ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.135 by root, Sat Nov 24 06:23:27 2007 UTC vs.
Revision 1.473 by root, Tue Sep 9 21:51:35 2014 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012,2013 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 43# include EV_CONFIG_H
39# else 44# else
40# include "config.h" 45# include "config.h"
41# endif 46# endif
42 47
48# if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52# endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
43# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
46# endif 71# endif
47# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
49# endif 74# endif
50# else 75# else
51# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
53# endif 78# endif
54# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
56# endif 81# endif
57# endif 82# endif
58 83
84# if HAVE_NANOSLEEP
59# ifndef EV_USE_SELECT 85# ifndef EV_USE_NANOSLEEP
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif 87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
65# endif 91# endif
66 92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
67# ifndef EV_USE_POLL 94# ifndef EV_USE_SELECT
68# if HAVE_POLL && HAVE_POLL_H 95# define EV_USE_SELECT EV_FEATURE_BACKENDS
69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
100# endif
101
102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
108# define EV_USE_POLL 0
73# endif 109# endif
74 110
75# ifndef EV_USE_EPOLL
76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
77# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
78# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
79# define EV_USE_EPOLL 0
80# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
81# endif 118# endif
82 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
83# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
89# endif 127# endif
90 128
91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
94# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
95# define EV_USE_PORT 0
96# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
97# endif 136# endif
98 137
138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139# ifndef EV_USE_INOTIFY
140# define EV_USE_INOTIFY EV_FEATURE_OS
141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
99#endif 145# endif
100 146
101#include <math.h> 147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
102#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
103#include <fcntl.h> 169#include <fcntl.h>
104#include <stddef.h> 170#include <stddef.h>
105 171
106#include <stdio.h> 172#include <stdio.h>
107 173
108#include <assert.h> 174#include <assert.h>
109#include <errno.h> 175#include <errno.h>
110#include <sys/types.h> 176#include <sys/types.h>
111#include <time.h> 177#include <time.h>
178#include <limits.h>
112 179
113#include <signal.h> 180#include <signal.h>
114 181
182#ifdef EV_H
183# include EV_H
184#else
185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
197#endif
198
115#ifndef _WIN32 199#ifndef _WIN32
116# include <unistd.h>
117# include <sys/time.h> 200# include <sys/time.h>
118# include <sys/wait.h> 201# include <sys/wait.h>
202# include <unistd.h>
119#else 203#else
204# include <io.h>
120# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
121# include <windows.h> 207# include <windows.h>
122# ifndef EV_SELECT_IS_WINSOCKET 208# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1 209# define EV_SELECT_IS_WINSOCKET 1
124# endif 210# endif
211# undef EV_AVOID_STDIO
212#endif
213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
221
222/* this block tries to deduce configuration from header-defined symbols and defaults */
223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# define EV_NSIG (8 * sizeof (sigset_t) + 1)
247#endif
248
249#ifndef EV_USE_FLOOR
250# define EV_USE_FLOOR 0
251#endif
252
253#ifndef EV_USE_CLOCK_SYSCALL
254# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
255# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
256# else
257# define EV_USE_CLOCK_SYSCALL 0
125#endif 258# endif
259#endif
126 260
127/**/ 261#if !(_POSIX_TIMERS > 0)
262# ifndef EV_USE_MONOTONIC
263# define EV_USE_MONOTONIC 0
264# endif
265# ifndef EV_USE_REALTIME
266# define EV_USE_REALTIME 0
267# endif
268#endif
128 269
129#ifndef EV_USE_MONOTONIC 270#ifndef EV_USE_MONOTONIC
271# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
272# define EV_USE_MONOTONIC EV_FEATURE_OS
273# else
130# define EV_USE_MONOTONIC 0 274# define EV_USE_MONOTONIC 0
275# endif
131#endif 276#endif
132 277
133#ifndef EV_USE_REALTIME 278#ifndef EV_USE_REALTIME
134# define EV_USE_REALTIME 0 279# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
280#endif
281
282#ifndef EV_USE_NANOSLEEP
283# if _POSIX_C_SOURCE >= 199309L
284# define EV_USE_NANOSLEEP EV_FEATURE_OS
285# else
286# define EV_USE_NANOSLEEP 0
287# endif
135#endif 288#endif
136 289
137#ifndef EV_USE_SELECT 290#ifndef EV_USE_SELECT
138# define EV_USE_SELECT 1 291# define EV_USE_SELECT EV_FEATURE_BACKENDS
139#endif 292#endif
140 293
141#ifndef EV_USE_POLL 294#ifndef EV_USE_POLL
142# ifdef _WIN32 295# ifdef _WIN32
143# define EV_USE_POLL 0 296# define EV_USE_POLL 0
144# else 297# else
145# define EV_USE_POLL 1 298# define EV_USE_POLL EV_FEATURE_BACKENDS
146# endif 299# endif
147#endif 300#endif
148 301
149#ifndef EV_USE_EPOLL 302#ifndef EV_USE_EPOLL
303# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
304# define EV_USE_EPOLL EV_FEATURE_BACKENDS
305# else
150# define EV_USE_EPOLL 0 306# define EV_USE_EPOLL 0
307# endif
151#endif 308#endif
152 309
153#ifndef EV_USE_KQUEUE 310#ifndef EV_USE_KQUEUE
154# define EV_USE_KQUEUE 0 311# define EV_USE_KQUEUE 0
155#endif 312#endif
156 313
157#ifndef EV_USE_PORT 314#ifndef EV_USE_PORT
158# define EV_USE_PORT 0 315# define EV_USE_PORT 0
159#endif 316#endif
160 317
161/**/ 318#ifndef EV_USE_INOTIFY
319# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
320# define EV_USE_INOTIFY EV_FEATURE_OS
321# else
322# define EV_USE_INOTIFY 0
323# endif
324#endif
325
326#ifndef EV_PID_HASHSIZE
327# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
328#endif
329
330#ifndef EV_INOTIFY_HASHSIZE
331# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
332#endif
333
334#ifndef EV_USE_EVENTFD
335# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
336# define EV_USE_EVENTFD EV_FEATURE_OS
337# else
338# define EV_USE_EVENTFD 0
339# endif
340#endif
341
342#ifndef EV_USE_SIGNALFD
343# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
344# define EV_USE_SIGNALFD EV_FEATURE_OS
345# else
346# define EV_USE_SIGNALFD 0
347# endif
348#endif
349
350#if 0 /* debugging */
351# define EV_VERIFY 3
352# define EV_USE_4HEAP 1
353# define EV_HEAP_CACHE_AT 1
354#endif
355
356#ifndef EV_VERIFY
357# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
358#endif
359
360#ifndef EV_USE_4HEAP
361# define EV_USE_4HEAP EV_FEATURE_DATA
362#endif
363
364#ifndef EV_HEAP_CACHE_AT
365# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
366#endif
367
368#ifdef ANDROID
369/* supposedly, android doesn't typedef fd_mask */
370# undef EV_USE_SELECT
371# define EV_USE_SELECT 0
372/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
373# undef EV_USE_CLOCK_SYSCALL
374# define EV_USE_CLOCK_SYSCALL 0
375#endif
376
377/* aix's poll.h seems to cause lots of trouble */
378#ifdef _AIX
379/* AIX has a completely broken poll.h header */
380# undef EV_USE_POLL
381# define EV_USE_POLL 0
382#endif
383
384/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
385/* which makes programs even slower. might work on other unices, too. */
386#if EV_USE_CLOCK_SYSCALL
387# include <sys/syscall.h>
388# ifdef SYS_clock_gettime
389# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
390# undef EV_USE_MONOTONIC
391# define EV_USE_MONOTONIC 1
392# else
393# undef EV_USE_CLOCK_SYSCALL
394# define EV_USE_CLOCK_SYSCALL 0
395# endif
396#endif
397
398/* this block fixes any misconfiguration where we know we run into trouble otherwise */
162 399
163#ifndef CLOCK_MONOTONIC 400#ifndef CLOCK_MONOTONIC
164# undef EV_USE_MONOTONIC 401# undef EV_USE_MONOTONIC
165# define EV_USE_MONOTONIC 0 402# define EV_USE_MONOTONIC 0
166#endif 403#endif
168#ifndef CLOCK_REALTIME 405#ifndef CLOCK_REALTIME
169# undef EV_USE_REALTIME 406# undef EV_USE_REALTIME
170# define EV_USE_REALTIME 0 407# define EV_USE_REALTIME 0
171#endif 408#endif
172 409
173#if EV_SELECT_IS_WINSOCKET 410#if !EV_STAT_ENABLE
411# undef EV_USE_INOTIFY
412# define EV_USE_INOTIFY 0
413#endif
414
415#if !EV_USE_NANOSLEEP
416/* hp-ux has it in sys/time.h, which we unconditionally include above */
417# if !defined _WIN32 && !defined __hpux
418# include <sys/select.h>
419# endif
420#endif
421
422#if EV_USE_INOTIFY
423# include <sys/statfs.h>
424# include <sys/inotify.h>
425/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
426# ifndef IN_DONT_FOLLOW
427# undef EV_USE_INOTIFY
428# define EV_USE_INOTIFY 0
429# endif
430#endif
431
432#if EV_USE_EVENTFD
433/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
174# include <winsock.h> 434# include <stdint.h>
435# ifndef EFD_NONBLOCK
436# define EFD_NONBLOCK O_NONBLOCK
437# endif
438# ifndef EFD_CLOEXEC
439# ifdef O_CLOEXEC
440# define EFD_CLOEXEC O_CLOEXEC
441# else
442# define EFD_CLOEXEC 02000000
443# endif
444# endif
445EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
446#endif
447
448#if EV_USE_SIGNALFD
449/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
450# include <stdint.h>
451# ifndef SFD_NONBLOCK
452# define SFD_NONBLOCK O_NONBLOCK
453# endif
454# ifndef SFD_CLOEXEC
455# ifdef O_CLOEXEC
456# define SFD_CLOEXEC O_CLOEXEC
457# else
458# define SFD_CLOEXEC 02000000
459# endif
460# endif
461EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
462
463struct signalfd_siginfo
464{
465 uint32_t ssi_signo;
466 char pad[128 - sizeof (uint32_t)];
467};
175#endif 468#endif
176 469
177/**/ 470/**/
471
472#if EV_VERIFY >= 3
473# define EV_FREQUENT_CHECK ev_verify (EV_A)
474#else
475# define EV_FREQUENT_CHECK do { } while (0)
476#endif
477
478/*
479 * This is used to work around floating point rounding problems.
480 * This value is good at least till the year 4000.
481 */
482#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
483/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
178 484
179#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 485#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
180#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 486#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
181#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
182/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
183 487
488#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
489#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
490
491/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
492/* ECB.H BEGIN */
493/*
494 * libecb - http://software.schmorp.de/pkg/libecb
495 *
496 * Copyright (©) 2009-2014 Marc Alexander Lehmann <libecb@schmorp.de>
497 * Copyright (©) 2011 Emanuele Giaquinta
498 * All rights reserved.
499 *
500 * Redistribution and use in source and binary forms, with or without modifica-
501 * tion, are permitted provided that the following conditions are met:
502 *
503 * 1. Redistributions of source code must retain the above copyright notice,
504 * this list of conditions and the following disclaimer.
505 *
506 * 2. Redistributions in binary form must reproduce the above copyright
507 * notice, this list of conditions and the following disclaimer in the
508 * documentation and/or other materials provided with the distribution.
509 *
510 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
511 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
512 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
513 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
514 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
515 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
516 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
517 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
518 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
519 * OF THE POSSIBILITY OF SUCH DAMAGE.
520 *
521 * Alternatively, the contents of this file may be used under the terms of
522 * the GNU General Public License ("GPL") version 2 or any later version,
523 * in which case the provisions of the GPL are applicable instead of
524 * the above. If you wish to allow the use of your version of this file
525 * only under the terms of the GPL and not to allow others to use your
526 * version of this file under the BSD license, indicate your decision
527 * by deleting the provisions above and replace them with the notice
528 * and other provisions required by the GPL. If you do not delete the
529 * provisions above, a recipient may use your version of this file under
530 * either the BSD or the GPL.
531 */
532
184#ifdef EV_H 533#ifndef ECB_H
185# include EV_H 534#define ECB_H
535
536/* 16 bits major, 16 bits minor */
537#define ECB_VERSION 0x00010003
538
539#ifdef _WIN32
540 typedef signed char int8_t;
541 typedef unsigned char uint8_t;
542 typedef signed short int16_t;
543 typedef unsigned short uint16_t;
544 typedef signed int int32_t;
545 typedef unsigned int uint32_t;
546 #if __GNUC__
547 typedef signed long long int64_t;
548 typedef unsigned long long uint64_t;
549 #else /* _MSC_VER || __BORLANDC__ */
550 typedef signed __int64 int64_t;
551 typedef unsigned __int64 uint64_t;
552 #endif
553 #ifdef _WIN64
554 #define ECB_PTRSIZE 8
555 typedef uint64_t uintptr_t;
556 typedef int64_t intptr_t;
557 #else
558 #define ECB_PTRSIZE 4
559 typedef uint32_t uintptr_t;
560 typedef int32_t intptr_t;
561 #endif
186#else 562#else
187# include "ev.h" 563 #include <inttypes.h>
564 #if UINTMAX_MAX > 0xffffffffU
565 #define ECB_PTRSIZE 8
566 #else
567 #define ECB_PTRSIZE 4
188#endif 568 #endif
569#endif
189 570
190#if __GNUC__ >= 3 571/* work around x32 idiocy by defining proper macros */
191# define expect(expr,value) __builtin_expect ((expr),(value)) 572#if __amd64 || __x86_64 || _M_AMD64 || _M_X64
192# define inline static inline 573 #if _ILP32
574 #define ECB_AMD64_X32 1
575 #else
576 #define ECB_AMD64 1
577 #endif
578#endif
579
580/* many compilers define _GNUC_ to some versions but then only implement
581 * what their idiot authors think are the "more important" extensions,
582 * causing enormous grief in return for some better fake benchmark numbers.
583 * or so.
584 * we try to detect these and simply assume they are not gcc - if they have
585 * an issue with that they should have done it right in the first place.
586 */
587#ifndef ECB_GCC_VERSION
588 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
589 #define ECB_GCC_VERSION(major,minor) 0
590 #else
591 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
592 #endif
593#endif
594
595#define ECB_CPP (__cplusplus+0)
596#define ECB_CPP11 (__cplusplus >= 201103L)
597
598#if ECB_CPP
599 #define ECB_C 0
600 #define ECB_STDC_VERSION 0
193#else 601#else
602 #define ECB_C 1
603 #define ECB_STDC_VERSION __STDC_VERSION__
604#endif
605
606#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
607#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
608
609#if ECB_CPP
610 #define ECB_EXTERN_C extern "C"
611 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
612 #define ECB_EXTERN_C_END }
613#else
614 #define ECB_EXTERN_C extern
615 #define ECB_EXTERN_C_BEG
616 #define ECB_EXTERN_C_END
617#endif
618
619/*****************************************************************************/
620
621/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
622/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
623
624#if ECB_NO_THREADS
625 #define ECB_NO_SMP 1
626#endif
627
628#if ECB_NO_SMP
629 #define ECB_MEMORY_FENCE do { } while (0)
630#endif
631
632#ifndef ECB_MEMORY_FENCE
633 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
634 #if __i386 || __i386__
635 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
636 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
637 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
638 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
639 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
640 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
641 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
642 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
643 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
644 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
645 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
646 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
647 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
648 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
649 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
650 #elif __aarch64__
651 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
652 #elif (__sparc || __sparc__) && !__sparcv8
653 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
654 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
655 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
656 #elif defined __s390__ || defined __s390x__
657 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
658 #elif defined __mips__
659 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
660 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
661 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
662 #elif defined __alpha__
663 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
664 #elif defined __hppa__
665 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
666 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
667 #elif defined __ia64__
668 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
669 #elif defined __m68k__
670 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
671 #elif defined __m88k__
672 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
673 #elif defined __sh__
674 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
675 #endif
676 #endif
677#endif
678
679#ifndef ECB_MEMORY_FENCE
680 #if ECB_GCC_VERSION(4,7)
681 /* see comment below (stdatomic.h) about the C11 memory model. */
682 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
683 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
684 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
685
686 /* The __has_feature syntax from clang is so misdesigned that we cannot use it
687 * without risking compile time errors with other compilers. We *could*
688 * define our own ecb_clang_has_feature, but I just can't be bothered to work
689 * around this shit time and again.
690 * #elif defined __clang && __has_feature (cxx_atomic)
691 * // see comment below (stdatomic.h) about the C11 memory model.
692 * #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
693 * #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
694 * #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
695 */
696
697 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
698 #define ECB_MEMORY_FENCE __sync_synchronize ()
699 #elif _MSC_VER >= 1500 /* VC++ 2008 */
700 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
701 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
702 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
703 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
704 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
705 #elif _MSC_VER >= 1400 /* VC++ 2005 */
706 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
707 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
708 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
709 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
710 #elif defined _WIN32
711 #include <WinNT.h>
712 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
713 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
714 #include <mbarrier.h>
715 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
716 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
717 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
718 #elif __xlC__
719 #define ECB_MEMORY_FENCE __sync ()
720 #endif
721#endif
722
723#ifndef ECB_MEMORY_FENCE
724 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
725 /* we assume that these memory fences work on all variables/all memory accesses, */
726 /* not just C11 atomics and atomic accesses */
727 #include <stdatomic.h>
728 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
729 /* any fence other than seq_cst, which isn't very efficient for us. */
730 /* Why that is, we don't know - either the C11 memory model is quite useless */
731 /* for most usages, or gcc and clang have a bug */
732 /* I *currently* lean towards the latter, and inefficiently implement */
733 /* all three of ecb's fences as a seq_cst fence */
734 /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */
735 /* for all __atomic_thread_fence's except seq_cst */
736 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
737 #endif
738#endif
739
740#ifndef ECB_MEMORY_FENCE
741 #if !ECB_AVOID_PTHREADS
742 /*
743 * if you get undefined symbol references to pthread_mutex_lock,
744 * or failure to find pthread.h, then you should implement
745 * the ECB_MEMORY_FENCE operations for your cpu/compiler
746 * OR provide pthread.h and link against the posix thread library
747 * of your system.
748 */
749 #include <pthread.h>
750 #define ECB_NEEDS_PTHREADS 1
751 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
752
753 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
754 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
755 #endif
756#endif
757
758#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
759 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
760#endif
761
762#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
763 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
764#endif
765
766/*****************************************************************************/
767
768#if __cplusplus
769 #define ecb_inline static inline
770#elif ECB_GCC_VERSION(2,5)
771 #define ecb_inline static __inline__
772#elif ECB_C99
773 #define ecb_inline static inline
774#else
775 #define ecb_inline static
776#endif
777
778#if ECB_GCC_VERSION(3,3)
779 #define ecb_restrict __restrict__
780#elif ECB_C99
781 #define ecb_restrict restrict
782#else
783 #define ecb_restrict
784#endif
785
786typedef int ecb_bool;
787
788#define ECB_CONCAT_(a, b) a ## b
789#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
790#define ECB_STRINGIFY_(a) # a
791#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
792
793#define ecb_function_ ecb_inline
794
795#if ECB_GCC_VERSION(3,1)
796 #define ecb_attribute(attrlist) __attribute__(attrlist)
797 #define ecb_is_constant(expr) __builtin_constant_p (expr)
798 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
799 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
800#else
801 #define ecb_attribute(attrlist)
802
803 /* possible C11 impl for integral types
804 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
805 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
806
807 #define ecb_is_constant(expr) 0
194# define expect(expr,value) (expr) 808 #define ecb_expect(expr,value) (expr)
195# define inline static 809 #define ecb_prefetch(addr,rw,locality)
196#endif 810#endif
197 811
812/* no emulation for ecb_decltype */
813#if ECB_GCC_VERSION(4,5)
814 #define ecb_decltype(x) __decltype(x)
815#elif ECB_GCC_VERSION(3,0)
816 #define ecb_decltype(x) __typeof(x)
817#endif
818
819#if _MSC_VER >= 1300
820 #define ecb_deprecated __declspec(deprecated)
821#else
822 #define ecb_deprecated ecb_attribute ((__deprecated__))
823#endif
824
825#define ecb_noinline ecb_attribute ((__noinline__))
826#define ecb_unused ecb_attribute ((__unused__))
827#define ecb_const ecb_attribute ((__const__))
828#define ecb_pure ecb_attribute ((__pure__))
829
830/* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx __declspec(noreturn) */
831#if ECB_C11
832 #define ecb_noreturn _Noreturn
833#else
834 #define ecb_noreturn ecb_attribute ((__noreturn__))
835#endif
836
837#if ECB_GCC_VERSION(4,3)
838 #define ecb_artificial ecb_attribute ((__artificial__))
839 #define ecb_hot ecb_attribute ((__hot__))
840 #define ecb_cold ecb_attribute ((__cold__))
841#else
842 #define ecb_artificial
843 #define ecb_hot
844 #define ecb_cold
845#endif
846
847/* put around conditional expressions if you are very sure that the */
848/* expression is mostly true or mostly false. note that these return */
849/* booleans, not the expression. */
198#define expect_false(expr) expect ((expr) != 0, 0) 850#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
199#define expect_true(expr) expect ((expr) != 0, 1) 851#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
852/* for compatibility to the rest of the world */
853#define ecb_likely(expr) ecb_expect_true (expr)
854#define ecb_unlikely(expr) ecb_expect_false (expr)
200 855
856/* count trailing zero bits and count # of one bits */
857#if ECB_GCC_VERSION(3,4)
858 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
859 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
860 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
861 #define ecb_ctz32(x) __builtin_ctz (x)
862 #define ecb_ctz64(x) __builtin_ctzll (x)
863 #define ecb_popcount32(x) __builtin_popcount (x)
864 /* no popcountll */
865#else
866 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
867 ecb_function_ int
868 ecb_ctz32 (uint32_t x)
869 {
870 int r = 0;
871
872 x &= ~x + 1; /* this isolates the lowest bit */
873
874#if ECB_branchless_on_i386
875 r += !!(x & 0xaaaaaaaa) << 0;
876 r += !!(x & 0xcccccccc) << 1;
877 r += !!(x & 0xf0f0f0f0) << 2;
878 r += !!(x & 0xff00ff00) << 3;
879 r += !!(x & 0xffff0000) << 4;
880#else
881 if (x & 0xaaaaaaaa) r += 1;
882 if (x & 0xcccccccc) r += 2;
883 if (x & 0xf0f0f0f0) r += 4;
884 if (x & 0xff00ff00) r += 8;
885 if (x & 0xffff0000) r += 16;
886#endif
887
888 return r;
889 }
890
891 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
892 ecb_function_ int
893 ecb_ctz64 (uint64_t x)
894 {
895 int shift = x & 0xffffffffU ? 0 : 32;
896 return ecb_ctz32 (x >> shift) + shift;
897 }
898
899 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
900 ecb_function_ int
901 ecb_popcount32 (uint32_t x)
902 {
903 x -= (x >> 1) & 0x55555555;
904 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
905 x = ((x >> 4) + x) & 0x0f0f0f0f;
906 x *= 0x01010101;
907
908 return x >> 24;
909 }
910
911 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
912 ecb_function_ int ecb_ld32 (uint32_t x)
913 {
914 int r = 0;
915
916 if (x >> 16) { x >>= 16; r += 16; }
917 if (x >> 8) { x >>= 8; r += 8; }
918 if (x >> 4) { x >>= 4; r += 4; }
919 if (x >> 2) { x >>= 2; r += 2; }
920 if (x >> 1) { r += 1; }
921
922 return r;
923 }
924
925 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
926 ecb_function_ int ecb_ld64 (uint64_t x)
927 {
928 int r = 0;
929
930 if (x >> 32) { x >>= 32; r += 32; }
931
932 return r + ecb_ld32 (x);
933 }
934#endif
935
936ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
937ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
938ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
939ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
940
941ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
942ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
943{
944 return ( (x * 0x0802U & 0x22110U)
945 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
946}
947
948ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
949ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
950{
951 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
952 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
953 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
954 x = ( x >> 8 ) | ( x << 8);
955
956 return x;
957}
958
959ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
960ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
961{
962 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
963 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
964 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
965 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
966 x = ( x >> 16 ) | ( x << 16);
967
968 return x;
969}
970
971/* popcount64 is only available on 64 bit cpus as gcc builtin */
972/* so for this version we are lazy */
973ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
974ecb_function_ int
975ecb_popcount64 (uint64_t x)
976{
977 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
978}
979
980ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
981ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
982ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
983ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
984ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
985ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
986ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
987ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
988
989ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
990ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
991ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
992ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
993ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
994ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
995ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
996ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
997
998#if ECB_GCC_VERSION(4,3)
999 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1000 #define ecb_bswap32(x) __builtin_bswap32 (x)
1001 #define ecb_bswap64(x) __builtin_bswap64 (x)
1002#else
1003 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
1004 ecb_function_ uint16_t
1005 ecb_bswap16 (uint16_t x)
1006 {
1007 return ecb_rotl16 (x, 8);
1008 }
1009
1010 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
1011 ecb_function_ uint32_t
1012 ecb_bswap32 (uint32_t x)
1013 {
1014 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1015 }
1016
1017 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
1018 ecb_function_ uint64_t
1019 ecb_bswap64 (uint64_t x)
1020 {
1021 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1022 }
1023#endif
1024
1025#if ECB_GCC_VERSION(4,5)
1026 #define ecb_unreachable() __builtin_unreachable ()
1027#else
1028 /* this seems to work fine, but gcc always emits a warning for it :/ */
1029 ecb_inline void ecb_unreachable (void) ecb_noreturn;
1030 ecb_inline void ecb_unreachable (void) { }
1031#endif
1032
1033/* try to tell the compiler that some condition is definitely true */
1034#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1035
1036ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
1037ecb_inline unsigned char
1038ecb_byteorder_helper (void)
1039{
1040 /* the union code still generates code under pressure in gcc, */
1041 /* but less than using pointers, and always seems to */
1042 /* successfully return a constant. */
1043 /* the reason why we have this horrible preprocessor mess */
1044 /* is to avoid it in all cases, at least on common architectures */
1045 /* or when using a recent enough gcc version (>= 4.6) */
1046#if __i386 || __i386__ || _M_X86 || __amd64 || __amd64__ || _M_X64
1047 return 0x44;
1048#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1049 return 0x44;
1050#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1051 return 0x11;
1052#else
1053 union
1054 {
1055 uint32_t i;
1056 uint8_t c;
1057 } u = { 0x11223344 };
1058 return u.c;
1059#endif
1060}
1061
1062ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
1063ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
1064ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
1065ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
1066
1067#if ECB_GCC_VERSION(3,0) || ECB_C99
1068 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1069#else
1070 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1071#endif
1072
1073#if __cplusplus
1074 template<typename T>
1075 static inline T ecb_div_rd (T val, T div)
1076 {
1077 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1078 }
1079 template<typename T>
1080 static inline T ecb_div_ru (T val, T div)
1081 {
1082 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1083 }
1084#else
1085 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1086 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1087#endif
1088
1089#if ecb_cplusplus_does_not_suck
1090 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1091 template<typename T, int N>
1092 static inline int ecb_array_length (const T (&arr)[N])
1093 {
1094 return N;
1095 }
1096#else
1097 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1098#endif
1099
1100/*******************************************************************************/
1101/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1102
1103/* basically, everything uses "ieee pure-endian" floating point numbers */
1104/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1105#if 0 \
1106 || __i386 || __i386__ \
1107 || __amd64 || __amd64__ || __x86_64 || __x86_64__ \
1108 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1109 || defined __s390__ || defined __s390x__ \
1110 || defined __mips__ \
1111 || defined __alpha__ \
1112 || defined __hppa__ \
1113 || defined __ia64__ \
1114 || defined __m68k__ \
1115 || defined __m88k__ \
1116 || defined __sh__ \
1117 || defined _M_IX86 || defined _M_AMD64 || defined _M_IA64 \
1118 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1119 || defined __aarch64__
1120 #define ECB_STDFP 1
1121 #include <string.h> /* for memcpy */
1122#else
1123 #define ECB_STDFP 0
1124#endif
1125
1126#ifndef ECB_NO_LIBM
1127
1128 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1129
1130 /* only the oldest of old doesn't have this one. solaris. */
1131 #ifdef INFINITY
1132 #define ECB_INFINITY INFINITY
1133 #else
1134 #define ECB_INFINITY HUGE_VAL
1135 #endif
1136
1137 #ifdef NAN
1138 #define ECB_NAN NAN
1139 #else
1140 #define ECB_NAN ECB_INFINITY
1141 #endif
1142
1143 /* converts an ieee half/binary16 to a float */
1144 ecb_function_ float ecb_binary16_to_float (uint16_t x) ecb_const;
1145 ecb_function_ float
1146 ecb_binary16_to_float (uint16_t x)
1147 {
1148 int e = (x >> 10) & 0x1f;
1149 int m = x & 0x3ff;
1150 float r;
1151
1152 if (!e ) r = ldexpf (m , -24);
1153 else if (e != 31) r = ldexpf (m + 0x400, e - 25);
1154 else if (m ) r = ECB_NAN;
1155 else r = ECB_INFINITY;
1156
1157 return x & 0x8000 ? -r : r;
1158 }
1159
1160 /* convert a float to ieee single/binary32 */
1161 ecb_function_ uint32_t ecb_float_to_binary32 (float x) ecb_const;
1162 ecb_function_ uint32_t
1163 ecb_float_to_binary32 (float x)
1164 {
1165 uint32_t r;
1166
1167 #if ECB_STDFP
1168 memcpy (&r, &x, 4);
1169 #else
1170 /* slow emulation, works for anything but -0 */
1171 uint32_t m;
1172 int e;
1173
1174 if (x == 0e0f ) return 0x00000000U;
1175 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1176 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1177 if (x != x ) return 0x7fbfffffU;
1178
1179 m = frexpf (x, &e) * 0x1000000U;
1180
1181 r = m & 0x80000000U;
1182
1183 if (r)
1184 m = -m;
1185
1186 if (e <= -126)
1187 {
1188 m &= 0xffffffU;
1189 m >>= (-125 - e);
1190 e = -126;
1191 }
1192
1193 r |= (e + 126) << 23;
1194 r |= m & 0x7fffffU;
1195 #endif
1196
1197 return r;
1198 }
1199
1200 /* converts an ieee single/binary32 to a float */
1201 ecb_function_ float ecb_binary32_to_float (uint32_t x) ecb_const;
1202 ecb_function_ float
1203 ecb_binary32_to_float (uint32_t x)
1204 {
1205 float r;
1206
1207 #if ECB_STDFP
1208 memcpy (&r, &x, 4);
1209 #else
1210 /* emulation, only works for normals and subnormals and +0 */
1211 int neg = x >> 31;
1212 int e = (x >> 23) & 0xffU;
1213
1214 x &= 0x7fffffU;
1215
1216 if (e)
1217 x |= 0x800000U;
1218 else
1219 e = 1;
1220
1221 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1222 r = ldexpf (x * (0.5f / 0x800000U), e - 126);
1223
1224 r = neg ? -r : r;
1225 #endif
1226
1227 return r;
1228 }
1229
1230 /* convert a double to ieee double/binary64 */
1231 ecb_function_ uint64_t ecb_double_to_binary64 (double x) ecb_const;
1232 ecb_function_ uint64_t
1233 ecb_double_to_binary64 (double x)
1234 {
1235 uint64_t r;
1236
1237 #if ECB_STDFP
1238 memcpy (&r, &x, 8);
1239 #else
1240 /* slow emulation, works for anything but -0 */
1241 uint64_t m;
1242 int e;
1243
1244 if (x == 0e0 ) return 0x0000000000000000U;
1245 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1246 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1247 if (x != x ) return 0X7ff7ffffffffffffU;
1248
1249 m = frexp (x, &e) * 0x20000000000000U;
1250
1251 r = m & 0x8000000000000000;;
1252
1253 if (r)
1254 m = -m;
1255
1256 if (e <= -1022)
1257 {
1258 m &= 0x1fffffffffffffU;
1259 m >>= (-1021 - e);
1260 e = -1022;
1261 }
1262
1263 r |= ((uint64_t)(e + 1022)) << 52;
1264 r |= m & 0xfffffffffffffU;
1265 #endif
1266
1267 return r;
1268 }
1269
1270 /* converts an ieee double/binary64 to a double */
1271 ecb_function_ double ecb_binary64_to_double (uint64_t x) ecb_const;
1272 ecb_function_ double
1273 ecb_binary64_to_double (uint64_t x)
1274 {
1275 double r;
1276
1277 #if ECB_STDFP
1278 memcpy (&r, &x, 8);
1279 #else
1280 /* emulation, only works for normals and subnormals and +0 */
1281 int neg = x >> 63;
1282 int e = (x >> 52) & 0x7ffU;
1283
1284 x &= 0xfffffffffffffU;
1285
1286 if (e)
1287 x |= 0x10000000000000U;
1288 else
1289 e = 1;
1290
1291 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1292 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1293
1294 r = neg ? -r : r;
1295 #endif
1296
1297 return r;
1298 }
1299
1300#endif
1301
1302#endif
1303
1304/* ECB.H END */
1305
1306#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1307/* if your architecture doesn't need memory fences, e.g. because it is
1308 * single-cpu/core, or if you use libev in a project that doesn't use libev
1309 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1310 * libev, in which cases the memory fences become nops.
1311 * alternatively, you can remove this #error and link against libpthread,
1312 * which will then provide the memory fences.
1313 */
1314# error "memory fences not defined for your architecture, please report"
1315#endif
1316
1317#ifndef ECB_MEMORY_FENCE
1318# define ECB_MEMORY_FENCE do { } while (0)
1319# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1320# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1321#endif
1322
1323#define expect_false(cond) ecb_expect_false (cond)
1324#define expect_true(cond) ecb_expect_true (cond)
1325#define noinline ecb_noinline
1326
1327#define inline_size ecb_inline
1328
1329#if EV_FEATURE_CODE
1330# define inline_speed ecb_inline
1331#else
1332# define inline_speed static noinline
1333#endif
1334
201#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 1335#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1336
1337#if EV_MINPRI == EV_MAXPRI
1338# define ABSPRI(w) (((W)w), 0)
1339#else
202#define ABSPRI(w) ((w)->priority - EV_MINPRI) 1340# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1341#endif
203 1342
204#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 1343#define EMPTY /* required for microsofts broken pseudo-c compiler */
205#define EMPTY2(a,b) /* used to suppress some warnings */ 1344#define EMPTY2(a,b) /* used to suppress some warnings */
206 1345
207typedef struct ev_watcher *W; 1346typedef ev_watcher *W;
208typedef struct ev_watcher_list *WL; 1347typedef ev_watcher_list *WL;
209typedef struct ev_watcher_time *WT; 1348typedef ev_watcher_time *WT;
210 1349
1350#define ev_active(w) ((W)(w))->active
1351#define ev_at(w) ((WT)(w))->at
1352
1353#if EV_USE_REALTIME
1354/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1355/* giving it a reasonably high chance of working on typical architectures */
1356static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1357#endif
1358
1359#if EV_USE_MONOTONIC
211static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1360static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1361#endif
1362
1363#ifndef EV_FD_TO_WIN32_HANDLE
1364# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1365#endif
1366#ifndef EV_WIN32_HANDLE_TO_FD
1367# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1368#endif
1369#ifndef EV_WIN32_CLOSE_FD
1370# define EV_WIN32_CLOSE_FD(fd) close (fd)
1371#endif
212 1372
213#ifdef _WIN32 1373#ifdef _WIN32
214# include "ev_win32.c" 1374# include "ev_win32.c"
215#endif 1375#endif
216 1376
217/*****************************************************************************/ 1377/*****************************************************************************/
218 1378
1379/* define a suitable floor function (only used by periodics atm) */
1380
1381#if EV_USE_FLOOR
1382# include <math.h>
1383# define ev_floor(v) floor (v)
1384#else
1385
1386#include <float.h>
1387
1388/* a floor() replacement function, should be independent of ev_tstamp type */
1389static ev_tstamp noinline
1390ev_floor (ev_tstamp v)
1391{
1392 /* the choice of shift factor is not terribly important */
1393#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1394 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1395#else
1396 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1397#endif
1398
1399 /* argument too large for an unsigned long? */
1400 if (expect_false (v >= shift))
1401 {
1402 ev_tstamp f;
1403
1404 if (v == v - 1.)
1405 return v; /* very large number */
1406
1407 f = shift * ev_floor (v * (1. / shift));
1408 return f + ev_floor (v - f);
1409 }
1410
1411 /* special treatment for negative args? */
1412 if (expect_false (v < 0.))
1413 {
1414 ev_tstamp f = -ev_floor (-v);
1415
1416 return f - (f == v ? 0 : 1);
1417 }
1418
1419 /* fits into an unsigned long */
1420 return (unsigned long)v;
1421}
1422
1423#endif
1424
1425/*****************************************************************************/
1426
1427#ifdef __linux
1428# include <sys/utsname.h>
1429#endif
1430
1431static unsigned int noinline ecb_cold
1432ev_linux_version (void)
1433{
1434#ifdef __linux
1435 unsigned int v = 0;
1436 struct utsname buf;
1437 int i;
1438 char *p = buf.release;
1439
1440 if (uname (&buf))
1441 return 0;
1442
1443 for (i = 3+1; --i; )
1444 {
1445 unsigned int c = 0;
1446
1447 for (;;)
1448 {
1449 if (*p >= '0' && *p <= '9')
1450 c = c * 10 + *p++ - '0';
1451 else
1452 {
1453 p += *p == '.';
1454 break;
1455 }
1456 }
1457
1458 v = (v << 8) | c;
1459 }
1460
1461 return v;
1462#else
1463 return 0;
1464#endif
1465}
1466
1467/*****************************************************************************/
1468
1469#if EV_AVOID_STDIO
1470static void noinline ecb_cold
1471ev_printerr (const char *msg)
1472{
1473 write (STDERR_FILENO, msg, strlen (msg));
1474}
1475#endif
1476
219static void (*syserr_cb)(const char *msg); 1477static void (*syserr_cb)(const char *msg) EV_THROW;
220 1478
1479void ecb_cold
221void ev_set_syserr_cb (void (*cb)(const char *msg)) 1480ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
222{ 1481{
223 syserr_cb = cb; 1482 syserr_cb = cb;
224} 1483}
225 1484
226static void 1485static void noinline ecb_cold
227syserr (const char *msg) 1486ev_syserr (const char *msg)
228{ 1487{
229 if (!msg) 1488 if (!msg)
230 msg = "(libev) system error"; 1489 msg = "(libev) system error";
231 1490
232 if (syserr_cb) 1491 if (syserr_cb)
233 syserr_cb (msg); 1492 syserr_cb (msg);
234 else 1493 else
235 { 1494 {
1495#if EV_AVOID_STDIO
1496 ev_printerr (msg);
1497 ev_printerr (": ");
1498 ev_printerr (strerror (errno));
1499 ev_printerr ("\n");
1500#else
236 perror (msg); 1501 perror (msg);
1502#endif
237 abort (); 1503 abort ();
238 } 1504 }
239} 1505}
240 1506
1507static void *
1508ev_realloc_emul (void *ptr, long size) EV_THROW
1509{
1510 /* some systems, notably openbsd and darwin, fail to properly
1511 * implement realloc (x, 0) (as required by both ansi c-89 and
1512 * the single unix specification, so work around them here.
1513 * recently, also (at least) fedora and debian started breaking it,
1514 * despite documenting it otherwise.
1515 */
1516
1517 if (size)
1518 return realloc (ptr, size);
1519
1520 free (ptr);
1521 return 0;
1522}
1523
241static void *(*alloc)(void *ptr, long size); 1524static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
242 1525
1526void ecb_cold
243void ev_set_allocator (void *(*cb)(void *ptr, long size)) 1527ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
244{ 1528{
245 alloc = cb; 1529 alloc = cb;
246} 1530}
247 1531
248static void * 1532inline_speed void *
249ev_realloc (void *ptr, long size) 1533ev_realloc (void *ptr, long size)
250{ 1534{
251 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1535 ptr = alloc (ptr, size);
252 1536
253 if (!ptr && size) 1537 if (!ptr && size)
254 { 1538 {
1539#if EV_AVOID_STDIO
1540 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1541#else
255 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1542 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1543#endif
256 abort (); 1544 abort ();
257 } 1545 }
258 1546
259 return ptr; 1547 return ptr;
260} 1548}
262#define ev_malloc(size) ev_realloc (0, (size)) 1550#define ev_malloc(size) ev_realloc (0, (size))
263#define ev_free(ptr) ev_realloc ((ptr), 0) 1551#define ev_free(ptr) ev_realloc ((ptr), 0)
264 1552
265/*****************************************************************************/ 1553/*****************************************************************************/
266 1554
1555/* set in reify when reification needed */
1556#define EV_ANFD_REIFY 1
1557
1558/* file descriptor info structure */
267typedef struct 1559typedef struct
268{ 1560{
269 WL head; 1561 WL head;
270 unsigned char events; 1562 unsigned char events; /* the events watched for */
1563 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1564 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
271 unsigned char reify; 1565 unsigned char unused;
1566#if EV_USE_EPOLL
1567 unsigned int egen; /* generation counter to counter epoll bugs */
1568#endif
272#if EV_SELECT_IS_WINSOCKET 1569#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
273 SOCKET handle; 1570 SOCKET handle;
274#endif 1571#endif
1572#if EV_USE_IOCP
1573 OVERLAPPED or, ow;
1574#endif
275} ANFD; 1575} ANFD;
276 1576
1577/* stores the pending event set for a given watcher */
277typedef struct 1578typedef struct
278{ 1579{
279 W w; 1580 W w;
280 int events; 1581 int events; /* the pending event set for the given watcher */
281} ANPENDING; 1582} ANPENDING;
1583
1584#if EV_USE_INOTIFY
1585/* hash table entry per inotify-id */
1586typedef struct
1587{
1588 WL head;
1589} ANFS;
1590#endif
1591
1592/* Heap Entry */
1593#if EV_HEAP_CACHE_AT
1594 /* a heap element */
1595 typedef struct {
1596 ev_tstamp at;
1597 WT w;
1598 } ANHE;
1599
1600 #define ANHE_w(he) (he).w /* access watcher, read-write */
1601 #define ANHE_at(he) (he).at /* access cached at, read-only */
1602 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1603#else
1604 /* a heap element */
1605 typedef WT ANHE;
1606
1607 #define ANHE_w(he) (he)
1608 #define ANHE_at(he) (he)->at
1609 #define ANHE_at_cache(he)
1610#endif
282 1611
283#if EV_MULTIPLICITY 1612#if EV_MULTIPLICITY
284 1613
285 struct ev_loop 1614 struct ev_loop
286 { 1615 {
291 #undef VAR 1620 #undef VAR
292 }; 1621 };
293 #include "ev_wrap.h" 1622 #include "ev_wrap.h"
294 1623
295 static struct ev_loop default_loop_struct; 1624 static struct ev_loop default_loop_struct;
296 struct ev_loop *ev_default_loop_ptr; 1625 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
297 1626
298#else 1627#else
299 1628
300 ev_tstamp ev_rt_now; 1629 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
301 #define VAR(name,decl) static decl; 1630 #define VAR(name,decl) static decl;
302 #include "ev_vars.h" 1631 #include "ev_vars.h"
303 #undef VAR 1632 #undef VAR
304 1633
305 static int ev_default_loop_ptr; 1634 static int ev_default_loop_ptr;
306 1635
307#endif 1636#endif
308 1637
1638#if EV_FEATURE_API
1639# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1640# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1641# define EV_INVOKE_PENDING invoke_cb (EV_A)
1642#else
1643# define EV_RELEASE_CB (void)0
1644# define EV_ACQUIRE_CB (void)0
1645# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1646#endif
1647
1648#define EVBREAK_RECURSE 0x80
1649
309/*****************************************************************************/ 1650/*****************************************************************************/
310 1651
1652#ifndef EV_HAVE_EV_TIME
311ev_tstamp 1653ev_tstamp
312ev_time (void) 1654ev_time (void) EV_THROW
313{ 1655{
314#if EV_USE_REALTIME 1656#if EV_USE_REALTIME
1657 if (expect_true (have_realtime))
1658 {
315 struct timespec ts; 1659 struct timespec ts;
316 clock_gettime (CLOCK_REALTIME, &ts); 1660 clock_gettime (CLOCK_REALTIME, &ts);
317 return ts.tv_sec + ts.tv_nsec * 1e-9; 1661 return ts.tv_sec + ts.tv_nsec * 1e-9;
318#else 1662 }
1663#endif
1664
319 struct timeval tv; 1665 struct timeval tv;
320 gettimeofday (&tv, 0); 1666 gettimeofday (&tv, 0);
321 return tv.tv_sec + tv.tv_usec * 1e-6; 1667 return tv.tv_sec + tv.tv_usec * 1e-6;
322#endif
323} 1668}
1669#endif
324 1670
325inline ev_tstamp 1671inline_size ev_tstamp
326get_clock (void) 1672get_clock (void)
327{ 1673{
328#if EV_USE_MONOTONIC 1674#if EV_USE_MONOTONIC
329 if (expect_true (have_monotonic)) 1675 if (expect_true (have_monotonic))
330 { 1676 {
337 return ev_time (); 1683 return ev_time ();
338} 1684}
339 1685
340#if EV_MULTIPLICITY 1686#if EV_MULTIPLICITY
341ev_tstamp 1687ev_tstamp
342ev_now (EV_P) 1688ev_now (EV_P) EV_THROW
343{ 1689{
344 return ev_rt_now; 1690 return ev_rt_now;
345} 1691}
346#endif 1692#endif
347 1693
348#define array_roundsize(type,n) (((n) | 4) & ~3) 1694void
1695ev_sleep (ev_tstamp delay) EV_THROW
1696{
1697 if (delay > 0.)
1698 {
1699#if EV_USE_NANOSLEEP
1700 struct timespec ts;
1701
1702 EV_TS_SET (ts, delay);
1703 nanosleep (&ts, 0);
1704#elif defined _WIN32
1705 Sleep ((unsigned long)(delay * 1e3));
1706#else
1707 struct timeval tv;
1708
1709 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1710 /* something not guaranteed by newer posix versions, but guaranteed */
1711 /* by older ones */
1712 EV_TV_SET (tv, delay);
1713 select (0, 0, 0, 0, &tv);
1714#endif
1715 }
1716}
1717
1718/*****************************************************************************/
1719
1720#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1721
1722/* find a suitable new size for the given array, */
1723/* hopefully by rounding to a nice-to-malloc size */
1724inline_size int
1725array_nextsize (int elem, int cur, int cnt)
1726{
1727 int ncur = cur + 1;
1728
1729 do
1730 ncur <<= 1;
1731 while (cnt > ncur);
1732
1733 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1734 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1735 {
1736 ncur *= elem;
1737 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1738 ncur = ncur - sizeof (void *) * 4;
1739 ncur /= elem;
1740 }
1741
1742 return ncur;
1743}
1744
1745static void * noinline ecb_cold
1746array_realloc (int elem, void *base, int *cur, int cnt)
1747{
1748 *cur = array_nextsize (elem, *cur, cnt);
1749 return ev_realloc (base, elem * *cur);
1750}
1751
1752#define array_init_zero(base,count) \
1753 memset ((void *)(base), 0, sizeof (*(base)) * (count))
349 1754
350#define array_needsize(type,base,cur,cnt,init) \ 1755#define array_needsize(type,base,cur,cnt,init) \
351 if (expect_false ((cnt) > cur)) \ 1756 if (expect_false ((cnt) > (cur))) \
352 { \ 1757 { \
353 int newcnt = cur; \ 1758 int ecb_unused ocur_ = (cur); \
354 do \ 1759 (base) = (type *)array_realloc \
355 { \ 1760 (sizeof (type), (base), &(cur), (cnt)); \
356 newcnt = array_roundsize (type, newcnt << 1); \ 1761 init ((base) + (ocur_), (cur) - ocur_); \
357 } \
358 while ((cnt) > newcnt); \
359 \
360 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
361 init (base + cur, newcnt - cur); \
362 cur = newcnt; \
363 } 1762 }
364 1763
1764#if 0
365#define array_slim(type,stem) \ 1765#define array_slim(type,stem) \
366 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 1766 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
367 { \ 1767 { \
368 stem ## max = array_roundsize (stem ## cnt >> 1); \ 1768 stem ## max = array_roundsize (stem ## cnt >> 1); \
369 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 1769 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
370 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1770 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
371 } 1771 }
1772#endif
372 1773
373#define array_free(stem, idx) \ 1774#define array_free(stem, idx) \
374 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1775 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
375 1776
376/*****************************************************************************/ 1777/*****************************************************************************/
377 1778
378static void 1779/* dummy callback for pending events */
379anfds_init (ANFD *base, int count) 1780static void noinline
1781pendingcb (EV_P_ ev_prepare *w, int revents)
380{ 1782{
381 while (count--)
382 {
383 base->head = 0;
384 base->events = EV_NONE;
385 base->reify = 0;
386
387 ++base;
388 }
389} 1783}
390 1784
391void 1785void noinline
392ev_feed_event (EV_P_ void *w, int revents) 1786ev_feed_event (EV_P_ void *w, int revents) EV_THROW
393{ 1787{
394 W w_ = (W)w; 1788 W w_ = (W)w;
1789 int pri = ABSPRI (w_);
395 1790
396 if (expect_false (w_->pending)) 1791 if (expect_false (w_->pending))
1792 pendings [pri][w_->pending - 1].events |= revents;
1793 else
397 { 1794 {
1795 w_->pending = ++pendingcnt [pri];
1796 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1797 pendings [pri][w_->pending - 1].w = w_;
398 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 1798 pendings [pri][w_->pending - 1].events = revents;
399 return;
400 } 1799 }
401 1800
402 if (expect_false (!w_->cb)) 1801 pendingpri = NUMPRI - 1;
403 return;
404
405 w_->pending = ++pendingcnt [ABSPRI (w_)];
406 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
407 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
408 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
409} 1802}
410 1803
411static void 1804inline_speed void
1805feed_reverse (EV_P_ W w)
1806{
1807 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1808 rfeeds [rfeedcnt++] = w;
1809}
1810
1811inline_size void
1812feed_reverse_done (EV_P_ int revents)
1813{
1814 do
1815 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1816 while (rfeedcnt);
1817}
1818
1819inline_speed void
412queue_events (EV_P_ W *events, int eventcnt, int type) 1820queue_events (EV_P_ W *events, int eventcnt, int type)
413{ 1821{
414 int i; 1822 int i;
415 1823
416 for (i = 0; i < eventcnt; ++i) 1824 for (i = 0; i < eventcnt; ++i)
417 ev_feed_event (EV_A_ events [i], type); 1825 ev_feed_event (EV_A_ events [i], type);
418} 1826}
419 1827
1828/*****************************************************************************/
1829
420inline void 1830inline_speed void
421fd_event (EV_P_ int fd, int revents) 1831fd_event_nocheck (EV_P_ int fd, int revents)
422{ 1832{
423 ANFD *anfd = anfds + fd; 1833 ANFD *anfd = anfds + fd;
424 struct ev_io *w; 1834 ev_io *w;
425 1835
426 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 1836 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
427 { 1837 {
428 int ev = w->events & revents; 1838 int ev = w->events & revents;
429 1839
430 if (ev) 1840 if (ev)
431 ev_feed_event (EV_A_ (W)w, ev); 1841 ev_feed_event (EV_A_ (W)w, ev);
432 } 1842 }
433} 1843}
434 1844
1845/* do not submit kernel events for fds that have reify set */
1846/* because that means they changed while we were polling for new events */
1847inline_speed void
1848fd_event (EV_P_ int fd, int revents)
1849{
1850 ANFD *anfd = anfds + fd;
1851
1852 if (expect_true (!anfd->reify))
1853 fd_event_nocheck (EV_A_ fd, revents);
1854}
1855
435void 1856void
436ev_feed_fd_event (EV_P_ int fd, int revents) 1857ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
437{ 1858{
1859 if (fd >= 0 && fd < anfdmax)
438 fd_event (EV_A_ fd, revents); 1860 fd_event_nocheck (EV_A_ fd, revents);
439} 1861}
440 1862
441/*****************************************************************************/ 1863/* make sure the external fd watch events are in-sync */
442 1864/* with the kernel/libev internal state */
443inline void 1865inline_size void
444fd_reify (EV_P) 1866fd_reify (EV_P)
445{ 1867{
446 int i; 1868 int i;
447 1869
1870#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
448 for (i = 0; i < fdchangecnt; ++i) 1871 for (i = 0; i < fdchangecnt; ++i)
449 { 1872 {
450 int fd = fdchanges [i]; 1873 int fd = fdchanges [i];
451 ANFD *anfd = anfds + fd; 1874 ANFD *anfd = anfds + fd;
452 struct ev_io *w;
453 1875
454 int events = 0; 1876 if (anfd->reify & EV__IOFDSET && anfd->head)
455
456 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
457 events |= w->events;
458
459#if EV_SELECT_IS_WINSOCKET
460 if (events)
461 { 1877 {
1878 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1879
1880 if (handle != anfd->handle)
1881 {
462 unsigned long argp; 1882 unsigned long arg;
463 anfd->handle = _get_osfhandle (fd); 1883
464 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1884 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1885
1886 /* handle changed, but fd didn't - we need to do it in two steps */
1887 backend_modify (EV_A_ fd, anfd->events, 0);
1888 anfd->events = 0;
1889 anfd->handle = handle;
1890 }
465 } 1891 }
1892 }
466#endif 1893#endif
467 1894
1895 for (i = 0; i < fdchangecnt; ++i)
1896 {
1897 int fd = fdchanges [i];
1898 ANFD *anfd = anfds + fd;
1899 ev_io *w;
1900
1901 unsigned char o_events = anfd->events;
1902 unsigned char o_reify = anfd->reify;
1903
468 anfd->reify = 0; 1904 anfd->reify = 0;
469 1905
1906 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1907 {
1908 anfd->events = 0;
1909
1910 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1911 anfd->events |= (unsigned char)w->events;
1912
1913 if (o_events != anfd->events)
1914 o_reify = EV__IOFDSET; /* actually |= */
1915 }
1916
1917 if (o_reify & EV__IOFDSET)
470 backend_modify (EV_A_ fd, anfd->events, events); 1918 backend_modify (EV_A_ fd, o_events, anfd->events);
471 anfd->events = events;
472 } 1919 }
473 1920
474 fdchangecnt = 0; 1921 fdchangecnt = 0;
475} 1922}
476 1923
477static void 1924/* something about the given fd changed */
1925inline_size void
478fd_change (EV_P_ int fd) 1926fd_change (EV_P_ int fd, int flags)
479{ 1927{
480 if (expect_false (anfds [fd].reify)) 1928 unsigned char reify = anfds [fd].reify;
481 return;
482
483 anfds [fd].reify = 1; 1929 anfds [fd].reify |= flags;
484 1930
1931 if (expect_true (!reify))
1932 {
485 ++fdchangecnt; 1933 ++fdchangecnt;
486 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1934 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
487 fdchanges [fdchangecnt - 1] = fd; 1935 fdchanges [fdchangecnt - 1] = fd;
1936 }
488} 1937}
489 1938
490static void 1939/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1940inline_speed void ecb_cold
491fd_kill (EV_P_ int fd) 1941fd_kill (EV_P_ int fd)
492{ 1942{
493 struct ev_io *w; 1943 ev_io *w;
494 1944
495 while ((w = (struct ev_io *)anfds [fd].head)) 1945 while ((w = (ev_io *)anfds [fd].head))
496 { 1946 {
497 ev_io_stop (EV_A_ w); 1947 ev_io_stop (EV_A_ w);
498 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1948 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
499 } 1949 }
500} 1950}
501 1951
502inline int 1952/* check whether the given fd is actually valid, for error recovery */
1953inline_size int ecb_cold
503fd_valid (int fd) 1954fd_valid (int fd)
504{ 1955{
505#ifdef _WIN32 1956#ifdef _WIN32
506 return _get_osfhandle (fd) != -1; 1957 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
507#else 1958#else
508 return fcntl (fd, F_GETFD) != -1; 1959 return fcntl (fd, F_GETFD) != -1;
509#endif 1960#endif
510} 1961}
511 1962
512/* called on EBADF to verify fds */ 1963/* called on EBADF to verify fds */
513static void 1964static void noinline ecb_cold
514fd_ebadf (EV_P) 1965fd_ebadf (EV_P)
515{ 1966{
516 int fd; 1967 int fd;
517 1968
518 for (fd = 0; fd < anfdmax; ++fd) 1969 for (fd = 0; fd < anfdmax; ++fd)
519 if (anfds [fd].events) 1970 if (anfds [fd].events)
520 if (!fd_valid (fd) == -1 && errno == EBADF) 1971 if (!fd_valid (fd) && errno == EBADF)
521 fd_kill (EV_A_ fd); 1972 fd_kill (EV_A_ fd);
522} 1973}
523 1974
524/* called on ENOMEM in select/poll to kill some fds and retry */ 1975/* called on ENOMEM in select/poll to kill some fds and retry */
525static void 1976static void noinline ecb_cold
526fd_enomem (EV_P) 1977fd_enomem (EV_P)
527{ 1978{
528 int fd; 1979 int fd;
529 1980
530 for (fd = anfdmax; fd--; ) 1981 for (fd = anfdmax; fd--; )
531 if (anfds [fd].events) 1982 if (anfds [fd].events)
532 { 1983 {
533 fd_kill (EV_A_ fd); 1984 fd_kill (EV_A_ fd);
534 return; 1985 break;
535 } 1986 }
536} 1987}
537 1988
538/* usually called after fork if backend needs to re-arm all fds from scratch */ 1989/* usually called after fork if backend needs to re-arm all fds from scratch */
539static void 1990static void noinline
540fd_rearm_all (EV_P) 1991fd_rearm_all (EV_P)
541{ 1992{
542 int fd; 1993 int fd;
543 1994
544 /* this should be highly optimised to not do anything but set a flag */
545 for (fd = 0; fd < anfdmax; ++fd) 1995 for (fd = 0; fd < anfdmax; ++fd)
546 if (anfds [fd].events) 1996 if (anfds [fd].events)
547 { 1997 {
548 anfds [fd].events = 0; 1998 anfds [fd].events = 0;
549 fd_change (EV_A_ fd); 1999 anfds [fd].emask = 0;
2000 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
550 } 2001 }
551} 2002}
552 2003
553/*****************************************************************************/ 2004/* used to prepare libev internal fd's */
554 2005/* this is not fork-safe */
555static void
556upheap (WT *heap, int k)
557{
558 WT w = heap [k];
559
560 while (k && heap [k >> 1]->at > w->at)
561 {
562 heap [k] = heap [k >> 1];
563 ((W)heap [k])->active = k + 1;
564 k >>= 1;
565 }
566
567 heap [k] = w;
568 ((W)heap [k])->active = k + 1;
569
570}
571
572static void
573downheap (WT *heap, int N, int k)
574{
575 WT w = heap [k];
576
577 while (k < (N >> 1))
578 {
579 int j = k << 1;
580
581 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
582 ++j;
583
584 if (w->at <= heap [j]->at)
585 break;
586
587 heap [k] = heap [j];
588 ((W)heap [k])->active = k + 1;
589 k = j;
590 }
591
592 heap [k] = w;
593 ((W)heap [k])->active = k + 1;
594}
595
596inline void 2006inline_speed void
597adjustheap (WT *heap, int N, int k)
598{
599 upheap (heap, k);
600 downheap (heap, N, k);
601}
602
603/*****************************************************************************/
604
605typedef struct
606{
607 WL head;
608 sig_atomic_t volatile gotsig;
609} ANSIG;
610
611static ANSIG *signals;
612static int signalmax;
613
614static int sigpipe [2];
615static sig_atomic_t volatile gotsig;
616static struct ev_io sigev;
617
618static void
619signals_init (ANSIG *base, int count)
620{
621 while (count--)
622 {
623 base->head = 0;
624 base->gotsig = 0;
625
626 ++base;
627 }
628}
629
630static void
631sighandler (int signum)
632{
633#if _WIN32
634 signal (signum, sighandler);
635#endif
636
637 signals [signum - 1].gotsig = 1;
638
639 if (!gotsig)
640 {
641 int old_errno = errno;
642 gotsig = 1;
643 write (sigpipe [1], &signum, 1);
644 errno = old_errno;
645 }
646}
647
648void
649ev_feed_signal_event (EV_P_ int signum)
650{
651 WL w;
652
653#if EV_MULTIPLICITY
654 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
655#endif
656
657 --signum;
658
659 if (signum < 0 || signum >= signalmax)
660 return;
661
662 signals [signum].gotsig = 0;
663
664 for (w = signals [signum].head; w; w = w->next)
665 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
666}
667
668static void
669sigcb (EV_P_ struct ev_io *iow, int revents)
670{
671 int signum;
672
673 read (sigpipe [0], &revents, 1);
674 gotsig = 0;
675
676 for (signum = signalmax; signum--; )
677 if (signals [signum].gotsig)
678 ev_feed_signal_event (EV_A_ signum + 1);
679}
680
681static void
682fd_intern (int fd) 2007fd_intern (int fd)
683{ 2008{
684#ifdef _WIN32 2009#ifdef _WIN32
685 int arg = 1; 2010 unsigned long arg = 1;
686 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 2011 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
687#else 2012#else
688 fcntl (fd, F_SETFD, FD_CLOEXEC); 2013 fcntl (fd, F_SETFD, FD_CLOEXEC);
689 fcntl (fd, F_SETFL, O_NONBLOCK); 2014 fcntl (fd, F_SETFL, O_NONBLOCK);
690#endif 2015#endif
691} 2016}
692 2017
2018/*****************************************************************************/
2019
2020/*
2021 * the heap functions want a real array index. array index 0 is guaranteed to not
2022 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
2023 * the branching factor of the d-tree.
2024 */
2025
2026/*
2027 * at the moment we allow libev the luxury of two heaps,
2028 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2029 * which is more cache-efficient.
2030 * the difference is about 5% with 50000+ watchers.
2031 */
2032#if EV_USE_4HEAP
2033
2034#define DHEAP 4
2035#define HEAP0 (DHEAP - 1) /* index of first element in heap */
2036#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2037#define UPHEAP_DONE(p,k) ((p) == (k))
2038
2039/* away from the root */
2040inline_speed void
2041downheap (ANHE *heap, int N, int k)
2042{
2043 ANHE he = heap [k];
2044 ANHE *E = heap + N + HEAP0;
2045
2046 for (;;)
2047 {
2048 ev_tstamp minat;
2049 ANHE *minpos;
2050 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2051
2052 /* find minimum child */
2053 if (expect_true (pos + DHEAP - 1 < E))
2054 {
2055 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2056 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2057 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2058 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2059 }
2060 else if (pos < E)
2061 {
2062 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2063 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2064 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2065 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2066 }
2067 else
2068 break;
2069
2070 if (ANHE_at (he) <= minat)
2071 break;
2072
2073 heap [k] = *minpos;
2074 ev_active (ANHE_w (*minpos)) = k;
2075
2076 k = minpos - heap;
2077 }
2078
2079 heap [k] = he;
2080 ev_active (ANHE_w (he)) = k;
2081}
2082
2083#else /* 4HEAP */
2084
2085#define HEAP0 1
2086#define HPARENT(k) ((k) >> 1)
2087#define UPHEAP_DONE(p,k) (!(p))
2088
2089/* away from the root */
2090inline_speed void
2091downheap (ANHE *heap, int N, int k)
2092{
2093 ANHE he = heap [k];
2094
2095 for (;;)
2096 {
2097 int c = k << 1;
2098
2099 if (c >= N + HEAP0)
2100 break;
2101
2102 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2103 ? 1 : 0;
2104
2105 if (ANHE_at (he) <= ANHE_at (heap [c]))
2106 break;
2107
2108 heap [k] = heap [c];
2109 ev_active (ANHE_w (heap [k])) = k;
2110
2111 k = c;
2112 }
2113
2114 heap [k] = he;
2115 ev_active (ANHE_w (he)) = k;
2116}
2117#endif
2118
2119/* towards the root */
2120inline_speed void
2121upheap (ANHE *heap, int k)
2122{
2123 ANHE he = heap [k];
2124
2125 for (;;)
2126 {
2127 int p = HPARENT (k);
2128
2129 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2130 break;
2131
2132 heap [k] = heap [p];
2133 ev_active (ANHE_w (heap [k])) = k;
2134 k = p;
2135 }
2136
2137 heap [k] = he;
2138 ev_active (ANHE_w (he)) = k;
2139}
2140
2141/* move an element suitably so it is in a correct place */
2142inline_size void
2143adjustheap (ANHE *heap, int N, int k)
2144{
2145 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2146 upheap (heap, k);
2147 else
2148 downheap (heap, N, k);
2149}
2150
2151/* rebuild the heap: this function is used only once and executed rarely */
2152inline_size void
2153reheap (ANHE *heap, int N)
2154{
2155 int i;
2156
2157 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2158 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2159 for (i = 0; i < N; ++i)
2160 upheap (heap, i + HEAP0);
2161}
2162
2163/*****************************************************************************/
2164
2165/* associate signal watchers to a signal signal */
2166typedef struct
2167{
2168 EV_ATOMIC_T pending;
2169#if EV_MULTIPLICITY
2170 EV_P;
2171#endif
2172 WL head;
2173} ANSIG;
2174
2175static ANSIG signals [EV_NSIG - 1];
2176
2177/*****************************************************************************/
2178
2179#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2180
2181static void noinline ecb_cold
2182evpipe_init (EV_P)
2183{
2184 if (!ev_is_active (&pipe_w))
2185 {
2186 int fds [2];
2187
2188# if EV_USE_EVENTFD
2189 fds [0] = -1;
2190 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2191 if (fds [1] < 0 && errno == EINVAL)
2192 fds [1] = eventfd (0, 0);
2193
2194 if (fds [1] < 0)
2195# endif
2196 {
2197 while (pipe (fds))
2198 ev_syserr ("(libev) error creating signal/async pipe");
2199
2200 fd_intern (fds [0]);
2201 }
2202
2203 evpipe [0] = fds [0];
2204
2205 if (evpipe [1] < 0)
2206 evpipe [1] = fds [1]; /* first call, set write fd */
2207 else
2208 {
2209 /* on subsequent calls, do not change evpipe [1] */
2210 /* so that evpipe_write can always rely on its value. */
2211 /* this branch does not do anything sensible on windows, */
2212 /* so must not be executed on windows */
2213
2214 dup2 (fds [1], evpipe [1]);
2215 close (fds [1]);
2216 }
2217
2218 fd_intern (evpipe [1]);
2219
2220 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2221 ev_io_start (EV_A_ &pipe_w);
2222 ev_unref (EV_A); /* watcher should not keep loop alive */
2223 }
2224}
2225
2226inline_speed void
2227evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2228{
2229 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2230
2231 if (expect_true (*flag))
2232 return;
2233
2234 *flag = 1;
2235 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2236
2237 pipe_write_skipped = 1;
2238
2239 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2240
2241 if (pipe_write_wanted)
2242 {
2243 int old_errno;
2244
2245 pipe_write_skipped = 0;
2246 ECB_MEMORY_FENCE_RELEASE;
2247
2248 old_errno = errno; /* save errno because write will clobber it */
2249
2250#if EV_USE_EVENTFD
2251 if (evpipe [0] < 0)
2252 {
2253 uint64_t counter = 1;
2254 write (evpipe [1], &counter, sizeof (uint64_t));
2255 }
2256 else
2257#endif
2258 {
2259#ifdef _WIN32
2260 WSABUF buf;
2261 DWORD sent;
2262 buf.buf = &buf;
2263 buf.len = 1;
2264 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2265#else
2266 write (evpipe [1], &(evpipe [1]), 1);
2267#endif
2268 }
2269
2270 errno = old_errno;
2271 }
2272}
2273
2274/* called whenever the libev signal pipe */
2275/* got some events (signal, async) */
693static void 2276static void
694siginit (EV_P) 2277pipecb (EV_P_ ev_io *iow, int revents)
695{ 2278{
696 fd_intern (sigpipe [0]); 2279 int i;
697 fd_intern (sigpipe [1]);
698 2280
699 ev_io_set (&sigev, sigpipe [0], EV_READ); 2281 if (revents & EV_READ)
700 ev_io_start (EV_A_ &sigev); 2282 {
701 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2283#if EV_USE_EVENTFD
2284 if (evpipe [0] < 0)
2285 {
2286 uint64_t counter;
2287 read (evpipe [1], &counter, sizeof (uint64_t));
2288 }
2289 else
2290#endif
2291 {
2292 char dummy[4];
2293#ifdef _WIN32
2294 WSABUF buf;
2295 DWORD recvd;
2296 DWORD flags = 0;
2297 buf.buf = dummy;
2298 buf.len = sizeof (dummy);
2299 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2300#else
2301 read (evpipe [0], &dummy, sizeof (dummy));
2302#endif
2303 }
2304 }
2305
2306 pipe_write_skipped = 0;
2307
2308 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2309
2310#if EV_SIGNAL_ENABLE
2311 if (sig_pending)
2312 {
2313 sig_pending = 0;
2314
2315 ECB_MEMORY_FENCE;
2316
2317 for (i = EV_NSIG - 1; i--; )
2318 if (expect_false (signals [i].pending))
2319 ev_feed_signal_event (EV_A_ i + 1);
2320 }
2321#endif
2322
2323#if EV_ASYNC_ENABLE
2324 if (async_pending)
2325 {
2326 async_pending = 0;
2327
2328 ECB_MEMORY_FENCE;
2329
2330 for (i = asynccnt; i--; )
2331 if (asyncs [i]->sent)
2332 {
2333 asyncs [i]->sent = 0;
2334 ECB_MEMORY_FENCE_RELEASE;
2335 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2336 }
2337 }
2338#endif
702} 2339}
703 2340
704/*****************************************************************************/ 2341/*****************************************************************************/
705 2342
706static struct ev_child *childs [PID_HASHSIZE]; 2343void
2344ev_feed_signal (int signum) EV_THROW
2345{
2346#if EV_MULTIPLICITY
2347 EV_P;
2348 ECB_MEMORY_FENCE_ACQUIRE;
2349 EV_A = signals [signum - 1].loop;
707 2350
2351 if (!EV_A)
2352 return;
2353#endif
2354
2355 signals [signum - 1].pending = 1;
2356 evpipe_write (EV_A_ &sig_pending);
2357}
2358
2359static void
2360ev_sighandler (int signum)
2361{
708#ifndef _WIN32 2362#ifdef _WIN32
2363 signal (signum, ev_sighandler);
2364#endif
709 2365
2366 ev_feed_signal (signum);
2367}
2368
2369void noinline
2370ev_feed_signal_event (EV_P_ int signum) EV_THROW
2371{
2372 WL w;
2373
2374 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2375 return;
2376
2377 --signum;
2378
2379#if EV_MULTIPLICITY
2380 /* it is permissible to try to feed a signal to the wrong loop */
2381 /* or, likely more useful, feeding a signal nobody is waiting for */
2382
2383 if (expect_false (signals [signum].loop != EV_A))
2384 return;
2385#endif
2386
2387 signals [signum].pending = 0;
2388 ECB_MEMORY_FENCE_RELEASE;
2389
2390 for (w = signals [signum].head; w; w = w->next)
2391 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2392}
2393
2394#if EV_USE_SIGNALFD
2395static void
2396sigfdcb (EV_P_ ev_io *iow, int revents)
2397{
2398 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2399
2400 for (;;)
2401 {
2402 ssize_t res = read (sigfd, si, sizeof (si));
2403
2404 /* not ISO-C, as res might be -1, but works with SuS */
2405 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2406 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2407
2408 if (res < (ssize_t)sizeof (si))
2409 break;
2410 }
2411}
2412#endif
2413
2414#endif
2415
2416/*****************************************************************************/
2417
2418#if EV_CHILD_ENABLE
2419static WL childs [EV_PID_HASHSIZE];
2420
710static struct ev_signal childev; 2421static ev_signal childev;
2422
2423#ifndef WIFCONTINUED
2424# define WIFCONTINUED(status) 0
2425#endif
2426
2427/* handle a single child status event */
2428inline_speed void
2429child_reap (EV_P_ int chain, int pid, int status)
2430{
2431 ev_child *w;
2432 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2433
2434 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2435 {
2436 if ((w->pid == pid || !w->pid)
2437 && (!traced || (w->flags & 1)))
2438 {
2439 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2440 w->rpid = pid;
2441 w->rstatus = status;
2442 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2443 }
2444 }
2445}
711 2446
712#ifndef WCONTINUED 2447#ifndef WCONTINUED
713# define WCONTINUED 0 2448# define WCONTINUED 0
714#endif 2449#endif
715 2450
2451/* called on sigchld etc., calls waitpid */
716static void 2452static void
717child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
718{
719 struct ev_child *w;
720
721 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
722 if (w->pid == pid || !w->pid)
723 {
724 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
725 w->rpid = pid;
726 w->rstatus = status;
727 ev_feed_event (EV_A_ (W)w, EV_CHILD);
728 }
729}
730
731static void
732childcb (EV_P_ struct ev_signal *sw, int revents) 2453childcb (EV_P_ ev_signal *sw, int revents)
733{ 2454{
734 int pid, status; 2455 int pid, status;
735 2456
2457 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
736 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 2458 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
737 { 2459 if (!WCONTINUED
2460 || errno != EINVAL
2461 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2462 return;
2463
738 /* make sure we are called again until all childs have been reaped */ 2464 /* make sure we are called again until all children have been reaped */
739 /* we need to do it this way so that the callback gets called before we continue */ 2465 /* we need to do it this way so that the callback gets called before we continue */
740 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2466 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
741 2467
742 child_reap (EV_A_ sw, pid, pid, status); 2468 child_reap (EV_A_ pid, pid, status);
2469 if ((EV_PID_HASHSIZE) > 1)
743 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2470 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
744 }
745} 2471}
746 2472
747#endif 2473#endif
748 2474
749/*****************************************************************************/ 2475/*****************************************************************************/
750 2476
2477#if EV_USE_IOCP
2478# include "ev_iocp.c"
2479#endif
751#if EV_USE_PORT 2480#if EV_USE_PORT
752# include "ev_port.c" 2481# include "ev_port.c"
753#endif 2482#endif
754#if EV_USE_KQUEUE 2483#if EV_USE_KQUEUE
755# include "ev_kqueue.c" 2484# include "ev_kqueue.c"
762#endif 2491#endif
763#if EV_USE_SELECT 2492#if EV_USE_SELECT
764# include "ev_select.c" 2493# include "ev_select.c"
765#endif 2494#endif
766 2495
767int 2496int ecb_cold
768ev_version_major (void) 2497ev_version_major (void) EV_THROW
769{ 2498{
770 return EV_VERSION_MAJOR; 2499 return EV_VERSION_MAJOR;
771} 2500}
772 2501
773int 2502int ecb_cold
774ev_version_minor (void) 2503ev_version_minor (void) EV_THROW
775{ 2504{
776 return EV_VERSION_MINOR; 2505 return EV_VERSION_MINOR;
777} 2506}
778 2507
779/* return true if we are running with elevated privileges and should ignore env variables */ 2508/* return true if we are running with elevated privileges and should ignore env variables */
780static int 2509int inline_size ecb_cold
781enable_secure (void) 2510enable_secure (void)
782{ 2511{
783#ifdef _WIN32 2512#ifdef _WIN32
784 return 0; 2513 return 0;
785#else 2514#else
786 return getuid () != geteuid () 2515 return getuid () != geteuid ()
787 || getgid () != getegid (); 2516 || getgid () != getegid ();
788#endif 2517#endif
789} 2518}
790 2519
791unsigned int 2520unsigned int ecb_cold
792ev_supported_backends (void) 2521ev_supported_backends (void) EV_THROW
793{ 2522{
794 unsigned int flags = 0; 2523 unsigned int flags = 0;
795 2524
796 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2525 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
797 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2526 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
800 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2529 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
801 2530
802 return flags; 2531 return flags;
803} 2532}
804 2533
805unsigned int 2534unsigned int ecb_cold
806ev_recommended_backends (void) 2535ev_recommended_backends (void) EV_THROW
807{ 2536{
808 unsigned int flags = ev_supported_backends (); 2537 unsigned int flags = ev_supported_backends ();
809 2538
810#ifndef __NetBSD__ 2539#ifndef __NetBSD__
811 /* kqueue is borked on everything but netbsd apparently */ 2540 /* kqueue is borked on everything but netbsd apparently */
812 /* it usually doesn't work correctly on anything but sockets and pipes */ 2541 /* it usually doesn't work correctly on anything but sockets and pipes */
813 flags &= ~EVBACKEND_KQUEUE; 2542 flags &= ~EVBACKEND_KQUEUE;
814#endif 2543#endif
815#ifdef __APPLE__ 2544#ifdef __APPLE__
816 // flags &= ~EVBACKEND_KQUEUE; for documentation 2545 /* only select works correctly on that "unix-certified" platform */
817 flags &= ~EVBACKEND_POLL; 2546 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2547 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2548#endif
2549#ifdef __FreeBSD__
2550 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
818#endif 2551#endif
819 2552
820 return flags; 2553 return flags;
821} 2554}
822 2555
2556unsigned int ecb_cold
2557ev_embeddable_backends (void) EV_THROW
2558{
2559 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2560
2561 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2562 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2563 flags &= ~EVBACKEND_EPOLL;
2564
2565 return flags;
2566}
2567
823unsigned int 2568unsigned int
824ev_embeddable_backends (void) 2569ev_backend (EV_P) EV_THROW
825{ 2570{
826 return EVBACKEND_EPOLL 2571 return backend;
827 | EVBACKEND_KQUEUE
828 | EVBACKEND_PORT;
829} 2572}
830 2573
2574#if EV_FEATURE_API
831unsigned int 2575unsigned int
832ev_backend (EV_P) 2576ev_iteration (EV_P) EV_THROW
833{ 2577{
834 return backend; 2578 return loop_count;
835} 2579}
836 2580
837static void 2581unsigned int
2582ev_depth (EV_P) EV_THROW
2583{
2584 return loop_depth;
2585}
2586
2587void
2588ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2589{
2590 io_blocktime = interval;
2591}
2592
2593void
2594ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2595{
2596 timeout_blocktime = interval;
2597}
2598
2599void
2600ev_set_userdata (EV_P_ void *data) EV_THROW
2601{
2602 userdata = data;
2603}
2604
2605void *
2606ev_userdata (EV_P) EV_THROW
2607{
2608 return userdata;
2609}
2610
2611void
2612ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_THROW
2613{
2614 invoke_cb = invoke_pending_cb;
2615}
2616
2617void
2618ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2619{
2620 release_cb = release;
2621 acquire_cb = acquire;
2622}
2623#endif
2624
2625/* initialise a loop structure, must be zero-initialised */
2626static void noinline ecb_cold
838loop_init (EV_P_ unsigned int flags) 2627loop_init (EV_P_ unsigned int flags) EV_THROW
839{ 2628{
840 if (!backend) 2629 if (!backend)
841 { 2630 {
2631 origflags = flags;
2632
2633#if EV_USE_REALTIME
2634 if (!have_realtime)
2635 {
2636 struct timespec ts;
2637
2638 if (!clock_gettime (CLOCK_REALTIME, &ts))
2639 have_realtime = 1;
2640 }
2641#endif
2642
842#if EV_USE_MONOTONIC 2643#if EV_USE_MONOTONIC
2644 if (!have_monotonic)
843 { 2645 {
844 struct timespec ts; 2646 struct timespec ts;
2647
845 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2648 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
846 have_monotonic = 1; 2649 have_monotonic = 1;
847 } 2650 }
848#endif 2651#endif
849 2652
850 ev_rt_now = ev_time (); 2653 /* pid check not overridable via env */
851 mn_now = get_clock (); 2654#ifndef _WIN32
852 now_floor = mn_now; 2655 if (flags & EVFLAG_FORKCHECK)
853 rtmn_diff = ev_rt_now - mn_now; 2656 curpid = getpid ();
2657#endif
854 2658
855 if (!(flags & EVFLAG_NOENV) 2659 if (!(flags & EVFLAG_NOENV)
856 && !enable_secure () 2660 && !enable_secure ()
857 && getenv ("LIBEV_FLAGS")) 2661 && getenv ("LIBEV_FLAGS"))
858 flags = atoi (getenv ("LIBEV_FLAGS")); 2662 flags = atoi (getenv ("LIBEV_FLAGS"));
859 2663
860 if (!(flags & 0x0000ffffUL)) 2664 ev_rt_now = ev_time ();
2665 mn_now = get_clock ();
2666 now_floor = mn_now;
2667 rtmn_diff = ev_rt_now - mn_now;
2668#if EV_FEATURE_API
2669 invoke_cb = ev_invoke_pending;
2670#endif
2671
2672 io_blocktime = 0.;
2673 timeout_blocktime = 0.;
2674 backend = 0;
2675 backend_fd = -1;
2676 sig_pending = 0;
2677#if EV_ASYNC_ENABLE
2678 async_pending = 0;
2679#endif
2680 pipe_write_skipped = 0;
2681 pipe_write_wanted = 0;
2682 evpipe [0] = -1;
2683 evpipe [1] = -1;
2684#if EV_USE_INOTIFY
2685 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2686#endif
2687#if EV_USE_SIGNALFD
2688 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2689#endif
2690
2691 if (!(flags & EVBACKEND_MASK))
861 flags |= ev_recommended_backends (); 2692 flags |= ev_recommended_backends ();
862 2693
863 backend = 0; 2694#if EV_USE_IOCP
2695 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2696#endif
864#if EV_USE_PORT 2697#if EV_USE_PORT
865 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2698 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
866#endif 2699#endif
867#if EV_USE_KQUEUE 2700#if EV_USE_KQUEUE
868 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2701 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
875#endif 2708#endif
876#if EV_USE_SELECT 2709#if EV_USE_SELECT
877 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2710 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
878#endif 2711#endif
879 2712
2713 ev_prepare_init (&pending_w, pendingcb);
2714
2715#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
880 ev_init (&sigev, sigcb); 2716 ev_init (&pipe_w, pipecb);
881 ev_set_priority (&sigev, EV_MAXPRI); 2717 ev_set_priority (&pipe_w, EV_MAXPRI);
2718#endif
882 } 2719 }
883} 2720}
884 2721
885static void 2722/* free up a loop structure */
2723void ecb_cold
886loop_destroy (EV_P) 2724ev_loop_destroy (EV_P)
887{ 2725{
888 int i; 2726 int i;
889 2727
2728#if EV_MULTIPLICITY
2729 /* mimic free (0) */
2730 if (!EV_A)
2731 return;
2732#endif
2733
2734#if EV_CLEANUP_ENABLE
2735 /* queue cleanup watchers (and execute them) */
2736 if (expect_false (cleanupcnt))
2737 {
2738 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2739 EV_INVOKE_PENDING;
2740 }
2741#endif
2742
2743#if EV_CHILD_ENABLE
2744 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2745 {
2746 ev_ref (EV_A); /* child watcher */
2747 ev_signal_stop (EV_A_ &childev);
2748 }
2749#endif
2750
2751 if (ev_is_active (&pipe_w))
2752 {
2753 /*ev_ref (EV_A);*/
2754 /*ev_io_stop (EV_A_ &pipe_w);*/
2755
2756 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2757 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2758 }
2759
2760#if EV_USE_SIGNALFD
2761 if (ev_is_active (&sigfd_w))
2762 close (sigfd);
2763#endif
2764
2765#if EV_USE_INOTIFY
2766 if (fs_fd >= 0)
2767 close (fs_fd);
2768#endif
2769
2770 if (backend_fd >= 0)
2771 close (backend_fd);
2772
2773#if EV_USE_IOCP
2774 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2775#endif
890#if EV_USE_PORT 2776#if EV_USE_PORT
891 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2777 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
892#endif 2778#endif
893#if EV_USE_KQUEUE 2779#if EV_USE_KQUEUE
894 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2780 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
902#if EV_USE_SELECT 2788#if EV_USE_SELECT
903 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 2789 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
904#endif 2790#endif
905 2791
906 for (i = NUMPRI; i--; ) 2792 for (i = NUMPRI; i--; )
2793 {
907 array_free (pending, [i]); 2794 array_free (pending, [i]);
2795#if EV_IDLE_ENABLE
2796 array_free (idle, [i]);
2797#endif
2798 }
2799
2800 ev_free (anfds); anfds = 0; anfdmax = 0;
908 2801
909 /* have to use the microsoft-never-gets-it-right macro */ 2802 /* have to use the microsoft-never-gets-it-right macro */
2803 array_free (rfeed, EMPTY);
910 array_free (fdchange, EMPTY0); 2804 array_free (fdchange, EMPTY);
911 array_free (timer, EMPTY0); 2805 array_free (timer, EMPTY);
912#if EV_PERIODICS 2806#if EV_PERIODIC_ENABLE
913 array_free (periodic, EMPTY0); 2807 array_free (periodic, EMPTY);
914#endif 2808#endif
2809#if EV_FORK_ENABLE
2810 array_free (fork, EMPTY);
2811#endif
2812#if EV_CLEANUP_ENABLE
915 array_free (idle, EMPTY0); 2813 array_free (cleanup, EMPTY);
2814#endif
916 array_free (prepare, EMPTY0); 2815 array_free (prepare, EMPTY);
917 array_free (check, EMPTY0); 2816 array_free (check, EMPTY);
2817#if EV_ASYNC_ENABLE
2818 array_free (async, EMPTY);
2819#endif
918 2820
919 backend = 0; 2821 backend = 0;
920}
921 2822
922static void 2823#if EV_MULTIPLICITY
2824 if (ev_is_default_loop (EV_A))
2825#endif
2826 ev_default_loop_ptr = 0;
2827#if EV_MULTIPLICITY
2828 else
2829 ev_free (EV_A);
2830#endif
2831}
2832
2833#if EV_USE_INOTIFY
2834inline_size void infy_fork (EV_P);
2835#endif
2836
2837inline_size void
923loop_fork (EV_P) 2838loop_fork (EV_P)
924{ 2839{
925#if EV_USE_PORT 2840#if EV_USE_PORT
926 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2841 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
927#endif 2842#endif
929 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 2844 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
930#endif 2845#endif
931#if EV_USE_EPOLL 2846#if EV_USE_EPOLL
932 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 2847 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
933#endif 2848#endif
2849#if EV_USE_INOTIFY
2850 infy_fork (EV_A);
2851#endif
934 2852
2853#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
935 if (ev_is_active (&sigev)) 2854 if (ev_is_active (&pipe_w))
936 { 2855 {
937 /* default loop */ 2856 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
938 2857
939 ev_ref (EV_A); 2858 ev_ref (EV_A);
940 ev_io_stop (EV_A_ &sigev); 2859 ev_io_stop (EV_A_ &pipe_w);
941 close (sigpipe [0]);
942 close (sigpipe [1]);
943 2860
944 while (pipe (sigpipe)) 2861 if (evpipe [0] >= 0)
945 syserr ("(libev) error creating pipe"); 2862 EV_WIN32_CLOSE_FD (evpipe [0]);
946 2863
947 siginit (EV_A); 2864 evpipe_init (EV_A);
2865 /* iterate over everything, in case we missed something before */
2866 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
948 } 2867 }
2868#endif
949 2869
950 postfork = 0; 2870 postfork = 0;
951} 2871}
952 2872
953#if EV_MULTIPLICITY 2873#if EV_MULTIPLICITY
2874
954struct ev_loop * 2875struct ev_loop * ecb_cold
955ev_loop_new (unsigned int flags) 2876ev_loop_new (unsigned int flags) EV_THROW
956{ 2877{
957 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2878 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
958 2879
959 memset (loop, 0, sizeof (struct ev_loop)); 2880 memset (EV_A, 0, sizeof (struct ev_loop));
960
961 loop_init (EV_A_ flags); 2881 loop_init (EV_A_ flags);
962 2882
963 if (ev_backend (EV_A)) 2883 if (ev_backend (EV_A))
964 return loop; 2884 return EV_A;
965 2885
2886 ev_free (EV_A);
966 return 0; 2887 return 0;
967} 2888}
968 2889
969void 2890#endif /* multiplicity */
970ev_loop_destroy (EV_P)
971{
972 loop_destroy (EV_A);
973 ev_free (loop);
974}
975 2891
976void 2892#if EV_VERIFY
977ev_loop_fork (EV_P) 2893static void noinline ecb_cold
2894verify_watcher (EV_P_ W w)
978{ 2895{
979 postfork = 1; 2896 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
980}
981 2897
2898 if (w->pending)
2899 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2900}
2901
2902static void noinline ecb_cold
2903verify_heap (EV_P_ ANHE *heap, int N)
2904{
2905 int i;
2906
2907 for (i = HEAP0; i < N + HEAP0; ++i)
2908 {
2909 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2910 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2911 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2912
2913 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2914 }
2915}
2916
2917static void noinline ecb_cold
2918array_verify (EV_P_ W *ws, int cnt)
2919{
2920 while (cnt--)
2921 {
2922 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2923 verify_watcher (EV_A_ ws [cnt]);
2924 }
2925}
2926#endif
2927
2928#if EV_FEATURE_API
2929void ecb_cold
2930ev_verify (EV_P) EV_THROW
2931{
2932#if EV_VERIFY
2933 int i;
2934 WL w, w2;
2935
2936 assert (activecnt >= -1);
2937
2938 assert (fdchangemax >= fdchangecnt);
2939 for (i = 0; i < fdchangecnt; ++i)
2940 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2941
2942 assert (anfdmax >= 0);
2943 for (i = 0; i < anfdmax; ++i)
2944 {
2945 int j = 0;
2946
2947 for (w = w2 = anfds [i].head; w; w = w->next)
2948 {
2949 verify_watcher (EV_A_ (W)w);
2950
2951 if (j++ & 1)
2952 {
2953 assert (("libev: io watcher list contains a loop", w != w2));
2954 w2 = w2->next;
2955 }
2956
2957 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2958 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2959 }
2960 }
2961
2962 assert (timermax >= timercnt);
2963 verify_heap (EV_A_ timers, timercnt);
2964
2965#if EV_PERIODIC_ENABLE
2966 assert (periodicmax >= periodiccnt);
2967 verify_heap (EV_A_ periodics, periodiccnt);
2968#endif
2969
2970 for (i = NUMPRI; i--; )
2971 {
2972 assert (pendingmax [i] >= pendingcnt [i]);
2973#if EV_IDLE_ENABLE
2974 assert (idleall >= 0);
2975 assert (idlemax [i] >= idlecnt [i]);
2976 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2977#endif
2978 }
2979
2980#if EV_FORK_ENABLE
2981 assert (forkmax >= forkcnt);
2982 array_verify (EV_A_ (W *)forks, forkcnt);
2983#endif
2984
2985#if EV_CLEANUP_ENABLE
2986 assert (cleanupmax >= cleanupcnt);
2987 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2988#endif
2989
2990#if EV_ASYNC_ENABLE
2991 assert (asyncmax >= asynccnt);
2992 array_verify (EV_A_ (W *)asyncs, asynccnt);
2993#endif
2994
2995#if EV_PREPARE_ENABLE
2996 assert (preparemax >= preparecnt);
2997 array_verify (EV_A_ (W *)prepares, preparecnt);
2998#endif
2999
3000#if EV_CHECK_ENABLE
3001 assert (checkmax >= checkcnt);
3002 array_verify (EV_A_ (W *)checks, checkcnt);
3003#endif
3004
3005# if 0
3006#if EV_CHILD_ENABLE
3007 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3008 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3009#endif
3010# endif
3011#endif
3012}
982#endif 3013#endif
983 3014
984#if EV_MULTIPLICITY 3015#if EV_MULTIPLICITY
985struct ev_loop * 3016struct ev_loop * ecb_cold
986ev_default_loop_init (unsigned int flags)
987#else 3017#else
988int 3018int
3019#endif
989ev_default_loop (unsigned int flags) 3020ev_default_loop (unsigned int flags) EV_THROW
990#endif
991{ 3021{
992 if (sigpipe [0] == sigpipe [1])
993 if (pipe (sigpipe))
994 return 0;
995
996 if (!ev_default_loop_ptr) 3022 if (!ev_default_loop_ptr)
997 { 3023 {
998#if EV_MULTIPLICITY 3024#if EV_MULTIPLICITY
999 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 3025 EV_P = ev_default_loop_ptr = &default_loop_struct;
1000#else 3026#else
1001 ev_default_loop_ptr = 1; 3027 ev_default_loop_ptr = 1;
1002#endif 3028#endif
1003 3029
1004 loop_init (EV_A_ flags); 3030 loop_init (EV_A_ flags);
1005 3031
1006 if (ev_backend (EV_A)) 3032 if (ev_backend (EV_A))
1007 { 3033 {
1008 siginit (EV_A); 3034#if EV_CHILD_ENABLE
1009
1010#ifndef _WIN32
1011 ev_signal_init (&childev, childcb, SIGCHLD); 3035 ev_signal_init (&childev, childcb, SIGCHLD);
1012 ev_set_priority (&childev, EV_MAXPRI); 3036 ev_set_priority (&childev, EV_MAXPRI);
1013 ev_signal_start (EV_A_ &childev); 3037 ev_signal_start (EV_A_ &childev);
1014 ev_unref (EV_A); /* child watcher should not keep loop alive */ 3038 ev_unref (EV_A); /* child watcher should not keep loop alive */
1015#endif 3039#endif
1020 3044
1021 return ev_default_loop_ptr; 3045 return ev_default_loop_ptr;
1022} 3046}
1023 3047
1024void 3048void
1025ev_default_destroy (void) 3049ev_loop_fork (EV_P) EV_THROW
1026{ 3050{
1027#if EV_MULTIPLICITY 3051 postfork = 1;
1028 struct ev_loop *loop = ev_default_loop_ptr;
1029#endif
1030
1031#ifndef _WIN32
1032 ev_ref (EV_A); /* child watcher */
1033 ev_signal_stop (EV_A_ &childev);
1034#endif
1035
1036 ev_ref (EV_A); /* signal watcher */
1037 ev_io_stop (EV_A_ &sigev);
1038
1039 close (sigpipe [0]); sigpipe [0] = 0;
1040 close (sigpipe [1]); sigpipe [1] = 0;
1041
1042 loop_destroy (EV_A);
1043} 3052}
3053
3054/*****************************************************************************/
1044 3055
1045void 3056void
1046ev_default_fork (void) 3057ev_invoke (EV_P_ void *w, int revents)
1047{ 3058{
1048#if EV_MULTIPLICITY 3059 EV_CB_INVOKE ((W)w, revents);
1049 struct ev_loop *loop = ev_default_loop_ptr;
1050#endif
1051
1052 if (backend)
1053 postfork = 1;
1054} 3060}
1055 3061
1056/*****************************************************************************/ 3062unsigned int
1057 3063ev_pending_count (EV_P) EV_THROW
1058static int
1059any_pending (EV_P)
1060{ 3064{
1061 int pri; 3065 int pri;
3066 unsigned int count = 0;
1062 3067
1063 for (pri = NUMPRI; pri--; ) 3068 for (pri = NUMPRI; pri--; )
1064 if (pendingcnt [pri]) 3069 count += pendingcnt [pri];
1065 return 1;
1066 3070
1067 return 0; 3071 return count;
1068} 3072}
1069 3073
1070inline void 3074void noinline
1071call_pending (EV_P) 3075ev_invoke_pending (EV_P)
1072{ 3076{
1073 int pri; 3077 pendingpri = NUMPRI;
1074 3078
1075 for (pri = NUMPRI; pri--; ) 3079 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
3080 {
3081 --pendingpri;
3082
1076 while (pendingcnt [pri]) 3083 while (pendingcnt [pendingpri])
1077 {
1078 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1079
1080 if (expect_true (p->w))
1081 { 3084 {
3085 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
3086
1082 p->w->pending = 0; 3087 p->w->pending = 0;
1083 EV_CB_INVOKE (p->w, p->events); 3088 EV_CB_INVOKE (p->w, p->events);
3089 EV_FREQUENT_CHECK;
3090 }
3091 }
3092}
3093
3094#if EV_IDLE_ENABLE
3095/* make idle watchers pending. this handles the "call-idle */
3096/* only when higher priorities are idle" logic */
3097inline_size void
3098idle_reify (EV_P)
3099{
3100 if (expect_false (idleall))
3101 {
3102 int pri;
3103
3104 for (pri = NUMPRI; pri--; )
3105 {
3106 if (pendingcnt [pri])
3107 break;
3108
3109 if (idlecnt [pri])
3110 {
3111 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3112 break;
1084 } 3113 }
1085 } 3114 }
3115 }
1086} 3116}
3117#endif
1087 3118
3119/* make timers pending */
1088inline void 3120inline_size void
1089timers_reify (EV_P) 3121timers_reify (EV_P)
1090{ 3122{
3123 EV_FREQUENT_CHECK;
3124
1091 while (timercnt && ((WT)timers [0])->at <= mn_now) 3125 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1092 { 3126 {
1093 struct ev_timer *w = timers [0]; 3127 do
1094
1095 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1096
1097 /* first reschedule or stop timer */
1098 if (w->repeat)
1099 { 3128 {
3129 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3130
3131 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3132
3133 /* first reschedule or stop timer */
3134 if (w->repeat)
3135 {
3136 ev_at (w) += w->repeat;
3137 if (ev_at (w) < mn_now)
3138 ev_at (w) = mn_now;
3139
1100 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3140 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1101 3141
1102 ((WT)w)->at += w->repeat; 3142 ANHE_at_cache (timers [HEAP0]);
1103 if (((WT)w)->at < mn_now)
1104 ((WT)w)->at = mn_now;
1105
1106 downheap ((WT *)timers, timercnt, 0); 3143 downheap (timers, timercnt, HEAP0);
3144 }
3145 else
3146 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3147
3148 EV_FREQUENT_CHECK;
3149 feed_reverse (EV_A_ (W)w);
1107 } 3150 }
1108 else 3151 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1109 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1110 3152
1111 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 3153 feed_reverse_done (EV_A_ EV_TIMER);
3154 }
3155}
3156
3157#if EV_PERIODIC_ENABLE
3158
3159static void noinline
3160periodic_recalc (EV_P_ ev_periodic *w)
3161{
3162 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3163 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3164
3165 /* the above almost always errs on the low side */
3166 while (at <= ev_rt_now)
1112 } 3167 {
1113} 3168 ev_tstamp nat = at + w->interval;
1114 3169
1115#if EV_PERIODICS 3170 /* when resolution fails us, we use ev_rt_now */
3171 if (expect_false (nat == at))
3172 {
3173 at = ev_rt_now;
3174 break;
3175 }
3176
3177 at = nat;
3178 }
3179
3180 ev_at (w) = at;
3181}
3182
3183/* make periodics pending */
1116inline void 3184inline_size void
1117periodics_reify (EV_P) 3185periodics_reify (EV_P)
1118{ 3186{
3187 EV_FREQUENT_CHECK;
3188
1119 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 3189 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1120 { 3190 {
1121 struct ev_periodic *w = periodics [0]; 3191 do
3192 {
3193 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1122 3194
1123 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 3195 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1124 3196
1125 /* first reschedule or stop timer */ 3197 /* first reschedule or stop timer */
3198 if (w->reschedule_cb)
3199 {
3200 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3201
3202 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3203
3204 ANHE_at_cache (periodics [HEAP0]);
3205 downheap (periodics, periodiccnt, HEAP0);
3206 }
3207 else if (w->interval)
3208 {
3209 periodic_recalc (EV_A_ w);
3210 ANHE_at_cache (periodics [HEAP0]);
3211 downheap (periodics, periodiccnt, HEAP0);
3212 }
3213 else
3214 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3215
3216 EV_FREQUENT_CHECK;
3217 feed_reverse (EV_A_ (W)w);
3218 }
3219 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3220
3221 feed_reverse_done (EV_A_ EV_PERIODIC);
3222 }
3223}
3224
3225/* simply recalculate all periodics */
3226/* TODO: maybe ensure that at least one event happens when jumping forward? */
3227static void noinline ecb_cold
3228periodics_reschedule (EV_P)
3229{
3230 int i;
3231
3232 /* adjust periodics after time jump */
3233 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3234 {
3235 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3236
1126 if (w->reschedule_cb) 3237 if (w->reschedule_cb)
3238 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3239 else if (w->interval)
3240 periodic_recalc (EV_A_ w);
3241
3242 ANHE_at_cache (periodics [i]);
3243 }
3244
3245 reheap (periodics, periodiccnt);
3246}
3247#endif
3248
3249/* adjust all timers by a given offset */
3250static void noinline ecb_cold
3251timers_reschedule (EV_P_ ev_tstamp adjust)
3252{
3253 int i;
3254
3255 for (i = 0; i < timercnt; ++i)
3256 {
3257 ANHE *he = timers + i + HEAP0;
3258 ANHE_w (*he)->at += adjust;
3259 ANHE_at_cache (*he);
3260 }
3261}
3262
3263/* fetch new monotonic and realtime times from the kernel */
3264/* also detect if there was a timejump, and act accordingly */
3265inline_speed void
3266time_update (EV_P_ ev_tstamp max_block)
3267{
3268#if EV_USE_MONOTONIC
3269 if (expect_true (have_monotonic))
3270 {
3271 int i;
3272 ev_tstamp odiff = rtmn_diff;
3273
3274 mn_now = get_clock ();
3275
3276 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3277 /* interpolate in the meantime */
3278 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1127 { 3279 {
1128 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 3280 ev_rt_now = rtmn_diff + mn_now;
1129 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 3281 return;
1130 downheap ((WT *)periodics, periodiccnt, 0);
1131 } 3282 }
1132 else if (w->interval)
1133 {
1134 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1135 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1136 downheap ((WT *)periodics, periodiccnt, 0);
1137 }
1138 else
1139 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1140 3283
1141 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1142 }
1143}
1144
1145static void
1146periodics_reschedule (EV_P)
1147{
1148 int i;
1149
1150 /* adjust periodics after time jump */
1151 for (i = 0; i < periodiccnt; ++i)
1152 {
1153 struct ev_periodic *w = periodics [i];
1154
1155 if (w->reschedule_cb)
1156 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1157 else if (w->interval)
1158 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1159 }
1160
1161 /* now rebuild the heap */
1162 for (i = periodiccnt >> 1; i--; )
1163 downheap ((WT *)periodics, periodiccnt, i);
1164}
1165#endif
1166
1167inline int
1168time_update_monotonic (EV_P)
1169{
1170 mn_now = get_clock ();
1171
1172 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1173 {
1174 ev_rt_now = rtmn_diff + mn_now;
1175 return 0;
1176 }
1177 else
1178 {
1179 now_floor = mn_now; 3284 now_floor = mn_now;
1180 ev_rt_now = ev_time (); 3285 ev_rt_now = ev_time ();
1181 return 1;
1182 }
1183}
1184 3286
1185inline void 3287 /* loop a few times, before making important decisions.
1186time_update (EV_P) 3288 * on the choice of "4": one iteration isn't enough,
1187{ 3289 * in case we get preempted during the calls to
1188 int i; 3290 * ev_time and get_clock. a second call is almost guaranteed
1189 3291 * to succeed in that case, though. and looping a few more times
1190#if EV_USE_MONOTONIC 3292 * doesn't hurt either as we only do this on time-jumps or
1191 if (expect_true (have_monotonic)) 3293 * in the unlikely event of having been preempted here.
1192 { 3294 */
1193 if (time_update_monotonic (EV_A)) 3295 for (i = 4; --i; )
1194 { 3296 {
1195 ev_tstamp odiff = rtmn_diff; 3297 ev_tstamp diff;
1196
1197 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1198 {
1199 rtmn_diff = ev_rt_now - mn_now; 3298 rtmn_diff = ev_rt_now - mn_now;
1200 3299
1201 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 3300 diff = odiff - rtmn_diff;
3301
3302 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1202 return; /* all is well */ 3303 return; /* all is well */
1203 3304
1204 ev_rt_now = ev_time (); 3305 ev_rt_now = ev_time ();
1205 mn_now = get_clock (); 3306 mn_now = get_clock ();
1206 now_floor = mn_now; 3307 now_floor = mn_now;
1207 } 3308 }
1208 3309
3310 /* no timer adjustment, as the monotonic clock doesn't jump */
3311 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1209# if EV_PERIODICS 3312# if EV_PERIODIC_ENABLE
3313 periodics_reschedule (EV_A);
3314# endif
3315 }
3316 else
3317#endif
3318 {
3319 ev_rt_now = ev_time ();
3320
3321 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
3322 {
3323 /* adjust timers. this is easy, as the offset is the same for all of them */
3324 timers_reschedule (EV_A_ ev_rt_now - mn_now);
3325#if EV_PERIODIC_ENABLE
1210 periodics_reschedule (EV_A); 3326 periodics_reschedule (EV_A);
1211# endif 3327#endif
1212 /* no timer adjustment, as the monotonic clock doesn't jump */
1213 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1214 } 3328 }
1215 }
1216 else
1217#endif
1218 {
1219 ev_rt_now = ev_time ();
1220
1221 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1222 {
1223#if EV_PERIODICS
1224 periodics_reschedule (EV_A);
1225#endif
1226
1227 /* adjust timers. this is easy, as the offset is the same for all */
1228 for (i = 0; i < timercnt; ++i)
1229 ((WT)timers [i])->at += ev_rt_now - mn_now;
1230 }
1231 3329
1232 mn_now = ev_rt_now; 3330 mn_now = ev_rt_now;
1233 } 3331 }
1234} 3332}
1235 3333
1236void 3334int
1237ev_ref (EV_P)
1238{
1239 ++activecnt;
1240}
1241
1242void
1243ev_unref (EV_P)
1244{
1245 --activecnt;
1246}
1247
1248static int loop_done;
1249
1250void
1251ev_loop (EV_P_ int flags) 3335ev_run (EV_P_ int flags)
1252{ 3336{
1253 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 3337#if EV_FEATURE_API
1254 ? EVUNLOOP_ONE 3338 ++loop_depth;
1255 : EVUNLOOP_CANCEL; 3339#endif
1256 3340
1257 while (activecnt) 3341 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3342
3343 loop_done = EVBREAK_CANCEL;
3344
3345 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
3346
3347 do
1258 { 3348 {
3349#if EV_VERIFY >= 2
3350 ev_verify (EV_A);
3351#endif
3352
3353#ifndef _WIN32
3354 if (expect_false (curpid)) /* penalise the forking check even more */
3355 if (expect_false (getpid () != curpid))
3356 {
3357 curpid = getpid ();
3358 postfork = 1;
3359 }
3360#endif
3361
3362#if EV_FORK_ENABLE
3363 /* we might have forked, so queue fork handlers */
3364 if (expect_false (postfork))
3365 if (forkcnt)
3366 {
3367 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3368 EV_INVOKE_PENDING;
3369 }
3370#endif
3371
3372#if EV_PREPARE_ENABLE
1259 /* queue check watchers (and execute them) */ 3373 /* queue prepare watchers (and execute them) */
1260 if (expect_false (preparecnt)) 3374 if (expect_false (preparecnt))
1261 { 3375 {
1262 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3376 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1263 call_pending (EV_A); 3377 EV_INVOKE_PENDING;
1264 } 3378 }
3379#endif
3380
3381 if (expect_false (loop_done))
3382 break;
1265 3383
1266 /* we might have forked, so reify kernel state if necessary */ 3384 /* we might have forked, so reify kernel state if necessary */
1267 if (expect_false (postfork)) 3385 if (expect_false (postfork))
1268 loop_fork (EV_A); 3386 loop_fork (EV_A);
1269 3387
1270 /* update fd-related kernel structures */ 3388 /* update fd-related kernel structures */
1271 fd_reify (EV_A); 3389 fd_reify (EV_A);
1272 3390
1273 /* calculate blocking time */ 3391 /* calculate blocking time */
1274 { 3392 {
1275 double block; 3393 ev_tstamp waittime = 0.;
3394 ev_tstamp sleeptime = 0.;
1276 3395
1277 if (flags & EVLOOP_NONBLOCK || idlecnt) 3396 /* remember old timestamp for io_blocktime calculation */
1278 block = 0.; /* do not block at all */ 3397 ev_tstamp prev_mn_now = mn_now;
1279 else 3398
3399 /* update time to cancel out callback processing overhead */
3400 time_update (EV_A_ 1e100);
3401
3402 /* from now on, we want a pipe-wake-up */
3403 pipe_write_wanted = 1;
3404
3405 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3406
3407 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1280 { 3408 {
1281 /* update time to cancel out callback processing overhead */
1282#if EV_USE_MONOTONIC
1283 if (expect_true (have_monotonic))
1284 time_update_monotonic (EV_A);
1285 else
1286#endif
1287 {
1288 ev_rt_now = ev_time ();
1289 mn_now = ev_rt_now;
1290 }
1291
1292 block = MAX_BLOCKTIME; 3409 waittime = MAX_BLOCKTIME;
1293 3410
1294 if (timercnt) 3411 if (timercnt)
1295 { 3412 {
1296 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 3413 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1297 if (block > to) block = to; 3414 if (waittime > to) waittime = to;
1298 } 3415 }
1299 3416
1300#if EV_PERIODICS 3417#if EV_PERIODIC_ENABLE
1301 if (periodiccnt) 3418 if (periodiccnt)
1302 { 3419 {
1303 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 3420 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1304 if (block > to) block = to; 3421 if (waittime > to) waittime = to;
1305 } 3422 }
1306#endif 3423#endif
1307 3424
3425 /* don't let timeouts decrease the waittime below timeout_blocktime */
3426 if (expect_false (waittime < timeout_blocktime))
3427 waittime = timeout_blocktime;
3428
3429 /* at this point, we NEED to wait, so we have to ensure */
3430 /* to pass a minimum nonzero value to the backend */
3431 if (expect_false (waittime < backend_mintime))
3432 waittime = backend_mintime;
3433
3434 /* extra check because io_blocktime is commonly 0 */
1308 if (expect_false (block < 0.)) block = 0.; 3435 if (expect_false (io_blocktime))
3436 {
3437 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3438
3439 if (sleeptime > waittime - backend_mintime)
3440 sleeptime = waittime - backend_mintime;
3441
3442 if (expect_true (sleeptime > 0.))
3443 {
3444 ev_sleep (sleeptime);
3445 waittime -= sleeptime;
3446 }
3447 }
1309 } 3448 }
1310 3449
3450#if EV_FEATURE_API
3451 ++loop_count;
3452#endif
3453 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1311 backend_poll (EV_A_ block); 3454 backend_poll (EV_A_ waittime);
3455 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3456
3457 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3458
3459 ECB_MEMORY_FENCE_ACQUIRE;
3460 if (pipe_write_skipped)
3461 {
3462 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3463 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3464 }
3465
3466
3467 /* update ev_rt_now, do magic */
3468 time_update (EV_A_ waittime + sleeptime);
1312 } 3469 }
1313
1314 /* update ev_rt_now, do magic */
1315 time_update (EV_A);
1316 3470
1317 /* queue pending timers and reschedule them */ 3471 /* queue pending timers and reschedule them */
1318 timers_reify (EV_A); /* relative timers called last */ 3472 timers_reify (EV_A); /* relative timers called last */
1319#if EV_PERIODICS 3473#if EV_PERIODIC_ENABLE
1320 periodics_reify (EV_A); /* absolute timers called first */ 3474 periodics_reify (EV_A); /* absolute timers called first */
1321#endif 3475#endif
1322 3476
3477#if EV_IDLE_ENABLE
1323 /* queue idle watchers unless io or timers are pending */ 3478 /* queue idle watchers unless other events are pending */
1324 if (idlecnt && !any_pending (EV_A)) 3479 idle_reify (EV_A);
1325 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 3480#endif
1326 3481
3482#if EV_CHECK_ENABLE
1327 /* queue check watchers, to be executed first */ 3483 /* queue check watchers, to be executed first */
1328 if (expect_false (checkcnt)) 3484 if (expect_false (checkcnt))
1329 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3485 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3486#endif
1330 3487
1331 call_pending (EV_A); 3488 EV_INVOKE_PENDING;
1332
1333 if (expect_false (loop_done))
1334 break;
1335 } 3489 }
3490 while (expect_true (
3491 activecnt
3492 && !loop_done
3493 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3494 ));
1336 3495
1337 if (loop_done == EVUNLOOP_ONE) 3496 if (loop_done == EVBREAK_ONE)
1338 loop_done = EVUNLOOP_CANCEL; 3497 loop_done = EVBREAK_CANCEL;
3498
3499#if EV_FEATURE_API
3500 --loop_depth;
3501#endif
3502
3503 return activecnt;
1339} 3504}
1340 3505
1341void 3506void
1342ev_unloop (EV_P_ int how) 3507ev_break (EV_P_ int how) EV_THROW
1343{ 3508{
1344 loop_done = how; 3509 loop_done = how;
1345} 3510}
1346 3511
3512void
3513ev_ref (EV_P) EV_THROW
3514{
3515 ++activecnt;
3516}
3517
3518void
3519ev_unref (EV_P) EV_THROW
3520{
3521 --activecnt;
3522}
3523
3524void
3525ev_now_update (EV_P) EV_THROW
3526{
3527 time_update (EV_A_ 1e100);
3528}
3529
3530void
3531ev_suspend (EV_P) EV_THROW
3532{
3533 ev_now_update (EV_A);
3534}
3535
3536void
3537ev_resume (EV_P) EV_THROW
3538{
3539 ev_tstamp mn_prev = mn_now;
3540
3541 ev_now_update (EV_A);
3542 timers_reschedule (EV_A_ mn_now - mn_prev);
3543#if EV_PERIODIC_ENABLE
3544 /* TODO: really do this? */
3545 periodics_reschedule (EV_A);
3546#endif
3547}
3548
1347/*****************************************************************************/ 3549/*****************************************************************************/
3550/* singly-linked list management, used when the expected list length is short */
1348 3551
1349inline void 3552inline_size void
1350wlist_add (WL *head, WL elem) 3553wlist_add (WL *head, WL elem)
1351{ 3554{
1352 elem->next = *head; 3555 elem->next = *head;
1353 *head = elem; 3556 *head = elem;
1354} 3557}
1355 3558
1356inline void 3559inline_size void
1357wlist_del (WL *head, WL elem) 3560wlist_del (WL *head, WL elem)
1358{ 3561{
1359 while (*head) 3562 while (*head)
1360 { 3563 {
1361 if (*head == elem) 3564 if (expect_true (*head == elem))
1362 { 3565 {
1363 *head = elem->next; 3566 *head = elem->next;
1364 return; 3567 break;
1365 } 3568 }
1366 3569
1367 head = &(*head)->next; 3570 head = &(*head)->next;
1368 } 3571 }
1369} 3572}
1370 3573
3574/* internal, faster, version of ev_clear_pending */
1371inline void 3575inline_speed void
1372ev_clear_pending (EV_P_ W w) 3576clear_pending (EV_P_ W w)
1373{ 3577{
1374 if (w->pending) 3578 if (w->pending)
1375 { 3579 {
1376 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3580 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1377 w->pending = 0; 3581 w->pending = 0;
1378 } 3582 }
1379} 3583}
1380 3584
3585int
3586ev_clear_pending (EV_P_ void *w) EV_THROW
3587{
3588 W w_ = (W)w;
3589 int pending = w_->pending;
3590
3591 if (expect_true (pending))
3592 {
3593 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3594 p->w = (W)&pending_w;
3595 w_->pending = 0;
3596 return p->events;
3597 }
3598 else
3599 return 0;
3600}
3601
1381inline void 3602inline_size void
3603pri_adjust (EV_P_ W w)
3604{
3605 int pri = ev_priority (w);
3606 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3607 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3608 ev_set_priority (w, pri);
3609}
3610
3611inline_speed void
1382ev_start (EV_P_ W w, int active) 3612ev_start (EV_P_ W w, int active)
1383{ 3613{
1384 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 3614 pri_adjust (EV_A_ w);
1385 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1386
1387 w->active = active; 3615 w->active = active;
1388 ev_ref (EV_A); 3616 ev_ref (EV_A);
1389} 3617}
1390 3618
1391inline void 3619inline_size void
1392ev_stop (EV_P_ W w) 3620ev_stop (EV_P_ W w)
1393{ 3621{
1394 ev_unref (EV_A); 3622 ev_unref (EV_A);
1395 w->active = 0; 3623 w->active = 0;
1396} 3624}
1397 3625
1398/*****************************************************************************/ 3626/*****************************************************************************/
1399 3627
1400void 3628void noinline
1401ev_io_start (EV_P_ struct ev_io *w) 3629ev_io_start (EV_P_ ev_io *w) EV_THROW
1402{ 3630{
1403 int fd = w->fd; 3631 int fd = w->fd;
1404 3632
1405 if (expect_false (ev_is_active (w))) 3633 if (expect_false (ev_is_active (w)))
1406 return; 3634 return;
1407 3635
1408 assert (("ev_io_start called with negative fd", fd >= 0)); 3636 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3637 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3638
3639 EV_FREQUENT_CHECK;
1409 3640
1410 ev_start (EV_A_ (W)w, 1); 3641 ev_start (EV_A_ (W)w, 1);
1411 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3642 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1412 wlist_add ((WL *)&anfds[fd].head, (WL)w); 3643 wlist_add (&anfds[fd].head, (WL)w);
1413 3644
1414 fd_change (EV_A_ fd); 3645 /* common bug, apparently */
1415} 3646 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
1416 3647
1417void 3648 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3649 w->events &= ~EV__IOFDSET;
3650
3651 EV_FREQUENT_CHECK;
3652}
3653
3654void noinline
1418ev_io_stop (EV_P_ struct ev_io *w) 3655ev_io_stop (EV_P_ ev_io *w) EV_THROW
1419{ 3656{
1420 ev_clear_pending (EV_A_ (W)w); 3657 clear_pending (EV_A_ (W)w);
1421 if (expect_false (!ev_is_active (w))) 3658 if (expect_false (!ev_is_active (w)))
1422 return; 3659 return;
1423 3660
1424 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3661 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1425 3662
3663 EV_FREQUENT_CHECK;
3664
1426 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 3665 wlist_del (&anfds[w->fd].head, (WL)w);
1427 ev_stop (EV_A_ (W)w); 3666 ev_stop (EV_A_ (W)w);
1428 3667
1429 fd_change (EV_A_ w->fd); 3668 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1430}
1431 3669
1432void 3670 EV_FREQUENT_CHECK;
3671}
3672
3673void noinline
1433ev_timer_start (EV_P_ struct ev_timer *w) 3674ev_timer_start (EV_P_ ev_timer *w) EV_THROW
1434{ 3675{
1435 if (expect_false (ev_is_active (w))) 3676 if (expect_false (ev_is_active (w)))
1436 return; 3677 return;
1437 3678
1438 ((WT)w)->at += mn_now; 3679 ev_at (w) += mn_now;
1439 3680
1440 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3681 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1441 3682
3683 EV_FREQUENT_CHECK;
3684
3685 ++timercnt;
1442 ev_start (EV_A_ (W)w, ++timercnt); 3686 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1443 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 3687 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1444 timers [timercnt - 1] = w; 3688 ANHE_w (timers [ev_active (w)]) = (WT)w;
1445 upheap ((WT *)timers, timercnt - 1); 3689 ANHE_at_cache (timers [ev_active (w)]);
3690 upheap (timers, ev_active (w));
1446 3691
3692 EV_FREQUENT_CHECK;
3693
1447 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3694 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1448} 3695}
1449 3696
1450void 3697void noinline
1451ev_timer_stop (EV_P_ struct ev_timer *w) 3698ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
1452{ 3699{
1453 ev_clear_pending (EV_A_ (W)w); 3700 clear_pending (EV_A_ (W)w);
1454 if (expect_false (!ev_is_active (w))) 3701 if (expect_false (!ev_is_active (w)))
1455 return; 3702 return;
1456 3703
3704 EV_FREQUENT_CHECK;
3705
3706 {
3707 int active = ev_active (w);
3708
1457 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3709 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1458 3710
3711 --timercnt;
3712
1459 if (expect_true (((W)w)->active < timercnt--)) 3713 if (expect_true (active < timercnt + HEAP0))
1460 { 3714 {
1461 timers [((W)w)->active - 1] = timers [timercnt]; 3715 timers [active] = timers [timercnt + HEAP0];
1462 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 3716 adjustheap (timers, timercnt, active);
1463 } 3717 }
3718 }
1464 3719
1465 ((WT)w)->at -= mn_now; 3720 ev_at (w) -= mn_now;
1466 3721
1467 ev_stop (EV_A_ (W)w); 3722 ev_stop (EV_A_ (W)w);
1468}
1469 3723
1470void 3724 EV_FREQUENT_CHECK;
3725}
3726
3727void noinline
1471ev_timer_again (EV_P_ struct ev_timer *w) 3728ev_timer_again (EV_P_ ev_timer *w) EV_THROW
1472{ 3729{
3730 EV_FREQUENT_CHECK;
3731
3732 clear_pending (EV_A_ (W)w);
3733
1473 if (ev_is_active (w)) 3734 if (ev_is_active (w))
1474 { 3735 {
1475 if (w->repeat) 3736 if (w->repeat)
1476 { 3737 {
1477 ((WT)w)->at = mn_now + w->repeat; 3738 ev_at (w) = mn_now + w->repeat;
3739 ANHE_at_cache (timers [ev_active (w)]);
1478 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 3740 adjustheap (timers, timercnt, ev_active (w));
1479 } 3741 }
1480 else 3742 else
1481 ev_timer_stop (EV_A_ w); 3743 ev_timer_stop (EV_A_ w);
1482 } 3744 }
1483 else if (w->repeat) 3745 else if (w->repeat)
1484 { 3746 {
1485 w->at = w->repeat; 3747 ev_at (w) = w->repeat;
1486 ev_timer_start (EV_A_ w); 3748 ev_timer_start (EV_A_ w);
1487 } 3749 }
1488}
1489 3750
3751 EV_FREQUENT_CHECK;
3752}
3753
3754ev_tstamp
3755ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3756{
3757 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3758}
3759
1490#if EV_PERIODICS 3760#if EV_PERIODIC_ENABLE
1491void 3761void noinline
1492ev_periodic_start (EV_P_ struct ev_periodic *w) 3762ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
1493{ 3763{
1494 if (expect_false (ev_is_active (w))) 3764 if (expect_false (ev_is_active (w)))
1495 return; 3765 return;
1496 3766
1497 if (w->reschedule_cb) 3767 if (w->reschedule_cb)
1498 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 3768 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1499 else if (w->interval) 3769 else if (w->interval)
1500 { 3770 {
1501 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3771 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1502 /* this formula differs from the one in periodic_reify because we do not always round up */ 3772 periodic_recalc (EV_A_ w);
1503 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1504 } 3773 }
3774 else
3775 ev_at (w) = w->offset;
1505 3776
3777 EV_FREQUENT_CHECK;
3778
3779 ++periodiccnt;
1506 ev_start (EV_A_ (W)w, ++periodiccnt); 3780 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1507 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 3781 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1508 periodics [periodiccnt - 1] = w; 3782 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1509 upheap ((WT *)periodics, periodiccnt - 1); 3783 ANHE_at_cache (periodics [ev_active (w)]);
3784 upheap (periodics, ev_active (w));
1510 3785
3786 EV_FREQUENT_CHECK;
3787
1511 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3788 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1512} 3789}
1513 3790
1514void 3791void noinline
1515ev_periodic_stop (EV_P_ struct ev_periodic *w) 3792ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
1516{ 3793{
1517 ev_clear_pending (EV_A_ (W)w); 3794 clear_pending (EV_A_ (W)w);
1518 if (expect_false (!ev_is_active (w))) 3795 if (expect_false (!ev_is_active (w)))
1519 return; 3796 return;
1520 3797
3798 EV_FREQUENT_CHECK;
3799
3800 {
3801 int active = ev_active (w);
3802
1521 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3803 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1522 3804
3805 --periodiccnt;
3806
1523 if (expect_true (((W)w)->active < periodiccnt--)) 3807 if (expect_true (active < periodiccnt + HEAP0))
1524 { 3808 {
1525 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 3809 periodics [active] = periodics [periodiccnt + HEAP0];
1526 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 3810 adjustheap (periodics, periodiccnt, active);
1527 } 3811 }
3812 }
1528 3813
1529 ev_stop (EV_A_ (W)w); 3814 ev_stop (EV_A_ (W)w);
1530}
1531 3815
1532void 3816 EV_FREQUENT_CHECK;
3817}
3818
3819void noinline
1533ev_periodic_again (EV_P_ struct ev_periodic *w) 3820ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
1534{ 3821{
1535 /* TODO: use adjustheap and recalculation */ 3822 /* TODO: use adjustheap and recalculation */
1536 ev_periodic_stop (EV_A_ w); 3823 ev_periodic_stop (EV_A_ w);
1537 ev_periodic_start (EV_A_ w); 3824 ev_periodic_start (EV_A_ w);
1538} 3825}
1539#endif 3826#endif
1540 3827
1541void 3828#ifndef SA_RESTART
1542ev_idle_start (EV_P_ struct ev_idle *w) 3829# define SA_RESTART 0
3830#endif
3831
3832#if EV_SIGNAL_ENABLE
3833
3834void noinline
3835ev_signal_start (EV_P_ ev_signal *w) EV_THROW
1543{ 3836{
1544 if (expect_false (ev_is_active (w))) 3837 if (expect_false (ev_is_active (w)))
1545 return; 3838 return;
1546 3839
3840 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3841
3842#if EV_MULTIPLICITY
3843 assert (("libev: a signal must not be attached to two different loops",
3844 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3845
3846 signals [w->signum - 1].loop = EV_A;
3847 ECB_MEMORY_FENCE_RELEASE;
3848#endif
3849
3850 EV_FREQUENT_CHECK;
3851
3852#if EV_USE_SIGNALFD
3853 if (sigfd == -2)
3854 {
3855 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3856 if (sigfd < 0 && errno == EINVAL)
3857 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3858
3859 if (sigfd >= 0)
3860 {
3861 fd_intern (sigfd); /* doing it twice will not hurt */
3862
3863 sigemptyset (&sigfd_set);
3864
3865 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3866 ev_set_priority (&sigfd_w, EV_MAXPRI);
3867 ev_io_start (EV_A_ &sigfd_w);
3868 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3869 }
3870 }
3871
3872 if (sigfd >= 0)
3873 {
3874 /* TODO: check .head */
3875 sigaddset (&sigfd_set, w->signum);
3876 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3877
3878 signalfd (sigfd, &sigfd_set, 0);
3879 }
3880#endif
3881
1547 ev_start (EV_A_ (W)w, ++idlecnt); 3882 ev_start (EV_A_ (W)w, 1);
1548 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2); 3883 wlist_add (&signals [w->signum - 1].head, (WL)w);
1549 idles [idlecnt - 1] = w;
1550}
1551 3884
1552void 3885 if (!((WL)w)->next)
1553ev_idle_stop (EV_P_ struct ev_idle *w) 3886# if EV_USE_SIGNALFD
3887 if (sigfd < 0) /*TODO*/
3888# endif
3889 {
3890# ifdef _WIN32
3891 evpipe_init (EV_A);
3892
3893 signal (w->signum, ev_sighandler);
3894# else
3895 struct sigaction sa;
3896
3897 evpipe_init (EV_A);
3898
3899 sa.sa_handler = ev_sighandler;
3900 sigfillset (&sa.sa_mask);
3901 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3902 sigaction (w->signum, &sa, 0);
3903
3904 if (origflags & EVFLAG_NOSIGMASK)
3905 {
3906 sigemptyset (&sa.sa_mask);
3907 sigaddset (&sa.sa_mask, w->signum);
3908 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3909 }
3910#endif
3911 }
3912
3913 EV_FREQUENT_CHECK;
3914}
3915
3916void noinline
3917ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
1554{ 3918{
1555 ev_clear_pending (EV_A_ (W)w); 3919 clear_pending (EV_A_ (W)w);
1556 if (expect_false (!ev_is_active (w))) 3920 if (expect_false (!ev_is_active (w)))
1557 return; 3921 return;
1558 3922
1559 idles [((W)w)->active - 1] = idles [--idlecnt]; 3923 EV_FREQUENT_CHECK;
3924
3925 wlist_del (&signals [w->signum - 1].head, (WL)w);
1560 ev_stop (EV_A_ (W)w); 3926 ev_stop (EV_A_ (W)w);
3927
3928 if (!signals [w->signum - 1].head)
3929 {
3930#if EV_MULTIPLICITY
3931 signals [w->signum - 1].loop = 0; /* unattach from signal */
3932#endif
3933#if EV_USE_SIGNALFD
3934 if (sigfd >= 0)
3935 {
3936 sigset_t ss;
3937
3938 sigemptyset (&ss);
3939 sigaddset (&ss, w->signum);
3940 sigdelset (&sigfd_set, w->signum);
3941
3942 signalfd (sigfd, &sigfd_set, 0);
3943 sigprocmask (SIG_UNBLOCK, &ss, 0);
3944 }
3945 else
3946#endif
3947 signal (w->signum, SIG_DFL);
3948 }
3949
3950 EV_FREQUENT_CHECK;
1561} 3951}
3952
3953#endif
3954
3955#if EV_CHILD_ENABLE
1562 3956
1563void 3957void
1564ev_prepare_start (EV_P_ struct ev_prepare *w) 3958ev_child_start (EV_P_ ev_child *w) EV_THROW
1565{ 3959{
3960#if EV_MULTIPLICITY
3961 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
3962#endif
1566 if (expect_false (ev_is_active (w))) 3963 if (expect_false (ev_is_active (w)))
1567 return; 3964 return;
1568 3965
3966 EV_FREQUENT_CHECK;
3967
1569 ev_start (EV_A_ (W)w, ++preparecnt); 3968 ev_start (EV_A_ (W)w, 1);
1570 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3969 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1571 prepares [preparecnt - 1] = w; 3970
3971 EV_FREQUENT_CHECK;
1572} 3972}
1573 3973
1574void 3974void
1575ev_prepare_stop (EV_P_ struct ev_prepare *w) 3975ev_child_stop (EV_P_ ev_child *w) EV_THROW
1576{ 3976{
1577 ev_clear_pending (EV_A_ (W)w); 3977 clear_pending (EV_A_ (W)w);
1578 if (expect_false (!ev_is_active (w))) 3978 if (expect_false (!ev_is_active (w)))
1579 return; 3979 return;
1580 3980
1581 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 3981 EV_FREQUENT_CHECK;
3982
3983 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1582 ev_stop (EV_A_ (W)w); 3984 ev_stop (EV_A_ (W)w);
3985
3986 EV_FREQUENT_CHECK;
1583} 3987}
3988
3989#endif
3990
3991#if EV_STAT_ENABLE
3992
3993# ifdef _WIN32
3994# undef lstat
3995# define lstat(a,b) _stati64 (a,b)
3996# endif
3997
3998#define DEF_STAT_INTERVAL 5.0074891
3999#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
4000#define MIN_STAT_INTERVAL 0.1074891
4001
4002static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
4003
4004#if EV_USE_INOTIFY
4005
4006/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4007# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4008
4009static void noinline
4010infy_add (EV_P_ ev_stat *w)
4011{
4012 w->wd = inotify_add_watch (fs_fd, w->path,
4013 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4014 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4015 | IN_DONT_FOLLOW | IN_MASK_ADD);
4016
4017 if (w->wd >= 0)
4018 {
4019 struct statfs sfs;
4020
4021 /* now local changes will be tracked by inotify, but remote changes won't */
4022 /* unless the filesystem is known to be local, we therefore still poll */
4023 /* also do poll on <2.6.25, but with normal frequency */
4024
4025 if (!fs_2625)
4026 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4027 else if (!statfs (w->path, &sfs)
4028 && (sfs.f_type == 0x1373 /* devfs */
4029 || sfs.f_type == 0x4006 /* fat */
4030 || sfs.f_type == 0x4d44 /* msdos */
4031 || sfs.f_type == 0xEF53 /* ext2/3 */
4032 || sfs.f_type == 0x72b6 /* jffs2 */
4033 || sfs.f_type == 0x858458f6 /* ramfs */
4034 || sfs.f_type == 0x5346544e /* ntfs */
4035 || sfs.f_type == 0x3153464a /* jfs */
4036 || sfs.f_type == 0x9123683e /* btrfs */
4037 || sfs.f_type == 0x52654973 /* reiser3 */
4038 || sfs.f_type == 0x01021994 /* tmpfs */
4039 || sfs.f_type == 0x58465342 /* xfs */))
4040 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4041 else
4042 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
4043 }
4044 else
4045 {
4046 /* can't use inotify, continue to stat */
4047 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4048
4049 /* if path is not there, monitor some parent directory for speedup hints */
4050 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4051 /* but an efficiency issue only */
4052 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
4053 {
4054 char path [4096];
4055 strcpy (path, w->path);
4056
4057 do
4058 {
4059 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
4060 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
4061
4062 char *pend = strrchr (path, '/');
4063
4064 if (!pend || pend == path)
4065 break;
4066
4067 *pend = 0;
4068 w->wd = inotify_add_watch (fs_fd, path, mask);
4069 }
4070 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
4071 }
4072 }
4073
4074 if (w->wd >= 0)
4075 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4076
4077 /* now re-arm timer, if required */
4078 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4079 ev_timer_again (EV_A_ &w->timer);
4080 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4081}
4082
4083static void noinline
4084infy_del (EV_P_ ev_stat *w)
4085{
4086 int slot;
4087 int wd = w->wd;
4088
4089 if (wd < 0)
4090 return;
4091
4092 w->wd = -2;
4093 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4094 wlist_del (&fs_hash [slot].head, (WL)w);
4095
4096 /* remove this watcher, if others are watching it, they will rearm */
4097 inotify_rm_watch (fs_fd, wd);
4098}
4099
4100static void noinline
4101infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4102{
4103 if (slot < 0)
4104 /* overflow, need to check for all hash slots */
4105 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4106 infy_wd (EV_A_ slot, wd, ev);
4107 else
4108 {
4109 WL w_;
4110
4111 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4112 {
4113 ev_stat *w = (ev_stat *)w_;
4114 w_ = w_->next; /* lets us remove this watcher and all before it */
4115
4116 if (w->wd == wd || wd == -1)
4117 {
4118 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4119 {
4120 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4121 w->wd = -1;
4122 infy_add (EV_A_ w); /* re-add, no matter what */
4123 }
4124
4125 stat_timer_cb (EV_A_ &w->timer, 0);
4126 }
4127 }
4128 }
4129}
4130
4131static void
4132infy_cb (EV_P_ ev_io *w, int revents)
4133{
4134 char buf [EV_INOTIFY_BUFSIZE];
4135 int ofs;
4136 int len = read (fs_fd, buf, sizeof (buf));
4137
4138 for (ofs = 0; ofs < len; )
4139 {
4140 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4141 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4142 ofs += sizeof (struct inotify_event) + ev->len;
4143 }
4144}
4145
4146inline_size void ecb_cold
4147ev_check_2625 (EV_P)
4148{
4149 /* kernels < 2.6.25 are borked
4150 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4151 */
4152 if (ev_linux_version () < 0x020619)
4153 return;
4154
4155 fs_2625 = 1;
4156}
4157
4158inline_size int
4159infy_newfd (void)
4160{
4161#if defined IN_CLOEXEC && defined IN_NONBLOCK
4162 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4163 if (fd >= 0)
4164 return fd;
4165#endif
4166 return inotify_init ();
4167}
4168
4169inline_size void
4170infy_init (EV_P)
4171{
4172 if (fs_fd != -2)
4173 return;
4174
4175 fs_fd = -1;
4176
4177 ev_check_2625 (EV_A);
4178
4179 fs_fd = infy_newfd ();
4180
4181 if (fs_fd >= 0)
4182 {
4183 fd_intern (fs_fd);
4184 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4185 ev_set_priority (&fs_w, EV_MAXPRI);
4186 ev_io_start (EV_A_ &fs_w);
4187 ev_unref (EV_A);
4188 }
4189}
4190
4191inline_size void
4192infy_fork (EV_P)
4193{
4194 int slot;
4195
4196 if (fs_fd < 0)
4197 return;
4198
4199 ev_ref (EV_A);
4200 ev_io_stop (EV_A_ &fs_w);
4201 close (fs_fd);
4202 fs_fd = infy_newfd ();
4203
4204 if (fs_fd >= 0)
4205 {
4206 fd_intern (fs_fd);
4207 ev_io_set (&fs_w, fs_fd, EV_READ);
4208 ev_io_start (EV_A_ &fs_w);
4209 ev_unref (EV_A);
4210 }
4211
4212 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4213 {
4214 WL w_ = fs_hash [slot].head;
4215 fs_hash [slot].head = 0;
4216
4217 while (w_)
4218 {
4219 ev_stat *w = (ev_stat *)w_;
4220 w_ = w_->next; /* lets us add this watcher */
4221
4222 w->wd = -1;
4223
4224 if (fs_fd >= 0)
4225 infy_add (EV_A_ w); /* re-add, no matter what */
4226 else
4227 {
4228 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4229 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4230 ev_timer_again (EV_A_ &w->timer);
4231 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4232 }
4233 }
4234 }
4235}
4236
4237#endif
4238
4239#ifdef _WIN32
4240# define EV_LSTAT(p,b) _stati64 (p, b)
4241#else
4242# define EV_LSTAT(p,b) lstat (p, b)
4243#endif
1584 4244
1585void 4245void
1586ev_check_start (EV_P_ struct ev_check *w) 4246ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
4247{
4248 if (lstat (w->path, &w->attr) < 0)
4249 w->attr.st_nlink = 0;
4250 else if (!w->attr.st_nlink)
4251 w->attr.st_nlink = 1;
4252}
4253
4254static void noinline
4255stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4256{
4257 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4258
4259 ev_statdata prev = w->attr;
4260 ev_stat_stat (EV_A_ w);
4261
4262 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4263 if (
4264 prev.st_dev != w->attr.st_dev
4265 || prev.st_ino != w->attr.st_ino
4266 || prev.st_mode != w->attr.st_mode
4267 || prev.st_nlink != w->attr.st_nlink
4268 || prev.st_uid != w->attr.st_uid
4269 || prev.st_gid != w->attr.st_gid
4270 || prev.st_rdev != w->attr.st_rdev
4271 || prev.st_size != w->attr.st_size
4272 || prev.st_atime != w->attr.st_atime
4273 || prev.st_mtime != w->attr.st_mtime
4274 || prev.st_ctime != w->attr.st_ctime
4275 ) {
4276 /* we only update w->prev on actual differences */
4277 /* in case we test more often than invoke the callback, */
4278 /* to ensure that prev is always different to attr */
4279 w->prev = prev;
4280
4281 #if EV_USE_INOTIFY
4282 if (fs_fd >= 0)
4283 {
4284 infy_del (EV_A_ w);
4285 infy_add (EV_A_ w);
4286 ev_stat_stat (EV_A_ w); /* avoid race... */
4287 }
4288 #endif
4289
4290 ev_feed_event (EV_A_ w, EV_STAT);
4291 }
4292}
4293
4294void
4295ev_stat_start (EV_P_ ev_stat *w) EV_THROW
1587{ 4296{
1588 if (expect_false (ev_is_active (w))) 4297 if (expect_false (ev_is_active (w)))
1589 return; 4298 return;
1590 4299
4300 ev_stat_stat (EV_A_ w);
4301
4302 if (w->interval < MIN_STAT_INTERVAL && w->interval)
4303 w->interval = MIN_STAT_INTERVAL;
4304
4305 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
4306 ev_set_priority (&w->timer, ev_priority (w));
4307
4308#if EV_USE_INOTIFY
4309 infy_init (EV_A);
4310
4311 if (fs_fd >= 0)
4312 infy_add (EV_A_ w);
4313 else
4314#endif
4315 {
4316 ev_timer_again (EV_A_ &w->timer);
4317 ev_unref (EV_A);
4318 }
4319
1591 ev_start (EV_A_ (W)w, ++checkcnt); 4320 ev_start (EV_A_ (W)w, 1);
1592 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2); 4321
1593 checks [checkcnt - 1] = w; 4322 EV_FREQUENT_CHECK;
1594} 4323}
1595 4324
1596void 4325void
1597ev_check_stop (EV_P_ struct ev_check *w) 4326ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
1598{ 4327{
1599 ev_clear_pending (EV_A_ (W)w); 4328 clear_pending (EV_A_ (W)w);
1600 if (expect_false (!ev_is_active (w))) 4329 if (expect_false (!ev_is_active (w)))
1601 return; 4330 return;
1602 4331
1603 checks [((W)w)->active - 1] = checks [--checkcnt]; 4332 EV_FREQUENT_CHECK;
4333
4334#if EV_USE_INOTIFY
4335 infy_del (EV_A_ w);
4336#endif
4337
4338 if (ev_is_active (&w->timer))
4339 {
4340 ev_ref (EV_A);
4341 ev_timer_stop (EV_A_ &w->timer);
4342 }
4343
1604 ev_stop (EV_A_ (W)w); 4344 ev_stop (EV_A_ (W)w);
1605}
1606 4345
1607#ifndef SA_RESTART 4346 EV_FREQUENT_CHECK;
1608# define SA_RESTART 0 4347}
1609#endif 4348#endif
1610 4349
4350#if EV_IDLE_ENABLE
1611void 4351void
1612ev_signal_start (EV_P_ struct ev_signal *w) 4352ev_idle_start (EV_P_ ev_idle *w) EV_THROW
1613{ 4353{
1614#if EV_MULTIPLICITY
1615 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1616#endif
1617 if (expect_false (ev_is_active (w))) 4354 if (expect_false (ev_is_active (w)))
1618 return; 4355 return;
1619 4356
1620 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 4357 pri_adjust (EV_A_ (W)w);
1621 4358
4359 EV_FREQUENT_CHECK;
4360
4361 {
4362 int active = ++idlecnt [ABSPRI (w)];
4363
4364 ++idleall;
1622 ev_start (EV_A_ (W)w, 1); 4365 ev_start (EV_A_ (W)w, active);
1623 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1624 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1625 4366
1626 if (!((WL)w)->next) 4367 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1627 { 4368 idles [ABSPRI (w)][active - 1] = w;
1628#if _WIN32
1629 signal (w->signum, sighandler);
1630#else
1631 struct sigaction sa;
1632 sa.sa_handler = sighandler;
1633 sigfillset (&sa.sa_mask);
1634 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1635 sigaction (w->signum, &sa, 0);
1636#endif
1637 } 4369 }
4370
4371 EV_FREQUENT_CHECK;
1638} 4372}
1639 4373
1640void 4374void
1641ev_signal_stop (EV_P_ struct ev_signal *w) 4375ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
1642{ 4376{
1643 ev_clear_pending (EV_A_ (W)w); 4377 clear_pending (EV_A_ (W)w);
1644 if (expect_false (!ev_is_active (w))) 4378 if (expect_false (!ev_is_active (w)))
1645 return; 4379 return;
1646 4380
1647 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 4381 EV_FREQUENT_CHECK;
4382
4383 {
4384 int active = ev_active (w);
4385
4386 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4387 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4388
1648 ev_stop (EV_A_ (W)w); 4389 ev_stop (EV_A_ (W)w);
4390 --idleall;
4391 }
1649 4392
1650 if (!signals [w->signum - 1].head) 4393 EV_FREQUENT_CHECK;
1651 signal (w->signum, SIG_DFL);
1652} 4394}
4395#endif
1653 4396
4397#if EV_PREPARE_ENABLE
1654void 4398void
1655ev_child_start (EV_P_ struct ev_child *w) 4399ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
1656{ 4400{
1657#if EV_MULTIPLICITY
1658 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1659#endif
1660 if (expect_false (ev_is_active (w))) 4401 if (expect_false (ev_is_active (w)))
1661 return; 4402 return;
1662 4403
4404 EV_FREQUENT_CHECK;
4405
1663 ev_start (EV_A_ (W)w, 1); 4406 ev_start (EV_A_ (W)w, ++preparecnt);
1664 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 4407 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
4408 prepares [preparecnt - 1] = w;
4409
4410 EV_FREQUENT_CHECK;
1665} 4411}
1666 4412
1667void 4413void
1668ev_child_stop (EV_P_ struct ev_child *w) 4414ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
1669{ 4415{
1670 ev_clear_pending (EV_A_ (W)w); 4416 clear_pending (EV_A_ (W)w);
1671 if (expect_false (!ev_is_active (w))) 4417 if (expect_false (!ev_is_active (w)))
1672 return; 4418 return;
1673 4419
1674 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 4420 EV_FREQUENT_CHECK;
4421
4422 {
4423 int active = ev_active (w);
4424
4425 prepares [active - 1] = prepares [--preparecnt];
4426 ev_active (prepares [active - 1]) = active;
4427 }
4428
1675 ev_stop (EV_A_ (W)w); 4429 ev_stop (EV_A_ (W)w);
1676}
1677 4430
1678#if EV_MULTIPLICITY 4431 EV_FREQUENT_CHECK;
1679static void
1680embed_cb (EV_P_ struct ev_io *io, int revents)
1681{
1682 struct ev_embed *w = (struct ev_embed *)(((char *)io) - offsetof (struct ev_embed, io));
1683
1684 ev_feed_event (EV_A_ (W)w, EV_EMBED);
1685 ev_loop (w->loop, EVLOOP_NONBLOCK);
1686} 4432}
4433#endif
1687 4434
4435#if EV_CHECK_ENABLE
1688void 4436void
1689ev_embed_start (EV_P_ struct ev_embed *w) 4437ev_check_start (EV_P_ ev_check *w) EV_THROW
1690{ 4438{
1691 if (expect_false (ev_is_active (w))) 4439 if (expect_false (ev_is_active (w)))
1692 return; 4440 return;
1693 4441
1694 { 4442 EV_FREQUENT_CHECK;
1695 struct ev_loop *loop = w->loop;
1696 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
1697 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
1698 }
1699 4443
1700 ev_io_start (EV_A_ &w->io);
1701 ev_start (EV_A_ (W)w, 1); 4444 ev_start (EV_A_ (W)w, ++checkcnt);
4445 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4446 checks [checkcnt - 1] = w;
4447
4448 EV_FREQUENT_CHECK;
1702} 4449}
1703 4450
1704void 4451void
1705ev_embed_stop (EV_P_ struct ev_embed *w) 4452ev_check_stop (EV_P_ ev_check *w) EV_THROW
1706{ 4453{
1707 ev_clear_pending (EV_A_ (W)w); 4454 clear_pending (EV_A_ (W)w);
1708 if (expect_false (!ev_is_active (w))) 4455 if (expect_false (!ev_is_active (w)))
1709 return; 4456 return;
1710 4457
1711 ev_io_stop (EV_A_ &w->io); 4458 EV_FREQUENT_CHECK;
4459
4460 {
4461 int active = ev_active (w);
4462
4463 checks [active - 1] = checks [--checkcnt];
4464 ev_active (checks [active - 1]) = active;
4465 }
4466
1712 ev_stop (EV_A_ (W)w); 4467 ev_stop (EV_A_ (W)w);
4468
4469 EV_FREQUENT_CHECK;
4470}
4471#endif
4472
4473#if EV_EMBED_ENABLE
4474void noinline
4475ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
4476{
4477 ev_run (w->other, EVRUN_NOWAIT);
4478}
4479
4480static void
4481embed_io_cb (EV_P_ ev_io *io, int revents)
4482{
4483 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4484
4485 if (ev_cb (w))
4486 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4487 else
4488 ev_run (w->other, EVRUN_NOWAIT);
4489}
4490
4491static void
4492embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4493{
4494 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4495
4496 {
4497 EV_P = w->other;
4498
4499 while (fdchangecnt)
4500 {
4501 fd_reify (EV_A);
4502 ev_run (EV_A_ EVRUN_NOWAIT);
4503 }
4504 }
4505}
4506
4507static void
4508embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4509{
4510 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4511
4512 ev_embed_stop (EV_A_ w);
4513
4514 {
4515 EV_P = w->other;
4516
4517 ev_loop_fork (EV_A);
4518 ev_run (EV_A_ EVRUN_NOWAIT);
4519 }
4520
4521 ev_embed_start (EV_A_ w);
4522}
4523
4524#if 0
4525static void
4526embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4527{
4528 ev_idle_stop (EV_A_ idle);
4529}
4530#endif
4531
4532void
4533ev_embed_start (EV_P_ ev_embed *w) EV_THROW
4534{
4535 if (expect_false (ev_is_active (w)))
4536 return;
4537
4538 {
4539 EV_P = w->other;
4540 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4541 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4542 }
4543
4544 EV_FREQUENT_CHECK;
4545
4546 ev_set_priority (&w->io, ev_priority (w));
4547 ev_io_start (EV_A_ &w->io);
4548
4549 ev_prepare_init (&w->prepare, embed_prepare_cb);
4550 ev_set_priority (&w->prepare, EV_MINPRI);
4551 ev_prepare_start (EV_A_ &w->prepare);
4552
4553 ev_fork_init (&w->fork, embed_fork_cb);
4554 ev_fork_start (EV_A_ &w->fork);
4555
4556 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4557
4558 ev_start (EV_A_ (W)w, 1);
4559
4560 EV_FREQUENT_CHECK;
4561}
4562
4563void
4564ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
4565{
4566 clear_pending (EV_A_ (W)w);
4567 if (expect_false (!ev_is_active (w)))
4568 return;
4569
4570 EV_FREQUENT_CHECK;
4571
4572 ev_io_stop (EV_A_ &w->io);
4573 ev_prepare_stop (EV_A_ &w->prepare);
4574 ev_fork_stop (EV_A_ &w->fork);
4575
4576 ev_stop (EV_A_ (W)w);
4577
4578 EV_FREQUENT_CHECK;
4579}
4580#endif
4581
4582#if EV_FORK_ENABLE
4583void
4584ev_fork_start (EV_P_ ev_fork *w) EV_THROW
4585{
4586 if (expect_false (ev_is_active (w)))
4587 return;
4588
4589 EV_FREQUENT_CHECK;
4590
4591 ev_start (EV_A_ (W)w, ++forkcnt);
4592 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4593 forks [forkcnt - 1] = w;
4594
4595 EV_FREQUENT_CHECK;
4596}
4597
4598void
4599ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
4600{
4601 clear_pending (EV_A_ (W)w);
4602 if (expect_false (!ev_is_active (w)))
4603 return;
4604
4605 EV_FREQUENT_CHECK;
4606
4607 {
4608 int active = ev_active (w);
4609
4610 forks [active - 1] = forks [--forkcnt];
4611 ev_active (forks [active - 1]) = active;
4612 }
4613
4614 ev_stop (EV_A_ (W)w);
4615
4616 EV_FREQUENT_CHECK;
4617}
4618#endif
4619
4620#if EV_CLEANUP_ENABLE
4621void
4622ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4623{
4624 if (expect_false (ev_is_active (w)))
4625 return;
4626
4627 EV_FREQUENT_CHECK;
4628
4629 ev_start (EV_A_ (W)w, ++cleanupcnt);
4630 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4631 cleanups [cleanupcnt - 1] = w;
4632
4633 /* cleanup watchers should never keep a refcount on the loop */
4634 ev_unref (EV_A);
4635 EV_FREQUENT_CHECK;
4636}
4637
4638void
4639ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4640{
4641 clear_pending (EV_A_ (W)w);
4642 if (expect_false (!ev_is_active (w)))
4643 return;
4644
4645 EV_FREQUENT_CHECK;
4646 ev_ref (EV_A);
4647
4648 {
4649 int active = ev_active (w);
4650
4651 cleanups [active - 1] = cleanups [--cleanupcnt];
4652 ev_active (cleanups [active - 1]) = active;
4653 }
4654
4655 ev_stop (EV_A_ (W)w);
4656
4657 EV_FREQUENT_CHECK;
4658}
4659#endif
4660
4661#if EV_ASYNC_ENABLE
4662void
4663ev_async_start (EV_P_ ev_async *w) EV_THROW
4664{
4665 if (expect_false (ev_is_active (w)))
4666 return;
4667
4668 w->sent = 0;
4669
4670 evpipe_init (EV_A);
4671
4672 EV_FREQUENT_CHECK;
4673
4674 ev_start (EV_A_ (W)w, ++asynccnt);
4675 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4676 asyncs [asynccnt - 1] = w;
4677
4678 EV_FREQUENT_CHECK;
4679}
4680
4681void
4682ev_async_stop (EV_P_ ev_async *w) EV_THROW
4683{
4684 clear_pending (EV_A_ (W)w);
4685 if (expect_false (!ev_is_active (w)))
4686 return;
4687
4688 EV_FREQUENT_CHECK;
4689
4690 {
4691 int active = ev_active (w);
4692
4693 asyncs [active - 1] = asyncs [--asynccnt];
4694 ev_active (asyncs [active - 1]) = active;
4695 }
4696
4697 ev_stop (EV_A_ (W)w);
4698
4699 EV_FREQUENT_CHECK;
4700}
4701
4702void
4703ev_async_send (EV_P_ ev_async *w) EV_THROW
4704{
4705 w->sent = 1;
4706 evpipe_write (EV_A_ &async_pending);
1713} 4707}
1714#endif 4708#endif
1715 4709
1716/*****************************************************************************/ 4710/*****************************************************************************/
1717 4711
1718struct ev_once 4712struct ev_once
1719{ 4713{
1720 struct ev_io io; 4714 ev_io io;
1721 struct ev_timer to; 4715 ev_timer to;
1722 void (*cb)(int revents, void *arg); 4716 void (*cb)(int revents, void *arg);
1723 void *arg; 4717 void *arg;
1724}; 4718};
1725 4719
1726static void 4720static void
1727once_cb (EV_P_ struct ev_once *once, int revents) 4721once_cb (EV_P_ struct ev_once *once, int revents)
1728{ 4722{
1729 void (*cb)(int revents, void *arg) = once->cb; 4723 void (*cb)(int revents, void *arg) = once->cb;
1730 void *arg = once->arg; 4724 void *arg = once->arg;
1731 4725
1732 ev_io_stop (EV_A_ &once->io); 4726 ev_io_stop (EV_A_ &once->io);
1733 ev_timer_stop (EV_A_ &once->to); 4727 ev_timer_stop (EV_A_ &once->to);
1734 ev_free (once); 4728 ev_free (once);
1735 4729
1736 cb (revents, arg); 4730 cb (revents, arg);
1737} 4731}
1738 4732
1739static void 4733static void
1740once_cb_io (EV_P_ struct ev_io *w, int revents) 4734once_cb_io (EV_P_ ev_io *w, int revents)
1741{ 4735{
1742 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4736 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4737
4738 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1743} 4739}
1744 4740
1745static void 4741static void
1746once_cb_to (EV_P_ struct ev_timer *w, int revents) 4742once_cb_to (EV_P_ ev_timer *w, int revents)
1747{ 4743{
1748 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4744 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4745
4746 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1749} 4747}
1750 4748
1751void 4749void
1752ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4750ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
1753{ 4751{
1754 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4752 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1755 4753
1756 if (expect_false (!once)) 4754 if (expect_false (!once))
1757 { 4755 {
1758 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4756 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1759 return; 4757 return;
1760 } 4758 }
1761 4759
1762 once->cb = cb; 4760 once->cb = cb;
1763 once->arg = arg; 4761 once->arg = arg;
1775 ev_timer_set (&once->to, timeout, 0.); 4773 ev_timer_set (&once->to, timeout, 0.);
1776 ev_timer_start (EV_A_ &once->to); 4774 ev_timer_start (EV_A_ &once->to);
1777 } 4775 }
1778} 4776}
1779 4777
1780#ifdef __cplusplus 4778/*****************************************************************************/
1781} 4779
4780#if EV_WALK_ENABLE
4781void ecb_cold
4782ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4783{
4784 int i, j;
4785 ev_watcher_list *wl, *wn;
4786
4787 if (types & (EV_IO | EV_EMBED))
4788 for (i = 0; i < anfdmax; ++i)
4789 for (wl = anfds [i].head; wl; )
4790 {
4791 wn = wl->next;
4792
4793#if EV_EMBED_ENABLE
4794 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4795 {
4796 if (types & EV_EMBED)
4797 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4798 }
4799 else
4800#endif
4801#if EV_USE_INOTIFY
4802 if (ev_cb ((ev_io *)wl) == infy_cb)
4803 ;
4804 else
4805#endif
4806 if ((ev_io *)wl != &pipe_w)
4807 if (types & EV_IO)
4808 cb (EV_A_ EV_IO, wl);
4809
4810 wl = wn;
4811 }
4812
4813 if (types & (EV_TIMER | EV_STAT))
4814 for (i = timercnt + HEAP0; i-- > HEAP0; )
4815#if EV_STAT_ENABLE
4816 /*TODO: timer is not always active*/
4817 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4818 {
4819 if (types & EV_STAT)
4820 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4821 }
4822 else
4823#endif
4824 if (types & EV_TIMER)
4825 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4826
4827#if EV_PERIODIC_ENABLE
4828 if (types & EV_PERIODIC)
4829 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4830 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4831#endif
4832
4833#if EV_IDLE_ENABLE
4834 if (types & EV_IDLE)
4835 for (j = NUMPRI; j--; )
4836 for (i = idlecnt [j]; i--; )
4837 cb (EV_A_ EV_IDLE, idles [j][i]);
4838#endif
4839
4840#if EV_FORK_ENABLE
4841 if (types & EV_FORK)
4842 for (i = forkcnt; i--; )
4843 if (ev_cb (forks [i]) != embed_fork_cb)
4844 cb (EV_A_ EV_FORK, forks [i]);
4845#endif
4846
4847#if EV_ASYNC_ENABLE
4848 if (types & EV_ASYNC)
4849 for (i = asynccnt; i--; )
4850 cb (EV_A_ EV_ASYNC, asyncs [i]);
4851#endif
4852
4853#if EV_PREPARE_ENABLE
4854 if (types & EV_PREPARE)
4855 for (i = preparecnt; i--; )
4856# if EV_EMBED_ENABLE
4857 if (ev_cb (prepares [i]) != embed_prepare_cb)
1782#endif 4858# endif
4859 cb (EV_A_ EV_PREPARE, prepares [i]);
4860#endif
1783 4861
4862#if EV_CHECK_ENABLE
4863 if (types & EV_CHECK)
4864 for (i = checkcnt; i--; )
4865 cb (EV_A_ EV_CHECK, checks [i]);
4866#endif
4867
4868#if EV_SIGNAL_ENABLE
4869 if (types & EV_SIGNAL)
4870 for (i = 0; i < EV_NSIG - 1; ++i)
4871 for (wl = signals [i].head; wl; )
4872 {
4873 wn = wl->next;
4874 cb (EV_A_ EV_SIGNAL, wl);
4875 wl = wn;
4876 }
4877#endif
4878
4879#if EV_CHILD_ENABLE
4880 if (types & EV_CHILD)
4881 for (i = (EV_PID_HASHSIZE); i--; )
4882 for (wl = childs [i]; wl; )
4883 {
4884 wn = wl->next;
4885 cb (EV_A_ EV_CHILD, wl);
4886 wl = wn;
4887 }
4888#endif
4889/* EV_STAT 0x00001000 /* stat data changed */
4890/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4891}
4892#endif
4893
4894#if EV_MULTIPLICITY
4895 #include "ev_wrap.h"
4896#endif
4897

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines