ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.195 by root, Sat Dec 22 11:44:51 2007 UTC vs.
Revision 1.474 by root, Wed Feb 11 19:20:21 2015 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012,2013 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 43# include EV_CONFIG_H
39# else 44# else
40# include "config.h" 45# include "config.h"
41# endif 46# endif
42 47
48# if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52# endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
43# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
46# endif 71# endif
47# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
49# endif 74# endif
50# else 75# else
51# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
53# endif 78# endif
54# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
56# endif 81# endif
57# endif 82# endif
58 83
84# if HAVE_NANOSLEEP
59# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
60# if HAVE_NANOSLEEP
61# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
62# else 88# else
89# undef EV_USE_NANOSLEEP
63# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
64# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
65# endif 100# endif
66 101
102# if HAVE_POLL && HAVE_POLL_H
67# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
68# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
69# define EV_USE_SELECT 1
70# else
71# define EV_USE_SELECT 0
72# endif 105# endif
73# endif
74
75# ifndef EV_USE_POLL
76# if HAVE_POLL && HAVE_POLL_H
77# define EV_USE_POLL 1
78# else 106# else
107# undef EV_USE_POLL
79# define EV_USE_POLL 0 108# define EV_USE_POLL 0
80# endif
81# endif 109# endif
82 110
83# ifndef EV_USE_EPOLL
84# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
85# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
86# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
87# define EV_USE_EPOLL 0
88# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
89# endif 118# endif
90 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
91# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
92# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
93# define EV_USE_KQUEUE 1
94# else
95# define EV_USE_KQUEUE 0
96# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
97# endif 127# endif
98 128
99# ifndef EV_USE_PORT
100# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
101# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
102# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
103# define EV_USE_PORT 0
104# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
105# endif 136# endif
106 137
107# ifndef EV_USE_INOTIFY
108# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
109# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
110# else
111# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
112# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
113# endif 145# endif
114 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
115#endif 154# endif
116 155
117#include <math.h> 156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
118#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
119#include <fcntl.h> 169#include <fcntl.h>
120#include <stddef.h> 170#include <stddef.h>
121 171
122#include <stdio.h> 172#include <stdio.h>
123 173
124#include <assert.h> 174#include <assert.h>
125#include <errno.h> 175#include <errno.h>
126#include <sys/types.h> 176#include <sys/types.h>
127#include <time.h> 177#include <time.h>
178#include <limits.h>
128 179
129#include <signal.h> 180#include <signal.h>
130 181
131#ifdef EV_H 182#ifdef EV_H
132# include EV_H 183# include EV_H
133#else 184#else
134# include "ev.h" 185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
135#endif 197#endif
136 198
137#ifndef _WIN32 199#ifndef _WIN32
138# include <sys/time.h> 200# include <sys/time.h>
139# include <sys/wait.h> 201# include <sys/wait.h>
140# include <unistd.h> 202# include <unistd.h>
141#else 203#else
204# include <io.h>
142# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
143# include <windows.h> 207# include <windows.h>
144# ifndef EV_SELECT_IS_WINSOCKET 208# ifndef EV_SELECT_IS_WINSOCKET
145# define EV_SELECT_IS_WINSOCKET 1 209# define EV_SELECT_IS_WINSOCKET 1
146# endif 210# endif
211# undef EV_AVOID_STDIO
212#endif
213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
221
222/* this block tries to deduce configuration from header-defined symbols and defaults */
223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# define EV_NSIG (8 * sizeof (sigset_t) + 1)
247#endif
248
249#ifndef EV_USE_FLOOR
250# define EV_USE_FLOOR 0
251#endif
252
253#ifndef EV_USE_CLOCK_SYSCALL
254# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
255# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
256# else
257# define EV_USE_CLOCK_SYSCALL 0
147#endif 258# endif
259#endif
148 260
149/**/ 261#if !(_POSIX_TIMERS > 0)
262# ifndef EV_USE_MONOTONIC
263# define EV_USE_MONOTONIC 0
264# endif
265# ifndef EV_USE_REALTIME
266# define EV_USE_REALTIME 0
267# endif
268#endif
150 269
151#ifndef EV_USE_MONOTONIC 270#ifndef EV_USE_MONOTONIC
271# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
272# define EV_USE_MONOTONIC EV_FEATURE_OS
273# else
152# define EV_USE_MONOTONIC 0 274# define EV_USE_MONOTONIC 0
275# endif
153#endif 276#endif
154 277
155#ifndef EV_USE_REALTIME 278#ifndef EV_USE_REALTIME
156# define EV_USE_REALTIME 0 279# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
157#endif 280#endif
158 281
159#ifndef EV_USE_NANOSLEEP 282#ifndef EV_USE_NANOSLEEP
283# if _POSIX_C_SOURCE >= 199309L
284# define EV_USE_NANOSLEEP EV_FEATURE_OS
285# else
160# define EV_USE_NANOSLEEP 0 286# define EV_USE_NANOSLEEP 0
287# endif
161#endif 288#endif
162 289
163#ifndef EV_USE_SELECT 290#ifndef EV_USE_SELECT
164# define EV_USE_SELECT 1 291# define EV_USE_SELECT EV_FEATURE_BACKENDS
165#endif 292#endif
166 293
167#ifndef EV_USE_POLL 294#ifndef EV_USE_POLL
168# ifdef _WIN32 295# ifdef _WIN32
169# define EV_USE_POLL 0 296# define EV_USE_POLL 0
170# else 297# else
171# define EV_USE_POLL 1 298# define EV_USE_POLL EV_FEATURE_BACKENDS
172# endif 299# endif
173#endif 300#endif
174 301
175#ifndef EV_USE_EPOLL 302#ifndef EV_USE_EPOLL
303# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
304# define EV_USE_EPOLL EV_FEATURE_BACKENDS
305# else
176# define EV_USE_EPOLL 0 306# define EV_USE_EPOLL 0
307# endif
177#endif 308#endif
178 309
179#ifndef EV_USE_KQUEUE 310#ifndef EV_USE_KQUEUE
180# define EV_USE_KQUEUE 0 311# define EV_USE_KQUEUE 0
181#endif 312#endif
183#ifndef EV_USE_PORT 314#ifndef EV_USE_PORT
184# define EV_USE_PORT 0 315# define EV_USE_PORT 0
185#endif 316#endif
186 317
187#ifndef EV_USE_INOTIFY 318#ifndef EV_USE_INOTIFY
319# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
320# define EV_USE_INOTIFY EV_FEATURE_OS
321# else
188# define EV_USE_INOTIFY 0 322# define EV_USE_INOTIFY 0
323# endif
189#endif 324#endif
190 325
191#ifndef EV_PID_HASHSIZE 326#ifndef EV_PID_HASHSIZE
192# if EV_MINIMAL 327# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
193# define EV_PID_HASHSIZE 1 328#endif
329
330#ifndef EV_INOTIFY_HASHSIZE
331# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
332#endif
333
334#ifndef EV_USE_EVENTFD
335# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
336# define EV_USE_EVENTFD EV_FEATURE_OS
194# else 337# else
195# define EV_PID_HASHSIZE 16 338# define EV_USE_EVENTFD 0
196# endif 339# endif
197#endif 340#endif
198 341
199#ifndef EV_INOTIFY_HASHSIZE 342#ifndef EV_USE_SIGNALFD
200# if EV_MINIMAL 343# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
201# define EV_INOTIFY_HASHSIZE 1 344# define EV_USE_SIGNALFD EV_FEATURE_OS
202# else 345# else
203# define EV_INOTIFY_HASHSIZE 16 346# define EV_USE_SIGNALFD 0
204# endif 347# endif
205#endif 348#endif
206 349
207/**/ 350#if 0 /* debugging */
351# define EV_VERIFY 3
352# define EV_USE_4HEAP 1
353# define EV_HEAP_CACHE_AT 1
354#endif
355
356#ifndef EV_VERIFY
357# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
358#endif
359
360#ifndef EV_USE_4HEAP
361# define EV_USE_4HEAP EV_FEATURE_DATA
362#endif
363
364#ifndef EV_HEAP_CACHE_AT
365# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
366#endif
367
368#ifdef ANDROID
369/* supposedly, android doesn't typedef fd_mask */
370# undef EV_USE_SELECT
371# define EV_USE_SELECT 0
372/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
373# undef EV_USE_CLOCK_SYSCALL
374# define EV_USE_CLOCK_SYSCALL 0
375#endif
376
377/* aix's poll.h seems to cause lots of trouble */
378#ifdef _AIX
379/* AIX has a completely broken poll.h header */
380# undef EV_USE_POLL
381# define EV_USE_POLL 0
382#endif
383
384/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
385/* which makes programs even slower. might work on other unices, too. */
386#if EV_USE_CLOCK_SYSCALL
387# include <sys/syscall.h>
388# ifdef SYS_clock_gettime
389# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
390# undef EV_USE_MONOTONIC
391# define EV_USE_MONOTONIC 1
392# else
393# undef EV_USE_CLOCK_SYSCALL
394# define EV_USE_CLOCK_SYSCALL 0
395# endif
396#endif
397
398/* this block fixes any misconfiguration where we know we run into trouble otherwise */
208 399
209#ifndef CLOCK_MONOTONIC 400#ifndef CLOCK_MONOTONIC
210# undef EV_USE_MONOTONIC 401# undef EV_USE_MONOTONIC
211# define EV_USE_MONOTONIC 0 402# define EV_USE_MONOTONIC 0
212#endif 403#endif
220# undef EV_USE_INOTIFY 411# undef EV_USE_INOTIFY
221# define EV_USE_INOTIFY 0 412# define EV_USE_INOTIFY 0
222#endif 413#endif
223 414
224#if !EV_USE_NANOSLEEP 415#if !EV_USE_NANOSLEEP
225# ifndef _WIN32 416/* hp-ux has it in sys/time.h, which we unconditionally include above */
417# if !defined _WIN32 && !defined __hpux
226# include <sys/select.h> 418# include <sys/select.h>
227# endif 419# endif
228#endif 420#endif
229 421
230#if EV_USE_INOTIFY 422#if EV_USE_INOTIFY
423# include <sys/statfs.h>
231# include <sys/inotify.h> 424# include <sys/inotify.h>
425/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
426# ifndef IN_DONT_FOLLOW
427# undef EV_USE_INOTIFY
428# define EV_USE_INOTIFY 0
232#endif 429# endif
430#endif
233 431
234#if EV_SELECT_IS_WINSOCKET 432#if EV_USE_EVENTFD
433/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
235# include <winsock.h> 434# include <stdint.h>
435# ifndef EFD_NONBLOCK
436# define EFD_NONBLOCK O_NONBLOCK
437# endif
438# ifndef EFD_CLOEXEC
439# ifdef O_CLOEXEC
440# define EFD_CLOEXEC O_CLOEXEC
441# else
442# define EFD_CLOEXEC 02000000
443# endif
444# endif
445EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
446#endif
447
448#if EV_USE_SIGNALFD
449/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
450# include <stdint.h>
451# ifndef SFD_NONBLOCK
452# define SFD_NONBLOCK O_NONBLOCK
453# endif
454# ifndef SFD_CLOEXEC
455# ifdef O_CLOEXEC
456# define SFD_CLOEXEC O_CLOEXEC
457# else
458# define SFD_CLOEXEC 02000000
459# endif
460# endif
461EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
462
463struct signalfd_siginfo
464{
465 uint32_t ssi_signo;
466 char pad[128 - sizeof (uint32_t)];
467};
236#endif 468#endif
237 469
238/**/ 470/**/
239 471
472#if EV_VERIFY >= 3
473# define EV_FREQUENT_CHECK ev_verify (EV_A)
474#else
475# define EV_FREQUENT_CHECK do { } while (0)
476#endif
477
240/* 478/*
241 * This is used to avoid floating point rounding problems. 479 * This is used to work around floating point rounding problems.
242 * It is added to ev_rt_now when scheduling periodics
243 * to ensure progress, time-wise, even when rounding
244 * errors are against us.
245 * This value is good at least till the year 4000. 480 * This value is good at least till the year 4000.
246 * Better solutions welcome.
247 */ 481 */
248#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 482#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
483/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
249 484
250#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 485#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
251#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 486#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
252/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
253 487
488#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
489#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
490
491/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
492/* ECB.H BEGIN */
493/*
494 * libecb - http://software.schmorp.de/pkg/libecb
495 *
496 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
497 * Copyright (©) 2011 Emanuele Giaquinta
498 * All rights reserved.
499 *
500 * Redistribution and use in source and binary forms, with or without modifica-
501 * tion, are permitted provided that the following conditions are met:
502 *
503 * 1. Redistributions of source code must retain the above copyright notice,
504 * this list of conditions and the following disclaimer.
505 *
506 * 2. Redistributions in binary form must reproduce the above copyright
507 * notice, this list of conditions and the following disclaimer in the
508 * documentation and/or other materials provided with the distribution.
509 *
510 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
511 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
512 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
513 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
514 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
515 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
516 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
517 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
518 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
519 * OF THE POSSIBILITY OF SUCH DAMAGE.
520 *
521 * Alternatively, the contents of this file may be used under the terms of
522 * the GNU General Public License ("GPL") version 2 or any later version,
523 * in which case the provisions of the GPL are applicable instead of
524 * the above. If you wish to allow the use of your version of this file
525 * only under the terms of the GPL and not to allow others to use your
526 * version of this file under the BSD license, indicate your decision
527 * by deleting the provisions above and replace them with the notice
528 * and other provisions required by the GPL. If you do not delete the
529 * provisions above, a recipient may use your version of this file under
530 * either the BSD or the GPL.
531 */
532
533#ifndef ECB_H
534#define ECB_H
535
536/* 16 bits major, 16 bits minor */
537#define ECB_VERSION 0x00010004
538
539#ifdef _WIN32
540 typedef signed char int8_t;
541 typedef unsigned char uint8_t;
542 typedef signed short int16_t;
543 typedef unsigned short uint16_t;
544 typedef signed int int32_t;
545 typedef unsigned int uint32_t;
254#if __GNUC__ >= 4 546 #if __GNUC__
255# define expect(expr,value) __builtin_expect ((expr),(value)) 547 typedef signed long long int64_t;
256# define noinline __attribute__ ((noinline)) 548 typedef unsigned long long uint64_t;
549 #else /* _MSC_VER || __BORLANDC__ */
550 typedef signed __int64 int64_t;
551 typedef unsigned __int64 uint64_t;
552 #endif
553 #ifdef _WIN64
554 #define ECB_PTRSIZE 8
555 typedef uint64_t uintptr_t;
556 typedef int64_t intptr_t;
557 #else
558 #define ECB_PTRSIZE 4
559 typedef uint32_t uintptr_t;
560 typedef int32_t intptr_t;
561 #endif
257#else 562#else
258# define expect(expr,value) (expr) 563 #include <inttypes.h>
259# define noinline 564 #if UINTMAX_MAX > 0xffffffffU
260# if __STDC_VERSION__ < 199901L 565 #define ECB_PTRSIZE 8
261# define inline 566 #else
567 #define ECB_PTRSIZE 4
568 #endif
262# endif 569#endif
570
571/* work around x32 idiocy by defining proper macros */
572#if __amd64 || __x86_64 || _M_AMD64 || _M_X64
573 #if _ILP32
574 #define ECB_AMD64_X32 1
575 #else
576 #define ECB_AMD64 1
263#endif 577 #endif
578#endif
264 579
580/* many compilers define _GNUC_ to some versions but then only implement
581 * what their idiot authors think are the "more important" extensions,
582 * causing enormous grief in return for some better fake benchmark numbers.
583 * or so.
584 * we try to detect these and simply assume they are not gcc - if they have
585 * an issue with that they should have done it right in the first place.
586 */
587#if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
588 #define ECB_GCC_VERSION(major,minor) 0
589#else
590 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
591#endif
592
593#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
594
595#if __clang__ && defined __has_builtin
596 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
597#else
598 #define ECB_CLANG_BUILTIN(x) 0
599#endif
600
601#if __clang__ && defined __has_extension
602 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
603#else
604 #define ECB_CLANG_EXTENSION(x) 0
605#endif
606
607#define ECB_CPP (__cplusplus+0)
608#define ECB_CPP11 (__cplusplus >= 201103L)
609
610#if ECB_CPP
611 #define ECB_C 0
612 #define ECB_STDC_VERSION 0
613#else
614 #define ECB_C 1
615 #define ECB_STDC_VERSION __STDC_VERSION__
616#endif
617
618#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
619#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
620
621#if ECB_CPP
622 #define ECB_EXTERN_C extern "C"
623 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
624 #define ECB_EXTERN_C_END }
625#else
626 #define ECB_EXTERN_C extern
627 #define ECB_EXTERN_C_BEG
628 #define ECB_EXTERN_C_END
629#endif
630
631/*****************************************************************************/
632
633/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
634/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
635
636#if ECB_NO_THREADS
637 #define ECB_NO_SMP 1
638#endif
639
640#if ECB_NO_SMP
641 #define ECB_MEMORY_FENCE do { } while (0)
642#endif
643
644#ifndef ECB_MEMORY_FENCE
645 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
646 #if __i386 || __i386__
647 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
648 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
649 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
650 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
651 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
652 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
653 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
654 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
655 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
656 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
657 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
658 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
659 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
660 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
661 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
662 #elif __aarch64__
663 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
664 #elif (__sparc || __sparc__) && !__sparcv8
665 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
666 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
667 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
668 #elif defined __s390__ || defined __s390x__
669 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
670 #elif defined __mips__
671 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
672 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
673 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
674 #elif defined __alpha__
675 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
676 #elif defined __hppa__
677 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
678 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
679 #elif defined __ia64__
680 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
681 #elif defined __m68k__
682 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
683 #elif defined __m88k__
684 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
685 #elif defined __sh__
686 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
687 #endif
688 #endif
689#endif
690
691#ifndef ECB_MEMORY_FENCE
692 #if ECB_GCC_VERSION(4,7)
693 /* see comment below (stdatomic.h) about the C11 memory model. */
694 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
695 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
696 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
697
698 #elif ECB_CLANG_EXTENSION(c_atomic)
699 /* see comment below (stdatomic.h) about the C11 memory model. */
700 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
701 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
702 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
703
704 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
705 #define ECB_MEMORY_FENCE __sync_synchronize ()
706 #elif _MSC_VER >= 1500 /* VC++ 2008 */
707 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
708 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
709 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
710 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
711 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
712 #elif _MSC_VER >= 1400 /* VC++ 2005 */
713 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
714 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
715 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
716 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
717 #elif defined _WIN32
718 #include <WinNT.h>
719 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
720 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
721 #include <mbarrier.h>
722 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
723 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
724 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
725 #elif __xlC__
726 #define ECB_MEMORY_FENCE __sync ()
727 #endif
728#endif
729
730#ifndef ECB_MEMORY_FENCE
731 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
732 /* we assume that these memory fences work on all variables/all memory accesses, */
733 /* not just C11 atomics and atomic accesses */
734 #include <stdatomic.h>
735 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
736 /* any fence other than seq_cst, which isn't very efficient for us. */
737 /* Why that is, we don't know - either the C11 memory model is quite useless */
738 /* for most usages, or gcc and clang have a bug */
739 /* I *currently* lean towards the latter, and inefficiently implement */
740 /* all three of ecb's fences as a seq_cst fence */
741 /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */
742 /* for all __atomic_thread_fence's except seq_cst */
743 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
744 #endif
745#endif
746
747#ifndef ECB_MEMORY_FENCE
748 #if !ECB_AVOID_PTHREADS
749 /*
750 * if you get undefined symbol references to pthread_mutex_lock,
751 * or failure to find pthread.h, then you should implement
752 * the ECB_MEMORY_FENCE operations for your cpu/compiler
753 * OR provide pthread.h and link against the posix thread library
754 * of your system.
755 */
756 #include <pthread.h>
757 #define ECB_NEEDS_PTHREADS 1
758 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
759
760 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
761 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
762 #endif
763#endif
764
765#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
766 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
767#endif
768
769#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
770 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
771#endif
772
773/*****************************************************************************/
774
775#if ECB_CPP
776 #define ecb_inline static inline
777#elif ECB_GCC_VERSION(2,5)
778 #define ecb_inline static __inline__
779#elif ECB_C99
780 #define ecb_inline static inline
781#else
782 #define ecb_inline static
783#endif
784
785#if ECB_GCC_VERSION(3,3)
786 #define ecb_restrict __restrict__
787#elif ECB_C99
788 #define ecb_restrict restrict
789#else
790 #define ecb_restrict
791#endif
792
793typedef int ecb_bool;
794
795#define ECB_CONCAT_(a, b) a ## b
796#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
797#define ECB_STRINGIFY_(a) # a
798#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
799
800#define ecb_function_ ecb_inline
801
802#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
803 #define ecb_attribute(attrlist) __attribute__ (attrlist)
804#else
805 #define ecb_attribute(attrlist)
806#endif
807
808#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
809 #define ecb_is_constant(expr) __builtin_constant_p (expr)
810#else
811 /* possible C11 impl for integral types
812 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
813 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
814
815 #define ecb_is_constant(expr) 0
816#endif
817
818#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
819 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
820#else
821 #define ecb_expect(expr,value) (expr)
822#endif
823
824#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
825 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
826#else
827 #define ecb_prefetch(addr,rw,locality)
828#endif
829
830/* no emulation for ecb_decltype */
831#if ECB_CPP11
832 // older implementations might have problems with decltype(x)::type, work around it
833 template<class T> struct ecb_decltype_t { typedef T type; };
834 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
835#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
836 #define ecb_decltype(x) __typeof__ (x)
837#endif
838
839#if _MSC_VER >= 1300
840 #define ecb_deprecated __declspec (deprecated)
841#else
842 #define ecb_deprecated ecb_attribute ((__deprecated__))
843#endif
844
845#define ecb_noinline ecb_attribute ((__noinline__))
846#define ecb_unused ecb_attribute ((__unused__))
847#define ecb_const ecb_attribute ((__const__))
848#define ecb_pure ecb_attribute ((__pure__))
849
850/* TODO http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx __declspec(noreturn) */
851#if ECB_C11 || __IBMC_NORETURN
852 /* http://pic.dhe.ibm.com/infocenter/compbg/v121v141/topic/com.ibm.xlcpp121.bg.doc/language_ref/noreturn.html */
853 #define ecb_noreturn _Noreturn
854#else
855 #define ecb_noreturn ecb_attribute ((__noreturn__))
856#endif
857
858#if ECB_GCC_VERSION(4,3)
859 #define ecb_artificial ecb_attribute ((__artificial__))
860 #define ecb_hot ecb_attribute ((__hot__))
861 #define ecb_cold ecb_attribute ((__cold__))
862#else
863 #define ecb_artificial
864 #define ecb_hot
865 #define ecb_cold
866#endif
867
868/* put around conditional expressions if you are very sure that the */
869/* expression is mostly true or mostly false. note that these return */
870/* booleans, not the expression. */
265#define expect_false(expr) expect ((expr) != 0, 0) 871#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
266#define expect_true(expr) expect ((expr) != 0, 1) 872#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
873/* for compatibility to the rest of the world */
874#define ecb_likely(expr) ecb_expect_true (expr)
875#define ecb_unlikely(expr) ecb_expect_false (expr)
876
877/* count trailing zero bits and count # of one bits */
878#if ECB_GCC_VERSION(3,4) \
879 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
880 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
881 && ECB_CLANG_BUILTIN(__builtin_popcount))
882 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
883 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
884 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
885 #define ecb_ctz32(x) __builtin_ctz (x)
886 #define ecb_ctz64(x) __builtin_ctzll (x)
887 #define ecb_popcount32(x) __builtin_popcount (x)
888 /* no popcountll */
889#else
890 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
891 ecb_function_ ecb_const int
892 ecb_ctz32 (uint32_t x)
893 {
894 int r = 0;
895
896 x &= ~x + 1; /* this isolates the lowest bit */
897
898#if ECB_branchless_on_i386
899 r += !!(x & 0xaaaaaaaa) << 0;
900 r += !!(x & 0xcccccccc) << 1;
901 r += !!(x & 0xf0f0f0f0) << 2;
902 r += !!(x & 0xff00ff00) << 3;
903 r += !!(x & 0xffff0000) << 4;
904#else
905 if (x & 0xaaaaaaaa) r += 1;
906 if (x & 0xcccccccc) r += 2;
907 if (x & 0xf0f0f0f0) r += 4;
908 if (x & 0xff00ff00) r += 8;
909 if (x & 0xffff0000) r += 16;
910#endif
911
912 return r;
913 }
914
915 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
916 ecb_function_ ecb_const int
917 ecb_ctz64 (uint64_t x)
918 {
919 int shift = x & 0xffffffffU ? 0 : 32;
920 return ecb_ctz32 (x >> shift) + shift;
921 }
922
923 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
924 ecb_function_ ecb_const int
925 ecb_popcount32 (uint32_t x)
926 {
927 x -= (x >> 1) & 0x55555555;
928 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
929 x = ((x >> 4) + x) & 0x0f0f0f0f;
930 x *= 0x01010101;
931
932 return x >> 24;
933 }
934
935 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
936 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
937 {
938 int r = 0;
939
940 if (x >> 16) { x >>= 16; r += 16; }
941 if (x >> 8) { x >>= 8; r += 8; }
942 if (x >> 4) { x >>= 4; r += 4; }
943 if (x >> 2) { x >>= 2; r += 2; }
944 if (x >> 1) { r += 1; }
945
946 return r;
947 }
948
949 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
950 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
951 {
952 int r = 0;
953
954 if (x >> 32) { x >>= 32; r += 32; }
955
956 return r + ecb_ld32 (x);
957 }
958#endif
959
960ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
961ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
962ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
963ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
964
965ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
966ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
967{
968 return ( (x * 0x0802U & 0x22110U)
969 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
970}
971
972ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
973ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
974{
975 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
976 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
977 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
978 x = ( x >> 8 ) | ( x << 8);
979
980 return x;
981}
982
983ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
984ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
985{
986 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
987 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
988 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
989 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
990 x = ( x >> 16 ) | ( x << 16);
991
992 return x;
993}
994
995/* popcount64 is only available on 64 bit cpus as gcc builtin */
996/* so for this version we are lazy */
997ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
998ecb_function_ ecb_const int
999ecb_popcount64 (uint64_t x)
1000{
1001 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1002}
1003
1004ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1005ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1006ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1007ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1008ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1009ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1010ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1011ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1012
1013ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1014ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1015ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1016ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1017ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1018ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1019ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1020ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1021
1022#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1023 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1024 #define ecb_bswap32(x) __builtin_bswap32 (x)
1025 #define ecb_bswap64(x) __builtin_bswap64 (x)
1026#else
1027 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1028 ecb_function_ ecb_const uint16_t
1029 ecb_bswap16 (uint16_t x)
1030 {
1031 return ecb_rotl16 (x, 8);
1032 }
1033
1034 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1035 ecb_function_ ecb_const uint32_t
1036 ecb_bswap32 (uint32_t x)
1037 {
1038 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1039 }
1040
1041 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1042 ecb_function_ ecb_const uint64_t
1043 ecb_bswap64 (uint64_t x)
1044 {
1045 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1046 }
1047#endif
1048
1049#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1050 #define ecb_unreachable() __builtin_unreachable ()
1051#else
1052 /* this seems to work fine, but gcc always emits a warning for it :/ */
1053 ecb_inline ecb_noreturn void ecb_unreachable (void);
1054 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1055#endif
1056
1057/* try to tell the compiler that some condition is definitely true */
1058#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1059
1060ecb_inline ecb_const unsigned char ecb_byteorder_helper (void);
1061ecb_inline ecb_const unsigned char
1062ecb_byteorder_helper (void)
1063{
1064 /* the union code still generates code under pressure in gcc, */
1065 /* but less than using pointers, and always seems to */
1066 /* successfully return a constant. */
1067 /* the reason why we have this horrible preprocessor mess */
1068 /* is to avoid it in all cases, at least on common architectures */
1069 /* or when using a recent enough gcc version (>= 4.6) */
1070#if __i386 || __i386__ || _M_X86 || __amd64 || __amd64__ || _M_X64
1071 return 0x44;
1072#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1073 return 0x44;
1074#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1075 return 0x11;
1076#else
1077 union
1078 {
1079 uint32_t i;
1080 uint8_t c;
1081 } u = { 0x11223344 };
1082 return u.c;
1083#endif
1084}
1085
1086ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1087ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
1088ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1089ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
1090
1091#if ECB_GCC_VERSION(3,0) || ECB_C99
1092 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1093#else
1094 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1095#endif
1096
1097#if ECB_CPP
1098 template<typename T>
1099 static inline T ecb_div_rd (T val, T div)
1100 {
1101 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1102 }
1103 template<typename T>
1104 static inline T ecb_div_ru (T val, T div)
1105 {
1106 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1107 }
1108#else
1109 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1110 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1111#endif
1112
1113#if ecb_cplusplus_does_not_suck
1114 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1115 template<typename T, int N>
1116 static inline int ecb_array_length (const T (&arr)[N])
1117 {
1118 return N;
1119 }
1120#else
1121 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1122#endif
1123
1124/*******************************************************************************/
1125/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1126
1127/* basically, everything uses "ieee pure-endian" floating point numbers */
1128/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1129#if 0 \
1130 || __i386 || __i386__ \
1131 || __amd64 || __amd64__ || __x86_64 || __x86_64__ \
1132 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1133 || defined __s390__ || defined __s390x__ \
1134 || defined __mips__ \
1135 || defined __alpha__ \
1136 || defined __hppa__ \
1137 || defined __ia64__ \
1138 || defined __m68k__ \
1139 || defined __m88k__ \
1140 || defined __sh__ \
1141 || defined _M_IX86 || defined _M_AMD64 || defined _M_IA64 \
1142 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1143 || defined __aarch64__
1144 #define ECB_STDFP 1
1145 #include <string.h> /* for memcpy */
1146#else
1147 #define ECB_STDFP 0
1148#endif
1149
1150#ifndef ECB_NO_LIBM
1151
1152 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1153
1154 /* only the oldest of old doesn't have this one. solaris. */
1155 #ifdef INFINITY
1156 #define ECB_INFINITY INFINITY
1157 #else
1158 #define ECB_INFINITY HUGE_VAL
1159 #endif
1160
1161 #ifdef NAN
1162 #define ECB_NAN NAN
1163 #else
1164 #define ECB_NAN ECB_INFINITY
1165 #endif
1166
1167 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1168 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1169 #else
1170 #define ecb_ldexpf(x,e) (float) ldexp ((x), (e))
1171 #endif
1172
1173 /* converts an ieee half/binary16 to a float */
1174 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1175 ecb_function_ ecb_const float
1176 ecb_binary16_to_float (uint16_t x)
1177 {
1178 int e = (x >> 10) & 0x1f;
1179 int m = x & 0x3ff;
1180 float r;
1181
1182 if (!e ) r = ecb_ldexpf (m , -24);
1183 else if (e != 31) r = ecb_ldexpf (m + 0x400, e - 25);
1184 else if (m ) r = ECB_NAN;
1185 else r = ECB_INFINITY;
1186
1187 return x & 0x8000 ? -r : r;
1188 }
1189
1190 /* convert a float to ieee single/binary32 */
1191 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1192 ecb_function_ ecb_const uint32_t
1193 ecb_float_to_binary32 (float x)
1194 {
1195 uint32_t r;
1196
1197 #if ECB_STDFP
1198 memcpy (&r, &x, 4);
1199 #else
1200 /* slow emulation, works for anything but -0 */
1201 uint32_t m;
1202 int e;
1203
1204 if (x == 0e0f ) return 0x00000000U;
1205 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1206 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1207 if (x != x ) return 0x7fbfffffU;
1208
1209 m = frexpf (x, &e) * 0x1000000U;
1210
1211 r = m & 0x80000000U;
1212
1213 if (r)
1214 m = -m;
1215
1216 if (e <= -126)
1217 {
1218 m &= 0xffffffU;
1219 m >>= (-125 - e);
1220 e = -126;
1221 }
1222
1223 r |= (e + 126) << 23;
1224 r |= m & 0x7fffffU;
1225 #endif
1226
1227 return r;
1228 }
1229
1230 /* converts an ieee single/binary32 to a float */
1231 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1232 ecb_function_ ecb_const float
1233 ecb_binary32_to_float (uint32_t x)
1234 {
1235 float r;
1236
1237 #if ECB_STDFP
1238 memcpy (&r, &x, 4);
1239 #else
1240 /* emulation, only works for normals and subnormals and +0 */
1241 int neg = x >> 31;
1242 int e = (x >> 23) & 0xffU;
1243
1244 x &= 0x7fffffU;
1245
1246 if (e)
1247 x |= 0x800000U;
1248 else
1249 e = 1;
1250
1251 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1252 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1253
1254 r = neg ? -r : r;
1255 #endif
1256
1257 return r;
1258 }
1259
1260 /* convert a double to ieee double/binary64 */
1261 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1262 ecb_function_ ecb_const uint64_t
1263 ecb_double_to_binary64 (double x)
1264 {
1265 uint64_t r;
1266
1267 #if ECB_STDFP
1268 memcpy (&r, &x, 8);
1269 #else
1270 /* slow emulation, works for anything but -0 */
1271 uint64_t m;
1272 int e;
1273
1274 if (x == 0e0 ) return 0x0000000000000000U;
1275 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1276 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1277 if (x != x ) return 0X7ff7ffffffffffffU;
1278
1279 m = frexp (x, &e) * 0x20000000000000U;
1280
1281 r = m & 0x8000000000000000;;
1282
1283 if (r)
1284 m = -m;
1285
1286 if (e <= -1022)
1287 {
1288 m &= 0x1fffffffffffffU;
1289 m >>= (-1021 - e);
1290 e = -1022;
1291 }
1292
1293 r |= ((uint64_t)(e + 1022)) << 52;
1294 r |= m & 0xfffffffffffffU;
1295 #endif
1296
1297 return r;
1298 }
1299
1300 /* converts an ieee double/binary64 to a double */
1301 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1302 ecb_function_ ecb_const double
1303 ecb_binary64_to_double (uint64_t x)
1304 {
1305 double r;
1306
1307 #if ECB_STDFP
1308 memcpy (&r, &x, 8);
1309 #else
1310 /* emulation, only works for normals and subnormals and +0 */
1311 int neg = x >> 63;
1312 int e = (x >> 52) & 0x7ffU;
1313
1314 x &= 0xfffffffffffffU;
1315
1316 if (e)
1317 x |= 0x10000000000000U;
1318 else
1319 e = 1;
1320
1321 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1322 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1323
1324 r = neg ? -r : r;
1325 #endif
1326
1327 return r;
1328 }
1329
1330#endif
1331
1332#endif
1333
1334/* ECB.H END */
1335
1336#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1337/* if your architecture doesn't need memory fences, e.g. because it is
1338 * single-cpu/core, or if you use libev in a project that doesn't use libev
1339 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1340 * libev, in which cases the memory fences become nops.
1341 * alternatively, you can remove this #error and link against libpthread,
1342 * which will then provide the memory fences.
1343 */
1344# error "memory fences not defined for your architecture, please report"
1345#endif
1346
1347#ifndef ECB_MEMORY_FENCE
1348# define ECB_MEMORY_FENCE do { } while (0)
1349# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1350# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1351#endif
1352
1353#define expect_false(cond) ecb_expect_false (cond)
1354#define expect_true(cond) ecb_expect_true (cond)
1355#define noinline ecb_noinline
1356
267#define inline_size static inline 1357#define inline_size ecb_inline
268 1358
269#if EV_MINIMAL 1359#if EV_FEATURE_CODE
1360# define inline_speed ecb_inline
1361#else
270# define inline_speed static noinline 1362# define inline_speed static noinline
1363#endif
1364
1365#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1366
1367#if EV_MINPRI == EV_MAXPRI
1368# define ABSPRI(w) (((W)w), 0)
271#else 1369#else
272# define inline_speed static inline
273#endif
274
275#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
276#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1370# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1371#endif
277 1372
278#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1373#define EMPTY /* required for microsofts broken pseudo-c compiler */
279#define EMPTY2(a,b) /* used to suppress some warnings */ 1374#define EMPTY2(a,b) /* used to suppress some warnings */
280 1375
281typedef ev_watcher *W; 1376typedef ev_watcher *W;
282typedef ev_watcher_list *WL; 1377typedef ev_watcher_list *WL;
283typedef ev_watcher_time *WT; 1378typedef ev_watcher_time *WT;
284 1379
1380#define ev_active(w) ((W)(w))->active
1381#define ev_at(w) ((WT)(w))->at
1382
1383#if EV_USE_REALTIME
285/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 1384/* sig_atomic_t is used to avoid per-thread variables or locking but still */
286/* giving it a reasonably high chance of working on typical architetcures */ 1385/* giving it a reasonably high chance of working on typical architectures */
1386static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1387#endif
1388
1389#if EV_USE_MONOTONIC
287static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1390static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1391#endif
1392
1393#ifndef EV_FD_TO_WIN32_HANDLE
1394# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1395#endif
1396#ifndef EV_WIN32_HANDLE_TO_FD
1397# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1398#endif
1399#ifndef EV_WIN32_CLOSE_FD
1400# define EV_WIN32_CLOSE_FD(fd) close (fd)
1401#endif
288 1402
289#ifdef _WIN32 1403#ifdef _WIN32
290# include "ev_win32.c" 1404# include "ev_win32.c"
291#endif 1405#endif
292 1406
293/*****************************************************************************/ 1407/*****************************************************************************/
294 1408
1409/* define a suitable floor function (only used by periodics atm) */
1410
1411#if EV_USE_FLOOR
1412# include <math.h>
1413# define ev_floor(v) floor (v)
1414#else
1415
1416#include <float.h>
1417
1418/* a floor() replacement function, should be independent of ev_tstamp type */
1419static ev_tstamp noinline
1420ev_floor (ev_tstamp v)
1421{
1422 /* the choice of shift factor is not terribly important */
1423#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1424 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1425#else
1426 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1427#endif
1428
1429 /* argument too large for an unsigned long? */
1430 if (expect_false (v >= shift))
1431 {
1432 ev_tstamp f;
1433
1434 if (v == v - 1.)
1435 return v; /* very large number */
1436
1437 f = shift * ev_floor (v * (1. / shift));
1438 return f + ev_floor (v - f);
1439 }
1440
1441 /* special treatment for negative args? */
1442 if (expect_false (v < 0.))
1443 {
1444 ev_tstamp f = -ev_floor (-v);
1445
1446 return f - (f == v ? 0 : 1);
1447 }
1448
1449 /* fits into an unsigned long */
1450 return (unsigned long)v;
1451}
1452
1453#endif
1454
1455/*****************************************************************************/
1456
1457#ifdef __linux
1458# include <sys/utsname.h>
1459#endif
1460
1461static unsigned int noinline ecb_cold
1462ev_linux_version (void)
1463{
1464#ifdef __linux
1465 unsigned int v = 0;
1466 struct utsname buf;
1467 int i;
1468 char *p = buf.release;
1469
1470 if (uname (&buf))
1471 return 0;
1472
1473 for (i = 3+1; --i; )
1474 {
1475 unsigned int c = 0;
1476
1477 for (;;)
1478 {
1479 if (*p >= '0' && *p <= '9')
1480 c = c * 10 + *p++ - '0';
1481 else
1482 {
1483 p += *p == '.';
1484 break;
1485 }
1486 }
1487
1488 v = (v << 8) | c;
1489 }
1490
1491 return v;
1492#else
1493 return 0;
1494#endif
1495}
1496
1497/*****************************************************************************/
1498
1499#if EV_AVOID_STDIO
1500static void noinline ecb_cold
1501ev_printerr (const char *msg)
1502{
1503 write (STDERR_FILENO, msg, strlen (msg));
1504}
1505#endif
1506
295static void (*syserr_cb)(const char *msg); 1507static void (*syserr_cb)(const char *msg) EV_THROW;
296 1508
297void 1509void ecb_cold
298ev_set_syserr_cb (void (*cb)(const char *msg)) 1510ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
299{ 1511{
300 syserr_cb = cb; 1512 syserr_cb = cb;
301} 1513}
302 1514
303static void noinline 1515static void noinline ecb_cold
304syserr (const char *msg) 1516ev_syserr (const char *msg)
305{ 1517{
306 if (!msg) 1518 if (!msg)
307 msg = "(libev) system error"; 1519 msg = "(libev) system error";
308 1520
309 if (syserr_cb) 1521 if (syserr_cb)
310 syserr_cb (msg); 1522 syserr_cb (msg);
311 else 1523 else
312 { 1524 {
1525#if EV_AVOID_STDIO
1526 ev_printerr (msg);
1527 ev_printerr (": ");
1528 ev_printerr (strerror (errno));
1529 ev_printerr ("\n");
1530#else
313 perror (msg); 1531 perror (msg);
1532#endif
314 abort (); 1533 abort ();
315 } 1534 }
316} 1535}
317 1536
1537static void *
1538ev_realloc_emul (void *ptr, long size) EV_THROW
1539{
1540 /* some systems, notably openbsd and darwin, fail to properly
1541 * implement realloc (x, 0) (as required by both ansi c-89 and
1542 * the single unix specification, so work around them here.
1543 * recently, also (at least) fedora and debian started breaking it,
1544 * despite documenting it otherwise.
1545 */
1546
1547 if (size)
1548 return realloc (ptr, size);
1549
1550 free (ptr);
1551 return 0;
1552}
1553
318static void *(*alloc)(void *ptr, long size); 1554static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
319 1555
320void 1556void ecb_cold
321ev_set_allocator (void *(*cb)(void *ptr, long size)) 1557ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
322{ 1558{
323 alloc = cb; 1559 alloc = cb;
324} 1560}
325 1561
326inline_speed void * 1562inline_speed void *
327ev_realloc (void *ptr, long size) 1563ev_realloc (void *ptr, long size)
328{ 1564{
329 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1565 ptr = alloc (ptr, size);
330 1566
331 if (!ptr && size) 1567 if (!ptr && size)
332 { 1568 {
1569#if EV_AVOID_STDIO
1570 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1571#else
333 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1572 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1573#endif
334 abort (); 1574 abort ();
335 } 1575 }
336 1576
337 return ptr; 1577 return ptr;
338} 1578}
340#define ev_malloc(size) ev_realloc (0, (size)) 1580#define ev_malloc(size) ev_realloc (0, (size))
341#define ev_free(ptr) ev_realloc ((ptr), 0) 1581#define ev_free(ptr) ev_realloc ((ptr), 0)
342 1582
343/*****************************************************************************/ 1583/*****************************************************************************/
344 1584
1585/* set in reify when reification needed */
1586#define EV_ANFD_REIFY 1
1587
1588/* file descriptor info structure */
345typedef struct 1589typedef struct
346{ 1590{
347 WL head; 1591 WL head;
348 unsigned char events; 1592 unsigned char events; /* the events watched for */
1593 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1594 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
349 unsigned char reify; 1595 unsigned char unused;
1596#if EV_USE_EPOLL
1597 unsigned int egen; /* generation counter to counter epoll bugs */
1598#endif
350#if EV_SELECT_IS_WINSOCKET 1599#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
351 SOCKET handle; 1600 SOCKET handle;
352#endif 1601#endif
1602#if EV_USE_IOCP
1603 OVERLAPPED or, ow;
1604#endif
353} ANFD; 1605} ANFD;
354 1606
1607/* stores the pending event set for a given watcher */
355typedef struct 1608typedef struct
356{ 1609{
357 W w; 1610 W w;
358 int events; 1611 int events; /* the pending event set for the given watcher */
359} ANPENDING; 1612} ANPENDING;
360 1613
361#if EV_USE_INOTIFY 1614#if EV_USE_INOTIFY
1615/* hash table entry per inotify-id */
362typedef struct 1616typedef struct
363{ 1617{
364 WL head; 1618 WL head;
365} ANFS; 1619} ANFS;
1620#endif
1621
1622/* Heap Entry */
1623#if EV_HEAP_CACHE_AT
1624 /* a heap element */
1625 typedef struct {
1626 ev_tstamp at;
1627 WT w;
1628 } ANHE;
1629
1630 #define ANHE_w(he) (he).w /* access watcher, read-write */
1631 #define ANHE_at(he) (he).at /* access cached at, read-only */
1632 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1633#else
1634 /* a heap element */
1635 typedef WT ANHE;
1636
1637 #define ANHE_w(he) (he)
1638 #define ANHE_at(he) (he)->at
1639 #define ANHE_at_cache(he)
366#endif 1640#endif
367 1641
368#if EV_MULTIPLICITY 1642#if EV_MULTIPLICITY
369 1643
370 struct ev_loop 1644 struct ev_loop
376 #undef VAR 1650 #undef VAR
377 }; 1651 };
378 #include "ev_wrap.h" 1652 #include "ev_wrap.h"
379 1653
380 static struct ev_loop default_loop_struct; 1654 static struct ev_loop default_loop_struct;
381 struct ev_loop *ev_default_loop_ptr; 1655 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
382 1656
383#else 1657#else
384 1658
385 ev_tstamp ev_rt_now; 1659 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
386 #define VAR(name,decl) static decl; 1660 #define VAR(name,decl) static decl;
387 #include "ev_vars.h" 1661 #include "ev_vars.h"
388 #undef VAR 1662 #undef VAR
389 1663
390 static int ev_default_loop_ptr; 1664 static int ev_default_loop_ptr;
391 1665
392#endif 1666#endif
393 1667
1668#if EV_FEATURE_API
1669# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1670# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1671# define EV_INVOKE_PENDING invoke_cb (EV_A)
1672#else
1673# define EV_RELEASE_CB (void)0
1674# define EV_ACQUIRE_CB (void)0
1675# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1676#endif
1677
1678#define EVBREAK_RECURSE 0x80
1679
394/*****************************************************************************/ 1680/*****************************************************************************/
395 1681
1682#ifndef EV_HAVE_EV_TIME
396ev_tstamp 1683ev_tstamp
397ev_time (void) 1684ev_time (void) EV_THROW
398{ 1685{
399#if EV_USE_REALTIME 1686#if EV_USE_REALTIME
1687 if (expect_true (have_realtime))
1688 {
400 struct timespec ts; 1689 struct timespec ts;
401 clock_gettime (CLOCK_REALTIME, &ts); 1690 clock_gettime (CLOCK_REALTIME, &ts);
402 return ts.tv_sec + ts.tv_nsec * 1e-9; 1691 return ts.tv_sec + ts.tv_nsec * 1e-9;
403#else 1692 }
1693#endif
1694
404 struct timeval tv; 1695 struct timeval tv;
405 gettimeofday (&tv, 0); 1696 gettimeofday (&tv, 0);
406 return tv.tv_sec + tv.tv_usec * 1e-6; 1697 return tv.tv_sec + tv.tv_usec * 1e-6;
407#endif
408} 1698}
1699#endif
409 1700
410ev_tstamp inline_size 1701inline_size ev_tstamp
411get_clock (void) 1702get_clock (void)
412{ 1703{
413#if EV_USE_MONOTONIC 1704#if EV_USE_MONOTONIC
414 if (expect_true (have_monotonic)) 1705 if (expect_true (have_monotonic))
415 { 1706 {
422 return ev_time (); 1713 return ev_time ();
423} 1714}
424 1715
425#if EV_MULTIPLICITY 1716#if EV_MULTIPLICITY
426ev_tstamp 1717ev_tstamp
427ev_now (EV_P) 1718ev_now (EV_P) EV_THROW
428{ 1719{
429 return ev_rt_now; 1720 return ev_rt_now;
430} 1721}
431#endif 1722#endif
432 1723
433void 1724void
434ev_sleep (ev_tstamp delay) 1725ev_sleep (ev_tstamp delay) EV_THROW
435{ 1726{
436 if (delay > 0.) 1727 if (delay > 0.)
437 { 1728 {
438#if EV_USE_NANOSLEEP 1729#if EV_USE_NANOSLEEP
439 struct timespec ts; 1730 struct timespec ts;
440 1731
441 ts.tv_sec = (time_t)delay; 1732 EV_TS_SET (ts, delay);
442 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
443
444 nanosleep (&ts, 0); 1733 nanosleep (&ts, 0);
445#elif defined(_WIN32) 1734#elif defined _WIN32
446 Sleep (delay * 1e3); 1735 Sleep ((unsigned long)(delay * 1e3));
447#else 1736#else
448 struct timeval tv; 1737 struct timeval tv;
449 1738
450 tv.tv_sec = (time_t)delay; 1739 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
451 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 1740 /* something not guaranteed by newer posix versions, but guaranteed */
452 1741 /* by older ones */
1742 EV_TV_SET (tv, delay);
453 select (0, 0, 0, 0, &tv); 1743 select (0, 0, 0, 0, &tv);
454#endif 1744#endif
455 } 1745 }
456} 1746}
457 1747
458/*****************************************************************************/ 1748/*****************************************************************************/
459 1749
460int inline_size 1750#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1751
1752/* find a suitable new size for the given array, */
1753/* hopefully by rounding to a nice-to-malloc size */
1754inline_size int
461array_nextsize (int elem, int cur, int cnt) 1755array_nextsize (int elem, int cur, int cnt)
462{ 1756{
463 int ncur = cur + 1; 1757 int ncur = cur + 1;
464 1758
465 do 1759 do
466 ncur <<= 1; 1760 ncur <<= 1;
467 while (cnt > ncur); 1761 while (cnt > ncur);
468 1762
469 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 1763 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
470 if (elem * ncur > 4096) 1764 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
471 { 1765 {
472 ncur *= elem; 1766 ncur *= elem;
473 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 1767 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
474 ncur = ncur - sizeof (void *) * 4; 1768 ncur = ncur - sizeof (void *) * 4;
475 ncur /= elem; 1769 ncur /= elem;
476 } 1770 }
477 1771
478 return ncur; 1772 return ncur;
479} 1773}
480 1774
481static noinline void * 1775static void * noinline ecb_cold
482array_realloc (int elem, void *base, int *cur, int cnt) 1776array_realloc (int elem, void *base, int *cur, int cnt)
483{ 1777{
484 *cur = array_nextsize (elem, *cur, cnt); 1778 *cur = array_nextsize (elem, *cur, cnt);
485 return ev_realloc (base, elem * *cur); 1779 return ev_realloc (base, elem * *cur);
486} 1780}
1781
1782#define array_init_zero(base,count) \
1783 memset ((void *)(base), 0, sizeof (*(base)) * (count))
487 1784
488#define array_needsize(type,base,cur,cnt,init) \ 1785#define array_needsize(type,base,cur,cnt,init) \
489 if (expect_false ((cnt) > (cur))) \ 1786 if (expect_false ((cnt) > (cur))) \
490 { \ 1787 { \
491 int ocur_ = (cur); \ 1788 int ecb_unused ocur_ = (cur); \
492 (base) = (type *)array_realloc \ 1789 (base) = (type *)array_realloc \
493 (sizeof (type), (base), &(cur), (cnt)); \ 1790 (sizeof (type), (base), &(cur), (cnt)); \
494 init ((base) + (ocur_), (cur) - ocur_); \ 1791 init ((base) + (ocur_), (cur) - ocur_); \
495 } 1792 }
496 1793
503 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1800 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
504 } 1801 }
505#endif 1802#endif
506 1803
507#define array_free(stem, idx) \ 1804#define array_free(stem, idx) \
508 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1805 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
509 1806
510/*****************************************************************************/ 1807/*****************************************************************************/
511 1808
1809/* dummy callback for pending events */
1810static void noinline
1811pendingcb (EV_P_ ev_prepare *w, int revents)
1812{
1813}
1814
512void noinline 1815void noinline
513ev_feed_event (EV_P_ void *w, int revents) 1816ev_feed_event (EV_P_ void *w, int revents) EV_THROW
514{ 1817{
515 W w_ = (W)w; 1818 W w_ = (W)w;
516 int pri = ABSPRI (w_); 1819 int pri = ABSPRI (w_);
517 1820
518 if (expect_false (w_->pending)) 1821 if (expect_false (w_->pending))
522 w_->pending = ++pendingcnt [pri]; 1825 w_->pending = ++pendingcnt [pri];
523 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 1826 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
524 pendings [pri][w_->pending - 1].w = w_; 1827 pendings [pri][w_->pending - 1].w = w_;
525 pendings [pri][w_->pending - 1].events = revents; 1828 pendings [pri][w_->pending - 1].events = revents;
526 } 1829 }
527}
528 1830
529void inline_speed 1831 pendingpri = NUMPRI - 1;
1832}
1833
1834inline_speed void
1835feed_reverse (EV_P_ W w)
1836{
1837 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1838 rfeeds [rfeedcnt++] = w;
1839}
1840
1841inline_size void
1842feed_reverse_done (EV_P_ int revents)
1843{
1844 do
1845 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1846 while (rfeedcnt);
1847}
1848
1849inline_speed void
530queue_events (EV_P_ W *events, int eventcnt, int type) 1850queue_events (EV_P_ W *events, int eventcnt, int type)
531{ 1851{
532 int i; 1852 int i;
533 1853
534 for (i = 0; i < eventcnt; ++i) 1854 for (i = 0; i < eventcnt; ++i)
535 ev_feed_event (EV_A_ events [i], type); 1855 ev_feed_event (EV_A_ events [i], type);
536} 1856}
537 1857
538/*****************************************************************************/ 1858/*****************************************************************************/
539 1859
540void inline_size 1860inline_speed void
541anfds_init (ANFD *base, int count)
542{
543 while (count--)
544 {
545 base->head = 0;
546 base->events = EV_NONE;
547 base->reify = 0;
548
549 ++base;
550 }
551}
552
553void inline_speed
554fd_event (EV_P_ int fd, int revents) 1861fd_event_nocheck (EV_P_ int fd, int revents)
555{ 1862{
556 ANFD *anfd = anfds + fd; 1863 ANFD *anfd = anfds + fd;
557 ev_io *w; 1864 ev_io *w;
558 1865
559 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1866 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
563 if (ev) 1870 if (ev)
564 ev_feed_event (EV_A_ (W)w, ev); 1871 ev_feed_event (EV_A_ (W)w, ev);
565 } 1872 }
566} 1873}
567 1874
1875/* do not submit kernel events for fds that have reify set */
1876/* because that means they changed while we were polling for new events */
1877inline_speed void
1878fd_event (EV_P_ int fd, int revents)
1879{
1880 ANFD *anfd = anfds + fd;
1881
1882 if (expect_true (!anfd->reify))
1883 fd_event_nocheck (EV_A_ fd, revents);
1884}
1885
568void 1886void
569ev_feed_fd_event (EV_P_ int fd, int revents) 1887ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
570{ 1888{
571 if (fd >= 0 && fd < anfdmax) 1889 if (fd >= 0 && fd < anfdmax)
572 fd_event (EV_A_ fd, revents); 1890 fd_event_nocheck (EV_A_ fd, revents);
573} 1891}
574 1892
575void inline_size 1893/* make sure the external fd watch events are in-sync */
1894/* with the kernel/libev internal state */
1895inline_size void
576fd_reify (EV_P) 1896fd_reify (EV_P)
577{ 1897{
578 int i; 1898 int i;
1899
1900#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1901 for (i = 0; i < fdchangecnt; ++i)
1902 {
1903 int fd = fdchanges [i];
1904 ANFD *anfd = anfds + fd;
1905
1906 if (anfd->reify & EV__IOFDSET && anfd->head)
1907 {
1908 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1909
1910 if (handle != anfd->handle)
1911 {
1912 unsigned long arg;
1913
1914 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1915
1916 /* handle changed, but fd didn't - we need to do it in two steps */
1917 backend_modify (EV_A_ fd, anfd->events, 0);
1918 anfd->events = 0;
1919 anfd->handle = handle;
1920 }
1921 }
1922 }
1923#endif
579 1924
580 for (i = 0; i < fdchangecnt; ++i) 1925 for (i = 0; i < fdchangecnt; ++i)
581 { 1926 {
582 int fd = fdchanges [i]; 1927 int fd = fdchanges [i];
583 ANFD *anfd = anfds + fd; 1928 ANFD *anfd = anfds + fd;
584 ev_io *w; 1929 ev_io *w;
585 1930
586 unsigned char events = 0; 1931 unsigned char o_events = anfd->events;
1932 unsigned char o_reify = anfd->reify;
587 1933
588 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1934 anfd->reify = 0;
589 events |= (unsigned char)w->events;
590 1935
591#if EV_SELECT_IS_WINSOCKET 1936 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
592 if (events)
593 { 1937 {
594 unsigned long argp; 1938 anfd->events = 0;
595 anfd->handle = _get_osfhandle (fd); 1939
596 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1940 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1941 anfd->events |= (unsigned char)w->events;
1942
1943 if (o_events != anfd->events)
1944 o_reify = EV__IOFDSET; /* actually |= */
597 } 1945 }
598#endif
599 1946
600 { 1947 if (o_reify & EV__IOFDSET)
601 unsigned char o_events = anfd->events;
602 unsigned char o_reify = anfd->reify;
603
604 anfd->reify = 0;
605 anfd->events = events;
606
607 if (o_events != events || o_reify & EV_IOFDSET)
608 backend_modify (EV_A_ fd, o_events, events); 1948 backend_modify (EV_A_ fd, o_events, anfd->events);
609 }
610 } 1949 }
611 1950
612 fdchangecnt = 0; 1951 fdchangecnt = 0;
613} 1952}
614 1953
615void inline_size 1954/* something about the given fd changed */
1955inline_size void
616fd_change (EV_P_ int fd, int flags) 1956fd_change (EV_P_ int fd, int flags)
617{ 1957{
618 unsigned char reify = anfds [fd].reify; 1958 unsigned char reify = anfds [fd].reify;
619 anfds [fd].reify |= flags; 1959 anfds [fd].reify |= flags;
620 1960
624 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1964 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
625 fdchanges [fdchangecnt - 1] = fd; 1965 fdchanges [fdchangecnt - 1] = fd;
626 } 1966 }
627} 1967}
628 1968
629void inline_speed 1969/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1970inline_speed void ecb_cold
630fd_kill (EV_P_ int fd) 1971fd_kill (EV_P_ int fd)
631{ 1972{
632 ev_io *w; 1973 ev_io *w;
633 1974
634 while ((w = (ev_io *)anfds [fd].head)) 1975 while ((w = (ev_io *)anfds [fd].head))
636 ev_io_stop (EV_A_ w); 1977 ev_io_stop (EV_A_ w);
637 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1978 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
638 } 1979 }
639} 1980}
640 1981
641int inline_size 1982/* check whether the given fd is actually valid, for error recovery */
1983inline_size int ecb_cold
642fd_valid (int fd) 1984fd_valid (int fd)
643{ 1985{
644#ifdef _WIN32 1986#ifdef _WIN32
645 return _get_osfhandle (fd) != -1; 1987 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
646#else 1988#else
647 return fcntl (fd, F_GETFD) != -1; 1989 return fcntl (fd, F_GETFD) != -1;
648#endif 1990#endif
649} 1991}
650 1992
651/* called on EBADF to verify fds */ 1993/* called on EBADF to verify fds */
652static void noinline 1994static void noinline ecb_cold
653fd_ebadf (EV_P) 1995fd_ebadf (EV_P)
654{ 1996{
655 int fd; 1997 int fd;
656 1998
657 for (fd = 0; fd < anfdmax; ++fd) 1999 for (fd = 0; fd < anfdmax; ++fd)
658 if (anfds [fd].events) 2000 if (anfds [fd].events)
659 if (!fd_valid (fd) == -1 && errno == EBADF) 2001 if (!fd_valid (fd) && errno == EBADF)
660 fd_kill (EV_A_ fd); 2002 fd_kill (EV_A_ fd);
661} 2003}
662 2004
663/* called on ENOMEM in select/poll to kill some fds and retry */ 2005/* called on ENOMEM in select/poll to kill some fds and retry */
664static void noinline 2006static void noinline ecb_cold
665fd_enomem (EV_P) 2007fd_enomem (EV_P)
666{ 2008{
667 int fd; 2009 int fd;
668 2010
669 for (fd = anfdmax; fd--; ) 2011 for (fd = anfdmax; fd--; )
670 if (anfds [fd].events) 2012 if (anfds [fd].events)
671 { 2013 {
672 fd_kill (EV_A_ fd); 2014 fd_kill (EV_A_ fd);
673 return; 2015 break;
674 } 2016 }
675} 2017}
676 2018
677/* usually called after fork if backend needs to re-arm all fds from scratch */ 2019/* usually called after fork if backend needs to re-arm all fds from scratch */
678static void noinline 2020static void noinline
682 2024
683 for (fd = 0; fd < anfdmax; ++fd) 2025 for (fd = 0; fd < anfdmax; ++fd)
684 if (anfds [fd].events) 2026 if (anfds [fd].events)
685 { 2027 {
686 anfds [fd].events = 0; 2028 anfds [fd].events = 0;
2029 anfds [fd].emask = 0;
687 fd_change (EV_A_ fd, EV_IOFDSET | 1); 2030 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
688 } 2031 }
689} 2032}
690 2033
691/*****************************************************************************/ 2034/* used to prepare libev internal fd's */
692 2035/* this is not fork-safe */
693void inline_speed 2036inline_speed void
694upheap (WT *heap, int k)
695{
696 WT w = heap [k];
697
698 while (k)
699 {
700 int p = (k - 1) >> 1;
701
702 if (heap [p]->at <= w->at)
703 break;
704
705 heap [k] = heap [p];
706 ((W)heap [k])->active = k + 1;
707 k = p;
708 }
709
710 heap [k] = w;
711 ((W)heap [k])->active = k + 1;
712}
713
714void inline_speed
715downheap (WT *heap, int N, int k)
716{
717 WT w = heap [k];
718
719 for (;;)
720 {
721 int c = (k << 1) + 1;
722
723 if (c >= N)
724 break;
725
726 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
727 ? 1 : 0;
728
729 if (w->at <= heap [c]->at)
730 break;
731
732 heap [k] = heap [c];
733 ((W)heap [k])->active = k + 1;
734
735 k = c;
736 }
737
738 heap [k] = w;
739 ((W)heap [k])->active = k + 1;
740}
741
742void inline_size
743adjustheap (WT *heap, int N, int k)
744{
745 upheap (heap, k);
746 downheap (heap, N, k);
747}
748
749/*****************************************************************************/
750
751typedef struct
752{
753 WL head;
754 sig_atomic_t volatile gotsig;
755} ANSIG;
756
757static ANSIG *signals;
758static int signalmax;
759
760static int sigpipe [2];
761static sig_atomic_t volatile gotsig;
762static ev_io sigev;
763
764void inline_size
765signals_init (ANSIG *base, int count)
766{
767 while (count--)
768 {
769 base->head = 0;
770 base->gotsig = 0;
771
772 ++base;
773 }
774}
775
776static void
777sighandler (int signum)
778{
779#if _WIN32
780 signal (signum, sighandler);
781#endif
782
783 signals [signum - 1].gotsig = 1;
784
785 if (!gotsig)
786 {
787 int old_errno = errno;
788 gotsig = 1;
789 write (sigpipe [1], &signum, 1);
790 errno = old_errno;
791 }
792}
793
794void noinline
795ev_feed_signal_event (EV_P_ int signum)
796{
797 WL w;
798
799#if EV_MULTIPLICITY
800 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
801#endif
802
803 --signum;
804
805 if (signum < 0 || signum >= signalmax)
806 return;
807
808 signals [signum].gotsig = 0;
809
810 for (w = signals [signum].head; w; w = w->next)
811 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
812}
813
814static void
815sigcb (EV_P_ ev_io *iow, int revents)
816{
817 int signum;
818
819 read (sigpipe [0], &revents, 1);
820 gotsig = 0;
821
822 for (signum = signalmax; signum--; )
823 if (signals [signum].gotsig)
824 ev_feed_signal_event (EV_A_ signum + 1);
825}
826
827void inline_speed
828fd_intern (int fd) 2037fd_intern (int fd)
829{ 2038{
830#ifdef _WIN32 2039#ifdef _WIN32
831 int arg = 1; 2040 unsigned long arg = 1;
832 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 2041 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
833#else 2042#else
834 fcntl (fd, F_SETFD, FD_CLOEXEC); 2043 fcntl (fd, F_SETFD, FD_CLOEXEC);
835 fcntl (fd, F_SETFL, O_NONBLOCK); 2044 fcntl (fd, F_SETFL, O_NONBLOCK);
836#endif 2045#endif
837} 2046}
838 2047
839static void noinline
840siginit (EV_P)
841{
842 fd_intern (sigpipe [0]);
843 fd_intern (sigpipe [1]);
844
845 ev_io_set (&sigev, sigpipe [0], EV_READ);
846 ev_io_start (EV_A_ &sigev);
847 ev_unref (EV_A); /* child watcher should not keep loop alive */
848}
849
850/*****************************************************************************/ 2048/*****************************************************************************/
851 2049
2050/*
2051 * the heap functions want a real array index. array index 0 is guaranteed to not
2052 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
2053 * the branching factor of the d-tree.
2054 */
2055
2056/*
2057 * at the moment we allow libev the luxury of two heaps,
2058 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2059 * which is more cache-efficient.
2060 * the difference is about 5% with 50000+ watchers.
2061 */
2062#if EV_USE_4HEAP
2063
2064#define DHEAP 4
2065#define HEAP0 (DHEAP - 1) /* index of first element in heap */
2066#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2067#define UPHEAP_DONE(p,k) ((p) == (k))
2068
2069/* away from the root */
2070inline_speed void
2071downheap (ANHE *heap, int N, int k)
2072{
2073 ANHE he = heap [k];
2074 ANHE *E = heap + N + HEAP0;
2075
2076 for (;;)
2077 {
2078 ev_tstamp minat;
2079 ANHE *minpos;
2080 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2081
2082 /* find minimum child */
2083 if (expect_true (pos + DHEAP - 1 < E))
2084 {
2085 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2086 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2087 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2088 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2089 }
2090 else if (pos < E)
2091 {
2092 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2093 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2094 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2095 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2096 }
2097 else
2098 break;
2099
2100 if (ANHE_at (he) <= minat)
2101 break;
2102
2103 heap [k] = *minpos;
2104 ev_active (ANHE_w (*minpos)) = k;
2105
2106 k = minpos - heap;
2107 }
2108
2109 heap [k] = he;
2110 ev_active (ANHE_w (he)) = k;
2111}
2112
2113#else /* 4HEAP */
2114
2115#define HEAP0 1
2116#define HPARENT(k) ((k) >> 1)
2117#define UPHEAP_DONE(p,k) (!(p))
2118
2119/* away from the root */
2120inline_speed void
2121downheap (ANHE *heap, int N, int k)
2122{
2123 ANHE he = heap [k];
2124
2125 for (;;)
2126 {
2127 int c = k << 1;
2128
2129 if (c >= N + HEAP0)
2130 break;
2131
2132 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2133 ? 1 : 0;
2134
2135 if (ANHE_at (he) <= ANHE_at (heap [c]))
2136 break;
2137
2138 heap [k] = heap [c];
2139 ev_active (ANHE_w (heap [k])) = k;
2140
2141 k = c;
2142 }
2143
2144 heap [k] = he;
2145 ev_active (ANHE_w (he)) = k;
2146}
2147#endif
2148
2149/* towards the root */
2150inline_speed void
2151upheap (ANHE *heap, int k)
2152{
2153 ANHE he = heap [k];
2154
2155 for (;;)
2156 {
2157 int p = HPARENT (k);
2158
2159 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2160 break;
2161
2162 heap [k] = heap [p];
2163 ev_active (ANHE_w (heap [k])) = k;
2164 k = p;
2165 }
2166
2167 heap [k] = he;
2168 ev_active (ANHE_w (he)) = k;
2169}
2170
2171/* move an element suitably so it is in a correct place */
2172inline_size void
2173adjustheap (ANHE *heap, int N, int k)
2174{
2175 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2176 upheap (heap, k);
2177 else
2178 downheap (heap, N, k);
2179}
2180
2181/* rebuild the heap: this function is used only once and executed rarely */
2182inline_size void
2183reheap (ANHE *heap, int N)
2184{
2185 int i;
2186
2187 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2188 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2189 for (i = 0; i < N; ++i)
2190 upheap (heap, i + HEAP0);
2191}
2192
2193/*****************************************************************************/
2194
2195/* associate signal watchers to a signal signal */
2196typedef struct
2197{
2198 EV_ATOMIC_T pending;
2199#if EV_MULTIPLICITY
2200 EV_P;
2201#endif
2202 WL head;
2203} ANSIG;
2204
2205static ANSIG signals [EV_NSIG - 1];
2206
2207/*****************************************************************************/
2208
2209#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2210
2211static void noinline ecb_cold
2212evpipe_init (EV_P)
2213{
2214 if (!ev_is_active (&pipe_w))
2215 {
2216 int fds [2];
2217
2218# if EV_USE_EVENTFD
2219 fds [0] = -1;
2220 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2221 if (fds [1] < 0 && errno == EINVAL)
2222 fds [1] = eventfd (0, 0);
2223
2224 if (fds [1] < 0)
2225# endif
2226 {
2227 while (pipe (fds))
2228 ev_syserr ("(libev) error creating signal/async pipe");
2229
2230 fd_intern (fds [0]);
2231 }
2232
2233 evpipe [0] = fds [0];
2234
2235 if (evpipe [1] < 0)
2236 evpipe [1] = fds [1]; /* first call, set write fd */
2237 else
2238 {
2239 /* on subsequent calls, do not change evpipe [1] */
2240 /* so that evpipe_write can always rely on its value. */
2241 /* this branch does not do anything sensible on windows, */
2242 /* so must not be executed on windows */
2243
2244 dup2 (fds [1], evpipe [1]);
2245 close (fds [1]);
2246 }
2247
2248 fd_intern (evpipe [1]);
2249
2250 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2251 ev_io_start (EV_A_ &pipe_w);
2252 ev_unref (EV_A); /* watcher should not keep loop alive */
2253 }
2254}
2255
2256inline_speed void
2257evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2258{
2259 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2260
2261 if (expect_true (*flag))
2262 return;
2263
2264 *flag = 1;
2265 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2266
2267 pipe_write_skipped = 1;
2268
2269 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2270
2271 if (pipe_write_wanted)
2272 {
2273 int old_errno;
2274
2275 pipe_write_skipped = 0;
2276 ECB_MEMORY_FENCE_RELEASE;
2277
2278 old_errno = errno; /* save errno because write will clobber it */
2279
2280#if EV_USE_EVENTFD
2281 if (evpipe [0] < 0)
2282 {
2283 uint64_t counter = 1;
2284 write (evpipe [1], &counter, sizeof (uint64_t));
2285 }
2286 else
2287#endif
2288 {
2289#ifdef _WIN32
2290 WSABUF buf;
2291 DWORD sent;
2292 buf.buf = &buf;
2293 buf.len = 1;
2294 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2295#else
2296 write (evpipe [1], &(evpipe [1]), 1);
2297#endif
2298 }
2299
2300 errno = old_errno;
2301 }
2302}
2303
2304/* called whenever the libev signal pipe */
2305/* got some events (signal, async) */
2306static void
2307pipecb (EV_P_ ev_io *iow, int revents)
2308{
2309 int i;
2310
2311 if (revents & EV_READ)
2312 {
2313#if EV_USE_EVENTFD
2314 if (evpipe [0] < 0)
2315 {
2316 uint64_t counter;
2317 read (evpipe [1], &counter, sizeof (uint64_t));
2318 }
2319 else
2320#endif
2321 {
2322 char dummy[4];
2323#ifdef _WIN32
2324 WSABUF buf;
2325 DWORD recvd;
2326 DWORD flags = 0;
2327 buf.buf = dummy;
2328 buf.len = sizeof (dummy);
2329 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2330#else
2331 read (evpipe [0], &dummy, sizeof (dummy));
2332#endif
2333 }
2334 }
2335
2336 pipe_write_skipped = 0;
2337
2338 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2339
2340#if EV_SIGNAL_ENABLE
2341 if (sig_pending)
2342 {
2343 sig_pending = 0;
2344
2345 ECB_MEMORY_FENCE;
2346
2347 for (i = EV_NSIG - 1; i--; )
2348 if (expect_false (signals [i].pending))
2349 ev_feed_signal_event (EV_A_ i + 1);
2350 }
2351#endif
2352
2353#if EV_ASYNC_ENABLE
2354 if (async_pending)
2355 {
2356 async_pending = 0;
2357
2358 ECB_MEMORY_FENCE;
2359
2360 for (i = asynccnt; i--; )
2361 if (asyncs [i]->sent)
2362 {
2363 asyncs [i]->sent = 0;
2364 ECB_MEMORY_FENCE_RELEASE;
2365 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2366 }
2367 }
2368#endif
2369}
2370
2371/*****************************************************************************/
2372
2373void
2374ev_feed_signal (int signum) EV_THROW
2375{
2376#if EV_MULTIPLICITY
2377 EV_P;
2378 ECB_MEMORY_FENCE_ACQUIRE;
2379 EV_A = signals [signum - 1].loop;
2380
2381 if (!EV_A)
2382 return;
2383#endif
2384
2385 signals [signum - 1].pending = 1;
2386 evpipe_write (EV_A_ &sig_pending);
2387}
2388
2389static void
2390ev_sighandler (int signum)
2391{
2392#ifdef _WIN32
2393 signal (signum, ev_sighandler);
2394#endif
2395
2396 ev_feed_signal (signum);
2397}
2398
2399void noinline
2400ev_feed_signal_event (EV_P_ int signum) EV_THROW
2401{
2402 WL w;
2403
2404 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2405 return;
2406
2407 --signum;
2408
2409#if EV_MULTIPLICITY
2410 /* it is permissible to try to feed a signal to the wrong loop */
2411 /* or, likely more useful, feeding a signal nobody is waiting for */
2412
2413 if (expect_false (signals [signum].loop != EV_A))
2414 return;
2415#endif
2416
2417 signals [signum].pending = 0;
2418 ECB_MEMORY_FENCE_RELEASE;
2419
2420 for (w = signals [signum].head; w; w = w->next)
2421 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2422}
2423
2424#if EV_USE_SIGNALFD
2425static void
2426sigfdcb (EV_P_ ev_io *iow, int revents)
2427{
2428 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2429
2430 for (;;)
2431 {
2432 ssize_t res = read (sigfd, si, sizeof (si));
2433
2434 /* not ISO-C, as res might be -1, but works with SuS */
2435 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2436 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2437
2438 if (res < (ssize_t)sizeof (si))
2439 break;
2440 }
2441}
2442#endif
2443
2444#endif
2445
2446/*****************************************************************************/
2447
2448#if EV_CHILD_ENABLE
852static WL childs [EV_PID_HASHSIZE]; 2449static WL childs [EV_PID_HASHSIZE];
853 2450
854#ifndef _WIN32
855
856static ev_signal childev; 2451static ev_signal childev;
857 2452
858void inline_speed 2453#ifndef WIFCONTINUED
2454# define WIFCONTINUED(status) 0
2455#endif
2456
2457/* handle a single child status event */
2458inline_speed void
859child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 2459child_reap (EV_P_ int chain, int pid, int status)
860{ 2460{
861 ev_child *w; 2461 ev_child *w;
2462 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
862 2463
863 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2464 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2465 {
864 if (w->pid == pid || !w->pid) 2466 if ((w->pid == pid || !w->pid)
2467 && (!traced || (w->flags & 1)))
865 { 2468 {
866 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 2469 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
867 w->rpid = pid; 2470 w->rpid = pid;
868 w->rstatus = status; 2471 w->rstatus = status;
869 ev_feed_event (EV_A_ (W)w, EV_CHILD); 2472 ev_feed_event (EV_A_ (W)w, EV_CHILD);
870 } 2473 }
2474 }
871} 2475}
872 2476
873#ifndef WCONTINUED 2477#ifndef WCONTINUED
874# define WCONTINUED 0 2478# define WCONTINUED 0
875#endif 2479#endif
876 2480
2481/* called on sigchld etc., calls waitpid */
877static void 2482static void
878childcb (EV_P_ ev_signal *sw, int revents) 2483childcb (EV_P_ ev_signal *sw, int revents)
879{ 2484{
880 int pid, status; 2485 int pid, status;
881 2486
884 if (!WCONTINUED 2489 if (!WCONTINUED
885 || errno != EINVAL 2490 || errno != EINVAL
886 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 2491 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
887 return; 2492 return;
888 2493
889 /* make sure we are called again until all childs have been reaped */ 2494 /* make sure we are called again until all children have been reaped */
890 /* we need to do it this way so that the callback gets called before we continue */ 2495 /* we need to do it this way so that the callback gets called before we continue */
891 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2496 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
892 2497
893 child_reap (EV_A_ sw, pid, pid, status); 2498 child_reap (EV_A_ pid, pid, status);
894 if (EV_PID_HASHSIZE > 1) 2499 if ((EV_PID_HASHSIZE) > 1)
895 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2500 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
896} 2501}
897 2502
898#endif 2503#endif
899 2504
900/*****************************************************************************/ 2505/*****************************************************************************/
901 2506
2507#if EV_USE_IOCP
2508# include "ev_iocp.c"
2509#endif
902#if EV_USE_PORT 2510#if EV_USE_PORT
903# include "ev_port.c" 2511# include "ev_port.c"
904#endif 2512#endif
905#if EV_USE_KQUEUE 2513#if EV_USE_KQUEUE
906# include "ev_kqueue.c" 2514# include "ev_kqueue.c"
913#endif 2521#endif
914#if EV_USE_SELECT 2522#if EV_USE_SELECT
915# include "ev_select.c" 2523# include "ev_select.c"
916#endif 2524#endif
917 2525
918int 2526int ecb_cold
919ev_version_major (void) 2527ev_version_major (void) EV_THROW
920{ 2528{
921 return EV_VERSION_MAJOR; 2529 return EV_VERSION_MAJOR;
922} 2530}
923 2531
924int 2532int ecb_cold
925ev_version_minor (void) 2533ev_version_minor (void) EV_THROW
926{ 2534{
927 return EV_VERSION_MINOR; 2535 return EV_VERSION_MINOR;
928} 2536}
929 2537
930/* return true if we are running with elevated privileges and should ignore env variables */ 2538/* return true if we are running with elevated privileges and should ignore env variables */
931int inline_size 2539int inline_size ecb_cold
932enable_secure (void) 2540enable_secure (void)
933{ 2541{
934#ifdef _WIN32 2542#ifdef _WIN32
935 return 0; 2543 return 0;
936#else 2544#else
937 return getuid () != geteuid () 2545 return getuid () != geteuid ()
938 || getgid () != getegid (); 2546 || getgid () != getegid ();
939#endif 2547#endif
940} 2548}
941 2549
942unsigned int 2550unsigned int ecb_cold
943ev_supported_backends (void) 2551ev_supported_backends (void) EV_THROW
944{ 2552{
945 unsigned int flags = 0; 2553 unsigned int flags = 0;
946 2554
947 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2555 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
948 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2556 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
951 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2559 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
952 2560
953 return flags; 2561 return flags;
954} 2562}
955 2563
956unsigned int 2564unsigned int ecb_cold
957ev_recommended_backends (void) 2565ev_recommended_backends (void) EV_THROW
958{ 2566{
959 unsigned int flags = ev_supported_backends (); 2567 unsigned int flags = ev_supported_backends ();
960 2568
961#ifndef __NetBSD__ 2569#ifndef __NetBSD__
962 /* kqueue is borked on everything but netbsd apparently */ 2570 /* kqueue is borked on everything but netbsd apparently */
963 /* it usually doesn't work correctly on anything but sockets and pipes */ 2571 /* it usually doesn't work correctly on anything but sockets and pipes */
964 flags &= ~EVBACKEND_KQUEUE; 2572 flags &= ~EVBACKEND_KQUEUE;
965#endif 2573#endif
966#ifdef __APPLE__ 2574#ifdef __APPLE__
967 // flags &= ~EVBACKEND_KQUEUE; for documentation 2575 /* only select works correctly on that "unix-certified" platform */
968 flags &= ~EVBACKEND_POLL; 2576 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2577 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2578#endif
2579#ifdef __FreeBSD__
2580 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
969#endif 2581#endif
970 2582
971 return flags; 2583 return flags;
972} 2584}
973 2585
2586unsigned int ecb_cold
2587ev_embeddable_backends (void) EV_THROW
2588{
2589 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2590
2591 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2592 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2593 flags &= ~EVBACKEND_EPOLL;
2594
2595 return flags;
2596}
2597
974unsigned int 2598unsigned int
975ev_embeddable_backends (void) 2599ev_backend (EV_P) EV_THROW
976{ 2600{
977 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 2601 return backend;
978 return EVBACKEND_KQUEUE
979 | EVBACKEND_PORT;
980} 2602}
981 2603
2604#if EV_FEATURE_API
982unsigned int 2605unsigned int
983ev_backend (EV_P) 2606ev_iteration (EV_P) EV_THROW
984{ 2607{
985 return backend; 2608 return loop_count;
986} 2609}
987 2610
988unsigned int 2611unsigned int
989ev_loop_count (EV_P) 2612ev_depth (EV_P) EV_THROW
990{ 2613{
991 return loop_count; 2614 return loop_depth;
992} 2615}
993 2616
994void 2617void
995ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2618ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
996{ 2619{
997 io_blocktime = interval; 2620 io_blocktime = interval;
998} 2621}
999 2622
1000void 2623void
1001ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2624ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1002{ 2625{
1003 timeout_blocktime = interval; 2626 timeout_blocktime = interval;
1004} 2627}
1005 2628
2629void
2630ev_set_userdata (EV_P_ void *data) EV_THROW
2631{
2632 userdata = data;
2633}
2634
2635void *
2636ev_userdata (EV_P) EV_THROW
2637{
2638 return userdata;
2639}
2640
2641void
2642ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_THROW
2643{
2644 invoke_cb = invoke_pending_cb;
2645}
2646
2647void
2648ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2649{
2650 release_cb = release;
2651 acquire_cb = acquire;
2652}
2653#endif
2654
2655/* initialise a loop structure, must be zero-initialised */
1006static void noinline 2656static void noinline ecb_cold
1007loop_init (EV_P_ unsigned int flags) 2657loop_init (EV_P_ unsigned int flags) EV_THROW
1008{ 2658{
1009 if (!backend) 2659 if (!backend)
1010 { 2660 {
2661 origflags = flags;
2662
2663#if EV_USE_REALTIME
2664 if (!have_realtime)
2665 {
2666 struct timespec ts;
2667
2668 if (!clock_gettime (CLOCK_REALTIME, &ts))
2669 have_realtime = 1;
2670 }
2671#endif
2672
1011#if EV_USE_MONOTONIC 2673#if EV_USE_MONOTONIC
2674 if (!have_monotonic)
1012 { 2675 {
1013 struct timespec ts; 2676 struct timespec ts;
2677
1014 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2678 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1015 have_monotonic = 1; 2679 have_monotonic = 1;
1016 } 2680 }
1017#endif 2681#endif
1018
1019 ev_rt_now = ev_time ();
1020 mn_now = get_clock ();
1021 now_floor = mn_now;
1022 rtmn_diff = ev_rt_now - mn_now;
1023
1024 io_blocktime = 0.;
1025 timeout_blocktime = 0.;
1026 2682
1027 /* pid check not overridable via env */ 2683 /* pid check not overridable via env */
1028#ifndef _WIN32 2684#ifndef _WIN32
1029 if (flags & EVFLAG_FORKCHECK) 2685 if (flags & EVFLAG_FORKCHECK)
1030 curpid = getpid (); 2686 curpid = getpid ();
1033 if (!(flags & EVFLAG_NOENV) 2689 if (!(flags & EVFLAG_NOENV)
1034 && !enable_secure () 2690 && !enable_secure ()
1035 && getenv ("LIBEV_FLAGS")) 2691 && getenv ("LIBEV_FLAGS"))
1036 flags = atoi (getenv ("LIBEV_FLAGS")); 2692 flags = atoi (getenv ("LIBEV_FLAGS"));
1037 2693
1038 if (!(flags & 0x0000ffffUL)) 2694 ev_rt_now = ev_time ();
2695 mn_now = get_clock ();
2696 now_floor = mn_now;
2697 rtmn_diff = ev_rt_now - mn_now;
2698#if EV_FEATURE_API
2699 invoke_cb = ev_invoke_pending;
2700#endif
2701
2702 io_blocktime = 0.;
2703 timeout_blocktime = 0.;
2704 backend = 0;
2705 backend_fd = -1;
2706 sig_pending = 0;
2707#if EV_ASYNC_ENABLE
2708 async_pending = 0;
2709#endif
2710 pipe_write_skipped = 0;
2711 pipe_write_wanted = 0;
2712 evpipe [0] = -1;
2713 evpipe [1] = -1;
2714#if EV_USE_INOTIFY
2715 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2716#endif
2717#if EV_USE_SIGNALFD
2718 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2719#endif
2720
2721 if (!(flags & EVBACKEND_MASK))
1039 flags |= ev_recommended_backends (); 2722 flags |= ev_recommended_backends ();
1040 2723
1041 backend = 0;
1042 backend_fd = -1;
1043#if EV_USE_INOTIFY 2724#if EV_USE_IOCP
1044 fs_fd = -2; 2725 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1045#endif 2726#endif
1046
1047#if EV_USE_PORT 2727#if EV_USE_PORT
1048 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2728 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1049#endif 2729#endif
1050#if EV_USE_KQUEUE 2730#if EV_USE_KQUEUE
1051 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2731 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1058#endif 2738#endif
1059#if EV_USE_SELECT 2739#if EV_USE_SELECT
1060 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2740 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1061#endif 2741#endif
1062 2742
2743 ev_prepare_init (&pending_w, pendingcb);
2744
2745#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1063 ev_init (&sigev, sigcb); 2746 ev_init (&pipe_w, pipecb);
1064 ev_set_priority (&sigev, EV_MAXPRI); 2747 ev_set_priority (&pipe_w, EV_MAXPRI);
2748#endif
1065 } 2749 }
1066} 2750}
1067 2751
1068static void noinline 2752/* free up a loop structure */
2753void ecb_cold
1069loop_destroy (EV_P) 2754ev_loop_destroy (EV_P)
1070{ 2755{
1071 int i; 2756 int i;
2757
2758#if EV_MULTIPLICITY
2759 /* mimic free (0) */
2760 if (!EV_A)
2761 return;
2762#endif
2763
2764#if EV_CLEANUP_ENABLE
2765 /* queue cleanup watchers (and execute them) */
2766 if (expect_false (cleanupcnt))
2767 {
2768 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2769 EV_INVOKE_PENDING;
2770 }
2771#endif
2772
2773#if EV_CHILD_ENABLE
2774 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2775 {
2776 ev_ref (EV_A); /* child watcher */
2777 ev_signal_stop (EV_A_ &childev);
2778 }
2779#endif
2780
2781 if (ev_is_active (&pipe_w))
2782 {
2783 /*ev_ref (EV_A);*/
2784 /*ev_io_stop (EV_A_ &pipe_w);*/
2785
2786 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2787 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2788 }
2789
2790#if EV_USE_SIGNALFD
2791 if (ev_is_active (&sigfd_w))
2792 close (sigfd);
2793#endif
1072 2794
1073#if EV_USE_INOTIFY 2795#if EV_USE_INOTIFY
1074 if (fs_fd >= 0) 2796 if (fs_fd >= 0)
1075 close (fs_fd); 2797 close (fs_fd);
1076#endif 2798#endif
1077 2799
1078 if (backend_fd >= 0) 2800 if (backend_fd >= 0)
1079 close (backend_fd); 2801 close (backend_fd);
1080 2802
2803#if EV_USE_IOCP
2804 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2805#endif
1081#if EV_USE_PORT 2806#if EV_USE_PORT
1082 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2807 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1083#endif 2808#endif
1084#if EV_USE_KQUEUE 2809#if EV_USE_KQUEUE
1085 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2810 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1100#if EV_IDLE_ENABLE 2825#if EV_IDLE_ENABLE
1101 array_free (idle, [i]); 2826 array_free (idle, [i]);
1102#endif 2827#endif
1103 } 2828 }
1104 2829
1105 ev_free (anfds); anfdmax = 0; 2830 ev_free (anfds); anfds = 0; anfdmax = 0;
1106 2831
1107 /* have to use the microsoft-never-gets-it-right macro */ 2832 /* have to use the microsoft-never-gets-it-right macro */
2833 array_free (rfeed, EMPTY);
1108 array_free (fdchange, EMPTY); 2834 array_free (fdchange, EMPTY);
1109 array_free (timer, EMPTY); 2835 array_free (timer, EMPTY);
1110#if EV_PERIODIC_ENABLE 2836#if EV_PERIODIC_ENABLE
1111 array_free (periodic, EMPTY); 2837 array_free (periodic, EMPTY);
1112#endif 2838#endif
1113#if EV_FORK_ENABLE 2839#if EV_FORK_ENABLE
1114 array_free (fork, EMPTY); 2840 array_free (fork, EMPTY);
1115#endif 2841#endif
2842#if EV_CLEANUP_ENABLE
2843 array_free (cleanup, EMPTY);
2844#endif
1116 array_free (prepare, EMPTY); 2845 array_free (prepare, EMPTY);
1117 array_free (check, EMPTY); 2846 array_free (check, EMPTY);
2847#if EV_ASYNC_ENABLE
2848 array_free (async, EMPTY);
2849#endif
1118 2850
1119 backend = 0; 2851 backend = 0;
1120}
1121 2852
2853#if EV_MULTIPLICITY
2854 if (ev_is_default_loop (EV_A))
2855#endif
2856 ev_default_loop_ptr = 0;
2857#if EV_MULTIPLICITY
2858 else
2859 ev_free (EV_A);
2860#endif
2861}
2862
2863#if EV_USE_INOTIFY
1122void inline_size infy_fork (EV_P); 2864inline_size void infy_fork (EV_P);
2865#endif
1123 2866
1124void inline_size 2867inline_size void
1125loop_fork (EV_P) 2868loop_fork (EV_P)
1126{ 2869{
1127#if EV_USE_PORT 2870#if EV_USE_PORT
1128 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2871 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1129#endif 2872#endif
1135#endif 2878#endif
1136#if EV_USE_INOTIFY 2879#if EV_USE_INOTIFY
1137 infy_fork (EV_A); 2880 infy_fork (EV_A);
1138#endif 2881#endif
1139 2882
2883#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1140 if (ev_is_active (&sigev)) 2884 if (ev_is_active (&pipe_w))
1141 { 2885 {
1142 /* default loop */ 2886 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1143 2887
1144 ev_ref (EV_A); 2888 ev_ref (EV_A);
1145 ev_io_stop (EV_A_ &sigev); 2889 ev_io_stop (EV_A_ &pipe_w);
1146 close (sigpipe [0]);
1147 close (sigpipe [1]);
1148 2890
1149 while (pipe (sigpipe)) 2891 if (evpipe [0] >= 0)
1150 syserr ("(libev) error creating pipe"); 2892 EV_WIN32_CLOSE_FD (evpipe [0]);
1151 2893
1152 siginit (EV_A); 2894 evpipe_init (EV_A);
2895 /* iterate over everything, in case we missed something before */
2896 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
1153 } 2897 }
2898#endif
1154 2899
1155 postfork = 0; 2900 postfork = 0;
1156} 2901}
1157 2902
1158#if EV_MULTIPLICITY 2903#if EV_MULTIPLICITY
2904
1159struct ev_loop * 2905struct ev_loop * ecb_cold
1160ev_loop_new (unsigned int flags) 2906ev_loop_new (unsigned int flags) EV_THROW
1161{ 2907{
1162 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2908 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1163 2909
1164 memset (loop, 0, sizeof (struct ev_loop)); 2910 memset (EV_A, 0, sizeof (struct ev_loop));
1165
1166 loop_init (EV_A_ flags); 2911 loop_init (EV_A_ flags);
1167 2912
1168 if (ev_backend (EV_A)) 2913 if (ev_backend (EV_A))
1169 return loop; 2914 return EV_A;
1170 2915
2916 ev_free (EV_A);
1171 return 0; 2917 return 0;
1172} 2918}
1173 2919
1174void 2920#endif /* multiplicity */
1175ev_loop_destroy (EV_P)
1176{
1177 loop_destroy (EV_A);
1178 ev_free (loop);
1179}
1180 2921
1181void 2922#if EV_VERIFY
1182ev_loop_fork (EV_P) 2923static void noinline ecb_cold
2924verify_watcher (EV_P_ W w)
1183{ 2925{
1184 postfork = 1; 2926 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1185}
1186 2927
2928 if (w->pending)
2929 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2930}
2931
2932static void noinline ecb_cold
2933verify_heap (EV_P_ ANHE *heap, int N)
2934{
2935 int i;
2936
2937 for (i = HEAP0; i < N + HEAP0; ++i)
2938 {
2939 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2940 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2941 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2942
2943 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2944 }
2945}
2946
2947static void noinline ecb_cold
2948array_verify (EV_P_ W *ws, int cnt)
2949{
2950 while (cnt--)
2951 {
2952 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2953 verify_watcher (EV_A_ ws [cnt]);
2954 }
2955}
2956#endif
2957
2958#if EV_FEATURE_API
2959void ecb_cold
2960ev_verify (EV_P) EV_THROW
2961{
2962#if EV_VERIFY
2963 int i;
2964 WL w, w2;
2965
2966 assert (activecnt >= -1);
2967
2968 assert (fdchangemax >= fdchangecnt);
2969 for (i = 0; i < fdchangecnt; ++i)
2970 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2971
2972 assert (anfdmax >= 0);
2973 for (i = 0; i < anfdmax; ++i)
2974 {
2975 int j = 0;
2976
2977 for (w = w2 = anfds [i].head; w; w = w->next)
2978 {
2979 verify_watcher (EV_A_ (W)w);
2980
2981 if (j++ & 1)
2982 {
2983 assert (("libev: io watcher list contains a loop", w != w2));
2984 w2 = w2->next;
2985 }
2986
2987 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2988 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2989 }
2990 }
2991
2992 assert (timermax >= timercnt);
2993 verify_heap (EV_A_ timers, timercnt);
2994
2995#if EV_PERIODIC_ENABLE
2996 assert (periodicmax >= periodiccnt);
2997 verify_heap (EV_A_ periodics, periodiccnt);
2998#endif
2999
3000 for (i = NUMPRI; i--; )
3001 {
3002 assert (pendingmax [i] >= pendingcnt [i]);
3003#if EV_IDLE_ENABLE
3004 assert (idleall >= 0);
3005 assert (idlemax [i] >= idlecnt [i]);
3006 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3007#endif
3008 }
3009
3010#if EV_FORK_ENABLE
3011 assert (forkmax >= forkcnt);
3012 array_verify (EV_A_ (W *)forks, forkcnt);
3013#endif
3014
3015#if EV_CLEANUP_ENABLE
3016 assert (cleanupmax >= cleanupcnt);
3017 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3018#endif
3019
3020#if EV_ASYNC_ENABLE
3021 assert (asyncmax >= asynccnt);
3022 array_verify (EV_A_ (W *)asyncs, asynccnt);
3023#endif
3024
3025#if EV_PREPARE_ENABLE
3026 assert (preparemax >= preparecnt);
3027 array_verify (EV_A_ (W *)prepares, preparecnt);
3028#endif
3029
3030#if EV_CHECK_ENABLE
3031 assert (checkmax >= checkcnt);
3032 array_verify (EV_A_ (W *)checks, checkcnt);
3033#endif
3034
3035# if 0
3036#if EV_CHILD_ENABLE
3037 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3038 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3039#endif
3040# endif
3041#endif
3042}
1187#endif 3043#endif
1188 3044
1189#if EV_MULTIPLICITY 3045#if EV_MULTIPLICITY
1190struct ev_loop * 3046struct ev_loop * ecb_cold
1191ev_default_loop_init (unsigned int flags)
1192#else 3047#else
1193int 3048int
3049#endif
1194ev_default_loop (unsigned int flags) 3050ev_default_loop (unsigned int flags) EV_THROW
1195#endif
1196{ 3051{
1197 if (sigpipe [0] == sigpipe [1])
1198 if (pipe (sigpipe))
1199 return 0;
1200
1201 if (!ev_default_loop_ptr) 3052 if (!ev_default_loop_ptr)
1202 { 3053 {
1203#if EV_MULTIPLICITY 3054#if EV_MULTIPLICITY
1204 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 3055 EV_P = ev_default_loop_ptr = &default_loop_struct;
1205#else 3056#else
1206 ev_default_loop_ptr = 1; 3057 ev_default_loop_ptr = 1;
1207#endif 3058#endif
1208 3059
1209 loop_init (EV_A_ flags); 3060 loop_init (EV_A_ flags);
1210 3061
1211 if (ev_backend (EV_A)) 3062 if (ev_backend (EV_A))
1212 { 3063 {
1213 siginit (EV_A); 3064#if EV_CHILD_ENABLE
1214
1215#ifndef _WIN32
1216 ev_signal_init (&childev, childcb, SIGCHLD); 3065 ev_signal_init (&childev, childcb, SIGCHLD);
1217 ev_set_priority (&childev, EV_MAXPRI); 3066 ev_set_priority (&childev, EV_MAXPRI);
1218 ev_signal_start (EV_A_ &childev); 3067 ev_signal_start (EV_A_ &childev);
1219 ev_unref (EV_A); /* child watcher should not keep loop alive */ 3068 ev_unref (EV_A); /* child watcher should not keep loop alive */
1220#endif 3069#endif
1225 3074
1226 return ev_default_loop_ptr; 3075 return ev_default_loop_ptr;
1227} 3076}
1228 3077
1229void 3078void
1230ev_default_destroy (void) 3079ev_loop_fork (EV_P) EV_THROW
1231{ 3080{
1232#if EV_MULTIPLICITY
1233 struct ev_loop *loop = ev_default_loop_ptr;
1234#endif
1235
1236#ifndef _WIN32
1237 ev_ref (EV_A); /* child watcher */
1238 ev_signal_stop (EV_A_ &childev);
1239#endif
1240
1241 ev_ref (EV_A); /* signal watcher */
1242 ev_io_stop (EV_A_ &sigev);
1243
1244 close (sigpipe [0]); sigpipe [0] = 0;
1245 close (sigpipe [1]); sigpipe [1] = 0;
1246
1247 loop_destroy (EV_A);
1248}
1249
1250void
1251ev_default_fork (void)
1252{
1253#if EV_MULTIPLICITY
1254 struct ev_loop *loop = ev_default_loop_ptr;
1255#endif
1256
1257 if (backend)
1258 postfork = 1; 3081 postfork = 1;
1259} 3082}
1260 3083
1261/*****************************************************************************/ 3084/*****************************************************************************/
1262 3085
1263void 3086void
1264ev_invoke (EV_P_ void *w, int revents) 3087ev_invoke (EV_P_ void *w, int revents)
1265{ 3088{
1266 EV_CB_INVOKE ((W)w, revents); 3089 EV_CB_INVOKE ((W)w, revents);
1267} 3090}
1268 3091
1269void inline_speed 3092unsigned int
1270call_pending (EV_P) 3093ev_pending_count (EV_P) EV_THROW
1271{ 3094{
1272 int pri; 3095 int pri;
3096 unsigned int count = 0;
1273 3097
1274 for (pri = NUMPRI; pri--; ) 3098 for (pri = NUMPRI; pri--; )
3099 count += pendingcnt [pri];
3100
3101 return count;
3102}
3103
3104void noinline
3105ev_invoke_pending (EV_P)
3106{
3107 pendingpri = NUMPRI;
3108
3109 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
3110 {
3111 --pendingpri;
3112
1275 while (pendingcnt [pri]) 3113 while (pendingcnt [pendingpri])
1276 {
1277 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1278
1279 if (expect_true (p->w))
1280 {
1281 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1282
1283 p->w->pending = 0;
1284 EV_CB_INVOKE (p->w, p->events);
1285 }
1286 }
1287}
1288
1289void inline_size
1290timers_reify (EV_P)
1291{
1292 while (timercnt && ((WT)timers [0])->at <= mn_now)
1293 {
1294 ev_timer *w = (ev_timer *)timers [0];
1295
1296 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1297
1298 /* first reschedule or stop timer */
1299 if (w->repeat)
1300 { 3114 {
1301 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3115 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1302 3116
1303 ((WT)w)->at += w->repeat; 3117 p->w->pending = 0;
1304 if (((WT)w)->at < mn_now) 3118 EV_CB_INVOKE (p->w, p->events);
1305 ((WT)w)->at = mn_now; 3119 EV_FREQUENT_CHECK;
1306
1307 downheap (timers, timercnt, 0);
1308 } 3120 }
1309 else
1310 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1311
1312 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1313 }
1314}
1315
1316#if EV_PERIODIC_ENABLE
1317void inline_size
1318periodics_reify (EV_P)
1319{
1320 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1321 { 3121 }
1322 ev_periodic *w = (ev_periodic *)periodics [0];
1323
1324 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1325
1326 /* first reschedule or stop timer */
1327 if (w->reschedule_cb)
1328 {
1329 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1330 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1331 downheap (periodics, periodiccnt, 0);
1332 }
1333 else if (w->interval)
1334 {
1335 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1336 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1337 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1338 downheap (periodics, periodiccnt, 0);
1339 }
1340 else
1341 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1342
1343 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1344 }
1345} 3122}
1346
1347static void noinline
1348periodics_reschedule (EV_P)
1349{
1350 int i;
1351
1352 /* adjust periodics after time jump */
1353 for (i = 0; i < periodiccnt; ++i)
1354 {
1355 ev_periodic *w = (ev_periodic *)periodics [i];
1356
1357 if (w->reschedule_cb)
1358 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1359 else if (w->interval)
1360 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1361 }
1362
1363 /* now rebuild the heap */
1364 for (i = periodiccnt >> 1; i--; )
1365 downheap (periodics, periodiccnt, i);
1366}
1367#endif
1368 3123
1369#if EV_IDLE_ENABLE 3124#if EV_IDLE_ENABLE
1370void inline_size 3125/* make idle watchers pending. this handles the "call-idle */
3126/* only when higher priorities are idle" logic */
3127inline_size void
1371idle_reify (EV_P) 3128idle_reify (EV_P)
1372{ 3129{
1373 if (expect_false (idleall)) 3130 if (expect_false (idleall))
1374 { 3131 {
1375 int pri; 3132 int pri;
1387 } 3144 }
1388 } 3145 }
1389} 3146}
1390#endif 3147#endif
1391 3148
1392void inline_speed 3149/* make timers pending */
3150inline_size void
3151timers_reify (EV_P)
3152{
3153 EV_FREQUENT_CHECK;
3154
3155 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3156 {
3157 do
3158 {
3159 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3160
3161 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3162
3163 /* first reschedule or stop timer */
3164 if (w->repeat)
3165 {
3166 ev_at (w) += w->repeat;
3167 if (ev_at (w) < mn_now)
3168 ev_at (w) = mn_now;
3169
3170 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3171
3172 ANHE_at_cache (timers [HEAP0]);
3173 downheap (timers, timercnt, HEAP0);
3174 }
3175 else
3176 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3177
3178 EV_FREQUENT_CHECK;
3179 feed_reverse (EV_A_ (W)w);
3180 }
3181 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3182
3183 feed_reverse_done (EV_A_ EV_TIMER);
3184 }
3185}
3186
3187#if EV_PERIODIC_ENABLE
3188
3189static void noinline
3190periodic_recalc (EV_P_ ev_periodic *w)
3191{
3192 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3193 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3194
3195 /* the above almost always errs on the low side */
3196 while (at <= ev_rt_now)
3197 {
3198 ev_tstamp nat = at + w->interval;
3199
3200 /* when resolution fails us, we use ev_rt_now */
3201 if (expect_false (nat == at))
3202 {
3203 at = ev_rt_now;
3204 break;
3205 }
3206
3207 at = nat;
3208 }
3209
3210 ev_at (w) = at;
3211}
3212
3213/* make periodics pending */
3214inline_size void
3215periodics_reify (EV_P)
3216{
3217 EV_FREQUENT_CHECK;
3218
3219 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3220 {
3221 do
3222 {
3223 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3224
3225 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3226
3227 /* first reschedule or stop timer */
3228 if (w->reschedule_cb)
3229 {
3230 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3231
3232 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3233
3234 ANHE_at_cache (periodics [HEAP0]);
3235 downheap (periodics, periodiccnt, HEAP0);
3236 }
3237 else if (w->interval)
3238 {
3239 periodic_recalc (EV_A_ w);
3240 ANHE_at_cache (periodics [HEAP0]);
3241 downheap (periodics, periodiccnt, HEAP0);
3242 }
3243 else
3244 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3245
3246 EV_FREQUENT_CHECK;
3247 feed_reverse (EV_A_ (W)w);
3248 }
3249 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3250
3251 feed_reverse_done (EV_A_ EV_PERIODIC);
3252 }
3253}
3254
3255/* simply recalculate all periodics */
3256/* TODO: maybe ensure that at least one event happens when jumping forward? */
3257static void noinline ecb_cold
3258periodics_reschedule (EV_P)
3259{
3260 int i;
3261
3262 /* adjust periodics after time jump */
3263 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3264 {
3265 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3266
3267 if (w->reschedule_cb)
3268 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3269 else if (w->interval)
3270 periodic_recalc (EV_A_ w);
3271
3272 ANHE_at_cache (periodics [i]);
3273 }
3274
3275 reheap (periodics, periodiccnt);
3276}
3277#endif
3278
3279/* adjust all timers by a given offset */
3280static void noinline ecb_cold
3281timers_reschedule (EV_P_ ev_tstamp adjust)
3282{
3283 int i;
3284
3285 for (i = 0; i < timercnt; ++i)
3286 {
3287 ANHE *he = timers + i + HEAP0;
3288 ANHE_w (*he)->at += adjust;
3289 ANHE_at_cache (*he);
3290 }
3291}
3292
3293/* fetch new monotonic and realtime times from the kernel */
3294/* also detect if there was a timejump, and act accordingly */
3295inline_speed void
1393time_update (EV_P_ ev_tstamp max_block) 3296time_update (EV_P_ ev_tstamp max_block)
1394{ 3297{
1395 int i;
1396
1397#if EV_USE_MONOTONIC 3298#if EV_USE_MONOTONIC
1398 if (expect_true (have_monotonic)) 3299 if (expect_true (have_monotonic))
1399 { 3300 {
3301 int i;
1400 ev_tstamp odiff = rtmn_diff; 3302 ev_tstamp odiff = rtmn_diff;
1401 3303
1402 mn_now = get_clock (); 3304 mn_now = get_clock ();
1403 3305
1404 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 3306 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1420 * doesn't hurt either as we only do this on time-jumps or 3322 * doesn't hurt either as we only do this on time-jumps or
1421 * in the unlikely event of having been preempted here. 3323 * in the unlikely event of having been preempted here.
1422 */ 3324 */
1423 for (i = 4; --i; ) 3325 for (i = 4; --i; )
1424 { 3326 {
3327 ev_tstamp diff;
1425 rtmn_diff = ev_rt_now - mn_now; 3328 rtmn_diff = ev_rt_now - mn_now;
1426 3329
1427 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 3330 diff = odiff - rtmn_diff;
3331
3332 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1428 return; /* all is well */ 3333 return; /* all is well */
1429 3334
1430 ev_rt_now = ev_time (); 3335 ev_rt_now = ev_time ();
1431 mn_now = get_clock (); 3336 mn_now = get_clock ();
1432 now_floor = mn_now; 3337 now_floor = mn_now;
1433 } 3338 }
1434 3339
3340 /* no timer adjustment, as the monotonic clock doesn't jump */
3341 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1435# if EV_PERIODIC_ENABLE 3342# if EV_PERIODIC_ENABLE
1436 periodics_reschedule (EV_A); 3343 periodics_reschedule (EV_A);
1437# endif 3344# endif
1438 /* no timer adjustment, as the monotonic clock doesn't jump */
1439 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1440 } 3345 }
1441 else 3346 else
1442#endif 3347#endif
1443 { 3348 {
1444 ev_rt_now = ev_time (); 3349 ev_rt_now = ev_time ();
1445 3350
1446 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 3351 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1447 { 3352 {
3353 /* adjust timers. this is easy, as the offset is the same for all of them */
3354 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1448#if EV_PERIODIC_ENABLE 3355#if EV_PERIODIC_ENABLE
1449 periodics_reschedule (EV_A); 3356 periodics_reschedule (EV_A);
1450#endif 3357#endif
1451 /* adjust timers. this is easy, as the offset is the same for all of them */
1452 for (i = 0; i < timercnt; ++i)
1453 ((WT)timers [i])->at += ev_rt_now - mn_now;
1454 } 3358 }
1455 3359
1456 mn_now = ev_rt_now; 3360 mn_now = ev_rt_now;
1457 } 3361 }
1458} 3362}
1459 3363
1460void 3364int
1461ev_ref (EV_P)
1462{
1463 ++activecnt;
1464}
1465
1466void
1467ev_unref (EV_P)
1468{
1469 --activecnt;
1470}
1471
1472static int loop_done;
1473
1474void
1475ev_loop (EV_P_ int flags) 3365ev_run (EV_P_ int flags)
1476{ 3366{
1477 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 3367#if EV_FEATURE_API
1478 ? EVUNLOOP_ONE 3368 ++loop_depth;
1479 : EVUNLOOP_CANCEL; 3369#endif
1480 3370
3371 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3372
3373 loop_done = EVBREAK_CANCEL;
3374
1481 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3375 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1482 3376
1483 do 3377 do
1484 { 3378 {
3379#if EV_VERIFY >= 2
3380 ev_verify (EV_A);
3381#endif
3382
1485#ifndef _WIN32 3383#ifndef _WIN32
1486 if (expect_false (curpid)) /* penalise the forking check even more */ 3384 if (expect_false (curpid)) /* penalise the forking check even more */
1487 if (expect_false (getpid () != curpid)) 3385 if (expect_false (getpid () != curpid))
1488 { 3386 {
1489 curpid = getpid (); 3387 curpid = getpid ();
1495 /* we might have forked, so queue fork handlers */ 3393 /* we might have forked, so queue fork handlers */
1496 if (expect_false (postfork)) 3394 if (expect_false (postfork))
1497 if (forkcnt) 3395 if (forkcnt)
1498 { 3396 {
1499 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3397 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1500 call_pending (EV_A); 3398 EV_INVOKE_PENDING;
1501 } 3399 }
1502#endif 3400#endif
1503 3401
3402#if EV_PREPARE_ENABLE
1504 /* queue prepare watchers (and execute them) */ 3403 /* queue prepare watchers (and execute them) */
1505 if (expect_false (preparecnt)) 3404 if (expect_false (preparecnt))
1506 { 3405 {
1507 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3406 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1508 call_pending (EV_A); 3407 EV_INVOKE_PENDING;
1509 } 3408 }
3409#endif
1510 3410
1511 if (expect_false (!activecnt)) 3411 if (expect_false (loop_done))
1512 break; 3412 break;
1513 3413
1514 /* we might have forked, so reify kernel state if necessary */ 3414 /* we might have forked, so reify kernel state if necessary */
1515 if (expect_false (postfork)) 3415 if (expect_false (postfork))
1516 loop_fork (EV_A); 3416 loop_fork (EV_A);
1521 /* calculate blocking time */ 3421 /* calculate blocking time */
1522 { 3422 {
1523 ev_tstamp waittime = 0.; 3423 ev_tstamp waittime = 0.;
1524 ev_tstamp sleeptime = 0.; 3424 ev_tstamp sleeptime = 0.;
1525 3425
3426 /* remember old timestamp for io_blocktime calculation */
3427 ev_tstamp prev_mn_now = mn_now;
3428
3429 /* update time to cancel out callback processing overhead */
3430 time_update (EV_A_ 1e100);
3431
3432 /* from now on, we want a pipe-wake-up */
3433 pipe_write_wanted = 1;
3434
3435 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3436
1526 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3437 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1527 { 3438 {
1528 /* update time to cancel out callback processing overhead */
1529 time_update (EV_A_ 1e100);
1530
1531 waittime = MAX_BLOCKTIME; 3439 waittime = MAX_BLOCKTIME;
1532 3440
1533 if (timercnt) 3441 if (timercnt)
1534 { 3442 {
1535 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 3443 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1536 if (waittime > to) waittime = to; 3444 if (waittime > to) waittime = to;
1537 } 3445 }
1538 3446
1539#if EV_PERIODIC_ENABLE 3447#if EV_PERIODIC_ENABLE
1540 if (periodiccnt) 3448 if (periodiccnt)
1541 { 3449 {
1542 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 3450 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1543 if (waittime > to) waittime = to; 3451 if (waittime > to) waittime = to;
1544 } 3452 }
1545#endif 3453#endif
1546 3454
3455 /* don't let timeouts decrease the waittime below timeout_blocktime */
1547 if (expect_false (waittime < timeout_blocktime)) 3456 if (expect_false (waittime < timeout_blocktime))
1548 waittime = timeout_blocktime; 3457 waittime = timeout_blocktime;
1549 3458
1550 sleeptime = waittime - backend_fudge; 3459 /* at this point, we NEED to wait, so we have to ensure */
3460 /* to pass a minimum nonzero value to the backend */
3461 if (expect_false (waittime < backend_mintime))
3462 waittime = backend_mintime;
1551 3463
3464 /* extra check because io_blocktime is commonly 0 */
1552 if (expect_true (sleeptime > io_blocktime)) 3465 if (expect_false (io_blocktime))
1553 sleeptime = io_blocktime;
1554
1555 if (sleeptime)
1556 { 3466 {
3467 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3468
3469 if (sleeptime > waittime - backend_mintime)
3470 sleeptime = waittime - backend_mintime;
3471
3472 if (expect_true (sleeptime > 0.))
3473 {
1557 ev_sleep (sleeptime); 3474 ev_sleep (sleeptime);
1558 waittime -= sleeptime; 3475 waittime -= sleeptime;
3476 }
1559 } 3477 }
1560 } 3478 }
1561 3479
3480#if EV_FEATURE_API
1562 ++loop_count; 3481 ++loop_count;
3482#endif
3483 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1563 backend_poll (EV_A_ waittime); 3484 backend_poll (EV_A_ waittime);
3485 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3486
3487 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3488
3489 ECB_MEMORY_FENCE_ACQUIRE;
3490 if (pipe_write_skipped)
3491 {
3492 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3493 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3494 }
3495
1564 3496
1565 /* update ev_rt_now, do magic */ 3497 /* update ev_rt_now, do magic */
1566 time_update (EV_A_ waittime + sleeptime); 3498 time_update (EV_A_ waittime + sleeptime);
1567 } 3499 }
1568 3500
1575#if EV_IDLE_ENABLE 3507#if EV_IDLE_ENABLE
1576 /* queue idle watchers unless other events are pending */ 3508 /* queue idle watchers unless other events are pending */
1577 idle_reify (EV_A); 3509 idle_reify (EV_A);
1578#endif 3510#endif
1579 3511
3512#if EV_CHECK_ENABLE
1580 /* queue check watchers, to be executed first */ 3513 /* queue check watchers, to be executed first */
1581 if (expect_false (checkcnt)) 3514 if (expect_false (checkcnt))
1582 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3515 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3516#endif
1583 3517
1584 call_pending (EV_A); 3518 EV_INVOKE_PENDING;
1585
1586 } 3519 }
1587 while (expect_true (activecnt && !loop_done)); 3520 while (expect_true (
3521 activecnt
3522 && !loop_done
3523 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3524 ));
1588 3525
1589 if (loop_done == EVUNLOOP_ONE) 3526 if (loop_done == EVBREAK_ONE)
1590 loop_done = EVUNLOOP_CANCEL; 3527 loop_done = EVBREAK_CANCEL;
3528
3529#if EV_FEATURE_API
3530 --loop_depth;
3531#endif
3532
3533 return activecnt;
1591} 3534}
1592 3535
1593void 3536void
1594ev_unloop (EV_P_ int how) 3537ev_break (EV_P_ int how) EV_THROW
1595{ 3538{
1596 loop_done = how; 3539 loop_done = how;
1597} 3540}
1598 3541
3542void
3543ev_ref (EV_P) EV_THROW
3544{
3545 ++activecnt;
3546}
3547
3548void
3549ev_unref (EV_P) EV_THROW
3550{
3551 --activecnt;
3552}
3553
3554void
3555ev_now_update (EV_P) EV_THROW
3556{
3557 time_update (EV_A_ 1e100);
3558}
3559
3560void
3561ev_suspend (EV_P) EV_THROW
3562{
3563 ev_now_update (EV_A);
3564}
3565
3566void
3567ev_resume (EV_P) EV_THROW
3568{
3569 ev_tstamp mn_prev = mn_now;
3570
3571 ev_now_update (EV_A);
3572 timers_reschedule (EV_A_ mn_now - mn_prev);
3573#if EV_PERIODIC_ENABLE
3574 /* TODO: really do this? */
3575 periodics_reschedule (EV_A);
3576#endif
3577}
3578
1599/*****************************************************************************/ 3579/*****************************************************************************/
3580/* singly-linked list management, used when the expected list length is short */
1600 3581
1601void inline_size 3582inline_size void
1602wlist_add (WL *head, WL elem) 3583wlist_add (WL *head, WL elem)
1603{ 3584{
1604 elem->next = *head; 3585 elem->next = *head;
1605 *head = elem; 3586 *head = elem;
1606} 3587}
1607 3588
1608void inline_size 3589inline_size void
1609wlist_del (WL *head, WL elem) 3590wlist_del (WL *head, WL elem)
1610{ 3591{
1611 while (*head) 3592 while (*head)
1612 { 3593 {
1613 if (*head == elem) 3594 if (expect_true (*head == elem))
1614 { 3595 {
1615 *head = elem->next; 3596 *head = elem->next;
1616 return; 3597 break;
1617 } 3598 }
1618 3599
1619 head = &(*head)->next; 3600 head = &(*head)->next;
1620 } 3601 }
1621} 3602}
1622 3603
1623void inline_speed 3604/* internal, faster, version of ev_clear_pending */
3605inline_speed void
1624clear_pending (EV_P_ W w) 3606clear_pending (EV_P_ W w)
1625{ 3607{
1626 if (w->pending) 3608 if (w->pending)
1627 { 3609 {
1628 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3610 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1629 w->pending = 0; 3611 w->pending = 0;
1630 } 3612 }
1631} 3613}
1632 3614
1633int 3615int
1634ev_clear_pending (EV_P_ void *w) 3616ev_clear_pending (EV_P_ void *w) EV_THROW
1635{ 3617{
1636 W w_ = (W)w; 3618 W w_ = (W)w;
1637 int pending = w_->pending; 3619 int pending = w_->pending;
1638 3620
1639 if (expect_true (pending)) 3621 if (expect_true (pending))
1640 { 3622 {
1641 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3623 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3624 p->w = (W)&pending_w;
1642 w_->pending = 0; 3625 w_->pending = 0;
1643 p->w = 0;
1644 return p->events; 3626 return p->events;
1645 } 3627 }
1646 else 3628 else
1647 return 0; 3629 return 0;
1648} 3630}
1649 3631
1650void inline_size 3632inline_size void
1651pri_adjust (EV_P_ W w) 3633pri_adjust (EV_P_ W w)
1652{ 3634{
1653 int pri = w->priority; 3635 int pri = ev_priority (w);
1654 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3636 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1655 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3637 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1656 w->priority = pri; 3638 ev_set_priority (w, pri);
1657} 3639}
1658 3640
1659void inline_speed 3641inline_speed void
1660ev_start (EV_P_ W w, int active) 3642ev_start (EV_P_ W w, int active)
1661{ 3643{
1662 pri_adjust (EV_A_ w); 3644 pri_adjust (EV_A_ w);
1663 w->active = active; 3645 w->active = active;
1664 ev_ref (EV_A); 3646 ev_ref (EV_A);
1665} 3647}
1666 3648
1667void inline_size 3649inline_size void
1668ev_stop (EV_P_ W w) 3650ev_stop (EV_P_ W w)
1669{ 3651{
1670 ev_unref (EV_A); 3652 ev_unref (EV_A);
1671 w->active = 0; 3653 w->active = 0;
1672} 3654}
1673 3655
1674/*****************************************************************************/ 3656/*****************************************************************************/
1675 3657
1676void noinline 3658void noinline
1677ev_io_start (EV_P_ ev_io *w) 3659ev_io_start (EV_P_ ev_io *w) EV_THROW
1678{ 3660{
1679 int fd = w->fd; 3661 int fd = w->fd;
1680 3662
1681 if (expect_false (ev_is_active (w))) 3663 if (expect_false (ev_is_active (w)))
1682 return; 3664 return;
1683 3665
1684 assert (("ev_io_start called with negative fd", fd >= 0)); 3666 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3667 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3668
3669 EV_FREQUENT_CHECK;
1685 3670
1686 ev_start (EV_A_ (W)w, 1); 3671 ev_start (EV_A_ (W)w, 1);
1687 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3672 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1688 wlist_add (&anfds[fd].head, (WL)w); 3673 wlist_add (&anfds[fd].head, (WL)w);
1689 3674
3675 /* common bug, apparently */
3676 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3677
1690 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3678 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1691 w->events &= ~EV_IOFDSET; 3679 w->events &= ~EV__IOFDSET;
3680
3681 EV_FREQUENT_CHECK;
1692} 3682}
1693 3683
1694void noinline 3684void noinline
1695ev_io_stop (EV_P_ ev_io *w) 3685ev_io_stop (EV_P_ ev_io *w) EV_THROW
1696{ 3686{
1697 clear_pending (EV_A_ (W)w); 3687 clear_pending (EV_A_ (W)w);
1698 if (expect_false (!ev_is_active (w))) 3688 if (expect_false (!ev_is_active (w)))
1699 return; 3689 return;
1700 3690
1701 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3691 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3692
3693 EV_FREQUENT_CHECK;
1702 3694
1703 wlist_del (&anfds[w->fd].head, (WL)w); 3695 wlist_del (&anfds[w->fd].head, (WL)w);
1704 ev_stop (EV_A_ (W)w); 3696 ev_stop (EV_A_ (W)w);
1705 3697
1706 fd_change (EV_A_ w->fd, 1); 3698 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3699
3700 EV_FREQUENT_CHECK;
1707} 3701}
1708 3702
1709void noinline 3703void noinline
1710ev_timer_start (EV_P_ ev_timer *w) 3704ev_timer_start (EV_P_ ev_timer *w) EV_THROW
1711{ 3705{
1712 if (expect_false (ev_is_active (w))) 3706 if (expect_false (ev_is_active (w)))
1713 return; 3707 return;
1714 3708
1715 ((WT)w)->at += mn_now; 3709 ev_at (w) += mn_now;
1716 3710
1717 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3711 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1718 3712
3713 EV_FREQUENT_CHECK;
3714
3715 ++timercnt;
1719 ev_start (EV_A_ (W)w, ++timercnt); 3716 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1720 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 3717 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1721 timers [timercnt - 1] = (WT)w; 3718 ANHE_w (timers [ev_active (w)]) = (WT)w;
1722 upheap (timers, timercnt - 1); 3719 ANHE_at_cache (timers [ev_active (w)]);
3720 upheap (timers, ev_active (w));
1723 3721
3722 EV_FREQUENT_CHECK;
3723
1724 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 3724 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1725} 3725}
1726 3726
1727void noinline 3727void noinline
1728ev_timer_stop (EV_P_ ev_timer *w) 3728ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
1729{ 3729{
1730 clear_pending (EV_A_ (W)w); 3730 clear_pending (EV_A_ (W)w);
1731 if (expect_false (!ev_is_active (w))) 3731 if (expect_false (!ev_is_active (w)))
1732 return; 3732 return;
1733 3733
1734 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 3734 EV_FREQUENT_CHECK;
1735 3735
1736 { 3736 {
1737 int active = ((W)w)->active; 3737 int active = ev_active (w);
1738 3738
3739 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3740
3741 --timercnt;
3742
1739 if (expect_true (--active < --timercnt)) 3743 if (expect_true (active < timercnt + HEAP0))
1740 { 3744 {
1741 timers [active] = timers [timercnt]; 3745 timers [active] = timers [timercnt + HEAP0];
1742 adjustheap (timers, timercnt, active); 3746 adjustheap (timers, timercnt, active);
1743 } 3747 }
1744 } 3748 }
1745 3749
1746 ((WT)w)->at -= mn_now; 3750 ev_at (w) -= mn_now;
1747 3751
1748 ev_stop (EV_A_ (W)w); 3752 ev_stop (EV_A_ (W)w);
3753
3754 EV_FREQUENT_CHECK;
1749} 3755}
1750 3756
1751void noinline 3757void noinline
1752ev_timer_again (EV_P_ ev_timer *w) 3758ev_timer_again (EV_P_ ev_timer *w) EV_THROW
1753{ 3759{
3760 EV_FREQUENT_CHECK;
3761
3762 clear_pending (EV_A_ (W)w);
3763
1754 if (ev_is_active (w)) 3764 if (ev_is_active (w))
1755 { 3765 {
1756 if (w->repeat) 3766 if (w->repeat)
1757 { 3767 {
1758 ((WT)w)->at = mn_now + w->repeat; 3768 ev_at (w) = mn_now + w->repeat;
3769 ANHE_at_cache (timers [ev_active (w)]);
1759 adjustheap (timers, timercnt, ((W)w)->active - 1); 3770 adjustheap (timers, timercnt, ev_active (w));
1760 } 3771 }
1761 else 3772 else
1762 ev_timer_stop (EV_A_ w); 3773 ev_timer_stop (EV_A_ w);
1763 } 3774 }
1764 else if (w->repeat) 3775 else if (w->repeat)
1765 { 3776 {
1766 w->at = w->repeat; 3777 ev_at (w) = w->repeat;
1767 ev_timer_start (EV_A_ w); 3778 ev_timer_start (EV_A_ w);
1768 } 3779 }
3780
3781 EV_FREQUENT_CHECK;
3782}
3783
3784ev_tstamp
3785ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3786{
3787 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1769} 3788}
1770 3789
1771#if EV_PERIODIC_ENABLE 3790#if EV_PERIODIC_ENABLE
1772void noinline 3791void noinline
1773ev_periodic_start (EV_P_ ev_periodic *w) 3792ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
1774{ 3793{
1775 if (expect_false (ev_is_active (w))) 3794 if (expect_false (ev_is_active (w)))
1776 return; 3795 return;
1777 3796
1778 if (w->reschedule_cb) 3797 if (w->reschedule_cb)
1779 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 3798 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1780 else if (w->interval) 3799 else if (w->interval)
1781 { 3800 {
1782 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3801 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1783 /* this formula differs from the one in periodic_reify because we do not always round up */ 3802 periodic_recalc (EV_A_ w);
1784 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1785 } 3803 }
1786 else 3804 else
1787 ((WT)w)->at = w->offset; 3805 ev_at (w) = w->offset;
1788 3806
3807 EV_FREQUENT_CHECK;
3808
3809 ++periodiccnt;
1789 ev_start (EV_A_ (W)w, ++periodiccnt); 3810 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1790 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 3811 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1791 periodics [periodiccnt - 1] = (WT)w; 3812 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1792 upheap (periodics, periodiccnt - 1); 3813 ANHE_at_cache (periodics [ev_active (w)]);
3814 upheap (periodics, ev_active (w));
1793 3815
3816 EV_FREQUENT_CHECK;
3817
1794 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 3818 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1795} 3819}
1796 3820
1797void noinline 3821void noinline
1798ev_periodic_stop (EV_P_ ev_periodic *w) 3822ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
1799{ 3823{
1800 clear_pending (EV_A_ (W)w); 3824 clear_pending (EV_A_ (W)w);
1801 if (expect_false (!ev_is_active (w))) 3825 if (expect_false (!ev_is_active (w)))
1802 return; 3826 return;
1803 3827
1804 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 3828 EV_FREQUENT_CHECK;
1805 3829
1806 { 3830 {
1807 int active = ((W)w)->active; 3831 int active = ev_active (w);
1808 3832
3833 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3834
3835 --periodiccnt;
3836
1809 if (expect_true (--active < --periodiccnt)) 3837 if (expect_true (active < periodiccnt + HEAP0))
1810 { 3838 {
1811 periodics [active] = periodics [periodiccnt]; 3839 periodics [active] = periodics [periodiccnt + HEAP0];
1812 adjustheap (periodics, periodiccnt, active); 3840 adjustheap (periodics, periodiccnt, active);
1813 } 3841 }
1814 } 3842 }
1815 3843
1816 ev_stop (EV_A_ (W)w); 3844 ev_stop (EV_A_ (W)w);
3845
3846 EV_FREQUENT_CHECK;
1817} 3847}
1818 3848
1819void noinline 3849void noinline
1820ev_periodic_again (EV_P_ ev_periodic *w) 3850ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
1821{ 3851{
1822 /* TODO: use adjustheap and recalculation */ 3852 /* TODO: use adjustheap and recalculation */
1823 ev_periodic_stop (EV_A_ w); 3853 ev_periodic_stop (EV_A_ w);
1824 ev_periodic_start (EV_A_ w); 3854 ev_periodic_start (EV_A_ w);
1825} 3855}
1827 3857
1828#ifndef SA_RESTART 3858#ifndef SA_RESTART
1829# define SA_RESTART 0 3859# define SA_RESTART 0
1830#endif 3860#endif
1831 3861
3862#if EV_SIGNAL_ENABLE
3863
1832void noinline 3864void noinline
1833ev_signal_start (EV_P_ ev_signal *w) 3865ev_signal_start (EV_P_ ev_signal *w) EV_THROW
1834{ 3866{
1835#if EV_MULTIPLICITY
1836 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1837#endif
1838 if (expect_false (ev_is_active (w))) 3867 if (expect_false (ev_is_active (w)))
1839 return; 3868 return;
1840 3869
1841 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3870 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
1842 3871
3872#if EV_MULTIPLICITY
3873 assert (("libev: a signal must not be attached to two different loops",
3874 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3875
3876 signals [w->signum - 1].loop = EV_A;
3877 ECB_MEMORY_FENCE_RELEASE;
3878#endif
3879
3880 EV_FREQUENT_CHECK;
3881
3882#if EV_USE_SIGNALFD
3883 if (sigfd == -2)
1843 { 3884 {
1844#ifndef _WIN32 3885 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
1845 sigset_t full, prev; 3886 if (sigfd < 0 && errno == EINVAL)
1846 sigfillset (&full); 3887 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
1847 sigprocmask (SIG_SETMASK, &full, &prev);
1848#endif
1849 3888
1850 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3889 if (sigfd >= 0)
3890 {
3891 fd_intern (sigfd); /* doing it twice will not hurt */
1851 3892
1852#ifndef _WIN32 3893 sigemptyset (&sigfd_set);
1853 sigprocmask (SIG_SETMASK, &prev, 0); 3894
1854#endif 3895 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3896 ev_set_priority (&sigfd_w, EV_MAXPRI);
3897 ev_io_start (EV_A_ &sigfd_w);
3898 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3899 }
1855 } 3900 }
3901
3902 if (sigfd >= 0)
3903 {
3904 /* TODO: check .head */
3905 sigaddset (&sigfd_set, w->signum);
3906 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3907
3908 signalfd (sigfd, &sigfd_set, 0);
3909 }
3910#endif
1856 3911
1857 ev_start (EV_A_ (W)w, 1); 3912 ev_start (EV_A_ (W)w, 1);
1858 wlist_add (&signals [w->signum - 1].head, (WL)w); 3913 wlist_add (&signals [w->signum - 1].head, (WL)w);
1859 3914
1860 if (!((WL)w)->next) 3915 if (!((WL)w)->next)
3916# if EV_USE_SIGNALFD
3917 if (sigfd < 0) /*TODO*/
3918# endif
1861 { 3919 {
1862#if _WIN32 3920# ifdef _WIN32
3921 evpipe_init (EV_A);
3922
1863 signal (w->signum, sighandler); 3923 signal (w->signum, ev_sighandler);
1864#else 3924# else
1865 struct sigaction sa; 3925 struct sigaction sa;
3926
3927 evpipe_init (EV_A);
3928
1866 sa.sa_handler = sighandler; 3929 sa.sa_handler = ev_sighandler;
1867 sigfillset (&sa.sa_mask); 3930 sigfillset (&sa.sa_mask);
1868 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3931 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1869 sigaction (w->signum, &sa, 0); 3932 sigaction (w->signum, &sa, 0);
3933
3934 if (origflags & EVFLAG_NOSIGMASK)
3935 {
3936 sigemptyset (&sa.sa_mask);
3937 sigaddset (&sa.sa_mask, w->signum);
3938 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3939 }
1870#endif 3940#endif
1871 } 3941 }
3942
3943 EV_FREQUENT_CHECK;
1872} 3944}
1873 3945
1874void noinline 3946void noinline
1875ev_signal_stop (EV_P_ ev_signal *w) 3947ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
1876{ 3948{
1877 clear_pending (EV_A_ (W)w); 3949 clear_pending (EV_A_ (W)w);
1878 if (expect_false (!ev_is_active (w))) 3950 if (expect_false (!ev_is_active (w)))
1879 return; 3951 return;
1880 3952
3953 EV_FREQUENT_CHECK;
3954
1881 wlist_del (&signals [w->signum - 1].head, (WL)w); 3955 wlist_del (&signals [w->signum - 1].head, (WL)w);
1882 ev_stop (EV_A_ (W)w); 3956 ev_stop (EV_A_ (W)w);
1883 3957
1884 if (!signals [w->signum - 1].head) 3958 if (!signals [w->signum - 1].head)
3959 {
3960#if EV_MULTIPLICITY
3961 signals [w->signum - 1].loop = 0; /* unattach from signal */
3962#endif
3963#if EV_USE_SIGNALFD
3964 if (sigfd >= 0)
3965 {
3966 sigset_t ss;
3967
3968 sigemptyset (&ss);
3969 sigaddset (&ss, w->signum);
3970 sigdelset (&sigfd_set, w->signum);
3971
3972 signalfd (sigfd, &sigfd_set, 0);
3973 sigprocmask (SIG_UNBLOCK, &ss, 0);
3974 }
3975 else
3976#endif
1885 signal (w->signum, SIG_DFL); 3977 signal (w->signum, SIG_DFL);
3978 }
3979
3980 EV_FREQUENT_CHECK;
1886} 3981}
3982
3983#endif
3984
3985#if EV_CHILD_ENABLE
1887 3986
1888void 3987void
1889ev_child_start (EV_P_ ev_child *w) 3988ev_child_start (EV_P_ ev_child *w) EV_THROW
1890{ 3989{
1891#if EV_MULTIPLICITY 3990#if EV_MULTIPLICITY
1892 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3991 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1893#endif 3992#endif
1894 if (expect_false (ev_is_active (w))) 3993 if (expect_false (ev_is_active (w)))
1895 return; 3994 return;
1896 3995
3996 EV_FREQUENT_CHECK;
3997
1897 ev_start (EV_A_ (W)w, 1); 3998 ev_start (EV_A_ (W)w, 1);
1898 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3999 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4000
4001 EV_FREQUENT_CHECK;
1899} 4002}
1900 4003
1901void 4004void
1902ev_child_stop (EV_P_ ev_child *w) 4005ev_child_stop (EV_P_ ev_child *w) EV_THROW
1903{ 4006{
1904 clear_pending (EV_A_ (W)w); 4007 clear_pending (EV_A_ (W)w);
1905 if (expect_false (!ev_is_active (w))) 4008 if (expect_false (!ev_is_active (w)))
1906 return; 4009 return;
1907 4010
4011 EV_FREQUENT_CHECK;
4012
1908 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4013 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1909 ev_stop (EV_A_ (W)w); 4014 ev_stop (EV_A_ (W)w);
4015
4016 EV_FREQUENT_CHECK;
1910} 4017}
4018
4019#endif
1911 4020
1912#if EV_STAT_ENABLE 4021#if EV_STAT_ENABLE
1913 4022
1914# ifdef _WIN32 4023# ifdef _WIN32
1915# undef lstat 4024# undef lstat
1916# define lstat(a,b) _stati64 (a,b) 4025# define lstat(a,b) _stati64 (a,b)
1917# endif 4026# endif
1918 4027
1919#define DEF_STAT_INTERVAL 5.0074891 4028#define DEF_STAT_INTERVAL 5.0074891
4029#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1920#define MIN_STAT_INTERVAL 0.1074891 4030#define MIN_STAT_INTERVAL 0.1074891
1921 4031
1922static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 4032static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1923 4033
1924#if EV_USE_INOTIFY 4034#if EV_USE_INOTIFY
1925# define EV_INOTIFY_BUFSIZE 8192 4035
4036/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4037# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
1926 4038
1927static void noinline 4039static void noinline
1928infy_add (EV_P_ ev_stat *w) 4040infy_add (EV_P_ ev_stat *w)
1929{ 4041{
1930 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 4042 w->wd = inotify_add_watch (fs_fd, w->path,
4043 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4044 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4045 | IN_DONT_FOLLOW | IN_MASK_ADD);
1931 4046
1932 if (w->wd < 0) 4047 if (w->wd >= 0)
4048 {
4049 struct statfs sfs;
4050
4051 /* now local changes will be tracked by inotify, but remote changes won't */
4052 /* unless the filesystem is known to be local, we therefore still poll */
4053 /* also do poll on <2.6.25, but with normal frequency */
4054
4055 if (!fs_2625)
4056 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4057 else if (!statfs (w->path, &sfs)
4058 && (sfs.f_type == 0x1373 /* devfs */
4059 || sfs.f_type == 0x4006 /* fat */
4060 || sfs.f_type == 0x4d44 /* msdos */
4061 || sfs.f_type == 0xEF53 /* ext2/3 */
4062 || sfs.f_type == 0x72b6 /* jffs2 */
4063 || sfs.f_type == 0x858458f6 /* ramfs */
4064 || sfs.f_type == 0x5346544e /* ntfs */
4065 || sfs.f_type == 0x3153464a /* jfs */
4066 || sfs.f_type == 0x9123683e /* btrfs */
4067 || sfs.f_type == 0x52654973 /* reiser3 */
4068 || sfs.f_type == 0x01021994 /* tmpfs */
4069 || sfs.f_type == 0x58465342 /* xfs */))
4070 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4071 else
4072 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1933 { 4073 }
1934 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 4074 else
4075 {
4076 /* can't use inotify, continue to stat */
4077 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1935 4078
1936 /* monitor some parent directory for speedup hints */ 4079 /* if path is not there, monitor some parent directory for speedup hints */
4080 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4081 /* but an efficiency issue only */
1937 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 4082 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1938 { 4083 {
1939 char path [4096]; 4084 char path [4096];
1940 strcpy (path, w->path); 4085 strcpy (path, w->path);
1941 4086
1944 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 4089 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1945 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 4090 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1946 4091
1947 char *pend = strrchr (path, '/'); 4092 char *pend = strrchr (path, '/');
1948 4093
1949 if (!pend) 4094 if (!pend || pend == path)
1950 break; /* whoops, no '/', complain to your admin */ 4095 break;
1951 4096
1952 *pend = 0; 4097 *pend = 0;
1953 w->wd = inotify_add_watch (fs_fd, path, mask); 4098 w->wd = inotify_add_watch (fs_fd, path, mask);
1954 } 4099 }
1955 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 4100 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1956 } 4101 }
1957 } 4102 }
1958 else
1959 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1960 4103
1961 if (w->wd >= 0) 4104 if (w->wd >= 0)
1962 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 4105 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4106
4107 /* now re-arm timer, if required */
4108 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4109 ev_timer_again (EV_A_ &w->timer);
4110 if (ev_is_active (&w->timer)) ev_unref (EV_A);
1963} 4111}
1964 4112
1965static void noinline 4113static void noinline
1966infy_del (EV_P_ ev_stat *w) 4114infy_del (EV_P_ ev_stat *w)
1967{ 4115{
1970 4118
1971 if (wd < 0) 4119 if (wd < 0)
1972 return; 4120 return;
1973 4121
1974 w->wd = -2; 4122 w->wd = -2;
1975 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 4123 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
1976 wlist_del (&fs_hash [slot].head, (WL)w); 4124 wlist_del (&fs_hash [slot].head, (WL)w);
1977 4125
1978 /* remove this watcher, if others are watching it, they will rearm */ 4126 /* remove this watcher, if others are watching it, they will rearm */
1979 inotify_rm_watch (fs_fd, wd); 4127 inotify_rm_watch (fs_fd, wd);
1980} 4128}
1981 4129
1982static void noinline 4130static void noinline
1983infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 4131infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1984{ 4132{
1985 if (slot < 0) 4133 if (slot < 0)
1986 /* overflow, need to check for all hahs slots */ 4134 /* overflow, need to check for all hash slots */
1987 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4135 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1988 infy_wd (EV_A_ slot, wd, ev); 4136 infy_wd (EV_A_ slot, wd, ev);
1989 else 4137 else
1990 { 4138 {
1991 WL w_; 4139 WL w_;
1992 4140
1993 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 4141 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
1994 { 4142 {
1995 ev_stat *w = (ev_stat *)w_; 4143 ev_stat *w = (ev_stat *)w_;
1996 w_ = w_->next; /* lets us remove this watcher and all before it */ 4144 w_ = w_->next; /* lets us remove this watcher and all before it */
1997 4145
1998 if (w->wd == wd || wd == -1) 4146 if (w->wd == wd || wd == -1)
1999 { 4147 {
2000 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 4148 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2001 { 4149 {
4150 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2002 w->wd = -1; 4151 w->wd = -1;
2003 infy_add (EV_A_ w); /* re-add, no matter what */ 4152 infy_add (EV_A_ w); /* re-add, no matter what */
2004 } 4153 }
2005 4154
2006 stat_timer_cb (EV_A_ &w->timer, 0); 4155 stat_timer_cb (EV_A_ &w->timer, 0);
2011 4160
2012static void 4161static void
2013infy_cb (EV_P_ ev_io *w, int revents) 4162infy_cb (EV_P_ ev_io *w, int revents)
2014{ 4163{
2015 char buf [EV_INOTIFY_BUFSIZE]; 4164 char buf [EV_INOTIFY_BUFSIZE];
2016 struct inotify_event *ev = (struct inotify_event *)buf;
2017 int ofs; 4165 int ofs;
2018 int len = read (fs_fd, buf, sizeof (buf)); 4166 int len = read (fs_fd, buf, sizeof (buf));
2019 4167
2020 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 4168 for (ofs = 0; ofs < len; )
4169 {
4170 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2021 infy_wd (EV_A_ ev->wd, ev->wd, ev); 4171 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4172 ofs += sizeof (struct inotify_event) + ev->len;
4173 }
2022} 4174}
2023 4175
2024void inline_size 4176inline_size void ecb_cold
4177ev_check_2625 (EV_P)
4178{
4179 /* kernels < 2.6.25 are borked
4180 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4181 */
4182 if (ev_linux_version () < 0x020619)
4183 return;
4184
4185 fs_2625 = 1;
4186}
4187
4188inline_size int
4189infy_newfd (void)
4190{
4191#if defined IN_CLOEXEC && defined IN_NONBLOCK
4192 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4193 if (fd >= 0)
4194 return fd;
4195#endif
4196 return inotify_init ();
4197}
4198
4199inline_size void
2025infy_init (EV_P) 4200infy_init (EV_P)
2026{ 4201{
2027 if (fs_fd != -2) 4202 if (fs_fd != -2)
2028 return; 4203 return;
2029 4204
4205 fs_fd = -1;
4206
4207 ev_check_2625 (EV_A);
4208
2030 fs_fd = inotify_init (); 4209 fs_fd = infy_newfd ();
2031 4210
2032 if (fs_fd >= 0) 4211 if (fs_fd >= 0)
2033 { 4212 {
4213 fd_intern (fs_fd);
2034 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 4214 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2035 ev_set_priority (&fs_w, EV_MAXPRI); 4215 ev_set_priority (&fs_w, EV_MAXPRI);
2036 ev_io_start (EV_A_ &fs_w); 4216 ev_io_start (EV_A_ &fs_w);
4217 ev_unref (EV_A);
2037 } 4218 }
2038} 4219}
2039 4220
2040void inline_size 4221inline_size void
2041infy_fork (EV_P) 4222infy_fork (EV_P)
2042{ 4223{
2043 int slot; 4224 int slot;
2044 4225
2045 if (fs_fd < 0) 4226 if (fs_fd < 0)
2046 return; 4227 return;
2047 4228
4229 ev_ref (EV_A);
4230 ev_io_stop (EV_A_ &fs_w);
2048 close (fs_fd); 4231 close (fs_fd);
2049 fs_fd = inotify_init (); 4232 fs_fd = infy_newfd ();
2050 4233
4234 if (fs_fd >= 0)
4235 {
4236 fd_intern (fs_fd);
4237 ev_io_set (&fs_w, fs_fd, EV_READ);
4238 ev_io_start (EV_A_ &fs_w);
4239 ev_unref (EV_A);
4240 }
4241
2051 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4242 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2052 { 4243 {
2053 WL w_ = fs_hash [slot].head; 4244 WL w_ = fs_hash [slot].head;
2054 fs_hash [slot].head = 0; 4245 fs_hash [slot].head = 0;
2055 4246
2056 while (w_) 4247 while (w_)
2061 w->wd = -1; 4252 w->wd = -1;
2062 4253
2063 if (fs_fd >= 0) 4254 if (fs_fd >= 0)
2064 infy_add (EV_A_ w); /* re-add, no matter what */ 4255 infy_add (EV_A_ w); /* re-add, no matter what */
2065 else 4256 else
4257 {
4258 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4259 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2066 ev_timer_start (EV_A_ &w->timer); 4260 ev_timer_again (EV_A_ &w->timer);
4261 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4262 }
2067 } 4263 }
2068
2069 } 4264 }
2070} 4265}
2071 4266
4267#endif
4268
4269#ifdef _WIN32
4270# define EV_LSTAT(p,b) _stati64 (p, b)
4271#else
4272# define EV_LSTAT(p,b) lstat (p, b)
2072#endif 4273#endif
2073 4274
2074void 4275void
2075ev_stat_stat (EV_P_ ev_stat *w) 4276ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
2076{ 4277{
2077 if (lstat (w->path, &w->attr) < 0) 4278 if (lstat (w->path, &w->attr) < 0)
2078 w->attr.st_nlink = 0; 4279 w->attr.st_nlink = 0;
2079 else if (!w->attr.st_nlink) 4280 else if (!w->attr.st_nlink)
2080 w->attr.st_nlink = 1; 4281 w->attr.st_nlink = 1;
2083static void noinline 4284static void noinline
2084stat_timer_cb (EV_P_ ev_timer *w_, int revents) 4285stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2085{ 4286{
2086 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 4287 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2087 4288
2088 /* we copy this here each the time so that */ 4289 ev_statdata prev = w->attr;
2089 /* prev has the old value when the callback gets invoked */
2090 w->prev = w->attr;
2091 ev_stat_stat (EV_A_ w); 4290 ev_stat_stat (EV_A_ w);
2092 4291
2093 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 4292 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2094 if ( 4293 if (
2095 w->prev.st_dev != w->attr.st_dev 4294 prev.st_dev != w->attr.st_dev
2096 || w->prev.st_ino != w->attr.st_ino 4295 || prev.st_ino != w->attr.st_ino
2097 || w->prev.st_mode != w->attr.st_mode 4296 || prev.st_mode != w->attr.st_mode
2098 || w->prev.st_nlink != w->attr.st_nlink 4297 || prev.st_nlink != w->attr.st_nlink
2099 || w->prev.st_uid != w->attr.st_uid 4298 || prev.st_uid != w->attr.st_uid
2100 || w->prev.st_gid != w->attr.st_gid 4299 || prev.st_gid != w->attr.st_gid
2101 || w->prev.st_rdev != w->attr.st_rdev 4300 || prev.st_rdev != w->attr.st_rdev
2102 || w->prev.st_size != w->attr.st_size 4301 || prev.st_size != w->attr.st_size
2103 || w->prev.st_atime != w->attr.st_atime 4302 || prev.st_atime != w->attr.st_atime
2104 || w->prev.st_mtime != w->attr.st_mtime 4303 || prev.st_mtime != w->attr.st_mtime
2105 || w->prev.st_ctime != w->attr.st_ctime 4304 || prev.st_ctime != w->attr.st_ctime
2106 ) { 4305 ) {
4306 /* we only update w->prev on actual differences */
4307 /* in case we test more often than invoke the callback, */
4308 /* to ensure that prev is always different to attr */
4309 w->prev = prev;
4310
2107 #if EV_USE_INOTIFY 4311 #if EV_USE_INOTIFY
4312 if (fs_fd >= 0)
4313 {
2108 infy_del (EV_A_ w); 4314 infy_del (EV_A_ w);
2109 infy_add (EV_A_ w); 4315 infy_add (EV_A_ w);
2110 ev_stat_stat (EV_A_ w); /* avoid race... */ 4316 ev_stat_stat (EV_A_ w); /* avoid race... */
4317 }
2111 #endif 4318 #endif
2112 4319
2113 ev_feed_event (EV_A_ w, EV_STAT); 4320 ev_feed_event (EV_A_ w, EV_STAT);
2114 } 4321 }
2115} 4322}
2116 4323
2117void 4324void
2118ev_stat_start (EV_P_ ev_stat *w) 4325ev_stat_start (EV_P_ ev_stat *w) EV_THROW
2119{ 4326{
2120 if (expect_false (ev_is_active (w))) 4327 if (expect_false (ev_is_active (w)))
2121 return; 4328 return;
2122 4329
2123 /* since we use memcmp, we need to clear any padding data etc. */
2124 memset (&w->prev, 0, sizeof (ev_statdata));
2125 memset (&w->attr, 0, sizeof (ev_statdata));
2126
2127 ev_stat_stat (EV_A_ w); 4330 ev_stat_stat (EV_A_ w);
2128 4331
4332 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2129 if (w->interval < MIN_STAT_INTERVAL) 4333 w->interval = MIN_STAT_INTERVAL;
2130 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2131 4334
2132 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 4335 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2133 ev_set_priority (&w->timer, ev_priority (w)); 4336 ev_set_priority (&w->timer, ev_priority (w));
2134 4337
2135#if EV_USE_INOTIFY 4338#if EV_USE_INOTIFY
2136 infy_init (EV_A); 4339 infy_init (EV_A);
2137 4340
2138 if (fs_fd >= 0) 4341 if (fs_fd >= 0)
2139 infy_add (EV_A_ w); 4342 infy_add (EV_A_ w);
2140 else 4343 else
2141#endif 4344#endif
4345 {
2142 ev_timer_start (EV_A_ &w->timer); 4346 ev_timer_again (EV_A_ &w->timer);
4347 ev_unref (EV_A);
4348 }
2143 4349
2144 ev_start (EV_A_ (W)w, 1); 4350 ev_start (EV_A_ (W)w, 1);
4351
4352 EV_FREQUENT_CHECK;
2145} 4353}
2146 4354
2147void 4355void
2148ev_stat_stop (EV_P_ ev_stat *w) 4356ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
2149{ 4357{
2150 clear_pending (EV_A_ (W)w); 4358 clear_pending (EV_A_ (W)w);
2151 if (expect_false (!ev_is_active (w))) 4359 if (expect_false (!ev_is_active (w)))
2152 return; 4360 return;
2153 4361
4362 EV_FREQUENT_CHECK;
4363
2154#if EV_USE_INOTIFY 4364#if EV_USE_INOTIFY
2155 infy_del (EV_A_ w); 4365 infy_del (EV_A_ w);
2156#endif 4366#endif
4367
4368 if (ev_is_active (&w->timer))
4369 {
4370 ev_ref (EV_A);
2157 ev_timer_stop (EV_A_ &w->timer); 4371 ev_timer_stop (EV_A_ &w->timer);
4372 }
2158 4373
2159 ev_stop (EV_A_ (W)w); 4374 ev_stop (EV_A_ (W)w);
4375
4376 EV_FREQUENT_CHECK;
2160} 4377}
2161#endif 4378#endif
2162 4379
2163#if EV_IDLE_ENABLE 4380#if EV_IDLE_ENABLE
2164void 4381void
2165ev_idle_start (EV_P_ ev_idle *w) 4382ev_idle_start (EV_P_ ev_idle *w) EV_THROW
2166{ 4383{
2167 if (expect_false (ev_is_active (w))) 4384 if (expect_false (ev_is_active (w)))
2168 return; 4385 return;
2169 4386
2170 pri_adjust (EV_A_ (W)w); 4387 pri_adjust (EV_A_ (W)w);
4388
4389 EV_FREQUENT_CHECK;
2171 4390
2172 { 4391 {
2173 int active = ++idlecnt [ABSPRI (w)]; 4392 int active = ++idlecnt [ABSPRI (w)];
2174 4393
2175 ++idleall; 4394 ++idleall;
2176 ev_start (EV_A_ (W)w, active); 4395 ev_start (EV_A_ (W)w, active);
2177 4396
2178 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 4397 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2179 idles [ABSPRI (w)][active - 1] = w; 4398 idles [ABSPRI (w)][active - 1] = w;
2180 } 4399 }
4400
4401 EV_FREQUENT_CHECK;
2181} 4402}
2182 4403
2183void 4404void
2184ev_idle_stop (EV_P_ ev_idle *w) 4405ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
2185{ 4406{
2186 clear_pending (EV_A_ (W)w); 4407 clear_pending (EV_A_ (W)w);
2187 if (expect_false (!ev_is_active (w))) 4408 if (expect_false (!ev_is_active (w)))
2188 return; 4409 return;
2189 4410
4411 EV_FREQUENT_CHECK;
4412
2190 { 4413 {
2191 int active = ((W)w)->active; 4414 int active = ev_active (w);
2192 4415
2193 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 4416 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2194 ((W)idles [ABSPRI (w)][active - 1])->active = active; 4417 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2195 4418
2196 ev_stop (EV_A_ (W)w); 4419 ev_stop (EV_A_ (W)w);
2197 --idleall; 4420 --idleall;
2198 } 4421 }
2199}
2200#endif
2201 4422
4423 EV_FREQUENT_CHECK;
4424}
4425#endif
4426
4427#if EV_PREPARE_ENABLE
2202void 4428void
2203ev_prepare_start (EV_P_ ev_prepare *w) 4429ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
2204{ 4430{
2205 if (expect_false (ev_is_active (w))) 4431 if (expect_false (ev_is_active (w)))
2206 return; 4432 return;
4433
4434 EV_FREQUENT_CHECK;
2207 4435
2208 ev_start (EV_A_ (W)w, ++preparecnt); 4436 ev_start (EV_A_ (W)w, ++preparecnt);
2209 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 4437 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2210 prepares [preparecnt - 1] = w; 4438 prepares [preparecnt - 1] = w;
4439
4440 EV_FREQUENT_CHECK;
2211} 4441}
2212 4442
2213void 4443void
2214ev_prepare_stop (EV_P_ ev_prepare *w) 4444ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
2215{ 4445{
2216 clear_pending (EV_A_ (W)w); 4446 clear_pending (EV_A_ (W)w);
2217 if (expect_false (!ev_is_active (w))) 4447 if (expect_false (!ev_is_active (w)))
2218 return; 4448 return;
2219 4449
4450 EV_FREQUENT_CHECK;
4451
2220 { 4452 {
2221 int active = ((W)w)->active; 4453 int active = ev_active (w);
4454
2222 prepares [active - 1] = prepares [--preparecnt]; 4455 prepares [active - 1] = prepares [--preparecnt];
2223 ((W)prepares [active - 1])->active = active; 4456 ev_active (prepares [active - 1]) = active;
2224 } 4457 }
2225 4458
2226 ev_stop (EV_A_ (W)w); 4459 ev_stop (EV_A_ (W)w);
2227}
2228 4460
4461 EV_FREQUENT_CHECK;
4462}
4463#endif
4464
4465#if EV_CHECK_ENABLE
2229void 4466void
2230ev_check_start (EV_P_ ev_check *w) 4467ev_check_start (EV_P_ ev_check *w) EV_THROW
2231{ 4468{
2232 if (expect_false (ev_is_active (w))) 4469 if (expect_false (ev_is_active (w)))
2233 return; 4470 return;
4471
4472 EV_FREQUENT_CHECK;
2234 4473
2235 ev_start (EV_A_ (W)w, ++checkcnt); 4474 ev_start (EV_A_ (W)w, ++checkcnt);
2236 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 4475 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2237 checks [checkcnt - 1] = w; 4476 checks [checkcnt - 1] = w;
4477
4478 EV_FREQUENT_CHECK;
2238} 4479}
2239 4480
2240void 4481void
2241ev_check_stop (EV_P_ ev_check *w) 4482ev_check_stop (EV_P_ ev_check *w) EV_THROW
2242{ 4483{
2243 clear_pending (EV_A_ (W)w); 4484 clear_pending (EV_A_ (W)w);
2244 if (expect_false (!ev_is_active (w))) 4485 if (expect_false (!ev_is_active (w)))
2245 return; 4486 return;
2246 4487
4488 EV_FREQUENT_CHECK;
4489
2247 { 4490 {
2248 int active = ((W)w)->active; 4491 int active = ev_active (w);
4492
2249 checks [active - 1] = checks [--checkcnt]; 4493 checks [active - 1] = checks [--checkcnt];
2250 ((W)checks [active - 1])->active = active; 4494 ev_active (checks [active - 1]) = active;
2251 } 4495 }
2252 4496
2253 ev_stop (EV_A_ (W)w); 4497 ev_stop (EV_A_ (W)w);
4498
4499 EV_FREQUENT_CHECK;
2254} 4500}
4501#endif
2255 4502
2256#if EV_EMBED_ENABLE 4503#if EV_EMBED_ENABLE
2257void noinline 4504void noinline
2258ev_embed_sweep (EV_P_ ev_embed *w) 4505ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
2259{ 4506{
2260 ev_loop (w->other, EVLOOP_NONBLOCK); 4507 ev_run (w->other, EVRUN_NOWAIT);
2261} 4508}
2262 4509
2263static void 4510static void
2264embed_io_cb (EV_P_ ev_io *io, int revents) 4511embed_io_cb (EV_P_ ev_io *io, int revents)
2265{ 4512{
2266 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4513 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2267 4514
2268 if (ev_cb (w)) 4515 if (ev_cb (w))
2269 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4516 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2270 else 4517 else
2271 ev_loop (w->other, EVLOOP_NONBLOCK); 4518 ev_run (w->other, EVRUN_NOWAIT);
2272} 4519}
2273 4520
2274static void 4521static void
2275embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4522embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2276{ 4523{
2277 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4524 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2278 4525
2279 { 4526 {
2280 struct ev_loop *loop = w->other; 4527 EV_P = w->other;
2281 4528
2282 while (fdchangecnt) 4529 while (fdchangecnt)
2283 { 4530 {
2284 fd_reify (EV_A); 4531 fd_reify (EV_A);
2285 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4532 ev_run (EV_A_ EVRUN_NOWAIT);
2286 } 4533 }
2287 } 4534 }
4535}
4536
4537static void
4538embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4539{
4540 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4541
4542 ev_embed_stop (EV_A_ w);
4543
4544 {
4545 EV_P = w->other;
4546
4547 ev_loop_fork (EV_A);
4548 ev_run (EV_A_ EVRUN_NOWAIT);
4549 }
4550
4551 ev_embed_start (EV_A_ w);
2288} 4552}
2289 4553
2290#if 0 4554#if 0
2291static void 4555static void
2292embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4556embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2294 ev_idle_stop (EV_A_ idle); 4558 ev_idle_stop (EV_A_ idle);
2295} 4559}
2296#endif 4560#endif
2297 4561
2298void 4562void
2299ev_embed_start (EV_P_ ev_embed *w) 4563ev_embed_start (EV_P_ ev_embed *w) EV_THROW
2300{ 4564{
2301 if (expect_false (ev_is_active (w))) 4565 if (expect_false (ev_is_active (w)))
2302 return; 4566 return;
2303 4567
2304 { 4568 {
2305 struct ev_loop *loop = w->other; 4569 EV_P = w->other;
2306 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4570 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2307 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4571 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2308 } 4572 }
4573
4574 EV_FREQUENT_CHECK;
2309 4575
2310 ev_set_priority (&w->io, ev_priority (w)); 4576 ev_set_priority (&w->io, ev_priority (w));
2311 ev_io_start (EV_A_ &w->io); 4577 ev_io_start (EV_A_ &w->io);
2312 4578
2313 ev_prepare_init (&w->prepare, embed_prepare_cb); 4579 ev_prepare_init (&w->prepare, embed_prepare_cb);
2314 ev_set_priority (&w->prepare, EV_MINPRI); 4580 ev_set_priority (&w->prepare, EV_MINPRI);
2315 ev_prepare_start (EV_A_ &w->prepare); 4581 ev_prepare_start (EV_A_ &w->prepare);
2316 4582
4583 ev_fork_init (&w->fork, embed_fork_cb);
4584 ev_fork_start (EV_A_ &w->fork);
4585
2317 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 4586 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2318 4587
2319 ev_start (EV_A_ (W)w, 1); 4588 ev_start (EV_A_ (W)w, 1);
4589
4590 EV_FREQUENT_CHECK;
2320} 4591}
2321 4592
2322void 4593void
2323ev_embed_stop (EV_P_ ev_embed *w) 4594ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
2324{ 4595{
2325 clear_pending (EV_A_ (W)w); 4596 clear_pending (EV_A_ (W)w);
2326 if (expect_false (!ev_is_active (w))) 4597 if (expect_false (!ev_is_active (w)))
2327 return; 4598 return;
2328 4599
4600 EV_FREQUENT_CHECK;
4601
2329 ev_io_stop (EV_A_ &w->io); 4602 ev_io_stop (EV_A_ &w->io);
2330 ev_prepare_stop (EV_A_ &w->prepare); 4603 ev_prepare_stop (EV_A_ &w->prepare);
4604 ev_fork_stop (EV_A_ &w->fork);
2331 4605
2332 ev_stop (EV_A_ (W)w); 4606 ev_stop (EV_A_ (W)w);
4607
4608 EV_FREQUENT_CHECK;
2333} 4609}
2334#endif 4610#endif
2335 4611
2336#if EV_FORK_ENABLE 4612#if EV_FORK_ENABLE
2337void 4613void
2338ev_fork_start (EV_P_ ev_fork *w) 4614ev_fork_start (EV_P_ ev_fork *w) EV_THROW
2339{ 4615{
2340 if (expect_false (ev_is_active (w))) 4616 if (expect_false (ev_is_active (w)))
2341 return; 4617 return;
4618
4619 EV_FREQUENT_CHECK;
2342 4620
2343 ev_start (EV_A_ (W)w, ++forkcnt); 4621 ev_start (EV_A_ (W)w, ++forkcnt);
2344 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 4622 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2345 forks [forkcnt - 1] = w; 4623 forks [forkcnt - 1] = w;
4624
4625 EV_FREQUENT_CHECK;
2346} 4626}
2347 4627
2348void 4628void
2349ev_fork_stop (EV_P_ ev_fork *w) 4629ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
2350{ 4630{
2351 clear_pending (EV_A_ (W)w); 4631 clear_pending (EV_A_ (W)w);
2352 if (expect_false (!ev_is_active (w))) 4632 if (expect_false (!ev_is_active (w)))
2353 return; 4633 return;
2354 4634
4635 EV_FREQUENT_CHECK;
4636
2355 { 4637 {
2356 int active = ((W)w)->active; 4638 int active = ev_active (w);
4639
2357 forks [active - 1] = forks [--forkcnt]; 4640 forks [active - 1] = forks [--forkcnt];
2358 ((W)forks [active - 1])->active = active; 4641 ev_active (forks [active - 1]) = active;
2359 } 4642 }
2360 4643
2361 ev_stop (EV_A_ (W)w); 4644 ev_stop (EV_A_ (W)w);
4645
4646 EV_FREQUENT_CHECK;
4647}
4648#endif
4649
4650#if EV_CLEANUP_ENABLE
4651void
4652ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4653{
4654 if (expect_false (ev_is_active (w)))
4655 return;
4656
4657 EV_FREQUENT_CHECK;
4658
4659 ev_start (EV_A_ (W)w, ++cleanupcnt);
4660 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4661 cleanups [cleanupcnt - 1] = w;
4662
4663 /* cleanup watchers should never keep a refcount on the loop */
4664 ev_unref (EV_A);
4665 EV_FREQUENT_CHECK;
4666}
4667
4668void
4669ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4670{
4671 clear_pending (EV_A_ (W)w);
4672 if (expect_false (!ev_is_active (w)))
4673 return;
4674
4675 EV_FREQUENT_CHECK;
4676 ev_ref (EV_A);
4677
4678 {
4679 int active = ev_active (w);
4680
4681 cleanups [active - 1] = cleanups [--cleanupcnt];
4682 ev_active (cleanups [active - 1]) = active;
4683 }
4684
4685 ev_stop (EV_A_ (W)w);
4686
4687 EV_FREQUENT_CHECK;
4688}
4689#endif
4690
4691#if EV_ASYNC_ENABLE
4692void
4693ev_async_start (EV_P_ ev_async *w) EV_THROW
4694{
4695 if (expect_false (ev_is_active (w)))
4696 return;
4697
4698 w->sent = 0;
4699
4700 evpipe_init (EV_A);
4701
4702 EV_FREQUENT_CHECK;
4703
4704 ev_start (EV_A_ (W)w, ++asynccnt);
4705 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4706 asyncs [asynccnt - 1] = w;
4707
4708 EV_FREQUENT_CHECK;
4709}
4710
4711void
4712ev_async_stop (EV_P_ ev_async *w) EV_THROW
4713{
4714 clear_pending (EV_A_ (W)w);
4715 if (expect_false (!ev_is_active (w)))
4716 return;
4717
4718 EV_FREQUENT_CHECK;
4719
4720 {
4721 int active = ev_active (w);
4722
4723 asyncs [active - 1] = asyncs [--asynccnt];
4724 ev_active (asyncs [active - 1]) = active;
4725 }
4726
4727 ev_stop (EV_A_ (W)w);
4728
4729 EV_FREQUENT_CHECK;
4730}
4731
4732void
4733ev_async_send (EV_P_ ev_async *w) EV_THROW
4734{
4735 w->sent = 1;
4736 evpipe_write (EV_A_ &async_pending);
2362} 4737}
2363#endif 4738#endif
2364 4739
2365/*****************************************************************************/ 4740/*****************************************************************************/
2366 4741
2376once_cb (EV_P_ struct ev_once *once, int revents) 4751once_cb (EV_P_ struct ev_once *once, int revents)
2377{ 4752{
2378 void (*cb)(int revents, void *arg) = once->cb; 4753 void (*cb)(int revents, void *arg) = once->cb;
2379 void *arg = once->arg; 4754 void *arg = once->arg;
2380 4755
2381 ev_io_stop (EV_A_ &once->io); 4756 ev_io_stop (EV_A_ &once->io);
2382 ev_timer_stop (EV_A_ &once->to); 4757 ev_timer_stop (EV_A_ &once->to);
2383 ev_free (once); 4758 ev_free (once);
2384 4759
2385 cb (revents, arg); 4760 cb (revents, arg);
2386} 4761}
2387 4762
2388static void 4763static void
2389once_cb_io (EV_P_ ev_io *w, int revents) 4764once_cb_io (EV_P_ ev_io *w, int revents)
2390{ 4765{
2391 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4766 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4767
4768 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2392} 4769}
2393 4770
2394static void 4771static void
2395once_cb_to (EV_P_ ev_timer *w, int revents) 4772once_cb_to (EV_P_ ev_timer *w, int revents)
2396{ 4773{
2397 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4774 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4775
4776 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2398} 4777}
2399 4778
2400void 4779void
2401ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4780ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
2402{ 4781{
2403 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4782 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2404 4783
2405 if (expect_false (!once)) 4784 if (expect_false (!once))
2406 { 4785 {
2407 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4786 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2408 return; 4787 return;
2409 } 4788 }
2410 4789
2411 once->cb = cb; 4790 once->cb = cb;
2412 once->arg = arg; 4791 once->arg = arg;
2424 ev_timer_set (&once->to, timeout, 0.); 4803 ev_timer_set (&once->to, timeout, 0.);
2425 ev_timer_start (EV_A_ &once->to); 4804 ev_timer_start (EV_A_ &once->to);
2426 } 4805 }
2427} 4806}
2428 4807
4808/*****************************************************************************/
4809
4810#if EV_WALK_ENABLE
4811void ecb_cold
4812ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4813{
4814 int i, j;
4815 ev_watcher_list *wl, *wn;
4816
4817 if (types & (EV_IO | EV_EMBED))
4818 for (i = 0; i < anfdmax; ++i)
4819 for (wl = anfds [i].head; wl; )
4820 {
4821 wn = wl->next;
4822
4823#if EV_EMBED_ENABLE
4824 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4825 {
4826 if (types & EV_EMBED)
4827 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4828 }
4829 else
4830#endif
4831#if EV_USE_INOTIFY
4832 if (ev_cb ((ev_io *)wl) == infy_cb)
4833 ;
4834 else
4835#endif
4836 if ((ev_io *)wl != &pipe_w)
4837 if (types & EV_IO)
4838 cb (EV_A_ EV_IO, wl);
4839
4840 wl = wn;
4841 }
4842
4843 if (types & (EV_TIMER | EV_STAT))
4844 for (i = timercnt + HEAP0; i-- > HEAP0; )
4845#if EV_STAT_ENABLE
4846 /*TODO: timer is not always active*/
4847 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4848 {
4849 if (types & EV_STAT)
4850 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4851 }
4852 else
4853#endif
4854 if (types & EV_TIMER)
4855 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4856
4857#if EV_PERIODIC_ENABLE
4858 if (types & EV_PERIODIC)
4859 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4860 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4861#endif
4862
4863#if EV_IDLE_ENABLE
4864 if (types & EV_IDLE)
4865 for (j = NUMPRI; j--; )
4866 for (i = idlecnt [j]; i--; )
4867 cb (EV_A_ EV_IDLE, idles [j][i]);
4868#endif
4869
4870#if EV_FORK_ENABLE
4871 if (types & EV_FORK)
4872 for (i = forkcnt; i--; )
4873 if (ev_cb (forks [i]) != embed_fork_cb)
4874 cb (EV_A_ EV_FORK, forks [i]);
4875#endif
4876
4877#if EV_ASYNC_ENABLE
4878 if (types & EV_ASYNC)
4879 for (i = asynccnt; i--; )
4880 cb (EV_A_ EV_ASYNC, asyncs [i]);
4881#endif
4882
4883#if EV_PREPARE_ENABLE
4884 if (types & EV_PREPARE)
4885 for (i = preparecnt; i--; )
4886# if EV_EMBED_ENABLE
4887 if (ev_cb (prepares [i]) != embed_prepare_cb)
4888# endif
4889 cb (EV_A_ EV_PREPARE, prepares [i]);
4890#endif
4891
4892#if EV_CHECK_ENABLE
4893 if (types & EV_CHECK)
4894 for (i = checkcnt; i--; )
4895 cb (EV_A_ EV_CHECK, checks [i]);
4896#endif
4897
4898#if EV_SIGNAL_ENABLE
4899 if (types & EV_SIGNAL)
4900 for (i = 0; i < EV_NSIG - 1; ++i)
4901 for (wl = signals [i].head; wl; )
4902 {
4903 wn = wl->next;
4904 cb (EV_A_ EV_SIGNAL, wl);
4905 wl = wn;
4906 }
4907#endif
4908
4909#if EV_CHILD_ENABLE
4910 if (types & EV_CHILD)
4911 for (i = (EV_PID_HASHSIZE); i--; )
4912 for (wl = childs [i]; wl; )
4913 {
4914 wn = wl->next;
4915 cb (EV_A_ EV_CHILD, wl);
4916 wl = wn;
4917 }
4918#endif
4919/* EV_STAT 0x00001000 /* stat data changed */
4920/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4921}
4922#endif
4923
2429#if EV_MULTIPLICITY 4924#if EV_MULTIPLICITY
2430 #include "ev_wrap.h" 4925 #include "ev_wrap.h"
2431#endif 4926#endif
2432 4927
2433#ifdef __cplusplus
2434}
2435#endif
2436

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines