ 1344#define EMPTY2(a,b) /* used to suppress some warnings */
325 1345
326typedef ev_watcher *W; 1346typedef ev_watcher *W;
328typedef ev_watcher_time *WT; 1348typedef ev_watcher_time *WT;
329 1349
330#define ev_active(w) ((W)(w))->active 1350#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at 1351#define ev_at(w) ((WT)(w))->at
332 1352
1353#if EV_USE_REALTIME
1354/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1355/* giving it a reasonably high chance of working on typical architectures */
1356static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1357#endif
1358
333#if EV_USE_MONOTONIC 1359#if EV_USE_MONOTONIC
334/* sig_atomic_t is used to avoid per-thread variables or locking but still */
335/* giving it a reasonably high chance of working on typical architetcures */
336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1360static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1361#endif
1362
1363#ifndef EV_FD_TO_WIN32_HANDLE
1364# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1365#endif
1366#ifndef EV_WIN32_HANDLE_TO_FD
1367# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1368#endif
1369#ifndef EV_WIN32_CLOSE_FD
1370# define EV_WIN32_CLOSE_FD(fd) close (fd)
337#endif 1371#endif
338 1372
339#ifdef _WIN32 1373#ifdef _WIN32
340# include "ev_win32.c" 1374# include "ev_win32.c"
341#endif 1375#endif
342 1376
343/*****************************************************************************/ 1377/*****************************************************************************/
344 1378
1379/* define a suitable floor function (only used by periodics atm) */
1380
1381#if EV_USE_FLOOR
1382# include <math.h>
1383# define ev_floor(v) floor (v)
1384#else
1385
1386#include <float.h>
1387
1388/* a floor() replacement function, should be independent of ev_tstamp type */
1389static ev_tstamp noinline
1390ev_floor (ev_tstamp v)
1391{
1392 /* the choice of shift factor is not terribly important */
1393#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1394 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1395#else
1396 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1397#endif
1398
1399 /* argument too large for an unsigned long? */
1400 if (expect_false (v >= shift))
1401 {
1402 ev_tstamp f;
1403
1404 if (v == v - 1.)
1405 return v; /* very large number */
1406
1407 f = shift * ev_floor (v * (1. / shift));
1408 return f + ev_floor (v - f);
1409 }
1410
1411 /* special treatment for negative args? */
1412 if (expect_false (v < 0.))
1413 {
1414 ev_tstamp f = -ev_floor (-v);
1415
1416 return f - (f == v ? 0 : 1);
1417 }
1418
1419 /* fits into an unsigned long */
1420 return (unsigned long)v;
1421}
1422
1423#endif
1424
1425/*****************************************************************************/
1426
1427#ifdef __linux
1428# include <sys/utsname.h>
1429#endif
1430
1431static unsigned int noinline ecb_cold
1432ev_linux_version (void)
1433{
1434#ifdef __linux
1435 unsigned int v = 0;
1436 struct utsname buf;
1437 int i;
1438 char *p = buf.release;
1439
1440 if (uname (&buf))
1441 return 0;
1442
1443 for (i = 3+1; --i; )
1444 {
1445 unsigned int c = 0;
1446
1447 for (;;)
1448 {
1449 if (*p >= '0' && *p <= '9')
1450 c = c * 10 + *p++ - '0';
1451 else
1452 {
1453 p += *p == '.';
1454 break;
1455 }
1456 }
1457
1458 v = (v << 8) | c;
1459 }
1460
1461 return v;
1462#else
1463 return 0;
1464#endif
1465}
1466
1467/*****************************************************************************/
1468
1469#if EV_AVOID_STDIO
1470static void noinline ecb_cold
1471ev_printerr (const char *msg)
1472{
1473 write (STDERR_FILENO, msg, strlen (msg));
1474}
1475#endif
1476
345static void (*syserr_cb)(const char *msg); 1477static void (*syserr_cb)(const char *msg) EV_THROW;
346 1478
347void 1479void ecb_cold
348ev_set_syserr_cb (void (*cb)(const char *msg)) 1480ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
349{ 1481{
350 syserr_cb = cb; 1482 syserr_cb = cb;
351} 1483}
352 1484
353static void noinline 1485static void noinline ecb_cold
354syserr (const char *msg) 1486ev_syserr (const char *msg)
355{ 1487{
356 if (!msg) 1488 if (!msg)
357 msg = "(libev) system error"; 1489 msg = "(libev) system error";
358 1490
359 if (syserr_cb) 1491 if (syserr_cb)
360 syserr_cb (msg); 1492 syserr_cb (msg);
361 else 1493 else
362 { 1494 {
1495#if EV_AVOID_STDIO
1496 ev_printerr (msg);
1497 ev_printerr (": ");
1498 ev_printerr (strerror (errno));
1499 ev_printerr ("\n");
1500#else
363 perror (msg); 1501 perror (msg);
1502#endif
364 abort (); 1503 abort ();
365 } 1504 }
366} 1505}
367 1506
368static void * 1507static void *
369ev_realloc_emul (void *ptr, long size) 1508ev_realloc_emul (void *ptr, long size) EV_THROW
370{ 1509{
371 /* some systems, notably openbsd and darwin, fail to properly 1510 /* some systems, notably openbsd and darwin, fail to properly
372 * implement realloc (x, 0) (as required by both ansi c-98 and 1511 * implement realloc (x, 0) (as required by both ansi c-89 and
373 * the single unix specification, so work around them here. 1512 * the single unix specification, so work around them here.
1513 * recently, also (at least) fedora and debian started breaking it,
1514 * despite documenting it otherwise.
374 */ 1515 */
375 1516
376 if (size) 1517 if (size)
377 return realloc (ptr, size); 1518 return realloc (ptr, size);
378 1519
379 free (ptr); 1520 free (ptr);
380 return 0; 1521 return 0;
381} 1522}
382 1523
383static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 1524static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
384 1525
385void 1526void ecb_cold
386ev_set_allocator (void *(*cb)(void *ptr, long size)) 1527ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
387{ 1528{
388 alloc = cb; 1529 alloc = cb;
389} 1530}
390 1531
391inline_speed void * 1532inline_speed void *
393{ 1534{
394 ptr = alloc (ptr, size); 1535 ptr = alloc (ptr, size);
395 1536
396 if (!ptr && size) 1537 if (!ptr && size)
397 { 1538 {
1539#if EV_AVOID_STDIO
1540 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1541#else
398 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1542 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1543#endif
399 abort (); 1544 abort ();
400 } 1545 }
401 1546
402 return ptr; 1547 return ptr;
403} 1548}
405#define ev_malloc(size) ev_realloc (0, (size)) 1550#define ev_malloc(size) ev_realloc (0, (size))
406#define ev_free(ptr) ev_realloc ((ptr), 0) 1551#define ev_free(ptr) ev_realloc ((ptr), 0)
407 1552
408/*****************************************************************************/ 1553/*****************************************************************************/
409 1554
1555/* set in reify when reification needed */
1556#define EV_ANFD_REIFY 1
1557
1558/* file descriptor info structure */
410typedef struct 1559typedef struct
411{ 1560{
412 WL head; 1561 WL head;
413 unsigned char events; 1562 unsigned char events; /* the events watched for */
1563 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1564 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
414 unsigned char reify; 1565 unsigned char unused;
1566#if EV_USE_EPOLL
1567 unsigned int egen; /* generation counter to counter epoll bugs */
1568#endif
415#if EV_SELECT_IS_WINSOCKET 1569#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
416 SOCKET handle; 1570 SOCKET handle;
417#endif 1571#endif
1572#if EV_USE_IOCP
1573 OVERLAPPED or, ow;
1574#endif
418} ANFD; 1575} ANFD;
419 1576
1577/* stores the pending event set for a given watcher */
420typedef struct 1578typedef struct
421{ 1579{
422 W w; 1580 W w;
423 int events; 1581 int events; /* the pending event set for the given watcher */
424} ANPENDING; 1582} ANPENDING;
425 1583
426#if EV_USE_INOTIFY 1584#if EV_USE_INOTIFY
1585/* hash table entry per inotify-id */
427typedef struct 1586typedef struct
428{ 1587{
429 WL head; 1588 WL head;
430} ANFS; 1589} ANFS;
1590#endif
1591
1592/* Heap Entry */
1593#if EV_HEAP_CACHE_AT
1594 /* a heap element */
1595 typedef struct {
1596 ev_tstamp at;
1597 WT w;
1598 } ANHE;
1599
1600 #define ANHE_w(he) (he).w /* access watcher, read-write */
1601 #define ANHE_at(he) (he).at /* access cached at, read-only */
1602 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1603#else
1604 /* a heap element */
1605 typedef WT ANHE;
1606
1607 #define ANHE_w(he) (he)
1608 #define ANHE_at(he) (he)->at
1609 #define ANHE_at_cache(he)
431#endif 1610#endif
432 1611
433#if EV_MULTIPLICITY 1612#if EV_MULTIPLICITY
434 1613
435 struct ev_loop 1614 struct ev_loop
441 #undef VAR 1620 #undef VAR
442 }; 1621 };
443 #include "ev_wrap.h" 1622 #include "ev_wrap.h"
444 1623
445 static struct ev_loop default_loop_struct; 1624 static struct ev_loop default_loop_struct;
446 struct ev_loop *ev_default_loop_ptr; 1625 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
447 1626
448#else 1627#else
449 1628
450 ev_tstamp ev_rt_now; 1629 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
451 #define VAR(name,decl) static decl; 1630 #define VAR(name,decl) static decl;
452 #include "ev_vars.h" 1631 #include "ev_vars.h"
453 #undef VAR 1632 #undef VAR
454 1633
455 static int ev_default_loop_ptr; 1634 static int ev_default_loop_ptr;
456 1635
457#endif 1636#endif
458 1637
1638#if EV_FEATURE_API
1639# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1640# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1641# define EV_INVOKE_PENDING invoke_cb (EV_A)
1642#else
1643# define EV_RELEASE_CB (void)0
1644# define EV_ACQUIRE_CB (void)0
1645# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1646#endif
1647
1648#define EVBREAK_RECURSE 0x80
1649
459/*****************************************************************************/ 1650/*****************************************************************************/
460 1651
1652#ifndef EV_HAVE_EV_TIME
461ev_tstamp 1653ev_tstamp
462ev_time (void) 1654ev_time (void) EV_THROW
463{ 1655{
464#if EV_USE_REALTIME 1656#if EV_USE_REALTIME
1657 if (expect_true (have_realtime))
1658 {
465 struct timespec ts; 1659 struct timespec ts;
466 clock_gettime (CLOCK_REALTIME, &ts); 1660 clock_gettime (CLOCK_REALTIME, &ts);
467 return ts.tv_sec + ts.tv_nsec * 1e-9; 1661 return ts.tv_sec + ts.tv_nsec * 1e-9;
468#else 1662 }
1663#endif
1664
469 struct timeval tv; 1665 struct timeval tv;
470 gettimeofday (&tv, 0); 1666 gettimeofday (&tv, 0);
471 return tv.tv_sec + tv.tv_usec * 1e-6; 1667 return tv.tv_sec + tv.tv_usec * 1e-6;
472#endif
473} 1668}
1669#endif
474 1670
475ev_tstamp inline_size 1671inline_size ev_tstamp
476get_clock (void) 1672get_clock (void)
477{ 1673{
478#if EV_USE_MONOTONIC 1674#if EV_USE_MONOTONIC
479 if (expect_true (have_monotonic)) 1675 if (expect_true (have_monotonic))
480 { 1676 {
487 return ev_time (); 1683 return ev_time ();
488} 1684}
489 1685
490#if EV_MULTIPLICITY 1686#if EV_MULTIPLICITY
491ev_tstamp 1687ev_tstamp
492ev_now (EV_P) 1688ev_now (EV_P) EV_THROW
493{ 1689{
494 return ev_rt_now; 1690 return ev_rt_now;
495} 1691}
496#endif 1692#endif
497 1693
498void 1694void
499ev_sleep (ev_tstamp delay) 1695ev_sleep (ev_tstamp delay) EV_THROW
500{ 1696{
501 if (delay > 0.) 1697 if (delay > 0.)
502 { 1698 {
503#if EV_USE_NANOSLEEP 1699#if EV_USE_NANOSLEEP
504 struct timespec ts; 1700 struct timespec ts;
505 1701
506 ts.tv_sec = (time_t)delay; 1702 EV_TS_SET (ts, delay);
507 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
508
509 nanosleep (&ts, 0); 1703 nanosleep (&ts, 0);
510#elif defined(_WIN32) 1704#elif defined _WIN32
511 Sleep ((unsigned long)(delay * 1e3)); 1705 Sleep ((unsigned long)(delay * 1e3));
512#else 1706#else
513 struct timeval tv; 1707 struct timeval tv;
514 1708
515 tv.tv_sec = (time_t)delay; 1709 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
516 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 1710 /* something not guaranteed by newer posix versions, but guaranteed */
517 1711 /* by older ones */
1712 EV_TV_SET (tv, delay);
518 select (0, 0, 0, 0, &tv); 1713 select (0, 0, 0, 0, &tv);
519#endif 1714#endif
520 } 1715 }
521} 1716}
522 1717
523/*****************************************************************************/ 1718/*****************************************************************************/
524 1719
525#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 1720#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
526 1721
527int inline_size 1722/* find a suitable new size for the given array, */
1723/* hopefully by rounding to a nice-to-malloc size */
1724inline_size int
528array_nextsize (int elem, int cur, int cnt) 1725array_nextsize (int elem, int cur, int cnt)
529{ 1726{
530 int ncur = cur + 1; 1727 int ncur = cur + 1;
531 1728
532 do 1729 do
533 ncur <<= 1; 1730 ncur <<= 1;
534 while (cnt > ncur); 1731 while (cnt > ncur);
535 1732
536 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */ 1733 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
537 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4) 1734 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
538 { 1735 {
539 ncur *= elem; 1736 ncur *= elem;
540 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1); 1737 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
541 ncur = ncur - sizeof (void *) * 4; 1738 ncur = ncur - sizeof (void *) * 4;
543 } 1740 }
544 1741
545 return ncur; 1742 return ncur;
546} 1743}
547 1744
548static noinline void * 1745static void * noinline ecb_cold
549array_realloc (int elem, void *base, int *cur, int cnt) 1746array_realloc (int elem, void *base, int *cur, int cnt)
550{ 1747{
551 *cur = array_nextsize (elem, *cur, cnt); 1748 *cur = array_nextsize (elem, *cur, cnt);
552 return ev_realloc (base, elem * *cur); 1749 return ev_realloc (base, elem * *cur);
553} 1750}
1751
1752#define array_init_zero(base,count) \
1753 memset ((void *)(base), 0, sizeof (*(base)) * (count))
554 1754
555#define array_needsize(type,base,cur,cnt,init) \ 1755#define array_needsize(type,base,cur,cnt,init) \
556 if (expect_false ((cnt) > (cur))) \ 1756 if (expect_false ((cnt) > (cur))) \
557 { \ 1757 { \
558 int ocur_ = (cur); \ 1758 int ecb_unused ocur_ = (cur); \
559 (base) = (type *)array_realloc \ 1759 (base) = (type *)array_realloc \
560 (sizeof (type), (base), &(cur), (cnt)); \ 1760 (sizeof (type), (base), &(cur), (cnt)); \
561 init ((base) + (ocur_), (cur) - ocur_); \ 1761 init ((base) + (ocur_), (cur) - ocur_); \
562 } 1762 }
563 1763
570 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1770 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
571 } 1771 }
572#endif 1772#endif
573 1773
574#define array_free(stem, idx) \ 1774#define array_free(stem, idx) \
575 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1775 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
576 1776
577/*****************************************************************************/ 1777/*****************************************************************************/
578 1778
1779/* dummy callback for pending events */
1780static void noinline
1781pendingcb (EV_P_ ev_prepare *w, int revents)
1782{
1783}
1784
579void noinline 1785void noinline
580ev_feed_event (EV_P_ void *w, int revents) 1786ev_feed_event (EV_P_ void *w, int revents) EV_THROW
581{ 1787{
582 W w_ = (W)w; 1788 W w_ = (W)w;
583 int pri = ABSPRI (w_); 1789 int pri = ABSPRI (w_);
584 1790
585 if (expect_false (w_->pending)) 1791 if (expect_false (w_->pending))
589 w_->pending = ++pendingcnt [pri]; 1795 w_->pending = ++pendingcnt [pri];
590 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 1796 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
591 pendings [pri][w_->pending - 1].w = w_; 1797 pendings [pri][w_->pending - 1].w = w_;
592 pendings [pri][w_->pending - 1].events = revents; 1798 pendings [pri][w_->pending - 1].events = revents;
593 } 1799 }
594}
595 1800
596void inline_speed 1801 pendingpri = NUMPRI - 1;
1802}
1803
1804inline_speed void
1805feed_reverse (EV_P_ W w)
1806{
1807 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1808 rfeeds [rfeedcnt++] = w;
1809}
1810
1811inline_size void
1812feed_reverse_done (EV_P_ int revents)
1813{
1814 do
1815 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1816 while (rfeedcnt);
1817}
1818
1819inline_speed void
597queue_events (EV_P_ W *events, int eventcnt, int type) 1820queue_events (EV_P_ W *events, int eventcnt, int type)
598{ 1821{
599 int i; 1822 int i;
600 1823
601 for (i = 0; i < eventcnt; ++i) 1824 for (i = 0; i < eventcnt; ++i)
602 ev_feed_event (EV_A_ events [i], type); 1825 ev_feed_event (EV_A_ events [i], type);
603} 1826}
604 1827
605/*****************************************************************************/ 1828/*****************************************************************************/
606 1829
607void inline_size 1830inline_speed void
608anfds_init (ANFD *base, int count)
609{
610 while (count--)
611 {
612 base->head = 0;
613 base->events = EV_NONE;
614 base->reify = 0;
615
616 ++base;
617 }
618}
619
620void inline_speed
621fd_event (EV_P_ int fd, int revents) 1831fd_event_nocheck (EV_P_ int fd, int revents)
622{ 1832{
623 ANFD *anfd = anfds + fd; 1833 ANFD *anfd = anfds + fd;
624 ev_io *w; 1834 ev_io *w;
625 1835
626 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1836 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
630 if (ev) 1840 if (ev)
631 ev_feed_event (EV_A_ (W)w, ev); 1841 ev_feed_event (EV_A_ (W)w, ev);
632 } 1842 }
633} 1843}
634 1844
1845/* do not submit kernel events for fds that have reify set */
1846/* because that means they changed while we were polling for new events */
1847inline_speed void
1848fd_event (EV_P_ int fd, int revents)
1849{
1850 ANFD *anfd = anfds + fd;
1851
1852 if (expect_true (!anfd->reify))
1853 fd_event_nocheck (EV_A_ fd, revents);
1854}
1855
635void 1856void
636ev_feed_fd_event (EV_P_ int fd, int revents) 1857ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
637{ 1858{
638 if (fd >= 0 && fd < anfdmax) 1859 if (fd >= 0 && fd < anfdmax)
639 fd_event (EV_A_ fd, revents); 1860 fd_event_nocheck (EV_A_ fd, revents);
640} 1861}
641 1862
642void inline_size 1863/* make sure the external fd watch events are in-sync */
1864/* with the kernel/libev internal state */
1865inline_size void
643fd_reify (EV_P) 1866fd_reify (EV_P)
644{ 1867{
645 int i; 1868 int i;
1869
1870#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1871 for (i = 0; i < fdchangecnt; ++i)
1872 {
1873 int fd = fdchanges [i];
1874 ANFD *anfd = anfds + fd;
1875
1876 if (anfd->reify & EV__IOFDSET && anfd->head)
1877 {
1878 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1879
1880 if (handle != anfd->handle)
1881 {
1882 unsigned long arg;
1883
1884 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1885
1886 /* handle changed, but fd didn't - we need to do it in two steps */
1887 backend_modify (EV_A_ fd, anfd->events, 0);
1888 anfd->events = 0;
1889 anfd->handle = handle;
1890 }
1891 }
1892 }
1893#endif
646 1894
647 for (i = 0; i < fdchangecnt; ++i) 1895 for (i = 0; i < fdchangecnt; ++i)
648 { 1896 {
649 int fd = fdchanges [i]; 1897 int fd = fdchanges [i];
650 ANFD *anfd = anfds + fd; 1898 ANFD *anfd = anfds + fd;
651 ev_io *w; 1899 ev_io *w;
652 1900
653 unsigned char events = 0; 1901 unsigned char o_events = anfd->events;
1902 unsigned char o_reify = anfd->reify;
654 1903
655 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1904 anfd->reify = 0;
656 events |= (unsigned char)w->events;
657 1905
658#if EV_SELECT_IS_WINSOCKET 1906 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
659 if (events)
660 { 1907 {
661 unsigned long argp; 1908 anfd->events = 0;
662 #ifdef EV_FD_TO_WIN32_HANDLE 1909
663 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1910 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
664 #else 1911 anfd->events |= (unsigned char)w->events;
665 anfd->handle = _get_osfhandle (fd); 1912
666 #endif 1913 if (o_events != anfd->events)
667 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1914 o_reify = EV__IOFDSET; /* actually |= */
668 } 1915 }
669#endif
670 1916
671 { 1917 if (o_reify & EV__IOFDSET)
672 unsigned char o_events = anfd->events;
673 unsigned char o_reify = anfd->reify;
674
675 anfd->reify = 0;
676 anfd->events = events;
677
678 if (o_events != events || o_reify & EV_IOFDSET)
679 backend_modify (EV_A_ fd, o_events, events); 1918 backend_modify (EV_A_ fd, o_events, anfd->events);
680 }
681 } 1919 }
682 1920
683 fdchangecnt = 0; 1921 fdchangecnt = 0;
684} 1922}
685 1923
686void inline_size 1924/* something about the given fd changed */
1925inline_size void
687fd_change (EV_P_ int fd, int flags) 1926fd_change (EV_P_ int fd, int flags)
688{ 1927{
689 unsigned char reify = anfds [fd].reify; 1928 unsigned char reify = anfds [fd].reify;
690 anfds [fd].reify |= flags; 1929 anfds [fd].reify |= flags;
691 1930
695 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1934 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
696 fdchanges [fdchangecnt - 1] = fd; 1935 fdchanges [fdchangecnt - 1] = fd;
697 } 1936 }
698} 1937}
699 1938
700void inline_speed 1939/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1940inline_speed void ecb_cold
701fd_kill (EV_P_ int fd) 1941fd_kill (EV_P_ int fd)
702{ 1942{
703 ev_io *w; 1943 ev_io *w;
704 1944
705 while ((w = (ev_io *)anfds [fd].head)) 1945 while ((w = (ev_io *)anfds [fd].head))
707 ev_io_stop (EV_A_ w); 1947 ev_io_stop (EV_A_ w);
708 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1948 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
709 } 1949 }
710} 1950}
711 1951
712int inline_size 1952/* check whether the given fd is actually valid, for error recovery */
1953inline_size int ecb_cold
713fd_valid (int fd) 1954fd_valid (int fd)
714{ 1955{
715#ifdef _WIN32 1956#ifdef _WIN32
716 return _get_osfhandle (fd) != -1; 1957 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
717#else 1958#else
718 return fcntl (fd, F_GETFD) != -1; 1959 return fcntl (fd, F_GETFD) != -1;
719#endif 1960#endif
720} 1961}
721 1962
722/* called on EBADF to verify fds */ 1963/* called on EBADF to verify fds */
723static void noinline 1964static void noinline ecb_cold
724fd_ebadf (EV_P) 1965fd_ebadf (EV_P)
725{ 1966{
726 int fd; 1967 int fd;
727 1968
728 for (fd = 0; fd < anfdmax; ++fd) 1969 for (fd = 0; fd < anfdmax; ++fd)
729 if (anfds [fd].events) 1970 if (anfds [fd].events)
730 if (!fd_valid (fd) == -1 && errno == EBADF) 1971 if (!fd_valid (fd) && errno == EBADF)
731 fd_kill (EV_A_ fd); 1972 fd_kill (EV_A_ fd);
732} 1973}
733 1974
734/* called on ENOMEM in select/poll to kill some fds and retry */ 1975/* called on ENOMEM in select/poll to kill some fds and retry */
735static void noinline 1976static void noinline ecb_cold
736fd_enomem (EV_P) 1977fd_enomem (EV_P)
737{ 1978{
738 int fd; 1979 int fd;
739 1980
740 for (fd = anfdmax; fd--; ) 1981 for (fd = anfdmax; fd--; )
741 if (anfds [fd].events) 1982 if (anfds [fd].events)
742 { 1983 {
743 fd_kill (EV_A_ fd); 1984 fd_kill (EV_A_ fd);
744 return; 1985 break;
745 } 1986 }
746} 1987}
747 1988
748/* usually called after fork if backend needs to re-arm all fds from scratch */ 1989/* usually called after fork if backend needs to re-arm all fds from scratch */
749static void noinline 1990static void noinline
753 1994
754 for (fd = 0; fd < anfdmax; ++fd) 1995 for (fd = 0; fd < anfdmax; ++fd)
755 if (anfds [fd].events) 1996 if (anfds [fd].events)
756 { 1997 {
757 anfds [fd].events = 0; 1998 anfds [fd].events = 0;
1999 anfds [fd].emask = 0;
758 fd_change (EV_A_ fd, EV_IOFDSET | 1); 2000 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
759 } 2001 }
760} 2002}
761 2003
2004/* used to prepare libev internal fd's */
2005/* this is not fork-safe */
2006inline_speed void
2007fd_intern (int fd)
2008{
2009#ifdef _WIN32
2010 unsigned long arg = 1;
2011 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2012#else
2013 fcntl (fd, F_SETFD, FD_CLOEXEC);
2014 fcntl (fd, F_SETFL, O_NONBLOCK);
2015#endif
2016}
2017
762/*****************************************************************************/ 2018/*****************************************************************************/
2019
2020/*
2021 * the heap functions want a real array index. array index 0 is guaranteed to not
2022 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
2023 * the branching factor of the d-tree.
2024 */
763 2025
764/* 2026/*
765 * at the moment we allow libev the luxury of two heaps, 2027 * at the moment we allow libev the luxury of two heaps,
766 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap 2028 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
767 * which is more cache-efficient. 2029 * which is more cache-efficient.
768 * the difference is about 5% with 50000+ watchers. 2030 * the difference is about 5% with 50000+ watchers.
769 */ 2031 */
770#define USE_4HEAP !EV_MINIMAL
771#if USE_4HEAP 2032#if EV_USE_4HEAP
772 2033
773#define DHEAP 4 2034#define DHEAP 4
774#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 2035#define HEAP0 (DHEAP - 1) /* index of first element in heap */
2036#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2037#define UPHEAP_DONE(p,k) ((p) == (k))
775 2038
776/* towards the root */ 2039/* away from the root */
777void inline_speed 2040inline_speed void
778upheap (WT *heap, int k) 2041downheap (ANHE *heap, int N, int k)
779{ 2042{
780 WT w = heap [k]; 2043 ANHE he = heap [k];
781 ev_tstamp w_at = w->at; 2044 ANHE *E = heap + N + HEAP0;
782 2045
783 for (;;) 2046 for (;;)
784 { 2047 {
785 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
786
787 if (p == k || heap [p]->at <= w_at)
788 break;
789
790 heap [k] = heap [p];
791 ev_active (heap [k]) = k;
792 k = p;
793 }
794
795 heap [k] = w;
796 ev_active (heap [k]) = k;
797}
798
799/* away from the root */
800void inline_speed
801downheap (WT *heap, int N, int k)
802{
803 WT w = heap [k];
804 WT *E = heap + N + HEAP0;
805
806 for (;;)
807 {
808 ev_tstamp minat; 2048 ev_tstamp minat;
809 WT *minpos; 2049 ANHE *minpos;
810 WT *pos = heap + DHEAP * (k - HEAP0) + HEAP0; 2050 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
811 2051
812 // find minimum child 2052 /* find minimum child */
813 if (expect_true (pos + DHEAP - 1 < E)) 2053 if (expect_true (pos + DHEAP - 1 < E))
814 { 2054 {
815 /* fast path */ (minpos = pos + 0), (minat = (*minpos)->at); 2055 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
816 if (pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at); 2056 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
817 if (pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at); 2057 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
818 if (pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at); 2058 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
819 } 2059 }
820 else if (pos < E) 2060 else if (pos < E)
821 { 2061 {
822 /* slow path */ (minpos = pos + 0), (minat = (*minpos)->at); 2062 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
823 if (pos + 1 < E && pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at); 2063 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
824 if (pos + 2 < E && pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at); 2064 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
825 if (pos + 3 < E && pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at); 2065 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
826 } 2066 }
827 else 2067 else
828 break; 2068 break;
829 2069
830 if (w->at <= minat) 2070 if (ANHE_at (he) <= minat)
831 break; 2071 break;
832 2072
833 ev_active (*minpos) = k;
834 heap [k] = *minpos; 2073 heap [k] = *minpos;
2074 ev_active (ANHE_w (*minpos)) = k;
835 2075
836 k = minpos - heap; 2076 k = minpos - heap;
837 } 2077 }
838 2078
839 heap [k] = w; 2079 heap [k] = he;
840 ev_active (heap [k]) = k; 2080 ev_active (ANHE_w (he)) = k;
841} 2081}
842 2082
843#else // 4HEAP 2083#else /* 4HEAP */
844 2084
845#define HEAP0 1 2085#define HEAP0 1
2086#define HPARENT(k) ((k) >> 1)
2087#define UPHEAP_DONE(p,k) (!(p))
846 2088
847/* towards the root */ 2089/* away from the root */
848void inline_speed 2090inline_speed void
849upheap (WT *heap, int k) 2091downheap (ANHE *heap, int N, int k)
850{ 2092{
851 WT w = heap [k]; 2093 ANHE he = heap [k];
852 2094
853 for (;;) 2095 for (;;)
854 { 2096 {
855 int p = k >> 1; 2097 int c = k << 1;
856 2098
857 /* maybe we could use a dummy element at heap [0]? */ 2099 if (c >= N + HEAP0)
858 if (!p || heap [p]->at <= w->at)
859 break; 2100 break;
860 2101
861 heap [k] = heap [p]; 2102 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
862 ev_active (heap [k]) = k; 2103 ? 1 : 0;
863 k = p;
864 }
865 2104
866 heap [k] = w; 2105 if (ANHE_at (he) <= ANHE_at (heap [c]))
867 ev_active (heap [k]) = k;
868}
869
870/* away from the root */
871void inline_speed
872downheap (WT *heap, int N, int k)
873{
874 WT w = heap [k];
875
876 for (;;)
877 {
878 int c = k << 1;
879
880 if (c > N)
881 break; 2106 break;
882 2107
883 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
884 ? 1 : 0;
885
886 if (w->at <= heap [c]->at)
887 break;
888
889 heap [k] = heap [c]; 2108 heap [k] = heap [c];
890 ((W)heap [k])->active = k; 2109 ev_active (ANHE_w (heap [k])) = k;
891 2110
892 k = c; 2111 k = c;
893 } 2112 }
894 2113
895 heap [k] = w; 2114 heap [k] = he;
2115 ev_active (ANHE_w (he)) = k;
2116}
2117#endif
2118
2119/* towards the root */
2120inline_speed void
2121upheap (ANHE *heap, int k)
2122{
2123 ANHE he = heap [k];
2124
2125 for (;;)
2126 {
2127 int p = HPARENT (k);
2128
2129 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2130 break;
2131
2132 heap [k] = heap [p];
896 ev_active (heap [k]) = k; 2133 ev_active (ANHE_w (heap [k])) = k;
897} 2134 k = p;
898#endif 2135 }
899 2136
900void inline_size 2137 heap [k] = he;
2138 ev_active (ANHE_w (he)) = k;
2139}
2140
2141/* move an element suitably so it is in a correct place */
2142inline_size void
901adjustheap (WT *heap, int N, int k) 2143adjustheap (ANHE *heap, int N, int k)
902{ 2144{
2145 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
903 upheap (heap, k); 2146 upheap (heap, k);
2147 else
904 downheap (heap, N, k); 2148 downheap (heap, N, k);
2149}
2150
2151/* rebuild the heap: this function is used only once and executed rarely */
2152inline_size void
2153reheap (ANHE *heap, int N)
2154{
2155 int i;
2156
2157 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2158 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2159 for (i = 0; i < N; ++i)
2160 upheap (heap, i + HEAP0);
905} 2161}
906 2162
907/*****************************************************************************/ 2163/*****************************************************************************/
908 2164
2165/* associate signal watchers to a signal signal */
909typedef struct 2166typedef struct
910{ 2167{
2168 EV_ATOMIC_T pending;
2169#if EV_MULTIPLICITY
2170 EV_P;
2171#endif
911 WL head; 2172 WL head;
912 EV_ATOMIC_T gotsig;
913} ANSIG; 2173} ANSIG;
914 2174
915static ANSIG *signals; 2175static ANSIG signals [EV_NSIG - 1];
916static int signalmax;
917
918static EV_ATOMIC_T gotsig;
919
920void inline_size
921signals_init (ANSIG *base, int count)
922{
923 while (count--)
924 {
925 base->head = 0;
926 base->gotsig = 0;
927
928 ++base;
929 }
930}
931 2176
932/*****************************************************************************/ 2177/*****************************************************************************/
933 2178
934void inline_speed 2179#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
935fd_intern (int fd)
936{
937#ifdef _WIN32
938 int arg = 1;
939 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
940#else
941 fcntl (fd, F_SETFD, FD_CLOEXEC);
942 fcntl (fd, F_SETFL, O_NONBLOCK);
943#endif
944}
945 2180
946static void noinline 2181static void noinline ecb_cold
947evpipe_init (EV_P) 2182evpipe_init (EV_P)
948{ 2183{
949 if (!ev_is_active (&pipeev)) 2184 if (!ev_is_active (&pipe_w))
2185 {
2186 int fds [2];
2187
2188# if EV_USE_EVENTFD
2189 fds [0] = -1;
2190 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2191 if (fds [1] < 0 && errno == EINVAL)
2192 fds [1] = eventfd (0, 0);
2193
2194 if (fds [1] < 0)
2195# endif
2196 {
2197 while (pipe (fds))
2198 ev_syserr ("(libev) error creating signal/async pipe");
2199
2200 fd_intern (fds [0]);
2201 }
2202
2203 evpipe [0] = fds [0];
2204
2205 if (evpipe [1] < 0)
2206 evpipe [1] = fds [1]; /* first call, set write fd */
2207 else
2208 {
2209 /* on subsequent calls, do not change evpipe [1] */
2210 /* so that evpipe_write can always rely on its value. */
2211 /* this branch does not do anything sensible on windows, */
2212 /* so must not be executed on windows */
2213
2214 dup2 (fds [1], evpipe [1]);
2215 close (fds [1]);
2216 }
2217
2218 fd_intern (evpipe [1]);
2219
2220 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2221 ev_io_start (EV_A_ &pipe_w);
2222 ev_unref (EV_A); /* watcher should not keep loop alive */
950 { 2223 }
2224}
2225
2226inline_speed void
2227evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2228{
2229 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2230
2231 if (expect_true (*flag))
2232 return;
2233
2234 *flag = 1;
2235 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2236
2237 pipe_write_skipped = 1;
2238
2239 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2240
2241 if (pipe_write_wanted)
2242 {
2243 int old_errno;
2244
2245 pipe_write_skipped = 0;
2246 ECB_MEMORY_FENCE_RELEASE;
2247
2248 old_errno = errno; /* save errno because write will clobber it */
2249
951#if EV_USE_EVENTFD 2250#if EV_USE_EVENTFD
952 if ((evfd = eventfd (0, 0)) >= 0) 2251 if (evpipe [0] < 0)
953 { 2252 {
954 evpipe [0] = -1; 2253 uint64_t counter = 1;
955 fd_intern (evfd); 2254 write (evpipe [1], &counter, sizeof (uint64_t));
956 ev_io_set (&pipeev, evfd, EV_READ);
957 } 2255 }
958 else 2256 else
959#endif 2257#endif
960 { 2258 {
961 while (pipe (evpipe)) 2259#ifdef _WIN32
962 syserr ("(libev) error creating signal/async pipe"); 2260 WSABUF buf;
963 2261 DWORD sent;
964 fd_intern (evpipe [0]); 2262 buf.buf = &buf;
965 fd_intern (evpipe [1]); 2263 buf.len = 1;
966 ev_io_set (&pipeev, evpipe [0], EV_READ); 2264 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2265#else
2266 write (evpipe [1], &(evpipe [1]), 1);
2267#endif
967 } 2268 }
968 2269
969 ev_io_start (EV_A_ &pipeev); 2270 errno = old_errno;
970 ev_unref (EV_A); /* watcher should not keep loop alive */
971 }
972}
973
974void inline_size
975evpipe_write (EV_P_ EV_ATOMIC_T *flag)
976{
977 if (!*flag)
978 { 2271 }
979 int old_errno = errno; /* save errno because write might clobber it */ 2272}
980 2273
981 *flag = 1; 2274/* called whenever the libev signal pipe */
2275/* got some events (signal, async) */
2276static void
2277pipecb (EV_P_ ev_io *iow, int revents)
2278{
2279 int i;
982 2280
2281 if (revents & EV_READ)
2282 {
983#if EV_USE_EVENTFD 2283#if EV_USE_EVENTFD
984 if (evfd >= 0) 2284 if (evpipe [0] < 0)
985 { 2285 {
986 uint64_t counter = 1; 2286 uint64_t counter;
987 write (evfd, &counter, sizeof (uint64_t)); 2287 read (evpipe [1], &counter, sizeof (uint64_t));
988 } 2288 }
989 else 2289 else
990#endif 2290#endif
991 write (evpipe [1], &old_errno, 1); 2291 {
992
993 errno = old_errno;
994 }
995}
996
997static void
998pipecb (EV_P_ ev_io *iow, int revents)
999{
1000#if EV_USE_EVENTFD
1001 if (evfd >= 0)
1002 {
1003 uint64_t counter;
1004 read (evfd, &counter, sizeof (uint64_t));
1005 }
1006 else
1007#endif
1008 {
1009 char dummy; 2292 char dummy[4];
2293#ifdef _WIN32
2294 WSABUF buf;
2295 DWORD recvd;
2296 DWORD flags = 0;
2297 buf.buf = dummy;
2298 buf.len = sizeof (dummy);
2299 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2300#else
1010 read (evpipe [0], &dummy, 1); 2301 read (evpipe [0], &dummy, sizeof (dummy));
2302#endif
2303 }
2304 }
2305
2306 pipe_write_skipped = 0;
2307
2308 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2309
2310#if EV_SIGNAL_ENABLE
2311 if (sig_pending)
1011 } 2312 {
2313 sig_pending = 0;
1012 2314
1013 if (gotsig && ev_is_default_loop (EV_A)) 2315 ECB_MEMORY_FENCE;
1014 {
1015 int signum;
1016 gotsig = 0;
1017 2316
1018 for (signum = signalmax; signum--; ) 2317 for (i = EV_NSIG - 1; i--; )
1019 if (signals [signum].gotsig) 2318 if (expect_false (signals [i].pending))
1020 ev_feed_signal_event (EV_A_ signum + 1); 2319 ev_feed_signal_event (EV_A_ i + 1);
1021 } 2320 }
2321#endif
1022 2322
1023#if EV_ASYNC_ENABLE 2323#if EV_ASYNC_ENABLE
1024 if (gotasync) 2324 if (async_pending)
1025 { 2325 {
1026 int i; 2326 async_pending = 0;
1027 gotasync = 0; 2327
2328 ECB_MEMORY_FENCE;
1028 2329
1029 for (i = asynccnt; i--; ) 2330 for (i = asynccnt; i--; )
1030 if (asyncs [i]->sent) 2331 if (asyncs [i]->sent)
1031 { 2332 {
1032 asyncs [i]->sent = 0; 2333 asyncs [i]->sent = 0;
2334 ECB_MEMORY_FENCE_RELEASE;
1033 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); 2335 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1034 } 2336 }
1035 } 2337 }
1036#endif 2338#endif
1037} 2339}
1038 2340
1039/*****************************************************************************/ 2341/*****************************************************************************/
1040 2342
2343void
2344ev_feed_signal (int signum) EV_THROW
2345{
2346#if EV_MULTIPLICITY
2347 EV_P;
2348 ECB_MEMORY_FENCE_ACQUIRE;
2349 EV_A = signals [signum - 1].loop;
2350
2351 if (!EV_A)
2352 return;
2353#endif
2354
2355 signals [signum - 1].pending = 1;
2356 evpipe_write (EV_A_ &sig_pending);
2357}
2358
1041static void 2359static void
1042ev_sighandler (int signum) 2360ev_sighandler (int signum)
1043{ 2361{
2362#ifdef _WIN32
2363 signal (signum, ev_sighandler);
2364#endif
2365
2366 ev_feed_signal (signum);
2367}
2368
2369void noinline
2370ev_feed_signal_event (EV_P_ int signum) EV_THROW
2371{
2372 WL w;
2373
2374 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2375 return;
2376
2377 --signum;
2378
1044#if EV_MULTIPLICITY 2379#if EV_MULTIPLICITY
1045 struct ev_loop *loop = &default_loop_struct; 2380 /* it is permissible to try to feed a signal to the wrong loop */
1046#endif 2381 /* or, likely more useful, feeding a signal nobody is waiting for */
1047 2382
1048#if _WIN32 2383 if (expect_false (signals [signum].loop != EV_A))
1049 signal (signum, ev_sighandler);
1050#endif
1051
1052 signals [signum - 1].gotsig = 1;
1053 evpipe_write (EV_A_ &gotsig);
1054}
1055
1056void noinline
1057ev_feed_signal_event (EV_P_ int signum)
1058{
1059 WL w;
1060
1061#if EV_MULTIPLICITY
1062 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1063#endif
1064
1065 --signum;
1066
1067 if (signum < 0 || signum >= signalmax)
1068 return; 2384 return;
2385#endif
1069 2386
1070 signals [signum].gotsig = 0; 2387 signals [signum].pending = 0;
2388 ECB_MEMORY_FENCE_RELEASE;
1071 2389
1072 for (w = signals [signum].head; w; w = w->next) 2390 for (w = signals [signum].head; w; w = w->next)
1073 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2391 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1074} 2392}
1075 2393
2394#if EV_USE_SIGNALFD
2395static void
2396sigfdcb (EV_P_ ev_io *iow, int revents)
2397{
2398 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2399
2400 for (;;)
2401 {
2402 ssize_t res = read (sigfd, si, sizeof (si));
2403
2404 /* not ISO-C, as res might be -1, but works with SuS */
2405 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2406 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2407
2408 if (res < (ssize_t)sizeof (si))
2409 break;
2410 }
2411}
2412#endif
2413
2414#endif
2415
1076/*****************************************************************************/ 2416/*****************************************************************************/
1077 2417
2418#if EV_CHILD_ENABLE
1078static WL childs [EV_PID_HASHSIZE]; 2419static WL childs [EV_PID_HASHSIZE];
1079
1080#ifndef _WIN32
1081 2420
1082static ev_signal childev; 2421static ev_signal childev;
1083 2422
1084#ifndef WIFCONTINUED 2423#ifndef WIFCONTINUED
1085# define WIFCONTINUED(status) 0 2424# define WIFCONTINUED(status) 0
1086#endif 2425#endif
1087 2426
1088void inline_speed 2427/* handle a single child status event */
2428inline_speed void
1089child_reap (EV_P_ int chain, int pid, int status) 2429child_reap (EV_P_ int chain, int pid, int status)
1090{ 2430{
1091 ev_child *w; 2431 ev_child *w;
1092 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2432 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1093 2433
1094 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2434 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1095 { 2435 {
1096 if ((w->pid == pid || !w->pid) 2436 if ((w->pid == pid || !w->pid)
1097 && (!traced || (w->flags & 1))) 2437 && (!traced || (w->flags & 1)))
1098 { 2438 {
1099 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 2439 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1106 2446
1107#ifndef WCONTINUED 2447#ifndef WCONTINUED
1108# define WCONTINUED 0 2448# define WCONTINUED 0
1109#endif 2449#endif
1110 2450
2451/* called on sigchld etc., calls waitpid */
1111static void 2452static void
1112childcb (EV_P_ ev_signal *sw, int revents) 2453childcb (EV_P_ ev_signal *sw, int revents)
1113{ 2454{
1114 int pid, status; 2455 int pid, status;
1115 2456
1123 /* make sure we are called again until all children have been reaped */ 2464 /* make sure we are called again until all children have been reaped */
1124 /* we need to do it this way so that the callback gets called before we continue */ 2465 /* we need to do it this way so that the callback gets called before we continue */
1125 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2466 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1126 2467
1127 child_reap (EV_A_ pid, pid, status); 2468 child_reap (EV_A_ pid, pid, status);
1128 if (EV_PID_HASHSIZE > 1) 2469 if ((EV_PID_HASHSIZE) > 1)
1129 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2470 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1130} 2471}
1131 2472
1132#endif 2473#endif
1133 2474
1134/*****************************************************************************/ 2475/*****************************************************************************/
1135 2476
2477#if EV_USE_IOCP
2478# include "ev_iocp.c"
2479#endif
1136#if EV_USE_PORT 2480#if EV_USE_PORT
1137# include "ev_port.c" 2481# include "ev_port.c"
1138#endif 2482#endif
1139#if EV_USE_KQUEUE 2483#if EV_USE_KQUEUE
1140# include "ev_kqueue.c" 2484# include "ev_kqueue.c"
1147#endif 2491#endif
1148#if EV_USE_SELECT 2492#if EV_USE_SELECT
1149# include "ev_select.c" 2493# include "ev_select.c"
1150#endif 2494#endif
1151 2495
1152int 2496int ecb_cold
1153ev_version_major (void) 2497ev_version_major (void) EV_THROW
1154{ 2498{
1155 return EV_VERSION_MAJOR; 2499 return EV_VERSION_MAJOR;
1156} 2500}
1157 2501
1158int 2502int ecb_cold
1159ev_version_minor (void) 2503ev_version_minor (void) EV_THROW
1160{ 2504{
1161 return EV_VERSION_MINOR; 2505 return EV_VERSION_MINOR;
1162} 2506}
1163 2507
1164/* return true if we are running with elevated privileges and should ignore env variables */ 2508/* return true if we are running with elevated privileges and should ignore env variables */
1165int inline_size 2509int inline_size ecb_cold
1166enable_secure (void) 2510enable_secure (void)
1167{ 2511{
1168#ifdef _WIN32 2512#ifdef _WIN32
1169 return 0; 2513 return 0;
1170#else 2514#else
1171 return getuid () != geteuid () 2515 return getuid () != geteuid ()
1172 || getgid () != getegid (); 2516 || getgid () != getegid ();
1173#endif 2517#endif
1174} 2518}
1175 2519
1176unsigned int 2520unsigned int ecb_cold
1177ev_supported_backends (void) 2521ev_supported_backends (void) EV_THROW
1178{ 2522{
1179 unsigned int flags = 0; 2523 unsigned int flags = 0;
1180 2524
1181 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2525 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1182 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2526 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1185 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2529 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1186 2530
1187 return flags; 2531 return flags;
1188} 2532}
1189 2533
1190unsigned int 2534unsigned int ecb_cold
1191ev_recommended_backends (void) 2535ev_recommended_backends (void) EV_THROW
1192{ 2536{
1193 unsigned int flags = ev_supported_backends (); 2537 unsigned int flags = ev_supported_backends ();
1194 2538
1195#ifndef __NetBSD__ 2539#ifndef __NetBSD__
1196 /* kqueue is borked on everything but netbsd apparently */ 2540 /* kqueue is borked on everything but netbsd apparently */
1197 /* it usually doesn't work correctly on anything but sockets and pipes */ 2541 /* it usually doesn't work correctly on anything but sockets and pipes */
1198 flags &= ~EVBACKEND_KQUEUE; 2542 flags &= ~EVBACKEND_KQUEUE;
1199#endif 2543#endif
1200#ifdef __APPLE__ 2544#ifdef __APPLE__
1201 // flags &= ~EVBACKEND_KQUEUE; for documentation 2545 /* only select works correctly on that "unix-certified" platform */
1202 flags &= ~EVBACKEND_POLL; 2546 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2547 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2548#endif
2549#ifdef __FreeBSD__
2550 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1203#endif 2551#endif
1204 2552
1205 return flags; 2553 return flags;
1206} 2554}
1207 2555
2556unsigned int ecb_cold
2557ev_embeddable_backends (void) EV_THROW
2558{
2559 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2560
2561 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2562 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2563 flags &= ~EVBACKEND_EPOLL;
2564
2565 return flags;
2566}
2567
1208unsigned int 2568unsigned int
1209ev_embeddable_backends (void) 2569ev_backend (EV_P) EV_THROW
1210{ 2570{
1211 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2571 return backend;
1212
1213 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1214 /* please fix it and tell me how to detect the fix */
1215 flags &= ~EVBACKEND_EPOLL;
1216
1217 return flags;
1218} 2572}
1219 2573
2574#if EV_FEATURE_API
1220unsigned int 2575unsigned int
1221ev_backend (EV_P) 2576ev_iteration (EV_P) EV_THROW
1222{ 2577{
1223 return backend; 2578 return loop_count;
1224} 2579}
1225 2580
1226unsigned int 2581unsigned int
1227ev_loop_count (EV_P) 2582ev_depth (EV_P) EV_THROW
1228{ 2583{
1229 return loop_count; 2584 return loop_depth;
1230} 2585}
1231 2586
1232void 2587void
1233ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2588ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1234{ 2589{
1235 io_blocktime = interval; 2590 io_blocktime = interval;
1236} 2591}
1237 2592
1238void 2593void
1239ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2594ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1240{ 2595{
1241 timeout_blocktime = interval; 2596 timeout_blocktime = interval;
1242} 2597}
1243 2598
2599void
2600ev_set_userdata (EV_P_ void *data) EV_THROW
2601{
2602 userdata = data;
2603}
2604
2605void *
2606ev_userdata (EV_P) EV_THROW
2607{
2608 return userdata;
2609}
2610
2611void
2612ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_THROW
2613{
2614 invoke_cb = invoke_pending_cb;
2615}
2616
2617void
2618ev_set_loop_release_cb (EV_P_ ev_loop_callback EV_THROW release, ev_loop_callback EV_THROW acquire) EV_THROW
2619{
2620 release_cb = release;
2621 acquire_cb = acquire;
2622}
2623#endif
2624
2625/* initialise a loop structure, must be zero-initialised */
1244static void noinline 2626static void noinline ecb_cold
1245loop_init (EV_P_ unsigned int flags) 2627loop_init (EV_P_ unsigned int flags) EV_THROW
1246{ 2628{
1247 if (!backend) 2629 if (!backend)
1248 { 2630 {
2631 origflags = flags;
2632
2633#if EV_USE_REALTIME
2634 if (!have_realtime)
2635 {
2636 struct timespec ts;
2637
2638 if (!clock_gettime (CLOCK_REALTIME, &ts))
2639 have_realtime = 1;
2640 }
2641#endif
2642
1249#if EV_USE_MONOTONIC 2643#if EV_USE_MONOTONIC
2644 if (!have_monotonic)
1250 { 2645 {
1251 struct timespec ts; 2646 struct timespec ts;
2647
1252 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2648 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1253 have_monotonic = 1; 2649 have_monotonic = 1;
1254 } 2650 }
1255#endif
1256
1257 ev_rt_now = ev_time ();
1258 mn_now = get_clock ();
1259 now_floor = mn_now;
1260 rtmn_diff = ev_rt_now - mn_now;
1261
1262 io_blocktime = 0.;
1263 timeout_blocktime = 0.;
1264 backend = 0;
1265 backend_fd = -1;
1266 gotasync = 0;
1267#if EV_USE_INOTIFY
1268 fs_fd = -2;
1269#endif 2651#endif
1270 2652
1271 /* pid check not overridable via env */ 2653 /* pid check not overridable via env */
1272#ifndef _WIN32 2654#ifndef _WIN32
1273 if (flags & EVFLAG_FORKCHECK) 2655 if (flags & EVFLAG_FORKCHECK)
1277 if (!(flags & EVFLAG_NOENV) 2659 if (!(flags & EVFLAG_NOENV)
1278 && !enable_secure () 2660 && !enable_secure ()
1279 && getenv ("LIBEV_FLAGS")) 2661 && getenv ("LIBEV_FLAGS"))
1280 flags = atoi (getenv ("LIBEV_FLAGS")); 2662 flags = atoi (getenv ("LIBEV_FLAGS"));
1281 2663
1282 if (!(flags & 0x0000ffffU)) 2664 ev_rt_now = ev_time ();
2665 mn_now = get_clock ();
2666 now_floor = mn_now;
2667 rtmn_diff = ev_rt_now - mn_now;
2668#if EV_FEATURE_API
2669 invoke_cb = ev_invoke_pending;
2670#endif
2671
2672 io_blocktime = 0.;
2673 timeout_blocktime = 0.;
2674 backend = 0;
2675 backend_fd = -1;
2676 sig_pending = 0;
2677#if EV_ASYNC_ENABLE
2678 async_pending = 0;
2679#endif
2680 pipe_write_skipped = 0;
2681 pipe_write_wanted = 0;
2682 evpipe [0] = -1;
2683 evpipe [1] = -1;
2684#if EV_USE_INOTIFY
2685 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2686#endif
2687#if EV_USE_SIGNALFD
2688 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2689#endif
2690
2691 if (!(flags & EVBACKEND_MASK))
1283 flags |= ev_recommended_backends (); 2692 flags |= ev_recommended_backends ();
1284 2693
2694#if EV_USE_IOCP
2695 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2696#endif
1285#if EV_USE_PORT 2697#if EV_USE_PORT
1286 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2698 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1287#endif 2699#endif
1288#if EV_USE_KQUEUE 2700#if EV_USE_KQUEUE
1289 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2701 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1296#endif 2708#endif
1297#if EV_USE_SELECT 2709#if EV_USE_SELECT
1298 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2710 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1299#endif 2711#endif
1300 2712
2713 ev_prepare_init (&pending_w, pendingcb);
2714
2715#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1301 ev_init (&pipeev, pipecb); 2716 ev_init (&pipe_w, pipecb);
1302 ev_set_priority (&pipeev, EV_MAXPRI); 2717 ev_set_priority (&pipe_w, EV_MAXPRI);
2718#endif
1303 } 2719 }
1304} 2720}
1305 2721
1306static void noinline 2722/* free up a loop structure */
2723void ecb_cold
1307loop_destroy (EV_P) 2724ev_loop_destroy (EV_P)
1308{ 2725{
1309 int i; 2726 int i;
1310 2727
2728#if EV_MULTIPLICITY
2729 /* mimic free (0) */
2730 if (!EV_A)
2731 return;
2732#endif
2733
2734#if EV_CLEANUP_ENABLE
2735 /* queue cleanup watchers (and execute them) */
2736 if (expect_false (cleanupcnt))
2737 {
2738 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2739 EV_INVOKE_PENDING;
2740 }
2741#endif
2742
2743#if EV_CHILD_ENABLE
2744 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2745 {
2746 ev_ref (EV_A); /* child watcher */
2747 ev_signal_stop (EV_A_ &childev);
2748 }
2749#endif
2750
1311 if (ev_is_active (&pipeev)) 2751 if (ev_is_active (&pipe_w))
1312 { 2752 {
1313 ev_ref (EV_A); /* signal watcher */ 2753 /*ev_ref (EV_A);*/
1314 ev_io_stop (EV_A_ &pipeev); 2754 /*ev_io_stop (EV_A_ &pipe_w);*/
1315 2755
2756 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2757 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2758 }
2759
1316#if EV_USE_EVENTFD 2760#if EV_USE_SIGNALFD
1317 if (evfd >= 0) 2761 if (ev_is_active (&sigfd_w))
1318 close (evfd); 2762 close (sigfd);
1319#endif 2763#endif
1320
1321 if (evpipe [0] >= 0)
1322 {
1323 close (evpipe [0]);
1324 close (evpipe [1]);
1325 }
1326 }
1327 2764
1328#if EV_USE_INOTIFY 2765#if EV_USE_INOTIFY
1329 if (fs_fd >= 0) 2766 if (fs_fd >= 0)
1330 close (fs_fd); 2767 close (fs_fd);
1331#endif 2768#endif
1332 2769
1333 if (backend_fd >= 0) 2770 if (backend_fd >= 0)
1334 close (backend_fd); 2771 close (backend_fd);
1335 2772
2773#if EV_USE_IOCP
2774 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2775#endif
1336#if EV_USE_PORT 2776#if EV_USE_PORT
1337 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2777 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1338#endif 2778#endif
1339#if EV_USE_KQUEUE 2779#if EV_USE_KQUEUE
1340 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2780 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1355#if EV_IDLE_ENABLE 2795#if EV_IDLE_ENABLE
1356 array_free (idle, [i]); 2796 array_free (idle, [i]);
1357#endif 2797#endif
1358 } 2798 }
1359 2799
1360 ev_free (anfds); anfdmax = 0; 2800 ev_free (anfds); anfds = 0; anfdmax = 0;
1361 2801
1362 /* have to use the microsoft-never-gets-it-right macro */ 2802 /* have to use the microsoft-never-gets-it-right macro */
2803 array_free (rfeed, EMPTY);
1363 array_free (fdchange, EMPTY); 2804 array_free (fdchange, EMPTY);
1364 array_free (timer, EMPTY); 2805 array_free (timer, EMPTY);
1365#if EV_PERIODIC_ENABLE 2806#if EV_PERIODIC_ENABLE
1366 array_free (periodic, EMPTY); 2807 array_free (periodic, EMPTY);
1367#endif 2808#endif
1368#if EV_FORK_ENABLE 2809#if EV_FORK_ENABLE
1369 array_free (fork, EMPTY); 2810 array_free (fork, EMPTY);
1370#endif 2811#endif
2812#if EV_CLEANUP_ENABLE
2813 array_free (cleanup, EMPTY);
2814#endif
1371 array_free (prepare, EMPTY); 2815 array_free (prepare, EMPTY);
1372 array_free (check, EMPTY); 2816 array_free (check, EMPTY);
1373#if EV_ASYNC_ENABLE 2817#if EV_ASYNC_ENABLE
1374 array_free (async, EMPTY); 2818 array_free (async, EMPTY);
1375#endif 2819#endif
1376 2820
1377 backend = 0; 2821 backend = 0;
2822
2823#if EV_MULTIPLICITY
2824 if (ev_is_default_loop (EV_A))
2825#endif
2826 ev_default_loop_ptr = 0;
2827#if EV_MULTIPLICITY
2828 else
2829 ev_free (EV_A);
2830#endif
1378} 2831}
1379 2832
1380#if EV_USE_INOTIFY 2833#if EV_USE_INOTIFY
1381void inline_size infy_fork (EV_P); 2834inline_size void infy_fork (EV_P);
1382#endif 2835#endif
1383 2836
1384void inline_size 2837inline_size void
1385loop_fork (EV_P) 2838loop_fork (EV_P)
1386{ 2839{
1387#if EV_USE_PORT 2840#if EV_USE_PORT
1388 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2841 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1389#endif 2842#endif
1395#endif 2848#endif
1396#if EV_USE_INOTIFY 2849#if EV_USE_INOTIFY
1397 infy_fork (EV_A); 2850 infy_fork (EV_A);
1398#endif 2851#endif
1399 2852
2853#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1400 if (ev_is_active (&pipeev)) 2854 if (ev_is_active (&pipe_w))
2855 {
2856 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2857
2858 ev_ref (EV_A);
2859 ev_io_stop (EV_A_ &pipe_w);
2860
2861 if (evpipe [0] >= 0)
2862 EV_WIN32_CLOSE_FD (evpipe [0]);
2863
2864 evpipe_init (EV_A);
2865 /* iterate over everything, in case we missed something before */
2866 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
1401 { 2867 }
1402 /* this "locks" the handlers against writing to the pipe */ 2868#endif
1403 /* while we modify the fd vars */ 2869
1404 gotsig = 1; 2870 postfork = 0;
2871}
2872
2873#if EV_MULTIPLICITY
2874
2875struct ev_loop * ecb_cold
2876ev_loop_new (unsigned int flags) EV_THROW
2877{
2878 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2879
2880 memset (EV_A, 0, sizeof (struct ev_loop));
2881 loop_init (EV_A_ flags);
2882
2883 if (ev_backend (EV_A))
2884 return EV_A;
2885
2886 ev_free (EV_A);
2887 return 0;
2888}
2889
2890#endif /* multiplicity */
2891
2892#if EV_VERIFY
2893static void noinline ecb_cold
2894verify_watcher (EV_P_ W w)
2895{
2896 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2897
2898 if (w->pending)
2899 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2900}
2901
2902static void noinline ecb_cold
2903verify_heap (EV_P_ ANHE *heap, int N)
2904{
2905 int i;
2906
2907 for (i = HEAP0; i < N + HEAP0; ++i)
2908 {
2909 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2910 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2911 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2912
2913 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2914 }
2915}
2916
2917static void noinline ecb_cold
2918array_verify (EV_P_ W *ws, int cnt)
2919{
2920 while (cnt--)
2921 {
2922 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2923 verify_watcher (EV_A_ ws [cnt]);
2924 }
2925}
2926#endif
2927
2928#if EV_FEATURE_API
2929void ecb_cold
2930ev_verify (EV_P) EV_THROW
2931{
2932#if EV_VERIFY
2933 int i;
2934 WL w, w2;
2935
2936 assert (activecnt >= -1);
2937
2938 assert (fdchangemax >= fdchangecnt);
2939 for (i = 0; i < fdchangecnt; ++i)
2940 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2941
2942 assert (anfdmax >= 0);
2943 for (i = 0; i < anfdmax; ++i)
2944 {
2945 int j = 0;
2946
2947 for (w = w2 = anfds [i].head; w; w = w->next)
2948 {
2949 verify_watcher (EV_A_ (W)w);
2950
2951 if (j++ & 1)
2952 {
2953 assert (("libev: io watcher list contains a loop", w != w2));
2954 w2 = w2->next;
2955 }
2956
2957 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2958 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2959 }
2960 }
2961
2962 assert (timermax >= timercnt);
2963 verify_heap (EV_A_ timers, timercnt);
2964
2965#if EV_PERIODIC_ENABLE
2966 assert (periodicmax >= periodiccnt);
2967 verify_heap (EV_A_ periodics, periodiccnt);
2968#endif
2969
2970 for (i = NUMPRI; i--; )
2971 {
2972 assert (pendingmax [i] >= pendingcnt [i]);
2973#if EV_IDLE_ENABLE
2974 assert (idleall >= 0);
2975 assert (idlemax [i] >= idlecnt [i]);
2976 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2977#endif
2978 }
2979
2980#if EV_FORK_ENABLE
2981 assert (forkmax >= forkcnt);
2982 array_verify (EV_A_ (W *)forks, forkcnt);
2983#endif
2984
2985#if EV_CLEANUP_ENABLE
2986 assert (cleanupmax >= cleanupcnt);
2987 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2988#endif
2989
1405#if EV_ASYNC_ENABLE 2990#if EV_ASYNC_ENABLE
1406 gotasync = 1; 2991 assert (asyncmax >= asynccnt);
2992 array_verify (EV_A_ (W *)asyncs, asynccnt);
2993#endif
2994
2995#if EV_PREPARE_ENABLE
2996 assert (preparemax >= preparecnt);
2997 array_verify (EV_A_ (W *)prepares, preparecnt);
2998#endif
2999
3000#if EV_CHECK_ENABLE
3001 assert (checkmax >= checkcnt);
3002 array_verify (EV_A_ (W *)checks, checkcnt);
3003#endif
3004
3005# if 0
3006#if EV_CHILD_ENABLE
3007 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3008 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3009#endif
1407#endif 3010# endif
1408
1409 ev_ref (EV_A);
1410 ev_io_stop (EV_A_ &pipeev);
1411
1412#if EV_USE_EVENTFD
1413 if (evfd >= 0)
1414 close (evfd);
1415#endif 3011#endif
1416
1417 if (evpipe [0] >= 0)
1418 {
1419 close (evpipe [0]);
1420 close (evpipe [1]);
1421 }
1422
1423 evpipe_init (EV_A);
1424 /* now iterate over everything, in case we missed something */
1425 pipecb (EV_A_ &pipeev, EV_READ);
1426 }
1427
1428 postfork = 0;
1429} 3012}
3013#endif
1430 3014
1431#if EV_MULTIPLICITY 3015#if EV_MULTIPLICITY
1432struct ev_loop * 3016struct ev_loop * ecb_cold
1433ev_loop_new (unsigned int flags)
1434{
1435 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1436
1437 memset (loop, 0, sizeof (struct ev_loop));
1438
1439 loop_init (EV_A_ flags);
1440
1441 if (ev_backend (EV_A))
1442 return loop;
1443
1444 return 0;
1445}
1446
1447void
1448ev_loop_destroy (EV_P)
1449{
1450 loop_destroy (EV_A);
1451 ev_free (loop);
1452}
1453
1454void
1455ev_loop_fork (EV_P)
1456{
1457 postfork = 1; /* must be in line with ev_default_fork */
1458}
1459#endif
1460
1461#if EV_MULTIPLICITY
1462struct ev_loop *
1463ev_default_loop_init (unsigned int flags)
1464#else 3017#else
1465int 3018int
3019#endif
1466ev_default_loop (unsigned int flags) 3020ev_default_loop (unsigned int flags) EV_THROW
1467#endif
1468{ 3021{
1469 if (!ev_default_loop_ptr) 3022 if (!ev_default_loop_ptr)
1470 { 3023 {
1471#if EV_MULTIPLICITY 3024#if EV_MULTIPLICITY
1472 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 3025 EV_P = ev_default_loop_ptr = &default_loop_struct;
1473#else 3026#else
1474 ev_default_loop_ptr = 1; 3027 ev_default_loop_ptr = 1;
1475#endif 3028#endif
1476 3029
1477 loop_init (EV_A_ flags); 3030 loop_init (EV_A_ flags);
1478 3031
1479 if (ev_backend (EV_A)) 3032 if (ev_backend (EV_A))
1480 { 3033 {
1481#ifndef _WIN32 3034#if EV_CHILD_ENABLE
1482 ev_signal_init (&childev, childcb, SIGCHLD); 3035 ev_signal_init (&childev, childcb, SIGCHLD);
1483 ev_set_priority (&childev, EV_MAXPRI); 3036 ev_set_priority (&childev, EV_MAXPRI);
1484 ev_signal_start (EV_A_ &childev); 3037 ev_signal_start (EV_A_ &childev);
1485 ev_unref (EV_A); /* child watcher should not keep loop alive */ 3038 ev_unref (EV_A); /* child watcher should not keep loop alive */
1486#endif 3039#endif
1491 3044
1492 return ev_default_loop_ptr; 3045 return ev_default_loop_ptr;
1493} 3046}
1494 3047
1495void 3048void
1496ev_default_destroy (void) 3049ev_loop_fork (EV_P) EV_THROW
1497{ 3050{
1498#if EV_MULTIPLICITY 3051 postfork = 1;
1499 struct ev_loop *loop = ev_default_loop_ptr;
1500#endif
1501
1502#ifndef _WIN32
1503 ev_ref (EV_A); /* child watcher */
1504 ev_signal_stop (EV_A_ &childev);
1505#endif
1506
1507 loop_destroy (EV_A);
1508}
1509
1510void
1511ev_default_fork (void)
1512{
1513#if EV_MULTIPLICITY
1514 struct ev_loop *loop = ev_default_loop_ptr;
1515#endif
1516
1517 if (backend)
1518 postfork = 1; /* must be in line with ev_loop_fork */
1519} 3052}
1520 3053
1521/*****************************************************************************/ 3054/*****************************************************************************/
1522 3055
1523void 3056void
1524ev_invoke (EV_P_ void *w, int revents) 3057ev_invoke (EV_P_ void *w, int revents)
1525{ 3058{
1526 EV_CB_INVOKE ((W)w, revents); 3059 EV_CB_INVOKE ((W)w, revents);
1527} 3060}
1528 3061
1529void inline_speed 3062unsigned int
1530call_pending (EV_P) 3063ev_pending_count (EV_P) EV_THROW
1531{ 3064{
1532 int pri; 3065 int pri;
3066 unsigned int count = 0;
1533 3067
1534 for (pri = NUMPRI; pri--; ) 3068 for (pri = NUMPRI; pri--; )
3069 count += pendingcnt [pri];
3070
3071 return count;
3072}
3073
3074void noinline
3075ev_invoke_pending (EV_P)
3076{
3077 pendingpri = NUMPRI;
3078
3079 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
3080 {
3081 --pendingpri;
3082
1535 while (pendingcnt [pri]) 3083 while (pendingcnt [pendingpri])
1536 {
1537 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1538
1539 if (expect_true (p->w))
1540 { 3084 {
1541 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 3085 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1542 3086
1543 p->w->pending = 0; 3087 p->w->pending = 0;
1544 EV_CB_INVOKE (p->w, p->events); 3088 EV_CB_INVOKE (p->w, p->events);
3089 EV_FREQUENT_CHECK;
1545 } 3090 }
1546 } 3091 }
1547} 3092}
1548 3093
1549#if EV_IDLE_ENABLE 3094#if EV_IDLE_ENABLE
1550void inline_size 3095/* make idle watchers pending. this handles the "call-idle */
3096/* only when higher priorities are idle" logic */
3097inline_size void
1551idle_reify (EV_P) 3098idle_reify (EV_P)
1552{ 3099{
1553 if (expect_false (idleall)) 3100 if (expect_false (idleall))
1554 { 3101 {
1555 int pri; 3102 int pri;
1567 } 3114 }
1568 } 3115 }
1569} 3116}
1570#endif 3117#endif
1571 3118
1572void inline_size 3119/* make timers pending */
3120inline_size void
1573timers_reify (EV_P) 3121timers_reify (EV_P)
1574{ 3122{
3123 EV_FREQUENT_CHECK;
3124
1575 while (timercnt && ev_at (timers [HEAP0]) <= mn_now) 3125 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1576 { 3126 {
1577 ev_timer *w = (ev_timer *)timers [HEAP0]; 3127 do
1578
1579 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1580
1581 /* first reschedule or stop timer */
1582 if (w->repeat)
1583 { 3128 {
3129 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3130
3131 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3132
3133 /* first reschedule or stop timer */
3134 if (w->repeat)
3135 {
3136 ev_at (w) += w->repeat;
3137 if (ev_at (w) < mn_now)
3138 ev_at (w) = mn_now;
3139
1584 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3140 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1585 3141
1586 ev_at (w) += w->repeat; 3142 ANHE_at_cache (timers [HEAP0]);
1587 if (ev_at (w) < mn_now)
1588 ev_at (w) = mn_now;
1589
1590 downheap (timers, timercnt, HEAP0); 3143 downheap (timers, timercnt, HEAP0);
3144 }
3145 else
3146 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3147
3148 EV_FREQUENT_CHECK;
3149 feed_reverse (EV_A_ (W)w);
1591 } 3150 }
1592 else 3151 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1593 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1594 3152
1595 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 3153 feed_reverse_done (EV_A_ EV_TIMER);
1596 } 3154 }
1597} 3155}
1598 3156
1599#if EV_PERIODIC_ENABLE 3157#if EV_PERIODIC_ENABLE
1600void inline_size 3158
3159static void noinline
3160periodic_recalc (EV_P_ ev_periodic *w)
3161{
3162 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3163 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3164
3165 /* the above almost always errs on the low side */
3166 while (at <= ev_rt_now)
3167 {
3168 ev_tstamp nat = at + w->interval;
3169
3170 /* when resolution fails us, we use ev_rt_now */
3171 if (expect_false (nat == at))
3172 {
3173 at = ev_rt_now;
3174 break;
3175 }
3176
3177 at = nat;
3178 }
3179
3180 ev_at (w) = at;
3181}
3182
3183/* make periodics pending */
3184inline_size void
1601periodics_reify (EV_P) 3185periodics_reify (EV_P)
1602{ 3186{
3187 EV_FREQUENT_CHECK;
3188
1603 while (periodiccnt && ev_at (periodics [HEAP0]) <= ev_rt_now) 3189 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1604 { 3190 {
1605 ev_periodic *w = (ev_periodic *)periodics [HEAP0]; 3191 do
1606
1607 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1608
1609 /* first reschedule or stop timer */
1610 if (w->reschedule_cb)
1611 { 3192 {
3193 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3194
3195 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3196
3197 /* first reschedule or stop timer */
3198 if (w->reschedule_cb)
3199 {
1612 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON); 3200 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3201
1613 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now)); 3202 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3203
3204 ANHE_at_cache (periodics [HEAP0]);
1614 downheap (periodics, periodiccnt, 1); 3205 downheap (periodics, periodiccnt, HEAP0);
3206 }
3207 else if (w->interval)
3208 {
3209 periodic_recalc (EV_A_ w);
3210 ANHE_at_cache (periodics [HEAP0]);
3211 downheap (periodics, periodiccnt, HEAP0);
3212 }
3213 else
3214 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3215
3216 EV_FREQUENT_CHECK;
3217 feed_reverse (EV_A_ (W)w);
1615 } 3218 }
1616 else if (w->interval) 3219 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1617 {
1618 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1619 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1620 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1621 downheap (periodics, periodiccnt, HEAP0);
1622 }
1623 else
1624 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1625 3220
1626 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 3221 feed_reverse_done (EV_A_ EV_PERIODIC);
1627 } 3222 }
1628} 3223}
1629 3224
3225/* simply recalculate all periodics */
3226/* TODO: maybe ensure that at least one event happens when jumping forward? */
1630static void noinline 3227static void noinline ecb_cold
1631periodics_reschedule (EV_P) 3228periodics_reschedule (EV_P)
1632{ 3229{
1633 int i; 3230 int i;
1634 3231
1635 /* adjust periodics after time jump */ 3232 /* adjust periodics after time jump */
1636 for (i = 1; i <= periodiccnt; ++i) 3233 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1637 { 3234 {
1638 ev_periodic *w = (ev_periodic *)periodics [i]; 3235 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1639 3236
1640 if (w->reschedule_cb) 3237 if (w->reschedule_cb)
1641 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3238 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1642 else if (w->interval) 3239 else if (w->interval)
1643 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 3240 periodic_recalc (EV_A_ w);
3241
3242 ANHE_at_cache (periodics [i]);
3243 }
3244
3245 reheap (periodics, periodiccnt);
3246}
3247#endif
3248
3249/* adjust all timers by a given offset */
3250static void noinline ecb_cold
3251timers_reschedule (EV_P_ ev_tstamp adjust)
3252{
3253 int i;
3254
3255 for (i = 0; i < timercnt; ++i)
1644 } 3256 {
1645 3257 ANHE *he = timers + i + HEAP0;
1646 /* now rebuild the heap */ 3258 ANHE_w (*he)->at += adjust;
1647 for (i = periodiccnt >> 1; --i; ) 3259 ANHE_at_cache (*he);
1648 downheap (periodics, periodiccnt, i + HEAP0); 3260 }
1649} 3261}
1650#endif
1651 3262
1652void inline_speed 3263/* fetch new monotonic and realtime times from the kernel */
3264/* also detect if there was a timejump, and act accordingly */
3265inline_speed void
1653time_update (EV_P_ ev_tstamp max_block) 3266time_update (EV_P_ ev_tstamp max_block)
1654{ 3267{
1655 int i;
1656
1657#if EV_USE_MONOTONIC 3268#if EV_USE_MONOTONIC
1658 if (expect_true (have_monotonic)) 3269 if (expect_true (have_monotonic))
1659 { 3270 {
3271 int i;
1660 ev_tstamp odiff = rtmn_diff; 3272 ev_tstamp odiff = rtmn_diff;
1661 3273
1662 mn_now = get_clock (); 3274 mn_now = get_clock ();
1663 3275
1664 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 3276 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1680 * doesn't hurt either as we only do this on time-jumps or 3292 * doesn't hurt either as we only do this on time-jumps or
1681 * in the unlikely event of having been preempted here. 3293 * in the unlikely event of having been preempted here.
1682 */ 3294 */
1683 for (i = 4; --i; ) 3295 for (i = 4; --i; )
1684 { 3296 {
3297 ev_tstamp diff;
1685 rtmn_diff = ev_rt_now - mn_now; 3298 rtmn_diff = ev_rt_now - mn_now;
1686 3299
3300 diff = odiff - rtmn_diff;
3301
1687 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)) 3302 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1688 return; /* all is well */ 3303 return; /* all is well */
1689 3304
1690 ev_rt_now = ev_time (); 3305 ev_rt_now = ev_time ();
1691 mn_now = get_clock (); 3306 mn_now = get_clock ();
1692 now_floor = mn_now; 3307 now_floor = mn_now;
1693 } 3308 }
1694 3309
3310 /* no timer adjustment, as the monotonic clock doesn't jump */
3311 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1695# if EV_PERIODIC_ENABLE 3312# if EV_PERIODIC_ENABLE
1696 periodics_reschedule (EV_A); 3313 periodics_reschedule (EV_A);
1697# endif 3314# endif
1698 /* no timer adjustment, as the monotonic clock doesn't jump */
1699 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1700 } 3315 }
1701 else 3316 else
1702#endif 3317#endif
1703 { 3318 {
1704 ev_rt_now = ev_time (); 3319 ev_rt_now = ev_time ();
1705 3320
1706 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 3321 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1707 { 3322 {
3323 /* adjust timers. this is easy, as the offset is the same for all of them */
3324 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1708#if EV_PERIODIC_ENABLE 3325#if EV_PERIODIC_ENABLE
1709 periodics_reschedule (EV_A); 3326 periodics_reschedule (EV_A);
1710#endif 3327#endif
1711 /* adjust timers. this is easy, as the offset is the same for all of them */
1712 for (i = 1; i <= timercnt; ++i)
1713 ev_at (timers [i]) += ev_rt_now - mn_now;
1714 } 3328 }
1715 3329
1716 mn_now = ev_rt_now; 3330 mn_now = ev_rt_now;
1717 } 3331 }
1718} 3332}
1719 3333
1720void 3334int
1721ev_ref (EV_P)
1722{
1723 ++activecnt;
1724}
1725
1726void
1727ev_unref (EV_P)
1728{
1729 --activecnt;
1730}
1731
1732static int loop_done;
1733
1734void
1735ev_loop (EV_P_ int flags) 3335ev_run (EV_P_ int flags)
1736{ 3336{
3337#if EV_FEATURE_API
3338 ++loop_depth;
3339#endif
3340
3341 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3342
1737 loop_done = EVUNLOOP_CANCEL; 3343 loop_done = EVBREAK_CANCEL;
1738 3344
1739 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3345 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1740 3346
1741 do 3347 do
1742 { 3348 {
3349#if EV_VERIFY >= 2
3350 ev_verify (EV_A);
3351#endif
3352
1743#ifndef _WIN32 3353#ifndef _WIN32
1744 if (expect_false (curpid)) /* penalise the forking check even more */ 3354 if (expect_false (curpid)) /* penalise the forking check even more */
1745 if (expect_false (getpid () != curpid)) 3355 if (expect_false (getpid () != curpid))
1746 { 3356 {
1747 curpid = getpid (); 3357 curpid = getpid ();
1753 /* we might have forked, so queue fork handlers */ 3363 /* we might have forked, so queue fork handlers */
1754 if (expect_false (postfork)) 3364 if (expect_false (postfork))
1755 if (forkcnt) 3365 if (forkcnt)
1756 { 3366 {
1757 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3367 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1758 call_pending (EV_A); 3368 EV_INVOKE_PENDING;
1759 } 3369 }
1760#endif 3370#endif
1761 3371
3372#if EV_PREPARE_ENABLE
1762 /* queue prepare watchers (and execute them) */ 3373 /* queue prepare watchers (and execute them) */
1763 if (expect_false (preparecnt)) 3374 if (expect_false (preparecnt))
1764 { 3375 {
1765 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3376 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1766 call_pending (EV_A); 3377 EV_INVOKE_PENDING;
1767 } 3378 }
3379#endif
1768 3380
1769 if (expect_false (!activecnt)) 3381 if (expect_false (loop_done))
1770 break; 3382 break;
1771 3383
1772 /* we might have forked, so reify kernel state if necessary */ 3384 /* we might have forked, so reify kernel state if necessary */
1773 if (expect_false (postfork)) 3385 if (expect_false (postfork))
1774 loop_fork (EV_A); 3386 loop_fork (EV_A);
1779 /* calculate blocking time */ 3391 /* calculate blocking time */
1780 { 3392 {
1781 ev_tstamp waittime = 0.; 3393 ev_tstamp waittime = 0.;
1782 ev_tstamp sleeptime = 0.; 3394 ev_tstamp sleeptime = 0.;
1783 3395
3396 /* remember old timestamp for io_blocktime calculation */
3397 ev_tstamp prev_mn_now = mn_now;
3398
3399 /* update time to cancel out callback processing overhead */
3400 time_update (EV_A_ 1e100);
3401
3402 /* from now on, we want a pipe-wake-up */
3403 pipe_write_wanted = 1;
3404
3405 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3406
1784 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3407 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1785 { 3408 {
1786 /* update time to cancel out callback processing overhead */
1787 time_update (EV_A_ 1e100);
1788
1789 waittime = MAX_BLOCKTIME; 3409 waittime = MAX_BLOCKTIME;
1790 3410
1791 if (timercnt) 3411 if (timercnt)
1792 { 3412 {
1793 ev_tstamp to = ev_at (timers [HEAP0]) - mn_now + backend_fudge; 3413 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1794 if (waittime > to) waittime = to; 3414 if (waittime > to) waittime = to;
1795 } 3415 }
1796 3416
1797#if EV_PERIODIC_ENABLE 3417#if EV_PERIODIC_ENABLE
1798 if (periodiccnt) 3418 if (periodiccnt)
1799 { 3419 {
1800 ev_tstamp to = ev_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 3420 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1801 if (waittime > to) waittime = to; 3421 if (waittime > to) waittime = to;
1802 } 3422 }
1803#endif 3423#endif
1804 3424
3425 /* don't let timeouts decrease the waittime below timeout_blocktime */
1805 if (expect_false (waittime < timeout_blocktime)) 3426 if (expect_false (waittime < timeout_blocktime))
1806 waittime = timeout_blocktime; 3427 waittime = timeout_blocktime;
1807 3428
1808 sleeptime = waittime - backend_fudge; 3429 /* at this point, we NEED to wait, so we have to ensure */
3430 /* to pass a minimum nonzero value to the backend */
3431 if (expect_false (waittime < backend_mintime))
3432 waittime = backend_mintime;
1809 3433
3434 /* extra check because io_blocktime is commonly 0 */
1810 if (expect_true (sleeptime > io_blocktime)) 3435 if (expect_false (io_blocktime))
1811 sleeptime = io_blocktime;
1812
1813 if (sleeptime)
1814 { 3436 {
3437 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3438
3439 if (sleeptime > waittime - backend_mintime)
3440 sleeptime = waittime - backend_mintime;
3441
3442 if (expect_true (sleeptime > 0.))
3443 {
1815 ev_sleep (sleeptime); 3444 ev_sleep (sleeptime);
1816 waittime -= sleeptime; 3445 waittime -= sleeptime;
3446 }
1817 } 3447 }
1818 } 3448 }
1819 3449
3450#if EV_FEATURE_API
1820 ++loop_count; 3451 ++loop_count;
3452#endif
3453 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1821 backend_poll (EV_A_ waittime); 3454 backend_poll (EV_A_ waittime);
3455 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3456
3457 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3458
3459 ECB_MEMORY_FENCE_ACQUIRE;
3460 if (pipe_write_skipped)
3461 {
3462 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3463 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3464 }
3465
1822 3466
1823 /* update ev_rt_now, do magic */ 3467 /* update ev_rt_now, do magic */
1824 time_update (EV_A_ waittime + sleeptime); 3468 time_update (EV_A_ waittime + sleeptime);
1825 } 3469 }
1826 3470
1833#if EV_IDLE_ENABLE 3477#if EV_IDLE_ENABLE
1834 /* queue idle watchers unless other events are pending */ 3478 /* queue idle watchers unless other events are pending */
1835 idle_reify (EV_A); 3479 idle_reify (EV_A);
1836#endif 3480#endif
1837 3481
3482#if EV_CHECK_ENABLE
1838 /* queue check watchers, to be executed first */ 3483 /* queue check watchers, to be executed first */
1839 if (expect_false (checkcnt)) 3484 if (expect_false (checkcnt))
1840 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3485 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3486#endif
1841 3487
1842 call_pending (EV_A); 3488 EV_INVOKE_PENDING;
1843 } 3489 }
1844 while (expect_true ( 3490 while (expect_true (
1845 activecnt 3491 activecnt
1846 && !loop_done 3492 && !loop_done
1847 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 3493 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
1848 )); 3494 ));
1849 3495
1850 if (loop_done == EVUNLOOP_ONE) 3496 if (loop_done == EVBREAK_ONE)
1851 loop_done = EVUNLOOP_CANCEL; 3497 loop_done = EVBREAK_CANCEL;
3498
3499#if EV_FEATURE_API
3500 --loop_depth;
3501#endif
3502
3503 return activecnt;
1852} 3504}
1853 3505
1854void 3506void
1855ev_unloop (EV_P_ int how) 3507ev_break (EV_P_ int how) EV_THROW
1856{ 3508{
1857 loop_done = how; 3509 loop_done = how;
1858} 3510}
1859 3511
3512void
3513ev_ref (EV_P) EV_THROW
3514{
3515 ++activecnt;
3516}
3517
3518void
3519ev_unref (EV_P) EV_THROW
3520{
3521 --activecnt;
3522}
3523
3524void
3525ev_now_update (EV_P) EV_THROW
3526{
3527 time_update (EV_A_ 1e100);
3528}
3529
3530void
3531ev_suspend (EV_P) EV_THROW
3532{
3533 ev_now_update (EV_A);
3534}
3535
3536void
3537ev_resume (EV_P) EV_THROW
3538{
3539 ev_tstamp mn_prev = mn_now;
3540
3541 ev_now_update (EV_A);
3542 timers_reschedule (EV_A_ mn_now - mn_prev);
3543#if EV_PERIODIC_ENABLE
3544 /* TODO: really do this? */
3545 periodics_reschedule (EV_A);
3546#endif
3547}
3548
1860/*****************************************************************************/ 3549/*****************************************************************************/
3550/* singly-linked list management, used when the expected list length is short */
1861 3551
1862void inline_size 3552inline_size void
1863wlist_add (WL *head, WL elem) 3553wlist_add (WL *head, WL elem)
1864{ 3554{
1865 elem->next = *head; 3555 elem->next = *head;
1866 *head = elem; 3556 *head = elem;
1867} 3557}
1868 3558
1869void inline_size 3559inline_size void
1870wlist_del (WL *head, WL elem) 3560wlist_del (WL *head, WL elem)
1871{ 3561{
1872 while (*head) 3562 while (*head)
1873 { 3563 {
1874 if (*head == elem) 3564 if (expect_true (*head == elem))
1875 { 3565 {
1876 *head = elem->next; 3566 *head = elem->next;
1877 return; 3567 break;
1878 } 3568 }
1879 3569
1880 head = &(*head)->next; 3570 head = &(*head)->next;
1881 } 3571 }
1882} 3572}
1883 3573
1884void inline_speed 3574/* internal, faster, version of ev_clear_pending */
3575inline_speed void
1885clear_pending (EV_P_ W w) 3576clear_pending (EV_P_ W w)
1886{ 3577{
1887 if (w->pending) 3578 if (w->pending)
1888 { 3579 {
1889 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3580 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1890 w->pending = 0; 3581 w->pending = 0;
1891 } 3582 }
1892} 3583}
1893 3584
1894int 3585int
1895ev_clear_pending (EV_P_ void *w) 3586ev_clear_pending (EV_P_ void *w) EV_THROW
1896{ 3587{
1897 W w_ = (W)w; 3588 W w_ = (W)w;
1898 int pending = w_->pending; 3589 int pending = w_->pending;
1899 3590
1900 if (expect_true (pending)) 3591 if (expect_true (pending))
1901 { 3592 {
1902 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3593 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3594 p->w = (W)&pending_w;
1903 w_->pending = 0; 3595 w_->pending = 0;
1904 p->w = 0;
1905 return p->events; 3596 return p->events;
1906 } 3597 }
1907 else 3598 else
1908 return 0; 3599 return 0;
1909} 3600}
1910 3601
1911void inline_size 3602inline_size void
1912pri_adjust (EV_P_ W w) 3603pri_adjust (EV_P_ W w)
1913{ 3604{
1914 int pri = w->priority; 3605 int pri = ev_priority (w);
1915 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3606 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1916 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3607 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1917 w->priority = pri; 3608 ev_set_priority (w, pri);
1918} 3609}
1919 3610
1920void inline_speed 3611inline_speed void
1921ev_start (EV_P_ W w, int active) 3612ev_start (EV_P_ W w, int active)
1922{ 3613{
1923 pri_adjust (EV_A_ w); 3614 pri_adjust (EV_A_ w);
1924 w->active = active; 3615 w->active = active;
1925 ev_ref (EV_A); 3616 ev_ref (EV_A);
1926} 3617}
1927 3618
1928void inline_size 3619inline_size void
1929ev_stop (EV_P_ W w) 3620ev_stop (EV_P_ W w)
1930{ 3621{
1931 ev_unref (EV_A); 3622 ev_unref (EV_A);
1932 w->active = 0; 3623 w->active = 0;
1933} 3624}
1934 3625
1935/*****************************************************************************/ 3626/*****************************************************************************/
1936 3627
1937void noinline 3628void noinline
1938ev_io_start (EV_P_ ev_io *w) 3629ev_io_start (EV_P_ ev_io *w) EV_THROW
1939{ 3630{
1940 int fd = w->fd; 3631 int fd = w->fd;
1941 3632
1942 if (expect_false (ev_is_active (w))) 3633 if (expect_false (ev_is_active (w)))
1943 return; 3634 return;
1944 3635
1945 assert (("ev_io_start called with negative fd", fd >= 0)); 3636 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3637 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3638
3639 EV_FREQUENT_CHECK;
1946 3640
1947 ev_start (EV_A_ (W)w, 1); 3641 ev_start (EV_A_ (W)w, 1);
1948 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3642 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1949 wlist_add (&anfds[fd].head, (WL)w); 3643 wlist_add (&anfds[fd].head, (WL)w);
1950 3644
3645 /* common bug, apparently */
3646 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3647
1951 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3648 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1952 w->events &= ~EV_IOFDSET; 3649 w->events &= ~EV__IOFDSET;
3650
3651 EV_FREQUENT_CHECK;
1953} 3652}
1954 3653
1955void noinline 3654void noinline
1956ev_io_stop (EV_P_ ev_io *w) 3655ev_io_stop (EV_P_ ev_io *w) EV_THROW
1957{ 3656{
1958 clear_pending (EV_A_ (W)w); 3657 clear_pending (EV_A_ (W)w);
1959 if (expect_false (!ev_is_active (w))) 3658 if (expect_false (!ev_is_active (w)))
1960 return; 3659 return;
1961 3660
1962 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3661 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3662
3663 EV_FREQUENT_CHECK;
1963 3664
1964 wlist_del (&anfds[w->fd].head, (WL)w); 3665 wlist_del (&anfds[w->fd].head, (WL)w);
1965 ev_stop (EV_A_ (W)w); 3666 ev_stop (EV_A_ (W)w);
1966 3667
1967 fd_change (EV_A_ w->fd, 1); 3668 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3669
3670 EV_FREQUENT_CHECK;
1968} 3671}
1969 3672
1970void noinline 3673void noinline
1971ev_timer_start (EV_P_ ev_timer *w) 3674ev_timer_start (EV_P_ ev_timer *w) EV_THROW
1972{ 3675{
1973 if (expect_false (ev_is_active (w))) 3676 if (expect_false (ev_is_active (w)))
1974 return; 3677 return;
1975 3678
1976 ev_at (w) += mn_now; 3679 ev_at (w) += mn_now;
1977 3680
1978 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3681 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1979 3682
3683 EV_FREQUENT_CHECK;
3684
3685 ++timercnt;
1980 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 3686 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1981 array_needsize (WT, timers, timermax, timercnt + HEAP0, EMPTY2); 3687 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1982 timers [ev_active (w)] = (WT)w; 3688 ANHE_w (timers [ev_active (w)]) = (WT)w;
3689 ANHE_at_cache (timers [ev_active (w)]);
1983 upheap (timers, ev_active (w)); 3690 upheap (timers, ev_active (w));
1984 3691
3692 EV_FREQUENT_CHECK;
3693
1985 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/ 3694 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1986} 3695}
1987 3696
1988void noinline 3697void noinline
1989ev_timer_stop (EV_P_ ev_timer *w) 3698ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
1990{ 3699{
1991 clear_pending (EV_A_ (W)w); 3700 clear_pending (EV_A_ (W)w);
1992 if (expect_false (!ev_is_active (w))) 3701 if (expect_false (!ev_is_active (w)))
1993 return; 3702 return;
1994 3703
3704 EV_FREQUENT_CHECK;
3705
1995 { 3706 {
1996 int active = ev_active (w); 3707 int active = ev_active (w);
1997 3708
1998 assert (("internal timer heap corruption", timers [active] == (WT)w)); 3709 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1999 3710
3711 --timercnt;
3712
2000 if (expect_true (active < timercnt + HEAP0 - 1)) 3713 if (expect_true (active < timercnt + HEAP0))
2001 { 3714 {
2002 timers [active] = timers [timercnt + HEAP0 - 1]; 3715 timers [active] = timers [timercnt + HEAP0];
2003 adjustheap (timers, timercnt, active); 3716 adjustheap (timers, timercnt, active);
2004 } 3717 }
2005
2006 --timercnt;
2007 } 3718 }
2008 3719
2009 ev_at (w) -= mn_now; 3720 ev_at (w) -= mn_now;
2010 3721
2011 ev_stop (EV_A_ (W)w); 3722 ev_stop (EV_A_ (W)w);
3723
3724 EV_FREQUENT_CHECK;
2012} 3725}
2013 3726
2014void noinline 3727void noinline
2015ev_timer_again (EV_P_ ev_timer *w) 3728ev_timer_again (EV_P_ ev_timer *w) EV_THROW
2016{ 3729{
3730 EV_FREQUENT_CHECK;
3731
3732 clear_pending (EV_A_ (W)w);
3733
2017 if (ev_is_active (w)) 3734 if (ev_is_active (w))
2018 { 3735 {
2019 if (w->repeat) 3736 if (w->repeat)
2020 { 3737 {
2021 ev_at (w) = mn_now + w->repeat; 3738 ev_at (w) = mn_now + w->repeat;
3739 ANHE_at_cache (timers [ev_active (w)]);
2022 adjustheap (timers, timercnt, ev_active (w)); 3740 adjustheap (timers, timercnt, ev_active (w));
2023 } 3741 }
2024 else 3742 else
2025 ev_timer_stop (EV_A_ w); 3743 ev_timer_stop (EV_A_ w);
2026 } 3744 }
2027 else if (w->repeat) 3745 else if (w->repeat)
2028 { 3746 {
2029 ev_at (w) = w->repeat; 3747 ev_at (w) = w->repeat;
2030 ev_timer_start (EV_A_ w); 3748 ev_timer_start (EV_A_ w);
2031 } 3749 }
3750
3751 EV_FREQUENT_CHECK;
3752}
3753
3754ev_tstamp
3755ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3756{
3757 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2032} 3758}
2033 3759
2034#if EV_PERIODIC_ENABLE 3760#if EV_PERIODIC_ENABLE
2035void noinline 3761void noinline
2036ev_periodic_start (EV_P_ ev_periodic *w) 3762ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
2037{ 3763{
2038 if (expect_false (ev_is_active (w))) 3764 if (expect_false (ev_is_active (w)))
2039 return; 3765 return;
2040 3766
2041 if (w->reschedule_cb) 3767 if (w->reschedule_cb)
2042 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3768 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2043 else if (w->interval) 3769 else if (w->interval)
2044 { 3770 {
2045 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3771 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2046 /* this formula differs from the one in periodic_reify because we do not always round up */ 3772 periodic_recalc (EV_A_ w);
2047 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2048 } 3773 }
2049 else 3774 else
2050 ev_at (w) = w->offset; 3775 ev_at (w) = w->offset;
2051 3776
3777 EV_FREQUENT_CHECK;
3778
3779 ++periodiccnt;
2052 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 3780 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2053 array_needsize (WT, periodics, periodicmax, periodiccnt + HEAP0, EMPTY2); 3781 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2054 periodics [ev_active (w)] = (WT)w; 3782 ANHE_w (periodics [ev_active (w)]) = (WT)w;
3783 ANHE_at_cache (periodics [ev_active (w)]);
2055 upheap (periodics, ev_active (w)); 3784 upheap (periodics, ev_active (w));
2056 3785
3786 EV_FREQUENT_CHECK;
3787
2057 /*assert (("internal periodic heap corruption", periodics [ev_active (w)] == w));*/ 3788 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2058} 3789}
2059 3790
2060void noinline 3791void noinline
2061ev_periodic_stop (EV_P_ ev_periodic *w) 3792ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
2062{ 3793{
2063 clear_pending (EV_A_ (W)w); 3794 clear_pending (EV_A_ (W)w);
2064 if (expect_false (!ev_is_active (w))) 3795 if (expect_false (!ev_is_active (w)))
2065 return; 3796 return;
2066 3797
3798 EV_FREQUENT_CHECK;
3799
2067 { 3800 {
2068 int active = ev_active (w); 3801 int active = ev_active (w);
2069 3802
2070 assert (("internal periodic heap corruption", periodics [active] == (WT)w)); 3803 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2071 3804
3805 --periodiccnt;
3806
2072 if (expect_true (active < periodiccnt + HEAP0 - 1)) 3807 if (expect_true (active < periodiccnt + HEAP0))
2073 { 3808 {
2074 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 3809 periodics [active] = periodics [periodiccnt + HEAP0];
2075 adjustheap (periodics, periodiccnt, active); 3810 adjustheap (periodics, periodiccnt, active);
2076 } 3811 }
2077
2078 --periodiccnt;
2079 } 3812 }
2080 3813
2081 ev_stop (EV_A_ (W)w); 3814 ev_stop (EV_A_ (W)w);
3815
3816 EV_FREQUENT_CHECK;
2082} 3817}
2083 3818
2084void noinline 3819void noinline
2085ev_periodic_again (EV_P_ ev_periodic *w) 3820ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
2086{ 3821{
2087 /* TODO: use adjustheap and recalculation */ 3822 /* TODO: use adjustheap and recalculation */
2088 ev_periodic_stop (EV_A_ w); 3823 ev_periodic_stop (EV_A_ w);
2089 ev_periodic_start (EV_A_ w); 3824 ev_periodic_start (EV_A_ w);
2090} 3825}
2092 3827
2093#ifndef SA_RESTART 3828#ifndef SA_RESTART
2094# define SA_RESTART 0 3829# define SA_RESTART 0
2095#endif 3830#endif
2096 3831
3832#if EV_SIGNAL_ENABLE
3833
2097void noinline 3834void noinline
2098ev_signal_start (EV_P_ ev_signal *w) 3835ev_signal_start (EV_P_ ev_signal *w) EV_THROW
2099{ 3836{
2100#if EV_MULTIPLICITY
2101 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2102#endif
2103 if (expect_false (ev_is_active (w))) 3837 if (expect_false (ev_is_active (w)))
2104 return; 3838 return;
2105 3839
2106 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3840 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2107 3841
2108 evpipe_init (EV_A); 3842#if EV_MULTIPLICITY
3843 assert (("libev: a signal must not be attached to two different loops",
3844 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2109 3845
3846 signals [w->signum - 1].loop = EV_A;
3847 ECB_MEMORY_FENCE_RELEASE;
3848#endif
3849
3850 EV_FREQUENT_CHECK;
3851
3852#if EV_USE_SIGNALFD
3853 if (sigfd == -2)
2110 { 3854 {
2111#ifndef _WIN32 3855 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2112 sigset_t full, prev; 3856 if (sigfd < 0 && errno == EINVAL)
2113 sigfillset (&full); 3857 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2114 sigprocmask (SIG_SETMASK, &full, &prev);
2115#endif
2116 3858
2117 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3859 if (sigfd >= 0)
3860 {
3861 fd_intern (sigfd); /* doing it twice will not hurt */
2118 3862
2119#ifndef _WIN32 3863 sigemptyset (&sigfd_set);
2120 sigprocmask (SIG_SETMASK, &prev, 0); 3864
2121#endif 3865 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3866 ev_set_priority (&sigfd_w, EV_MAXPRI);
3867 ev_io_start (EV_A_ &sigfd_w);
3868 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3869 }
2122 } 3870 }
3871
3872 if (sigfd >= 0)
3873 {
3874 /* TODO: check .head */
3875 sigaddset (&sigfd_set, w->signum);
3876 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3877
3878 signalfd (sigfd, &sigfd_set, 0);
3879 }
3880#endif
2123 3881
2124 ev_start (EV_A_ (W)w, 1); 3882 ev_start (EV_A_ (W)w, 1);
2125 wlist_add (&signals [w->signum - 1].head, (WL)w); 3883 wlist_add (&signals [w->signum - 1].head, (WL)w);
2126 3884
2127 if (!((WL)w)->next) 3885 if (!((WL)w)->next)
3886# if EV_USE_SIGNALFD
3887 if (sigfd < 0) /*TODO*/
3888# endif
2128 { 3889 {
2129#if _WIN32 3890# ifdef _WIN32
3891 evpipe_init (EV_A);
3892
2130 signal (w->signum, ev_sighandler); 3893 signal (w->signum, ev_sighandler);
2131#else 3894# else
2132 struct sigaction sa; 3895 struct sigaction sa;
3896
3897 evpipe_init (EV_A);
3898
2133 sa.sa_handler = ev_sighandler; 3899 sa.sa_handler = ev_sighandler;
2134 sigfillset (&sa.sa_mask); 3900 sigfillset (&sa.sa_mask);
2135 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3901 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2136 sigaction (w->signum, &sa, 0); 3902 sigaction (w->signum, &sa, 0);
3903
3904 if (origflags & EVFLAG_NOSIGMASK)
3905 {
3906 sigemptyset (&sa.sa_mask);
3907 sigaddset (&sa.sa_mask, w->signum);
3908 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3909 }
2137#endif 3910#endif
2138 } 3911 }
3912
3913 EV_FREQUENT_CHECK;
2139} 3914}
2140 3915
2141void noinline 3916void noinline
2142ev_signal_stop (EV_P_ ev_signal *w) 3917ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
2143{ 3918{
2144 clear_pending (EV_A_ (W)w); 3919 clear_pending (EV_A_ (W)w);
2145 if (expect_false (!ev_is_active (w))) 3920 if (expect_false (!ev_is_active (w)))
2146 return; 3921 return;
2147 3922
3923 EV_FREQUENT_CHECK;
3924
2148 wlist_del (&signals [w->signum - 1].head, (WL)w); 3925 wlist_del (&signals [w->signum - 1].head, (WL)w);
2149 ev_stop (EV_A_ (W)w); 3926 ev_stop (EV_A_ (W)w);
2150 3927
2151 if (!signals [w->signum - 1].head) 3928 if (!signals [w->signum - 1].head)
3929 {
3930#if EV_MULTIPLICITY
3931 signals [w->signum - 1].loop = 0; /* unattach from signal */
3932#endif
3933#if EV_USE_SIGNALFD
3934 if (sigfd >= 0)
3935 {
3936 sigset_t ss;
3937
3938 sigemptyset (&ss);
3939 sigaddset (&ss, w->signum);
3940 sigdelset (&sigfd_set, w->signum);
3941
3942 signalfd (sigfd, &sigfd_set, 0);
3943 sigprocmask (SIG_UNBLOCK, &ss, 0);
3944 }
3945 else
3946#endif
2152 signal (w->signum, SIG_DFL); 3947 signal (w->signum, SIG_DFL);
3948 }
3949
3950 EV_FREQUENT_CHECK;
2153} 3951}
3952
3953#endif
3954
3955#if EV_CHILD_ENABLE
2154 3956
2155void 3957void
2156ev_child_start (EV_P_ ev_child *w) 3958ev_child_start (EV_P_ ev_child *w) EV_THROW
2157{ 3959{
2158#if EV_MULTIPLICITY 3960#if EV_MULTIPLICITY
2159 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3961 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2160#endif 3962#endif
2161 if (expect_false (ev_is_active (w))) 3963 if (expect_false (ev_is_active (w)))
2162 return; 3964 return;
2163 3965
3966 EV_FREQUENT_CHECK;
3967
2164 ev_start (EV_A_ (W)w, 1); 3968 ev_start (EV_A_ (W)w, 1);
2165 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3969 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3970
3971 EV_FREQUENT_CHECK;
2166} 3972}
2167 3973
2168void 3974void
2169ev_child_stop (EV_P_ ev_child *w) 3975ev_child_stop (EV_P_ ev_child *w) EV_THROW
2170{ 3976{
2171 clear_pending (EV_A_ (W)w); 3977 clear_pending (EV_A_ (W)w);
2172 if (expect_false (!ev_is_active (w))) 3978 if (expect_false (!ev_is_active (w)))
2173 return; 3979 return;
2174 3980
3981 EV_FREQUENT_CHECK;
3982
2175 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3983 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2176 ev_stop (EV_A_ (W)w); 3984 ev_stop (EV_A_ (W)w);
3985
3986 EV_FREQUENT_CHECK;
2177} 3987}
3988
3989#endif
2178 3990
2179#if EV_STAT_ENABLE 3991#if EV_STAT_ENABLE
2180 3992
2181# ifdef _WIN32 3993# ifdef _WIN32
2182# undef lstat 3994# undef lstat
2183# define lstat(a,b) _stati64 (a,b) 3995# define lstat(a,b) _stati64 (a,b)
2184# endif 3996# endif
2185 3997
2186#define DEF_STAT_INTERVAL 5.0074891 3998#define DEF_STAT_INTERVAL 5.0074891
3999#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2187#define MIN_STAT_INTERVAL 0.1074891 4000#define MIN_STAT_INTERVAL 0.1074891
2188 4001
2189static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 4002static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2190 4003
2191#if EV_USE_INOTIFY 4004#if EV_USE_INOTIFY
2192# define EV_INOTIFY_BUFSIZE 8192 4005
4006/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4007# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2193 4008
2194static void noinline 4009static void noinline
2195infy_add (EV_P_ ev_stat *w) 4010infy_add (EV_P_ ev_stat *w)
2196{ 4011{
2197 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 4012 w->wd = inotify_add_watch (fs_fd, w->path,
4013 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4014 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4015 | IN_DONT_FOLLOW | IN_MASK_ADD);
2198 4016
2199 if (w->wd < 0) 4017 if (w->wd >= 0)
4018 {
4019 struct statfs sfs;
4020
4021 /* now local changes will be tracked by inotify, but remote changes won't */
4022 /* unless the filesystem is known to be local, we therefore still poll */
4023 /* also do poll on <2.6.25, but with normal frequency */
4024
4025 if (!fs_2625)
4026 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4027 else if (!statfs (w->path, &sfs)
4028 && (sfs.f_type == 0x1373 /* devfs */
4029 || sfs.f_type == 0x4006 /* fat */
4030 || sfs.f_type == 0x4d44 /* msdos */
4031 || sfs.f_type == 0xEF53 /* ext2/3 */
4032 || sfs.f_type == 0x72b6 /* jffs2 */
4033 || sfs.f_type == 0x858458f6 /* ramfs */
4034 || sfs.f_type == 0x5346544e /* ntfs */
4035 || sfs.f_type == 0x3153464a /* jfs */
4036 || sfs.f_type == 0x9123683e /* btrfs */
4037 || sfs.f_type == 0x52654973 /* reiser3 */
4038 || sfs.f_type == 0x01021994 /* tmpfs */
4039 || sfs.f_type == 0x58465342 /* xfs */))
4040 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4041 else
4042 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2200 { 4043 }
2201 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 4044 else
4045 {
4046 /* can't use inotify, continue to stat */
4047 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2202 4048
2203 /* monitor some parent directory for speedup hints */ 4049 /* if path is not there, monitor some parent directory for speedup hints */
2204 /* note that exceeding the hardcoded limit is not a correctness issue, */ 4050 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2205 /* but an efficiency issue only */ 4051 /* but an efficiency issue only */
2206 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 4052 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2207 { 4053 {
2208 char path [4096]; 4054 char path [4096];
2209 strcpy (path, w->path); 4055 strcpy (path, w->path);
2213 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 4059 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2214 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 4060 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2215 4061
2216 char *pend = strrchr (path, '/'); 4062 char *pend = strrchr (path, '/');
2217 4063
2218 if (!pend) 4064 if (!pend || pend == path)
2219 break; /* whoops, no '/', complain to your admin */ 4065 break;
2220 4066
2221 *pend = 0; 4067 *pend = 0;
2222 w->wd = inotify_add_watch (fs_fd, path, mask); 4068 w->wd = inotify_add_watch (fs_fd, path, mask);
2223 } 4069 }
2224 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 4070 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2225 } 4071 }
2226 } 4072 }
2227 else
2228 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2229 4073
2230 if (w->wd >= 0) 4074 if (w->wd >= 0)
2231 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 4075 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4076
4077 /* now re-arm timer, if required */
4078 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4079 ev_timer_again (EV_A_ &w->timer);
4080 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2232} 4081}
2233 4082
2234static void noinline 4083static void noinline
2235infy_del (EV_P_ ev_stat *w) 4084infy_del (EV_P_ ev_stat *w)
2236{ 4085{
2239 4088
2240 if (wd < 0) 4089 if (wd < 0)
2241 return; 4090 return;
2242 4091
2243 w->wd = -2; 4092 w->wd = -2;
2244 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 4093 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2245 wlist_del (&fs_hash [slot].head, (WL)w); 4094 wlist_del (&fs_hash [slot].head, (WL)w);
2246 4095
2247 /* remove this watcher, if others are watching it, they will rearm */ 4096 /* remove this watcher, if others are watching it, they will rearm */
2248 inotify_rm_watch (fs_fd, wd); 4097 inotify_rm_watch (fs_fd, wd);
2249} 4098}
2250 4099
2251static void noinline 4100static void noinline
2252infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 4101infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2253{ 4102{
2254 if (slot < 0) 4103 if (slot < 0)
2255 /* overflow, need to check for all hahs slots */ 4104 /* overflow, need to check for all hash slots */
2256 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4105 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2257 infy_wd (EV_A_ slot, wd, ev); 4106 infy_wd (EV_A_ slot, wd, ev);
2258 else 4107 else
2259 { 4108 {
2260 WL w_; 4109 WL w_;
2261 4110
2262 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 4111 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2263 { 4112 {
2264 ev_stat *w = (ev_stat *)w_; 4113 ev_stat *w = (ev_stat *)w_;
2265 w_ = w_->next; /* lets us remove this watcher and all before it */ 4114 w_ = w_->next; /* lets us remove this watcher and all before it */
2266 4115
2267 if (w->wd == wd || wd == -1) 4116 if (w->wd == wd || wd == -1)
2268 { 4117 {
2269 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 4118 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2270 { 4119 {
4120 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2271 w->wd = -1; 4121 w->wd = -1;
2272 infy_add (EV_A_ w); /* re-add, no matter what */ 4122 infy_add (EV_A_ w); /* re-add, no matter what */
2273 } 4123 }
2274 4124
2275 stat_timer_cb (EV_A_ &w->timer, 0); 4125 stat_timer_cb (EV_A_ &w->timer, 0);
2280 4130
2281static void 4131static void
2282infy_cb (EV_P_ ev_io *w, int revents) 4132infy_cb (EV_P_ ev_io *w, int revents)
2283{ 4133{
2284 char buf [EV_INOTIFY_BUFSIZE]; 4134 char buf [EV_INOTIFY_BUFSIZE];
2285 struct inotify_event *ev = (struct inotify_event *)buf;
2286 int ofs; 4135 int ofs;
2287 int len = read (fs_fd, buf, sizeof (buf)); 4136 int len = read (fs_fd, buf, sizeof (buf));
2288 4137
2289 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 4138 for (ofs = 0; ofs < len; )
4139 {
4140 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2290 infy_wd (EV_A_ ev->wd, ev->wd, ev); 4141 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4142 ofs += sizeof (struct inotify_event) + ev->len;
4143 }
2291} 4144}
2292 4145
2293void inline_size 4146inline_size void ecb_cold
4147ev_check_2625 (EV_P)
4148{
4149 /* kernels < 2.6.25 are borked
4150 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4151 */
4152 if (ev_linux_version () < 0x020619)
4153 return;
4154
4155 fs_2625 = 1;
4156}
4157
4158inline_size int
4159infy_newfd (void)
4160{
4161#if defined IN_CLOEXEC && defined IN_NONBLOCK
4162 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4163 if (fd >= 0)
4164 return fd;
4165#endif
4166 return inotify_init ();
4167}
4168
4169inline_size void
2294infy_init (EV_P) 4170infy_init (EV_P)
2295{ 4171{
2296 if (fs_fd != -2) 4172 if (fs_fd != -2)
2297 return; 4173 return;
2298 4174
4175 fs_fd = -1;
4176
4177 ev_check_2625 (EV_A);
4178
2299 fs_fd = inotify_init (); 4179 fs_fd = infy_newfd ();
2300 4180
2301 if (fs_fd >= 0) 4181 if (fs_fd >= 0)
2302 { 4182 {
4183 fd_intern (fs_fd);
2303 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 4184 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2304 ev_set_priority (&fs_w, EV_MAXPRI); 4185 ev_set_priority (&fs_w, EV_MAXPRI);
2305 ev_io_start (EV_A_ &fs_w); 4186 ev_io_start (EV_A_ &fs_w);
4187 ev_unref (EV_A);
2306 } 4188 }
2307} 4189}
2308 4190
2309void inline_size 4191inline_size void
2310infy_fork (EV_P) 4192infy_fork (EV_P)
2311{ 4193{
2312 int slot; 4194 int slot;
2313 4195
2314 if (fs_fd < 0) 4196 if (fs_fd < 0)
2315 return; 4197 return;
2316 4198
4199 ev_ref (EV_A);
4200 ev_io_stop (EV_A_ &fs_w);
2317 close (fs_fd); 4201 close (fs_fd);
2318 fs_fd = inotify_init (); 4202 fs_fd = infy_newfd ();
2319 4203
4204 if (fs_fd >= 0)
4205 {
4206 fd_intern (fs_fd);
4207 ev_io_set (&fs_w, fs_fd, EV_READ);
4208 ev_io_start (EV_A_ &fs_w);
4209 ev_unref (EV_A);
4210 }
4211
2320 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4212 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2321 { 4213 {
2322 WL w_ = fs_hash [slot].head; 4214 WL w_ = fs_hash [slot].head;
2323 fs_hash [slot].head = 0; 4215 fs_hash [slot].head = 0;
2324 4216
2325 while (w_) 4217 while (w_)
2330 w->wd = -1; 4222 w->wd = -1;
2331 4223
2332 if (fs_fd >= 0) 4224 if (fs_fd >= 0)
2333 infy_add (EV_A_ w); /* re-add, no matter what */ 4225 infy_add (EV_A_ w); /* re-add, no matter what */
2334 else 4226 else
4227 {
4228 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4229 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2335 ev_timer_start (EV_A_ &w->timer); 4230 ev_timer_again (EV_A_ &w->timer);
4231 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4232 }
2336 } 4233 }
2337
2338 } 4234 }
2339} 4235}
2340 4236
4237#endif
4238
4239#ifdef _WIN32
4240# define EV_LSTAT(p,b) _stati64 (p, b)
4241#else
4242# define EV_LSTAT(p,b) lstat (p, b)
2341#endif 4243#endif
2342 4244
2343void 4245void
2344ev_stat_stat (EV_P_ ev_stat *w) 4246ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
2345{ 4247{
2346 if (lstat (w->path, &w->attr) < 0) 4248 if (lstat (w->path, &w->attr) < 0)
2347 w->attr.st_nlink = 0; 4249 w->attr.st_nlink = 0;
2348 else if (!w->attr.st_nlink) 4250 else if (!w->attr.st_nlink)
2349 w->attr.st_nlink = 1; 4251 w->attr.st_nlink = 1;
2352static void noinline 4254static void noinline
2353stat_timer_cb (EV_P_ ev_timer *w_, int revents) 4255stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2354{ 4256{
2355 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 4257 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2356 4258
2357 /* we copy this here each the time so that */ 4259 ev_statdata prev = w->attr;
2358 /* prev has the old value when the callback gets invoked */
2359 w->prev = w->attr;
2360 ev_stat_stat (EV_A_ w); 4260 ev_stat_stat (EV_A_ w);
2361 4261
2362 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 4262 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2363 if ( 4263 if (
2364 w->prev.st_dev != w->attr.st_dev 4264 prev.st_dev != w->attr.st_dev
2365 || w->prev.st_ino != w->attr.st_ino 4265 || prev.st_ino != w->attr.st_ino
2366 || w->prev.st_mode != w->attr.st_mode 4266 || prev.st_mode != w->attr.st_mode
2367 || w->prev.st_nlink != w->attr.st_nlink 4267 || prev.st_nlink != w->attr.st_nlink
2368 || w->prev.st_uid != w->attr.st_uid 4268 || prev.st_uid != w->attr.st_uid
2369 || w->prev.st_gid != w->attr.st_gid 4269 || prev.st_gid != w->attr.st_gid
2370 || w->prev.st_rdev != w->attr.st_rdev 4270 || prev.st_rdev != w->attr.st_rdev
2371 || w->prev.st_size != w->attr.st_size 4271 || prev.st_size != w->attr.st_size
2372 || w->prev.st_atime != w->attr.st_atime 4272 || prev.st_atime != w->attr.st_atime
2373 || w->prev.st_mtime != w->attr.st_mtime 4273 || prev.st_mtime != w->attr.st_mtime
2374 || w->prev.st_ctime != w->attr.st_ctime 4274 || prev.st_ctime != w->attr.st_ctime
2375 ) { 4275 ) {
4276 /* we only update w->prev on actual differences */
4277 /* in case we test more often than invoke the callback, */
4278 /* to ensure that prev is always different to attr */
4279 w->prev = prev;
4280
2376 #if EV_USE_INOTIFY 4281 #if EV_USE_INOTIFY
4282 if (fs_fd >= 0)
4283 {
2377 infy_del (EV_A_ w); 4284 infy_del (EV_A_ w);
2378 infy_add (EV_A_ w); 4285 infy_add (EV_A_ w);
2379 ev_stat_stat (EV_A_ w); /* avoid race... */ 4286 ev_stat_stat (EV_A_ w); /* avoid race... */
4287 }
2380 #endif 4288 #endif
2381 4289
2382 ev_feed_event (EV_A_ w, EV_STAT); 4290 ev_feed_event (EV_A_ w, EV_STAT);
2383 } 4291 }
2384} 4292}
2385 4293
2386void 4294void
2387ev_stat_start (EV_P_ ev_stat *w) 4295ev_stat_start (EV_P_ ev_stat *w) EV_THROW
2388{ 4296{
2389 if (expect_false (ev_is_active (w))) 4297 if (expect_false (ev_is_active (w)))
2390 return; 4298 return;
2391 4299
2392 /* since we use memcmp, we need to clear any padding data etc. */
2393 memset (&w->prev, 0, sizeof (ev_statdata));
2394 memset (&w->attr, 0, sizeof (ev_statdata));
2395
2396 ev_stat_stat (EV_A_ w); 4300 ev_stat_stat (EV_A_ w);
2397 4301
4302 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2398 if (w->interval < MIN_STAT_INTERVAL) 4303 w->interval = MIN_STAT_INTERVAL;
2399 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2400 4304
2401 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 4305 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2402 ev_set_priority (&w->timer, ev_priority (w)); 4306 ev_set_priority (&w->timer, ev_priority (w));
2403 4307
2404#if EV_USE_INOTIFY 4308#if EV_USE_INOTIFY
2405 infy_init (EV_A); 4309 infy_init (EV_A);
2406 4310
2407 if (fs_fd >= 0) 4311 if (fs_fd >= 0)
2408 infy_add (EV_A_ w); 4312 infy_add (EV_A_ w);
2409 else 4313 else
2410#endif 4314#endif
4315 {
2411 ev_timer_start (EV_A_ &w->timer); 4316 ev_timer_again (EV_A_ &w->timer);
4317 ev_unref (EV_A);
4318 }
2412 4319
2413 ev_start (EV_A_ (W)w, 1); 4320 ev_start (EV_A_ (W)w, 1);
4321
4322 EV_FREQUENT_CHECK;
2414} 4323}
2415 4324
2416void 4325void
2417ev_stat_stop (EV_P_ ev_stat *w) 4326ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
2418{ 4327{
2419 clear_pending (EV_A_ (W)w); 4328 clear_pending (EV_A_ (W)w);
2420 if (expect_false (!ev_is_active (w))) 4329 if (expect_false (!ev_is_active (w)))
2421 return; 4330 return;
2422 4331
4332 EV_FREQUENT_CHECK;
4333
2423#if EV_USE_INOTIFY 4334#if EV_USE_INOTIFY
2424 infy_del (EV_A_ w); 4335 infy_del (EV_A_ w);
2425#endif 4336#endif
4337
4338 if (ev_is_active (&w->timer))
4339 {
4340 ev_ref (EV_A);
2426 ev_timer_stop (EV_A_ &w->timer); 4341 ev_timer_stop (EV_A_ &w->timer);
4342 }
2427 4343
2428 ev_stop (EV_A_ (W)w); 4344 ev_stop (EV_A_ (W)w);
4345
4346 EV_FREQUENT_CHECK;
2429} 4347}
2430#endif 4348#endif
2431 4349
2432#if EV_IDLE_ENABLE 4350#if EV_IDLE_ENABLE
2433void 4351void
2434ev_idle_start (EV_P_ ev_idle *w) 4352ev_idle_start (EV_P_ ev_idle *w) EV_THROW
2435{ 4353{
2436 if (expect_false (ev_is_active (w))) 4354 if (expect_false (ev_is_active (w)))
2437 return; 4355 return;
2438 4356
2439 pri_adjust (EV_A_ (W)w); 4357 pri_adjust (EV_A_ (W)w);
4358
4359 EV_FREQUENT_CHECK;
2440 4360
2441 { 4361 {
2442 int active = ++idlecnt [ABSPRI (w)]; 4362 int active = ++idlecnt [ABSPRI (w)];
2443 4363
2444 ++idleall; 4364 ++idleall;
2445 ev_start (EV_A_ (W)w, active); 4365 ev_start (EV_A_ (W)w, active);
2446 4366
2447 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 4367 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2448 idles [ABSPRI (w)][active - 1] = w; 4368 idles [ABSPRI (w)][active - 1] = w;
2449 } 4369 }
4370
4371 EV_FREQUENT_CHECK;
2450} 4372}
2451 4373
2452void 4374void
2453ev_idle_stop (EV_P_ ev_idle *w) 4375ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
2454{ 4376{
2455 clear_pending (EV_A_ (W)w); 4377 clear_pending (EV_A_ (W)w);
2456 if (expect_false (!ev_is_active (w))) 4378 if (expect_false (!ev_is_active (w)))
2457 return; 4379 return;
2458 4380
4381 EV_FREQUENT_CHECK;
4382
2459 { 4383 {
2460 int active = ev_active (w); 4384 int active = ev_active (w);
2461 4385
2462 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 4386 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2463 ev_active (idles [ABSPRI (w)][active - 1]) = active; 4387 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2464 4388
2465 ev_stop (EV_A_ (W)w); 4389 ev_stop (EV_A_ (W)w);
2466 --idleall; 4390 --idleall;
2467 } 4391 }
2468}
2469#endif
2470 4392
4393 EV_FREQUENT_CHECK;
4394}
4395#endif
4396
4397#if EV_PREPARE_ENABLE
2471void 4398void
2472ev_prepare_start (EV_P_ ev_prepare *w) 4399ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
2473{ 4400{
2474 if (expect_false (ev_is_active (w))) 4401 if (expect_false (ev_is_active (w)))
2475 return; 4402 return;
4403
4404 EV_FREQUENT_CHECK;
2476 4405
2477 ev_start (EV_A_ (W)w, ++preparecnt); 4406 ev_start (EV_A_ (W)w, ++preparecnt);
2478 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 4407 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2479 prepares [preparecnt - 1] = w; 4408 prepares [preparecnt - 1] = w;
4409
4410 EV_FREQUENT_CHECK;
2480} 4411}
2481 4412
2482void 4413void
2483ev_prepare_stop (EV_P_ ev_prepare *w) 4414ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
2484{ 4415{
2485 clear_pending (EV_A_ (W)w); 4416 clear_pending (EV_A_ (W)w);
2486 if (expect_false (!ev_is_active (w))) 4417 if (expect_false (!ev_is_active (w)))
2487 return; 4418 return;
2488 4419
4420 EV_FREQUENT_CHECK;
4421
2489 { 4422 {
2490 int active = ev_active (w); 4423 int active = ev_active (w);
2491 4424
2492 prepares [active - 1] = prepares [--preparecnt]; 4425 prepares [active - 1] = prepares [--preparecnt];
2493 ev_active (prepares [active - 1]) = active; 4426 ev_active (prepares [active - 1]) = active;
2494 } 4427 }
2495 4428
2496 ev_stop (EV_A_ (W)w); 4429 ev_stop (EV_A_ (W)w);
2497}
2498 4430
4431 EV_FREQUENT_CHECK;
4432}
4433#endif
4434
4435#if EV_CHECK_ENABLE
2499void 4436void
2500ev_check_start (EV_P_ ev_check *w) 4437ev_check_start (EV_P_ ev_check *w) EV_THROW
2501{ 4438{
2502 if (expect_false (ev_is_active (w))) 4439 if (expect_false (ev_is_active (w)))
2503 return; 4440 return;
4441
4442 EV_FREQUENT_CHECK;
2504 4443
2505 ev_start (EV_A_ (W)w, ++checkcnt); 4444 ev_start (EV_A_ (W)w, ++checkcnt);
2506 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 4445 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2507 checks [checkcnt - 1] = w; 4446 checks [checkcnt - 1] = w;
4447
4448 EV_FREQUENT_CHECK;
2508} 4449}
2509 4450
2510void 4451void
2511ev_check_stop (EV_P_ ev_check *w) 4452ev_check_stop (EV_P_ ev_check *w) EV_THROW
2512{ 4453{
2513 clear_pending (EV_A_ (W)w); 4454 clear_pending (EV_A_ (W)w);
2514 if (expect_false (!ev_is_active (w))) 4455 if (expect_false (!ev_is_active (w)))
2515 return; 4456 return;
2516 4457
4458 EV_FREQUENT_CHECK;
4459
2517 { 4460 {
2518 int active = ev_active (w); 4461 int active = ev_active (w);
2519 4462
2520 checks [active - 1] = checks [--checkcnt]; 4463 checks [active - 1] = checks [--checkcnt];
2521 ev_active (checks [active - 1]) = active; 4464 ev_active (checks [active - 1]) = active;
2522 } 4465 }
2523 4466
2524 ev_stop (EV_A_ (W)w); 4467 ev_stop (EV_A_ (W)w);
4468
4469 EV_FREQUENT_CHECK;
2525} 4470}
4471#endif
2526 4472
2527#if EV_EMBED_ENABLE 4473#if EV_EMBED_ENABLE
2528void noinline 4474void noinline
2529ev_embed_sweep (EV_P_ ev_embed *w) 4475ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
2530{ 4476{
2531 ev_loop (w->other, EVLOOP_NONBLOCK); 4477 ev_run (w->other, EVRUN_NOWAIT);
2532} 4478}
2533 4479
2534static void 4480static void
2535embed_io_cb (EV_P_ ev_io *io, int revents) 4481embed_io_cb (EV_P_ ev_io *io, int revents)
2536{ 4482{
2537 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4483 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2538 4484
2539 if (ev_cb (w)) 4485 if (ev_cb (w))
2540 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4486 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2541 else 4487 else
2542 ev_loop (w->other, EVLOOP_NONBLOCK); 4488 ev_run (w->other, EVRUN_NOWAIT);
2543} 4489}
2544 4490
2545static void 4491static void
2546embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4492embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2547{ 4493{
2548 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4494 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2549 4495
2550 { 4496 {
2551 struct ev_loop *loop = w->other; 4497 EV_P = w->other;
2552 4498
2553 while (fdchangecnt) 4499 while (fdchangecnt)
2554 { 4500 {
2555 fd_reify (EV_A); 4501 fd_reify (EV_A);
2556 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4502 ev_run (EV_A_ EVRUN_NOWAIT);
2557 } 4503 }
2558 } 4504 }
4505}
4506
4507static void
4508embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4509{
4510 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4511
4512 ev_embed_stop (EV_A_ w);
4513
4514 {
4515 EV_P = w->other;
4516
4517 ev_loop_fork (EV_A);
4518 ev_run (EV_A_ EVRUN_NOWAIT);
4519 }
4520
4521 ev_embed_start (EV_A_ w);
2559} 4522}
2560 4523
2561#if 0 4524#if 0
2562static void 4525static void
2563embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4526embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2565 ev_idle_stop (EV_A_ idle); 4528 ev_idle_stop (EV_A_ idle);
2566} 4529}
2567#endif 4530#endif
2568 4531
2569void 4532void
2570ev_embed_start (EV_P_ ev_embed *w) 4533ev_embed_start (EV_P_ ev_embed *w) EV_THROW
2571{ 4534{
2572 if (expect_false (ev_is_active (w))) 4535 if (expect_false (ev_is_active (w)))
2573 return; 4536 return;
2574 4537
2575 { 4538 {
2576 struct ev_loop *loop = w->other; 4539 EV_P = w->other;
2577 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4540 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2578 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4541 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2579 } 4542 }
4543
4544 EV_FREQUENT_CHECK;
2580 4545
2581 ev_set_priority (&w->io, ev_priority (w)); 4546 ev_set_priority (&w->io, ev_priority (w));
2582 ev_io_start (EV_A_ &w->io); 4547 ev_io_start (EV_A_ &w->io);
2583 4548
2584 ev_prepare_init (&w->prepare, embed_prepare_cb); 4549 ev_prepare_init (&w->prepare, embed_prepare_cb);
2585 ev_set_priority (&w->prepare, EV_MINPRI); 4550 ev_set_priority (&w->prepare, EV_MINPRI);
2586 ev_prepare_start (EV_A_ &w->prepare); 4551 ev_prepare_start (EV_A_ &w->prepare);
2587 4552
4553 ev_fork_init (&w->fork, embed_fork_cb);
4554 ev_fork_start (EV_A_ &w->fork);
4555
2588 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 4556 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2589 4557
2590 ev_start (EV_A_ (W)w, 1); 4558 ev_start (EV_A_ (W)w, 1);
4559
4560 EV_FREQUENT_CHECK;
2591} 4561}
2592 4562
2593void 4563void
2594ev_embed_stop (EV_P_ ev_embed *w) 4564ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
2595{ 4565{
2596 clear_pending (EV_A_ (W)w); 4566 clear_pending (EV_A_ (W)w);
2597 if (expect_false (!ev_is_active (w))) 4567 if (expect_false (!ev_is_active (w)))
2598 return; 4568 return;
2599 4569
4570 EV_FREQUENT_CHECK;
4571
2600 ev_io_stop (EV_A_ &w->io); 4572 ev_io_stop (EV_A_ &w->io);
2601 ev_prepare_stop (EV_A_ &w->prepare); 4573 ev_prepare_stop (EV_A_ &w->prepare);
4574 ev_fork_stop (EV_A_ &w->fork);
2602 4575
2603 ev_stop (EV_A_ (W)w); 4576 ev_stop (EV_A_ (W)w);
4577
4578 EV_FREQUENT_CHECK;
2604} 4579}
2605#endif 4580#endif
2606 4581
2607#if EV_FORK_ENABLE 4582#if EV_FORK_ENABLE
2608void 4583void
2609ev_fork_start (EV_P_ ev_fork *w) 4584ev_fork_start (EV_P_ ev_fork *w) EV_THROW
2610{ 4585{
2611 if (expect_false (ev_is_active (w))) 4586 if (expect_false (ev_is_active (w)))
2612 return; 4587 return;
4588
4589 EV_FREQUENT_CHECK;
2613 4590
2614 ev_start (EV_A_ (W)w, ++forkcnt); 4591 ev_start (EV_A_ (W)w, ++forkcnt);
2615 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 4592 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2616 forks [forkcnt - 1] = w; 4593 forks [forkcnt - 1] = w;
4594
4595 EV_FREQUENT_CHECK;
2617} 4596}
2618 4597
2619void 4598void
2620ev_fork_stop (EV_P_ ev_fork *w) 4599ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
2621{ 4600{
2622 clear_pending (EV_A_ (W)w); 4601 clear_pending (EV_A_ (W)w);
2623 if (expect_false (!ev_is_active (w))) 4602 if (expect_false (!ev_is_active (w)))
2624 return; 4603 return;
2625 4604
4605 EV_FREQUENT_CHECK;
4606
2626 { 4607 {
2627 int active = ev_active (w); 4608 int active = ev_active (w);
2628 4609
2629 forks [active - 1] = forks [--forkcnt]; 4610 forks [active - 1] = forks [--forkcnt];
2630 ev_active (forks [active - 1]) = active; 4611 ev_active (forks [active - 1]) = active;
2631 } 4612 }
2632 4613
2633 ev_stop (EV_A_ (W)w); 4614 ev_stop (EV_A_ (W)w);
4615
4616 EV_FREQUENT_CHECK;
4617}
4618#endif
4619
4620#if EV_CLEANUP_ENABLE
4621void
4622ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4623{
4624 if (expect_false (ev_is_active (w)))
4625 return;
4626
4627 EV_FREQUENT_CHECK;
4628
4629 ev_start (EV_A_ (W)w, ++cleanupcnt);
4630 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4631 cleanups [cleanupcnt - 1] = w;
4632
4633 /* cleanup watchers should never keep a refcount on the loop */
4634 ev_unref (EV_A);
4635 EV_FREQUENT_CHECK;
4636}
4637
4638void
4639ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4640{
4641 clear_pending (EV_A_ (W)w);
4642 if (expect_false (!ev_is_active (w)))
4643 return;
4644
4645 EV_FREQUENT_CHECK;
4646 ev_ref (EV_A);
4647
4648 {
4649 int active = ev_active (w);
4650
4651 cleanups [active - 1] = cleanups [--cleanupcnt];
4652 ev_active (cleanups [active - 1]) = active;
4653 }
4654
4655 ev_stop (EV_A_ (W)w);
4656
4657 EV_FREQUENT_CHECK;
2634} 4658}
2635#endif 4659#endif
2636 4660
2637#if EV_ASYNC_ENABLE 4661#if EV_ASYNC_ENABLE
2638void 4662void
2639ev_async_start (EV_P_ ev_async *w) 4663ev_async_start (EV_P_ ev_async *w) EV_THROW
2640{ 4664{
2641 if (expect_false (ev_is_active (w))) 4665 if (expect_false (ev_is_active (w)))
2642 return; 4666 return;
2643 4667
4668 w->sent = 0;
4669
2644 evpipe_init (EV_A); 4670 evpipe_init (EV_A);
4671
4672 EV_FREQUENT_CHECK;
2645 4673
2646 ev_start (EV_A_ (W)w, ++asynccnt); 4674 ev_start (EV_A_ (W)w, ++asynccnt);
2647 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 4675 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2648 asyncs [asynccnt - 1] = w; 4676 asyncs [asynccnt - 1] = w;
4677
4678 EV_FREQUENT_CHECK;
2649} 4679}
2650 4680
2651void 4681void
2652ev_async_stop (EV_P_ ev_async *w) 4682ev_async_stop (EV_P_ ev_async *w) EV_THROW
2653{ 4683{
2654 clear_pending (EV_A_ (W)w); 4684 clear_pending (EV_A_ (W)w);
2655 if (expect_false (!ev_is_active (w))) 4685 if (expect_false (!ev_is_active (w)))
2656 return; 4686 return;
2657 4687
4688 EV_FREQUENT_CHECK;
4689
2658 { 4690 {
2659 int active = ev_active (w); 4691 int active = ev_active (w);
2660 4692
2661 asyncs [active - 1] = asyncs [--asynccnt]; 4693 asyncs [active - 1] = asyncs [--asynccnt];
2662 ev_active (asyncs [active - 1]) = active; 4694 ev_active (asyncs [active - 1]) = active;
2663 } 4695 }
2664 4696
2665 ev_stop (EV_A_ (W)w); 4697 ev_stop (EV_A_ (W)w);
4698
4699 EV_FREQUENT_CHECK;
2666} 4700}
2667 4701
2668void 4702void
2669ev_async_send (EV_P_ ev_async *w) 4703ev_async_send (EV_P_ ev_async *w) EV_THROW
2670{ 4704{
2671 w->sent = 1; 4705 w->sent = 1;
2672 evpipe_write (EV_A_ &gotasync); 4706 evpipe_write (EV_A_ &async_pending);
2673} 4707}
2674#endif 4708#endif
2675 4709
2676/*****************************************************************************/ 4710/*****************************************************************************/
2677 4711
2687once_cb (EV_P_ struct ev_once *once, int revents) 4721once_cb (EV_P_ struct ev_once *once, int revents)
2688{ 4722{
2689 void (*cb)(int revents, void *arg) = once->cb; 4723 void (*cb)(int revents, void *arg) = once->cb;
2690 void *arg = once->arg; 4724 void *arg = once->arg;
2691 4725
2692 ev_io_stop (EV_A_ &once->io); 4726 ev_io_stop (EV_A_ &once->io);
2693 ev_timer_stop (EV_A_ &once->to); 4727 ev_timer_stop (EV_A_ &once->to);
2694 ev_free (once); 4728 ev_free (once);
2695 4729
2696 cb (revents, arg); 4730 cb (revents, arg);
2697} 4731}
2698 4732
2699static void 4733static void
2700once_cb_io (EV_P_ ev_io *w, int revents) 4734once_cb_io (EV_P_ ev_io *w, int revents)
2701{ 4735{
2702 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4736 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4737
4738 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2703} 4739}
2704 4740
2705static void 4741static void
2706once_cb_to (EV_P_ ev_timer *w, int revents) 4742once_cb_to (EV_P_ ev_timer *w, int revents)
2707{ 4743{
2708 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4744 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4745
4746 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2709} 4747}
2710 4748
2711void 4749void
2712ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4750ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
2713{ 4751{
2714 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4752 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2715 4753
2716 if (expect_false (!once)) 4754 if (expect_false (!once))
2717 { 4755 {
2718 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4756 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2719 return; 4757 return;
2720 } 4758 }
2721 4759
2722 once->cb = cb; 4760 once->cb = cb;
2723 once->arg = arg; 4761 once->arg = arg;
2735 ev_timer_set (&once->to, timeout, 0.); 4773 ev_timer_set (&once->to, timeout, 0.);
2736 ev_timer_start (EV_A_ &once->to); 4774 ev_timer_start (EV_A_ &once->to);
2737 } 4775 }
2738} 4776}
2739 4777
4778/*****************************************************************************/
4779
4780#if EV_WALK_ENABLE
4781void ecb_cold
4782ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4783{
4784 int i, j;
4785 ev_watcher_list *wl, *wn;
4786
4787 if (types & (EV_IO | EV_EMBED))
4788 for (i = 0; i < anfdmax; ++i)
4789 for (wl = anfds [i].head; wl; )
4790 {
4791 wn = wl->next;
4792
4793#if EV_EMBED_ENABLE
4794 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4795 {
4796 if (types & EV_EMBED)
4797 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4798 }
4799 else
4800#endif
4801#if EV_USE_INOTIFY
4802 if (ev_cb ((ev_io *)wl) == infy_cb)
4803 ;
4804 else
4805#endif
4806 if ((ev_io *)wl != &pipe_w)
4807 if (types & EV_IO)
4808 cb (EV_A_ EV_IO, wl);
4809
4810 wl = wn;
4811 }
4812
4813 if (types & (EV_TIMER | EV_STAT))
4814 for (i = timercnt + HEAP0; i-- > HEAP0; )
4815#if EV_STAT_ENABLE
4816 /*TODO: timer is not always active*/
4817 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4818 {
4819 if (types & EV_STAT)
4820 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4821 }
4822 else
4823#endif
4824 if (types & EV_TIMER)
4825 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4826
4827#if EV_PERIODIC_ENABLE
4828 if (types & EV_PERIODIC)
4829 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4830 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4831#endif
4832
4833#if EV_IDLE_ENABLE
4834 if (types & EV_IDLE)
4835 for (j = NUMPRI; j--; )
4836 for (i = idlecnt [j]; i--; )
4837 cb (EV_A_ EV_IDLE, idles [j][i]);
4838#endif
4839
4840#if EV_FORK_ENABLE
4841 if (types & EV_FORK)
4842 for (i = forkcnt; i--; )
4843 if (ev_cb (forks [i]) != embed_fork_cb)
4844 cb (EV_A_ EV_FORK, forks [i]);
4845#endif
4846
4847#if EV_ASYNC_ENABLE
4848 if (types & EV_ASYNC)
4849 for (i = asynccnt; i--; )
4850 cb (EV_A_ EV_ASYNC, asyncs [i]);
4851#endif
4852
4853#if EV_PREPARE_ENABLE
4854 if (types & EV_PREPARE)
4855 for (i = preparecnt; i--; )
4856# if EV_EMBED_ENABLE
4857 if (ev_cb (prepares [i]) != embed_prepare_cb)
4858# endif
4859 cb (EV_A_ EV_PREPARE, prepares [i]);
4860#endif
4861
4862#if EV_CHECK_ENABLE
4863 if (types & EV_CHECK)
4864 for (i = checkcnt; i--; )
4865 cb (EV_A_ EV_CHECK, checks [i]);
4866#endif
4867
4868#if EV_SIGNAL_ENABLE
4869 if (types & EV_SIGNAL)
4870 for (i = 0; i < EV_NSIG - 1; ++i)
4871 for (wl = signals [i].head; wl; )
4872 {
4873 wn = wl->next;
4874 cb (EV_A_ EV_SIGNAL, wl);
4875 wl = wn;
4876 }
4877#endif
4878
4879#if EV_CHILD_ENABLE
4880 if (types & EV_CHILD)
4881 for (i = (EV_PID_HASHSIZE); i--; )
4882 for (wl = childs [i]; wl; )
4883 {
4884 wn = wl->next;
4885 cb (EV_A_ EV_CHILD, wl);
4886 wl = wn;
4887 }
4888#endif
4889/* EV_STAT 0x00001000 /* stat data changed */
4890/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4891}
4892#endif
4893
2740#if EV_MULTIPLICITY 4894#if EV_MULTIPLICITY
2741 #include "ev_wrap.h" 4895 #include "ev_wrap.h"
2742#endif 4896#endif
2743 4897
2744#ifdef __cplusplus
2745}
2746#endif
2747

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines