ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.277 by root, Sun Dec 14 21:58:08 2008 UTC vs.
Revision 1.474 by root, Wed Feb 11 19:20:21 2015 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012,2013 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
46# endif
47
48# if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
50# endif 52# endif
51 53
52# if HAVE_CLOCK_SYSCALL 54# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL 55# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1 56# define EV_USE_CLOCK_SYSCALL 1
57# endif 59# endif
58# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1 61# define EV_USE_MONOTONIC 1
60# endif 62# endif
61# endif 63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
62# endif 66# endif
63 67
64# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
65# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
66# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
67# endif 71# endif
68# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
69# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
70# endif 74# endif
71# else 75# else
72# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
73# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
74# endif 78# endif
75# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
77# endif 81# endif
78# endif 82# endif
79 83
84# if HAVE_NANOSLEEP
80# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
81# if HAVE_NANOSLEEP
82# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
83# else 88# else
89# undef EV_USE_NANOSLEEP
84# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
85# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
86# endif 100# endif
87 101
102# if HAVE_POLL && HAVE_POLL_H
88# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
89# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
90# define EV_USE_SELECT 1
91# else
92# define EV_USE_SELECT 0
93# endif 105# endif
94# endif
95
96# ifndef EV_USE_POLL
97# if HAVE_POLL && HAVE_POLL_H
98# define EV_USE_POLL 1
99# else 106# else
107# undef EV_USE_POLL
100# define EV_USE_POLL 0 108# define EV_USE_POLL 0
101# endif
102# endif 109# endif
103 110
104# ifndef EV_USE_EPOLL
105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
106# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
107# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
108# define EV_USE_EPOLL 0
109# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
110# endif 118# endif
111 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
112# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
113# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
114# define EV_USE_KQUEUE 1
115# else
116# define EV_USE_KQUEUE 0
117# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
118# endif 127# endif
119 128
120# ifndef EV_USE_PORT
121# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
122# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
123# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
124# define EV_USE_PORT 0
125# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
126# endif 136# endif
127 137
128# ifndef EV_USE_INOTIFY
129# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
130# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
131# else
132# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
133# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
134# endif 145# endif
135 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
136# ifndef EV_USE_EVENTFD 148# ifndef EV_USE_SIGNALFD
137# if HAVE_EVENTFD 149# define EV_USE_SIGNALFD EV_FEATURE_OS
138# define EV_USE_EVENTFD 1
139# else
140# define EV_USE_EVENTFD 0
141# endif 150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
142# endif 163# endif
143 164
144#endif 165#endif
145 166
146#include <math.h>
147#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
148#include <fcntl.h> 169#include <fcntl.h>
149#include <stddef.h> 170#include <stddef.h>
150 171
151#include <stdio.h> 172#include <stdio.h>
152 173
153#include <assert.h> 174#include <assert.h>
154#include <errno.h> 175#include <errno.h>
155#include <sys/types.h> 176#include <sys/types.h>
156#include <time.h> 177#include <time.h>
178#include <limits.h>
157 179
158#include <signal.h> 180#include <signal.h>
159 181
160#ifdef EV_H 182#ifdef EV_H
161# include EV_H 183# include EV_H
162#else 184#else
163# include "ev.h" 185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
164#endif 197#endif
165 198
166#ifndef _WIN32 199#ifndef _WIN32
167# include <sys/time.h> 200# include <sys/time.h>
168# include <sys/wait.h> 201# include <sys/wait.h>
169# include <unistd.h> 202# include <unistd.h>
170#else 203#else
171# include <io.h> 204# include <io.h>
172# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
173# include <windows.h> 207# include <windows.h>
174# ifndef EV_SELECT_IS_WINSOCKET 208# ifndef EV_SELECT_IS_WINSOCKET
175# define EV_SELECT_IS_WINSOCKET 1 209# define EV_SELECT_IS_WINSOCKET 1
176# endif 210# endif
211# undef EV_AVOID_STDIO
177#endif 212#endif
213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
178 221
179/* this block tries to deduce configuration from header-defined symbols and defaults */ 222/* this block tries to deduce configuration from header-defined symbols and defaults */
180 223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# define EV_NSIG (8 * sizeof (sigset_t) + 1)
247#endif
248
249#ifndef EV_USE_FLOOR
250# define EV_USE_FLOOR 0
251#endif
252
181#ifndef EV_USE_CLOCK_SYSCALL 253#ifndef EV_USE_CLOCK_SYSCALL
182# if __linux && __GLIBC__ >= 2 254# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
183# define EV_USE_CLOCK_SYSCALL 1 255# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
184# else 256# else
185# define EV_USE_CLOCK_SYSCALL 0 257# define EV_USE_CLOCK_SYSCALL 0
186# endif 258# endif
187#endif 259#endif
188 260
261#if !(_POSIX_TIMERS > 0)
262# ifndef EV_USE_MONOTONIC
263# define EV_USE_MONOTONIC 0
264# endif
265# ifndef EV_USE_REALTIME
266# define EV_USE_REALTIME 0
267# endif
268#endif
269
189#ifndef EV_USE_MONOTONIC 270#ifndef EV_USE_MONOTONIC
190# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0 271# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
191# define EV_USE_MONOTONIC 1 272# define EV_USE_MONOTONIC EV_FEATURE_OS
192# else 273# else
193# define EV_USE_MONOTONIC 0 274# define EV_USE_MONOTONIC 0
194# endif 275# endif
195#endif 276#endif
196 277
197#ifndef EV_USE_REALTIME 278#ifndef EV_USE_REALTIME
198# define EV_USE_REALTIME 0 279# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
199#endif 280#endif
200 281
201#ifndef EV_USE_NANOSLEEP 282#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L 283# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1 284# define EV_USE_NANOSLEEP EV_FEATURE_OS
204# else 285# else
205# define EV_USE_NANOSLEEP 0 286# define EV_USE_NANOSLEEP 0
206# endif 287# endif
207#endif 288#endif
208 289
209#ifndef EV_USE_SELECT 290#ifndef EV_USE_SELECT
210# define EV_USE_SELECT 1 291# define EV_USE_SELECT EV_FEATURE_BACKENDS
211#endif 292#endif
212 293
213#ifndef EV_USE_POLL 294#ifndef EV_USE_POLL
214# ifdef _WIN32 295# ifdef _WIN32
215# define EV_USE_POLL 0 296# define EV_USE_POLL 0
216# else 297# else
217# define EV_USE_POLL 1 298# define EV_USE_POLL EV_FEATURE_BACKENDS
218# endif 299# endif
219#endif 300#endif
220 301
221#ifndef EV_USE_EPOLL 302#ifndef EV_USE_EPOLL
222# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 303# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
223# define EV_USE_EPOLL 1 304# define EV_USE_EPOLL EV_FEATURE_BACKENDS
224# else 305# else
225# define EV_USE_EPOLL 0 306# define EV_USE_EPOLL 0
226# endif 307# endif
227#endif 308#endif
228 309
234# define EV_USE_PORT 0 315# define EV_USE_PORT 0
235#endif 316#endif
236 317
237#ifndef EV_USE_INOTIFY 318#ifndef EV_USE_INOTIFY
238# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 319# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
239# define EV_USE_INOTIFY 1 320# define EV_USE_INOTIFY EV_FEATURE_OS
240# else 321# else
241# define EV_USE_INOTIFY 0 322# define EV_USE_INOTIFY 0
242# endif 323# endif
243#endif 324#endif
244 325
245#ifndef EV_PID_HASHSIZE 326#ifndef EV_PID_HASHSIZE
246# if EV_MINIMAL 327# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
247# define EV_PID_HASHSIZE 1
248# else
249# define EV_PID_HASHSIZE 16
250# endif
251#endif 328#endif
252 329
253#ifndef EV_INOTIFY_HASHSIZE 330#ifndef EV_INOTIFY_HASHSIZE
254# if EV_MINIMAL 331# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
255# define EV_INOTIFY_HASHSIZE 1
256# else
257# define EV_INOTIFY_HASHSIZE 16
258# endif
259#endif 332#endif
260 333
261#ifndef EV_USE_EVENTFD 334#ifndef EV_USE_EVENTFD
262# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 335# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
263# define EV_USE_EVENTFD 1 336# define EV_USE_EVENTFD EV_FEATURE_OS
264# else 337# else
265# define EV_USE_EVENTFD 0 338# define EV_USE_EVENTFD 0
339# endif
340#endif
341
342#ifndef EV_USE_SIGNALFD
343# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
344# define EV_USE_SIGNALFD EV_FEATURE_OS
345# else
346# define EV_USE_SIGNALFD 0
266# endif 347# endif
267#endif 348#endif
268 349
269#if 0 /* debugging */ 350#if 0 /* debugging */
270# define EV_VERIFY 3 351# define EV_VERIFY 3
271# define EV_USE_4HEAP 1 352# define EV_USE_4HEAP 1
272# define EV_HEAP_CACHE_AT 1 353# define EV_HEAP_CACHE_AT 1
273#endif 354#endif
274 355
275#ifndef EV_VERIFY 356#ifndef EV_VERIFY
276# define EV_VERIFY !EV_MINIMAL 357# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
277#endif 358#endif
278 359
279#ifndef EV_USE_4HEAP 360#ifndef EV_USE_4HEAP
280# define EV_USE_4HEAP !EV_MINIMAL 361# define EV_USE_4HEAP EV_FEATURE_DATA
281#endif 362#endif
282 363
283#ifndef EV_HEAP_CACHE_AT 364#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL 365# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
366#endif
367
368#ifdef ANDROID
369/* supposedly, android doesn't typedef fd_mask */
370# undef EV_USE_SELECT
371# define EV_USE_SELECT 0
372/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
373# undef EV_USE_CLOCK_SYSCALL
374# define EV_USE_CLOCK_SYSCALL 0
375#endif
376
377/* aix's poll.h seems to cause lots of trouble */
378#ifdef _AIX
379/* AIX has a completely broken poll.h header */
380# undef EV_USE_POLL
381# define EV_USE_POLL 0
382#endif
383
384/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
385/* which makes programs even slower. might work on other unices, too. */
386#if EV_USE_CLOCK_SYSCALL
387# include <sys/syscall.h>
388# ifdef SYS_clock_gettime
389# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
390# undef EV_USE_MONOTONIC
391# define EV_USE_MONOTONIC 1
392# else
393# undef EV_USE_CLOCK_SYSCALL
394# define EV_USE_CLOCK_SYSCALL 0
395# endif
285#endif 396#endif
286 397
287/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 398/* this block fixes any misconfiguration where we know we run into trouble otherwise */
288 399
289#ifndef CLOCK_MONOTONIC 400#ifndef CLOCK_MONOTONIC
300# undef EV_USE_INOTIFY 411# undef EV_USE_INOTIFY
301# define EV_USE_INOTIFY 0 412# define EV_USE_INOTIFY 0
302#endif 413#endif
303 414
304#if !EV_USE_NANOSLEEP 415#if !EV_USE_NANOSLEEP
305# ifndef _WIN32 416/* hp-ux has it in sys/time.h, which we unconditionally include above */
417# if !defined _WIN32 && !defined __hpux
306# include <sys/select.h> 418# include <sys/select.h>
307# endif 419# endif
308#endif 420#endif
309 421
310#if EV_USE_INOTIFY 422#if EV_USE_INOTIFY
311# include <sys/utsname.h>
312# include <sys/statfs.h> 423# include <sys/statfs.h>
313# include <sys/inotify.h> 424# include <sys/inotify.h>
314/* some very old inotify.h headers don't have IN_DONT_FOLLOW */ 425/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
315# ifndef IN_DONT_FOLLOW 426# ifndef IN_DONT_FOLLOW
316# undef EV_USE_INOTIFY 427# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0 428# define EV_USE_INOTIFY 0
318# endif 429# endif
319#endif 430#endif
320 431
321#if EV_SELECT_IS_WINSOCKET
322# include <winsock.h>
323#endif
324
325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
331# define EV_USE_MONOTONIC 1
332#endif
333
334#if EV_USE_EVENTFD 432#if EV_USE_EVENTFD
335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 433/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336# include <stdint.h> 434# include <stdint.h>
337# ifdef __cplusplus 435# ifndef EFD_NONBLOCK
338extern "C" { 436# define EFD_NONBLOCK O_NONBLOCK
339# endif 437# endif
340int eventfd (unsigned int initval, int flags); 438# ifndef EFD_CLOEXEC
341# ifdef __cplusplus 439# ifdef O_CLOEXEC
342} 440# define EFD_CLOEXEC O_CLOEXEC
441# else
442# define EFD_CLOEXEC 02000000
443# endif
343# endif 444# endif
445EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
446#endif
447
448#if EV_USE_SIGNALFD
449/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
450# include <stdint.h>
451# ifndef SFD_NONBLOCK
452# define SFD_NONBLOCK O_NONBLOCK
453# endif
454# ifndef SFD_CLOEXEC
455# ifdef O_CLOEXEC
456# define SFD_CLOEXEC O_CLOEXEC
457# else
458# define SFD_CLOEXEC 02000000
459# endif
460# endif
461EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
462
463struct signalfd_siginfo
464{
465 uint32_t ssi_signo;
466 char pad[128 - sizeof (uint32_t)];
467};
344#endif 468#endif
345 469
346/**/ 470/**/
347 471
348#if EV_VERIFY >= 3 472#if EV_VERIFY >= 3
349# define EV_FREQUENT_CHECK ev_loop_verify (EV_A) 473# define EV_FREQUENT_CHECK ev_verify (EV_A)
350#else 474#else
351# define EV_FREQUENT_CHECK do { } while (0) 475# define EV_FREQUENT_CHECK do { } while (0)
352#endif 476#endif
353 477
354/* 478/*
355 * This is used to avoid floating point rounding problems. 479 * This is used to work around floating point rounding problems.
356 * It is added to ev_rt_now when scheduling periodics
357 * to ensure progress, time-wise, even when rounding
358 * errors are against us.
359 * This value is good at least till the year 4000. 480 * This value is good at least till the year 4000.
360 * Better solutions welcome.
361 */ 481 */
362#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 482#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
483/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
363 484
364#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 485#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
365#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 486#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
366/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
367 487
488#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
489#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
490
491/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
492/* ECB.H BEGIN */
493/*
494 * libecb - http://software.schmorp.de/pkg/libecb
495 *
496 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
497 * Copyright (©) 2011 Emanuele Giaquinta
498 * All rights reserved.
499 *
500 * Redistribution and use in source and binary forms, with or without modifica-
501 * tion, are permitted provided that the following conditions are met:
502 *
503 * 1. Redistributions of source code must retain the above copyright notice,
504 * this list of conditions and the following disclaimer.
505 *
506 * 2. Redistributions in binary form must reproduce the above copyright
507 * notice, this list of conditions and the following disclaimer in the
508 * documentation and/or other materials provided with the distribution.
509 *
510 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
511 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
512 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
513 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
514 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
515 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
516 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
517 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
518 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
519 * OF THE POSSIBILITY OF SUCH DAMAGE.
520 *
521 * Alternatively, the contents of this file may be used under the terms of
522 * the GNU General Public License ("GPL") version 2 or any later version,
523 * in which case the provisions of the GPL are applicable instead of
524 * the above. If you wish to allow the use of your version of this file
525 * only under the terms of the GPL and not to allow others to use your
526 * version of this file under the BSD license, indicate your decision
527 * by deleting the provisions above and replace them with the notice
528 * and other provisions required by the GPL. If you do not delete the
529 * provisions above, a recipient may use your version of this file under
530 * either the BSD or the GPL.
531 */
532
533#ifndef ECB_H
534#define ECB_H
535
536/* 16 bits major, 16 bits minor */
537#define ECB_VERSION 0x00010004
538
539#ifdef _WIN32
540 typedef signed char int8_t;
541 typedef unsigned char uint8_t;
542 typedef signed short int16_t;
543 typedef unsigned short uint16_t;
544 typedef signed int int32_t;
545 typedef unsigned int uint32_t;
368#if __GNUC__ >= 4 546 #if __GNUC__
369# define expect(expr,value) __builtin_expect ((expr),(value)) 547 typedef signed long long int64_t;
370# define noinline __attribute__ ((noinline)) 548 typedef unsigned long long uint64_t;
549 #else /* _MSC_VER || __BORLANDC__ */
550 typedef signed __int64 int64_t;
551 typedef unsigned __int64 uint64_t;
552 #endif
553 #ifdef _WIN64
554 #define ECB_PTRSIZE 8
555 typedef uint64_t uintptr_t;
556 typedef int64_t intptr_t;
557 #else
558 #define ECB_PTRSIZE 4
559 typedef uint32_t uintptr_t;
560 typedef int32_t intptr_t;
561 #endif
371#else 562#else
372# define expect(expr,value) (expr) 563 #include <inttypes.h>
373# define noinline 564 #if UINTMAX_MAX > 0xffffffffU
374# if __STDC_VERSION__ < 199901L && __GNUC__ < 2 565 #define ECB_PTRSIZE 8
375# define inline 566 #else
567 #define ECB_PTRSIZE 4
568 #endif
376# endif 569#endif
570
571/* work around x32 idiocy by defining proper macros */
572#if __amd64 || __x86_64 || _M_AMD64 || _M_X64
573 #if _ILP32
574 #define ECB_AMD64_X32 1
575 #else
576 #define ECB_AMD64 1
377#endif 577 #endif
578#endif
378 579
580/* many compilers define _GNUC_ to some versions but then only implement
581 * what their idiot authors think are the "more important" extensions,
582 * causing enormous grief in return for some better fake benchmark numbers.
583 * or so.
584 * we try to detect these and simply assume they are not gcc - if they have
585 * an issue with that they should have done it right in the first place.
586 */
587#if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
588 #define ECB_GCC_VERSION(major,minor) 0
589#else
590 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
591#endif
592
593#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
594
595#if __clang__ && defined __has_builtin
596 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
597#else
598 #define ECB_CLANG_BUILTIN(x) 0
599#endif
600
601#if __clang__ && defined __has_extension
602 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
603#else
604 #define ECB_CLANG_EXTENSION(x) 0
605#endif
606
607#define ECB_CPP (__cplusplus+0)
608#define ECB_CPP11 (__cplusplus >= 201103L)
609
610#if ECB_CPP
611 #define ECB_C 0
612 #define ECB_STDC_VERSION 0
613#else
614 #define ECB_C 1
615 #define ECB_STDC_VERSION __STDC_VERSION__
616#endif
617
618#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
619#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
620
621#if ECB_CPP
622 #define ECB_EXTERN_C extern "C"
623 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
624 #define ECB_EXTERN_C_END }
625#else
626 #define ECB_EXTERN_C extern
627 #define ECB_EXTERN_C_BEG
628 #define ECB_EXTERN_C_END
629#endif
630
631/*****************************************************************************/
632
633/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
634/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
635
636#if ECB_NO_THREADS
637 #define ECB_NO_SMP 1
638#endif
639
640#if ECB_NO_SMP
641 #define ECB_MEMORY_FENCE do { } while (0)
642#endif
643
644#ifndef ECB_MEMORY_FENCE
645 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
646 #if __i386 || __i386__
647 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
648 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
649 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
650 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
651 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
652 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
653 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
654 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
655 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
656 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
657 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
658 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
659 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
660 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
661 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
662 #elif __aarch64__
663 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
664 #elif (__sparc || __sparc__) && !__sparcv8
665 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
666 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
667 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
668 #elif defined __s390__ || defined __s390x__
669 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
670 #elif defined __mips__
671 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
672 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
673 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
674 #elif defined __alpha__
675 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
676 #elif defined __hppa__
677 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
678 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
679 #elif defined __ia64__
680 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
681 #elif defined __m68k__
682 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
683 #elif defined __m88k__
684 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
685 #elif defined __sh__
686 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
687 #endif
688 #endif
689#endif
690
691#ifndef ECB_MEMORY_FENCE
692 #if ECB_GCC_VERSION(4,7)
693 /* see comment below (stdatomic.h) about the C11 memory model. */
694 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
695 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
696 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
697
698 #elif ECB_CLANG_EXTENSION(c_atomic)
699 /* see comment below (stdatomic.h) about the C11 memory model. */
700 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
701 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
702 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
703
704 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
705 #define ECB_MEMORY_FENCE __sync_synchronize ()
706 #elif _MSC_VER >= 1500 /* VC++ 2008 */
707 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
708 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
709 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
710 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
711 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
712 #elif _MSC_VER >= 1400 /* VC++ 2005 */
713 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
714 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
715 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
716 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
717 #elif defined _WIN32
718 #include <WinNT.h>
719 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
720 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
721 #include <mbarrier.h>
722 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
723 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
724 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
725 #elif __xlC__
726 #define ECB_MEMORY_FENCE __sync ()
727 #endif
728#endif
729
730#ifndef ECB_MEMORY_FENCE
731 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
732 /* we assume that these memory fences work on all variables/all memory accesses, */
733 /* not just C11 atomics and atomic accesses */
734 #include <stdatomic.h>
735 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
736 /* any fence other than seq_cst, which isn't very efficient for us. */
737 /* Why that is, we don't know - either the C11 memory model is quite useless */
738 /* for most usages, or gcc and clang have a bug */
739 /* I *currently* lean towards the latter, and inefficiently implement */
740 /* all three of ecb's fences as a seq_cst fence */
741 /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */
742 /* for all __atomic_thread_fence's except seq_cst */
743 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
744 #endif
745#endif
746
747#ifndef ECB_MEMORY_FENCE
748 #if !ECB_AVOID_PTHREADS
749 /*
750 * if you get undefined symbol references to pthread_mutex_lock,
751 * or failure to find pthread.h, then you should implement
752 * the ECB_MEMORY_FENCE operations for your cpu/compiler
753 * OR provide pthread.h and link against the posix thread library
754 * of your system.
755 */
756 #include <pthread.h>
757 #define ECB_NEEDS_PTHREADS 1
758 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
759
760 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
761 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
762 #endif
763#endif
764
765#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
766 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
767#endif
768
769#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
770 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
771#endif
772
773/*****************************************************************************/
774
775#if ECB_CPP
776 #define ecb_inline static inline
777#elif ECB_GCC_VERSION(2,5)
778 #define ecb_inline static __inline__
779#elif ECB_C99
780 #define ecb_inline static inline
781#else
782 #define ecb_inline static
783#endif
784
785#if ECB_GCC_VERSION(3,3)
786 #define ecb_restrict __restrict__
787#elif ECB_C99
788 #define ecb_restrict restrict
789#else
790 #define ecb_restrict
791#endif
792
793typedef int ecb_bool;
794
795#define ECB_CONCAT_(a, b) a ## b
796#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
797#define ECB_STRINGIFY_(a) # a
798#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
799
800#define ecb_function_ ecb_inline
801
802#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
803 #define ecb_attribute(attrlist) __attribute__ (attrlist)
804#else
805 #define ecb_attribute(attrlist)
806#endif
807
808#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
809 #define ecb_is_constant(expr) __builtin_constant_p (expr)
810#else
811 /* possible C11 impl for integral types
812 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
813 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
814
815 #define ecb_is_constant(expr) 0
816#endif
817
818#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
819 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
820#else
821 #define ecb_expect(expr,value) (expr)
822#endif
823
824#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
825 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
826#else
827 #define ecb_prefetch(addr,rw,locality)
828#endif
829
830/* no emulation for ecb_decltype */
831#if ECB_CPP11
832 // older implementations might have problems with decltype(x)::type, work around it
833 template<class T> struct ecb_decltype_t { typedef T type; };
834 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
835#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
836 #define ecb_decltype(x) __typeof__ (x)
837#endif
838
839#if _MSC_VER >= 1300
840 #define ecb_deprecated __declspec (deprecated)
841#else
842 #define ecb_deprecated ecb_attribute ((__deprecated__))
843#endif
844
845#define ecb_noinline ecb_attribute ((__noinline__))
846#define ecb_unused ecb_attribute ((__unused__))
847#define ecb_const ecb_attribute ((__const__))
848#define ecb_pure ecb_attribute ((__pure__))
849
850/* TODO http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx __declspec(noreturn) */
851#if ECB_C11 || __IBMC_NORETURN
852 /* http://pic.dhe.ibm.com/infocenter/compbg/v121v141/topic/com.ibm.xlcpp121.bg.doc/language_ref/noreturn.html */
853 #define ecb_noreturn _Noreturn
854#else
855 #define ecb_noreturn ecb_attribute ((__noreturn__))
856#endif
857
858#if ECB_GCC_VERSION(4,3)
859 #define ecb_artificial ecb_attribute ((__artificial__))
860 #define ecb_hot ecb_attribute ((__hot__))
861 #define ecb_cold ecb_attribute ((__cold__))
862#else
863 #define ecb_artificial
864 #define ecb_hot
865 #define ecb_cold
866#endif
867
868/* put around conditional expressions if you are very sure that the */
869/* expression is mostly true or mostly false. note that these return */
870/* booleans, not the expression. */
379#define expect_false(expr) expect ((expr) != 0, 0) 871#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
380#define expect_true(expr) expect ((expr) != 0, 1) 872#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
873/* for compatibility to the rest of the world */
874#define ecb_likely(expr) ecb_expect_true (expr)
875#define ecb_unlikely(expr) ecb_expect_false (expr)
876
877/* count trailing zero bits and count # of one bits */
878#if ECB_GCC_VERSION(3,4) \
879 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
880 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
881 && ECB_CLANG_BUILTIN(__builtin_popcount))
882 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
883 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
884 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
885 #define ecb_ctz32(x) __builtin_ctz (x)
886 #define ecb_ctz64(x) __builtin_ctzll (x)
887 #define ecb_popcount32(x) __builtin_popcount (x)
888 /* no popcountll */
889#else
890 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
891 ecb_function_ ecb_const int
892 ecb_ctz32 (uint32_t x)
893 {
894 int r = 0;
895
896 x &= ~x + 1; /* this isolates the lowest bit */
897
898#if ECB_branchless_on_i386
899 r += !!(x & 0xaaaaaaaa) << 0;
900 r += !!(x & 0xcccccccc) << 1;
901 r += !!(x & 0xf0f0f0f0) << 2;
902 r += !!(x & 0xff00ff00) << 3;
903 r += !!(x & 0xffff0000) << 4;
904#else
905 if (x & 0xaaaaaaaa) r += 1;
906 if (x & 0xcccccccc) r += 2;
907 if (x & 0xf0f0f0f0) r += 4;
908 if (x & 0xff00ff00) r += 8;
909 if (x & 0xffff0000) r += 16;
910#endif
911
912 return r;
913 }
914
915 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
916 ecb_function_ ecb_const int
917 ecb_ctz64 (uint64_t x)
918 {
919 int shift = x & 0xffffffffU ? 0 : 32;
920 return ecb_ctz32 (x >> shift) + shift;
921 }
922
923 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
924 ecb_function_ ecb_const int
925 ecb_popcount32 (uint32_t x)
926 {
927 x -= (x >> 1) & 0x55555555;
928 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
929 x = ((x >> 4) + x) & 0x0f0f0f0f;
930 x *= 0x01010101;
931
932 return x >> 24;
933 }
934
935 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
936 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
937 {
938 int r = 0;
939
940 if (x >> 16) { x >>= 16; r += 16; }
941 if (x >> 8) { x >>= 8; r += 8; }
942 if (x >> 4) { x >>= 4; r += 4; }
943 if (x >> 2) { x >>= 2; r += 2; }
944 if (x >> 1) { r += 1; }
945
946 return r;
947 }
948
949 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
950 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
951 {
952 int r = 0;
953
954 if (x >> 32) { x >>= 32; r += 32; }
955
956 return r + ecb_ld32 (x);
957 }
958#endif
959
960ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
961ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
962ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
963ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
964
965ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
966ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
967{
968 return ( (x * 0x0802U & 0x22110U)
969 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
970}
971
972ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
973ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
974{
975 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
976 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
977 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
978 x = ( x >> 8 ) | ( x << 8);
979
980 return x;
981}
982
983ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
984ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
985{
986 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
987 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
988 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
989 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
990 x = ( x >> 16 ) | ( x << 16);
991
992 return x;
993}
994
995/* popcount64 is only available on 64 bit cpus as gcc builtin */
996/* so for this version we are lazy */
997ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
998ecb_function_ ecb_const int
999ecb_popcount64 (uint64_t x)
1000{
1001 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1002}
1003
1004ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1005ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1006ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1007ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1008ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1009ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1010ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1011ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1012
1013ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1014ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1015ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1016ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1017ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1018ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1019ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1020ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1021
1022#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1023 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1024 #define ecb_bswap32(x) __builtin_bswap32 (x)
1025 #define ecb_bswap64(x) __builtin_bswap64 (x)
1026#else
1027 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1028 ecb_function_ ecb_const uint16_t
1029 ecb_bswap16 (uint16_t x)
1030 {
1031 return ecb_rotl16 (x, 8);
1032 }
1033
1034 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1035 ecb_function_ ecb_const uint32_t
1036 ecb_bswap32 (uint32_t x)
1037 {
1038 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1039 }
1040
1041 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1042 ecb_function_ ecb_const uint64_t
1043 ecb_bswap64 (uint64_t x)
1044 {
1045 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1046 }
1047#endif
1048
1049#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1050 #define ecb_unreachable() __builtin_unreachable ()
1051#else
1052 /* this seems to work fine, but gcc always emits a warning for it :/ */
1053 ecb_inline ecb_noreturn void ecb_unreachable (void);
1054 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1055#endif
1056
1057/* try to tell the compiler that some condition is definitely true */
1058#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1059
1060ecb_inline ecb_const unsigned char ecb_byteorder_helper (void);
1061ecb_inline ecb_const unsigned char
1062ecb_byteorder_helper (void)
1063{
1064 /* the union code still generates code under pressure in gcc, */
1065 /* but less than using pointers, and always seems to */
1066 /* successfully return a constant. */
1067 /* the reason why we have this horrible preprocessor mess */
1068 /* is to avoid it in all cases, at least on common architectures */
1069 /* or when using a recent enough gcc version (>= 4.6) */
1070#if __i386 || __i386__ || _M_X86 || __amd64 || __amd64__ || _M_X64
1071 return 0x44;
1072#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1073 return 0x44;
1074#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1075 return 0x11;
1076#else
1077 union
1078 {
1079 uint32_t i;
1080 uint8_t c;
1081 } u = { 0x11223344 };
1082 return u.c;
1083#endif
1084}
1085
1086ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1087ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
1088ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1089ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
1090
1091#if ECB_GCC_VERSION(3,0) || ECB_C99
1092 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1093#else
1094 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1095#endif
1096
1097#if ECB_CPP
1098 template<typename T>
1099 static inline T ecb_div_rd (T val, T div)
1100 {
1101 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1102 }
1103 template<typename T>
1104 static inline T ecb_div_ru (T val, T div)
1105 {
1106 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1107 }
1108#else
1109 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1110 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1111#endif
1112
1113#if ecb_cplusplus_does_not_suck
1114 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1115 template<typename T, int N>
1116 static inline int ecb_array_length (const T (&arr)[N])
1117 {
1118 return N;
1119 }
1120#else
1121 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1122#endif
1123
1124/*******************************************************************************/
1125/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1126
1127/* basically, everything uses "ieee pure-endian" floating point numbers */
1128/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1129#if 0 \
1130 || __i386 || __i386__ \
1131 || __amd64 || __amd64__ || __x86_64 || __x86_64__ \
1132 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1133 || defined __s390__ || defined __s390x__ \
1134 || defined __mips__ \
1135 || defined __alpha__ \
1136 || defined __hppa__ \
1137 || defined __ia64__ \
1138 || defined __m68k__ \
1139 || defined __m88k__ \
1140 || defined __sh__ \
1141 || defined _M_IX86 || defined _M_AMD64 || defined _M_IA64 \
1142 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1143 || defined __aarch64__
1144 #define ECB_STDFP 1
1145 #include <string.h> /* for memcpy */
1146#else
1147 #define ECB_STDFP 0
1148#endif
1149
1150#ifndef ECB_NO_LIBM
1151
1152 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1153
1154 /* only the oldest of old doesn't have this one. solaris. */
1155 #ifdef INFINITY
1156 #define ECB_INFINITY INFINITY
1157 #else
1158 #define ECB_INFINITY HUGE_VAL
1159 #endif
1160
1161 #ifdef NAN
1162 #define ECB_NAN NAN
1163 #else
1164 #define ECB_NAN ECB_INFINITY
1165 #endif
1166
1167 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1168 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1169 #else
1170 #define ecb_ldexpf(x,e) (float) ldexp ((x), (e))
1171 #endif
1172
1173 /* converts an ieee half/binary16 to a float */
1174 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1175 ecb_function_ ecb_const float
1176 ecb_binary16_to_float (uint16_t x)
1177 {
1178 int e = (x >> 10) & 0x1f;
1179 int m = x & 0x3ff;
1180 float r;
1181
1182 if (!e ) r = ecb_ldexpf (m , -24);
1183 else if (e != 31) r = ecb_ldexpf (m + 0x400, e - 25);
1184 else if (m ) r = ECB_NAN;
1185 else r = ECB_INFINITY;
1186
1187 return x & 0x8000 ? -r : r;
1188 }
1189
1190 /* convert a float to ieee single/binary32 */
1191 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1192 ecb_function_ ecb_const uint32_t
1193 ecb_float_to_binary32 (float x)
1194 {
1195 uint32_t r;
1196
1197 #if ECB_STDFP
1198 memcpy (&r, &x, 4);
1199 #else
1200 /* slow emulation, works for anything but -0 */
1201 uint32_t m;
1202 int e;
1203
1204 if (x == 0e0f ) return 0x00000000U;
1205 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1206 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1207 if (x != x ) return 0x7fbfffffU;
1208
1209 m = frexpf (x, &e) * 0x1000000U;
1210
1211 r = m & 0x80000000U;
1212
1213 if (r)
1214 m = -m;
1215
1216 if (e <= -126)
1217 {
1218 m &= 0xffffffU;
1219 m >>= (-125 - e);
1220 e = -126;
1221 }
1222
1223 r |= (e + 126) << 23;
1224 r |= m & 0x7fffffU;
1225 #endif
1226
1227 return r;
1228 }
1229
1230 /* converts an ieee single/binary32 to a float */
1231 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1232 ecb_function_ ecb_const float
1233 ecb_binary32_to_float (uint32_t x)
1234 {
1235 float r;
1236
1237 #if ECB_STDFP
1238 memcpy (&r, &x, 4);
1239 #else
1240 /* emulation, only works for normals and subnormals and +0 */
1241 int neg = x >> 31;
1242 int e = (x >> 23) & 0xffU;
1243
1244 x &= 0x7fffffU;
1245
1246 if (e)
1247 x |= 0x800000U;
1248 else
1249 e = 1;
1250
1251 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1252 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1253
1254 r = neg ? -r : r;
1255 #endif
1256
1257 return r;
1258 }
1259
1260 /* convert a double to ieee double/binary64 */
1261 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1262 ecb_function_ ecb_const uint64_t
1263 ecb_double_to_binary64 (double x)
1264 {
1265 uint64_t r;
1266
1267 #if ECB_STDFP
1268 memcpy (&r, &x, 8);
1269 #else
1270 /* slow emulation, works for anything but -0 */
1271 uint64_t m;
1272 int e;
1273
1274 if (x == 0e0 ) return 0x0000000000000000U;
1275 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1276 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1277 if (x != x ) return 0X7ff7ffffffffffffU;
1278
1279 m = frexp (x, &e) * 0x20000000000000U;
1280
1281 r = m & 0x8000000000000000;;
1282
1283 if (r)
1284 m = -m;
1285
1286 if (e <= -1022)
1287 {
1288 m &= 0x1fffffffffffffU;
1289 m >>= (-1021 - e);
1290 e = -1022;
1291 }
1292
1293 r |= ((uint64_t)(e + 1022)) << 52;
1294 r |= m & 0xfffffffffffffU;
1295 #endif
1296
1297 return r;
1298 }
1299
1300 /* converts an ieee double/binary64 to a double */
1301 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1302 ecb_function_ ecb_const double
1303 ecb_binary64_to_double (uint64_t x)
1304 {
1305 double r;
1306
1307 #if ECB_STDFP
1308 memcpy (&r, &x, 8);
1309 #else
1310 /* emulation, only works for normals and subnormals and +0 */
1311 int neg = x >> 63;
1312 int e = (x >> 52) & 0x7ffU;
1313
1314 x &= 0xfffffffffffffU;
1315
1316 if (e)
1317 x |= 0x10000000000000U;
1318 else
1319 e = 1;
1320
1321 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1322 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1323
1324 r = neg ? -r : r;
1325 #endif
1326
1327 return r;
1328 }
1329
1330#endif
1331
1332#endif
1333
1334/* ECB.H END */
1335
1336#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1337/* if your architecture doesn't need memory fences, e.g. because it is
1338 * single-cpu/core, or if you use libev in a project that doesn't use libev
1339 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1340 * libev, in which cases the memory fences become nops.
1341 * alternatively, you can remove this #error and link against libpthread,
1342 * which will then provide the memory fences.
1343 */
1344# error "memory fences not defined for your architecture, please report"
1345#endif
1346
1347#ifndef ECB_MEMORY_FENCE
1348# define ECB_MEMORY_FENCE do { } while (0)
1349# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1350# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1351#endif
1352
1353#define expect_false(cond) ecb_expect_false (cond)
1354#define expect_true(cond) ecb_expect_true (cond)
1355#define noinline ecb_noinline
1356
381#define inline_size static inline 1357#define inline_size ecb_inline
382 1358
383#if EV_MINIMAL 1359#if EV_FEATURE_CODE
1360# define inline_speed ecb_inline
1361#else
384# define inline_speed static noinline 1362# define inline_speed static noinline
1363#endif
1364
1365#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1366
1367#if EV_MINPRI == EV_MAXPRI
1368# define ABSPRI(w) (((W)w), 0)
385#else 1369#else
386# define inline_speed static inline
387#endif
388
389#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
390#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1370# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1371#endif
391 1372
392#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1373#define EMPTY /* required for microsofts broken pseudo-c compiler */
393#define EMPTY2(a,b) /* used to suppress some warnings */ 1374#define EMPTY2(a,b) /* used to suppress some warnings */
394 1375
395typedef ev_watcher *W; 1376typedef ev_watcher *W;
397typedef ev_watcher_time *WT; 1378typedef ev_watcher_time *WT;
398 1379
399#define ev_active(w) ((W)(w))->active 1380#define ev_active(w) ((W)(w))->active
400#define ev_at(w) ((WT)(w))->at 1381#define ev_at(w) ((WT)(w))->at
401 1382
1383#if EV_USE_REALTIME
1384/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1385/* giving it a reasonably high chance of working on typical architectures */
1386static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1387#endif
1388
402#if EV_USE_MONOTONIC 1389#if EV_USE_MONOTONIC
403/* sig_atomic_t is used to avoid per-thread variables or locking but still */
404/* giving it a reasonably high chance of working on typical architetcures */
405static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1390static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1391#endif
1392
1393#ifndef EV_FD_TO_WIN32_HANDLE
1394# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1395#endif
1396#ifndef EV_WIN32_HANDLE_TO_FD
1397# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1398#endif
1399#ifndef EV_WIN32_CLOSE_FD
1400# define EV_WIN32_CLOSE_FD(fd) close (fd)
406#endif 1401#endif
407 1402
408#ifdef _WIN32 1403#ifdef _WIN32
409# include "ev_win32.c" 1404# include "ev_win32.c"
410#endif 1405#endif
411 1406
412/*****************************************************************************/ 1407/*****************************************************************************/
413 1408
1409/* define a suitable floor function (only used by periodics atm) */
1410
1411#if EV_USE_FLOOR
1412# include <math.h>
1413# define ev_floor(v) floor (v)
1414#else
1415
1416#include <float.h>
1417
1418/* a floor() replacement function, should be independent of ev_tstamp type */
1419static ev_tstamp noinline
1420ev_floor (ev_tstamp v)
1421{
1422 /* the choice of shift factor is not terribly important */
1423#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1424 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1425#else
1426 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1427#endif
1428
1429 /* argument too large for an unsigned long? */
1430 if (expect_false (v >= shift))
1431 {
1432 ev_tstamp f;
1433
1434 if (v == v - 1.)
1435 return v; /* very large number */
1436
1437 f = shift * ev_floor (v * (1. / shift));
1438 return f + ev_floor (v - f);
1439 }
1440
1441 /* special treatment for negative args? */
1442 if (expect_false (v < 0.))
1443 {
1444 ev_tstamp f = -ev_floor (-v);
1445
1446 return f - (f == v ? 0 : 1);
1447 }
1448
1449 /* fits into an unsigned long */
1450 return (unsigned long)v;
1451}
1452
1453#endif
1454
1455/*****************************************************************************/
1456
1457#ifdef __linux
1458# include <sys/utsname.h>
1459#endif
1460
1461static unsigned int noinline ecb_cold
1462ev_linux_version (void)
1463{
1464#ifdef __linux
1465 unsigned int v = 0;
1466 struct utsname buf;
1467 int i;
1468 char *p = buf.release;
1469
1470 if (uname (&buf))
1471 return 0;
1472
1473 for (i = 3+1; --i; )
1474 {
1475 unsigned int c = 0;
1476
1477 for (;;)
1478 {
1479 if (*p >= '0' && *p <= '9')
1480 c = c * 10 + *p++ - '0';
1481 else
1482 {
1483 p += *p == '.';
1484 break;
1485 }
1486 }
1487
1488 v = (v << 8) | c;
1489 }
1490
1491 return v;
1492#else
1493 return 0;
1494#endif
1495}
1496
1497/*****************************************************************************/
1498
1499#if EV_AVOID_STDIO
1500static void noinline ecb_cold
1501ev_printerr (const char *msg)
1502{
1503 write (STDERR_FILENO, msg, strlen (msg));
1504}
1505#endif
1506
414static void (*syserr_cb)(const char *msg); 1507static void (*syserr_cb)(const char *msg) EV_THROW;
415 1508
416void 1509void ecb_cold
417ev_set_syserr_cb (void (*cb)(const char *msg)) 1510ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
418{ 1511{
419 syserr_cb = cb; 1512 syserr_cb = cb;
420} 1513}
421 1514
422static void noinline 1515static void noinline ecb_cold
423ev_syserr (const char *msg) 1516ev_syserr (const char *msg)
424{ 1517{
425 if (!msg) 1518 if (!msg)
426 msg = "(libev) system error"; 1519 msg = "(libev) system error";
427 1520
428 if (syserr_cb) 1521 if (syserr_cb)
429 syserr_cb (msg); 1522 syserr_cb (msg);
430 else 1523 else
431 { 1524 {
1525#if EV_AVOID_STDIO
1526 ev_printerr (msg);
1527 ev_printerr (": ");
1528 ev_printerr (strerror (errno));
1529 ev_printerr ("\n");
1530#else
432 perror (msg); 1531 perror (msg);
1532#endif
433 abort (); 1533 abort ();
434 } 1534 }
435} 1535}
436 1536
437static void * 1537static void *
438ev_realloc_emul (void *ptr, long size) 1538ev_realloc_emul (void *ptr, long size) EV_THROW
439{ 1539{
440 /* some systems, notably openbsd and darwin, fail to properly 1540 /* some systems, notably openbsd and darwin, fail to properly
441 * implement realloc (x, 0) (as required by both ansi c-98 and 1541 * implement realloc (x, 0) (as required by both ansi c-89 and
442 * the single unix specification, so work around them here. 1542 * the single unix specification, so work around them here.
1543 * recently, also (at least) fedora and debian started breaking it,
1544 * despite documenting it otherwise.
443 */ 1545 */
444 1546
445 if (size) 1547 if (size)
446 return realloc (ptr, size); 1548 return realloc (ptr, size);
447 1549
448 free (ptr); 1550 free (ptr);
449 return 0; 1551 return 0;
450} 1552}
451 1553
452static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 1554static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
453 1555
454void 1556void ecb_cold
455ev_set_allocator (void *(*cb)(void *ptr, long size)) 1557ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
456{ 1558{
457 alloc = cb; 1559 alloc = cb;
458} 1560}
459 1561
460inline_speed void * 1562inline_speed void *
462{ 1564{
463 ptr = alloc (ptr, size); 1565 ptr = alloc (ptr, size);
464 1566
465 if (!ptr && size) 1567 if (!ptr && size)
466 { 1568 {
1569#if EV_AVOID_STDIO
1570 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1571#else
467 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1572 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1573#endif
468 abort (); 1574 abort ();
469 } 1575 }
470 1576
471 return ptr; 1577 return ptr;
472} 1578}
474#define ev_malloc(size) ev_realloc (0, (size)) 1580#define ev_malloc(size) ev_realloc (0, (size))
475#define ev_free(ptr) ev_realloc ((ptr), 0) 1581#define ev_free(ptr) ev_realloc ((ptr), 0)
476 1582
477/*****************************************************************************/ 1583/*****************************************************************************/
478 1584
1585/* set in reify when reification needed */
1586#define EV_ANFD_REIFY 1
1587
1588/* file descriptor info structure */
479typedef struct 1589typedef struct
480{ 1590{
481 WL head; 1591 WL head;
482 unsigned char events; 1592 unsigned char events; /* the events watched for */
483 unsigned char reify; 1593 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
484 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */ 1594 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
485 unsigned char unused; 1595 unsigned char unused;
486#if EV_USE_EPOLL 1596#if EV_USE_EPOLL
487 unsigned int egen; /* generation counter to counter epoll bugs */ 1597 unsigned int egen; /* generation counter to counter epoll bugs */
488#endif 1598#endif
489#if EV_SELECT_IS_WINSOCKET 1599#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
490 SOCKET handle; 1600 SOCKET handle;
491#endif 1601#endif
1602#if EV_USE_IOCP
1603 OVERLAPPED or, ow;
1604#endif
492} ANFD; 1605} ANFD;
493 1606
1607/* stores the pending event set for a given watcher */
494typedef struct 1608typedef struct
495{ 1609{
496 W w; 1610 W w;
497 int events; 1611 int events; /* the pending event set for the given watcher */
498} ANPENDING; 1612} ANPENDING;
499 1613
500#if EV_USE_INOTIFY 1614#if EV_USE_INOTIFY
501/* hash table entry per inotify-id */ 1615/* hash table entry per inotify-id */
502typedef struct 1616typedef struct
505} ANFS; 1619} ANFS;
506#endif 1620#endif
507 1621
508/* Heap Entry */ 1622/* Heap Entry */
509#if EV_HEAP_CACHE_AT 1623#if EV_HEAP_CACHE_AT
1624 /* a heap element */
510 typedef struct { 1625 typedef struct {
511 ev_tstamp at; 1626 ev_tstamp at;
512 WT w; 1627 WT w;
513 } ANHE; 1628 } ANHE;
514 1629
515 #define ANHE_w(he) (he).w /* access watcher, read-write */ 1630 #define ANHE_w(he) (he).w /* access watcher, read-write */
516 #define ANHE_at(he) (he).at /* access cached at, read-only */ 1631 #define ANHE_at(he) (he).at /* access cached at, read-only */
517 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 1632 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
518#else 1633#else
1634 /* a heap element */
519 typedef WT ANHE; 1635 typedef WT ANHE;
520 1636
521 #define ANHE_w(he) (he) 1637 #define ANHE_w(he) (he)
522 #define ANHE_at(he) (he)->at 1638 #define ANHE_at(he) (he)->at
523 #define ANHE_at_cache(he) 1639 #define ANHE_at_cache(he)
534 #undef VAR 1650 #undef VAR
535 }; 1651 };
536 #include "ev_wrap.h" 1652 #include "ev_wrap.h"
537 1653
538 static struct ev_loop default_loop_struct; 1654 static struct ev_loop default_loop_struct;
539 struct ev_loop *ev_default_loop_ptr; 1655 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
540 1656
541#else 1657#else
542 1658
543 ev_tstamp ev_rt_now; 1659 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
544 #define VAR(name,decl) static decl; 1660 #define VAR(name,decl) static decl;
545 #include "ev_vars.h" 1661 #include "ev_vars.h"
546 #undef VAR 1662 #undef VAR
547 1663
548 static int ev_default_loop_ptr; 1664 static int ev_default_loop_ptr;
549 1665
550#endif 1666#endif
551 1667
1668#if EV_FEATURE_API
1669# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1670# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1671# define EV_INVOKE_PENDING invoke_cb (EV_A)
1672#else
1673# define EV_RELEASE_CB (void)0
1674# define EV_ACQUIRE_CB (void)0
1675# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1676#endif
1677
1678#define EVBREAK_RECURSE 0x80
1679
552/*****************************************************************************/ 1680/*****************************************************************************/
553 1681
1682#ifndef EV_HAVE_EV_TIME
554ev_tstamp 1683ev_tstamp
555ev_time (void) 1684ev_time (void) EV_THROW
556{ 1685{
557#if EV_USE_REALTIME 1686#if EV_USE_REALTIME
1687 if (expect_true (have_realtime))
1688 {
558 struct timespec ts; 1689 struct timespec ts;
559 clock_gettime (CLOCK_REALTIME, &ts); 1690 clock_gettime (CLOCK_REALTIME, &ts);
560 return ts.tv_sec + ts.tv_nsec * 1e-9; 1691 return ts.tv_sec + ts.tv_nsec * 1e-9;
561#else 1692 }
1693#endif
1694
562 struct timeval tv; 1695 struct timeval tv;
563 gettimeofday (&tv, 0); 1696 gettimeofday (&tv, 0);
564 return tv.tv_sec + tv.tv_usec * 1e-6; 1697 return tv.tv_sec + tv.tv_usec * 1e-6;
565#endif
566} 1698}
1699#endif
567 1700
568ev_tstamp inline_size 1701inline_size ev_tstamp
569get_clock (void) 1702get_clock (void)
570{ 1703{
571#if EV_USE_MONOTONIC 1704#if EV_USE_MONOTONIC
572 if (expect_true (have_monotonic)) 1705 if (expect_true (have_monotonic))
573 { 1706 {
580 return ev_time (); 1713 return ev_time ();
581} 1714}
582 1715
583#if EV_MULTIPLICITY 1716#if EV_MULTIPLICITY
584ev_tstamp 1717ev_tstamp
585ev_now (EV_P) 1718ev_now (EV_P) EV_THROW
586{ 1719{
587 return ev_rt_now; 1720 return ev_rt_now;
588} 1721}
589#endif 1722#endif
590 1723
591void 1724void
592ev_sleep (ev_tstamp delay) 1725ev_sleep (ev_tstamp delay) EV_THROW
593{ 1726{
594 if (delay > 0.) 1727 if (delay > 0.)
595 { 1728 {
596#if EV_USE_NANOSLEEP 1729#if EV_USE_NANOSLEEP
597 struct timespec ts; 1730 struct timespec ts;
598 1731
599 ts.tv_sec = (time_t)delay; 1732 EV_TS_SET (ts, delay);
600 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
601
602 nanosleep (&ts, 0); 1733 nanosleep (&ts, 0);
603#elif defined(_WIN32) 1734#elif defined _WIN32
604 Sleep ((unsigned long)(delay * 1e3)); 1735 Sleep ((unsigned long)(delay * 1e3));
605#else 1736#else
606 struct timeval tv; 1737 struct timeval tv;
607 1738
608 tv.tv_sec = (time_t)delay;
609 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
610
611 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */ 1739 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
612 /* somehting nto guaranteed by newer posix versions, but guaranteed */ 1740 /* something not guaranteed by newer posix versions, but guaranteed */
613 /* by older ones */ 1741 /* by older ones */
1742 EV_TV_SET (tv, delay);
614 select (0, 0, 0, 0, &tv); 1743 select (0, 0, 0, 0, &tv);
615#endif 1744#endif
616 } 1745 }
617} 1746}
618 1747
619/*****************************************************************************/ 1748/*****************************************************************************/
620 1749
621#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 1750#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
622 1751
623int inline_size 1752/* find a suitable new size for the given array, */
1753/* hopefully by rounding to a nice-to-malloc size */
1754inline_size int
624array_nextsize (int elem, int cur, int cnt) 1755array_nextsize (int elem, int cur, int cnt)
625{ 1756{
626 int ncur = cur + 1; 1757 int ncur = cur + 1;
627 1758
628 do 1759 do
629 ncur <<= 1; 1760 ncur <<= 1;
630 while (cnt > ncur); 1761 while (cnt > ncur);
631 1762
632 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */ 1763 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
633 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4) 1764 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
634 { 1765 {
635 ncur *= elem; 1766 ncur *= elem;
636 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1); 1767 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
637 ncur = ncur - sizeof (void *) * 4; 1768 ncur = ncur - sizeof (void *) * 4;
639 } 1770 }
640 1771
641 return ncur; 1772 return ncur;
642} 1773}
643 1774
644static noinline void * 1775static void * noinline ecb_cold
645array_realloc (int elem, void *base, int *cur, int cnt) 1776array_realloc (int elem, void *base, int *cur, int cnt)
646{ 1777{
647 *cur = array_nextsize (elem, *cur, cnt); 1778 *cur = array_nextsize (elem, *cur, cnt);
648 return ev_realloc (base, elem * *cur); 1779 return ev_realloc (base, elem * *cur);
649} 1780}
652 memset ((void *)(base), 0, sizeof (*(base)) * (count)) 1783 memset ((void *)(base), 0, sizeof (*(base)) * (count))
653 1784
654#define array_needsize(type,base,cur,cnt,init) \ 1785#define array_needsize(type,base,cur,cnt,init) \
655 if (expect_false ((cnt) > (cur))) \ 1786 if (expect_false ((cnt) > (cur))) \
656 { \ 1787 { \
657 int ocur_ = (cur); \ 1788 int ecb_unused ocur_ = (cur); \
658 (base) = (type *)array_realloc \ 1789 (base) = (type *)array_realloc \
659 (sizeof (type), (base), &(cur), (cnt)); \ 1790 (sizeof (type), (base), &(cur), (cnt)); \
660 init ((base) + (ocur_), (cur) - ocur_); \ 1791 init ((base) + (ocur_), (cur) - ocur_); \
661 } 1792 }
662 1793
669 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1800 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
670 } 1801 }
671#endif 1802#endif
672 1803
673#define array_free(stem, idx) \ 1804#define array_free(stem, idx) \
674 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1805 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
675 1806
676/*****************************************************************************/ 1807/*****************************************************************************/
677 1808
1809/* dummy callback for pending events */
1810static void noinline
1811pendingcb (EV_P_ ev_prepare *w, int revents)
1812{
1813}
1814
678void noinline 1815void noinline
679ev_feed_event (EV_P_ void *w, int revents) 1816ev_feed_event (EV_P_ void *w, int revents) EV_THROW
680{ 1817{
681 W w_ = (W)w; 1818 W w_ = (W)w;
682 int pri = ABSPRI (w_); 1819 int pri = ABSPRI (w_);
683 1820
684 if (expect_false (w_->pending)) 1821 if (expect_false (w_->pending))
688 w_->pending = ++pendingcnt [pri]; 1825 w_->pending = ++pendingcnt [pri];
689 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 1826 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
690 pendings [pri][w_->pending - 1].w = w_; 1827 pendings [pri][w_->pending - 1].w = w_;
691 pendings [pri][w_->pending - 1].events = revents; 1828 pendings [pri][w_->pending - 1].events = revents;
692 } 1829 }
693}
694 1830
695void inline_speed 1831 pendingpri = NUMPRI - 1;
1832}
1833
1834inline_speed void
1835feed_reverse (EV_P_ W w)
1836{
1837 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1838 rfeeds [rfeedcnt++] = w;
1839}
1840
1841inline_size void
1842feed_reverse_done (EV_P_ int revents)
1843{
1844 do
1845 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1846 while (rfeedcnt);
1847}
1848
1849inline_speed void
696queue_events (EV_P_ W *events, int eventcnt, int type) 1850queue_events (EV_P_ W *events, int eventcnt, int type)
697{ 1851{
698 int i; 1852 int i;
699 1853
700 for (i = 0; i < eventcnt; ++i) 1854 for (i = 0; i < eventcnt; ++i)
701 ev_feed_event (EV_A_ events [i], type); 1855 ev_feed_event (EV_A_ events [i], type);
702} 1856}
703 1857
704/*****************************************************************************/ 1858/*****************************************************************************/
705 1859
706void inline_speed 1860inline_speed void
707fd_event (EV_P_ int fd, int revents) 1861fd_event_nocheck (EV_P_ int fd, int revents)
708{ 1862{
709 ANFD *anfd = anfds + fd; 1863 ANFD *anfd = anfds + fd;
710 ev_io *w; 1864 ev_io *w;
711 1865
712 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1866 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
716 if (ev) 1870 if (ev)
717 ev_feed_event (EV_A_ (W)w, ev); 1871 ev_feed_event (EV_A_ (W)w, ev);
718 } 1872 }
719} 1873}
720 1874
1875/* do not submit kernel events for fds that have reify set */
1876/* because that means they changed while we were polling for new events */
1877inline_speed void
1878fd_event (EV_P_ int fd, int revents)
1879{
1880 ANFD *anfd = anfds + fd;
1881
1882 if (expect_true (!anfd->reify))
1883 fd_event_nocheck (EV_A_ fd, revents);
1884}
1885
721void 1886void
722ev_feed_fd_event (EV_P_ int fd, int revents) 1887ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
723{ 1888{
724 if (fd >= 0 && fd < anfdmax) 1889 if (fd >= 0 && fd < anfdmax)
725 fd_event (EV_A_ fd, revents); 1890 fd_event_nocheck (EV_A_ fd, revents);
726} 1891}
727 1892
728void inline_size 1893/* make sure the external fd watch events are in-sync */
1894/* with the kernel/libev internal state */
1895inline_size void
729fd_reify (EV_P) 1896fd_reify (EV_P)
730{ 1897{
731 int i; 1898 int i;
1899
1900#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1901 for (i = 0; i < fdchangecnt; ++i)
1902 {
1903 int fd = fdchanges [i];
1904 ANFD *anfd = anfds + fd;
1905
1906 if (anfd->reify & EV__IOFDSET && anfd->head)
1907 {
1908 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1909
1910 if (handle != anfd->handle)
1911 {
1912 unsigned long arg;
1913
1914 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1915
1916 /* handle changed, but fd didn't - we need to do it in two steps */
1917 backend_modify (EV_A_ fd, anfd->events, 0);
1918 anfd->events = 0;
1919 anfd->handle = handle;
1920 }
1921 }
1922 }
1923#endif
732 1924
733 for (i = 0; i < fdchangecnt; ++i) 1925 for (i = 0; i < fdchangecnt; ++i)
734 { 1926 {
735 int fd = fdchanges [i]; 1927 int fd = fdchanges [i];
736 ANFD *anfd = anfds + fd; 1928 ANFD *anfd = anfds + fd;
737 ev_io *w; 1929 ev_io *w;
738 1930
739 unsigned char events = 0; 1931 unsigned char o_events = anfd->events;
1932 unsigned char o_reify = anfd->reify;
740 1933
741 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1934 anfd->reify = 0;
742 events |= (unsigned char)w->events;
743 1935
744#if EV_SELECT_IS_WINSOCKET 1936 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
745 if (events)
746 { 1937 {
747 unsigned long arg; 1938 anfd->events = 0;
748 #ifdef EV_FD_TO_WIN32_HANDLE 1939
749 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1940 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
750 #else 1941 anfd->events |= (unsigned char)w->events;
751 anfd->handle = _get_osfhandle (fd); 1942
752 #endif 1943 if (o_events != anfd->events)
753 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0)); 1944 o_reify = EV__IOFDSET; /* actually |= */
754 } 1945 }
755#endif
756 1946
757 { 1947 if (o_reify & EV__IOFDSET)
758 unsigned char o_events = anfd->events;
759 unsigned char o_reify = anfd->reify;
760
761 anfd->reify = 0;
762 anfd->events = events;
763
764 if (o_events != events || o_reify & EV_IOFDSET)
765 backend_modify (EV_A_ fd, o_events, events); 1948 backend_modify (EV_A_ fd, o_events, anfd->events);
766 }
767 } 1949 }
768 1950
769 fdchangecnt = 0; 1951 fdchangecnt = 0;
770} 1952}
771 1953
772void inline_size 1954/* something about the given fd changed */
1955inline_size void
773fd_change (EV_P_ int fd, int flags) 1956fd_change (EV_P_ int fd, int flags)
774{ 1957{
775 unsigned char reify = anfds [fd].reify; 1958 unsigned char reify = anfds [fd].reify;
776 anfds [fd].reify |= flags; 1959 anfds [fd].reify |= flags;
777 1960
781 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1964 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
782 fdchanges [fdchangecnt - 1] = fd; 1965 fdchanges [fdchangecnt - 1] = fd;
783 } 1966 }
784} 1967}
785 1968
786void inline_speed 1969/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1970inline_speed void ecb_cold
787fd_kill (EV_P_ int fd) 1971fd_kill (EV_P_ int fd)
788{ 1972{
789 ev_io *w; 1973 ev_io *w;
790 1974
791 while ((w = (ev_io *)anfds [fd].head)) 1975 while ((w = (ev_io *)anfds [fd].head))
793 ev_io_stop (EV_A_ w); 1977 ev_io_stop (EV_A_ w);
794 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1978 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
795 } 1979 }
796} 1980}
797 1981
798int inline_size 1982/* check whether the given fd is actually valid, for error recovery */
1983inline_size int ecb_cold
799fd_valid (int fd) 1984fd_valid (int fd)
800{ 1985{
801#ifdef _WIN32 1986#ifdef _WIN32
802 return _get_osfhandle (fd) != -1; 1987 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
803#else 1988#else
804 return fcntl (fd, F_GETFD) != -1; 1989 return fcntl (fd, F_GETFD) != -1;
805#endif 1990#endif
806} 1991}
807 1992
808/* called on EBADF to verify fds */ 1993/* called on EBADF to verify fds */
809static void noinline 1994static void noinline ecb_cold
810fd_ebadf (EV_P) 1995fd_ebadf (EV_P)
811{ 1996{
812 int fd; 1997 int fd;
813 1998
814 for (fd = 0; fd < anfdmax; ++fd) 1999 for (fd = 0; fd < anfdmax; ++fd)
816 if (!fd_valid (fd) && errno == EBADF) 2001 if (!fd_valid (fd) && errno == EBADF)
817 fd_kill (EV_A_ fd); 2002 fd_kill (EV_A_ fd);
818} 2003}
819 2004
820/* called on ENOMEM in select/poll to kill some fds and retry */ 2005/* called on ENOMEM in select/poll to kill some fds and retry */
821static void noinline 2006static void noinline ecb_cold
822fd_enomem (EV_P) 2007fd_enomem (EV_P)
823{ 2008{
824 int fd; 2009 int fd;
825 2010
826 for (fd = anfdmax; fd--; ) 2011 for (fd = anfdmax; fd--; )
827 if (anfds [fd].events) 2012 if (anfds [fd].events)
828 { 2013 {
829 fd_kill (EV_A_ fd); 2014 fd_kill (EV_A_ fd);
830 return; 2015 break;
831 } 2016 }
832} 2017}
833 2018
834/* usually called after fork if backend needs to re-arm all fds from scratch */ 2019/* usually called after fork if backend needs to re-arm all fds from scratch */
835static void noinline 2020static void noinline
840 for (fd = 0; fd < anfdmax; ++fd) 2025 for (fd = 0; fd < anfdmax; ++fd)
841 if (anfds [fd].events) 2026 if (anfds [fd].events)
842 { 2027 {
843 anfds [fd].events = 0; 2028 anfds [fd].events = 0;
844 anfds [fd].emask = 0; 2029 anfds [fd].emask = 0;
845 fd_change (EV_A_ fd, EV_IOFDSET | 1); 2030 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
846 } 2031 }
847} 2032}
848 2033
2034/* used to prepare libev internal fd's */
2035/* this is not fork-safe */
2036inline_speed void
2037fd_intern (int fd)
2038{
2039#ifdef _WIN32
2040 unsigned long arg = 1;
2041 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2042#else
2043 fcntl (fd, F_SETFD, FD_CLOEXEC);
2044 fcntl (fd, F_SETFL, O_NONBLOCK);
2045#endif
2046}
2047
849/*****************************************************************************/ 2048/*****************************************************************************/
850 2049
851/* 2050/*
852 * the heap functions want a real array index. array index 0 uis guaranteed to not 2051 * the heap functions want a real array index. array index 0 is guaranteed to not
853 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 2052 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
854 * the branching factor of the d-tree. 2053 * the branching factor of the d-tree.
855 */ 2054 */
856 2055
857/* 2056/*
866#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 2065#define HEAP0 (DHEAP - 1) /* index of first element in heap */
867#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 2066#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
868#define UPHEAP_DONE(p,k) ((p) == (k)) 2067#define UPHEAP_DONE(p,k) ((p) == (k))
869 2068
870/* away from the root */ 2069/* away from the root */
871void inline_speed 2070inline_speed void
872downheap (ANHE *heap, int N, int k) 2071downheap (ANHE *heap, int N, int k)
873{ 2072{
874 ANHE he = heap [k]; 2073 ANHE he = heap [k];
875 ANHE *E = heap + N + HEAP0; 2074 ANHE *E = heap + N + HEAP0;
876 2075
916#define HEAP0 1 2115#define HEAP0 1
917#define HPARENT(k) ((k) >> 1) 2116#define HPARENT(k) ((k) >> 1)
918#define UPHEAP_DONE(p,k) (!(p)) 2117#define UPHEAP_DONE(p,k) (!(p))
919 2118
920/* away from the root */ 2119/* away from the root */
921void inline_speed 2120inline_speed void
922downheap (ANHE *heap, int N, int k) 2121downheap (ANHE *heap, int N, int k)
923{ 2122{
924 ANHE he = heap [k]; 2123 ANHE he = heap [k];
925 2124
926 for (;;) 2125 for (;;)
927 { 2126 {
928 int c = k << 1; 2127 int c = k << 1;
929 2128
930 if (c > N + HEAP0 - 1) 2129 if (c >= N + HEAP0)
931 break; 2130 break;
932 2131
933 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 2132 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
934 ? 1 : 0; 2133 ? 1 : 0;
935 2134
946 ev_active (ANHE_w (he)) = k; 2145 ev_active (ANHE_w (he)) = k;
947} 2146}
948#endif 2147#endif
949 2148
950/* towards the root */ 2149/* towards the root */
951void inline_speed 2150inline_speed void
952upheap (ANHE *heap, int k) 2151upheap (ANHE *heap, int k)
953{ 2152{
954 ANHE he = heap [k]; 2153 ANHE he = heap [k];
955 2154
956 for (;;) 2155 for (;;)
967 2166
968 heap [k] = he; 2167 heap [k] = he;
969 ev_active (ANHE_w (he)) = k; 2168 ev_active (ANHE_w (he)) = k;
970} 2169}
971 2170
972void inline_size 2171/* move an element suitably so it is in a correct place */
2172inline_size void
973adjustheap (ANHE *heap, int N, int k) 2173adjustheap (ANHE *heap, int N, int k)
974{ 2174{
975 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 2175 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
976 upheap (heap, k); 2176 upheap (heap, k);
977 else 2177 else
978 downheap (heap, N, k); 2178 downheap (heap, N, k);
979} 2179}
980 2180
981/* rebuild the heap: this function is used only once and executed rarely */ 2181/* rebuild the heap: this function is used only once and executed rarely */
982void inline_size 2182inline_size void
983reheap (ANHE *heap, int N) 2183reheap (ANHE *heap, int N)
984{ 2184{
985 int i; 2185 int i;
986 2186
987 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 2187 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
990 upheap (heap, i + HEAP0); 2190 upheap (heap, i + HEAP0);
991} 2191}
992 2192
993/*****************************************************************************/ 2193/*****************************************************************************/
994 2194
2195/* associate signal watchers to a signal signal */
995typedef struct 2196typedef struct
996{ 2197{
2198 EV_ATOMIC_T pending;
2199#if EV_MULTIPLICITY
2200 EV_P;
2201#endif
997 WL head; 2202 WL head;
998 EV_ATOMIC_T gotsig;
999} ANSIG; 2203} ANSIG;
1000 2204
1001static ANSIG *signals; 2205static ANSIG signals [EV_NSIG - 1];
1002static int signalmax;
1003
1004static EV_ATOMIC_T gotsig;
1005 2206
1006/*****************************************************************************/ 2207/*****************************************************************************/
1007 2208
1008void inline_speed 2209#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1009fd_intern (int fd)
1010{
1011#ifdef _WIN32
1012 unsigned long arg = 1;
1013 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1014#else
1015 fcntl (fd, F_SETFD, FD_CLOEXEC);
1016 fcntl (fd, F_SETFL, O_NONBLOCK);
1017#endif
1018}
1019 2210
1020static void noinline 2211static void noinline ecb_cold
1021evpipe_init (EV_P) 2212evpipe_init (EV_P)
1022{ 2213{
1023 if (!ev_is_active (&pipeev)) 2214 if (!ev_is_active (&pipe_w))
2215 {
2216 int fds [2];
2217
2218# if EV_USE_EVENTFD
2219 fds [0] = -1;
2220 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2221 if (fds [1] < 0 && errno == EINVAL)
2222 fds [1] = eventfd (0, 0);
2223
2224 if (fds [1] < 0)
2225# endif
2226 {
2227 while (pipe (fds))
2228 ev_syserr ("(libev) error creating signal/async pipe");
2229
2230 fd_intern (fds [0]);
2231 }
2232
2233 evpipe [0] = fds [0];
2234
2235 if (evpipe [1] < 0)
2236 evpipe [1] = fds [1]; /* first call, set write fd */
2237 else
2238 {
2239 /* on subsequent calls, do not change evpipe [1] */
2240 /* so that evpipe_write can always rely on its value. */
2241 /* this branch does not do anything sensible on windows, */
2242 /* so must not be executed on windows */
2243
2244 dup2 (fds [1], evpipe [1]);
2245 close (fds [1]);
2246 }
2247
2248 fd_intern (evpipe [1]);
2249
2250 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2251 ev_io_start (EV_A_ &pipe_w);
2252 ev_unref (EV_A); /* watcher should not keep loop alive */
1024 { 2253 }
2254}
2255
2256inline_speed void
2257evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2258{
2259 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2260
2261 if (expect_true (*flag))
2262 return;
2263
2264 *flag = 1;
2265 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2266
2267 pipe_write_skipped = 1;
2268
2269 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2270
2271 if (pipe_write_wanted)
2272 {
2273 int old_errno;
2274
2275 pipe_write_skipped = 0;
2276 ECB_MEMORY_FENCE_RELEASE;
2277
2278 old_errno = errno; /* save errno because write will clobber it */
2279
1025#if EV_USE_EVENTFD 2280#if EV_USE_EVENTFD
1026 if ((evfd = eventfd (0, 0)) >= 0) 2281 if (evpipe [0] < 0)
1027 { 2282 {
1028 evpipe [0] = -1; 2283 uint64_t counter = 1;
1029 fd_intern (evfd); 2284 write (evpipe [1], &counter, sizeof (uint64_t));
1030 ev_io_set (&pipeev, evfd, EV_READ);
1031 } 2285 }
1032 else 2286 else
1033#endif 2287#endif
1034 { 2288 {
1035 while (pipe (evpipe)) 2289#ifdef _WIN32
1036 ev_syserr ("(libev) error creating signal/async pipe"); 2290 WSABUF buf;
1037 2291 DWORD sent;
1038 fd_intern (evpipe [0]); 2292 buf.buf = &buf;
1039 fd_intern (evpipe [1]); 2293 buf.len = 1;
1040 ev_io_set (&pipeev, evpipe [0], EV_READ); 2294 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2295#else
2296 write (evpipe [1], &(evpipe [1]), 1);
2297#endif
1041 } 2298 }
1042 2299
1043 ev_io_start (EV_A_ &pipeev); 2300 errno = old_errno;
1044 ev_unref (EV_A); /* watcher should not keep loop alive */
1045 }
1046}
1047
1048void inline_size
1049evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1050{
1051 if (!*flag)
1052 { 2301 }
1053 int old_errno = errno; /* save errno because write might clobber it */ 2302}
1054 2303
1055 *flag = 1; 2304/* called whenever the libev signal pipe */
2305/* got some events (signal, async) */
2306static void
2307pipecb (EV_P_ ev_io *iow, int revents)
2308{
2309 int i;
1056 2310
2311 if (revents & EV_READ)
2312 {
1057#if EV_USE_EVENTFD 2313#if EV_USE_EVENTFD
1058 if (evfd >= 0) 2314 if (evpipe [0] < 0)
1059 { 2315 {
1060 uint64_t counter = 1; 2316 uint64_t counter;
1061 write (evfd, &counter, sizeof (uint64_t)); 2317 read (evpipe [1], &counter, sizeof (uint64_t));
1062 } 2318 }
1063 else 2319 else
1064#endif 2320#endif
1065 write (evpipe [1], &old_errno, 1); 2321 {
1066
1067 errno = old_errno;
1068 }
1069}
1070
1071static void
1072pipecb (EV_P_ ev_io *iow, int revents)
1073{
1074#if EV_USE_EVENTFD
1075 if (evfd >= 0)
1076 {
1077 uint64_t counter;
1078 read (evfd, &counter, sizeof (uint64_t));
1079 }
1080 else
1081#endif
1082 {
1083 char dummy; 2322 char dummy[4];
2323#ifdef _WIN32
2324 WSABUF buf;
2325 DWORD recvd;
2326 DWORD flags = 0;
2327 buf.buf = dummy;
2328 buf.len = sizeof (dummy);
2329 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2330#else
1084 read (evpipe [0], &dummy, 1); 2331 read (evpipe [0], &dummy, sizeof (dummy));
2332#endif
2333 }
2334 }
2335
2336 pipe_write_skipped = 0;
2337
2338 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2339
2340#if EV_SIGNAL_ENABLE
2341 if (sig_pending)
1085 } 2342 {
2343 sig_pending = 0;
1086 2344
1087 if (gotsig && ev_is_default_loop (EV_A)) 2345 ECB_MEMORY_FENCE;
1088 {
1089 int signum;
1090 gotsig = 0;
1091 2346
1092 for (signum = signalmax; signum--; ) 2347 for (i = EV_NSIG - 1; i--; )
1093 if (signals [signum].gotsig) 2348 if (expect_false (signals [i].pending))
1094 ev_feed_signal_event (EV_A_ signum + 1); 2349 ev_feed_signal_event (EV_A_ i + 1);
1095 } 2350 }
2351#endif
1096 2352
1097#if EV_ASYNC_ENABLE 2353#if EV_ASYNC_ENABLE
1098 if (gotasync) 2354 if (async_pending)
1099 { 2355 {
1100 int i; 2356 async_pending = 0;
1101 gotasync = 0; 2357
2358 ECB_MEMORY_FENCE;
1102 2359
1103 for (i = asynccnt; i--; ) 2360 for (i = asynccnt; i--; )
1104 if (asyncs [i]->sent) 2361 if (asyncs [i]->sent)
1105 { 2362 {
1106 asyncs [i]->sent = 0; 2363 asyncs [i]->sent = 0;
2364 ECB_MEMORY_FENCE_RELEASE;
1107 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); 2365 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1108 } 2366 }
1109 } 2367 }
1110#endif 2368#endif
1111} 2369}
1112 2370
1113/*****************************************************************************/ 2371/*****************************************************************************/
1114 2372
2373void
2374ev_feed_signal (int signum) EV_THROW
2375{
2376#if EV_MULTIPLICITY
2377 EV_P;
2378 ECB_MEMORY_FENCE_ACQUIRE;
2379 EV_A = signals [signum - 1].loop;
2380
2381 if (!EV_A)
2382 return;
2383#endif
2384
2385 signals [signum - 1].pending = 1;
2386 evpipe_write (EV_A_ &sig_pending);
2387}
2388
1115static void 2389static void
1116ev_sighandler (int signum) 2390ev_sighandler (int signum)
1117{ 2391{
2392#ifdef _WIN32
2393 signal (signum, ev_sighandler);
2394#endif
2395
2396 ev_feed_signal (signum);
2397}
2398
2399void noinline
2400ev_feed_signal_event (EV_P_ int signum) EV_THROW
2401{
2402 WL w;
2403
2404 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2405 return;
2406
2407 --signum;
2408
1118#if EV_MULTIPLICITY 2409#if EV_MULTIPLICITY
1119 struct ev_loop *loop = &default_loop_struct; 2410 /* it is permissible to try to feed a signal to the wrong loop */
1120#endif 2411 /* or, likely more useful, feeding a signal nobody is waiting for */
1121 2412
1122#if _WIN32 2413 if (expect_false (signals [signum].loop != EV_A))
1123 signal (signum, ev_sighandler);
1124#endif
1125
1126 signals [signum - 1].gotsig = 1;
1127 evpipe_write (EV_A_ &gotsig);
1128}
1129
1130void noinline
1131ev_feed_signal_event (EV_P_ int signum)
1132{
1133 WL w;
1134
1135#if EV_MULTIPLICITY
1136 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1137#endif
1138
1139 --signum;
1140
1141 if (signum < 0 || signum >= signalmax)
1142 return; 2414 return;
2415#endif
1143 2416
1144 signals [signum].gotsig = 0; 2417 signals [signum].pending = 0;
2418 ECB_MEMORY_FENCE_RELEASE;
1145 2419
1146 for (w = signals [signum].head; w; w = w->next) 2420 for (w = signals [signum].head; w; w = w->next)
1147 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2421 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1148} 2422}
1149 2423
2424#if EV_USE_SIGNALFD
2425static void
2426sigfdcb (EV_P_ ev_io *iow, int revents)
2427{
2428 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2429
2430 for (;;)
2431 {
2432 ssize_t res = read (sigfd, si, sizeof (si));
2433
2434 /* not ISO-C, as res might be -1, but works with SuS */
2435 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2436 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2437
2438 if (res < (ssize_t)sizeof (si))
2439 break;
2440 }
2441}
2442#endif
2443
2444#endif
2445
1150/*****************************************************************************/ 2446/*****************************************************************************/
1151 2447
2448#if EV_CHILD_ENABLE
1152static WL childs [EV_PID_HASHSIZE]; 2449static WL childs [EV_PID_HASHSIZE];
1153
1154#ifndef _WIN32
1155 2450
1156static ev_signal childev; 2451static ev_signal childev;
1157 2452
1158#ifndef WIFCONTINUED 2453#ifndef WIFCONTINUED
1159# define WIFCONTINUED(status) 0 2454# define WIFCONTINUED(status) 0
1160#endif 2455#endif
1161 2456
1162void inline_speed 2457/* handle a single child status event */
2458inline_speed void
1163child_reap (EV_P_ int chain, int pid, int status) 2459child_reap (EV_P_ int chain, int pid, int status)
1164{ 2460{
1165 ev_child *w; 2461 ev_child *w;
1166 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2462 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1167 2463
1168 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2464 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1169 { 2465 {
1170 if ((w->pid == pid || !w->pid) 2466 if ((w->pid == pid || !w->pid)
1171 && (!traced || (w->flags & 1))) 2467 && (!traced || (w->flags & 1)))
1172 { 2468 {
1173 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 2469 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1180 2476
1181#ifndef WCONTINUED 2477#ifndef WCONTINUED
1182# define WCONTINUED 0 2478# define WCONTINUED 0
1183#endif 2479#endif
1184 2480
2481/* called on sigchld etc., calls waitpid */
1185static void 2482static void
1186childcb (EV_P_ ev_signal *sw, int revents) 2483childcb (EV_P_ ev_signal *sw, int revents)
1187{ 2484{
1188 int pid, status; 2485 int pid, status;
1189 2486
1197 /* make sure we are called again until all children have been reaped */ 2494 /* make sure we are called again until all children have been reaped */
1198 /* we need to do it this way so that the callback gets called before we continue */ 2495 /* we need to do it this way so that the callback gets called before we continue */
1199 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2496 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1200 2497
1201 child_reap (EV_A_ pid, pid, status); 2498 child_reap (EV_A_ pid, pid, status);
1202 if (EV_PID_HASHSIZE > 1) 2499 if ((EV_PID_HASHSIZE) > 1)
1203 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2500 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1204} 2501}
1205 2502
1206#endif 2503#endif
1207 2504
1208/*****************************************************************************/ 2505/*****************************************************************************/
1209 2506
2507#if EV_USE_IOCP
2508# include "ev_iocp.c"
2509#endif
1210#if EV_USE_PORT 2510#if EV_USE_PORT
1211# include "ev_port.c" 2511# include "ev_port.c"
1212#endif 2512#endif
1213#if EV_USE_KQUEUE 2513#if EV_USE_KQUEUE
1214# include "ev_kqueue.c" 2514# include "ev_kqueue.c"
1221#endif 2521#endif
1222#if EV_USE_SELECT 2522#if EV_USE_SELECT
1223# include "ev_select.c" 2523# include "ev_select.c"
1224#endif 2524#endif
1225 2525
1226int 2526int ecb_cold
1227ev_version_major (void) 2527ev_version_major (void) EV_THROW
1228{ 2528{
1229 return EV_VERSION_MAJOR; 2529 return EV_VERSION_MAJOR;
1230} 2530}
1231 2531
1232int 2532int ecb_cold
1233ev_version_minor (void) 2533ev_version_minor (void) EV_THROW
1234{ 2534{
1235 return EV_VERSION_MINOR; 2535 return EV_VERSION_MINOR;
1236} 2536}
1237 2537
1238/* return true if we are running with elevated privileges and should ignore env variables */ 2538/* return true if we are running with elevated privileges and should ignore env variables */
1239int inline_size 2539int inline_size ecb_cold
1240enable_secure (void) 2540enable_secure (void)
1241{ 2541{
1242#ifdef _WIN32 2542#ifdef _WIN32
1243 return 0; 2543 return 0;
1244#else 2544#else
1245 return getuid () != geteuid () 2545 return getuid () != geteuid ()
1246 || getgid () != getegid (); 2546 || getgid () != getegid ();
1247#endif 2547#endif
1248} 2548}
1249 2549
1250unsigned int 2550unsigned int ecb_cold
1251ev_supported_backends (void) 2551ev_supported_backends (void) EV_THROW
1252{ 2552{
1253 unsigned int flags = 0; 2553 unsigned int flags = 0;
1254 2554
1255 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2555 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1256 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2556 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1259 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2559 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1260 2560
1261 return flags; 2561 return flags;
1262} 2562}
1263 2563
1264unsigned int 2564unsigned int ecb_cold
1265ev_recommended_backends (void) 2565ev_recommended_backends (void) EV_THROW
1266{ 2566{
1267 unsigned int flags = ev_supported_backends (); 2567 unsigned int flags = ev_supported_backends ();
1268 2568
1269#ifndef __NetBSD__ 2569#ifndef __NetBSD__
1270 /* kqueue is borked on everything but netbsd apparently */ 2570 /* kqueue is borked on everything but netbsd apparently */
1271 /* it usually doesn't work correctly on anything but sockets and pipes */ 2571 /* it usually doesn't work correctly on anything but sockets and pipes */
1272 flags &= ~EVBACKEND_KQUEUE; 2572 flags &= ~EVBACKEND_KQUEUE;
1273#endif 2573#endif
1274#ifdef __APPLE__ 2574#ifdef __APPLE__
1275 // flags &= ~EVBACKEND_KQUEUE & ~EVBACKEND_POLL; for documentation 2575 /* only select works correctly on that "unix-certified" platform */
1276 flags &= ~EVBACKEND_SELECT; 2576 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2577 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2578#endif
2579#ifdef __FreeBSD__
2580 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1277#endif 2581#endif
1278 2582
1279 return flags; 2583 return flags;
1280} 2584}
1281 2585
2586unsigned int ecb_cold
2587ev_embeddable_backends (void) EV_THROW
2588{
2589 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2590
2591 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2592 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2593 flags &= ~EVBACKEND_EPOLL;
2594
2595 return flags;
2596}
2597
1282unsigned int 2598unsigned int
1283ev_embeddable_backends (void) 2599ev_backend (EV_P) EV_THROW
1284{ 2600{
1285 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2601 return backend;
1286
1287 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1288 /* please fix it and tell me how to detect the fix */
1289 flags &= ~EVBACKEND_EPOLL;
1290
1291 return flags;
1292} 2602}
1293 2603
2604#if EV_FEATURE_API
1294unsigned int 2605unsigned int
1295ev_backend (EV_P) 2606ev_iteration (EV_P) EV_THROW
1296{ 2607{
1297 return backend; 2608 return loop_count;
1298} 2609}
1299 2610
1300unsigned int 2611unsigned int
1301ev_loop_count (EV_P) 2612ev_depth (EV_P) EV_THROW
1302{ 2613{
1303 return loop_count; 2614 return loop_depth;
1304} 2615}
1305 2616
1306void 2617void
1307ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2618ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1308{ 2619{
1309 io_blocktime = interval; 2620 io_blocktime = interval;
1310} 2621}
1311 2622
1312void 2623void
1313ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2624ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1314{ 2625{
1315 timeout_blocktime = interval; 2626 timeout_blocktime = interval;
1316} 2627}
1317 2628
2629void
2630ev_set_userdata (EV_P_ void *data) EV_THROW
2631{
2632 userdata = data;
2633}
2634
2635void *
2636ev_userdata (EV_P) EV_THROW
2637{
2638 return userdata;
2639}
2640
2641void
2642ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_THROW
2643{
2644 invoke_cb = invoke_pending_cb;
2645}
2646
2647void
2648ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2649{
2650 release_cb = release;
2651 acquire_cb = acquire;
2652}
2653#endif
2654
2655/* initialise a loop structure, must be zero-initialised */
1318static void noinline 2656static void noinline ecb_cold
1319loop_init (EV_P_ unsigned int flags) 2657loop_init (EV_P_ unsigned int flags) EV_THROW
1320{ 2658{
1321 if (!backend) 2659 if (!backend)
1322 { 2660 {
2661 origflags = flags;
2662
2663#if EV_USE_REALTIME
2664 if (!have_realtime)
2665 {
2666 struct timespec ts;
2667
2668 if (!clock_gettime (CLOCK_REALTIME, &ts))
2669 have_realtime = 1;
2670 }
2671#endif
2672
1323#if EV_USE_MONOTONIC 2673#if EV_USE_MONOTONIC
2674 if (!have_monotonic)
1324 { 2675 {
1325 struct timespec ts; 2676 struct timespec ts;
2677
1326 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2678 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1327 have_monotonic = 1; 2679 have_monotonic = 1;
1328 } 2680 }
1329#endif
1330
1331 ev_rt_now = ev_time ();
1332 mn_now = get_clock ();
1333 now_floor = mn_now;
1334 rtmn_diff = ev_rt_now - mn_now;
1335
1336 io_blocktime = 0.;
1337 timeout_blocktime = 0.;
1338 backend = 0;
1339 backend_fd = -1;
1340 gotasync = 0;
1341#if EV_USE_INOTIFY
1342 fs_fd = -2;
1343#endif 2681#endif
1344 2682
1345 /* pid check not overridable via env */ 2683 /* pid check not overridable via env */
1346#ifndef _WIN32 2684#ifndef _WIN32
1347 if (flags & EVFLAG_FORKCHECK) 2685 if (flags & EVFLAG_FORKCHECK)
1351 if (!(flags & EVFLAG_NOENV) 2689 if (!(flags & EVFLAG_NOENV)
1352 && !enable_secure () 2690 && !enable_secure ()
1353 && getenv ("LIBEV_FLAGS")) 2691 && getenv ("LIBEV_FLAGS"))
1354 flags = atoi (getenv ("LIBEV_FLAGS")); 2692 flags = atoi (getenv ("LIBEV_FLAGS"));
1355 2693
1356 if (!(flags & 0x0000ffffU)) 2694 ev_rt_now = ev_time ();
2695 mn_now = get_clock ();
2696 now_floor = mn_now;
2697 rtmn_diff = ev_rt_now - mn_now;
2698#if EV_FEATURE_API
2699 invoke_cb = ev_invoke_pending;
2700#endif
2701
2702 io_blocktime = 0.;
2703 timeout_blocktime = 0.;
2704 backend = 0;
2705 backend_fd = -1;
2706 sig_pending = 0;
2707#if EV_ASYNC_ENABLE
2708 async_pending = 0;
2709#endif
2710 pipe_write_skipped = 0;
2711 pipe_write_wanted = 0;
2712 evpipe [0] = -1;
2713 evpipe [1] = -1;
2714#if EV_USE_INOTIFY
2715 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2716#endif
2717#if EV_USE_SIGNALFD
2718 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2719#endif
2720
2721 if (!(flags & EVBACKEND_MASK))
1357 flags |= ev_recommended_backends (); 2722 flags |= ev_recommended_backends ();
1358 2723
2724#if EV_USE_IOCP
2725 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2726#endif
1359#if EV_USE_PORT 2727#if EV_USE_PORT
1360 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2728 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1361#endif 2729#endif
1362#if EV_USE_KQUEUE 2730#if EV_USE_KQUEUE
1363 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2731 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1370#endif 2738#endif
1371#if EV_USE_SELECT 2739#if EV_USE_SELECT
1372 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2740 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1373#endif 2741#endif
1374 2742
2743 ev_prepare_init (&pending_w, pendingcb);
2744
2745#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1375 ev_init (&pipeev, pipecb); 2746 ev_init (&pipe_w, pipecb);
1376 ev_set_priority (&pipeev, EV_MAXPRI); 2747 ev_set_priority (&pipe_w, EV_MAXPRI);
2748#endif
1377 } 2749 }
1378} 2750}
1379 2751
1380static void noinline 2752/* free up a loop structure */
2753void ecb_cold
1381loop_destroy (EV_P) 2754ev_loop_destroy (EV_P)
1382{ 2755{
1383 int i; 2756 int i;
1384 2757
2758#if EV_MULTIPLICITY
2759 /* mimic free (0) */
2760 if (!EV_A)
2761 return;
2762#endif
2763
2764#if EV_CLEANUP_ENABLE
2765 /* queue cleanup watchers (and execute them) */
2766 if (expect_false (cleanupcnt))
2767 {
2768 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2769 EV_INVOKE_PENDING;
2770 }
2771#endif
2772
2773#if EV_CHILD_ENABLE
2774 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2775 {
2776 ev_ref (EV_A); /* child watcher */
2777 ev_signal_stop (EV_A_ &childev);
2778 }
2779#endif
2780
1385 if (ev_is_active (&pipeev)) 2781 if (ev_is_active (&pipe_w))
1386 { 2782 {
1387 ev_ref (EV_A); /* signal watcher */ 2783 /*ev_ref (EV_A);*/
1388 ev_io_stop (EV_A_ &pipeev); 2784 /*ev_io_stop (EV_A_ &pipe_w);*/
1389 2785
2786 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2787 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2788 }
2789
1390#if EV_USE_EVENTFD 2790#if EV_USE_SIGNALFD
1391 if (evfd >= 0) 2791 if (ev_is_active (&sigfd_w))
1392 close (evfd); 2792 close (sigfd);
1393#endif 2793#endif
1394
1395 if (evpipe [0] >= 0)
1396 {
1397 close (evpipe [0]);
1398 close (evpipe [1]);
1399 }
1400 }
1401 2794
1402#if EV_USE_INOTIFY 2795#if EV_USE_INOTIFY
1403 if (fs_fd >= 0) 2796 if (fs_fd >= 0)
1404 close (fs_fd); 2797 close (fs_fd);
1405#endif 2798#endif
1406 2799
1407 if (backend_fd >= 0) 2800 if (backend_fd >= 0)
1408 close (backend_fd); 2801 close (backend_fd);
1409 2802
2803#if EV_USE_IOCP
2804 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2805#endif
1410#if EV_USE_PORT 2806#if EV_USE_PORT
1411 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2807 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1412#endif 2808#endif
1413#if EV_USE_KQUEUE 2809#if EV_USE_KQUEUE
1414 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2810 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1429#if EV_IDLE_ENABLE 2825#if EV_IDLE_ENABLE
1430 array_free (idle, [i]); 2826 array_free (idle, [i]);
1431#endif 2827#endif
1432 } 2828 }
1433 2829
1434 ev_free (anfds); anfdmax = 0; 2830 ev_free (anfds); anfds = 0; anfdmax = 0;
1435 2831
1436 /* have to use the microsoft-never-gets-it-right macro */ 2832 /* have to use the microsoft-never-gets-it-right macro */
2833 array_free (rfeed, EMPTY);
1437 array_free (fdchange, EMPTY); 2834 array_free (fdchange, EMPTY);
1438 array_free (timer, EMPTY); 2835 array_free (timer, EMPTY);
1439#if EV_PERIODIC_ENABLE 2836#if EV_PERIODIC_ENABLE
1440 array_free (periodic, EMPTY); 2837 array_free (periodic, EMPTY);
1441#endif 2838#endif
1442#if EV_FORK_ENABLE 2839#if EV_FORK_ENABLE
1443 array_free (fork, EMPTY); 2840 array_free (fork, EMPTY);
1444#endif 2841#endif
2842#if EV_CLEANUP_ENABLE
2843 array_free (cleanup, EMPTY);
2844#endif
1445 array_free (prepare, EMPTY); 2845 array_free (prepare, EMPTY);
1446 array_free (check, EMPTY); 2846 array_free (check, EMPTY);
1447#if EV_ASYNC_ENABLE 2847#if EV_ASYNC_ENABLE
1448 array_free (async, EMPTY); 2848 array_free (async, EMPTY);
1449#endif 2849#endif
1450 2850
1451 backend = 0; 2851 backend = 0;
2852
2853#if EV_MULTIPLICITY
2854 if (ev_is_default_loop (EV_A))
2855#endif
2856 ev_default_loop_ptr = 0;
2857#if EV_MULTIPLICITY
2858 else
2859 ev_free (EV_A);
2860#endif
1452} 2861}
1453 2862
1454#if EV_USE_INOTIFY 2863#if EV_USE_INOTIFY
1455void inline_size infy_fork (EV_P); 2864inline_size void infy_fork (EV_P);
1456#endif 2865#endif
1457 2866
1458void inline_size 2867inline_size void
1459loop_fork (EV_P) 2868loop_fork (EV_P)
1460{ 2869{
1461#if EV_USE_PORT 2870#if EV_USE_PORT
1462 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2871 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1463#endif 2872#endif
1469#endif 2878#endif
1470#if EV_USE_INOTIFY 2879#if EV_USE_INOTIFY
1471 infy_fork (EV_A); 2880 infy_fork (EV_A);
1472#endif 2881#endif
1473 2882
2883#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1474 if (ev_is_active (&pipeev)) 2884 if (ev_is_active (&pipe_w))
1475 { 2885 {
1476 /* this "locks" the handlers against writing to the pipe */ 2886 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1477 /* while we modify the fd vars */
1478 gotsig = 1;
1479#if EV_ASYNC_ENABLE
1480 gotasync = 1;
1481#endif
1482 2887
1483 ev_ref (EV_A); 2888 ev_ref (EV_A);
1484 ev_io_stop (EV_A_ &pipeev); 2889 ev_io_stop (EV_A_ &pipe_w);
1485
1486#if EV_USE_EVENTFD
1487 if (evfd >= 0)
1488 close (evfd);
1489#endif
1490 2890
1491 if (evpipe [0] >= 0) 2891 if (evpipe [0] >= 0)
1492 { 2892 EV_WIN32_CLOSE_FD (evpipe [0]);
1493 close (evpipe [0]);
1494 close (evpipe [1]);
1495 }
1496 2893
1497 evpipe_init (EV_A); 2894 evpipe_init (EV_A);
1498 /* now iterate over everything, in case we missed something */ 2895 /* iterate over everything, in case we missed something before */
1499 pipecb (EV_A_ &pipeev, EV_READ); 2896 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
1500 } 2897 }
2898#endif
1501 2899
1502 postfork = 0; 2900 postfork = 0;
1503} 2901}
1504 2902
1505#if EV_MULTIPLICITY 2903#if EV_MULTIPLICITY
1506 2904
1507struct ev_loop * 2905struct ev_loop * ecb_cold
1508ev_loop_new (unsigned int flags) 2906ev_loop_new (unsigned int flags) EV_THROW
1509{ 2907{
1510 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2908 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1511 2909
1512 memset (loop, 0, sizeof (struct ev_loop)); 2910 memset (EV_A, 0, sizeof (struct ev_loop));
1513
1514 loop_init (EV_A_ flags); 2911 loop_init (EV_A_ flags);
1515 2912
1516 if (ev_backend (EV_A)) 2913 if (ev_backend (EV_A))
1517 return loop; 2914 return EV_A;
1518 2915
2916 ev_free (EV_A);
1519 return 0; 2917 return 0;
1520} 2918}
1521 2919
1522void 2920#endif /* multiplicity */
1523ev_loop_destroy (EV_P)
1524{
1525 loop_destroy (EV_A);
1526 ev_free (loop);
1527}
1528
1529void
1530ev_loop_fork (EV_P)
1531{
1532 postfork = 1; /* must be in line with ev_default_fork */
1533}
1534 2921
1535#if EV_VERIFY 2922#if EV_VERIFY
1536static void noinline 2923static void noinline ecb_cold
1537verify_watcher (EV_P_ W w) 2924verify_watcher (EV_P_ W w)
1538{ 2925{
1539 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI)); 2926 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1540 2927
1541 if (w->pending) 2928 if (w->pending)
1542 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w)); 2929 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1543} 2930}
1544 2931
1545static void noinline 2932static void noinline ecb_cold
1546verify_heap (EV_P_ ANHE *heap, int N) 2933verify_heap (EV_P_ ANHE *heap, int N)
1547{ 2934{
1548 int i; 2935 int i;
1549 2936
1550 for (i = HEAP0; i < N + HEAP0; ++i) 2937 for (i = HEAP0; i < N + HEAP0; ++i)
1551 { 2938 {
1552 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i)); 2939 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1553 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i]))); 2940 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1554 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i])))); 2941 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1555 2942
1556 verify_watcher (EV_A_ (W)ANHE_w (heap [i])); 2943 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1557 } 2944 }
1558} 2945}
1559 2946
1560static void noinline 2947static void noinline ecb_cold
1561array_verify (EV_P_ W *ws, int cnt) 2948array_verify (EV_P_ W *ws, int cnt)
1562{ 2949{
1563 while (cnt--) 2950 while (cnt--)
1564 { 2951 {
1565 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1)); 2952 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1566 verify_watcher (EV_A_ ws [cnt]); 2953 verify_watcher (EV_A_ ws [cnt]);
1567 } 2954 }
1568} 2955}
1569#endif 2956#endif
1570 2957
1571void 2958#if EV_FEATURE_API
1572ev_loop_verify (EV_P) 2959void ecb_cold
2960ev_verify (EV_P) EV_THROW
1573{ 2961{
1574#if EV_VERIFY 2962#if EV_VERIFY
1575 int i; 2963 int i;
1576 WL w; 2964 WL w, w2;
1577 2965
1578 assert (activecnt >= -1); 2966 assert (activecnt >= -1);
1579 2967
1580 assert (fdchangemax >= fdchangecnt); 2968 assert (fdchangemax >= fdchangecnt);
1581 for (i = 0; i < fdchangecnt; ++i) 2969 for (i = 0; i < fdchangecnt; ++i)
1582 assert (("negative fd in fdchanges", fdchanges [i] >= 0)); 2970 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1583 2971
1584 assert (anfdmax >= 0); 2972 assert (anfdmax >= 0);
1585 for (i = 0; i < anfdmax; ++i) 2973 for (i = 0; i < anfdmax; ++i)
2974 {
2975 int j = 0;
2976
1586 for (w = anfds [i].head; w; w = w->next) 2977 for (w = w2 = anfds [i].head; w; w = w->next)
1587 { 2978 {
1588 verify_watcher (EV_A_ (W)w); 2979 verify_watcher (EV_A_ (W)w);
2980
2981 if (j++ & 1)
2982 {
2983 assert (("libev: io watcher list contains a loop", w != w2));
2984 w2 = w2->next;
2985 }
2986
1589 assert (("inactive fd watcher on anfd list", ev_active (w) == 1)); 2987 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1590 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i)); 2988 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1591 } 2989 }
2990 }
1592 2991
1593 assert (timermax >= timercnt); 2992 assert (timermax >= timercnt);
1594 verify_heap (EV_A_ timers, timercnt); 2993 verify_heap (EV_A_ timers, timercnt);
1595 2994
1596#if EV_PERIODIC_ENABLE 2995#if EV_PERIODIC_ENABLE
1611#if EV_FORK_ENABLE 3010#if EV_FORK_ENABLE
1612 assert (forkmax >= forkcnt); 3011 assert (forkmax >= forkcnt);
1613 array_verify (EV_A_ (W *)forks, forkcnt); 3012 array_verify (EV_A_ (W *)forks, forkcnt);
1614#endif 3013#endif
1615 3014
3015#if EV_CLEANUP_ENABLE
3016 assert (cleanupmax >= cleanupcnt);
3017 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3018#endif
3019
1616#if EV_ASYNC_ENABLE 3020#if EV_ASYNC_ENABLE
1617 assert (asyncmax >= asynccnt); 3021 assert (asyncmax >= asynccnt);
1618 array_verify (EV_A_ (W *)asyncs, asynccnt); 3022 array_verify (EV_A_ (W *)asyncs, asynccnt);
1619#endif 3023#endif
1620 3024
3025#if EV_PREPARE_ENABLE
1621 assert (preparemax >= preparecnt); 3026 assert (preparemax >= preparecnt);
1622 array_verify (EV_A_ (W *)prepares, preparecnt); 3027 array_verify (EV_A_ (W *)prepares, preparecnt);
3028#endif
1623 3029
3030#if EV_CHECK_ENABLE
1624 assert (checkmax >= checkcnt); 3031 assert (checkmax >= checkcnt);
1625 array_verify (EV_A_ (W *)checks, checkcnt); 3032 array_verify (EV_A_ (W *)checks, checkcnt);
3033#endif
1626 3034
1627# if 0 3035# if 0
3036#if EV_CHILD_ENABLE
1628 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 3037 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1629 for (signum = signalmax; signum--; ) if (signals [signum].gotsig) 3038 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3039#endif
1630# endif 3040# endif
1631#endif 3041#endif
1632} 3042}
1633 3043#endif
1634#endif /* multiplicity */
1635 3044
1636#if EV_MULTIPLICITY 3045#if EV_MULTIPLICITY
1637struct ev_loop * 3046struct ev_loop * ecb_cold
1638ev_default_loop_init (unsigned int flags)
1639#else 3047#else
1640int 3048int
3049#endif
1641ev_default_loop (unsigned int flags) 3050ev_default_loop (unsigned int flags) EV_THROW
1642#endif
1643{ 3051{
1644 if (!ev_default_loop_ptr) 3052 if (!ev_default_loop_ptr)
1645 { 3053 {
1646#if EV_MULTIPLICITY 3054#if EV_MULTIPLICITY
1647 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 3055 EV_P = ev_default_loop_ptr = &default_loop_struct;
1648#else 3056#else
1649 ev_default_loop_ptr = 1; 3057 ev_default_loop_ptr = 1;
1650#endif 3058#endif
1651 3059
1652 loop_init (EV_A_ flags); 3060 loop_init (EV_A_ flags);
1653 3061
1654 if (ev_backend (EV_A)) 3062 if (ev_backend (EV_A))
1655 { 3063 {
1656#ifndef _WIN32 3064#if EV_CHILD_ENABLE
1657 ev_signal_init (&childev, childcb, SIGCHLD); 3065 ev_signal_init (&childev, childcb, SIGCHLD);
1658 ev_set_priority (&childev, EV_MAXPRI); 3066 ev_set_priority (&childev, EV_MAXPRI);
1659 ev_signal_start (EV_A_ &childev); 3067 ev_signal_start (EV_A_ &childev);
1660 ev_unref (EV_A); /* child watcher should not keep loop alive */ 3068 ev_unref (EV_A); /* child watcher should not keep loop alive */
1661#endif 3069#endif
1666 3074
1667 return ev_default_loop_ptr; 3075 return ev_default_loop_ptr;
1668} 3076}
1669 3077
1670void 3078void
1671ev_default_destroy (void) 3079ev_loop_fork (EV_P) EV_THROW
1672{ 3080{
1673#if EV_MULTIPLICITY 3081 postfork = 1;
1674 struct ev_loop *loop = ev_default_loop_ptr;
1675#endif
1676
1677 ev_default_loop_ptr = 0;
1678
1679#ifndef _WIN32
1680 ev_ref (EV_A); /* child watcher */
1681 ev_signal_stop (EV_A_ &childev);
1682#endif
1683
1684 loop_destroy (EV_A);
1685}
1686
1687void
1688ev_default_fork (void)
1689{
1690#if EV_MULTIPLICITY
1691 struct ev_loop *loop = ev_default_loop_ptr;
1692#endif
1693
1694 postfork = 1; /* must be in line with ev_loop_fork */
1695} 3082}
1696 3083
1697/*****************************************************************************/ 3084/*****************************************************************************/
1698 3085
1699void 3086void
1700ev_invoke (EV_P_ void *w, int revents) 3087ev_invoke (EV_P_ void *w, int revents)
1701{ 3088{
1702 EV_CB_INVOKE ((W)w, revents); 3089 EV_CB_INVOKE ((W)w, revents);
1703} 3090}
1704 3091
1705void inline_speed 3092unsigned int
1706call_pending (EV_P) 3093ev_pending_count (EV_P) EV_THROW
1707{ 3094{
1708 int pri; 3095 int pri;
3096 unsigned int count = 0;
1709 3097
1710 for (pri = NUMPRI; pri--; ) 3098 for (pri = NUMPRI; pri--; )
3099 count += pendingcnt [pri];
3100
3101 return count;
3102}
3103
3104void noinline
3105ev_invoke_pending (EV_P)
3106{
3107 pendingpri = NUMPRI;
3108
3109 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
3110 {
3111 --pendingpri;
3112
1711 while (pendingcnt [pri]) 3113 while (pendingcnt [pendingpri])
1712 {
1713 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1714
1715 if (expect_true (p->w))
1716 { 3114 {
1717 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 3115 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1718 3116
1719 p->w->pending = 0; 3117 p->w->pending = 0;
1720 EV_CB_INVOKE (p->w, p->events); 3118 EV_CB_INVOKE (p->w, p->events);
1721 EV_FREQUENT_CHECK; 3119 EV_FREQUENT_CHECK;
1722 } 3120 }
1723 } 3121 }
1724} 3122}
1725 3123
1726#if EV_IDLE_ENABLE 3124#if EV_IDLE_ENABLE
1727void inline_size 3125/* make idle watchers pending. this handles the "call-idle */
3126/* only when higher priorities are idle" logic */
3127inline_size void
1728idle_reify (EV_P) 3128idle_reify (EV_P)
1729{ 3129{
1730 if (expect_false (idleall)) 3130 if (expect_false (idleall))
1731 { 3131 {
1732 int pri; 3132 int pri;
1744 } 3144 }
1745 } 3145 }
1746} 3146}
1747#endif 3147#endif
1748 3148
1749void inline_size 3149/* make timers pending */
3150inline_size void
1750timers_reify (EV_P) 3151timers_reify (EV_P)
1751{ 3152{
1752 EV_FREQUENT_CHECK; 3153 EV_FREQUENT_CHECK;
1753 3154
1754 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 3155 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1755 { 3156 {
1756 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 3157 do
1757
1758 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1759
1760 /* first reschedule or stop timer */
1761 if (w->repeat)
1762 { 3158 {
3159 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3160
3161 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3162
3163 /* first reschedule or stop timer */
3164 if (w->repeat)
3165 {
1763 ev_at (w) += w->repeat; 3166 ev_at (w) += w->repeat;
1764 if (ev_at (w) < mn_now) 3167 if (ev_at (w) < mn_now)
1765 ev_at (w) = mn_now; 3168 ev_at (w) = mn_now;
1766 3169
1767 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3170 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1768 3171
1769 ANHE_at_cache (timers [HEAP0]); 3172 ANHE_at_cache (timers [HEAP0]);
1770 downheap (timers, timercnt, HEAP0); 3173 downheap (timers, timercnt, HEAP0);
3174 }
3175 else
3176 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3177
3178 EV_FREQUENT_CHECK;
3179 feed_reverse (EV_A_ (W)w);
1771 } 3180 }
1772 else 3181 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1773 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1774 3182
1775 EV_FREQUENT_CHECK; 3183 feed_reverse_done (EV_A_ EV_TIMER);
1776 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1777 } 3184 }
1778} 3185}
1779 3186
1780#if EV_PERIODIC_ENABLE 3187#if EV_PERIODIC_ENABLE
1781void inline_size 3188
3189static void noinline
3190periodic_recalc (EV_P_ ev_periodic *w)
3191{
3192 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3193 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3194
3195 /* the above almost always errs on the low side */
3196 while (at <= ev_rt_now)
3197 {
3198 ev_tstamp nat = at + w->interval;
3199
3200 /* when resolution fails us, we use ev_rt_now */
3201 if (expect_false (nat == at))
3202 {
3203 at = ev_rt_now;
3204 break;
3205 }
3206
3207 at = nat;
3208 }
3209
3210 ev_at (w) = at;
3211}
3212
3213/* make periodics pending */
3214inline_size void
1782periodics_reify (EV_P) 3215periodics_reify (EV_P)
1783{ 3216{
1784 EV_FREQUENT_CHECK; 3217 EV_FREQUENT_CHECK;
1785 3218
1786 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 3219 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1787 { 3220 {
1788 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 3221 do
1789
1790 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1791
1792 /* first reschedule or stop timer */
1793 if (w->reschedule_cb)
1794 { 3222 {
3223 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3224
3225 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3226
3227 /* first reschedule or stop timer */
3228 if (w->reschedule_cb)
3229 {
1795 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3230 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1796 3231
1797 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 3232 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1798 3233
1799 ANHE_at_cache (periodics [HEAP0]); 3234 ANHE_at_cache (periodics [HEAP0]);
1800 downheap (periodics, periodiccnt, HEAP0); 3235 downheap (periodics, periodiccnt, HEAP0);
3236 }
3237 else if (w->interval)
3238 {
3239 periodic_recalc (EV_A_ w);
3240 ANHE_at_cache (periodics [HEAP0]);
3241 downheap (periodics, periodiccnt, HEAP0);
3242 }
3243 else
3244 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3245
3246 EV_FREQUENT_CHECK;
3247 feed_reverse (EV_A_ (W)w);
1801 } 3248 }
1802 else if (w->interval) 3249 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1803 {
1804 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1805 /* if next trigger time is not sufficiently in the future, put it there */
1806 /* this might happen because of floating point inexactness */
1807 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1808 {
1809 ev_at (w) += w->interval;
1810 3250
1811 /* if interval is unreasonably low we might still have a time in the past */
1812 /* so correct this. this will make the periodic very inexact, but the user */
1813 /* has effectively asked to get triggered more often than possible */
1814 if (ev_at (w) < ev_rt_now)
1815 ev_at (w) = ev_rt_now;
1816 }
1817
1818 ANHE_at_cache (periodics [HEAP0]);
1819 downheap (periodics, periodiccnt, HEAP0);
1820 }
1821 else
1822 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1823
1824 EV_FREQUENT_CHECK;
1825 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 3251 feed_reverse_done (EV_A_ EV_PERIODIC);
1826 } 3252 }
1827} 3253}
1828 3254
3255/* simply recalculate all periodics */
3256/* TODO: maybe ensure that at least one event happens when jumping forward? */
1829static void noinline 3257static void noinline ecb_cold
1830periodics_reschedule (EV_P) 3258periodics_reschedule (EV_P)
1831{ 3259{
1832 int i; 3260 int i;
1833 3261
1834 /* adjust periodics after time jump */ 3262 /* adjust periodics after time jump */
1837 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]); 3265 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1838 3266
1839 if (w->reschedule_cb) 3267 if (w->reschedule_cb)
1840 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3268 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1841 else if (w->interval) 3269 else if (w->interval)
1842 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 3270 periodic_recalc (EV_A_ w);
1843 3271
1844 ANHE_at_cache (periodics [i]); 3272 ANHE_at_cache (periodics [i]);
1845 } 3273 }
1846 3274
1847 reheap (periodics, periodiccnt); 3275 reheap (periodics, periodiccnt);
1848} 3276}
1849#endif 3277#endif
1850 3278
1851void inline_speed 3279/* adjust all timers by a given offset */
3280static void noinline ecb_cold
3281timers_reschedule (EV_P_ ev_tstamp adjust)
3282{
3283 int i;
3284
3285 for (i = 0; i < timercnt; ++i)
3286 {
3287 ANHE *he = timers + i + HEAP0;
3288 ANHE_w (*he)->at += adjust;
3289 ANHE_at_cache (*he);
3290 }
3291}
3292
3293/* fetch new monotonic and realtime times from the kernel */
3294/* also detect if there was a timejump, and act accordingly */
3295inline_speed void
1852time_update (EV_P_ ev_tstamp max_block) 3296time_update (EV_P_ ev_tstamp max_block)
1853{ 3297{
1854 int i;
1855
1856#if EV_USE_MONOTONIC 3298#if EV_USE_MONOTONIC
1857 if (expect_true (have_monotonic)) 3299 if (expect_true (have_monotonic))
1858 { 3300 {
3301 int i;
1859 ev_tstamp odiff = rtmn_diff; 3302 ev_tstamp odiff = rtmn_diff;
1860 3303
1861 mn_now = get_clock (); 3304 mn_now = get_clock ();
1862 3305
1863 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 3306 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1879 * doesn't hurt either as we only do this on time-jumps or 3322 * doesn't hurt either as we only do this on time-jumps or
1880 * in the unlikely event of having been preempted here. 3323 * in the unlikely event of having been preempted here.
1881 */ 3324 */
1882 for (i = 4; --i; ) 3325 for (i = 4; --i; )
1883 { 3326 {
3327 ev_tstamp diff;
1884 rtmn_diff = ev_rt_now - mn_now; 3328 rtmn_diff = ev_rt_now - mn_now;
1885 3329
3330 diff = odiff - rtmn_diff;
3331
1886 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)) 3332 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1887 return; /* all is well */ 3333 return; /* all is well */
1888 3334
1889 ev_rt_now = ev_time (); 3335 ev_rt_now = ev_time ();
1890 mn_now = get_clock (); 3336 mn_now = get_clock ();
1891 now_floor = mn_now; 3337 now_floor = mn_now;
1892 } 3338 }
1893 3339
3340 /* no timer adjustment, as the monotonic clock doesn't jump */
3341 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1894# if EV_PERIODIC_ENABLE 3342# if EV_PERIODIC_ENABLE
1895 periodics_reschedule (EV_A); 3343 periodics_reschedule (EV_A);
1896# endif 3344# endif
1897 /* no timer adjustment, as the monotonic clock doesn't jump */
1898 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1899 } 3345 }
1900 else 3346 else
1901#endif 3347#endif
1902 { 3348 {
1903 ev_rt_now = ev_time (); 3349 ev_rt_now = ev_time ();
1904 3350
1905 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 3351 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1906 { 3352 {
3353 /* adjust timers. this is easy, as the offset is the same for all of them */
3354 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1907#if EV_PERIODIC_ENABLE 3355#if EV_PERIODIC_ENABLE
1908 periodics_reschedule (EV_A); 3356 periodics_reschedule (EV_A);
1909#endif 3357#endif
1910 /* adjust timers. this is easy, as the offset is the same for all of them */
1911 for (i = 0; i < timercnt; ++i)
1912 {
1913 ANHE *he = timers + i + HEAP0;
1914 ANHE_w (*he)->at += ev_rt_now - mn_now;
1915 ANHE_at_cache (*he);
1916 }
1917 } 3358 }
1918 3359
1919 mn_now = ev_rt_now; 3360 mn_now = ev_rt_now;
1920 } 3361 }
1921} 3362}
1922 3363
1923void 3364int
1924ev_ref (EV_P)
1925{
1926 ++activecnt;
1927}
1928
1929void
1930ev_unref (EV_P)
1931{
1932 --activecnt;
1933}
1934
1935void
1936ev_now_update (EV_P)
1937{
1938 time_update (EV_A_ 1e100);
1939}
1940
1941static int loop_done;
1942
1943void
1944ev_loop (EV_P_ int flags) 3365ev_run (EV_P_ int flags)
1945{ 3366{
3367#if EV_FEATURE_API
3368 ++loop_depth;
3369#endif
3370
3371 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3372
1946 loop_done = EVUNLOOP_CANCEL; 3373 loop_done = EVBREAK_CANCEL;
1947 3374
1948 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3375 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1949 3376
1950 do 3377 do
1951 { 3378 {
1952#if EV_VERIFY >= 2 3379#if EV_VERIFY >= 2
1953 ev_loop_verify (EV_A); 3380 ev_verify (EV_A);
1954#endif 3381#endif
1955 3382
1956#ifndef _WIN32 3383#ifndef _WIN32
1957 if (expect_false (curpid)) /* penalise the forking check even more */ 3384 if (expect_false (curpid)) /* penalise the forking check even more */
1958 if (expect_false (getpid () != curpid)) 3385 if (expect_false (getpid () != curpid))
1966 /* we might have forked, so queue fork handlers */ 3393 /* we might have forked, so queue fork handlers */
1967 if (expect_false (postfork)) 3394 if (expect_false (postfork))
1968 if (forkcnt) 3395 if (forkcnt)
1969 { 3396 {
1970 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3397 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1971 call_pending (EV_A); 3398 EV_INVOKE_PENDING;
1972 } 3399 }
1973#endif 3400#endif
1974 3401
3402#if EV_PREPARE_ENABLE
1975 /* queue prepare watchers (and execute them) */ 3403 /* queue prepare watchers (and execute them) */
1976 if (expect_false (preparecnt)) 3404 if (expect_false (preparecnt))
1977 { 3405 {
1978 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3406 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1979 call_pending (EV_A); 3407 EV_INVOKE_PENDING;
1980 } 3408 }
3409#endif
1981 3410
1982 if (expect_false (!activecnt)) 3411 if (expect_false (loop_done))
1983 break; 3412 break;
1984 3413
1985 /* we might have forked, so reify kernel state if necessary */ 3414 /* we might have forked, so reify kernel state if necessary */
1986 if (expect_false (postfork)) 3415 if (expect_false (postfork))
1987 loop_fork (EV_A); 3416 loop_fork (EV_A);
1992 /* calculate blocking time */ 3421 /* calculate blocking time */
1993 { 3422 {
1994 ev_tstamp waittime = 0.; 3423 ev_tstamp waittime = 0.;
1995 ev_tstamp sleeptime = 0.; 3424 ev_tstamp sleeptime = 0.;
1996 3425
3426 /* remember old timestamp for io_blocktime calculation */
3427 ev_tstamp prev_mn_now = mn_now;
3428
3429 /* update time to cancel out callback processing overhead */
3430 time_update (EV_A_ 1e100);
3431
3432 /* from now on, we want a pipe-wake-up */
3433 pipe_write_wanted = 1;
3434
3435 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3436
1997 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3437 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1998 { 3438 {
1999 /* update time to cancel out callback processing overhead */
2000 time_update (EV_A_ 1e100);
2001
2002 waittime = MAX_BLOCKTIME; 3439 waittime = MAX_BLOCKTIME;
2003 3440
2004 if (timercnt) 3441 if (timercnt)
2005 { 3442 {
2006 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 3443 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
2007 if (waittime > to) waittime = to; 3444 if (waittime > to) waittime = to;
2008 } 3445 }
2009 3446
2010#if EV_PERIODIC_ENABLE 3447#if EV_PERIODIC_ENABLE
2011 if (periodiccnt) 3448 if (periodiccnt)
2012 { 3449 {
2013 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 3450 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
2014 if (waittime > to) waittime = to; 3451 if (waittime > to) waittime = to;
2015 } 3452 }
2016#endif 3453#endif
2017 3454
3455 /* don't let timeouts decrease the waittime below timeout_blocktime */
2018 if (expect_false (waittime < timeout_blocktime)) 3456 if (expect_false (waittime < timeout_blocktime))
2019 waittime = timeout_blocktime; 3457 waittime = timeout_blocktime;
2020 3458
2021 sleeptime = waittime - backend_fudge; 3459 /* at this point, we NEED to wait, so we have to ensure */
3460 /* to pass a minimum nonzero value to the backend */
3461 if (expect_false (waittime < backend_mintime))
3462 waittime = backend_mintime;
2022 3463
3464 /* extra check because io_blocktime is commonly 0 */
2023 if (expect_true (sleeptime > io_blocktime)) 3465 if (expect_false (io_blocktime))
2024 sleeptime = io_blocktime;
2025
2026 if (sleeptime)
2027 { 3466 {
3467 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3468
3469 if (sleeptime > waittime - backend_mintime)
3470 sleeptime = waittime - backend_mintime;
3471
3472 if (expect_true (sleeptime > 0.))
3473 {
2028 ev_sleep (sleeptime); 3474 ev_sleep (sleeptime);
2029 waittime -= sleeptime; 3475 waittime -= sleeptime;
3476 }
2030 } 3477 }
2031 } 3478 }
2032 3479
3480#if EV_FEATURE_API
2033 ++loop_count; 3481 ++loop_count;
3482#endif
3483 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2034 backend_poll (EV_A_ waittime); 3484 backend_poll (EV_A_ waittime);
3485 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3486
3487 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3488
3489 ECB_MEMORY_FENCE_ACQUIRE;
3490 if (pipe_write_skipped)
3491 {
3492 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3493 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3494 }
3495
2035 3496
2036 /* update ev_rt_now, do magic */ 3497 /* update ev_rt_now, do magic */
2037 time_update (EV_A_ waittime + sleeptime); 3498 time_update (EV_A_ waittime + sleeptime);
2038 } 3499 }
2039 3500
2046#if EV_IDLE_ENABLE 3507#if EV_IDLE_ENABLE
2047 /* queue idle watchers unless other events are pending */ 3508 /* queue idle watchers unless other events are pending */
2048 idle_reify (EV_A); 3509 idle_reify (EV_A);
2049#endif 3510#endif
2050 3511
3512#if EV_CHECK_ENABLE
2051 /* queue check watchers, to be executed first */ 3513 /* queue check watchers, to be executed first */
2052 if (expect_false (checkcnt)) 3514 if (expect_false (checkcnt))
2053 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3515 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3516#endif
2054 3517
2055 call_pending (EV_A); 3518 EV_INVOKE_PENDING;
2056 } 3519 }
2057 while (expect_true ( 3520 while (expect_true (
2058 activecnt 3521 activecnt
2059 && !loop_done 3522 && !loop_done
2060 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 3523 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2061 )); 3524 ));
2062 3525
2063 if (loop_done == EVUNLOOP_ONE) 3526 if (loop_done == EVBREAK_ONE)
2064 loop_done = EVUNLOOP_CANCEL; 3527 loop_done = EVBREAK_CANCEL;
3528
3529#if EV_FEATURE_API
3530 --loop_depth;
3531#endif
3532
3533 return activecnt;
2065} 3534}
2066 3535
2067void 3536void
2068ev_unloop (EV_P_ int how) 3537ev_break (EV_P_ int how) EV_THROW
2069{ 3538{
2070 loop_done = how; 3539 loop_done = how;
2071} 3540}
2072 3541
3542void
3543ev_ref (EV_P) EV_THROW
3544{
3545 ++activecnt;
3546}
3547
3548void
3549ev_unref (EV_P) EV_THROW
3550{
3551 --activecnt;
3552}
3553
3554void
3555ev_now_update (EV_P) EV_THROW
3556{
3557 time_update (EV_A_ 1e100);
3558}
3559
3560void
3561ev_suspend (EV_P) EV_THROW
3562{
3563 ev_now_update (EV_A);
3564}
3565
3566void
3567ev_resume (EV_P) EV_THROW
3568{
3569 ev_tstamp mn_prev = mn_now;
3570
3571 ev_now_update (EV_A);
3572 timers_reschedule (EV_A_ mn_now - mn_prev);
3573#if EV_PERIODIC_ENABLE
3574 /* TODO: really do this? */
3575 periodics_reschedule (EV_A);
3576#endif
3577}
3578
2073/*****************************************************************************/ 3579/*****************************************************************************/
3580/* singly-linked list management, used when the expected list length is short */
2074 3581
2075void inline_size 3582inline_size void
2076wlist_add (WL *head, WL elem) 3583wlist_add (WL *head, WL elem)
2077{ 3584{
2078 elem->next = *head; 3585 elem->next = *head;
2079 *head = elem; 3586 *head = elem;
2080} 3587}
2081 3588
2082void inline_size 3589inline_size void
2083wlist_del (WL *head, WL elem) 3590wlist_del (WL *head, WL elem)
2084{ 3591{
2085 while (*head) 3592 while (*head)
2086 { 3593 {
2087 if (*head == elem) 3594 if (expect_true (*head == elem))
2088 { 3595 {
2089 *head = elem->next; 3596 *head = elem->next;
2090 return; 3597 break;
2091 } 3598 }
2092 3599
2093 head = &(*head)->next; 3600 head = &(*head)->next;
2094 } 3601 }
2095} 3602}
2096 3603
2097void inline_speed 3604/* internal, faster, version of ev_clear_pending */
3605inline_speed void
2098clear_pending (EV_P_ W w) 3606clear_pending (EV_P_ W w)
2099{ 3607{
2100 if (w->pending) 3608 if (w->pending)
2101 { 3609 {
2102 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3610 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2103 w->pending = 0; 3611 w->pending = 0;
2104 } 3612 }
2105} 3613}
2106 3614
2107int 3615int
2108ev_clear_pending (EV_P_ void *w) 3616ev_clear_pending (EV_P_ void *w) EV_THROW
2109{ 3617{
2110 W w_ = (W)w; 3618 W w_ = (W)w;
2111 int pending = w_->pending; 3619 int pending = w_->pending;
2112 3620
2113 if (expect_true (pending)) 3621 if (expect_true (pending))
2114 { 3622 {
2115 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3623 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3624 p->w = (W)&pending_w;
2116 w_->pending = 0; 3625 w_->pending = 0;
2117 p->w = 0;
2118 return p->events; 3626 return p->events;
2119 } 3627 }
2120 else 3628 else
2121 return 0; 3629 return 0;
2122} 3630}
2123 3631
2124void inline_size 3632inline_size void
2125pri_adjust (EV_P_ W w) 3633pri_adjust (EV_P_ W w)
2126{ 3634{
2127 int pri = w->priority; 3635 int pri = ev_priority (w);
2128 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3636 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2129 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3637 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2130 w->priority = pri; 3638 ev_set_priority (w, pri);
2131} 3639}
2132 3640
2133void inline_speed 3641inline_speed void
2134ev_start (EV_P_ W w, int active) 3642ev_start (EV_P_ W w, int active)
2135{ 3643{
2136 pri_adjust (EV_A_ w); 3644 pri_adjust (EV_A_ w);
2137 w->active = active; 3645 w->active = active;
2138 ev_ref (EV_A); 3646 ev_ref (EV_A);
2139} 3647}
2140 3648
2141void inline_size 3649inline_size void
2142ev_stop (EV_P_ W w) 3650ev_stop (EV_P_ W w)
2143{ 3651{
2144 ev_unref (EV_A); 3652 ev_unref (EV_A);
2145 w->active = 0; 3653 w->active = 0;
2146} 3654}
2147 3655
2148/*****************************************************************************/ 3656/*****************************************************************************/
2149 3657
2150void noinline 3658void noinline
2151ev_io_start (EV_P_ ev_io *w) 3659ev_io_start (EV_P_ ev_io *w) EV_THROW
2152{ 3660{
2153 int fd = w->fd; 3661 int fd = w->fd;
2154 3662
2155 if (expect_false (ev_is_active (w))) 3663 if (expect_false (ev_is_active (w)))
2156 return; 3664 return;
2157 3665
2158 assert (("ev_io_start called with negative fd", fd >= 0)); 3666 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2159 assert (("ev_io start called with illegal event mask", !(w->events & ~(EV_IOFDSET | EV_READ | EV_WRITE)))); 3667 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2160 3668
2161 EV_FREQUENT_CHECK; 3669 EV_FREQUENT_CHECK;
2162 3670
2163 ev_start (EV_A_ (W)w, 1); 3671 ev_start (EV_A_ (W)w, 1);
2164 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero); 3672 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2165 wlist_add (&anfds[fd].head, (WL)w); 3673 wlist_add (&anfds[fd].head, (WL)w);
2166 3674
3675 /* common bug, apparently */
3676 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3677
2167 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3678 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2168 w->events &= ~EV_IOFDSET; 3679 w->events &= ~EV__IOFDSET;
2169 3680
2170 EV_FREQUENT_CHECK; 3681 EV_FREQUENT_CHECK;
2171} 3682}
2172 3683
2173void noinline 3684void noinline
2174ev_io_stop (EV_P_ ev_io *w) 3685ev_io_stop (EV_P_ ev_io *w) EV_THROW
2175{ 3686{
2176 clear_pending (EV_A_ (W)w); 3687 clear_pending (EV_A_ (W)w);
2177 if (expect_false (!ev_is_active (w))) 3688 if (expect_false (!ev_is_active (w)))
2178 return; 3689 return;
2179 3690
2180 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3691 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2181 3692
2182 EV_FREQUENT_CHECK; 3693 EV_FREQUENT_CHECK;
2183 3694
2184 wlist_del (&anfds[w->fd].head, (WL)w); 3695 wlist_del (&anfds[w->fd].head, (WL)w);
2185 ev_stop (EV_A_ (W)w); 3696 ev_stop (EV_A_ (W)w);
2186 3697
2187 fd_change (EV_A_ w->fd, 1); 3698 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2188 3699
2189 EV_FREQUENT_CHECK; 3700 EV_FREQUENT_CHECK;
2190} 3701}
2191 3702
2192void noinline 3703void noinline
2193ev_timer_start (EV_P_ ev_timer *w) 3704ev_timer_start (EV_P_ ev_timer *w) EV_THROW
2194{ 3705{
2195 if (expect_false (ev_is_active (w))) 3706 if (expect_false (ev_is_active (w)))
2196 return; 3707 return;
2197 3708
2198 ev_at (w) += mn_now; 3709 ev_at (w) += mn_now;
2199 3710
2200 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3711 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2201 3712
2202 EV_FREQUENT_CHECK; 3713 EV_FREQUENT_CHECK;
2203 3714
2204 ++timercnt; 3715 ++timercnt;
2205 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1); 3716 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2208 ANHE_at_cache (timers [ev_active (w)]); 3719 ANHE_at_cache (timers [ev_active (w)]);
2209 upheap (timers, ev_active (w)); 3720 upheap (timers, ev_active (w));
2210 3721
2211 EV_FREQUENT_CHECK; 3722 EV_FREQUENT_CHECK;
2212 3723
2213 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 3724 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2214} 3725}
2215 3726
2216void noinline 3727void noinline
2217ev_timer_stop (EV_P_ ev_timer *w) 3728ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
2218{ 3729{
2219 clear_pending (EV_A_ (W)w); 3730 clear_pending (EV_A_ (W)w);
2220 if (expect_false (!ev_is_active (w))) 3731 if (expect_false (!ev_is_active (w)))
2221 return; 3732 return;
2222 3733
2223 EV_FREQUENT_CHECK; 3734 EV_FREQUENT_CHECK;
2224 3735
2225 { 3736 {
2226 int active = ev_active (w); 3737 int active = ev_active (w);
2227 3738
2228 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 3739 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2229 3740
2230 --timercnt; 3741 --timercnt;
2231 3742
2232 if (expect_true (active < timercnt + HEAP0)) 3743 if (expect_true (active < timercnt + HEAP0))
2233 { 3744 {
2234 timers [active] = timers [timercnt + HEAP0]; 3745 timers [active] = timers [timercnt + HEAP0];
2235 adjustheap (timers, timercnt, active); 3746 adjustheap (timers, timercnt, active);
2236 } 3747 }
2237 } 3748 }
2238 3749
2239 EV_FREQUENT_CHECK;
2240
2241 ev_at (w) -= mn_now; 3750 ev_at (w) -= mn_now;
2242 3751
2243 ev_stop (EV_A_ (W)w); 3752 ev_stop (EV_A_ (W)w);
3753
3754 EV_FREQUENT_CHECK;
2244} 3755}
2245 3756
2246void noinline 3757void noinline
2247ev_timer_again (EV_P_ ev_timer *w) 3758ev_timer_again (EV_P_ ev_timer *w) EV_THROW
2248{ 3759{
2249 EV_FREQUENT_CHECK; 3760 EV_FREQUENT_CHECK;
3761
3762 clear_pending (EV_A_ (W)w);
2250 3763
2251 if (ev_is_active (w)) 3764 if (ev_is_active (w))
2252 { 3765 {
2253 if (w->repeat) 3766 if (w->repeat)
2254 { 3767 {
2266 } 3779 }
2267 3780
2268 EV_FREQUENT_CHECK; 3781 EV_FREQUENT_CHECK;
2269} 3782}
2270 3783
3784ev_tstamp
3785ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3786{
3787 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3788}
3789
2271#if EV_PERIODIC_ENABLE 3790#if EV_PERIODIC_ENABLE
2272void noinline 3791void noinline
2273ev_periodic_start (EV_P_ ev_periodic *w) 3792ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
2274{ 3793{
2275 if (expect_false (ev_is_active (w))) 3794 if (expect_false (ev_is_active (w)))
2276 return; 3795 return;
2277 3796
2278 if (w->reschedule_cb) 3797 if (w->reschedule_cb)
2279 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3798 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2280 else if (w->interval) 3799 else if (w->interval)
2281 { 3800 {
2282 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3801 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2283 /* this formula differs from the one in periodic_reify because we do not always round up */ 3802 periodic_recalc (EV_A_ w);
2284 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2285 } 3803 }
2286 else 3804 else
2287 ev_at (w) = w->offset; 3805 ev_at (w) = w->offset;
2288 3806
2289 EV_FREQUENT_CHECK; 3807 EV_FREQUENT_CHECK;
2295 ANHE_at_cache (periodics [ev_active (w)]); 3813 ANHE_at_cache (periodics [ev_active (w)]);
2296 upheap (periodics, ev_active (w)); 3814 upheap (periodics, ev_active (w));
2297 3815
2298 EV_FREQUENT_CHECK; 3816 EV_FREQUENT_CHECK;
2299 3817
2300 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 3818 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2301} 3819}
2302 3820
2303void noinline 3821void noinline
2304ev_periodic_stop (EV_P_ ev_periodic *w) 3822ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
2305{ 3823{
2306 clear_pending (EV_A_ (W)w); 3824 clear_pending (EV_A_ (W)w);
2307 if (expect_false (!ev_is_active (w))) 3825 if (expect_false (!ev_is_active (w)))
2308 return; 3826 return;
2309 3827
2310 EV_FREQUENT_CHECK; 3828 EV_FREQUENT_CHECK;
2311 3829
2312 { 3830 {
2313 int active = ev_active (w); 3831 int active = ev_active (w);
2314 3832
2315 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 3833 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2316 3834
2317 --periodiccnt; 3835 --periodiccnt;
2318 3836
2319 if (expect_true (active < periodiccnt + HEAP0)) 3837 if (expect_true (active < periodiccnt + HEAP0))
2320 { 3838 {
2321 periodics [active] = periodics [periodiccnt + HEAP0]; 3839 periodics [active] = periodics [periodiccnt + HEAP0];
2322 adjustheap (periodics, periodiccnt, active); 3840 adjustheap (periodics, periodiccnt, active);
2323 } 3841 }
2324 } 3842 }
2325 3843
2326 EV_FREQUENT_CHECK;
2327
2328 ev_stop (EV_A_ (W)w); 3844 ev_stop (EV_A_ (W)w);
3845
3846 EV_FREQUENT_CHECK;
2329} 3847}
2330 3848
2331void noinline 3849void noinline
2332ev_periodic_again (EV_P_ ev_periodic *w) 3850ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
2333{ 3851{
2334 /* TODO: use adjustheap and recalculation */ 3852 /* TODO: use adjustheap and recalculation */
2335 ev_periodic_stop (EV_A_ w); 3853 ev_periodic_stop (EV_A_ w);
2336 ev_periodic_start (EV_A_ w); 3854 ev_periodic_start (EV_A_ w);
2337} 3855}
2339 3857
2340#ifndef SA_RESTART 3858#ifndef SA_RESTART
2341# define SA_RESTART 0 3859# define SA_RESTART 0
2342#endif 3860#endif
2343 3861
3862#if EV_SIGNAL_ENABLE
3863
2344void noinline 3864void noinline
2345ev_signal_start (EV_P_ ev_signal *w) 3865ev_signal_start (EV_P_ ev_signal *w) EV_THROW
2346{ 3866{
2347#if EV_MULTIPLICITY
2348 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2349#endif
2350 if (expect_false (ev_is_active (w))) 3867 if (expect_false (ev_is_active (w)))
2351 return; 3868 return;
2352 3869
2353 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3870 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2354 3871
2355 evpipe_init (EV_A); 3872#if EV_MULTIPLICITY
3873 assert (("libev: a signal must not be attached to two different loops",
3874 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2356 3875
2357 EV_FREQUENT_CHECK; 3876 signals [w->signum - 1].loop = EV_A;
3877 ECB_MEMORY_FENCE_RELEASE;
3878#endif
2358 3879
3880 EV_FREQUENT_CHECK;
3881
3882#if EV_USE_SIGNALFD
3883 if (sigfd == -2)
2359 { 3884 {
2360#ifndef _WIN32 3885 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2361 sigset_t full, prev; 3886 if (sigfd < 0 && errno == EINVAL)
2362 sigfillset (&full); 3887 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2363 sigprocmask (SIG_SETMASK, &full, &prev);
2364#endif
2365 3888
2366 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero); 3889 if (sigfd >= 0)
3890 {
3891 fd_intern (sigfd); /* doing it twice will not hurt */
2367 3892
2368#ifndef _WIN32 3893 sigemptyset (&sigfd_set);
2369 sigprocmask (SIG_SETMASK, &prev, 0); 3894
2370#endif 3895 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3896 ev_set_priority (&sigfd_w, EV_MAXPRI);
3897 ev_io_start (EV_A_ &sigfd_w);
3898 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3899 }
2371 } 3900 }
3901
3902 if (sigfd >= 0)
3903 {
3904 /* TODO: check .head */
3905 sigaddset (&sigfd_set, w->signum);
3906 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3907
3908 signalfd (sigfd, &sigfd_set, 0);
3909 }
3910#endif
2372 3911
2373 ev_start (EV_A_ (W)w, 1); 3912 ev_start (EV_A_ (W)w, 1);
2374 wlist_add (&signals [w->signum - 1].head, (WL)w); 3913 wlist_add (&signals [w->signum - 1].head, (WL)w);
2375 3914
2376 if (!((WL)w)->next) 3915 if (!((WL)w)->next)
3916# if EV_USE_SIGNALFD
3917 if (sigfd < 0) /*TODO*/
3918# endif
2377 { 3919 {
2378#if _WIN32 3920# ifdef _WIN32
3921 evpipe_init (EV_A);
3922
2379 signal (w->signum, ev_sighandler); 3923 signal (w->signum, ev_sighandler);
2380#else 3924# else
2381 struct sigaction sa; 3925 struct sigaction sa;
3926
3927 evpipe_init (EV_A);
3928
2382 sa.sa_handler = ev_sighandler; 3929 sa.sa_handler = ev_sighandler;
2383 sigfillset (&sa.sa_mask); 3930 sigfillset (&sa.sa_mask);
2384 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3931 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2385 sigaction (w->signum, &sa, 0); 3932 sigaction (w->signum, &sa, 0);
3933
3934 if (origflags & EVFLAG_NOSIGMASK)
3935 {
3936 sigemptyset (&sa.sa_mask);
3937 sigaddset (&sa.sa_mask, w->signum);
3938 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3939 }
2386#endif 3940#endif
2387 } 3941 }
2388 3942
2389 EV_FREQUENT_CHECK; 3943 EV_FREQUENT_CHECK;
2390} 3944}
2391 3945
2392void noinline 3946void noinline
2393ev_signal_stop (EV_P_ ev_signal *w) 3947ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
2394{ 3948{
2395 clear_pending (EV_A_ (W)w); 3949 clear_pending (EV_A_ (W)w);
2396 if (expect_false (!ev_is_active (w))) 3950 if (expect_false (!ev_is_active (w)))
2397 return; 3951 return;
2398 3952
2400 3954
2401 wlist_del (&signals [w->signum - 1].head, (WL)w); 3955 wlist_del (&signals [w->signum - 1].head, (WL)w);
2402 ev_stop (EV_A_ (W)w); 3956 ev_stop (EV_A_ (W)w);
2403 3957
2404 if (!signals [w->signum - 1].head) 3958 if (!signals [w->signum - 1].head)
3959 {
3960#if EV_MULTIPLICITY
3961 signals [w->signum - 1].loop = 0; /* unattach from signal */
3962#endif
3963#if EV_USE_SIGNALFD
3964 if (sigfd >= 0)
3965 {
3966 sigset_t ss;
3967
3968 sigemptyset (&ss);
3969 sigaddset (&ss, w->signum);
3970 sigdelset (&sigfd_set, w->signum);
3971
3972 signalfd (sigfd, &sigfd_set, 0);
3973 sigprocmask (SIG_UNBLOCK, &ss, 0);
3974 }
3975 else
3976#endif
2405 signal (w->signum, SIG_DFL); 3977 signal (w->signum, SIG_DFL);
3978 }
2406 3979
2407 EV_FREQUENT_CHECK; 3980 EV_FREQUENT_CHECK;
2408} 3981}
3982
3983#endif
3984
3985#if EV_CHILD_ENABLE
2409 3986
2410void 3987void
2411ev_child_start (EV_P_ ev_child *w) 3988ev_child_start (EV_P_ ev_child *w) EV_THROW
2412{ 3989{
2413#if EV_MULTIPLICITY 3990#if EV_MULTIPLICITY
2414 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3991 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2415#endif 3992#endif
2416 if (expect_false (ev_is_active (w))) 3993 if (expect_false (ev_is_active (w)))
2417 return; 3994 return;
2418 3995
2419 EV_FREQUENT_CHECK; 3996 EV_FREQUENT_CHECK;
2420 3997
2421 ev_start (EV_A_ (W)w, 1); 3998 ev_start (EV_A_ (W)w, 1);
2422 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3999 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2423 4000
2424 EV_FREQUENT_CHECK; 4001 EV_FREQUENT_CHECK;
2425} 4002}
2426 4003
2427void 4004void
2428ev_child_stop (EV_P_ ev_child *w) 4005ev_child_stop (EV_P_ ev_child *w) EV_THROW
2429{ 4006{
2430 clear_pending (EV_A_ (W)w); 4007 clear_pending (EV_A_ (W)w);
2431 if (expect_false (!ev_is_active (w))) 4008 if (expect_false (!ev_is_active (w)))
2432 return; 4009 return;
2433 4010
2434 EV_FREQUENT_CHECK; 4011 EV_FREQUENT_CHECK;
2435 4012
2436 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4013 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2437 ev_stop (EV_A_ (W)w); 4014 ev_stop (EV_A_ (W)w);
2438 4015
2439 EV_FREQUENT_CHECK; 4016 EV_FREQUENT_CHECK;
2440} 4017}
4018
4019#endif
2441 4020
2442#if EV_STAT_ENABLE 4021#if EV_STAT_ENABLE
2443 4022
2444# ifdef _WIN32 4023# ifdef _WIN32
2445# undef lstat 4024# undef lstat
2451#define MIN_STAT_INTERVAL 0.1074891 4030#define MIN_STAT_INTERVAL 0.1074891
2452 4031
2453static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 4032static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2454 4033
2455#if EV_USE_INOTIFY 4034#if EV_USE_INOTIFY
2456# define EV_INOTIFY_BUFSIZE 8192 4035
4036/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4037# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2457 4038
2458static void noinline 4039static void noinline
2459infy_add (EV_P_ ev_stat *w) 4040infy_add (EV_P_ ev_stat *w)
2460{ 4041{
2461 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 4042 w->wd = inotify_add_watch (fs_fd, w->path,
4043 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4044 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4045 | IN_DONT_FOLLOW | IN_MASK_ADD);
2462 4046
2463 if (w->wd < 0) 4047 if (w->wd >= 0)
4048 {
4049 struct statfs sfs;
4050
4051 /* now local changes will be tracked by inotify, but remote changes won't */
4052 /* unless the filesystem is known to be local, we therefore still poll */
4053 /* also do poll on <2.6.25, but with normal frequency */
4054
4055 if (!fs_2625)
4056 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4057 else if (!statfs (w->path, &sfs)
4058 && (sfs.f_type == 0x1373 /* devfs */
4059 || sfs.f_type == 0x4006 /* fat */
4060 || sfs.f_type == 0x4d44 /* msdos */
4061 || sfs.f_type == 0xEF53 /* ext2/3 */
4062 || sfs.f_type == 0x72b6 /* jffs2 */
4063 || sfs.f_type == 0x858458f6 /* ramfs */
4064 || sfs.f_type == 0x5346544e /* ntfs */
4065 || sfs.f_type == 0x3153464a /* jfs */
4066 || sfs.f_type == 0x9123683e /* btrfs */
4067 || sfs.f_type == 0x52654973 /* reiser3 */
4068 || sfs.f_type == 0x01021994 /* tmpfs */
4069 || sfs.f_type == 0x58465342 /* xfs */))
4070 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4071 else
4072 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2464 { 4073 }
4074 else
4075 {
4076 /* can't use inotify, continue to stat */
2465 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL; 4077 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2466 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2467 4078
2468 /* monitor some parent directory for speedup hints */ 4079 /* if path is not there, monitor some parent directory for speedup hints */
2469 /* note that exceeding the hardcoded path limit is not a correctness issue, */ 4080 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2470 /* but an efficiency issue only */ 4081 /* but an efficiency issue only */
2471 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 4082 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2472 { 4083 {
2473 char path [4096]; 4084 char path [4096];
2483 if (!pend || pend == path) 4094 if (!pend || pend == path)
2484 break; 4095 break;
2485 4096
2486 *pend = 0; 4097 *pend = 0;
2487 w->wd = inotify_add_watch (fs_fd, path, mask); 4098 w->wd = inotify_add_watch (fs_fd, path, mask);
2488 } 4099 }
2489 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 4100 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2490 } 4101 }
2491 } 4102 }
2492 4103
2493 if (w->wd >= 0) 4104 if (w->wd >= 0)
2494 {
2495 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 4105 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2496 4106
2497 /* now local changes will be tracked by inotify, but remote changes won't */ 4107 /* now re-arm timer, if required */
2498 /* unless the filesystem it known to be local, we therefore still poll */ 4108 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2499 /* also do poll on <2.6.25, but with normal frequency */
2500 struct statfs sfs;
2501
2502 if (fs_2625 && !statfs (w->path, &sfs))
2503 if (sfs.f_type == 0x1373 /* devfs */
2504 || sfs.f_type == 0xEF53 /* ext2/3 */
2505 || sfs.f_type == 0x3153464a /* jfs */
2506 || sfs.f_type == 0x52654973 /* reiser3 */
2507 || sfs.f_type == 0x01021994 /* tempfs */
2508 || sfs.f_type == 0x58465342 /* xfs */)
2509 return;
2510
2511 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2512 ev_timer_again (EV_A_ &w->timer); 4109 ev_timer_again (EV_A_ &w->timer);
2513 } 4110 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2514} 4111}
2515 4112
2516static void noinline 4113static void noinline
2517infy_del (EV_P_ ev_stat *w) 4114infy_del (EV_P_ ev_stat *w)
2518{ 4115{
2521 4118
2522 if (wd < 0) 4119 if (wd < 0)
2523 return; 4120 return;
2524 4121
2525 w->wd = -2; 4122 w->wd = -2;
2526 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 4123 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2527 wlist_del (&fs_hash [slot].head, (WL)w); 4124 wlist_del (&fs_hash [slot].head, (WL)w);
2528 4125
2529 /* remove this watcher, if others are watching it, they will rearm */ 4126 /* remove this watcher, if others are watching it, they will rearm */
2530 inotify_rm_watch (fs_fd, wd); 4127 inotify_rm_watch (fs_fd, wd);
2531} 4128}
2533static void noinline 4130static void noinline
2534infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 4131infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2535{ 4132{
2536 if (slot < 0) 4133 if (slot < 0)
2537 /* overflow, need to check for all hash slots */ 4134 /* overflow, need to check for all hash slots */
2538 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4135 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2539 infy_wd (EV_A_ slot, wd, ev); 4136 infy_wd (EV_A_ slot, wd, ev);
2540 else 4137 else
2541 { 4138 {
2542 WL w_; 4139 WL w_;
2543 4140
2544 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 4141 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2545 { 4142 {
2546 ev_stat *w = (ev_stat *)w_; 4143 ev_stat *w = (ev_stat *)w_;
2547 w_ = w_->next; /* lets us remove this watcher and all before it */ 4144 w_ = w_->next; /* lets us remove this watcher and all before it */
2548 4145
2549 if (w->wd == wd || wd == -1) 4146 if (w->wd == wd || wd == -1)
2550 { 4147 {
2551 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 4148 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2552 { 4149 {
2553 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 4150 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2554 w->wd = -1; 4151 w->wd = -1;
2555 infy_add (EV_A_ w); /* re-add, no matter what */ 4152 infy_add (EV_A_ w); /* re-add, no matter what */
2556 } 4153 }
2557 4154
2558 stat_timer_cb (EV_A_ &w->timer, 0); 4155 stat_timer_cb (EV_A_ &w->timer, 0);
2563 4160
2564static void 4161static void
2565infy_cb (EV_P_ ev_io *w, int revents) 4162infy_cb (EV_P_ ev_io *w, int revents)
2566{ 4163{
2567 char buf [EV_INOTIFY_BUFSIZE]; 4164 char buf [EV_INOTIFY_BUFSIZE];
2568 struct inotify_event *ev = (struct inotify_event *)buf;
2569 int ofs; 4165 int ofs;
2570 int len = read (fs_fd, buf, sizeof (buf)); 4166 int len = read (fs_fd, buf, sizeof (buf));
2571 4167
2572 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 4168 for (ofs = 0; ofs < len; )
4169 {
4170 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2573 infy_wd (EV_A_ ev->wd, ev->wd, ev); 4171 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4172 ofs += sizeof (struct inotify_event) + ev->len;
4173 }
2574} 4174}
2575 4175
2576void inline_size 4176inline_size void ecb_cold
2577check_2625 (EV_P) 4177ev_check_2625 (EV_P)
2578{ 4178{
2579 /* kernels < 2.6.25 are borked 4179 /* kernels < 2.6.25 are borked
2580 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html 4180 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2581 */ 4181 */
2582 struct utsname buf; 4182 if (ev_linux_version () < 0x020619)
2583 int major, minor, micro;
2584
2585 if (uname (&buf))
2586 return; 4183 return;
2587 4184
2588 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2589 return;
2590
2591 if (major < 2
2592 || (major == 2 && minor < 6)
2593 || (major == 2 && minor == 6 && micro < 25))
2594 return;
2595
2596 fs_2625 = 1; 4185 fs_2625 = 1;
2597} 4186}
2598 4187
2599void inline_size 4188inline_size int
4189infy_newfd (void)
4190{
4191#if defined IN_CLOEXEC && defined IN_NONBLOCK
4192 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4193 if (fd >= 0)
4194 return fd;
4195#endif
4196 return inotify_init ();
4197}
4198
4199inline_size void
2600infy_init (EV_P) 4200infy_init (EV_P)
2601{ 4201{
2602 if (fs_fd != -2) 4202 if (fs_fd != -2)
2603 return; 4203 return;
2604 4204
2605 fs_fd = -1; 4205 fs_fd = -1;
2606 4206
2607 check_2625 (EV_A); 4207 ev_check_2625 (EV_A);
2608 4208
2609 fs_fd = inotify_init (); 4209 fs_fd = infy_newfd ();
2610 4210
2611 if (fs_fd >= 0) 4211 if (fs_fd >= 0)
2612 { 4212 {
4213 fd_intern (fs_fd);
2613 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 4214 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2614 ev_set_priority (&fs_w, EV_MAXPRI); 4215 ev_set_priority (&fs_w, EV_MAXPRI);
2615 ev_io_start (EV_A_ &fs_w); 4216 ev_io_start (EV_A_ &fs_w);
4217 ev_unref (EV_A);
2616 } 4218 }
2617} 4219}
2618 4220
2619void inline_size 4221inline_size void
2620infy_fork (EV_P) 4222infy_fork (EV_P)
2621{ 4223{
2622 int slot; 4224 int slot;
2623 4225
2624 if (fs_fd < 0) 4226 if (fs_fd < 0)
2625 return; 4227 return;
2626 4228
4229 ev_ref (EV_A);
4230 ev_io_stop (EV_A_ &fs_w);
2627 close (fs_fd); 4231 close (fs_fd);
2628 fs_fd = inotify_init (); 4232 fs_fd = infy_newfd ();
2629 4233
4234 if (fs_fd >= 0)
4235 {
4236 fd_intern (fs_fd);
4237 ev_io_set (&fs_w, fs_fd, EV_READ);
4238 ev_io_start (EV_A_ &fs_w);
4239 ev_unref (EV_A);
4240 }
4241
2630 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4242 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2631 { 4243 {
2632 WL w_ = fs_hash [slot].head; 4244 WL w_ = fs_hash [slot].head;
2633 fs_hash [slot].head = 0; 4245 fs_hash [slot].head = 0;
2634 4246
2635 while (w_) 4247 while (w_)
2640 w->wd = -1; 4252 w->wd = -1;
2641 4253
2642 if (fs_fd >= 0) 4254 if (fs_fd >= 0)
2643 infy_add (EV_A_ w); /* re-add, no matter what */ 4255 infy_add (EV_A_ w); /* re-add, no matter what */
2644 else 4256 else
4257 {
4258 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4259 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2645 ev_timer_again (EV_A_ &w->timer); 4260 ev_timer_again (EV_A_ &w->timer);
4261 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4262 }
2646 } 4263 }
2647 } 4264 }
2648} 4265}
2649 4266
2650#endif 4267#endif
2654#else 4271#else
2655# define EV_LSTAT(p,b) lstat (p, b) 4272# define EV_LSTAT(p,b) lstat (p, b)
2656#endif 4273#endif
2657 4274
2658void 4275void
2659ev_stat_stat (EV_P_ ev_stat *w) 4276ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
2660{ 4277{
2661 if (lstat (w->path, &w->attr) < 0) 4278 if (lstat (w->path, &w->attr) < 0)
2662 w->attr.st_nlink = 0; 4279 w->attr.st_nlink = 0;
2663 else if (!w->attr.st_nlink) 4280 else if (!w->attr.st_nlink)
2664 w->attr.st_nlink = 1; 4281 w->attr.st_nlink = 1;
2667static void noinline 4284static void noinline
2668stat_timer_cb (EV_P_ ev_timer *w_, int revents) 4285stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2669{ 4286{
2670 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 4287 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2671 4288
2672 /* we copy this here each the time so that */ 4289 ev_statdata prev = w->attr;
2673 /* prev has the old value when the callback gets invoked */
2674 w->prev = w->attr;
2675 ev_stat_stat (EV_A_ w); 4290 ev_stat_stat (EV_A_ w);
2676 4291
2677 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 4292 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2678 if ( 4293 if (
2679 w->prev.st_dev != w->attr.st_dev 4294 prev.st_dev != w->attr.st_dev
2680 || w->prev.st_ino != w->attr.st_ino 4295 || prev.st_ino != w->attr.st_ino
2681 || w->prev.st_mode != w->attr.st_mode 4296 || prev.st_mode != w->attr.st_mode
2682 || w->prev.st_nlink != w->attr.st_nlink 4297 || prev.st_nlink != w->attr.st_nlink
2683 || w->prev.st_uid != w->attr.st_uid 4298 || prev.st_uid != w->attr.st_uid
2684 || w->prev.st_gid != w->attr.st_gid 4299 || prev.st_gid != w->attr.st_gid
2685 || w->prev.st_rdev != w->attr.st_rdev 4300 || prev.st_rdev != w->attr.st_rdev
2686 || w->prev.st_size != w->attr.st_size 4301 || prev.st_size != w->attr.st_size
2687 || w->prev.st_atime != w->attr.st_atime 4302 || prev.st_atime != w->attr.st_atime
2688 || w->prev.st_mtime != w->attr.st_mtime 4303 || prev.st_mtime != w->attr.st_mtime
2689 || w->prev.st_ctime != w->attr.st_ctime 4304 || prev.st_ctime != w->attr.st_ctime
2690 ) { 4305 ) {
4306 /* we only update w->prev on actual differences */
4307 /* in case we test more often than invoke the callback, */
4308 /* to ensure that prev is always different to attr */
4309 w->prev = prev;
4310
2691 #if EV_USE_INOTIFY 4311 #if EV_USE_INOTIFY
2692 if (fs_fd >= 0) 4312 if (fs_fd >= 0)
2693 { 4313 {
2694 infy_del (EV_A_ w); 4314 infy_del (EV_A_ w);
2695 infy_add (EV_A_ w); 4315 infy_add (EV_A_ w);
2700 ev_feed_event (EV_A_ w, EV_STAT); 4320 ev_feed_event (EV_A_ w, EV_STAT);
2701 } 4321 }
2702} 4322}
2703 4323
2704void 4324void
2705ev_stat_start (EV_P_ ev_stat *w) 4325ev_stat_start (EV_P_ ev_stat *w) EV_THROW
2706{ 4326{
2707 if (expect_false (ev_is_active (w))) 4327 if (expect_false (ev_is_active (w)))
2708 return; 4328 return;
2709 4329
2710 ev_stat_stat (EV_A_ w); 4330 ev_stat_stat (EV_A_ w);
2720 4340
2721 if (fs_fd >= 0) 4341 if (fs_fd >= 0)
2722 infy_add (EV_A_ w); 4342 infy_add (EV_A_ w);
2723 else 4343 else
2724#endif 4344#endif
4345 {
2725 ev_timer_again (EV_A_ &w->timer); 4346 ev_timer_again (EV_A_ &w->timer);
4347 ev_unref (EV_A);
4348 }
2726 4349
2727 ev_start (EV_A_ (W)w, 1); 4350 ev_start (EV_A_ (W)w, 1);
2728 4351
2729 EV_FREQUENT_CHECK; 4352 EV_FREQUENT_CHECK;
2730} 4353}
2731 4354
2732void 4355void
2733ev_stat_stop (EV_P_ ev_stat *w) 4356ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
2734{ 4357{
2735 clear_pending (EV_A_ (W)w); 4358 clear_pending (EV_A_ (W)w);
2736 if (expect_false (!ev_is_active (w))) 4359 if (expect_false (!ev_is_active (w)))
2737 return; 4360 return;
2738 4361
2739 EV_FREQUENT_CHECK; 4362 EV_FREQUENT_CHECK;
2740 4363
2741#if EV_USE_INOTIFY 4364#if EV_USE_INOTIFY
2742 infy_del (EV_A_ w); 4365 infy_del (EV_A_ w);
2743#endif 4366#endif
4367
4368 if (ev_is_active (&w->timer))
4369 {
4370 ev_ref (EV_A);
2744 ev_timer_stop (EV_A_ &w->timer); 4371 ev_timer_stop (EV_A_ &w->timer);
4372 }
2745 4373
2746 ev_stop (EV_A_ (W)w); 4374 ev_stop (EV_A_ (W)w);
2747 4375
2748 EV_FREQUENT_CHECK; 4376 EV_FREQUENT_CHECK;
2749} 4377}
2750#endif 4378#endif
2751 4379
2752#if EV_IDLE_ENABLE 4380#if EV_IDLE_ENABLE
2753void 4381void
2754ev_idle_start (EV_P_ ev_idle *w) 4382ev_idle_start (EV_P_ ev_idle *w) EV_THROW
2755{ 4383{
2756 if (expect_false (ev_is_active (w))) 4384 if (expect_false (ev_is_active (w)))
2757 return; 4385 return;
2758 4386
2759 pri_adjust (EV_A_ (W)w); 4387 pri_adjust (EV_A_ (W)w);
2772 4400
2773 EV_FREQUENT_CHECK; 4401 EV_FREQUENT_CHECK;
2774} 4402}
2775 4403
2776void 4404void
2777ev_idle_stop (EV_P_ ev_idle *w) 4405ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
2778{ 4406{
2779 clear_pending (EV_A_ (W)w); 4407 clear_pending (EV_A_ (W)w);
2780 if (expect_false (!ev_is_active (w))) 4408 if (expect_false (!ev_is_active (w)))
2781 return; 4409 return;
2782 4410
2794 4422
2795 EV_FREQUENT_CHECK; 4423 EV_FREQUENT_CHECK;
2796} 4424}
2797#endif 4425#endif
2798 4426
4427#if EV_PREPARE_ENABLE
2799void 4428void
2800ev_prepare_start (EV_P_ ev_prepare *w) 4429ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
2801{ 4430{
2802 if (expect_false (ev_is_active (w))) 4431 if (expect_false (ev_is_active (w)))
2803 return; 4432 return;
2804 4433
2805 EV_FREQUENT_CHECK; 4434 EV_FREQUENT_CHECK;
2810 4439
2811 EV_FREQUENT_CHECK; 4440 EV_FREQUENT_CHECK;
2812} 4441}
2813 4442
2814void 4443void
2815ev_prepare_stop (EV_P_ ev_prepare *w) 4444ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
2816{ 4445{
2817 clear_pending (EV_A_ (W)w); 4446 clear_pending (EV_A_ (W)w);
2818 if (expect_false (!ev_is_active (w))) 4447 if (expect_false (!ev_is_active (w)))
2819 return; 4448 return;
2820 4449
2829 4458
2830 ev_stop (EV_A_ (W)w); 4459 ev_stop (EV_A_ (W)w);
2831 4460
2832 EV_FREQUENT_CHECK; 4461 EV_FREQUENT_CHECK;
2833} 4462}
4463#endif
2834 4464
4465#if EV_CHECK_ENABLE
2835void 4466void
2836ev_check_start (EV_P_ ev_check *w) 4467ev_check_start (EV_P_ ev_check *w) EV_THROW
2837{ 4468{
2838 if (expect_false (ev_is_active (w))) 4469 if (expect_false (ev_is_active (w)))
2839 return; 4470 return;
2840 4471
2841 EV_FREQUENT_CHECK; 4472 EV_FREQUENT_CHECK;
2846 4477
2847 EV_FREQUENT_CHECK; 4478 EV_FREQUENT_CHECK;
2848} 4479}
2849 4480
2850void 4481void
2851ev_check_stop (EV_P_ ev_check *w) 4482ev_check_stop (EV_P_ ev_check *w) EV_THROW
2852{ 4483{
2853 clear_pending (EV_A_ (W)w); 4484 clear_pending (EV_A_ (W)w);
2854 if (expect_false (!ev_is_active (w))) 4485 if (expect_false (!ev_is_active (w)))
2855 return; 4486 return;
2856 4487
2865 4496
2866 ev_stop (EV_A_ (W)w); 4497 ev_stop (EV_A_ (W)w);
2867 4498
2868 EV_FREQUENT_CHECK; 4499 EV_FREQUENT_CHECK;
2869} 4500}
4501#endif
2870 4502
2871#if EV_EMBED_ENABLE 4503#if EV_EMBED_ENABLE
2872void noinline 4504void noinline
2873ev_embed_sweep (EV_P_ ev_embed *w) 4505ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
2874{ 4506{
2875 ev_loop (w->other, EVLOOP_NONBLOCK); 4507 ev_run (w->other, EVRUN_NOWAIT);
2876} 4508}
2877 4509
2878static void 4510static void
2879embed_io_cb (EV_P_ ev_io *io, int revents) 4511embed_io_cb (EV_P_ ev_io *io, int revents)
2880{ 4512{
2881 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4513 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2882 4514
2883 if (ev_cb (w)) 4515 if (ev_cb (w))
2884 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4516 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2885 else 4517 else
2886 ev_loop (w->other, EVLOOP_NONBLOCK); 4518 ev_run (w->other, EVRUN_NOWAIT);
2887} 4519}
2888 4520
2889static void 4521static void
2890embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4522embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2891{ 4523{
2892 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4524 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2893 4525
2894 { 4526 {
2895 struct ev_loop *loop = w->other; 4527 EV_P = w->other;
2896 4528
2897 while (fdchangecnt) 4529 while (fdchangecnt)
2898 { 4530 {
2899 fd_reify (EV_A); 4531 fd_reify (EV_A);
2900 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4532 ev_run (EV_A_ EVRUN_NOWAIT);
2901 } 4533 }
2902 } 4534 }
2903} 4535}
2904 4536
2905static void 4537static void
2908 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork)); 4540 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2909 4541
2910 ev_embed_stop (EV_A_ w); 4542 ev_embed_stop (EV_A_ w);
2911 4543
2912 { 4544 {
2913 struct ev_loop *loop = w->other; 4545 EV_P = w->other;
2914 4546
2915 ev_loop_fork (EV_A); 4547 ev_loop_fork (EV_A);
2916 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4548 ev_run (EV_A_ EVRUN_NOWAIT);
2917 } 4549 }
2918 4550
2919 ev_embed_start (EV_A_ w); 4551 ev_embed_start (EV_A_ w);
2920} 4552}
2921 4553
2926 ev_idle_stop (EV_A_ idle); 4558 ev_idle_stop (EV_A_ idle);
2927} 4559}
2928#endif 4560#endif
2929 4561
2930void 4562void
2931ev_embed_start (EV_P_ ev_embed *w) 4563ev_embed_start (EV_P_ ev_embed *w) EV_THROW
2932{ 4564{
2933 if (expect_false (ev_is_active (w))) 4565 if (expect_false (ev_is_active (w)))
2934 return; 4566 return;
2935 4567
2936 { 4568 {
2937 struct ev_loop *loop = w->other; 4569 EV_P = w->other;
2938 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4570 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2939 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4571 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2940 } 4572 }
2941 4573
2942 EV_FREQUENT_CHECK; 4574 EV_FREQUENT_CHECK;
2943 4575
2957 4589
2958 EV_FREQUENT_CHECK; 4590 EV_FREQUENT_CHECK;
2959} 4591}
2960 4592
2961void 4593void
2962ev_embed_stop (EV_P_ ev_embed *w) 4594ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
2963{ 4595{
2964 clear_pending (EV_A_ (W)w); 4596 clear_pending (EV_A_ (W)w);
2965 if (expect_false (!ev_is_active (w))) 4597 if (expect_false (!ev_is_active (w)))
2966 return; 4598 return;
2967 4599
2969 4601
2970 ev_io_stop (EV_A_ &w->io); 4602 ev_io_stop (EV_A_ &w->io);
2971 ev_prepare_stop (EV_A_ &w->prepare); 4603 ev_prepare_stop (EV_A_ &w->prepare);
2972 ev_fork_stop (EV_A_ &w->fork); 4604 ev_fork_stop (EV_A_ &w->fork);
2973 4605
4606 ev_stop (EV_A_ (W)w);
4607
2974 EV_FREQUENT_CHECK; 4608 EV_FREQUENT_CHECK;
2975} 4609}
2976#endif 4610#endif
2977 4611
2978#if EV_FORK_ENABLE 4612#if EV_FORK_ENABLE
2979void 4613void
2980ev_fork_start (EV_P_ ev_fork *w) 4614ev_fork_start (EV_P_ ev_fork *w) EV_THROW
2981{ 4615{
2982 if (expect_false (ev_is_active (w))) 4616 if (expect_false (ev_is_active (w)))
2983 return; 4617 return;
2984 4618
2985 EV_FREQUENT_CHECK; 4619 EV_FREQUENT_CHECK;
2990 4624
2991 EV_FREQUENT_CHECK; 4625 EV_FREQUENT_CHECK;
2992} 4626}
2993 4627
2994void 4628void
2995ev_fork_stop (EV_P_ ev_fork *w) 4629ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
2996{ 4630{
2997 clear_pending (EV_A_ (W)w); 4631 clear_pending (EV_A_ (W)w);
2998 if (expect_false (!ev_is_active (w))) 4632 if (expect_false (!ev_is_active (w)))
2999 return; 4633 return;
3000 4634
3011 4645
3012 EV_FREQUENT_CHECK; 4646 EV_FREQUENT_CHECK;
3013} 4647}
3014#endif 4648#endif
3015 4649
4650#if EV_CLEANUP_ENABLE
4651void
4652ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4653{
4654 if (expect_false (ev_is_active (w)))
4655 return;
4656
4657 EV_FREQUENT_CHECK;
4658
4659 ev_start (EV_A_ (W)w, ++cleanupcnt);
4660 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4661 cleanups [cleanupcnt - 1] = w;
4662
4663 /* cleanup watchers should never keep a refcount on the loop */
4664 ev_unref (EV_A);
4665 EV_FREQUENT_CHECK;
4666}
4667
4668void
4669ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4670{
4671 clear_pending (EV_A_ (W)w);
4672 if (expect_false (!ev_is_active (w)))
4673 return;
4674
4675 EV_FREQUENT_CHECK;
4676 ev_ref (EV_A);
4677
4678 {
4679 int active = ev_active (w);
4680
4681 cleanups [active - 1] = cleanups [--cleanupcnt];
4682 ev_active (cleanups [active - 1]) = active;
4683 }
4684
4685 ev_stop (EV_A_ (W)w);
4686
4687 EV_FREQUENT_CHECK;
4688}
4689#endif
4690
3016#if EV_ASYNC_ENABLE 4691#if EV_ASYNC_ENABLE
3017void 4692void
3018ev_async_start (EV_P_ ev_async *w) 4693ev_async_start (EV_P_ ev_async *w) EV_THROW
3019{ 4694{
3020 if (expect_false (ev_is_active (w))) 4695 if (expect_false (ev_is_active (w)))
3021 return; 4696 return;
4697
4698 w->sent = 0;
3022 4699
3023 evpipe_init (EV_A); 4700 evpipe_init (EV_A);
3024 4701
3025 EV_FREQUENT_CHECK; 4702 EV_FREQUENT_CHECK;
3026 4703
3030 4707
3031 EV_FREQUENT_CHECK; 4708 EV_FREQUENT_CHECK;
3032} 4709}
3033 4710
3034void 4711void
3035ev_async_stop (EV_P_ ev_async *w) 4712ev_async_stop (EV_P_ ev_async *w) EV_THROW
3036{ 4713{
3037 clear_pending (EV_A_ (W)w); 4714 clear_pending (EV_A_ (W)w);
3038 if (expect_false (!ev_is_active (w))) 4715 if (expect_false (!ev_is_active (w)))
3039 return; 4716 return;
3040 4717
3051 4728
3052 EV_FREQUENT_CHECK; 4729 EV_FREQUENT_CHECK;
3053} 4730}
3054 4731
3055void 4732void
3056ev_async_send (EV_P_ ev_async *w) 4733ev_async_send (EV_P_ ev_async *w) EV_THROW
3057{ 4734{
3058 w->sent = 1; 4735 w->sent = 1;
3059 evpipe_write (EV_A_ &gotasync); 4736 evpipe_write (EV_A_ &async_pending);
3060} 4737}
3061#endif 4738#endif
3062 4739
3063/*****************************************************************************/ 4740/*****************************************************************************/
3064 4741
3098 4775
3099 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io)); 4776 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3100} 4777}
3101 4778
3102void 4779void
3103ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4780ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
3104{ 4781{
3105 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4782 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3106 4783
3107 if (expect_false (!once)) 4784 if (expect_false (!once))
3108 { 4785 {
3109 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4786 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
3110 return; 4787 return;
3111 } 4788 }
3112 4789
3113 once->cb = cb; 4790 once->cb = cb;
3114 once->arg = arg; 4791 once->arg = arg;
3126 ev_timer_set (&once->to, timeout, 0.); 4803 ev_timer_set (&once->to, timeout, 0.);
3127 ev_timer_start (EV_A_ &once->to); 4804 ev_timer_start (EV_A_ &once->to);
3128 } 4805 }
3129} 4806}
3130 4807
4808/*****************************************************************************/
4809
4810#if EV_WALK_ENABLE
4811void ecb_cold
4812ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4813{
4814 int i, j;
4815 ev_watcher_list *wl, *wn;
4816
4817 if (types & (EV_IO | EV_EMBED))
4818 for (i = 0; i < anfdmax; ++i)
4819 for (wl = anfds [i].head; wl; )
4820 {
4821 wn = wl->next;
4822
4823#if EV_EMBED_ENABLE
4824 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4825 {
4826 if (types & EV_EMBED)
4827 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4828 }
4829 else
4830#endif
4831#if EV_USE_INOTIFY
4832 if (ev_cb ((ev_io *)wl) == infy_cb)
4833 ;
4834 else
4835#endif
4836 if ((ev_io *)wl != &pipe_w)
4837 if (types & EV_IO)
4838 cb (EV_A_ EV_IO, wl);
4839
4840 wl = wn;
4841 }
4842
4843 if (types & (EV_TIMER | EV_STAT))
4844 for (i = timercnt + HEAP0; i-- > HEAP0; )
4845#if EV_STAT_ENABLE
4846 /*TODO: timer is not always active*/
4847 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4848 {
4849 if (types & EV_STAT)
4850 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4851 }
4852 else
4853#endif
4854 if (types & EV_TIMER)
4855 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4856
4857#if EV_PERIODIC_ENABLE
4858 if (types & EV_PERIODIC)
4859 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4860 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4861#endif
4862
4863#if EV_IDLE_ENABLE
4864 if (types & EV_IDLE)
4865 for (j = NUMPRI; j--; )
4866 for (i = idlecnt [j]; i--; )
4867 cb (EV_A_ EV_IDLE, idles [j][i]);
4868#endif
4869
4870#if EV_FORK_ENABLE
4871 if (types & EV_FORK)
4872 for (i = forkcnt; i--; )
4873 if (ev_cb (forks [i]) != embed_fork_cb)
4874 cb (EV_A_ EV_FORK, forks [i]);
4875#endif
4876
4877#if EV_ASYNC_ENABLE
4878 if (types & EV_ASYNC)
4879 for (i = asynccnt; i--; )
4880 cb (EV_A_ EV_ASYNC, asyncs [i]);
4881#endif
4882
4883#if EV_PREPARE_ENABLE
4884 if (types & EV_PREPARE)
4885 for (i = preparecnt; i--; )
4886# if EV_EMBED_ENABLE
4887 if (ev_cb (prepares [i]) != embed_prepare_cb)
4888# endif
4889 cb (EV_A_ EV_PREPARE, prepares [i]);
4890#endif
4891
4892#if EV_CHECK_ENABLE
4893 if (types & EV_CHECK)
4894 for (i = checkcnt; i--; )
4895 cb (EV_A_ EV_CHECK, checks [i]);
4896#endif
4897
4898#if EV_SIGNAL_ENABLE
4899 if (types & EV_SIGNAL)
4900 for (i = 0; i < EV_NSIG - 1; ++i)
4901 for (wl = signals [i].head; wl; )
4902 {
4903 wn = wl->next;
4904 cb (EV_A_ EV_SIGNAL, wl);
4905 wl = wn;
4906 }
4907#endif
4908
4909#if EV_CHILD_ENABLE
4910 if (types & EV_CHILD)
4911 for (i = (EV_PID_HASHSIZE); i--; )
4912 for (wl = childs [i]; wl; )
4913 {
4914 wn = wl->next;
4915 cb (EV_A_ EV_CHILD, wl);
4916 wl = wn;
4917 }
4918#endif
4919/* EV_STAT 0x00001000 /* stat data changed */
4920/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4921}
4922#endif
4923
3131#if EV_MULTIPLICITY 4924#if EV_MULTIPLICITY
3132 #include "ev_wrap.h" 4925 #include "ev_wrap.h"
3133#endif 4926#endif
3134 4927
3135#ifdef __cplusplus
3136}
3137#endif
3138

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines