ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.244 by root, Tue May 20 23:49:41 2008 UTC vs.
Revision 1.472 by root, Tue Sep 9 13:24:13 2014 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012,2013 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48# if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52# endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
52# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
55# endif 71# endif
56# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
58# endif 74# endif
59# else 75# else
60# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
62# endif 78# endif
63# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
65# endif 81# endif
66# endif 82# endif
67 83
84# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
71# else 88# else
89# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
74# endif 100# endif
75 101
102# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 105# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 106# else
107# undef EV_USE_POLL
88# define EV_USE_POLL 0 108# define EV_USE_POLL 0
89# endif
90# endif 109# endif
91 110
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
95# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
98# endif 118# endif
99 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
106# endif 127# endif
107 128
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
111# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
114# endif 136# endif
115 137
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
122# endif 145# endif
123 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 148# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 149# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
130# endif 154# endif
131 155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
132#endif 163# endif
164
165#endif
133 166
134#include <math.h>
135#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
136#include <fcntl.h> 169#include <fcntl.h>
137#include <stddef.h> 170#include <stddef.h>
138 171
139#include <stdio.h> 172#include <stdio.h>
140 173
141#include <assert.h> 174#include <assert.h>
142#include <errno.h> 175#include <errno.h>
143#include <sys/types.h> 176#include <sys/types.h>
144#include <time.h> 177#include <time.h>
178#include <limits.h>
145 179
146#include <signal.h> 180#include <signal.h>
147 181
148#ifdef EV_H 182#ifdef EV_H
149# include EV_H 183# include EV_H
150#else 184#else
151# include "ev.h" 185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
152#endif 197#endif
153 198
154#ifndef _WIN32 199#ifndef _WIN32
155# include <sys/time.h> 200# include <sys/time.h>
156# include <sys/wait.h> 201# include <sys/wait.h>
157# include <unistd.h> 202# include <unistd.h>
158#else 203#else
204# include <io.h>
159# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
160# include <windows.h> 207# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 208# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 209# define EV_SELECT_IS_WINSOCKET 1
163# endif 210# endif
211# undef EV_AVOID_STDIO
164#endif 212#endif
213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
165 221
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 222/* this block tries to deduce configuration from header-defined symbols and defaults */
167 223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# define EV_NSIG (8 * sizeof (sigset_t) + 1)
247#endif
248
249#ifndef EV_USE_FLOOR
250# define EV_USE_FLOOR 0
251#endif
252
253#ifndef EV_USE_CLOCK_SYSCALL
254# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
255# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
256# else
257# define EV_USE_CLOCK_SYSCALL 0
258# endif
259#endif
260
261#if !(_POSIX_TIMERS > 0)
262# ifndef EV_USE_MONOTONIC
263# define EV_USE_MONOTONIC 0
264# endif
265# ifndef EV_USE_REALTIME
266# define EV_USE_REALTIME 0
267# endif
268#endif
269
168#ifndef EV_USE_MONOTONIC 270#ifndef EV_USE_MONOTONIC
271# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
272# define EV_USE_MONOTONIC EV_FEATURE_OS
273# else
169# define EV_USE_MONOTONIC 0 274# define EV_USE_MONOTONIC 0
275# endif
170#endif 276#endif
171 277
172#ifndef EV_USE_REALTIME 278#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 279# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 280#endif
175 281
176#ifndef EV_USE_NANOSLEEP 282#ifndef EV_USE_NANOSLEEP
283# if _POSIX_C_SOURCE >= 199309L
284# define EV_USE_NANOSLEEP EV_FEATURE_OS
285# else
177# define EV_USE_NANOSLEEP 0 286# define EV_USE_NANOSLEEP 0
287# endif
178#endif 288#endif
179 289
180#ifndef EV_USE_SELECT 290#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 291# define EV_USE_SELECT EV_FEATURE_BACKENDS
182#endif 292#endif
183 293
184#ifndef EV_USE_POLL 294#ifndef EV_USE_POLL
185# ifdef _WIN32 295# ifdef _WIN32
186# define EV_USE_POLL 0 296# define EV_USE_POLL 0
187# else 297# else
188# define EV_USE_POLL 1 298# define EV_USE_POLL EV_FEATURE_BACKENDS
189# endif 299# endif
190#endif 300#endif
191 301
192#ifndef EV_USE_EPOLL 302#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 303# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1 304# define EV_USE_EPOLL EV_FEATURE_BACKENDS
195# else 305# else
196# define EV_USE_EPOLL 0 306# define EV_USE_EPOLL 0
197# endif 307# endif
198#endif 308#endif
199 309
205# define EV_USE_PORT 0 315# define EV_USE_PORT 0
206#endif 316#endif
207 317
208#ifndef EV_USE_INOTIFY 318#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 319# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1 320# define EV_USE_INOTIFY EV_FEATURE_OS
211# else 321# else
212# define EV_USE_INOTIFY 0 322# define EV_USE_INOTIFY 0
213# endif 323# endif
214#endif 324#endif
215 325
216#ifndef EV_PID_HASHSIZE 326#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL 327# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif 328#endif
223 329
224#ifndef EV_INOTIFY_HASHSIZE 330#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL 331# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif 332#endif
231 333
232#ifndef EV_USE_EVENTFD 334#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 335# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 336# define EV_USE_EVENTFD EV_FEATURE_OS
235# else 337# else
236# define EV_USE_EVENTFD 0 338# define EV_USE_EVENTFD 0
237# endif 339# endif
238#endif 340#endif
239 341
342#ifndef EV_USE_SIGNALFD
343# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
344# define EV_USE_SIGNALFD EV_FEATURE_OS
345# else
346# define EV_USE_SIGNALFD 0
347# endif
348#endif
349
350#if 0 /* debugging */
351# define EV_VERIFY 3
352# define EV_USE_4HEAP 1
353# define EV_HEAP_CACHE_AT 1
354#endif
355
356#ifndef EV_VERIFY
357# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
358#endif
359
240#ifndef EV_USE_4HEAP 360#ifndef EV_USE_4HEAP
241# define EV_USE_4HEAP !EV_MINIMAL 361# define EV_USE_4HEAP EV_FEATURE_DATA
242#endif 362#endif
243 363
244#ifndef EV_HEAP_CACHE_AT 364#ifndef EV_HEAP_CACHE_AT
245# define EV_HEAP_CACHE_AT !EV_MINIMAL 365# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
366#endif
367
368#ifdef ANDROID
369/* supposedly, android doesn't typedef fd_mask */
370# undef EV_USE_SELECT
371# define EV_USE_SELECT 0
372/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
373# undef EV_USE_CLOCK_SYSCALL
374# define EV_USE_CLOCK_SYSCALL 0
375#endif
376
377/* aix's poll.h seems to cause lots of trouble */
378#ifdef _AIX
379/* AIX has a completely broken poll.h header */
380# undef EV_USE_POLL
381# define EV_USE_POLL 0
382#endif
383
384/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
385/* which makes programs even slower. might work on other unices, too. */
386#if EV_USE_CLOCK_SYSCALL
387# include <sys/syscall.h>
388# ifdef SYS_clock_gettime
389# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
390# undef EV_USE_MONOTONIC
391# define EV_USE_MONOTONIC 1
392# else
393# undef EV_USE_CLOCK_SYSCALL
394# define EV_USE_CLOCK_SYSCALL 0
395# endif
246#endif 396#endif
247 397
248/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 398/* this block fixes any misconfiguration where we know we run into trouble otherwise */
249 399
250#ifndef CLOCK_MONOTONIC 400#ifndef CLOCK_MONOTONIC
261# undef EV_USE_INOTIFY 411# undef EV_USE_INOTIFY
262# define EV_USE_INOTIFY 0 412# define EV_USE_INOTIFY 0
263#endif 413#endif
264 414
265#if !EV_USE_NANOSLEEP 415#if !EV_USE_NANOSLEEP
266# ifndef _WIN32 416/* hp-ux has it in sys/time.h, which we unconditionally include above */
417# if !defined _WIN32 && !defined __hpux
267# include <sys/select.h> 418# include <sys/select.h>
268# endif 419# endif
269#endif 420#endif
270 421
271#if EV_USE_INOTIFY 422#if EV_USE_INOTIFY
423# include <sys/statfs.h>
272# include <sys/inotify.h> 424# include <sys/inotify.h>
425/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
426# ifndef IN_DONT_FOLLOW
427# undef EV_USE_INOTIFY
428# define EV_USE_INOTIFY 0
273#endif 429# endif
274
275#if EV_SELECT_IS_WINSOCKET
276# include <winsock.h>
277#endif 430#endif
278 431
279#if EV_USE_EVENTFD 432#if EV_USE_EVENTFD
280/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 433/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
281# include <stdint.h> 434# include <stdint.h>
282# ifdef __cplusplus 435# ifndef EFD_NONBLOCK
283extern "C" { 436# define EFD_NONBLOCK O_NONBLOCK
284# endif 437# endif
285int eventfd (unsigned int initval, int flags); 438# ifndef EFD_CLOEXEC
286# ifdef __cplusplus 439# ifdef O_CLOEXEC
287} 440# define EFD_CLOEXEC O_CLOEXEC
441# else
442# define EFD_CLOEXEC 02000000
443# endif
288# endif 444# endif
445EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
446#endif
447
448#if EV_USE_SIGNALFD
449/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
450# include <stdint.h>
451# ifndef SFD_NONBLOCK
452# define SFD_NONBLOCK O_NONBLOCK
453# endif
454# ifndef SFD_CLOEXEC
455# ifdef O_CLOEXEC
456# define SFD_CLOEXEC O_CLOEXEC
457# else
458# define SFD_CLOEXEC 02000000
459# endif
460# endif
461EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
462
463struct signalfd_siginfo
464{
465 uint32_t ssi_signo;
466 char pad[128 - sizeof (uint32_t)];
467};
289#endif 468#endif
290 469
291/**/ 470/**/
292 471
472#if EV_VERIFY >= 3
473# define EV_FREQUENT_CHECK ev_verify (EV_A)
474#else
475# define EV_FREQUENT_CHECK do { } while (0)
476#endif
477
293/* 478/*
294 * This is used to avoid floating point rounding problems. 479 * This is used to work around floating point rounding problems.
295 * It is added to ev_rt_now when scheduling periodics
296 * to ensure progress, time-wise, even when rounding
297 * errors are against us.
298 * This value is good at least till the year 4000. 480 * This value is good at least till the year 4000.
299 * Better solutions welcome.
300 */ 481 */
301#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 482#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
483/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
302 484
303#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 485#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
304#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 486#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
305/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
306 487
488#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
489#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
490
491/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
492/* ECB.H BEGIN */
493/*
494 * libecb - http://software.schmorp.de/pkg/libecb
495 *
496 * Copyright (©) 2009-2014 Marc Alexander Lehmann <libecb@schmorp.de>
497 * Copyright (©) 2011 Emanuele Giaquinta
498 * All rights reserved.
499 *
500 * Redistribution and use in source and binary forms, with or without modifica-
501 * tion, are permitted provided that the following conditions are met:
502 *
503 * 1. Redistributions of source code must retain the above copyright notice,
504 * this list of conditions and the following disclaimer.
505 *
506 * 2. Redistributions in binary form must reproduce the above copyright
507 * notice, this list of conditions and the following disclaimer in the
508 * documentation and/or other materials provided with the distribution.
509 *
510 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
511 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
512 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
513 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
514 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
515 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
516 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
517 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
518 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
519 * OF THE POSSIBILITY OF SUCH DAMAGE.
520 *
521 * Alternatively, the contents of this file may be used under the terms of
522 * the GNU General Public License ("GPL") version 2 or any later version,
523 * in which case the provisions of the GPL are applicable instead of
524 * the above. If you wish to allow the use of your version of this file
525 * only under the terms of the GPL and not to allow others to use your
526 * version of this file under the BSD license, indicate your decision
527 * by deleting the provisions above and replace them with the notice
528 * and other provisions required by the GPL. If you do not delete the
529 * provisions above, a recipient may use your version of this file under
530 * either the BSD or the GPL.
531 */
532
533#ifndef ECB_H
534#define ECB_H
535
536/* 16 bits major, 16 bits minor */
537#define ECB_VERSION 0x00010003
538
539#ifdef _WIN32
540 typedef signed char int8_t;
541 typedef unsigned char uint8_t;
542 typedef signed short int16_t;
543 typedef unsigned short uint16_t;
544 typedef signed int int32_t;
545 typedef unsigned int uint32_t;
307#if __GNUC__ >= 4 546 #if __GNUC__
308# define expect(expr,value) __builtin_expect ((expr),(value)) 547 typedef signed long long int64_t;
309# define noinline __attribute__ ((noinline)) 548 typedef unsigned long long uint64_t;
549 #else /* _MSC_VER || __BORLANDC__ */
550 typedef signed __int64 int64_t;
551 typedef unsigned __int64 uint64_t;
552 #endif
553 #ifdef _WIN64
554 #define ECB_PTRSIZE 8
555 typedef uint64_t uintptr_t;
556 typedef int64_t intptr_t;
557 #else
558 #define ECB_PTRSIZE 4
559 typedef uint32_t uintptr_t;
560 typedef int32_t intptr_t;
561 #endif
310#else 562#else
311# define expect(expr,value) (expr) 563 #include <inttypes.h>
312# define noinline 564 #if UINTMAX_MAX > 0xffffffffU
313# if __STDC_VERSION__ < 199901L && __GNUC__ < 2 565 #define ECB_PTRSIZE 8
314# define inline 566 #else
567 #define ECB_PTRSIZE 4
568 #endif
315# endif 569#endif
570
571/* work around x32 idiocy by defining proper macros */
572#if __amd64 || __x86_64 || _M_AMD64 || _M_X64
573 #if _ILP32
574 #define ECB_AMD64_X32 1
575 #else
576 #define ECB_AMD64 1
316#endif 577 #endif
578#endif
317 579
580/* many compilers define _GNUC_ to some versions but then only implement
581 * what their idiot authors think are the "more important" extensions,
582 * causing enormous grief in return for some better fake benchmark numbers.
583 * or so.
584 * we try to detect these and simply assume they are not gcc - if they have
585 * an issue with that they should have done it right in the first place.
586 */
587#ifndef ECB_GCC_VERSION
588 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
589 #define ECB_GCC_VERSION(major,minor) 0
590 #else
591 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
592 #endif
593#endif
594
595#define ECB_CPP (__cplusplus+0)
596#define ECB_CPP11 (__cplusplus >= 201103L)
597
598#if ECB_CPP
599 #define ECB_C 0
600 #define ECB_STDC_VERSION 0
601#else
602 #define ECB_C 1
603 #define ECB_STDC_VERSION __STDC_VERSION__
604#endif
605
606#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
607#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
608
609#if ECB_CPP
610 #define ECB_EXTERN_C extern "C"
611 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
612 #define ECB_EXTERN_C_END }
613#else
614 #define ECB_EXTERN_C extern
615 #define ECB_EXTERN_C_BEG
616 #define ECB_EXTERN_C_END
617#endif
618
619/*****************************************************************************/
620
621/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
622/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
623
624#if ECB_NO_THREADS
625 #define ECB_NO_SMP 1
626#endif
627
628#if ECB_NO_SMP
629 #define ECB_MEMORY_FENCE do { } while (0)
630#endif
631
632#ifndef ECB_MEMORY_FENCE
633 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
634 #if __i386 || __i386__
635 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
636 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
637 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
638 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
639 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
640 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
641 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
642 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
643 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
644 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
645 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
646 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
647 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
648 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
649 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
650 #elif __aarch64__
651 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
652 #elif (__sparc || __sparc__) && !__sparcv8
653 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
654 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
655 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
656 #elif defined __s390__ || defined __s390x__
657 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
658 #elif defined __mips__
659 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
660 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
661 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
662 #elif defined __alpha__
663 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
664 #elif defined __hppa__
665 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
666 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
667 #elif defined __ia64__
668 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
669 #elif defined __m68k__
670 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
671 #elif defined __m88k__
672 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
673 #elif defined __sh__
674 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
675 #endif
676 #endif
677#endif
678
679#ifndef ECB_MEMORY_FENCE
680 #if ECB_GCC_VERSION(4,7)
681 /* see comment below (stdatomic.h) about the C11 memory model. */
682 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
683 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
684 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
685
686 /* The __has_feature syntax from clang is so misdesigned that we cannot use it
687 * without risking compile time errors with other compilers. We *could*
688 * define our own ecb_clang_has_feature, but I just can't be bothered to work
689 * around this shit time and again.
690 * #elif defined __clang && __has_feature (cxx_atomic)
691 * // see comment below (stdatomic.h) about the C11 memory model.
692 * #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
693 * #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
694 * #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
695 */
696
697 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
698 #define ECB_MEMORY_FENCE __sync_synchronize ()
699 #elif _MSC_VER >= 1500 /* VC++ 2008 */
700 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
701 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
702 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
703 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
704 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
705 #elif _MSC_VER >= 1400 /* VC++ 2005 */
706 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
707 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
708 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
709 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
710 #elif defined _WIN32
711 #include <WinNT.h>
712 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
713 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
714 #include <mbarrier.h>
715 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
716 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
717 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
718 #elif __xlC__
719 #define ECB_MEMORY_FENCE __sync ()
720 #endif
721#endif
722
723#ifndef ECB_MEMORY_FENCE
724 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
725 /* we assume that these memory fences work on all variables/all memory accesses, */
726 /* not just C11 atomics and atomic accesses */
727 #include <stdatomic.h>
728 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
729 /* any fence other than seq_cst, which isn't very efficient for us. */
730 /* Why that is, we don't know - either the C11 memory model is quite useless */
731 /* for most usages, or gcc and clang have a bug */
732 /* I *currently* lean towards the latter, and inefficiently implement */
733 /* all three of ecb's fences as a seq_cst fence */
734 /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */
735 /* for all __atomic_thread_fence's except seq_cst */
736 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
737 #endif
738#endif
739
740#ifndef ECB_MEMORY_FENCE
741 #if !ECB_AVOID_PTHREADS
742 /*
743 * if you get undefined symbol references to pthread_mutex_lock,
744 * or failure to find pthread.h, then you should implement
745 * the ECB_MEMORY_FENCE operations for your cpu/compiler
746 * OR provide pthread.h and link against the posix thread library
747 * of your system.
748 */
749 #include <pthread.h>
750 #define ECB_NEEDS_PTHREADS 1
751 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
752
753 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
754 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
755 #endif
756#endif
757
758#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
759 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
760#endif
761
762#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
763 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
764#endif
765
766/*****************************************************************************/
767
768#if __cplusplus
769 #define ecb_inline static inline
770#elif ECB_GCC_VERSION(2,5)
771 #define ecb_inline static __inline__
772#elif ECB_C99
773 #define ecb_inline static inline
774#else
775 #define ecb_inline static
776#endif
777
778#if ECB_GCC_VERSION(3,3)
779 #define ecb_restrict __restrict__
780#elif ECB_C99
781 #define ecb_restrict restrict
782#else
783 #define ecb_restrict
784#endif
785
786typedef int ecb_bool;
787
788#define ECB_CONCAT_(a, b) a ## b
789#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
790#define ECB_STRINGIFY_(a) # a
791#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
792
793#define ecb_function_ ecb_inline
794
795#if ECB_GCC_VERSION(3,1)
796 #define ecb_attribute(attrlist) __attribute__(attrlist)
797 #define ecb_is_constant(expr) __builtin_constant_p (expr)
798 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
799 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
800#else
801 #define ecb_attribute(attrlist)
802
803 /* possible C11 impl for integral types
804 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
805 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
806
807 #define ecb_is_constant(expr) 0
808 #define ecb_expect(expr,value) (expr)
809 #define ecb_prefetch(addr,rw,locality)
810#endif
811
812/* no emulation for ecb_decltype */
813#if ECB_GCC_VERSION(4,5)
814 #define ecb_decltype(x) __decltype(x)
815#elif ECB_GCC_VERSION(3,0)
816 #define ecb_decltype(x) __typeof(x)
817#endif
818
819#if _MSC_VER >= 1300
820 #define ecb_deprecated __declspec(deprecated)
821#else
822 #define ecb_deprecated ecb_attribute ((__deprecated__))
823#endif
824
825#define ecb_noinline ecb_attribute ((__noinline__))
826#define ecb_unused ecb_attribute ((__unused__))
827#define ecb_const ecb_attribute ((__const__))
828#define ecb_pure ecb_attribute ((__pure__))
829
830/* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx __declspec(noreturn) */
831#if ECB_C11
832 #define ecb_noreturn _Noreturn
833#else
834 #define ecb_noreturn ecb_attribute ((__noreturn__))
835#endif
836
837#if ECB_GCC_VERSION(4,3)
838 #define ecb_artificial ecb_attribute ((__artificial__))
839 #define ecb_hot ecb_attribute ((__hot__))
840 #define ecb_cold ecb_attribute ((__cold__))
841#else
842 #define ecb_artificial
843 #define ecb_hot
844 #define ecb_cold
845#endif
846
847/* put around conditional expressions if you are very sure that the */
848/* expression is mostly true or mostly false. note that these return */
849/* booleans, not the expression. */
318#define expect_false(expr) expect ((expr) != 0, 0) 850#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
319#define expect_true(expr) expect ((expr) != 0, 1) 851#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
852/* for compatibility to the rest of the world */
853#define ecb_likely(expr) ecb_expect_true (expr)
854#define ecb_unlikely(expr) ecb_expect_false (expr)
855
856/* count trailing zero bits and count # of one bits */
857#if ECB_GCC_VERSION(3,4)
858 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
859 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
860 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
861 #define ecb_ctz32(x) __builtin_ctz (x)
862 #define ecb_ctz64(x) __builtin_ctzll (x)
863 #define ecb_popcount32(x) __builtin_popcount (x)
864 /* no popcountll */
865#else
866 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
867 ecb_function_ int
868 ecb_ctz32 (uint32_t x)
869 {
870 int r = 0;
871
872 x &= ~x + 1; /* this isolates the lowest bit */
873
874#if ECB_branchless_on_i386
875 r += !!(x & 0xaaaaaaaa) << 0;
876 r += !!(x & 0xcccccccc) << 1;
877 r += !!(x & 0xf0f0f0f0) << 2;
878 r += !!(x & 0xff00ff00) << 3;
879 r += !!(x & 0xffff0000) << 4;
880#else
881 if (x & 0xaaaaaaaa) r += 1;
882 if (x & 0xcccccccc) r += 2;
883 if (x & 0xf0f0f0f0) r += 4;
884 if (x & 0xff00ff00) r += 8;
885 if (x & 0xffff0000) r += 16;
886#endif
887
888 return r;
889 }
890
891 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
892 ecb_function_ int
893 ecb_ctz64 (uint64_t x)
894 {
895 int shift = x & 0xffffffffU ? 0 : 32;
896 return ecb_ctz32 (x >> shift) + shift;
897 }
898
899 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
900 ecb_function_ int
901 ecb_popcount32 (uint32_t x)
902 {
903 x -= (x >> 1) & 0x55555555;
904 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
905 x = ((x >> 4) + x) & 0x0f0f0f0f;
906 x *= 0x01010101;
907
908 return x >> 24;
909 }
910
911 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
912 ecb_function_ int ecb_ld32 (uint32_t x)
913 {
914 int r = 0;
915
916 if (x >> 16) { x >>= 16; r += 16; }
917 if (x >> 8) { x >>= 8; r += 8; }
918 if (x >> 4) { x >>= 4; r += 4; }
919 if (x >> 2) { x >>= 2; r += 2; }
920 if (x >> 1) { r += 1; }
921
922 return r;
923 }
924
925 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
926 ecb_function_ int ecb_ld64 (uint64_t x)
927 {
928 int r = 0;
929
930 if (x >> 32) { x >>= 32; r += 32; }
931
932 return r + ecb_ld32 (x);
933 }
934#endif
935
936ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
937ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
938ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
939ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
940
941ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
942ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
943{
944 return ( (x * 0x0802U & 0x22110U)
945 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
946}
947
948ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
949ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
950{
951 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
952 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
953 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
954 x = ( x >> 8 ) | ( x << 8);
955
956 return x;
957}
958
959ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
960ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
961{
962 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
963 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
964 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
965 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
966 x = ( x >> 16 ) | ( x << 16);
967
968 return x;
969}
970
971/* popcount64 is only available on 64 bit cpus as gcc builtin */
972/* so for this version we are lazy */
973ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
974ecb_function_ int
975ecb_popcount64 (uint64_t x)
976{
977 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
978}
979
980ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
981ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
982ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
983ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
984ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
985ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
986ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
987ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
988
989ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
990ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
991ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
992ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
993ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
994ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
995ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
996ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
997
998#if ECB_GCC_VERSION(4,3)
999 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1000 #define ecb_bswap32(x) __builtin_bswap32 (x)
1001 #define ecb_bswap64(x) __builtin_bswap64 (x)
1002#else
1003 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
1004 ecb_function_ uint16_t
1005 ecb_bswap16 (uint16_t x)
1006 {
1007 return ecb_rotl16 (x, 8);
1008 }
1009
1010 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
1011 ecb_function_ uint32_t
1012 ecb_bswap32 (uint32_t x)
1013 {
1014 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1015 }
1016
1017 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
1018 ecb_function_ uint64_t
1019 ecb_bswap64 (uint64_t x)
1020 {
1021 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1022 }
1023#endif
1024
1025#if ECB_GCC_VERSION(4,5)
1026 #define ecb_unreachable() __builtin_unreachable ()
1027#else
1028 /* this seems to work fine, but gcc always emits a warning for it :/ */
1029 ecb_inline void ecb_unreachable (void) ecb_noreturn;
1030 ecb_inline void ecb_unreachable (void) { }
1031#endif
1032
1033/* try to tell the compiler that some condition is definitely true */
1034#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1035
1036ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
1037ecb_inline unsigned char
1038ecb_byteorder_helper (void)
1039{
1040 /* the union code still generates code under pressure in gcc, */
1041 /* but less than using pointers, and always seems to */
1042 /* successfully return a constant. */
1043 /* the reason why we have this horrible preprocessor mess */
1044 /* is to avoid it in all cases, at least on common architectures */
1045 /* or when using a recent enough gcc version (>= 4.6) */
1046#if __i386 || __i386__ || _M_X86 || __amd64 || __amd64__ || _M_X64
1047 return 0x44;
1048#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1049 return 0x44;
1050#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1051 return 0x11;
1052#else
1053 union
1054 {
1055 uint32_t i;
1056 uint8_t c;
1057 } u = { 0x11223344 };
1058 return u.c;
1059#endif
1060}
1061
1062ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
1063ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
1064ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
1065ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
1066
1067#if ECB_GCC_VERSION(3,0) || ECB_C99
1068 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1069#else
1070 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1071#endif
1072
1073#if __cplusplus
1074 template<typename T>
1075 static inline T ecb_div_rd (T val, T div)
1076 {
1077 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1078 }
1079 template<typename T>
1080 static inline T ecb_div_ru (T val, T div)
1081 {
1082 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1083 }
1084#else
1085 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1086 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1087#endif
1088
1089#if ecb_cplusplus_does_not_suck
1090 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1091 template<typename T, int N>
1092 static inline int ecb_array_length (const T (&arr)[N])
1093 {
1094 return N;
1095 }
1096#else
1097 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1098#endif
1099
1100/*******************************************************************************/
1101/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1102
1103/* basically, everything uses "ieee pure-endian" floating point numbers */
1104/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1105#if 0 \
1106 || __i386 || __i386__ \
1107 || __amd64 || __amd64__ || __x86_64 || __x86_64__ \
1108 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1109 || defined __s390__ || defined __s390x__ \
1110 || defined __mips__ \
1111 || defined __alpha__ \
1112 || defined __hppa__ \
1113 || defined __ia64__ \
1114 || defined __m68k__ \
1115 || defined __m88k__ \
1116 || defined __sh__ \
1117 || defined _M_IX86 || defined _M_AMD64 || defined _M_IA64 \
1118 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1119 || defined __aarch64__
1120 #define ECB_STDFP 1
1121 #include <string.h> /* for memcpy */
1122#else
1123 #define ECB_STDFP 0
1124#endif
1125
1126#ifndef ECB_NO_LIBM
1127
1128 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1129
1130 /* only the oldest of old doesn't have this one. solaris. */
1131 #ifdef INFINITY
1132 #define ECB_INFINITY INFINITY
1133 #else
1134 #define ECB_INFINITY HUGE_VAL
1135 #endif
1136
1137 #ifdef NAN
1138 #define ECB_NAN NAN
1139 #else
1140 #define ECB_NAN ECB_INFINITY
1141 #endif
1142
1143 /* converts an ieee half/binary16 to a float */
1144 ecb_function_ float ecb_binary16_to_float (uint16_t x) ecb_const;
1145 ecb_function_ float
1146 ecb_binary16_to_float (uint16_t x)
1147 {
1148 int e = (x >> 10) & 0x1f;
1149 int m = x & 0x3ff;
1150 float r;
1151
1152 if (!e ) r = ldexpf (m , -24);
1153 else if (e != 31) r = ldexpf (m + 0x400, e - 25);
1154 else if (m ) r = ECB_NAN;
1155 else r = ECB_INFINITY;
1156
1157 return x & 0x8000 ? -r : r;
1158 }
1159
1160 /* convert a float to ieee single/binary32 */
1161 ecb_function_ uint32_t ecb_float_to_binary32 (float x) ecb_const;
1162 ecb_function_ uint32_t
1163 ecb_float_to_binary32 (float x)
1164 {
1165 uint32_t r;
1166
1167 #if ECB_STDFP
1168 memcpy (&r, &x, 4);
1169 #else
1170 /* slow emulation, works for anything but -0 */
1171 uint32_t m;
1172 int e;
1173
1174 if (x == 0e0f ) return 0x00000000U;
1175 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1176 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1177 if (x != x ) return 0x7fbfffffU;
1178
1179 m = frexpf (x, &e) * 0x1000000U;
1180
1181 r = m & 0x80000000U;
1182
1183 if (r)
1184 m = -m;
1185
1186 if (e <= -126)
1187 {
1188 m &= 0xffffffU;
1189 m >>= (-125 - e);
1190 e = -126;
1191 }
1192
1193 r |= (e + 126) << 23;
1194 r |= m & 0x7fffffU;
1195 #endif
1196
1197 return r;
1198 }
1199
1200 /* converts an ieee single/binary32 to a float */
1201 ecb_function_ float ecb_binary32_to_float (uint32_t x) ecb_const;
1202 ecb_function_ float
1203 ecb_binary32_to_float (uint32_t x)
1204 {
1205 float r;
1206
1207 #if ECB_STDFP
1208 memcpy (&r, &x, 4);
1209 #else
1210 /* emulation, only works for normals and subnormals and +0 */
1211 int neg = x >> 31;
1212 int e = (x >> 23) & 0xffU;
1213
1214 x &= 0x7fffffU;
1215
1216 if (e)
1217 x |= 0x800000U;
1218 else
1219 e = 1;
1220
1221 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1222 r = ldexpf (x * (0.5f / 0x800000U), e - 126);
1223
1224 r = neg ? -r : r;
1225 #endif
1226
1227 return r;
1228 }
1229
1230 /* convert a double to ieee double/binary64 */
1231 ecb_function_ uint64_t ecb_double_to_binary64 (double x) ecb_const;
1232 ecb_function_ uint64_t
1233 ecb_double_to_binary64 (double x)
1234 {
1235 uint64_t r;
1236
1237 #if ECB_STDFP
1238 memcpy (&r, &x, 8);
1239 #else
1240 /* slow emulation, works for anything but -0 */
1241 uint64_t m;
1242 int e;
1243
1244 if (x == 0e0 ) return 0x0000000000000000U;
1245 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1246 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1247 if (x != x ) return 0X7ff7ffffffffffffU;
1248
1249 m = frexp (x, &e) * 0x20000000000000U;
1250
1251 r = m & 0x8000000000000000;;
1252
1253 if (r)
1254 m = -m;
1255
1256 if (e <= -1022)
1257 {
1258 m &= 0x1fffffffffffffU;
1259 m >>= (-1021 - e);
1260 e = -1022;
1261 }
1262
1263 r |= ((uint64_t)(e + 1022)) << 52;
1264 r |= m & 0xfffffffffffffU;
1265 #endif
1266
1267 return r;
1268 }
1269
1270 /* converts an ieee double/binary64 to a double */
1271 ecb_function_ double ecb_binary64_to_double (uint64_t x) ecb_const;
1272 ecb_function_ double
1273 ecb_binary64_to_double (uint64_t x)
1274 {
1275 double r;
1276
1277 #if ECB_STDFP
1278 memcpy (&r, &x, 8);
1279 #else
1280 /* emulation, only works for normals and subnormals and +0 */
1281 int neg = x >> 63;
1282 int e = (x >> 52) & 0x7ffU;
1283
1284 x &= 0xfffffffffffffU;
1285
1286 if (e)
1287 x |= 0x10000000000000U;
1288 else
1289 e = 1;
1290
1291 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1292 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1293
1294 r = neg ? -r : r;
1295 #endif
1296
1297 return r;
1298 }
1299
1300#endif
1301
1302#endif
1303
1304/* ECB.H END */
1305
1306#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1307/* if your architecture doesn't need memory fences, e.g. because it is
1308 * single-cpu/core, or if you use libev in a project that doesn't use libev
1309 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1310 * libev, in which cases the memory fences become nops.
1311 * alternatively, you can remove this #error and link against libpthread,
1312 * which will then provide the memory fences.
1313 */
1314# error "memory fences not defined for your architecture, please report"
1315#endif
1316
1317#ifndef ECB_MEMORY_FENCE
1318# define ECB_MEMORY_FENCE do { } while (0)
1319# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1320# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1321#endif
1322
1323#define expect_false(cond) ecb_expect_false (cond)
1324#define expect_true(cond) ecb_expect_true (cond)
1325#define noinline ecb_noinline
1326
320#define inline_size static inline 1327#define inline_size ecb_inline
321 1328
322#if EV_MINIMAL 1329#if EV_FEATURE_CODE
1330# define inline_speed ecb_inline
1331#else
323# define inline_speed static noinline 1332# define inline_speed static noinline
1333#endif
1334
1335#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1336
1337#if EV_MINPRI == EV_MAXPRI
1338# define ABSPRI(w) (((W)w), 0)
324#else 1339#else
325# define inline_speed static inline
326#endif
327
328#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
329#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1340# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1341#endif
330 1342
331#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1343#define EMPTY /* required for microsofts broken pseudo-c compiler */
332#define EMPTY2(a,b) /* used to suppress some warnings */ 1344#define EMPTY2(a,b) /* used to suppress some warnings */
333 1345
334typedef ev_watcher *W; 1346typedef ev_watcher *W;
336typedef ev_watcher_time *WT; 1348typedef ev_watcher_time *WT;
337 1349
338#define ev_active(w) ((W)(w))->active 1350#define ev_active(w) ((W)(w))->active
339#define ev_at(w) ((WT)(w))->at 1351#define ev_at(w) ((WT)(w))->at
340 1352
1353#if EV_USE_REALTIME
1354/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1355/* giving it a reasonably high chance of working on typical architectures */
1356static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1357#endif
1358
341#if EV_USE_MONOTONIC 1359#if EV_USE_MONOTONIC
342/* sig_atomic_t is used to avoid per-thread variables or locking but still */
343/* giving it a reasonably high chance of working on typical architetcures */
344static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1360static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1361#endif
1362
1363#ifndef EV_FD_TO_WIN32_HANDLE
1364# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1365#endif
1366#ifndef EV_WIN32_HANDLE_TO_FD
1367# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1368#endif
1369#ifndef EV_WIN32_CLOSE_FD
1370# define EV_WIN32_CLOSE_FD(fd) close (fd)
345#endif 1371#endif
346 1372
347#ifdef _WIN32 1373#ifdef _WIN32
348# include "ev_win32.c" 1374# include "ev_win32.c"
349#endif 1375#endif
350 1376
351/*****************************************************************************/ 1377/*****************************************************************************/
352 1378
1379/* define a suitable floor function (only used by periodics atm) */
1380
1381#if EV_USE_FLOOR
1382# include <math.h>
1383# define ev_floor(v) floor (v)
1384#else
1385
1386#include <float.h>
1387
1388/* a floor() replacement function, should be independent of ev_tstamp type */
1389static ev_tstamp noinline
1390ev_floor (ev_tstamp v)
1391{
1392 /* the choice of shift factor is not terribly important */
1393#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1394 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1395#else
1396 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1397#endif
1398
1399 /* argument too large for an unsigned long? */
1400 if (expect_false (v >= shift))
1401 {
1402 ev_tstamp f;
1403
1404 if (v == v - 1.)
1405 return v; /* very large number */
1406
1407 f = shift * ev_floor (v * (1. / shift));
1408 return f + ev_floor (v - f);
1409 }
1410
1411 /* special treatment for negative args? */
1412 if (expect_false (v < 0.))
1413 {
1414 ev_tstamp f = -ev_floor (-v);
1415
1416 return f - (f == v ? 0 : 1);
1417 }
1418
1419 /* fits into an unsigned long */
1420 return (unsigned long)v;
1421}
1422
1423#endif
1424
1425/*****************************************************************************/
1426
1427#ifdef __linux
1428# include <sys/utsname.h>
1429#endif
1430
1431static unsigned int noinline ecb_cold
1432ev_linux_version (void)
1433{
1434#ifdef __linux
1435 unsigned int v = 0;
1436 struct utsname buf;
1437 int i;
1438 char *p = buf.release;
1439
1440 if (uname (&buf))
1441 return 0;
1442
1443 for (i = 3+1; --i; )
1444 {
1445 unsigned int c = 0;
1446
1447 for (;;)
1448 {
1449 if (*p >= '0' && *p <= '9')
1450 c = c * 10 + *p++ - '0';
1451 else
1452 {
1453 p += *p == '.';
1454 break;
1455 }
1456 }
1457
1458 v = (v << 8) | c;
1459 }
1460
1461 return v;
1462#else
1463 return 0;
1464#endif
1465}
1466
1467/*****************************************************************************/
1468
1469#if EV_AVOID_STDIO
1470static void noinline ecb_cold
1471ev_printerr (const char *msg)
1472{
1473 write (STDERR_FILENO, msg, strlen (msg));
1474}
1475#endif
1476
353static void (*syserr_cb)(const char *msg); 1477static void (*syserr_cb)(const char *msg) EV_THROW;
354 1478
355void 1479void ecb_cold
356ev_set_syserr_cb (void (*cb)(const char *msg)) 1480ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
357{ 1481{
358 syserr_cb = cb; 1482 syserr_cb = cb;
359} 1483}
360 1484
361static void noinline 1485static void noinline ecb_cold
362syserr (const char *msg) 1486ev_syserr (const char *msg)
363{ 1487{
364 if (!msg) 1488 if (!msg)
365 msg = "(libev) system error"; 1489 msg = "(libev) system error";
366 1490
367 if (syserr_cb) 1491 if (syserr_cb)
368 syserr_cb (msg); 1492 syserr_cb (msg);
369 else 1493 else
370 { 1494 {
1495#if EV_AVOID_STDIO
1496 ev_printerr (msg);
1497 ev_printerr (": ");
1498 ev_printerr (strerror (errno));
1499 ev_printerr ("\n");
1500#else
371 perror (msg); 1501 perror (msg);
1502#endif
372 abort (); 1503 abort ();
373 } 1504 }
374} 1505}
375 1506
376static void * 1507static void *
377ev_realloc_emul (void *ptr, long size) 1508ev_realloc_emul (void *ptr, long size) EV_THROW
378{ 1509{
379 /* some systems, notably openbsd and darwin, fail to properly 1510 /* some systems, notably openbsd and darwin, fail to properly
380 * implement realloc (x, 0) (as required by both ansi c-98 and 1511 * implement realloc (x, 0) (as required by both ansi c-89 and
381 * the single unix specification, so work around them here. 1512 * the single unix specification, so work around them here.
1513 * recently, also (at least) fedora and debian started breaking it,
1514 * despite documenting it otherwise.
382 */ 1515 */
383 1516
384 if (size) 1517 if (size)
385 return realloc (ptr, size); 1518 return realloc (ptr, size);
386 1519
387 free (ptr); 1520 free (ptr);
388 return 0; 1521 return 0;
389} 1522}
390 1523
391static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 1524static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
392 1525
393void 1526void ecb_cold
394ev_set_allocator (void *(*cb)(void *ptr, long size)) 1527ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
395{ 1528{
396 alloc = cb; 1529 alloc = cb;
397} 1530}
398 1531
399inline_speed void * 1532inline_speed void *
401{ 1534{
402 ptr = alloc (ptr, size); 1535 ptr = alloc (ptr, size);
403 1536
404 if (!ptr && size) 1537 if (!ptr && size)
405 { 1538 {
1539#if EV_AVOID_STDIO
1540 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1541#else
406 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1542 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1543#endif
407 abort (); 1544 abort ();
408 } 1545 }
409 1546
410 return ptr; 1547 return ptr;
411} 1548}
413#define ev_malloc(size) ev_realloc (0, (size)) 1550#define ev_malloc(size) ev_realloc (0, (size))
414#define ev_free(ptr) ev_realloc ((ptr), 0) 1551#define ev_free(ptr) ev_realloc ((ptr), 0)
415 1552
416/*****************************************************************************/ 1553/*****************************************************************************/
417 1554
1555/* set in reify when reification needed */
1556#define EV_ANFD_REIFY 1
1557
1558/* file descriptor info structure */
418typedef struct 1559typedef struct
419{ 1560{
420 WL head; 1561 WL head;
421 unsigned char events; 1562 unsigned char events; /* the events watched for */
1563 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1564 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
422 unsigned char reify; 1565 unsigned char unused;
1566#if EV_USE_EPOLL
1567 unsigned int egen; /* generation counter to counter epoll bugs */
1568#endif
423#if EV_SELECT_IS_WINSOCKET 1569#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
424 SOCKET handle; 1570 SOCKET handle;
425#endif 1571#endif
1572#if EV_USE_IOCP
1573 OVERLAPPED or, ow;
1574#endif
426} ANFD; 1575} ANFD;
427 1576
1577/* stores the pending event set for a given watcher */
428typedef struct 1578typedef struct
429{ 1579{
430 W w; 1580 W w;
431 int events; 1581 int events; /* the pending event set for the given watcher */
432} ANPENDING; 1582} ANPENDING;
433 1583
434#if EV_USE_INOTIFY 1584#if EV_USE_INOTIFY
435/* hash table entry per inotify-id */ 1585/* hash table entry per inotify-id */
436typedef struct 1586typedef struct
439} ANFS; 1589} ANFS;
440#endif 1590#endif
441 1591
442/* Heap Entry */ 1592/* Heap Entry */
443#if EV_HEAP_CACHE_AT 1593#if EV_HEAP_CACHE_AT
1594 /* a heap element */
444 typedef struct { 1595 typedef struct {
445 ev_tstamp at; 1596 ev_tstamp at;
446 WT w; 1597 WT w;
447 } ANHE; 1598 } ANHE;
448 1599
449 #define ANHE_w(he) (he).w /* access watcher, read-write */ 1600 #define ANHE_w(he) (he).w /* access watcher, read-write */
450 #define ANHE_at(he) (he).at /* access cached at, read-only */ 1601 #define ANHE_at(he) (he).at /* access cached at, read-only */
451 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */ 1602 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
452#else 1603#else
1604 /* a heap element */
453 typedef WT ANHE; 1605 typedef WT ANHE;
454 1606
455 #define ANHE_w(he) (he) 1607 #define ANHE_w(he) (he)
456 #define ANHE_at(he) (he)->at 1608 #define ANHE_at(he) (he)->at
457 #define ANHE_at_set(he) 1609 #define ANHE_at_cache(he)
458#endif 1610#endif
459 1611
460#if EV_MULTIPLICITY 1612#if EV_MULTIPLICITY
461 1613
462 struct ev_loop 1614 struct ev_loop
468 #undef VAR 1620 #undef VAR
469 }; 1621 };
470 #include "ev_wrap.h" 1622 #include "ev_wrap.h"
471 1623
472 static struct ev_loop default_loop_struct; 1624 static struct ev_loop default_loop_struct;
473 struct ev_loop *ev_default_loop_ptr; 1625 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
474 1626
475#else 1627#else
476 1628
477 ev_tstamp ev_rt_now; 1629 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
478 #define VAR(name,decl) static decl; 1630 #define VAR(name,decl) static decl;
479 #include "ev_vars.h" 1631 #include "ev_vars.h"
480 #undef VAR 1632 #undef VAR
481 1633
482 static int ev_default_loop_ptr; 1634 static int ev_default_loop_ptr;
483 1635
484#endif 1636#endif
485 1637
1638#if EV_FEATURE_API
1639# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1640# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1641# define EV_INVOKE_PENDING invoke_cb (EV_A)
1642#else
1643# define EV_RELEASE_CB (void)0
1644# define EV_ACQUIRE_CB (void)0
1645# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1646#endif
1647
1648#define EVBREAK_RECURSE 0x80
1649
486/*****************************************************************************/ 1650/*****************************************************************************/
487 1651
1652#ifndef EV_HAVE_EV_TIME
488ev_tstamp 1653ev_tstamp
489ev_time (void) 1654ev_time (void) EV_THROW
490{ 1655{
491#if EV_USE_REALTIME 1656#if EV_USE_REALTIME
1657 if (expect_true (have_realtime))
1658 {
492 struct timespec ts; 1659 struct timespec ts;
493 clock_gettime (CLOCK_REALTIME, &ts); 1660 clock_gettime (CLOCK_REALTIME, &ts);
494 return ts.tv_sec + ts.tv_nsec * 1e-9; 1661 return ts.tv_sec + ts.tv_nsec * 1e-9;
495#else 1662 }
1663#endif
1664
496 struct timeval tv; 1665 struct timeval tv;
497 gettimeofday (&tv, 0); 1666 gettimeofday (&tv, 0);
498 return tv.tv_sec + tv.tv_usec * 1e-6; 1667 return tv.tv_sec + tv.tv_usec * 1e-6;
499#endif
500} 1668}
1669#endif
501 1670
502ev_tstamp inline_size 1671inline_size ev_tstamp
503get_clock (void) 1672get_clock (void)
504{ 1673{
505#if EV_USE_MONOTONIC 1674#if EV_USE_MONOTONIC
506 if (expect_true (have_monotonic)) 1675 if (expect_true (have_monotonic))
507 { 1676 {
514 return ev_time (); 1683 return ev_time ();
515} 1684}
516 1685
517#if EV_MULTIPLICITY 1686#if EV_MULTIPLICITY
518ev_tstamp 1687ev_tstamp
519ev_now (EV_P) 1688ev_now (EV_P) EV_THROW
520{ 1689{
521 return ev_rt_now; 1690 return ev_rt_now;
522} 1691}
523#endif 1692#endif
524 1693
525void 1694void
526ev_sleep (ev_tstamp delay) 1695ev_sleep (ev_tstamp delay) EV_THROW
527{ 1696{
528 if (delay > 0.) 1697 if (delay > 0.)
529 { 1698 {
530#if EV_USE_NANOSLEEP 1699#if EV_USE_NANOSLEEP
531 struct timespec ts; 1700 struct timespec ts;
532 1701
533 ts.tv_sec = (time_t)delay; 1702 EV_TS_SET (ts, delay);
534 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
535
536 nanosleep (&ts, 0); 1703 nanosleep (&ts, 0);
537#elif defined(_WIN32) 1704#elif defined _WIN32
538 Sleep ((unsigned long)(delay * 1e3)); 1705 Sleep ((unsigned long)(delay * 1e3));
539#else 1706#else
540 struct timeval tv; 1707 struct timeval tv;
541 1708
542 tv.tv_sec = (time_t)delay; 1709 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
543 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 1710 /* something not guaranteed by newer posix versions, but guaranteed */
544 1711 /* by older ones */
1712 EV_TV_SET (tv, delay);
545 select (0, 0, 0, 0, &tv); 1713 select (0, 0, 0, 0, &tv);
546#endif 1714#endif
547 } 1715 }
548} 1716}
549 1717
550/*****************************************************************************/ 1718/*****************************************************************************/
551 1719
552#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 1720#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
553 1721
554int inline_size 1722/* find a suitable new size for the given array, */
1723/* hopefully by rounding to a nice-to-malloc size */
1724inline_size int
555array_nextsize (int elem, int cur, int cnt) 1725array_nextsize (int elem, int cur, int cnt)
556{ 1726{
557 int ncur = cur + 1; 1727 int ncur = cur + 1;
558 1728
559 do 1729 do
560 ncur <<= 1; 1730 ncur <<= 1;
561 while (cnt > ncur); 1731 while (cnt > ncur);
562 1732
563 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */ 1733 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
564 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4) 1734 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
565 { 1735 {
566 ncur *= elem; 1736 ncur *= elem;
567 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1); 1737 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
568 ncur = ncur - sizeof (void *) * 4; 1738 ncur = ncur - sizeof (void *) * 4;
570 } 1740 }
571 1741
572 return ncur; 1742 return ncur;
573} 1743}
574 1744
575static noinline void * 1745static void * noinline ecb_cold
576array_realloc (int elem, void *base, int *cur, int cnt) 1746array_realloc (int elem, void *base, int *cur, int cnt)
577{ 1747{
578 *cur = array_nextsize (elem, *cur, cnt); 1748 *cur = array_nextsize (elem, *cur, cnt);
579 return ev_realloc (base, elem * *cur); 1749 return ev_realloc (base, elem * *cur);
580} 1750}
1751
1752#define array_init_zero(base,count) \
1753 memset ((void *)(base), 0, sizeof (*(base)) * (count))
581 1754
582#define array_needsize(type,base,cur,cnt,init) \ 1755#define array_needsize(type,base,cur,cnt,init) \
583 if (expect_false ((cnt) > (cur))) \ 1756 if (expect_false ((cnt) > (cur))) \
584 { \ 1757 { \
585 int ocur_ = (cur); \ 1758 int ecb_unused ocur_ = (cur); \
586 (base) = (type *)array_realloc \ 1759 (base) = (type *)array_realloc \
587 (sizeof (type), (base), &(cur), (cnt)); \ 1760 (sizeof (type), (base), &(cur), (cnt)); \
588 init ((base) + (ocur_), (cur) - ocur_); \ 1761 init ((base) + (ocur_), (cur) - ocur_); \
589 } 1762 }
590 1763
597 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1770 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
598 } 1771 }
599#endif 1772#endif
600 1773
601#define array_free(stem, idx) \ 1774#define array_free(stem, idx) \
602 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1775 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
603 1776
604/*****************************************************************************/ 1777/*****************************************************************************/
605 1778
1779/* dummy callback for pending events */
1780static void noinline
1781pendingcb (EV_P_ ev_prepare *w, int revents)
1782{
1783}
1784
606void noinline 1785void noinline
607ev_feed_event (EV_P_ void *w, int revents) 1786ev_feed_event (EV_P_ void *w, int revents) EV_THROW
608{ 1787{
609 W w_ = (W)w; 1788 W w_ = (W)w;
610 int pri = ABSPRI (w_); 1789 int pri = ABSPRI (w_);
611 1790
612 if (expect_false (w_->pending)) 1791 if (expect_false (w_->pending))
616 w_->pending = ++pendingcnt [pri]; 1795 w_->pending = ++pendingcnt [pri];
617 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 1796 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
618 pendings [pri][w_->pending - 1].w = w_; 1797 pendings [pri][w_->pending - 1].w = w_;
619 pendings [pri][w_->pending - 1].events = revents; 1798 pendings [pri][w_->pending - 1].events = revents;
620 } 1799 }
621}
622 1800
623void inline_speed 1801 pendingpri = NUMPRI - 1;
1802}
1803
1804inline_speed void
1805feed_reverse (EV_P_ W w)
1806{
1807 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1808 rfeeds [rfeedcnt++] = w;
1809}
1810
1811inline_size void
1812feed_reverse_done (EV_P_ int revents)
1813{
1814 do
1815 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1816 while (rfeedcnt);
1817}
1818
1819inline_speed void
624queue_events (EV_P_ W *events, int eventcnt, int type) 1820queue_events (EV_P_ W *events, int eventcnt, int type)
625{ 1821{
626 int i; 1822 int i;
627 1823
628 for (i = 0; i < eventcnt; ++i) 1824 for (i = 0; i < eventcnt; ++i)
629 ev_feed_event (EV_A_ events [i], type); 1825 ev_feed_event (EV_A_ events [i], type);
630} 1826}
631 1827
632/*****************************************************************************/ 1828/*****************************************************************************/
633 1829
634void inline_size 1830inline_speed void
635anfds_init (ANFD *base, int count)
636{
637 while (count--)
638 {
639 base->head = 0;
640 base->events = EV_NONE;
641 base->reify = 0;
642
643 ++base;
644 }
645}
646
647void inline_speed
648fd_event (EV_P_ int fd, int revents) 1831fd_event_nocheck (EV_P_ int fd, int revents)
649{ 1832{
650 ANFD *anfd = anfds + fd; 1833 ANFD *anfd = anfds + fd;
651 ev_io *w; 1834 ev_io *w;
652 1835
653 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1836 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
657 if (ev) 1840 if (ev)
658 ev_feed_event (EV_A_ (W)w, ev); 1841 ev_feed_event (EV_A_ (W)w, ev);
659 } 1842 }
660} 1843}
661 1844
1845/* do not submit kernel events for fds that have reify set */
1846/* because that means they changed while we were polling for new events */
1847inline_speed void
1848fd_event (EV_P_ int fd, int revents)
1849{
1850 ANFD *anfd = anfds + fd;
1851
1852 if (expect_true (!anfd->reify))
1853 fd_event_nocheck (EV_A_ fd, revents);
1854}
1855
662void 1856void
663ev_feed_fd_event (EV_P_ int fd, int revents) 1857ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
664{ 1858{
665 if (fd >= 0 && fd < anfdmax) 1859 if (fd >= 0 && fd < anfdmax)
666 fd_event (EV_A_ fd, revents); 1860 fd_event_nocheck (EV_A_ fd, revents);
667} 1861}
668 1862
669void inline_size 1863/* make sure the external fd watch events are in-sync */
1864/* with the kernel/libev internal state */
1865inline_size void
670fd_reify (EV_P) 1866fd_reify (EV_P)
671{ 1867{
672 int i; 1868 int i;
1869
1870#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1871 for (i = 0; i < fdchangecnt; ++i)
1872 {
1873 int fd = fdchanges [i];
1874 ANFD *anfd = anfds + fd;
1875
1876 if (anfd->reify & EV__IOFDSET && anfd->head)
1877 {
1878 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1879
1880 if (handle != anfd->handle)
1881 {
1882 unsigned long arg;
1883
1884 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1885
1886 /* handle changed, but fd didn't - we need to do it in two steps */
1887 backend_modify (EV_A_ fd, anfd->events, 0);
1888 anfd->events = 0;
1889 anfd->handle = handle;
1890 }
1891 }
1892 }
1893#endif
673 1894
674 for (i = 0; i < fdchangecnt; ++i) 1895 for (i = 0; i < fdchangecnt; ++i)
675 { 1896 {
676 int fd = fdchanges [i]; 1897 int fd = fdchanges [i];
677 ANFD *anfd = anfds + fd; 1898 ANFD *anfd = anfds + fd;
678 ev_io *w; 1899 ev_io *w;
679 1900
680 unsigned char events = 0; 1901 unsigned char o_events = anfd->events;
1902 unsigned char o_reify = anfd->reify;
681 1903
682 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1904 anfd->reify = 0;
683 events |= (unsigned char)w->events;
684 1905
685#if EV_SELECT_IS_WINSOCKET 1906 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
686 if (events)
687 { 1907 {
688 unsigned long argp; 1908 anfd->events = 0;
689 #ifdef EV_FD_TO_WIN32_HANDLE 1909
690 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1910 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
691 #else 1911 anfd->events |= (unsigned char)w->events;
692 anfd->handle = _get_osfhandle (fd); 1912
693 #endif 1913 if (o_events != anfd->events)
694 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1914 o_reify = EV__IOFDSET; /* actually |= */
695 } 1915 }
696#endif
697 1916
698 { 1917 if (o_reify & EV__IOFDSET)
699 unsigned char o_events = anfd->events;
700 unsigned char o_reify = anfd->reify;
701
702 anfd->reify = 0;
703 anfd->events = events;
704
705 if (o_events != events || o_reify & EV_IOFDSET)
706 backend_modify (EV_A_ fd, o_events, events); 1918 backend_modify (EV_A_ fd, o_events, anfd->events);
707 }
708 } 1919 }
709 1920
710 fdchangecnt = 0; 1921 fdchangecnt = 0;
711} 1922}
712 1923
713void inline_size 1924/* something about the given fd changed */
1925inline_size void
714fd_change (EV_P_ int fd, int flags) 1926fd_change (EV_P_ int fd, int flags)
715{ 1927{
716 unsigned char reify = anfds [fd].reify; 1928 unsigned char reify = anfds [fd].reify;
717 anfds [fd].reify |= flags; 1929 anfds [fd].reify |= flags;
718 1930
722 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1934 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
723 fdchanges [fdchangecnt - 1] = fd; 1935 fdchanges [fdchangecnt - 1] = fd;
724 } 1936 }
725} 1937}
726 1938
727void inline_speed 1939/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1940inline_speed void ecb_cold
728fd_kill (EV_P_ int fd) 1941fd_kill (EV_P_ int fd)
729{ 1942{
730 ev_io *w; 1943 ev_io *w;
731 1944
732 while ((w = (ev_io *)anfds [fd].head)) 1945 while ((w = (ev_io *)anfds [fd].head))
734 ev_io_stop (EV_A_ w); 1947 ev_io_stop (EV_A_ w);
735 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1948 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
736 } 1949 }
737} 1950}
738 1951
739int inline_size 1952/* check whether the given fd is actually valid, for error recovery */
1953inline_size int ecb_cold
740fd_valid (int fd) 1954fd_valid (int fd)
741{ 1955{
742#ifdef _WIN32 1956#ifdef _WIN32
743 return _get_osfhandle (fd) != -1; 1957 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
744#else 1958#else
745 return fcntl (fd, F_GETFD) != -1; 1959 return fcntl (fd, F_GETFD) != -1;
746#endif 1960#endif
747} 1961}
748 1962
749/* called on EBADF to verify fds */ 1963/* called on EBADF to verify fds */
750static void noinline 1964static void noinline ecb_cold
751fd_ebadf (EV_P) 1965fd_ebadf (EV_P)
752{ 1966{
753 int fd; 1967 int fd;
754 1968
755 for (fd = 0; fd < anfdmax; ++fd) 1969 for (fd = 0; fd < anfdmax; ++fd)
756 if (anfds [fd].events) 1970 if (anfds [fd].events)
757 if (!fd_valid (fd) == -1 && errno == EBADF) 1971 if (!fd_valid (fd) && errno == EBADF)
758 fd_kill (EV_A_ fd); 1972 fd_kill (EV_A_ fd);
759} 1973}
760 1974
761/* called on ENOMEM in select/poll to kill some fds and retry */ 1975/* called on ENOMEM in select/poll to kill some fds and retry */
762static void noinline 1976static void noinline ecb_cold
763fd_enomem (EV_P) 1977fd_enomem (EV_P)
764{ 1978{
765 int fd; 1979 int fd;
766 1980
767 for (fd = anfdmax; fd--; ) 1981 for (fd = anfdmax; fd--; )
768 if (anfds [fd].events) 1982 if (anfds [fd].events)
769 { 1983 {
770 fd_kill (EV_A_ fd); 1984 fd_kill (EV_A_ fd);
771 return; 1985 break;
772 } 1986 }
773} 1987}
774 1988
775/* usually called after fork if backend needs to re-arm all fds from scratch */ 1989/* usually called after fork if backend needs to re-arm all fds from scratch */
776static void noinline 1990static void noinline
780 1994
781 for (fd = 0; fd < anfdmax; ++fd) 1995 for (fd = 0; fd < anfdmax; ++fd)
782 if (anfds [fd].events) 1996 if (anfds [fd].events)
783 { 1997 {
784 anfds [fd].events = 0; 1998 anfds [fd].events = 0;
1999 anfds [fd].emask = 0;
785 fd_change (EV_A_ fd, EV_IOFDSET | 1); 2000 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
786 } 2001 }
787} 2002}
788 2003
2004/* used to prepare libev internal fd's */
2005/* this is not fork-safe */
2006inline_speed void
2007fd_intern (int fd)
2008{
2009#ifdef _WIN32
2010 unsigned long arg = 1;
2011 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2012#else
2013 fcntl (fd, F_SETFD, FD_CLOEXEC);
2014 fcntl (fd, F_SETFL, O_NONBLOCK);
2015#endif
2016}
2017
789/*****************************************************************************/ 2018/*****************************************************************************/
790 2019
791/* 2020/*
792 * the heap functions want a real array index. array index 0 uis guaranteed to not 2021 * the heap functions want a real array index. array index 0 is guaranteed to not
793 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 2022 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
794 * the branching factor of the d-tree. 2023 * the branching factor of the d-tree.
795 */ 2024 */
796 2025
797/* 2026/*
802 */ 2031 */
803#if EV_USE_4HEAP 2032#if EV_USE_4HEAP
804 2033
805#define DHEAP 4 2034#define DHEAP 4
806#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 2035#define HEAP0 (DHEAP - 1) /* index of first element in heap */
807 2036#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
808/* towards the root */ 2037#define UPHEAP_DONE(p,k) ((p) == (k))
809void inline_speed
810upheap (ANHE *heap, int k)
811{
812 ANHE he = heap [k];
813
814 for (;;)
815 {
816 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
817
818 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
819 break;
820
821 heap [k] = heap [p];
822 ev_active (ANHE_w (heap [k])) = k;
823 k = p;
824 }
825
826 ev_active (ANHE_w (he)) = k;
827 heap [k] = he;
828}
829 2038
830/* away from the root */ 2039/* away from the root */
831void inline_speed 2040inline_speed void
832downheap (ANHE *heap, int N, int k) 2041downheap (ANHE *heap, int N, int k)
833{ 2042{
834 ANHE he = heap [k]; 2043 ANHE he = heap [k];
835 ANHE *E = heap + N + HEAP0; 2044 ANHE *E = heap + N + HEAP0;
836 2045
837 for (;;) 2046 for (;;)
838 { 2047 {
839 ev_tstamp minat; 2048 ev_tstamp minat;
840 ANHE *minpos; 2049 ANHE *minpos;
841 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0; 2050 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
842 2051
843 // find minimum child 2052 /* find minimum child */
844 if (expect_true (pos + DHEAP - 1 < E)) 2053 if (expect_true (pos + DHEAP - 1 < E))
845 { 2054 {
846 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 2055 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
847 if (ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 2056 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
848 if (ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); 2057 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
849 if (ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos)); 2058 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
850 } 2059 }
851 else if (pos < E) 2060 else if (pos < E)
852 { 2061 {
853 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 2062 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
854 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 2063 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
859 break; 2068 break;
860 2069
861 if (ANHE_at (he) <= minat) 2070 if (ANHE_at (he) <= minat)
862 break; 2071 break;
863 2072
2073 heap [k] = *minpos;
864 ev_active (ANHE_w (*minpos)) = k; 2074 ev_active (ANHE_w (*minpos)) = k;
865 heap [k] = *minpos;
866 2075
867 k = minpos - heap; 2076 k = minpos - heap;
868 } 2077 }
869 2078
2079 heap [k] = he;
870 ev_active (ANHE_w (he)) = k; 2080 ev_active (ANHE_w (he)) = k;
871 heap [k] = he;
872} 2081}
873 2082
874#else // 4HEAP 2083#else /* 4HEAP */
875 2084
876#define HEAP0 1 2085#define HEAP0 1
2086#define HPARENT(k) ((k) >> 1)
2087#define UPHEAP_DONE(p,k) (!(p))
877 2088
878/* towards the root */ 2089/* away from the root */
879void inline_speed 2090inline_speed void
880upheap (ANHE *heap, int k) 2091downheap (ANHE *heap, int N, int k)
881{ 2092{
882 ANHE he = heap [k]; 2093 ANHE he = heap [k];
883 2094
884 for (;;) 2095 for (;;)
885 { 2096 {
886 int p = k >> 1; 2097 int c = k << 1;
887 2098
888 /* maybe we could use a dummy element at heap [0]? */ 2099 if (c >= N + HEAP0)
889 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
890 break; 2100 break;
891 2101
892 heap [k] = heap [p];
893 ev_active (ANHE_w (heap [k])) = k;
894 k = p;
895 }
896
897 heap [k] = he;
898 ev_active (ANHE_w (heap [k])) = k;
899}
900
901/* away from the root */
902void inline_speed
903downheap (ANHE *heap, int N, int k)
904{
905 ANHE he = heap [k];
906
907 for (;;)
908 {
909 int c = k << 1;
910
911 if (c > N)
912 break;
913
914 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 2102 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
915 ? 1 : 0; 2103 ? 1 : 0;
916 2104
917 if (ANHE_at (he) <= ANHE_at (heap [c])) 2105 if (ANHE_at (he) <= ANHE_at (heap [c]))
918 break; 2106 break;
919 2107
926 heap [k] = he; 2114 heap [k] = he;
927 ev_active (ANHE_w (he)) = k; 2115 ev_active (ANHE_w (he)) = k;
928} 2116}
929#endif 2117#endif
930 2118
931void inline_size 2119/* towards the root */
2120inline_speed void
2121upheap (ANHE *heap, int k)
2122{
2123 ANHE he = heap [k];
2124
2125 for (;;)
2126 {
2127 int p = HPARENT (k);
2128
2129 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2130 break;
2131
2132 heap [k] = heap [p];
2133 ev_active (ANHE_w (heap [k])) = k;
2134 k = p;
2135 }
2136
2137 heap [k] = he;
2138 ev_active (ANHE_w (he)) = k;
2139}
2140
2141/* move an element suitably so it is in a correct place */
2142inline_size void
932adjustheap (ANHE *heap, int N, int k) 2143adjustheap (ANHE *heap, int N, int k)
933{ 2144{
2145 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
934 upheap (heap, k); 2146 upheap (heap, k);
2147 else
935 downheap (heap, N, k); 2148 downheap (heap, N, k);
2149}
2150
2151/* rebuild the heap: this function is used only once and executed rarely */
2152inline_size void
2153reheap (ANHE *heap, int N)
2154{
2155 int i;
2156
2157 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2158 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2159 for (i = 0; i < N; ++i)
2160 upheap (heap, i + HEAP0);
936} 2161}
937 2162
938/*****************************************************************************/ 2163/*****************************************************************************/
939 2164
2165/* associate signal watchers to a signal signal */
940typedef struct 2166typedef struct
941{ 2167{
2168 EV_ATOMIC_T pending;
2169#if EV_MULTIPLICITY
2170 EV_P;
2171#endif
942 WL head; 2172 WL head;
943 EV_ATOMIC_T gotsig;
944} ANSIG; 2173} ANSIG;
945 2174
946static ANSIG *signals; 2175static ANSIG signals [EV_NSIG - 1];
947static int signalmax;
948
949static EV_ATOMIC_T gotsig;
950
951void inline_size
952signals_init (ANSIG *base, int count)
953{
954 while (count--)
955 {
956 base->head = 0;
957 base->gotsig = 0;
958
959 ++base;
960 }
961}
962 2176
963/*****************************************************************************/ 2177/*****************************************************************************/
964 2178
965void inline_speed 2179#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
966fd_intern (int fd)
967{
968#ifdef _WIN32
969 int arg = 1;
970 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
971#else
972 fcntl (fd, F_SETFD, FD_CLOEXEC);
973 fcntl (fd, F_SETFL, O_NONBLOCK);
974#endif
975}
976 2180
977static void noinline 2181static void noinline ecb_cold
978evpipe_init (EV_P) 2182evpipe_init (EV_P)
979{ 2183{
980 if (!ev_is_active (&pipeev)) 2184 if (!ev_is_active (&pipe_w))
2185 {
2186 int fds [2];
2187
2188# if EV_USE_EVENTFD
2189 fds [0] = -1;
2190 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2191 if (fds [1] < 0 && errno == EINVAL)
2192 fds [1] = eventfd (0, 0);
2193
2194 if (fds [1] < 0)
2195# endif
2196 {
2197 while (pipe (fds))
2198 ev_syserr ("(libev) error creating signal/async pipe");
2199
2200 fd_intern (fds [0]);
2201 }
2202
2203 evpipe [0] = fds [0];
2204
2205 if (evpipe [1] < 0)
2206 evpipe [1] = fds [1]; /* first call, set write fd */
2207 else
2208 {
2209 /* on subsequent calls, do not change evpipe [1] */
2210 /* so that evpipe_write can always rely on its value. */
2211 /* this branch does not do anything sensible on windows, */
2212 /* so must not be executed on windows */
2213
2214 dup2 (fds [1], evpipe [1]);
2215 close (fds [1]);
2216 }
2217
2218 fd_intern (evpipe [1]);
2219
2220 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2221 ev_io_start (EV_A_ &pipe_w);
2222 ev_unref (EV_A); /* watcher should not keep loop alive */
981 { 2223 }
2224}
2225
2226inline_speed void
2227evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2228{
2229 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2230
2231 if (expect_true (*flag))
2232 return;
2233
2234 *flag = 1;
2235 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2236
2237 pipe_write_skipped = 1;
2238
2239 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2240
2241 if (pipe_write_wanted)
2242 {
2243 int old_errno;
2244
2245 pipe_write_skipped = 0;
2246 ECB_MEMORY_FENCE_RELEASE;
2247
2248 old_errno = errno; /* save errno because write will clobber it */
2249
982#if EV_USE_EVENTFD 2250#if EV_USE_EVENTFD
983 if ((evfd = eventfd (0, 0)) >= 0) 2251 if (evpipe [0] < 0)
984 { 2252 {
985 evpipe [0] = -1; 2253 uint64_t counter = 1;
986 fd_intern (evfd); 2254 write (evpipe [1], &counter, sizeof (uint64_t));
987 ev_io_set (&pipeev, evfd, EV_READ);
988 } 2255 }
989 else 2256 else
990#endif 2257#endif
991 { 2258 {
992 while (pipe (evpipe)) 2259#ifdef _WIN32
993 syserr ("(libev) error creating signal/async pipe"); 2260 WSABUF buf;
994 2261 DWORD sent;
995 fd_intern (evpipe [0]); 2262 buf.buf = &buf;
996 fd_intern (evpipe [1]); 2263 buf.len = 1;
997 ev_io_set (&pipeev, evpipe [0], EV_READ); 2264 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2265#else
2266 write (evpipe [1], &(evpipe [1]), 1);
2267#endif
998 } 2268 }
999 2269
1000 ev_io_start (EV_A_ &pipeev); 2270 errno = old_errno;
1001 ev_unref (EV_A); /* watcher should not keep loop alive */
1002 }
1003}
1004
1005void inline_size
1006evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1007{
1008 if (!*flag)
1009 { 2271 }
1010 int old_errno = errno; /* save errno because write might clobber it */ 2272}
1011 2273
1012 *flag = 1; 2274/* called whenever the libev signal pipe */
2275/* got some events (signal, async) */
2276static void
2277pipecb (EV_P_ ev_io *iow, int revents)
2278{
2279 int i;
1013 2280
2281 if (revents & EV_READ)
2282 {
1014#if EV_USE_EVENTFD 2283#if EV_USE_EVENTFD
1015 if (evfd >= 0) 2284 if (evpipe [0] < 0)
1016 { 2285 {
1017 uint64_t counter = 1; 2286 uint64_t counter;
1018 write (evfd, &counter, sizeof (uint64_t)); 2287 read (evpipe [1], &counter, sizeof (uint64_t));
1019 } 2288 }
1020 else 2289 else
1021#endif 2290#endif
1022 write (evpipe [1], &old_errno, 1); 2291 {
1023
1024 errno = old_errno;
1025 }
1026}
1027
1028static void
1029pipecb (EV_P_ ev_io *iow, int revents)
1030{
1031#if EV_USE_EVENTFD
1032 if (evfd >= 0)
1033 {
1034 uint64_t counter;
1035 read (evfd, &counter, sizeof (uint64_t));
1036 }
1037 else
1038#endif
1039 {
1040 char dummy; 2292 char dummy[4];
2293#ifdef _WIN32
2294 WSABUF buf;
2295 DWORD recvd;
2296 DWORD flags = 0;
2297 buf.buf = dummy;
2298 buf.len = sizeof (dummy);
2299 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2300#else
1041 read (evpipe [0], &dummy, 1); 2301 read (evpipe [0], &dummy, sizeof (dummy));
2302#endif
2303 }
2304 }
2305
2306 pipe_write_skipped = 0;
2307
2308 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2309
2310#if EV_SIGNAL_ENABLE
2311 if (sig_pending)
1042 } 2312 {
2313 sig_pending = 0;
1043 2314
1044 if (gotsig && ev_is_default_loop (EV_A)) 2315 ECB_MEMORY_FENCE;
1045 {
1046 int signum;
1047 gotsig = 0;
1048 2316
1049 for (signum = signalmax; signum--; ) 2317 for (i = EV_NSIG - 1; i--; )
1050 if (signals [signum].gotsig) 2318 if (expect_false (signals [i].pending))
1051 ev_feed_signal_event (EV_A_ signum + 1); 2319 ev_feed_signal_event (EV_A_ i + 1);
1052 } 2320 }
2321#endif
1053 2322
1054#if EV_ASYNC_ENABLE 2323#if EV_ASYNC_ENABLE
1055 if (gotasync) 2324 if (async_pending)
1056 { 2325 {
1057 int i; 2326 async_pending = 0;
1058 gotasync = 0; 2327
2328 ECB_MEMORY_FENCE;
1059 2329
1060 for (i = asynccnt; i--; ) 2330 for (i = asynccnt; i--; )
1061 if (asyncs [i]->sent) 2331 if (asyncs [i]->sent)
1062 { 2332 {
1063 asyncs [i]->sent = 0; 2333 asyncs [i]->sent = 0;
2334 ECB_MEMORY_FENCE_RELEASE;
1064 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); 2335 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1065 } 2336 }
1066 } 2337 }
1067#endif 2338#endif
1068} 2339}
1069 2340
1070/*****************************************************************************/ 2341/*****************************************************************************/
1071 2342
2343void
2344ev_feed_signal (int signum) EV_THROW
2345{
2346#if EV_MULTIPLICITY
2347 EV_P;
2348 ECB_MEMORY_FENCE_ACQUIRE;
2349 EV_A = signals [signum - 1].loop;
2350
2351 if (!EV_A)
2352 return;
2353#endif
2354
2355 signals [signum - 1].pending = 1;
2356 evpipe_write (EV_A_ &sig_pending);
2357}
2358
1072static void 2359static void
1073ev_sighandler (int signum) 2360ev_sighandler (int signum)
1074{ 2361{
2362#ifdef _WIN32
2363 signal (signum, ev_sighandler);
2364#endif
2365
2366 ev_feed_signal (signum);
2367}
2368
2369void noinline
2370ev_feed_signal_event (EV_P_ int signum) EV_THROW
2371{
2372 WL w;
2373
2374 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2375 return;
2376
2377 --signum;
2378
1075#if EV_MULTIPLICITY 2379#if EV_MULTIPLICITY
1076 struct ev_loop *loop = &default_loop_struct; 2380 /* it is permissible to try to feed a signal to the wrong loop */
1077#endif 2381 /* or, likely more useful, feeding a signal nobody is waiting for */
1078 2382
1079#if _WIN32 2383 if (expect_false (signals [signum].loop != EV_A))
1080 signal (signum, ev_sighandler);
1081#endif
1082
1083 signals [signum - 1].gotsig = 1;
1084 evpipe_write (EV_A_ &gotsig);
1085}
1086
1087void noinline
1088ev_feed_signal_event (EV_P_ int signum)
1089{
1090 WL w;
1091
1092#if EV_MULTIPLICITY
1093 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1094#endif
1095
1096 --signum;
1097
1098 if (signum < 0 || signum >= signalmax)
1099 return; 2384 return;
2385#endif
1100 2386
1101 signals [signum].gotsig = 0; 2387 signals [signum].pending = 0;
2388 ECB_MEMORY_FENCE_RELEASE;
1102 2389
1103 for (w = signals [signum].head; w; w = w->next) 2390 for (w = signals [signum].head; w; w = w->next)
1104 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2391 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1105} 2392}
1106 2393
2394#if EV_USE_SIGNALFD
2395static void
2396sigfdcb (EV_P_ ev_io *iow, int revents)
2397{
2398 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2399
2400 for (;;)
2401 {
2402 ssize_t res = read (sigfd, si, sizeof (si));
2403
2404 /* not ISO-C, as res might be -1, but works with SuS */
2405 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2406 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2407
2408 if (res < (ssize_t)sizeof (si))
2409 break;
2410 }
2411}
2412#endif
2413
2414#endif
2415
1107/*****************************************************************************/ 2416/*****************************************************************************/
1108 2417
2418#if EV_CHILD_ENABLE
1109static WL childs [EV_PID_HASHSIZE]; 2419static WL childs [EV_PID_HASHSIZE];
1110
1111#ifndef _WIN32
1112 2420
1113static ev_signal childev; 2421static ev_signal childev;
1114 2422
1115#ifndef WIFCONTINUED 2423#ifndef WIFCONTINUED
1116# define WIFCONTINUED(status) 0 2424# define WIFCONTINUED(status) 0
1117#endif 2425#endif
1118 2426
1119void inline_speed 2427/* handle a single child status event */
2428inline_speed void
1120child_reap (EV_P_ int chain, int pid, int status) 2429child_reap (EV_P_ int chain, int pid, int status)
1121{ 2430{
1122 ev_child *w; 2431 ev_child *w;
1123 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2432 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1124 2433
1125 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2434 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1126 { 2435 {
1127 if ((w->pid == pid || !w->pid) 2436 if ((w->pid == pid || !w->pid)
1128 && (!traced || (w->flags & 1))) 2437 && (!traced || (w->flags & 1)))
1129 { 2438 {
1130 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 2439 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1137 2446
1138#ifndef WCONTINUED 2447#ifndef WCONTINUED
1139# define WCONTINUED 0 2448# define WCONTINUED 0
1140#endif 2449#endif
1141 2450
2451/* called on sigchld etc., calls waitpid */
1142static void 2452static void
1143childcb (EV_P_ ev_signal *sw, int revents) 2453childcb (EV_P_ ev_signal *sw, int revents)
1144{ 2454{
1145 int pid, status; 2455 int pid, status;
1146 2456
1154 /* make sure we are called again until all children have been reaped */ 2464 /* make sure we are called again until all children have been reaped */
1155 /* we need to do it this way so that the callback gets called before we continue */ 2465 /* we need to do it this way so that the callback gets called before we continue */
1156 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2466 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1157 2467
1158 child_reap (EV_A_ pid, pid, status); 2468 child_reap (EV_A_ pid, pid, status);
1159 if (EV_PID_HASHSIZE > 1) 2469 if ((EV_PID_HASHSIZE) > 1)
1160 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2470 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1161} 2471}
1162 2472
1163#endif 2473#endif
1164 2474
1165/*****************************************************************************/ 2475/*****************************************************************************/
1166 2476
2477#if EV_USE_IOCP
2478# include "ev_iocp.c"
2479#endif
1167#if EV_USE_PORT 2480#if EV_USE_PORT
1168# include "ev_port.c" 2481# include "ev_port.c"
1169#endif 2482#endif
1170#if EV_USE_KQUEUE 2483#if EV_USE_KQUEUE
1171# include "ev_kqueue.c" 2484# include "ev_kqueue.c"
1178#endif 2491#endif
1179#if EV_USE_SELECT 2492#if EV_USE_SELECT
1180# include "ev_select.c" 2493# include "ev_select.c"
1181#endif 2494#endif
1182 2495
1183int 2496int ecb_cold
1184ev_version_major (void) 2497ev_version_major (void) EV_THROW
1185{ 2498{
1186 return EV_VERSION_MAJOR; 2499 return EV_VERSION_MAJOR;
1187} 2500}
1188 2501
1189int 2502int ecb_cold
1190ev_version_minor (void) 2503ev_version_minor (void) EV_THROW
1191{ 2504{
1192 return EV_VERSION_MINOR; 2505 return EV_VERSION_MINOR;
1193} 2506}
1194 2507
1195/* return true if we are running with elevated privileges and should ignore env variables */ 2508/* return true if we are running with elevated privileges and should ignore env variables */
1196int inline_size 2509int inline_size ecb_cold
1197enable_secure (void) 2510enable_secure (void)
1198{ 2511{
1199#ifdef _WIN32 2512#ifdef _WIN32
1200 return 0; 2513 return 0;
1201#else 2514#else
1202 return getuid () != geteuid () 2515 return getuid () != geteuid ()
1203 || getgid () != getegid (); 2516 || getgid () != getegid ();
1204#endif 2517#endif
1205} 2518}
1206 2519
1207unsigned int 2520unsigned int ecb_cold
1208ev_supported_backends (void) 2521ev_supported_backends (void) EV_THROW
1209{ 2522{
1210 unsigned int flags = 0; 2523 unsigned int flags = 0;
1211 2524
1212 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2525 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1213 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2526 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1216 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2529 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1217 2530
1218 return flags; 2531 return flags;
1219} 2532}
1220 2533
1221unsigned int 2534unsigned int ecb_cold
1222ev_recommended_backends (void) 2535ev_recommended_backends (void) EV_THROW
1223{ 2536{
1224 unsigned int flags = ev_supported_backends (); 2537 unsigned int flags = ev_supported_backends ();
1225 2538
1226#ifndef __NetBSD__ 2539#ifndef __NetBSD__
1227 /* kqueue is borked on everything but netbsd apparently */ 2540 /* kqueue is borked on everything but netbsd apparently */
1228 /* it usually doesn't work correctly on anything but sockets and pipes */ 2541 /* it usually doesn't work correctly on anything but sockets and pipes */
1229 flags &= ~EVBACKEND_KQUEUE; 2542 flags &= ~EVBACKEND_KQUEUE;
1230#endif 2543#endif
1231#ifdef __APPLE__ 2544#ifdef __APPLE__
1232 // flags &= ~EVBACKEND_KQUEUE; for documentation 2545 /* only select works correctly on that "unix-certified" platform */
1233 flags &= ~EVBACKEND_POLL; 2546 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2547 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2548#endif
2549#ifdef __FreeBSD__
2550 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1234#endif 2551#endif
1235 2552
1236 return flags; 2553 return flags;
1237} 2554}
1238 2555
2556unsigned int ecb_cold
2557ev_embeddable_backends (void) EV_THROW
2558{
2559 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2560
2561 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2562 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2563 flags &= ~EVBACKEND_EPOLL;
2564
2565 return flags;
2566}
2567
1239unsigned int 2568unsigned int
1240ev_embeddable_backends (void) 2569ev_backend (EV_P) EV_THROW
1241{ 2570{
1242 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2571 return backend;
1243
1244 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1245 /* please fix it and tell me how to detect the fix */
1246 flags &= ~EVBACKEND_EPOLL;
1247
1248 return flags;
1249} 2572}
1250 2573
2574#if EV_FEATURE_API
1251unsigned int 2575unsigned int
1252ev_backend (EV_P) 2576ev_iteration (EV_P) EV_THROW
1253{ 2577{
1254 return backend; 2578 return loop_count;
1255} 2579}
1256 2580
1257unsigned int 2581unsigned int
1258ev_loop_count (EV_P) 2582ev_depth (EV_P) EV_THROW
1259{ 2583{
1260 return loop_count; 2584 return loop_depth;
1261} 2585}
1262 2586
1263void 2587void
1264ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2588ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1265{ 2589{
1266 io_blocktime = interval; 2590 io_blocktime = interval;
1267} 2591}
1268 2592
1269void 2593void
1270ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2594ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1271{ 2595{
1272 timeout_blocktime = interval; 2596 timeout_blocktime = interval;
1273} 2597}
1274 2598
2599void
2600ev_set_userdata (EV_P_ void *data) EV_THROW
2601{
2602 userdata = data;
2603}
2604
2605void *
2606ev_userdata (EV_P) EV_THROW
2607{
2608 return userdata;
2609}
2610
2611void
2612ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_THROW
2613{
2614 invoke_cb = invoke_pending_cb;
2615}
2616
2617void
2618ev_set_loop_release_cb (EV_P_ ev_loop_callback EV_THROW release, ev_loop_callback EV_THROW acquire) EV_THROW
2619{
2620 release_cb = release;
2621 acquire_cb = acquire;
2622}
2623#endif
2624
2625/* initialise a loop structure, must be zero-initialised */
1275static void noinline 2626static void noinline ecb_cold
1276loop_init (EV_P_ unsigned int flags) 2627loop_init (EV_P_ unsigned int flags) EV_THROW
1277{ 2628{
1278 if (!backend) 2629 if (!backend)
1279 { 2630 {
2631 origflags = flags;
2632
2633#if EV_USE_REALTIME
2634 if (!have_realtime)
2635 {
2636 struct timespec ts;
2637
2638 if (!clock_gettime (CLOCK_REALTIME, &ts))
2639 have_realtime = 1;
2640 }
2641#endif
2642
1280#if EV_USE_MONOTONIC 2643#if EV_USE_MONOTONIC
2644 if (!have_monotonic)
1281 { 2645 {
1282 struct timespec ts; 2646 struct timespec ts;
2647
1283 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2648 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1284 have_monotonic = 1; 2649 have_monotonic = 1;
1285 } 2650 }
1286#endif
1287
1288 ev_rt_now = ev_time ();
1289 mn_now = get_clock ();
1290 now_floor = mn_now;
1291 rtmn_diff = ev_rt_now - mn_now;
1292
1293 io_blocktime = 0.;
1294 timeout_blocktime = 0.;
1295 backend = 0;
1296 backend_fd = -1;
1297 gotasync = 0;
1298#if EV_USE_INOTIFY
1299 fs_fd = -2;
1300#endif 2651#endif
1301 2652
1302 /* pid check not overridable via env */ 2653 /* pid check not overridable via env */
1303#ifndef _WIN32 2654#ifndef _WIN32
1304 if (flags & EVFLAG_FORKCHECK) 2655 if (flags & EVFLAG_FORKCHECK)
1308 if (!(flags & EVFLAG_NOENV) 2659 if (!(flags & EVFLAG_NOENV)
1309 && !enable_secure () 2660 && !enable_secure ()
1310 && getenv ("LIBEV_FLAGS")) 2661 && getenv ("LIBEV_FLAGS"))
1311 flags = atoi (getenv ("LIBEV_FLAGS")); 2662 flags = atoi (getenv ("LIBEV_FLAGS"));
1312 2663
1313 if (!(flags & 0x0000ffffU)) 2664 ev_rt_now = ev_time ();
2665 mn_now = get_clock ();
2666 now_floor = mn_now;
2667 rtmn_diff = ev_rt_now - mn_now;
2668#if EV_FEATURE_API
2669 invoke_cb = ev_invoke_pending;
2670#endif
2671
2672 io_blocktime = 0.;
2673 timeout_blocktime = 0.;
2674 backend = 0;
2675 backend_fd = -1;
2676 sig_pending = 0;
2677#if EV_ASYNC_ENABLE
2678 async_pending = 0;
2679#endif
2680 pipe_write_skipped = 0;
2681 pipe_write_wanted = 0;
2682 evpipe [0] = -1;
2683 evpipe [1] = -1;
2684#if EV_USE_INOTIFY
2685 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2686#endif
2687#if EV_USE_SIGNALFD
2688 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2689#endif
2690
2691 if (!(flags & EVBACKEND_MASK))
1314 flags |= ev_recommended_backends (); 2692 flags |= ev_recommended_backends ();
1315 2693
2694#if EV_USE_IOCP
2695 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2696#endif
1316#if EV_USE_PORT 2697#if EV_USE_PORT
1317 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2698 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1318#endif 2699#endif
1319#if EV_USE_KQUEUE 2700#if EV_USE_KQUEUE
1320 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2701 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1327#endif 2708#endif
1328#if EV_USE_SELECT 2709#if EV_USE_SELECT
1329 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2710 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1330#endif 2711#endif
1331 2712
2713 ev_prepare_init (&pending_w, pendingcb);
2714
2715#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1332 ev_init (&pipeev, pipecb); 2716 ev_init (&pipe_w, pipecb);
1333 ev_set_priority (&pipeev, EV_MAXPRI); 2717 ev_set_priority (&pipe_w, EV_MAXPRI);
2718#endif
1334 } 2719 }
1335} 2720}
1336 2721
1337static void noinline 2722/* free up a loop structure */
2723void ecb_cold
1338loop_destroy (EV_P) 2724ev_loop_destroy (EV_P)
1339{ 2725{
1340 int i; 2726 int i;
1341 2727
2728#if EV_MULTIPLICITY
2729 /* mimic free (0) */
2730 if (!EV_A)
2731 return;
2732#endif
2733
2734#if EV_CLEANUP_ENABLE
2735 /* queue cleanup watchers (and execute them) */
2736 if (expect_false (cleanupcnt))
2737 {
2738 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2739 EV_INVOKE_PENDING;
2740 }
2741#endif
2742
2743#if EV_CHILD_ENABLE
2744 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2745 {
2746 ev_ref (EV_A); /* child watcher */
2747 ev_signal_stop (EV_A_ &childev);
2748 }
2749#endif
2750
1342 if (ev_is_active (&pipeev)) 2751 if (ev_is_active (&pipe_w))
1343 { 2752 {
1344 ev_ref (EV_A); /* signal watcher */ 2753 /*ev_ref (EV_A);*/
1345 ev_io_stop (EV_A_ &pipeev); 2754 /*ev_io_stop (EV_A_ &pipe_w);*/
1346 2755
2756 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2757 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2758 }
2759
1347#if EV_USE_EVENTFD 2760#if EV_USE_SIGNALFD
1348 if (evfd >= 0) 2761 if (ev_is_active (&sigfd_w))
1349 close (evfd); 2762 close (sigfd);
1350#endif 2763#endif
1351
1352 if (evpipe [0] >= 0)
1353 {
1354 close (evpipe [0]);
1355 close (evpipe [1]);
1356 }
1357 }
1358 2764
1359#if EV_USE_INOTIFY 2765#if EV_USE_INOTIFY
1360 if (fs_fd >= 0) 2766 if (fs_fd >= 0)
1361 close (fs_fd); 2767 close (fs_fd);
1362#endif 2768#endif
1363 2769
1364 if (backend_fd >= 0) 2770 if (backend_fd >= 0)
1365 close (backend_fd); 2771 close (backend_fd);
1366 2772
2773#if EV_USE_IOCP
2774 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2775#endif
1367#if EV_USE_PORT 2776#if EV_USE_PORT
1368 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2777 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1369#endif 2778#endif
1370#if EV_USE_KQUEUE 2779#if EV_USE_KQUEUE
1371 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2780 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1386#if EV_IDLE_ENABLE 2795#if EV_IDLE_ENABLE
1387 array_free (idle, [i]); 2796 array_free (idle, [i]);
1388#endif 2797#endif
1389 } 2798 }
1390 2799
1391 ev_free (anfds); anfdmax = 0; 2800 ev_free (anfds); anfds = 0; anfdmax = 0;
1392 2801
1393 /* have to use the microsoft-never-gets-it-right macro */ 2802 /* have to use the microsoft-never-gets-it-right macro */
2803 array_free (rfeed, EMPTY);
1394 array_free (fdchange, EMPTY); 2804 array_free (fdchange, EMPTY);
1395 array_free (timer, EMPTY); 2805 array_free (timer, EMPTY);
1396#if EV_PERIODIC_ENABLE 2806#if EV_PERIODIC_ENABLE
1397 array_free (periodic, EMPTY); 2807 array_free (periodic, EMPTY);
1398#endif 2808#endif
1399#if EV_FORK_ENABLE 2809#if EV_FORK_ENABLE
1400 array_free (fork, EMPTY); 2810 array_free (fork, EMPTY);
1401#endif 2811#endif
2812#if EV_CLEANUP_ENABLE
2813 array_free (cleanup, EMPTY);
2814#endif
1402 array_free (prepare, EMPTY); 2815 array_free (prepare, EMPTY);
1403 array_free (check, EMPTY); 2816 array_free (check, EMPTY);
1404#if EV_ASYNC_ENABLE 2817#if EV_ASYNC_ENABLE
1405 array_free (async, EMPTY); 2818 array_free (async, EMPTY);
1406#endif 2819#endif
1407 2820
1408 backend = 0; 2821 backend = 0;
2822
2823#if EV_MULTIPLICITY
2824 if (ev_is_default_loop (EV_A))
2825#endif
2826 ev_default_loop_ptr = 0;
2827#if EV_MULTIPLICITY
2828 else
2829 ev_free (EV_A);
2830#endif
1409} 2831}
1410 2832
1411#if EV_USE_INOTIFY 2833#if EV_USE_INOTIFY
1412void inline_size infy_fork (EV_P); 2834inline_size void infy_fork (EV_P);
1413#endif 2835#endif
1414 2836
1415void inline_size 2837inline_size void
1416loop_fork (EV_P) 2838loop_fork (EV_P)
1417{ 2839{
1418#if EV_USE_PORT 2840#if EV_USE_PORT
1419 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2841 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1420#endif 2842#endif
1426#endif 2848#endif
1427#if EV_USE_INOTIFY 2849#if EV_USE_INOTIFY
1428 infy_fork (EV_A); 2850 infy_fork (EV_A);
1429#endif 2851#endif
1430 2852
2853#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1431 if (ev_is_active (&pipeev)) 2854 if (ev_is_active (&pipe_w))
2855 {
2856 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2857
2858 ev_ref (EV_A);
2859 ev_io_stop (EV_A_ &pipe_w);
2860
2861 if (evpipe [0] >= 0)
2862 EV_WIN32_CLOSE_FD (evpipe [0]);
2863
2864 evpipe_init (EV_A);
2865 /* iterate over everything, in case we missed something before */
2866 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
1432 { 2867 }
1433 /* this "locks" the handlers against writing to the pipe */ 2868#endif
1434 /* while we modify the fd vars */ 2869
1435 gotsig = 1; 2870 postfork = 0;
2871}
2872
2873#if EV_MULTIPLICITY
2874
2875struct ev_loop * ecb_cold
2876ev_loop_new (unsigned int flags) EV_THROW
2877{
2878 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2879
2880 memset (EV_A, 0, sizeof (struct ev_loop));
2881 loop_init (EV_A_ flags);
2882
2883 if (ev_backend (EV_A))
2884 return EV_A;
2885
2886 ev_free (EV_A);
2887 return 0;
2888}
2889
2890#endif /* multiplicity */
2891
2892#if EV_VERIFY
2893static void noinline ecb_cold
2894verify_watcher (EV_P_ W w)
2895{
2896 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2897
2898 if (w->pending)
2899 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2900}
2901
2902static void noinline ecb_cold
2903verify_heap (EV_P_ ANHE *heap, int N)
2904{
2905 int i;
2906
2907 for (i = HEAP0; i < N + HEAP0; ++i)
2908 {
2909 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2910 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2911 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2912
2913 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2914 }
2915}
2916
2917static void noinline ecb_cold
2918array_verify (EV_P_ W *ws, int cnt)
2919{
2920 while (cnt--)
2921 {
2922 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2923 verify_watcher (EV_A_ ws [cnt]);
2924 }
2925}
2926#endif
2927
2928#if EV_FEATURE_API
2929void ecb_cold
2930ev_verify (EV_P) EV_THROW
2931{
2932#if EV_VERIFY
2933 int i;
2934 WL w, w2;
2935
2936 assert (activecnt >= -1);
2937
2938 assert (fdchangemax >= fdchangecnt);
2939 for (i = 0; i < fdchangecnt; ++i)
2940 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2941
2942 assert (anfdmax >= 0);
2943 for (i = 0; i < anfdmax; ++i)
2944 {
2945 int j = 0;
2946
2947 for (w = w2 = anfds [i].head; w; w = w->next)
2948 {
2949 verify_watcher (EV_A_ (W)w);
2950
2951 if (j++ & 1)
2952 {
2953 assert (("libev: io watcher list contains a loop", w != w2));
2954 w2 = w2->next;
2955 }
2956
2957 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2958 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2959 }
2960 }
2961
2962 assert (timermax >= timercnt);
2963 verify_heap (EV_A_ timers, timercnt);
2964
2965#if EV_PERIODIC_ENABLE
2966 assert (periodicmax >= periodiccnt);
2967 verify_heap (EV_A_ periodics, periodiccnt);
2968#endif
2969
2970 for (i = NUMPRI; i--; )
2971 {
2972 assert (pendingmax [i] >= pendingcnt [i]);
2973#if EV_IDLE_ENABLE
2974 assert (idleall >= 0);
2975 assert (idlemax [i] >= idlecnt [i]);
2976 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2977#endif
2978 }
2979
2980#if EV_FORK_ENABLE
2981 assert (forkmax >= forkcnt);
2982 array_verify (EV_A_ (W *)forks, forkcnt);
2983#endif
2984
2985#if EV_CLEANUP_ENABLE
2986 assert (cleanupmax >= cleanupcnt);
2987 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2988#endif
2989
1436#if EV_ASYNC_ENABLE 2990#if EV_ASYNC_ENABLE
1437 gotasync = 1; 2991 assert (asyncmax >= asynccnt);
2992 array_verify (EV_A_ (W *)asyncs, asynccnt);
2993#endif
2994
2995#if EV_PREPARE_ENABLE
2996 assert (preparemax >= preparecnt);
2997 array_verify (EV_A_ (W *)prepares, preparecnt);
2998#endif
2999
3000#if EV_CHECK_ENABLE
3001 assert (checkmax >= checkcnt);
3002 array_verify (EV_A_ (W *)checks, checkcnt);
3003#endif
3004
3005# if 0
3006#if EV_CHILD_ENABLE
3007 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3008 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3009#endif
1438#endif 3010# endif
1439
1440 ev_ref (EV_A);
1441 ev_io_stop (EV_A_ &pipeev);
1442
1443#if EV_USE_EVENTFD
1444 if (evfd >= 0)
1445 close (evfd);
1446#endif 3011#endif
1447
1448 if (evpipe [0] >= 0)
1449 {
1450 close (evpipe [0]);
1451 close (evpipe [1]);
1452 }
1453
1454 evpipe_init (EV_A);
1455 /* now iterate over everything, in case we missed something */
1456 pipecb (EV_A_ &pipeev, EV_READ);
1457 }
1458
1459 postfork = 0;
1460} 3012}
3013#endif
1461 3014
1462#if EV_MULTIPLICITY 3015#if EV_MULTIPLICITY
1463struct ev_loop * 3016struct ev_loop * ecb_cold
1464ev_loop_new (unsigned int flags)
1465{
1466 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1467
1468 memset (loop, 0, sizeof (struct ev_loop));
1469
1470 loop_init (EV_A_ flags);
1471
1472 if (ev_backend (EV_A))
1473 return loop;
1474
1475 return 0;
1476}
1477
1478void
1479ev_loop_destroy (EV_P)
1480{
1481 loop_destroy (EV_A);
1482 ev_free (loop);
1483}
1484
1485void
1486ev_loop_fork (EV_P)
1487{
1488 postfork = 1; /* must be in line with ev_default_fork */
1489}
1490#endif
1491
1492#if EV_MULTIPLICITY
1493struct ev_loop *
1494ev_default_loop_init (unsigned int flags)
1495#else 3017#else
1496int 3018int
3019#endif
1497ev_default_loop (unsigned int flags) 3020ev_default_loop (unsigned int flags) EV_THROW
1498#endif
1499{ 3021{
1500 if (!ev_default_loop_ptr) 3022 if (!ev_default_loop_ptr)
1501 { 3023 {
1502#if EV_MULTIPLICITY 3024#if EV_MULTIPLICITY
1503 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 3025 EV_P = ev_default_loop_ptr = &default_loop_struct;
1504#else 3026#else
1505 ev_default_loop_ptr = 1; 3027 ev_default_loop_ptr = 1;
1506#endif 3028#endif
1507 3029
1508 loop_init (EV_A_ flags); 3030 loop_init (EV_A_ flags);
1509 3031
1510 if (ev_backend (EV_A)) 3032 if (ev_backend (EV_A))
1511 { 3033 {
1512#ifndef _WIN32 3034#if EV_CHILD_ENABLE
1513 ev_signal_init (&childev, childcb, SIGCHLD); 3035 ev_signal_init (&childev, childcb, SIGCHLD);
1514 ev_set_priority (&childev, EV_MAXPRI); 3036 ev_set_priority (&childev, EV_MAXPRI);
1515 ev_signal_start (EV_A_ &childev); 3037 ev_signal_start (EV_A_ &childev);
1516 ev_unref (EV_A); /* child watcher should not keep loop alive */ 3038 ev_unref (EV_A); /* child watcher should not keep loop alive */
1517#endif 3039#endif
1522 3044
1523 return ev_default_loop_ptr; 3045 return ev_default_loop_ptr;
1524} 3046}
1525 3047
1526void 3048void
1527ev_default_destroy (void) 3049ev_loop_fork (EV_P) EV_THROW
1528{ 3050{
1529#if EV_MULTIPLICITY 3051 postfork = 1;
1530 struct ev_loop *loop = ev_default_loop_ptr;
1531#endif
1532
1533#ifndef _WIN32
1534 ev_ref (EV_A); /* child watcher */
1535 ev_signal_stop (EV_A_ &childev);
1536#endif
1537
1538 loop_destroy (EV_A);
1539}
1540
1541void
1542ev_default_fork (void)
1543{
1544#if EV_MULTIPLICITY
1545 struct ev_loop *loop = ev_default_loop_ptr;
1546#endif
1547
1548 if (backend)
1549 postfork = 1; /* must be in line with ev_loop_fork */
1550} 3052}
1551 3053
1552/*****************************************************************************/ 3054/*****************************************************************************/
1553 3055
1554void 3056void
1555ev_invoke (EV_P_ void *w, int revents) 3057ev_invoke (EV_P_ void *w, int revents)
1556{ 3058{
1557 EV_CB_INVOKE ((W)w, revents); 3059 EV_CB_INVOKE ((W)w, revents);
1558} 3060}
1559 3061
1560void inline_speed 3062unsigned int
1561call_pending (EV_P) 3063ev_pending_count (EV_P) EV_THROW
1562{ 3064{
1563 int pri; 3065 int pri;
3066 unsigned int count = 0;
1564 3067
1565 for (pri = NUMPRI; pri--; ) 3068 for (pri = NUMPRI; pri--; )
3069 count += pendingcnt [pri];
3070
3071 return count;
3072}
3073
3074void noinline
3075ev_invoke_pending (EV_P)
3076{
3077 pendingpri = NUMPRI;
3078
3079 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
3080 {
3081 --pendingpri;
3082
1566 while (pendingcnt [pri]) 3083 while (pendingcnt [pendingpri])
1567 {
1568 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1569
1570 if (expect_true (p->w))
1571 { 3084 {
1572 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 3085 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1573 3086
1574 p->w->pending = 0; 3087 p->w->pending = 0;
1575 EV_CB_INVOKE (p->w, p->events); 3088 EV_CB_INVOKE (p->w, p->events);
3089 EV_FREQUENT_CHECK;
1576 } 3090 }
1577 } 3091 }
1578} 3092}
1579 3093
1580#if EV_IDLE_ENABLE 3094#if EV_IDLE_ENABLE
1581void inline_size 3095/* make idle watchers pending. this handles the "call-idle */
3096/* only when higher priorities are idle" logic */
3097inline_size void
1582idle_reify (EV_P) 3098idle_reify (EV_P)
1583{ 3099{
1584 if (expect_false (idleall)) 3100 if (expect_false (idleall))
1585 { 3101 {
1586 int pri; 3102 int pri;
1598 } 3114 }
1599 } 3115 }
1600} 3116}
1601#endif 3117#endif
1602 3118
1603void inline_size 3119/* make timers pending */
3120inline_size void
1604timers_reify (EV_P) 3121timers_reify (EV_P)
1605{ 3122{
3123 EV_FREQUENT_CHECK;
3124
1606 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 3125 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1607 { 3126 {
1608 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 3127 do
1609
1610 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1611
1612 /* first reschedule or stop timer */
1613 if (w->repeat)
1614 { 3128 {
3129 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3130
3131 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3132
3133 /* first reschedule or stop timer */
3134 if (w->repeat)
3135 {
1615 ev_at (w) += w->repeat; 3136 ev_at (w) += w->repeat;
1616 if (ev_at (w) < mn_now) 3137 if (ev_at (w) < mn_now)
1617 ev_at (w) = mn_now; 3138 ev_at (w) = mn_now;
1618 3139
1619 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3140 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1620 3141
1621 ANHE_at_set (timers [HEAP0]); 3142 ANHE_at_cache (timers [HEAP0]);
1622 downheap (timers, timercnt, HEAP0); 3143 downheap (timers, timercnt, HEAP0);
3144 }
3145 else
3146 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3147
3148 EV_FREQUENT_CHECK;
3149 feed_reverse (EV_A_ (W)w);
1623 } 3150 }
1624 else 3151 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1625 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1626 3152
1627 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 3153 feed_reverse_done (EV_A_ EV_TIMER);
1628 } 3154 }
1629} 3155}
1630 3156
1631#if EV_PERIODIC_ENABLE 3157#if EV_PERIODIC_ENABLE
1632void inline_size 3158
3159static void noinline
3160periodic_recalc (EV_P_ ev_periodic *w)
3161{
3162 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3163 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3164
3165 /* the above almost always errs on the low side */
3166 while (at <= ev_rt_now)
3167 {
3168 ev_tstamp nat = at + w->interval;
3169
3170 /* when resolution fails us, we use ev_rt_now */
3171 if (expect_false (nat == at))
3172 {
3173 at = ev_rt_now;
3174 break;
3175 }
3176
3177 at = nat;
3178 }
3179
3180 ev_at (w) = at;
3181}
3182
3183/* make periodics pending */
3184inline_size void
1633periodics_reify (EV_P) 3185periodics_reify (EV_P)
1634{ 3186{
3187 EV_FREQUENT_CHECK;
3188
1635 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 3189 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1636 { 3190 {
1637 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 3191 do
1638
1639 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1640
1641 /* first reschedule or stop timer */
1642 if (w->reschedule_cb)
1643 { 3192 {
3193 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3194
3195 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3196
3197 /* first reschedule or stop timer */
3198 if (w->reschedule_cb)
3199 {
1644 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3200 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1645 3201
1646 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 3202 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1647 3203
1648 ANHE_at_set (periodics [HEAP0]); 3204 ANHE_at_cache (periodics [HEAP0]);
1649 downheap (periodics, periodiccnt, HEAP0); 3205 downheap (periodics, periodiccnt, HEAP0);
3206 }
3207 else if (w->interval)
3208 {
3209 periodic_recalc (EV_A_ w);
3210 ANHE_at_cache (periodics [HEAP0]);
3211 downheap (periodics, periodiccnt, HEAP0);
3212 }
3213 else
3214 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3215
3216 EV_FREQUENT_CHECK;
3217 feed_reverse (EV_A_ (W)w);
1650 } 3218 }
1651 else if (w->interval) 3219 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1652 {
1653 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1654 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1655 3220
1656 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) >= ev_rt_now));
1657
1658 ANHE_at_set (periodics [HEAP0]);
1659 downheap (periodics, periodiccnt, HEAP0);
1660 }
1661 else
1662 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1663
1664 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 3221 feed_reverse_done (EV_A_ EV_PERIODIC);
1665 } 3222 }
1666} 3223}
1667 3224
3225/* simply recalculate all periodics */
3226/* TODO: maybe ensure that at least one event happens when jumping forward? */
1668static void noinline 3227static void noinline ecb_cold
1669periodics_reschedule (EV_P) 3228periodics_reschedule (EV_P)
1670{ 3229{
1671 int i; 3230 int i;
1672 3231
1673 /* adjust periodics after time jump */ 3232 /* adjust periodics after time jump */
1676 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]); 3235 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1677 3236
1678 if (w->reschedule_cb) 3237 if (w->reschedule_cb)
1679 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3238 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1680 else if (w->interval) 3239 else if (w->interval)
1681 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 3240 periodic_recalc (EV_A_ w);
1682 3241
1683 ANHE_at_set (periodics [i]); 3242 ANHE_at_cache (periodics [i]);
1684 } 3243 }
1685 3244
1686 /* we don't use floyds algorithm, uphead is simpler and is more cache-efficient */ 3245 reheap (periodics, periodiccnt);
1687 /* also, this is easy and corretc for both 2-heaps and 4-heaps */ 3246}
3247#endif
3248
3249/* adjust all timers by a given offset */
3250static void noinline ecb_cold
3251timers_reschedule (EV_P_ ev_tstamp adjust)
3252{
3253 int i;
3254
1688 for (i = 0; i < periodiccnt; ++i) 3255 for (i = 0; i < timercnt; ++i)
1689 upheap (periodics, i + HEAP0); 3256 {
3257 ANHE *he = timers + i + HEAP0;
3258 ANHE_w (*he)->at += adjust;
3259 ANHE_at_cache (*he);
3260 }
1690} 3261}
1691#endif
1692 3262
1693void inline_speed 3263/* fetch new monotonic and realtime times from the kernel */
3264/* also detect if there was a timejump, and act accordingly */
3265inline_speed void
1694time_update (EV_P_ ev_tstamp max_block) 3266time_update (EV_P_ ev_tstamp max_block)
1695{ 3267{
1696 int i;
1697
1698#if EV_USE_MONOTONIC 3268#if EV_USE_MONOTONIC
1699 if (expect_true (have_monotonic)) 3269 if (expect_true (have_monotonic))
1700 { 3270 {
3271 int i;
1701 ev_tstamp odiff = rtmn_diff; 3272 ev_tstamp odiff = rtmn_diff;
1702 3273
1703 mn_now = get_clock (); 3274 mn_now = get_clock ();
1704 3275
1705 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 3276 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1721 * doesn't hurt either as we only do this on time-jumps or 3292 * doesn't hurt either as we only do this on time-jumps or
1722 * in the unlikely event of having been preempted here. 3293 * in the unlikely event of having been preempted here.
1723 */ 3294 */
1724 for (i = 4; --i; ) 3295 for (i = 4; --i; )
1725 { 3296 {
3297 ev_tstamp diff;
1726 rtmn_diff = ev_rt_now - mn_now; 3298 rtmn_diff = ev_rt_now - mn_now;
1727 3299
3300 diff = odiff - rtmn_diff;
3301
1728 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)) 3302 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1729 return; /* all is well */ 3303 return; /* all is well */
1730 3304
1731 ev_rt_now = ev_time (); 3305 ev_rt_now = ev_time ();
1732 mn_now = get_clock (); 3306 mn_now = get_clock ();
1733 now_floor = mn_now; 3307 now_floor = mn_now;
1734 } 3308 }
1735 3309
3310 /* no timer adjustment, as the monotonic clock doesn't jump */
3311 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1736# if EV_PERIODIC_ENABLE 3312# if EV_PERIODIC_ENABLE
1737 periodics_reschedule (EV_A); 3313 periodics_reschedule (EV_A);
1738# endif 3314# endif
1739 /* no timer adjustment, as the monotonic clock doesn't jump */
1740 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1741 } 3315 }
1742 else 3316 else
1743#endif 3317#endif
1744 { 3318 {
1745 ev_rt_now = ev_time (); 3319 ev_rt_now = ev_time ();
1746 3320
1747 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 3321 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1748 { 3322 {
3323 /* adjust timers. this is easy, as the offset is the same for all of them */
3324 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1749#if EV_PERIODIC_ENABLE 3325#if EV_PERIODIC_ENABLE
1750 periodics_reschedule (EV_A); 3326 periodics_reschedule (EV_A);
1751#endif 3327#endif
1752 /* adjust timers. this is easy, as the offset is the same for all of them */
1753 for (i = 0; i < timercnt; ++i)
1754 {
1755 ANHE *he = timers + i + HEAP0;
1756 ANHE_w (*he)->at += ev_rt_now - mn_now;
1757 ANHE_at_set (*he);
1758 }
1759 } 3328 }
1760 3329
1761 mn_now = ev_rt_now; 3330 mn_now = ev_rt_now;
1762 } 3331 }
1763} 3332}
1764 3333
1765void 3334int
1766ev_ref (EV_P)
1767{
1768 ++activecnt;
1769}
1770
1771void
1772ev_unref (EV_P)
1773{
1774 --activecnt;
1775}
1776
1777static int loop_done;
1778
1779void
1780ev_loop (EV_P_ int flags) 3335ev_run (EV_P_ int flags)
1781{ 3336{
3337#if EV_FEATURE_API
3338 ++loop_depth;
3339#endif
3340
3341 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3342
1782 loop_done = EVUNLOOP_CANCEL; 3343 loop_done = EVBREAK_CANCEL;
1783 3344
1784 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3345 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1785 3346
1786 do 3347 do
1787 { 3348 {
3349#if EV_VERIFY >= 2
3350 ev_verify (EV_A);
3351#endif
3352
1788#ifndef _WIN32 3353#ifndef _WIN32
1789 if (expect_false (curpid)) /* penalise the forking check even more */ 3354 if (expect_false (curpid)) /* penalise the forking check even more */
1790 if (expect_false (getpid () != curpid)) 3355 if (expect_false (getpid () != curpid))
1791 { 3356 {
1792 curpid = getpid (); 3357 curpid = getpid ();
1798 /* we might have forked, so queue fork handlers */ 3363 /* we might have forked, so queue fork handlers */
1799 if (expect_false (postfork)) 3364 if (expect_false (postfork))
1800 if (forkcnt) 3365 if (forkcnt)
1801 { 3366 {
1802 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3367 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1803 call_pending (EV_A); 3368 EV_INVOKE_PENDING;
1804 } 3369 }
1805#endif 3370#endif
1806 3371
3372#if EV_PREPARE_ENABLE
1807 /* queue prepare watchers (and execute them) */ 3373 /* queue prepare watchers (and execute them) */
1808 if (expect_false (preparecnt)) 3374 if (expect_false (preparecnt))
1809 { 3375 {
1810 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3376 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1811 call_pending (EV_A); 3377 EV_INVOKE_PENDING;
1812 } 3378 }
3379#endif
1813 3380
1814 if (expect_false (!activecnt)) 3381 if (expect_false (loop_done))
1815 break; 3382 break;
1816 3383
1817 /* we might have forked, so reify kernel state if necessary */ 3384 /* we might have forked, so reify kernel state if necessary */
1818 if (expect_false (postfork)) 3385 if (expect_false (postfork))
1819 loop_fork (EV_A); 3386 loop_fork (EV_A);
1824 /* calculate blocking time */ 3391 /* calculate blocking time */
1825 { 3392 {
1826 ev_tstamp waittime = 0.; 3393 ev_tstamp waittime = 0.;
1827 ev_tstamp sleeptime = 0.; 3394 ev_tstamp sleeptime = 0.;
1828 3395
3396 /* remember old timestamp for io_blocktime calculation */
3397 ev_tstamp prev_mn_now = mn_now;
3398
3399 /* update time to cancel out callback processing overhead */
3400 time_update (EV_A_ 1e100);
3401
3402 /* from now on, we want a pipe-wake-up */
3403 pipe_write_wanted = 1;
3404
3405 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3406
1829 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3407 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1830 { 3408 {
1831 /* update time to cancel out callback processing overhead */
1832 time_update (EV_A_ 1e100);
1833
1834 waittime = MAX_BLOCKTIME; 3409 waittime = MAX_BLOCKTIME;
1835 3410
1836 if (timercnt) 3411 if (timercnt)
1837 { 3412 {
1838 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 3413 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1839 if (waittime > to) waittime = to; 3414 if (waittime > to) waittime = to;
1840 } 3415 }
1841 3416
1842#if EV_PERIODIC_ENABLE 3417#if EV_PERIODIC_ENABLE
1843 if (periodiccnt) 3418 if (periodiccnt)
1844 { 3419 {
1845 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 3420 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1846 if (waittime > to) waittime = to; 3421 if (waittime > to) waittime = to;
1847 } 3422 }
1848#endif 3423#endif
1849 3424
3425 /* don't let timeouts decrease the waittime below timeout_blocktime */
1850 if (expect_false (waittime < timeout_blocktime)) 3426 if (expect_false (waittime < timeout_blocktime))
1851 waittime = timeout_blocktime; 3427 waittime = timeout_blocktime;
1852 3428
1853 sleeptime = waittime - backend_fudge; 3429 /* at this point, we NEED to wait, so we have to ensure */
3430 /* to pass a minimum nonzero value to the backend */
3431 if (expect_false (waittime < backend_mintime))
3432 waittime = backend_mintime;
1854 3433
3434 /* extra check because io_blocktime is commonly 0 */
1855 if (expect_true (sleeptime > io_blocktime)) 3435 if (expect_false (io_blocktime))
1856 sleeptime = io_blocktime;
1857
1858 if (sleeptime)
1859 { 3436 {
3437 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3438
3439 if (sleeptime > waittime - backend_mintime)
3440 sleeptime = waittime - backend_mintime;
3441
3442 if (expect_true (sleeptime > 0.))
3443 {
1860 ev_sleep (sleeptime); 3444 ev_sleep (sleeptime);
1861 waittime -= sleeptime; 3445 waittime -= sleeptime;
3446 }
1862 } 3447 }
1863 } 3448 }
1864 3449
3450#if EV_FEATURE_API
1865 ++loop_count; 3451 ++loop_count;
3452#endif
3453 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1866 backend_poll (EV_A_ waittime); 3454 backend_poll (EV_A_ waittime);
3455 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3456
3457 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3458
3459 ECB_MEMORY_FENCE_ACQUIRE;
3460 if (pipe_write_skipped)
3461 {
3462 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3463 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3464 }
3465
1867 3466
1868 /* update ev_rt_now, do magic */ 3467 /* update ev_rt_now, do magic */
1869 time_update (EV_A_ waittime + sleeptime); 3468 time_update (EV_A_ waittime + sleeptime);
1870 } 3469 }
1871 3470
1878#if EV_IDLE_ENABLE 3477#if EV_IDLE_ENABLE
1879 /* queue idle watchers unless other events are pending */ 3478 /* queue idle watchers unless other events are pending */
1880 idle_reify (EV_A); 3479 idle_reify (EV_A);
1881#endif 3480#endif
1882 3481
3482#if EV_CHECK_ENABLE
1883 /* queue check watchers, to be executed first */ 3483 /* queue check watchers, to be executed first */
1884 if (expect_false (checkcnt)) 3484 if (expect_false (checkcnt))
1885 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3485 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3486#endif
1886 3487
1887 call_pending (EV_A); 3488 EV_INVOKE_PENDING;
1888 } 3489 }
1889 while (expect_true ( 3490 while (expect_true (
1890 activecnt 3491 activecnt
1891 && !loop_done 3492 && !loop_done
1892 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 3493 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
1893 )); 3494 ));
1894 3495
1895 if (loop_done == EVUNLOOP_ONE) 3496 if (loop_done == EVBREAK_ONE)
1896 loop_done = EVUNLOOP_CANCEL; 3497 loop_done = EVBREAK_CANCEL;
3498
3499#if EV_FEATURE_API
3500 --loop_depth;
3501#endif
3502
3503 return activecnt;
1897} 3504}
1898 3505
1899void 3506void
1900ev_unloop (EV_P_ int how) 3507ev_break (EV_P_ int how) EV_THROW
1901{ 3508{
1902 loop_done = how; 3509 loop_done = how;
1903} 3510}
1904 3511
3512void
3513ev_ref (EV_P) EV_THROW
3514{
3515 ++activecnt;
3516}
3517
3518void
3519ev_unref (EV_P) EV_THROW
3520{
3521 --activecnt;
3522}
3523
3524void
3525ev_now_update (EV_P) EV_THROW
3526{
3527 time_update (EV_A_ 1e100);
3528}
3529
3530void
3531ev_suspend (EV_P) EV_THROW
3532{
3533 ev_now_update (EV_A);
3534}
3535
3536void
3537ev_resume (EV_P) EV_THROW
3538{
3539 ev_tstamp mn_prev = mn_now;
3540
3541 ev_now_update (EV_A);
3542 timers_reschedule (EV_A_ mn_now - mn_prev);
3543#if EV_PERIODIC_ENABLE
3544 /* TODO: really do this? */
3545 periodics_reschedule (EV_A);
3546#endif
3547}
3548
1905/*****************************************************************************/ 3549/*****************************************************************************/
3550/* singly-linked list management, used when the expected list length is short */
1906 3551
1907void inline_size 3552inline_size void
1908wlist_add (WL *head, WL elem) 3553wlist_add (WL *head, WL elem)
1909{ 3554{
1910 elem->next = *head; 3555 elem->next = *head;
1911 *head = elem; 3556 *head = elem;
1912} 3557}
1913 3558
1914void inline_size 3559inline_size void
1915wlist_del (WL *head, WL elem) 3560wlist_del (WL *head, WL elem)
1916{ 3561{
1917 while (*head) 3562 while (*head)
1918 { 3563 {
1919 if (*head == elem) 3564 if (expect_true (*head == elem))
1920 { 3565 {
1921 *head = elem->next; 3566 *head = elem->next;
1922 return; 3567 break;
1923 } 3568 }
1924 3569
1925 head = &(*head)->next; 3570 head = &(*head)->next;
1926 } 3571 }
1927} 3572}
1928 3573
1929void inline_speed 3574/* internal, faster, version of ev_clear_pending */
3575inline_speed void
1930clear_pending (EV_P_ W w) 3576clear_pending (EV_P_ W w)
1931{ 3577{
1932 if (w->pending) 3578 if (w->pending)
1933 { 3579 {
1934 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3580 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1935 w->pending = 0; 3581 w->pending = 0;
1936 } 3582 }
1937} 3583}
1938 3584
1939int 3585int
1940ev_clear_pending (EV_P_ void *w) 3586ev_clear_pending (EV_P_ void *w) EV_THROW
1941{ 3587{
1942 W w_ = (W)w; 3588 W w_ = (W)w;
1943 int pending = w_->pending; 3589 int pending = w_->pending;
1944 3590
1945 if (expect_true (pending)) 3591 if (expect_true (pending))
1946 { 3592 {
1947 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3593 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3594 p->w = (W)&pending_w;
1948 w_->pending = 0; 3595 w_->pending = 0;
1949 p->w = 0;
1950 return p->events; 3596 return p->events;
1951 } 3597 }
1952 else 3598 else
1953 return 0; 3599 return 0;
1954} 3600}
1955 3601
1956void inline_size 3602inline_size void
1957pri_adjust (EV_P_ W w) 3603pri_adjust (EV_P_ W w)
1958{ 3604{
1959 int pri = w->priority; 3605 int pri = ev_priority (w);
1960 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3606 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1961 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3607 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1962 w->priority = pri; 3608 ev_set_priority (w, pri);
1963} 3609}
1964 3610
1965void inline_speed 3611inline_speed void
1966ev_start (EV_P_ W w, int active) 3612ev_start (EV_P_ W w, int active)
1967{ 3613{
1968 pri_adjust (EV_A_ w); 3614 pri_adjust (EV_A_ w);
1969 w->active = active; 3615 w->active = active;
1970 ev_ref (EV_A); 3616 ev_ref (EV_A);
1971} 3617}
1972 3618
1973void inline_size 3619inline_size void
1974ev_stop (EV_P_ W w) 3620ev_stop (EV_P_ W w)
1975{ 3621{
1976 ev_unref (EV_A); 3622 ev_unref (EV_A);
1977 w->active = 0; 3623 w->active = 0;
1978} 3624}
1979 3625
1980/*****************************************************************************/ 3626/*****************************************************************************/
1981 3627
1982void noinline 3628void noinline
1983ev_io_start (EV_P_ ev_io *w) 3629ev_io_start (EV_P_ ev_io *w) EV_THROW
1984{ 3630{
1985 int fd = w->fd; 3631 int fd = w->fd;
1986 3632
1987 if (expect_false (ev_is_active (w))) 3633 if (expect_false (ev_is_active (w)))
1988 return; 3634 return;
1989 3635
1990 assert (("ev_io_start called with negative fd", fd >= 0)); 3636 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3637 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3638
3639 EV_FREQUENT_CHECK;
1991 3640
1992 ev_start (EV_A_ (W)w, 1); 3641 ev_start (EV_A_ (W)w, 1);
1993 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3642 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1994 wlist_add (&anfds[fd].head, (WL)w); 3643 wlist_add (&anfds[fd].head, (WL)w);
1995 3644
3645 /* common bug, apparently */
3646 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3647
1996 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3648 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1997 w->events &= ~EV_IOFDSET; 3649 w->events &= ~EV__IOFDSET;
3650
3651 EV_FREQUENT_CHECK;
1998} 3652}
1999 3653
2000void noinline 3654void noinline
2001ev_io_stop (EV_P_ ev_io *w) 3655ev_io_stop (EV_P_ ev_io *w) EV_THROW
2002{ 3656{
2003 clear_pending (EV_A_ (W)w); 3657 clear_pending (EV_A_ (W)w);
2004 if (expect_false (!ev_is_active (w))) 3658 if (expect_false (!ev_is_active (w)))
2005 return; 3659 return;
2006 3660
2007 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3661 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3662
3663 EV_FREQUENT_CHECK;
2008 3664
2009 wlist_del (&anfds[w->fd].head, (WL)w); 3665 wlist_del (&anfds[w->fd].head, (WL)w);
2010 ev_stop (EV_A_ (W)w); 3666 ev_stop (EV_A_ (W)w);
2011 3667
2012 fd_change (EV_A_ w->fd, 1); 3668 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3669
3670 EV_FREQUENT_CHECK;
2013} 3671}
2014 3672
2015void noinline 3673void noinline
2016ev_timer_start (EV_P_ ev_timer *w) 3674ev_timer_start (EV_P_ ev_timer *w) EV_THROW
2017{ 3675{
2018 if (expect_false (ev_is_active (w))) 3676 if (expect_false (ev_is_active (w)))
2019 return; 3677 return;
2020 3678
2021 ev_at (w) += mn_now; 3679 ev_at (w) += mn_now;
2022 3680
2023 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3681 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2024 3682
3683 EV_FREQUENT_CHECK;
3684
3685 ++timercnt;
2025 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 3686 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2026 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2); 3687 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2027 ANHE_w (timers [ev_active (w)]) = (WT)w; 3688 ANHE_w (timers [ev_active (w)]) = (WT)w;
2028 ANHE_at_set (timers [ev_active (w)]); 3689 ANHE_at_cache (timers [ev_active (w)]);
2029 upheap (timers, ev_active (w)); 3690 upheap (timers, ev_active (w));
2030 3691
3692 EV_FREQUENT_CHECK;
3693
2031 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 3694 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2032} 3695}
2033 3696
2034void noinline 3697void noinline
2035ev_timer_stop (EV_P_ ev_timer *w) 3698ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
2036{ 3699{
2037 clear_pending (EV_A_ (W)w); 3700 clear_pending (EV_A_ (W)w);
2038 if (expect_false (!ev_is_active (w))) 3701 if (expect_false (!ev_is_active (w)))
2039 return; 3702 return;
2040 3703
3704 EV_FREQUENT_CHECK;
3705
2041 { 3706 {
2042 int active = ev_active (w); 3707 int active = ev_active (w);
2043 3708
2044 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 3709 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2045 3710
3711 --timercnt;
3712
2046 if (expect_true (active < timercnt + HEAP0 - 1)) 3713 if (expect_true (active < timercnt + HEAP0))
2047 { 3714 {
2048 timers [active] = timers [timercnt + HEAP0 - 1]; 3715 timers [active] = timers [timercnt + HEAP0];
2049 adjustheap (timers, timercnt, active); 3716 adjustheap (timers, timercnt, active);
2050 } 3717 }
2051
2052 --timercnt;
2053 } 3718 }
2054 3719
2055 ev_at (w) -= mn_now; 3720 ev_at (w) -= mn_now;
2056 3721
2057 ev_stop (EV_A_ (W)w); 3722 ev_stop (EV_A_ (W)w);
3723
3724 EV_FREQUENT_CHECK;
2058} 3725}
2059 3726
2060void noinline 3727void noinline
2061ev_timer_again (EV_P_ ev_timer *w) 3728ev_timer_again (EV_P_ ev_timer *w) EV_THROW
2062{ 3729{
3730 EV_FREQUENT_CHECK;
3731
3732 clear_pending (EV_A_ (W)w);
3733
2063 if (ev_is_active (w)) 3734 if (ev_is_active (w))
2064 { 3735 {
2065 if (w->repeat) 3736 if (w->repeat)
2066 { 3737 {
2067 ev_at (w) = mn_now + w->repeat; 3738 ev_at (w) = mn_now + w->repeat;
2068 ANHE_at_set (timers [ev_active (w)]); 3739 ANHE_at_cache (timers [ev_active (w)]);
2069 adjustheap (timers, timercnt, ev_active (w)); 3740 adjustheap (timers, timercnt, ev_active (w));
2070 } 3741 }
2071 else 3742 else
2072 ev_timer_stop (EV_A_ w); 3743 ev_timer_stop (EV_A_ w);
2073 } 3744 }
2074 else if (w->repeat) 3745 else if (w->repeat)
2075 { 3746 {
2076 ev_at (w) = w->repeat; 3747 ev_at (w) = w->repeat;
2077 ev_timer_start (EV_A_ w); 3748 ev_timer_start (EV_A_ w);
2078 } 3749 }
3750
3751 EV_FREQUENT_CHECK;
3752}
3753
3754ev_tstamp
3755ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3756{
3757 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2079} 3758}
2080 3759
2081#if EV_PERIODIC_ENABLE 3760#if EV_PERIODIC_ENABLE
2082void noinline 3761void noinline
2083ev_periodic_start (EV_P_ ev_periodic *w) 3762ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
2084{ 3763{
2085 if (expect_false (ev_is_active (w))) 3764 if (expect_false (ev_is_active (w)))
2086 return; 3765 return;
2087 3766
2088 if (w->reschedule_cb) 3767 if (w->reschedule_cb)
2089 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3768 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2090 else if (w->interval) 3769 else if (w->interval)
2091 { 3770 {
2092 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3771 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2093 /* this formula differs from the one in periodic_reify because we do not always round up */ 3772 periodic_recalc (EV_A_ w);
2094 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2095 } 3773 }
2096 else 3774 else
2097 ev_at (w) = w->offset; 3775 ev_at (w) = w->offset;
2098 3776
3777 EV_FREQUENT_CHECK;
3778
3779 ++periodiccnt;
2099 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 3780 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2100 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2); 3781 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2101 ANHE_w (periodics [ev_active (w)]) = (WT)w; 3782 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2102 ANHE_at_set (periodics [ev_active (w)]); 3783 ANHE_at_cache (periodics [ev_active (w)]);
2103 upheap (periodics, ev_active (w)); 3784 upheap (periodics, ev_active (w));
2104 3785
3786 EV_FREQUENT_CHECK;
3787
2105 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 3788 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2106} 3789}
2107 3790
2108void noinline 3791void noinline
2109ev_periodic_stop (EV_P_ ev_periodic *w) 3792ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
2110{ 3793{
2111 clear_pending (EV_A_ (W)w); 3794 clear_pending (EV_A_ (W)w);
2112 if (expect_false (!ev_is_active (w))) 3795 if (expect_false (!ev_is_active (w)))
2113 return; 3796 return;
2114 3797
3798 EV_FREQUENT_CHECK;
3799
2115 { 3800 {
2116 int active = ev_active (w); 3801 int active = ev_active (w);
2117 3802
2118 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 3803 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2119 3804
3805 --periodiccnt;
3806
2120 if (expect_true (active < periodiccnt + HEAP0 - 1)) 3807 if (expect_true (active < periodiccnt + HEAP0))
2121 { 3808 {
2122 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 3809 periodics [active] = periodics [periodiccnt + HEAP0];
2123 adjustheap (periodics, periodiccnt, active); 3810 adjustheap (periodics, periodiccnt, active);
2124 } 3811 }
2125
2126 --periodiccnt;
2127 } 3812 }
2128 3813
2129 ev_stop (EV_A_ (W)w); 3814 ev_stop (EV_A_ (W)w);
3815
3816 EV_FREQUENT_CHECK;
2130} 3817}
2131 3818
2132void noinline 3819void noinline
2133ev_periodic_again (EV_P_ ev_periodic *w) 3820ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
2134{ 3821{
2135 /* TODO: use adjustheap and recalculation */ 3822 /* TODO: use adjustheap and recalculation */
2136 ev_periodic_stop (EV_A_ w); 3823 ev_periodic_stop (EV_A_ w);
2137 ev_periodic_start (EV_A_ w); 3824 ev_periodic_start (EV_A_ w);
2138} 3825}
2140 3827
2141#ifndef SA_RESTART 3828#ifndef SA_RESTART
2142# define SA_RESTART 0 3829# define SA_RESTART 0
2143#endif 3830#endif
2144 3831
3832#if EV_SIGNAL_ENABLE
3833
2145void noinline 3834void noinline
2146ev_signal_start (EV_P_ ev_signal *w) 3835ev_signal_start (EV_P_ ev_signal *w) EV_THROW
2147{ 3836{
2148#if EV_MULTIPLICITY
2149 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2150#endif
2151 if (expect_false (ev_is_active (w))) 3837 if (expect_false (ev_is_active (w)))
2152 return; 3838 return;
2153 3839
2154 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3840 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2155 3841
2156 evpipe_init (EV_A); 3842#if EV_MULTIPLICITY
3843 assert (("libev: a signal must not be attached to two different loops",
3844 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2157 3845
3846 signals [w->signum - 1].loop = EV_A;
3847 ECB_MEMORY_FENCE_RELEASE;
3848#endif
3849
3850 EV_FREQUENT_CHECK;
3851
3852#if EV_USE_SIGNALFD
3853 if (sigfd == -2)
2158 { 3854 {
2159#ifndef _WIN32 3855 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2160 sigset_t full, prev; 3856 if (sigfd < 0 && errno == EINVAL)
2161 sigfillset (&full); 3857 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2162 sigprocmask (SIG_SETMASK, &full, &prev);
2163#endif
2164 3858
2165 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3859 if (sigfd >= 0)
3860 {
3861 fd_intern (sigfd); /* doing it twice will not hurt */
2166 3862
2167#ifndef _WIN32 3863 sigemptyset (&sigfd_set);
2168 sigprocmask (SIG_SETMASK, &prev, 0); 3864
2169#endif 3865 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3866 ev_set_priority (&sigfd_w, EV_MAXPRI);
3867 ev_io_start (EV_A_ &sigfd_w);
3868 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3869 }
2170 } 3870 }
3871
3872 if (sigfd >= 0)
3873 {
3874 /* TODO: check .head */
3875 sigaddset (&sigfd_set, w->signum);
3876 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3877
3878 signalfd (sigfd, &sigfd_set, 0);
3879 }
3880#endif
2171 3881
2172 ev_start (EV_A_ (W)w, 1); 3882 ev_start (EV_A_ (W)w, 1);
2173 wlist_add (&signals [w->signum - 1].head, (WL)w); 3883 wlist_add (&signals [w->signum - 1].head, (WL)w);
2174 3884
2175 if (!((WL)w)->next) 3885 if (!((WL)w)->next)
3886# if EV_USE_SIGNALFD
3887 if (sigfd < 0) /*TODO*/
3888# endif
2176 { 3889 {
2177#if _WIN32 3890# ifdef _WIN32
3891 evpipe_init (EV_A);
3892
2178 signal (w->signum, ev_sighandler); 3893 signal (w->signum, ev_sighandler);
2179#else 3894# else
2180 struct sigaction sa; 3895 struct sigaction sa;
3896
3897 evpipe_init (EV_A);
3898
2181 sa.sa_handler = ev_sighandler; 3899 sa.sa_handler = ev_sighandler;
2182 sigfillset (&sa.sa_mask); 3900 sigfillset (&sa.sa_mask);
2183 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3901 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2184 sigaction (w->signum, &sa, 0); 3902 sigaction (w->signum, &sa, 0);
3903
3904 if (origflags & EVFLAG_NOSIGMASK)
3905 {
3906 sigemptyset (&sa.sa_mask);
3907 sigaddset (&sa.sa_mask, w->signum);
3908 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3909 }
2185#endif 3910#endif
2186 } 3911 }
3912
3913 EV_FREQUENT_CHECK;
2187} 3914}
2188 3915
2189void noinline 3916void noinline
2190ev_signal_stop (EV_P_ ev_signal *w) 3917ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
2191{ 3918{
2192 clear_pending (EV_A_ (W)w); 3919 clear_pending (EV_A_ (W)w);
2193 if (expect_false (!ev_is_active (w))) 3920 if (expect_false (!ev_is_active (w)))
2194 return; 3921 return;
2195 3922
3923 EV_FREQUENT_CHECK;
3924
2196 wlist_del (&signals [w->signum - 1].head, (WL)w); 3925 wlist_del (&signals [w->signum - 1].head, (WL)w);
2197 ev_stop (EV_A_ (W)w); 3926 ev_stop (EV_A_ (W)w);
2198 3927
2199 if (!signals [w->signum - 1].head) 3928 if (!signals [w->signum - 1].head)
3929 {
3930#if EV_MULTIPLICITY
3931 signals [w->signum - 1].loop = 0; /* unattach from signal */
3932#endif
3933#if EV_USE_SIGNALFD
3934 if (sigfd >= 0)
3935 {
3936 sigset_t ss;
3937
3938 sigemptyset (&ss);
3939 sigaddset (&ss, w->signum);
3940 sigdelset (&sigfd_set, w->signum);
3941
3942 signalfd (sigfd, &sigfd_set, 0);
3943 sigprocmask (SIG_UNBLOCK, &ss, 0);
3944 }
3945 else
3946#endif
2200 signal (w->signum, SIG_DFL); 3947 signal (w->signum, SIG_DFL);
3948 }
3949
3950 EV_FREQUENT_CHECK;
2201} 3951}
3952
3953#endif
3954
3955#if EV_CHILD_ENABLE
2202 3956
2203void 3957void
2204ev_child_start (EV_P_ ev_child *w) 3958ev_child_start (EV_P_ ev_child *w) EV_THROW
2205{ 3959{
2206#if EV_MULTIPLICITY 3960#if EV_MULTIPLICITY
2207 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3961 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2208#endif 3962#endif
2209 if (expect_false (ev_is_active (w))) 3963 if (expect_false (ev_is_active (w)))
2210 return; 3964 return;
2211 3965
3966 EV_FREQUENT_CHECK;
3967
2212 ev_start (EV_A_ (W)w, 1); 3968 ev_start (EV_A_ (W)w, 1);
2213 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3969 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3970
3971 EV_FREQUENT_CHECK;
2214} 3972}
2215 3973
2216void 3974void
2217ev_child_stop (EV_P_ ev_child *w) 3975ev_child_stop (EV_P_ ev_child *w) EV_THROW
2218{ 3976{
2219 clear_pending (EV_A_ (W)w); 3977 clear_pending (EV_A_ (W)w);
2220 if (expect_false (!ev_is_active (w))) 3978 if (expect_false (!ev_is_active (w)))
2221 return; 3979 return;
2222 3980
3981 EV_FREQUENT_CHECK;
3982
2223 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3983 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2224 ev_stop (EV_A_ (W)w); 3984 ev_stop (EV_A_ (W)w);
3985
3986 EV_FREQUENT_CHECK;
2225} 3987}
3988
3989#endif
2226 3990
2227#if EV_STAT_ENABLE 3991#if EV_STAT_ENABLE
2228 3992
2229# ifdef _WIN32 3993# ifdef _WIN32
2230# undef lstat 3994# undef lstat
2231# define lstat(a,b) _stati64 (a,b) 3995# define lstat(a,b) _stati64 (a,b)
2232# endif 3996# endif
2233 3997
2234#define DEF_STAT_INTERVAL 5.0074891 3998#define DEF_STAT_INTERVAL 5.0074891
3999#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2235#define MIN_STAT_INTERVAL 0.1074891 4000#define MIN_STAT_INTERVAL 0.1074891
2236 4001
2237static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 4002static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2238 4003
2239#if EV_USE_INOTIFY 4004#if EV_USE_INOTIFY
2240# define EV_INOTIFY_BUFSIZE 8192 4005
4006/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4007# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2241 4008
2242static void noinline 4009static void noinline
2243infy_add (EV_P_ ev_stat *w) 4010infy_add (EV_P_ ev_stat *w)
2244{ 4011{
2245 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 4012 w->wd = inotify_add_watch (fs_fd, w->path,
4013 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4014 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4015 | IN_DONT_FOLLOW | IN_MASK_ADD);
2246 4016
2247 if (w->wd < 0) 4017 if (w->wd >= 0)
4018 {
4019 struct statfs sfs;
4020
4021 /* now local changes will be tracked by inotify, but remote changes won't */
4022 /* unless the filesystem is known to be local, we therefore still poll */
4023 /* also do poll on <2.6.25, but with normal frequency */
4024
4025 if (!fs_2625)
4026 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4027 else if (!statfs (w->path, &sfs)
4028 && (sfs.f_type == 0x1373 /* devfs */
4029 || sfs.f_type == 0x4006 /* fat */
4030 || sfs.f_type == 0x4d44 /* msdos */
4031 || sfs.f_type == 0xEF53 /* ext2/3 */
4032 || sfs.f_type == 0x72b6 /* jffs2 */
4033 || sfs.f_type == 0x858458f6 /* ramfs */
4034 || sfs.f_type == 0x5346544e /* ntfs */
4035 || sfs.f_type == 0x3153464a /* jfs */
4036 || sfs.f_type == 0x9123683e /* btrfs */
4037 || sfs.f_type == 0x52654973 /* reiser3 */
4038 || sfs.f_type == 0x01021994 /* tmpfs */
4039 || sfs.f_type == 0x58465342 /* xfs */))
4040 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4041 else
4042 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2248 { 4043 }
2249 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 4044 else
4045 {
4046 /* can't use inotify, continue to stat */
4047 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2250 4048
2251 /* monitor some parent directory for speedup hints */ 4049 /* if path is not there, monitor some parent directory for speedup hints */
2252 /* note that exceeding the hardcoded limit is not a correctness issue, */ 4050 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2253 /* but an efficiency issue only */ 4051 /* but an efficiency issue only */
2254 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 4052 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2255 { 4053 {
2256 char path [4096]; 4054 char path [4096];
2257 strcpy (path, w->path); 4055 strcpy (path, w->path);
2261 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 4059 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2262 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 4060 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2263 4061
2264 char *pend = strrchr (path, '/'); 4062 char *pend = strrchr (path, '/');
2265 4063
2266 if (!pend) 4064 if (!pend || pend == path)
2267 break; /* whoops, no '/', complain to your admin */ 4065 break;
2268 4066
2269 *pend = 0; 4067 *pend = 0;
2270 w->wd = inotify_add_watch (fs_fd, path, mask); 4068 w->wd = inotify_add_watch (fs_fd, path, mask);
2271 } 4069 }
2272 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 4070 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2273 } 4071 }
2274 } 4072 }
2275 else
2276 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2277 4073
2278 if (w->wd >= 0) 4074 if (w->wd >= 0)
2279 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 4075 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4076
4077 /* now re-arm timer, if required */
4078 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4079 ev_timer_again (EV_A_ &w->timer);
4080 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2280} 4081}
2281 4082
2282static void noinline 4083static void noinline
2283infy_del (EV_P_ ev_stat *w) 4084infy_del (EV_P_ ev_stat *w)
2284{ 4085{
2287 4088
2288 if (wd < 0) 4089 if (wd < 0)
2289 return; 4090 return;
2290 4091
2291 w->wd = -2; 4092 w->wd = -2;
2292 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 4093 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2293 wlist_del (&fs_hash [slot].head, (WL)w); 4094 wlist_del (&fs_hash [slot].head, (WL)w);
2294 4095
2295 /* remove this watcher, if others are watching it, they will rearm */ 4096 /* remove this watcher, if others are watching it, they will rearm */
2296 inotify_rm_watch (fs_fd, wd); 4097 inotify_rm_watch (fs_fd, wd);
2297} 4098}
2298 4099
2299static void noinline 4100static void noinline
2300infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 4101infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2301{ 4102{
2302 if (slot < 0) 4103 if (slot < 0)
2303 /* overflow, need to check for all hahs slots */ 4104 /* overflow, need to check for all hash slots */
2304 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4105 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2305 infy_wd (EV_A_ slot, wd, ev); 4106 infy_wd (EV_A_ slot, wd, ev);
2306 else 4107 else
2307 { 4108 {
2308 WL w_; 4109 WL w_;
2309 4110
2310 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 4111 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2311 { 4112 {
2312 ev_stat *w = (ev_stat *)w_; 4113 ev_stat *w = (ev_stat *)w_;
2313 w_ = w_->next; /* lets us remove this watcher and all before it */ 4114 w_ = w_->next; /* lets us remove this watcher and all before it */
2314 4115
2315 if (w->wd == wd || wd == -1) 4116 if (w->wd == wd || wd == -1)
2316 { 4117 {
2317 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 4118 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2318 { 4119 {
4120 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2319 w->wd = -1; 4121 w->wd = -1;
2320 infy_add (EV_A_ w); /* re-add, no matter what */ 4122 infy_add (EV_A_ w); /* re-add, no matter what */
2321 } 4123 }
2322 4124
2323 stat_timer_cb (EV_A_ &w->timer, 0); 4125 stat_timer_cb (EV_A_ &w->timer, 0);
2328 4130
2329static void 4131static void
2330infy_cb (EV_P_ ev_io *w, int revents) 4132infy_cb (EV_P_ ev_io *w, int revents)
2331{ 4133{
2332 char buf [EV_INOTIFY_BUFSIZE]; 4134 char buf [EV_INOTIFY_BUFSIZE];
2333 struct inotify_event *ev = (struct inotify_event *)buf;
2334 int ofs; 4135 int ofs;
2335 int len = read (fs_fd, buf, sizeof (buf)); 4136 int len = read (fs_fd, buf, sizeof (buf));
2336 4137
2337 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 4138 for (ofs = 0; ofs < len; )
4139 {
4140 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2338 infy_wd (EV_A_ ev->wd, ev->wd, ev); 4141 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4142 ofs += sizeof (struct inotify_event) + ev->len;
4143 }
2339} 4144}
2340 4145
2341void inline_size 4146inline_size void ecb_cold
4147ev_check_2625 (EV_P)
4148{
4149 /* kernels < 2.6.25 are borked
4150 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4151 */
4152 if (ev_linux_version () < 0x020619)
4153 return;
4154
4155 fs_2625 = 1;
4156}
4157
4158inline_size int
4159infy_newfd (void)
4160{
4161#if defined IN_CLOEXEC && defined IN_NONBLOCK
4162 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4163 if (fd >= 0)
4164 return fd;
4165#endif
4166 return inotify_init ();
4167}
4168
4169inline_size void
2342infy_init (EV_P) 4170infy_init (EV_P)
2343{ 4171{
2344 if (fs_fd != -2) 4172 if (fs_fd != -2)
2345 return; 4173 return;
2346 4174
4175 fs_fd = -1;
4176
4177 ev_check_2625 (EV_A);
4178
2347 fs_fd = inotify_init (); 4179 fs_fd = infy_newfd ();
2348 4180
2349 if (fs_fd >= 0) 4181 if (fs_fd >= 0)
2350 { 4182 {
4183 fd_intern (fs_fd);
2351 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 4184 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2352 ev_set_priority (&fs_w, EV_MAXPRI); 4185 ev_set_priority (&fs_w, EV_MAXPRI);
2353 ev_io_start (EV_A_ &fs_w); 4186 ev_io_start (EV_A_ &fs_w);
4187 ev_unref (EV_A);
2354 } 4188 }
2355} 4189}
2356 4190
2357void inline_size 4191inline_size void
2358infy_fork (EV_P) 4192infy_fork (EV_P)
2359{ 4193{
2360 int slot; 4194 int slot;
2361 4195
2362 if (fs_fd < 0) 4196 if (fs_fd < 0)
2363 return; 4197 return;
2364 4198
4199 ev_ref (EV_A);
4200 ev_io_stop (EV_A_ &fs_w);
2365 close (fs_fd); 4201 close (fs_fd);
2366 fs_fd = inotify_init (); 4202 fs_fd = infy_newfd ();
2367 4203
4204 if (fs_fd >= 0)
4205 {
4206 fd_intern (fs_fd);
4207 ev_io_set (&fs_w, fs_fd, EV_READ);
4208 ev_io_start (EV_A_ &fs_w);
4209 ev_unref (EV_A);
4210 }
4211
2368 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4212 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2369 { 4213 {
2370 WL w_ = fs_hash [slot].head; 4214 WL w_ = fs_hash [slot].head;
2371 fs_hash [slot].head = 0; 4215 fs_hash [slot].head = 0;
2372 4216
2373 while (w_) 4217 while (w_)
2378 w->wd = -1; 4222 w->wd = -1;
2379 4223
2380 if (fs_fd >= 0) 4224 if (fs_fd >= 0)
2381 infy_add (EV_A_ w); /* re-add, no matter what */ 4225 infy_add (EV_A_ w); /* re-add, no matter what */
2382 else 4226 else
4227 {
4228 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4229 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2383 ev_timer_start (EV_A_ &w->timer); 4230 ev_timer_again (EV_A_ &w->timer);
4231 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4232 }
2384 } 4233 }
2385
2386 } 4234 }
2387} 4235}
2388 4236
4237#endif
4238
4239#ifdef _WIN32
4240# define EV_LSTAT(p,b) _stati64 (p, b)
4241#else
4242# define EV_LSTAT(p,b) lstat (p, b)
2389#endif 4243#endif
2390 4244
2391void 4245void
2392ev_stat_stat (EV_P_ ev_stat *w) 4246ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
2393{ 4247{
2394 if (lstat (w->path, &w->attr) < 0) 4248 if (lstat (w->path, &w->attr) < 0)
2395 w->attr.st_nlink = 0; 4249 w->attr.st_nlink = 0;
2396 else if (!w->attr.st_nlink) 4250 else if (!w->attr.st_nlink)
2397 w->attr.st_nlink = 1; 4251 w->attr.st_nlink = 1;
2400static void noinline 4254static void noinline
2401stat_timer_cb (EV_P_ ev_timer *w_, int revents) 4255stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2402{ 4256{
2403 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 4257 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2404 4258
2405 /* we copy this here each the time so that */ 4259 ev_statdata prev = w->attr;
2406 /* prev has the old value when the callback gets invoked */
2407 w->prev = w->attr;
2408 ev_stat_stat (EV_A_ w); 4260 ev_stat_stat (EV_A_ w);
2409 4261
2410 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 4262 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2411 if ( 4263 if (
2412 w->prev.st_dev != w->attr.st_dev 4264 prev.st_dev != w->attr.st_dev
2413 || w->prev.st_ino != w->attr.st_ino 4265 || prev.st_ino != w->attr.st_ino
2414 || w->prev.st_mode != w->attr.st_mode 4266 || prev.st_mode != w->attr.st_mode
2415 || w->prev.st_nlink != w->attr.st_nlink 4267 || prev.st_nlink != w->attr.st_nlink
2416 || w->prev.st_uid != w->attr.st_uid 4268 || prev.st_uid != w->attr.st_uid
2417 || w->prev.st_gid != w->attr.st_gid 4269 || prev.st_gid != w->attr.st_gid
2418 || w->prev.st_rdev != w->attr.st_rdev 4270 || prev.st_rdev != w->attr.st_rdev
2419 || w->prev.st_size != w->attr.st_size 4271 || prev.st_size != w->attr.st_size
2420 || w->prev.st_atime != w->attr.st_atime 4272 || prev.st_atime != w->attr.st_atime
2421 || w->prev.st_mtime != w->attr.st_mtime 4273 || prev.st_mtime != w->attr.st_mtime
2422 || w->prev.st_ctime != w->attr.st_ctime 4274 || prev.st_ctime != w->attr.st_ctime
2423 ) { 4275 ) {
4276 /* we only update w->prev on actual differences */
4277 /* in case we test more often than invoke the callback, */
4278 /* to ensure that prev is always different to attr */
4279 w->prev = prev;
4280
2424 #if EV_USE_INOTIFY 4281 #if EV_USE_INOTIFY
4282 if (fs_fd >= 0)
4283 {
2425 infy_del (EV_A_ w); 4284 infy_del (EV_A_ w);
2426 infy_add (EV_A_ w); 4285 infy_add (EV_A_ w);
2427 ev_stat_stat (EV_A_ w); /* avoid race... */ 4286 ev_stat_stat (EV_A_ w); /* avoid race... */
4287 }
2428 #endif 4288 #endif
2429 4289
2430 ev_feed_event (EV_A_ w, EV_STAT); 4290 ev_feed_event (EV_A_ w, EV_STAT);
2431 } 4291 }
2432} 4292}
2433 4293
2434void 4294void
2435ev_stat_start (EV_P_ ev_stat *w) 4295ev_stat_start (EV_P_ ev_stat *w) EV_THROW
2436{ 4296{
2437 if (expect_false (ev_is_active (w))) 4297 if (expect_false (ev_is_active (w)))
2438 return; 4298 return;
2439 4299
2440 /* since we use memcmp, we need to clear any padding data etc. */
2441 memset (&w->prev, 0, sizeof (ev_statdata));
2442 memset (&w->attr, 0, sizeof (ev_statdata));
2443
2444 ev_stat_stat (EV_A_ w); 4300 ev_stat_stat (EV_A_ w);
2445 4301
4302 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2446 if (w->interval < MIN_STAT_INTERVAL) 4303 w->interval = MIN_STAT_INTERVAL;
2447 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2448 4304
2449 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 4305 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2450 ev_set_priority (&w->timer, ev_priority (w)); 4306 ev_set_priority (&w->timer, ev_priority (w));
2451 4307
2452#if EV_USE_INOTIFY 4308#if EV_USE_INOTIFY
2453 infy_init (EV_A); 4309 infy_init (EV_A);
2454 4310
2455 if (fs_fd >= 0) 4311 if (fs_fd >= 0)
2456 infy_add (EV_A_ w); 4312 infy_add (EV_A_ w);
2457 else 4313 else
2458#endif 4314#endif
4315 {
2459 ev_timer_start (EV_A_ &w->timer); 4316 ev_timer_again (EV_A_ &w->timer);
4317 ev_unref (EV_A);
4318 }
2460 4319
2461 ev_start (EV_A_ (W)w, 1); 4320 ev_start (EV_A_ (W)w, 1);
4321
4322 EV_FREQUENT_CHECK;
2462} 4323}
2463 4324
2464void 4325void
2465ev_stat_stop (EV_P_ ev_stat *w) 4326ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
2466{ 4327{
2467 clear_pending (EV_A_ (W)w); 4328 clear_pending (EV_A_ (W)w);
2468 if (expect_false (!ev_is_active (w))) 4329 if (expect_false (!ev_is_active (w)))
2469 return; 4330 return;
2470 4331
4332 EV_FREQUENT_CHECK;
4333
2471#if EV_USE_INOTIFY 4334#if EV_USE_INOTIFY
2472 infy_del (EV_A_ w); 4335 infy_del (EV_A_ w);
2473#endif 4336#endif
4337
4338 if (ev_is_active (&w->timer))
4339 {
4340 ev_ref (EV_A);
2474 ev_timer_stop (EV_A_ &w->timer); 4341 ev_timer_stop (EV_A_ &w->timer);
4342 }
2475 4343
2476 ev_stop (EV_A_ (W)w); 4344 ev_stop (EV_A_ (W)w);
4345
4346 EV_FREQUENT_CHECK;
2477} 4347}
2478#endif 4348#endif
2479 4349
2480#if EV_IDLE_ENABLE 4350#if EV_IDLE_ENABLE
2481void 4351void
2482ev_idle_start (EV_P_ ev_idle *w) 4352ev_idle_start (EV_P_ ev_idle *w) EV_THROW
2483{ 4353{
2484 if (expect_false (ev_is_active (w))) 4354 if (expect_false (ev_is_active (w)))
2485 return; 4355 return;
2486 4356
2487 pri_adjust (EV_A_ (W)w); 4357 pri_adjust (EV_A_ (W)w);
4358
4359 EV_FREQUENT_CHECK;
2488 4360
2489 { 4361 {
2490 int active = ++idlecnt [ABSPRI (w)]; 4362 int active = ++idlecnt [ABSPRI (w)];
2491 4363
2492 ++idleall; 4364 ++idleall;
2493 ev_start (EV_A_ (W)w, active); 4365 ev_start (EV_A_ (W)w, active);
2494 4366
2495 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 4367 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2496 idles [ABSPRI (w)][active - 1] = w; 4368 idles [ABSPRI (w)][active - 1] = w;
2497 } 4369 }
4370
4371 EV_FREQUENT_CHECK;
2498} 4372}
2499 4373
2500void 4374void
2501ev_idle_stop (EV_P_ ev_idle *w) 4375ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
2502{ 4376{
2503 clear_pending (EV_A_ (W)w); 4377 clear_pending (EV_A_ (W)w);
2504 if (expect_false (!ev_is_active (w))) 4378 if (expect_false (!ev_is_active (w)))
2505 return; 4379 return;
2506 4380
4381 EV_FREQUENT_CHECK;
4382
2507 { 4383 {
2508 int active = ev_active (w); 4384 int active = ev_active (w);
2509 4385
2510 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 4386 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2511 ev_active (idles [ABSPRI (w)][active - 1]) = active; 4387 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2512 4388
2513 ev_stop (EV_A_ (W)w); 4389 ev_stop (EV_A_ (W)w);
2514 --idleall; 4390 --idleall;
2515 } 4391 }
2516}
2517#endif
2518 4392
4393 EV_FREQUENT_CHECK;
4394}
4395#endif
4396
4397#if EV_PREPARE_ENABLE
2519void 4398void
2520ev_prepare_start (EV_P_ ev_prepare *w) 4399ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
2521{ 4400{
2522 if (expect_false (ev_is_active (w))) 4401 if (expect_false (ev_is_active (w)))
2523 return; 4402 return;
4403
4404 EV_FREQUENT_CHECK;
2524 4405
2525 ev_start (EV_A_ (W)w, ++preparecnt); 4406 ev_start (EV_A_ (W)w, ++preparecnt);
2526 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 4407 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2527 prepares [preparecnt - 1] = w; 4408 prepares [preparecnt - 1] = w;
4409
4410 EV_FREQUENT_CHECK;
2528} 4411}
2529 4412
2530void 4413void
2531ev_prepare_stop (EV_P_ ev_prepare *w) 4414ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
2532{ 4415{
2533 clear_pending (EV_A_ (W)w); 4416 clear_pending (EV_A_ (W)w);
2534 if (expect_false (!ev_is_active (w))) 4417 if (expect_false (!ev_is_active (w)))
2535 return; 4418 return;
2536 4419
4420 EV_FREQUENT_CHECK;
4421
2537 { 4422 {
2538 int active = ev_active (w); 4423 int active = ev_active (w);
2539 4424
2540 prepares [active - 1] = prepares [--preparecnt]; 4425 prepares [active - 1] = prepares [--preparecnt];
2541 ev_active (prepares [active - 1]) = active; 4426 ev_active (prepares [active - 1]) = active;
2542 } 4427 }
2543 4428
2544 ev_stop (EV_A_ (W)w); 4429 ev_stop (EV_A_ (W)w);
2545}
2546 4430
4431 EV_FREQUENT_CHECK;
4432}
4433#endif
4434
4435#if EV_CHECK_ENABLE
2547void 4436void
2548ev_check_start (EV_P_ ev_check *w) 4437ev_check_start (EV_P_ ev_check *w) EV_THROW
2549{ 4438{
2550 if (expect_false (ev_is_active (w))) 4439 if (expect_false (ev_is_active (w)))
2551 return; 4440 return;
4441
4442 EV_FREQUENT_CHECK;
2552 4443
2553 ev_start (EV_A_ (W)w, ++checkcnt); 4444 ev_start (EV_A_ (W)w, ++checkcnt);
2554 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 4445 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2555 checks [checkcnt - 1] = w; 4446 checks [checkcnt - 1] = w;
4447
4448 EV_FREQUENT_CHECK;
2556} 4449}
2557 4450
2558void 4451void
2559ev_check_stop (EV_P_ ev_check *w) 4452ev_check_stop (EV_P_ ev_check *w) EV_THROW
2560{ 4453{
2561 clear_pending (EV_A_ (W)w); 4454 clear_pending (EV_A_ (W)w);
2562 if (expect_false (!ev_is_active (w))) 4455 if (expect_false (!ev_is_active (w)))
2563 return; 4456 return;
2564 4457
4458 EV_FREQUENT_CHECK;
4459
2565 { 4460 {
2566 int active = ev_active (w); 4461 int active = ev_active (w);
2567 4462
2568 checks [active - 1] = checks [--checkcnt]; 4463 checks [active - 1] = checks [--checkcnt];
2569 ev_active (checks [active - 1]) = active; 4464 ev_active (checks [active - 1]) = active;
2570 } 4465 }
2571 4466
2572 ev_stop (EV_A_ (W)w); 4467 ev_stop (EV_A_ (W)w);
4468
4469 EV_FREQUENT_CHECK;
2573} 4470}
4471#endif
2574 4472
2575#if EV_EMBED_ENABLE 4473#if EV_EMBED_ENABLE
2576void noinline 4474void noinline
2577ev_embed_sweep (EV_P_ ev_embed *w) 4475ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
2578{ 4476{
2579 ev_loop (w->other, EVLOOP_NONBLOCK); 4477 ev_run (w->other, EVRUN_NOWAIT);
2580} 4478}
2581 4479
2582static void 4480static void
2583embed_io_cb (EV_P_ ev_io *io, int revents) 4481embed_io_cb (EV_P_ ev_io *io, int revents)
2584{ 4482{
2585 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4483 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2586 4484
2587 if (ev_cb (w)) 4485 if (ev_cb (w))
2588 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4486 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2589 else 4487 else
2590 ev_loop (w->other, EVLOOP_NONBLOCK); 4488 ev_run (w->other, EVRUN_NOWAIT);
2591} 4489}
2592 4490
2593static void 4491static void
2594embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4492embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2595{ 4493{
2596 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4494 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2597 4495
2598 { 4496 {
2599 struct ev_loop *loop = w->other; 4497 EV_P = w->other;
2600 4498
2601 while (fdchangecnt) 4499 while (fdchangecnt)
2602 { 4500 {
2603 fd_reify (EV_A); 4501 fd_reify (EV_A);
2604 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4502 ev_run (EV_A_ EVRUN_NOWAIT);
2605 } 4503 }
2606 } 4504 }
4505}
4506
4507static void
4508embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4509{
4510 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4511
4512 ev_embed_stop (EV_A_ w);
4513
4514 {
4515 EV_P = w->other;
4516
4517 ev_loop_fork (EV_A);
4518 ev_run (EV_A_ EVRUN_NOWAIT);
4519 }
4520
4521 ev_embed_start (EV_A_ w);
2607} 4522}
2608 4523
2609#if 0 4524#if 0
2610static void 4525static void
2611embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4526embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2613 ev_idle_stop (EV_A_ idle); 4528 ev_idle_stop (EV_A_ idle);
2614} 4529}
2615#endif 4530#endif
2616 4531
2617void 4532void
2618ev_embed_start (EV_P_ ev_embed *w) 4533ev_embed_start (EV_P_ ev_embed *w) EV_THROW
2619{ 4534{
2620 if (expect_false (ev_is_active (w))) 4535 if (expect_false (ev_is_active (w)))
2621 return; 4536 return;
2622 4537
2623 { 4538 {
2624 struct ev_loop *loop = w->other; 4539 EV_P = w->other;
2625 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4540 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2626 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4541 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2627 } 4542 }
4543
4544 EV_FREQUENT_CHECK;
2628 4545
2629 ev_set_priority (&w->io, ev_priority (w)); 4546 ev_set_priority (&w->io, ev_priority (w));
2630 ev_io_start (EV_A_ &w->io); 4547 ev_io_start (EV_A_ &w->io);
2631 4548
2632 ev_prepare_init (&w->prepare, embed_prepare_cb); 4549 ev_prepare_init (&w->prepare, embed_prepare_cb);
2633 ev_set_priority (&w->prepare, EV_MINPRI); 4550 ev_set_priority (&w->prepare, EV_MINPRI);
2634 ev_prepare_start (EV_A_ &w->prepare); 4551 ev_prepare_start (EV_A_ &w->prepare);
2635 4552
4553 ev_fork_init (&w->fork, embed_fork_cb);
4554 ev_fork_start (EV_A_ &w->fork);
4555
2636 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 4556 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2637 4557
2638 ev_start (EV_A_ (W)w, 1); 4558 ev_start (EV_A_ (W)w, 1);
4559
4560 EV_FREQUENT_CHECK;
2639} 4561}
2640 4562
2641void 4563void
2642ev_embed_stop (EV_P_ ev_embed *w) 4564ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
2643{ 4565{
2644 clear_pending (EV_A_ (W)w); 4566 clear_pending (EV_A_ (W)w);
2645 if (expect_false (!ev_is_active (w))) 4567 if (expect_false (!ev_is_active (w)))
2646 return; 4568 return;
2647 4569
4570 EV_FREQUENT_CHECK;
4571
2648 ev_io_stop (EV_A_ &w->io); 4572 ev_io_stop (EV_A_ &w->io);
2649 ev_prepare_stop (EV_A_ &w->prepare); 4573 ev_prepare_stop (EV_A_ &w->prepare);
4574 ev_fork_stop (EV_A_ &w->fork);
2650 4575
2651 ev_stop (EV_A_ (W)w); 4576 ev_stop (EV_A_ (W)w);
4577
4578 EV_FREQUENT_CHECK;
2652} 4579}
2653#endif 4580#endif
2654 4581
2655#if EV_FORK_ENABLE 4582#if EV_FORK_ENABLE
2656void 4583void
2657ev_fork_start (EV_P_ ev_fork *w) 4584ev_fork_start (EV_P_ ev_fork *w) EV_THROW
2658{ 4585{
2659 if (expect_false (ev_is_active (w))) 4586 if (expect_false (ev_is_active (w)))
2660 return; 4587 return;
4588
4589 EV_FREQUENT_CHECK;
2661 4590
2662 ev_start (EV_A_ (W)w, ++forkcnt); 4591 ev_start (EV_A_ (W)w, ++forkcnt);
2663 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 4592 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2664 forks [forkcnt - 1] = w; 4593 forks [forkcnt - 1] = w;
4594
4595 EV_FREQUENT_CHECK;
2665} 4596}
2666 4597
2667void 4598void
2668ev_fork_stop (EV_P_ ev_fork *w) 4599ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
2669{ 4600{
2670 clear_pending (EV_A_ (W)w); 4601 clear_pending (EV_A_ (W)w);
2671 if (expect_false (!ev_is_active (w))) 4602 if (expect_false (!ev_is_active (w)))
2672 return; 4603 return;
2673 4604
4605 EV_FREQUENT_CHECK;
4606
2674 { 4607 {
2675 int active = ev_active (w); 4608 int active = ev_active (w);
2676 4609
2677 forks [active - 1] = forks [--forkcnt]; 4610 forks [active - 1] = forks [--forkcnt];
2678 ev_active (forks [active - 1]) = active; 4611 ev_active (forks [active - 1]) = active;
2679 } 4612 }
2680 4613
2681 ev_stop (EV_A_ (W)w); 4614 ev_stop (EV_A_ (W)w);
4615
4616 EV_FREQUENT_CHECK;
4617}
4618#endif
4619
4620#if EV_CLEANUP_ENABLE
4621void
4622ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4623{
4624 if (expect_false (ev_is_active (w)))
4625 return;
4626
4627 EV_FREQUENT_CHECK;
4628
4629 ev_start (EV_A_ (W)w, ++cleanupcnt);
4630 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4631 cleanups [cleanupcnt - 1] = w;
4632
4633 /* cleanup watchers should never keep a refcount on the loop */
4634 ev_unref (EV_A);
4635 EV_FREQUENT_CHECK;
4636}
4637
4638void
4639ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4640{
4641 clear_pending (EV_A_ (W)w);
4642 if (expect_false (!ev_is_active (w)))
4643 return;
4644
4645 EV_FREQUENT_CHECK;
4646 ev_ref (EV_A);
4647
4648 {
4649 int active = ev_active (w);
4650
4651 cleanups [active - 1] = cleanups [--cleanupcnt];
4652 ev_active (cleanups [active - 1]) = active;
4653 }
4654
4655 ev_stop (EV_A_ (W)w);
4656
4657 EV_FREQUENT_CHECK;
2682} 4658}
2683#endif 4659#endif
2684 4660
2685#if EV_ASYNC_ENABLE 4661#if EV_ASYNC_ENABLE
2686void 4662void
2687ev_async_start (EV_P_ ev_async *w) 4663ev_async_start (EV_P_ ev_async *w) EV_THROW
2688{ 4664{
2689 if (expect_false (ev_is_active (w))) 4665 if (expect_false (ev_is_active (w)))
2690 return; 4666 return;
2691 4667
4668 w->sent = 0;
4669
2692 evpipe_init (EV_A); 4670 evpipe_init (EV_A);
4671
4672 EV_FREQUENT_CHECK;
2693 4673
2694 ev_start (EV_A_ (W)w, ++asynccnt); 4674 ev_start (EV_A_ (W)w, ++asynccnt);
2695 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 4675 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2696 asyncs [asynccnt - 1] = w; 4676 asyncs [asynccnt - 1] = w;
4677
4678 EV_FREQUENT_CHECK;
2697} 4679}
2698 4680
2699void 4681void
2700ev_async_stop (EV_P_ ev_async *w) 4682ev_async_stop (EV_P_ ev_async *w) EV_THROW
2701{ 4683{
2702 clear_pending (EV_A_ (W)w); 4684 clear_pending (EV_A_ (W)w);
2703 if (expect_false (!ev_is_active (w))) 4685 if (expect_false (!ev_is_active (w)))
2704 return; 4686 return;
2705 4687
4688 EV_FREQUENT_CHECK;
4689
2706 { 4690 {
2707 int active = ev_active (w); 4691 int active = ev_active (w);
2708 4692
2709 asyncs [active - 1] = asyncs [--asynccnt]; 4693 asyncs [active - 1] = asyncs [--asynccnt];
2710 ev_active (asyncs [active - 1]) = active; 4694 ev_active (asyncs [active - 1]) = active;
2711 } 4695 }
2712 4696
2713 ev_stop (EV_A_ (W)w); 4697 ev_stop (EV_A_ (W)w);
4698
4699 EV_FREQUENT_CHECK;
2714} 4700}
2715 4701
2716void 4702void
2717ev_async_send (EV_P_ ev_async *w) 4703ev_async_send (EV_P_ ev_async *w) EV_THROW
2718{ 4704{
2719 w->sent = 1; 4705 w->sent = 1;
2720 evpipe_write (EV_A_ &gotasync); 4706 evpipe_write (EV_A_ &async_pending);
2721} 4707}
2722#endif 4708#endif
2723 4709
2724/*****************************************************************************/ 4710/*****************************************************************************/
2725 4711
2735once_cb (EV_P_ struct ev_once *once, int revents) 4721once_cb (EV_P_ struct ev_once *once, int revents)
2736{ 4722{
2737 void (*cb)(int revents, void *arg) = once->cb; 4723 void (*cb)(int revents, void *arg) = once->cb;
2738 void *arg = once->arg; 4724 void *arg = once->arg;
2739 4725
2740 ev_io_stop (EV_A_ &once->io); 4726 ev_io_stop (EV_A_ &once->io);
2741 ev_timer_stop (EV_A_ &once->to); 4727 ev_timer_stop (EV_A_ &once->to);
2742 ev_free (once); 4728 ev_free (once);
2743 4729
2744 cb (revents, arg); 4730 cb (revents, arg);
2745} 4731}
2746 4732
2747static void 4733static void
2748once_cb_io (EV_P_ ev_io *w, int revents) 4734once_cb_io (EV_P_ ev_io *w, int revents)
2749{ 4735{
2750 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4736 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4737
4738 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2751} 4739}
2752 4740
2753static void 4741static void
2754once_cb_to (EV_P_ ev_timer *w, int revents) 4742once_cb_to (EV_P_ ev_timer *w, int revents)
2755{ 4743{
2756 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4744 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4745
4746 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2757} 4747}
2758 4748
2759void 4749void
2760ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4750ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
2761{ 4751{
2762 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4752 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2763 4753
2764 if (expect_false (!once)) 4754 if (expect_false (!once))
2765 { 4755 {
2766 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4756 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2767 return; 4757 return;
2768 } 4758 }
2769 4759
2770 once->cb = cb; 4760 once->cb = cb;
2771 once->arg = arg; 4761 once->arg = arg;
2783 ev_timer_set (&once->to, timeout, 0.); 4773 ev_timer_set (&once->to, timeout, 0.);
2784 ev_timer_start (EV_A_ &once->to); 4774 ev_timer_start (EV_A_ &once->to);
2785 } 4775 }
2786} 4776}
2787 4777
4778/*****************************************************************************/
4779
4780#if EV_WALK_ENABLE
4781void ecb_cold
4782ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4783{
4784 int i, j;
4785 ev_watcher_list *wl, *wn;
4786
4787 if (types & (EV_IO | EV_EMBED))
4788 for (i = 0; i < anfdmax; ++i)
4789 for (wl = anfds [i].head; wl; )
4790 {
4791 wn = wl->next;
4792
4793#if EV_EMBED_ENABLE
4794 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4795 {
4796 if (types & EV_EMBED)
4797 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4798 }
4799 else
4800#endif
4801#if EV_USE_INOTIFY
4802 if (ev_cb ((ev_io *)wl) == infy_cb)
4803 ;
4804 else
4805#endif
4806 if ((ev_io *)wl != &pipe_w)
4807 if (types & EV_IO)
4808 cb (EV_A_ EV_IO, wl);
4809
4810 wl = wn;
4811 }
4812
4813 if (types & (EV_TIMER | EV_STAT))
4814 for (i = timercnt + HEAP0; i-- > HEAP0; )
4815#if EV_STAT_ENABLE
4816 /*TODO: timer is not always active*/
4817 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4818 {
4819 if (types & EV_STAT)
4820 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4821 }
4822 else
4823#endif
4824 if (types & EV_TIMER)
4825 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4826
4827#if EV_PERIODIC_ENABLE
4828 if (types & EV_PERIODIC)
4829 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4830 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4831#endif
4832
4833#if EV_IDLE_ENABLE
4834 if (types & EV_IDLE)
4835 for (j = NUMPRI; j--; )
4836 for (i = idlecnt [j]; i--; )
4837 cb (EV_A_ EV_IDLE, idles [j][i]);
4838#endif
4839
4840#if EV_FORK_ENABLE
4841 if (types & EV_FORK)
4842 for (i = forkcnt; i--; )
4843 if (ev_cb (forks [i]) != embed_fork_cb)
4844 cb (EV_A_ EV_FORK, forks [i]);
4845#endif
4846
4847#if EV_ASYNC_ENABLE
4848 if (types & EV_ASYNC)
4849 for (i = asynccnt; i--; )
4850 cb (EV_A_ EV_ASYNC, asyncs [i]);
4851#endif
4852
4853#if EV_PREPARE_ENABLE
4854 if (types & EV_PREPARE)
4855 for (i = preparecnt; i--; )
4856# if EV_EMBED_ENABLE
4857 if (ev_cb (prepares [i]) != embed_prepare_cb)
4858# endif
4859 cb (EV_A_ EV_PREPARE, prepares [i]);
4860#endif
4861
4862#if EV_CHECK_ENABLE
4863 if (types & EV_CHECK)
4864 for (i = checkcnt; i--; )
4865 cb (EV_A_ EV_CHECK, checks [i]);
4866#endif
4867
4868#if EV_SIGNAL_ENABLE
4869 if (types & EV_SIGNAL)
4870 for (i = 0; i < EV_NSIG - 1; ++i)
4871 for (wl = signals [i].head; wl; )
4872 {
4873 wn = wl->next;
4874 cb (EV_A_ EV_SIGNAL, wl);
4875 wl = wn;
4876 }
4877#endif
4878
4879#if EV_CHILD_ENABLE
4880 if (types & EV_CHILD)
4881 for (i = (EV_PID_HASHSIZE); i--; )
4882 for (wl = childs [i]; wl; )
4883 {
4884 wn = wl->next;
4885 cb (EV_A_ EV_CHILD, wl);
4886 wl = wn;
4887 }
4888#endif
4889/* EV_STAT 0x00001000 /* stat data changed */
4890/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4891}
4892#endif
4893
2788#if EV_MULTIPLICITY 4894#if EV_MULTIPLICITY
2789 #include "ev_wrap.h" 4895 #include "ev_wrap.h"
2790#endif 4896#endif
2791 4897
2792#ifdef __cplusplus
2793}
2794#endif
2795

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines