ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.155 by root, Wed Nov 28 17:32:24 2007 UTC vs.
Revision 1.475 by sf-exg, Wed Apr 1 06:57:41 2015 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012,2013 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 43# include EV_CONFIG_H
39# else 44# else
40# include "config.h" 45# include "config.h"
41# endif 46# endif
42 47
48# if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52# endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
43# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
46# endif 71# endif
47# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
49# endif 74# endif
50# else 75# else
51# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
53# endif 78# endif
54# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
56# endif 81# endif
57# endif 82# endif
58 83
84# if HAVE_NANOSLEEP
59# ifndef EV_USE_SELECT 85# ifndef EV_USE_NANOSLEEP
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif 87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
65# endif 91# endif
66 92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
67# ifndef EV_USE_POLL 94# ifndef EV_USE_SELECT
68# if HAVE_POLL && HAVE_POLL_H 95# define EV_USE_SELECT EV_FEATURE_BACKENDS
69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
100# endif
101
102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
108# define EV_USE_POLL 0
73# endif 109# endif
74 110
75# ifndef EV_USE_EPOLL
76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
77# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
78# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
79# define EV_USE_EPOLL 0
80# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
81# endif 118# endif
82 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
83# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
89# endif 127# endif
90 128
91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
94# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
95# define EV_USE_PORT 0
96# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
97# endif 136# endif
98 137
99# ifndef EV_USE_INOTIFY
100# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
101# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
102# else
103# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
104# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
105# endif 145# endif
106 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
107#endif 154# endif
108 155
109#include <math.h> 156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
110#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
111#include <fcntl.h> 169#include <fcntl.h>
112#include <stddef.h> 170#include <stddef.h>
113 171
114#include <stdio.h> 172#include <stdio.h>
115 173
116#include <assert.h> 174#include <assert.h>
117#include <errno.h> 175#include <errno.h>
118#include <sys/types.h> 176#include <sys/types.h>
119#include <time.h> 177#include <time.h>
178#include <limits.h>
120 179
121#include <signal.h> 180#include <signal.h>
122 181
123#ifdef EV_H 182#ifdef EV_H
124# include EV_H 183# include EV_H
125#else 184#else
126# include "ev.h" 185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
127#endif 197#endif
128 198
129#ifndef _WIN32 199#ifndef _WIN32
130# include <sys/time.h> 200# include <sys/time.h>
131# include <sys/wait.h> 201# include <sys/wait.h>
132# include <unistd.h> 202# include <unistd.h>
133#else 203#else
204# include <io.h>
134# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
135# include <windows.h> 207# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 208# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 209# define EV_SELECT_IS_WINSOCKET 1
138# endif 210# endif
211# undef EV_AVOID_STDIO
212#endif
213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
221
222/* this block tries to deduce configuration from header-defined symbols and defaults */
223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# define EV_NSIG (8 * sizeof (sigset_t) + 1)
247#endif
248
249#ifndef EV_USE_FLOOR
250# define EV_USE_FLOOR 0
251#endif
252
253#ifndef EV_USE_CLOCK_SYSCALL
254# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
255# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
256# else
257# define EV_USE_CLOCK_SYSCALL 0
139#endif 258# endif
259#endif
140 260
141/**/ 261#if !(_POSIX_TIMERS > 0)
262# ifndef EV_USE_MONOTONIC
263# define EV_USE_MONOTONIC 0
264# endif
265# ifndef EV_USE_REALTIME
266# define EV_USE_REALTIME 0
267# endif
268#endif
142 269
143#ifndef EV_USE_MONOTONIC 270#ifndef EV_USE_MONOTONIC
271# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
272# define EV_USE_MONOTONIC EV_FEATURE_OS
273# else
144# define EV_USE_MONOTONIC 0 274# define EV_USE_MONOTONIC 0
275# endif
145#endif 276#endif
146 277
147#ifndef EV_USE_REALTIME 278#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 279# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
280#endif
281
282#ifndef EV_USE_NANOSLEEP
283# if _POSIX_C_SOURCE >= 199309L
284# define EV_USE_NANOSLEEP EV_FEATURE_OS
285# else
286# define EV_USE_NANOSLEEP 0
287# endif
149#endif 288#endif
150 289
151#ifndef EV_USE_SELECT 290#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 291# define EV_USE_SELECT EV_FEATURE_BACKENDS
153#endif 292#endif
154 293
155#ifndef EV_USE_POLL 294#ifndef EV_USE_POLL
156# ifdef _WIN32 295# ifdef _WIN32
157# define EV_USE_POLL 0 296# define EV_USE_POLL 0
158# else 297# else
159# define EV_USE_POLL 1 298# define EV_USE_POLL EV_FEATURE_BACKENDS
160# endif 299# endif
161#endif 300#endif
162 301
163#ifndef EV_USE_EPOLL 302#ifndef EV_USE_EPOLL
303# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
304# define EV_USE_EPOLL EV_FEATURE_BACKENDS
305# else
164# define EV_USE_EPOLL 0 306# define EV_USE_EPOLL 0
307# endif
165#endif 308#endif
166 309
167#ifndef EV_USE_KQUEUE 310#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 311# define EV_USE_KQUEUE 0
169#endif 312#endif
171#ifndef EV_USE_PORT 314#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 315# define EV_USE_PORT 0
173#endif 316#endif
174 317
175#ifndef EV_USE_INOTIFY 318#ifndef EV_USE_INOTIFY
319# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
320# define EV_USE_INOTIFY EV_FEATURE_OS
321# else
176# define EV_USE_INOTIFY 0 322# define EV_USE_INOTIFY 0
323# endif
177#endif 324#endif
178 325
179#ifndef EV_PID_HASHSIZE 326#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 327# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
181# define EV_PID_HASHSIZE 1 328#endif
329
330#ifndef EV_INOTIFY_HASHSIZE
331# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
332#endif
333
334#ifndef EV_USE_EVENTFD
335# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
336# define EV_USE_EVENTFD EV_FEATURE_OS
182# else 337# else
183# define EV_PID_HASHSIZE 16 338# define EV_USE_EVENTFD 0
184# endif 339# endif
185#endif 340#endif
186 341
187#ifndef EV_INOTIFY_HASHSIZE 342#ifndef EV_USE_SIGNALFD
188# if EV_MINIMAL 343# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
189# define EV_INOTIFY_HASHSIZE 1 344# define EV_USE_SIGNALFD EV_FEATURE_OS
190# else 345# else
191# define EV_INOTIFY_HASHSIZE 16 346# define EV_USE_SIGNALFD 0
192# endif 347# endif
193#endif 348#endif
194 349
195/**/ 350#if 0 /* debugging */
351# define EV_VERIFY 3
352# define EV_USE_4HEAP 1
353# define EV_HEAP_CACHE_AT 1
354#endif
355
356#ifndef EV_VERIFY
357# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
358#endif
359
360#ifndef EV_USE_4HEAP
361# define EV_USE_4HEAP EV_FEATURE_DATA
362#endif
363
364#ifndef EV_HEAP_CACHE_AT
365# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
366#endif
367
368#ifdef ANDROID
369/* supposedly, android doesn't typedef fd_mask */
370# undef EV_USE_SELECT
371# define EV_USE_SELECT 0
372/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
373# undef EV_USE_CLOCK_SYSCALL
374# define EV_USE_CLOCK_SYSCALL 0
375#endif
376
377/* aix's poll.h seems to cause lots of trouble */
378#ifdef _AIX
379/* AIX has a completely broken poll.h header */
380# undef EV_USE_POLL
381# define EV_USE_POLL 0
382#endif
383
384/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
385/* which makes programs even slower. might work on other unices, too. */
386#if EV_USE_CLOCK_SYSCALL
387# include <sys/syscall.h>
388# ifdef SYS_clock_gettime
389# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
390# undef EV_USE_MONOTONIC
391# define EV_USE_MONOTONIC 1
392# else
393# undef EV_USE_CLOCK_SYSCALL
394# define EV_USE_CLOCK_SYSCALL 0
395# endif
396#endif
397
398/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 399
197#ifndef CLOCK_MONOTONIC 400#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 401# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 402# define EV_USE_MONOTONIC 0
200#endif 403#endif
202#ifndef CLOCK_REALTIME 405#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 406# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 407# define EV_USE_REALTIME 0
205#endif 408#endif
206 409
207#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h>
209#endif
210
211#if !EV_STAT_ENABLE 410#if !EV_STAT_ENABLE
411# undef EV_USE_INOTIFY
212# define EV_USE_INOTIFY 0 412# define EV_USE_INOTIFY 0
213#endif 413#endif
214 414
415#if !EV_USE_NANOSLEEP
416/* hp-ux has it in sys/time.h, which we unconditionally include above */
417# if !defined _WIN32 && !defined __hpux
418# include <sys/select.h>
419# endif
420#endif
421
215#if EV_USE_INOTIFY 422#if EV_USE_INOTIFY
423# include <sys/statfs.h>
216# include <sys/inotify.h> 424# include <sys/inotify.h>
425/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
426# ifndef IN_DONT_FOLLOW
427# undef EV_USE_INOTIFY
428# define EV_USE_INOTIFY 0
429# endif
430#endif
431
432#if EV_USE_EVENTFD
433/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
434# include <stdint.h>
435# ifndef EFD_NONBLOCK
436# define EFD_NONBLOCK O_NONBLOCK
437# endif
438# ifndef EFD_CLOEXEC
439# ifdef O_CLOEXEC
440# define EFD_CLOEXEC O_CLOEXEC
441# else
442# define EFD_CLOEXEC 02000000
443# endif
444# endif
445EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
446#endif
447
448#if EV_USE_SIGNALFD
449/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
450# include <stdint.h>
451# ifndef SFD_NONBLOCK
452# define SFD_NONBLOCK O_NONBLOCK
453# endif
454# ifndef SFD_CLOEXEC
455# ifdef O_CLOEXEC
456# define SFD_CLOEXEC O_CLOEXEC
457# else
458# define SFD_CLOEXEC 02000000
459# endif
460# endif
461EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
462
463struct signalfd_siginfo
464{
465 uint32_t ssi_signo;
466 char pad[128 - sizeof (uint32_t)];
467};
217#endif 468#endif
218 469
219/**/ 470/**/
471
472#if EV_VERIFY >= 3
473# define EV_FREQUENT_CHECK ev_verify (EV_A)
474#else
475# define EV_FREQUENT_CHECK do { } while (0)
476#endif
477
478/*
479 * This is used to work around floating point rounding problems.
480 * This value is good at least till the year 4000.
481 */
482#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
483/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
220 484
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 485#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 486#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
224 487
488#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
489#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
490
491/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
492/* ECB.H BEGIN */
493/*
494 * libecb - http://software.schmorp.de/pkg/libecb
495 *
496 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
497 * Copyright (©) 2011 Emanuele Giaquinta
498 * All rights reserved.
499 *
500 * Redistribution and use in source and binary forms, with or without modifica-
501 * tion, are permitted provided that the following conditions are met:
502 *
503 * 1. Redistributions of source code must retain the above copyright notice,
504 * this list of conditions and the following disclaimer.
505 *
506 * 2. Redistributions in binary form must reproduce the above copyright
507 * notice, this list of conditions and the following disclaimer in the
508 * documentation and/or other materials provided with the distribution.
509 *
510 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
511 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
512 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
513 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
514 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
515 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
516 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
517 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
518 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
519 * OF THE POSSIBILITY OF SUCH DAMAGE.
520 *
521 * Alternatively, the contents of this file may be used under the terms of
522 * the GNU General Public License ("GPL") version 2 or any later version,
523 * in which case the provisions of the GPL are applicable instead of
524 * the above. If you wish to allow the use of your version of this file
525 * only under the terms of the GPL and not to allow others to use your
526 * version of this file under the BSD license, indicate your decision
527 * by deleting the provisions above and replace them with the notice
528 * and other provisions required by the GPL. If you do not delete the
529 * provisions above, a recipient may use your version of this file under
530 * either the BSD or the GPL.
531 */
532
533#ifndef ECB_H
534#define ECB_H
535
536/* 16 bits major, 16 bits minor */
537#define ECB_VERSION 0x00010004
538
539#ifdef _WIN32
540 typedef signed char int8_t;
541 typedef unsigned char uint8_t;
542 typedef signed short int16_t;
543 typedef unsigned short uint16_t;
544 typedef signed int int32_t;
545 typedef unsigned int uint32_t;
225#if __GNUC__ >= 3 546 #if __GNUC__
226# define expect(expr,value) __builtin_expect ((expr),(value)) 547 typedef signed long long int64_t;
227# define inline_size static inline /* inline for codesize */ 548 typedef unsigned long long uint64_t;
228# if EV_MINIMAL 549 #else /* _MSC_VER || __BORLANDC__ */
229# define noinline __attribute__ ((noinline)) 550 typedef signed __int64 int64_t;
230# define inline_speed static noinline 551 typedef unsigned __int64 uint64_t;
231# else
232# define noinline
233# define inline_speed static inline
234# endif 552 #endif
553 #ifdef _WIN64
554 #define ECB_PTRSIZE 8
555 typedef uint64_t uintptr_t;
556 typedef int64_t intptr_t;
557 #else
558 #define ECB_PTRSIZE 4
559 typedef uint32_t uintptr_t;
560 typedef int32_t intptr_t;
561 #endif
235#else 562#else
563 #include <inttypes.h>
564 #if UINTMAX_MAX > 0xffffffffU
565 #define ECB_PTRSIZE 8
566 #else
567 #define ECB_PTRSIZE 4
568 #endif
569#endif
570
571#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
572#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
573
574/* work around x32 idiocy by defining proper macros */
575#if ECB_GCC_AMD64 || ECB_MSVC_AMD64
576 #if _ILP32
577 #define ECB_AMD64_X32 1
578 #else
579 #define ECB_AMD64 1
580 #endif
581#endif
582
583/* many compilers define _GNUC_ to some versions but then only implement
584 * what their idiot authors think are the "more important" extensions,
585 * causing enormous grief in return for some better fake benchmark numbers.
586 * or so.
587 * we try to detect these and simply assume they are not gcc - if they have
588 * an issue with that they should have done it right in the first place.
589 */
590#if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
591 #define ECB_GCC_VERSION(major,minor) 0
592#else
593 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
594#endif
595
596#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
597
598#if __clang__ && defined __has_builtin
599 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
600#else
601 #define ECB_CLANG_BUILTIN(x) 0
602#endif
603
604#if __clang__ && defined __has_extension
605 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
606#else
607 #define ECB_CLANG_EXTENSION(x) 0
608#endif
609
610#define ECB_CPP (__cplusplus+0)
611#define ECB_CPP11 (__cplusplus >= 201103L)
612
613#if ECB_CPP
614 #define ECB_C 0
615 #define ECB_STDC_VERSION 0
616#else
617 #define ECB_C 1
618 #define ECB_STDC_VERSION __STDC_VERSION__
619#endif
620
621#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
622#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
623
624#if ECB_CPP
625 #define ECB_EXTERN_C extern "C"
626 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
627 #define ECB_EXTERN_C_END }
628#else
629 #define ECB_EXTERN_C extern
630 #define ECB_EXTERN_C_BEG
631 #define ECB_EXTERN_C_END
632#endif
633
634/*****************************************************************************/
635
636/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
637/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
638
639#if ECB_NO_THREADS
640 #define ECB_NO_SMP 1
641#endif
642
643#if ECB_NO_SMP
644 #define ECB_MEMORY_FENCE do { } while (0)
645#endif
646
647#ifndef ECB_MEMORY_FENCE
648 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
649 #if __i386 || __i386__
650 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
651 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
652 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
653 #elif ECB_GCC_AMD64
654 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
655 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
656 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
657 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
658 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
659 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
660 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
661 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
662 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
663 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
664 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
665 #elif __aarch64__
666 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
667 #elif (__sparc || __sparc__) && !__sparcv8
668 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
669 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
670 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
671 #elif defined __s390__ || defined __s390x__
672 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
673 #elif defined __mips__
674 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
675 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
676 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
677 #elif defined __alpha__
678 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
679 #elif defined __hppa__
680 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
681 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
682 #elif defined __ia64__
683 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
684 #elif defined __m68k__
685 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
686 #elif defined __m88k__
687 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
688 #elif defined __sh__
689 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
690 #endif
691 #endif
692#endif
693
694#ifndef ECB_MEMORY_FENCE
695 #if ECB_GCC_VERSION(4,7)
696 /* see comment below (stdatomic.h) about the C11 memory model. */
697 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
698 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
699 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
700
701 #elif ECB_CLANG_EXTENSION(c_atomic)
702 /* see comment below (stdatomic.h) about the C11 memory model. */
703 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
704 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
705 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
706
707 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
708 #define ECB_MEMORY_FENCE __sync_synchronize ()
709 #elif _MSC_VER >= 1500 /* VC++ 2008 */
710 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
711 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
712 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
713 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
714 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
715 #elif _MSC_VER >= 1400 /* VC++ 2005 */
716 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
717 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
718 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
719 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
720 #elif defined _WIN32
721 #include <WinNT.h>
722 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
723 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
724 #include <mbarrier.h>
725 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
726 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
727 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
728 #elif __xlC__
729 #define ECB_MEMORY_FENCE __sync ()
730 #endif
731#endif
732
733#ifndef ECB_MEMORY_FENCE
734 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
735 /* we assume that these memory fences work on all variables/all memory accesses, */
736 /* not just C11 atomics and atomic accesses */
737 #include <stdatomic.h>
738 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
739 /* any fence other than seq_cst, which isn't very efficient for us. */
740 /* Why that is, we don't know - either the C11 memory model is quite useless */
741 /* for most usages, or gcc and clang have a bug */
742 /* I *currently* lean towards the latter, and inefficiently implement */
743 /* all three of ecb's fences as a seq_cst fence */
744 /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */
745 /* for all __atomic_thread_fence's except seq_cst */
746 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
747 #endif
748#endif
749
750#ifndef ECB_MEMORY_FENCE
751 #if !ECB_AVOID_PTHREADS
752 /*
753 * if you get undefined symbol references to pthread_mutex_lock,
754 * or failure to find pthread.h, then you should implement
755 * the ECB_MEMORY_FENCE operations for your cpu/compiler
756 * OR provide pthread.h and link against the posix thread library
757 * of your system.
758 */
759 #include <pthread.h>
760 #define ECB_NEEDS_PTHREADS 1
761 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
762
763 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
764 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
765 #endif
766#endif
767
768#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
769 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
770#endif
771
772#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
773 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
774#endif
775
776/*****************************************************************************/
777
778#if ECB_CPP
779 #define ecb_inline static inline
780#elif ECB_GCC_VERSION(2,5)
781 #define ecb_inline static __inline__
782#elif ECB_C99
783 #define ecb_inline static inline
784#else
785 #define ecb_inline static
786#endif
787
788#if ECB_GCC_VERSION(3,3)
789 #define ecb_restrict __restrict__
790#elif ECB_C99
791 #define ecb_restrict restrict
792#else
793 #define ecb_restrict
794#endif
795
796typedef int ecb_bool;
797
798#define ECB_CONCAT_(a, b) a ## b
799#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
800#define ECB_STRINGIFY_(a) # a
801#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
802#define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
803
804#define ecb_function_ ecb_inline
805
806#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
807 #define ecb_attribute(attrlist) __attribute__ (attrlist)
808#else
809 #define ecb_attribute(attrlist)
810#endif
811
812#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
813 #define ecb_is_constant(expr) __builtin_constant_p (expr)
814#else
815 /* possible C11 impl for integral types
816 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
817 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
818
819 #define ecb_is_constant(expr) 0
820#endif
821
822#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
823 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
824#else
236# define expect(expr,value) (expr) 825 #define ecb_expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline
240#endif 826#endif
241 827
828#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
829 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
830#else
831 #define ecb_prefetch(addr,rw,locality)
832#endif
833
834/* no emulation for ecb_decltype */
835#if ECB_CPP11
836 // older implementations might have problems with decltype(x)::type, work around it
837 template<class T> struct ecb_decltype_t { typedef T type; };
838 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
839#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
840 #define ecb_decltype(x) __typeof__ (x)
841#endif
842
843#if _MSC_VER >= 1300
844 #define ecb_deprecated __declspec (deprecated)
845#else
846 #define ecb_deprecated ecb_attribute ((__deprecated__))
847#endif
848
849#if __MSC_VER >= 1500
850 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
851#elif ECB_GCC_VERSION(4,5)
852 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
853#else
854 #define ecb_deprecated_message(msg) ecb_deprecated
855#endif
856
857#if _MSC_VER >= 1400
858 #define ecb_noinline __declspec (noinline)
859#else
860 #define ecb_noinline ecb_attribute ((__noinline__))
861#endif
862
863#define ecb_unused ecb_attribute ((__unused__))
864#define ecb_const ecb_attribute ((__const__))
865#define ecb_pure ecb_attribute ((__pure__))
866
867#if ECB_C11 || __IBMC_NORETURN
868 /* http://pic.dhe.ibm.com/infocenter/compbg/v121v141/topic/com.ibm.xlcpp121.bg.doc/language_ref/noreturn.html */
869 #define ecb_noreturn _Noreturn
870#elif ECB_CPP11
871 #define ecb_noreturn [[noreturn]]
872#elif _MSC_VER >= 1200
873 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
874 #define ecb_noreturn __declspec (noreturn)
875#else
876 #define ecb_noreturn ecb_attribute ((__noreturn__))
877#endif
878
879#if ECB_GCC_VERSION(4,3)
880 #define ecb_artificial ecb_attribute ((__artificial__))
881 #define ecb_hot ecb_attribute ((__hot__))
882 #define ecb_cold ecb_attribute ((__cold__))
883#else
884 #define ecb_artificial
885 #define ecb_hot
886 #define ecb_cold
887#endif
888
889/* put around conditional expressions if you are very sure that the */
890/* expression is mostly true or mostly false. note that these return */
891/* booleans, not the expression. */
242#define expect_false(expr) expect ((expr) != 0, 0) 892#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 893#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
894/* for compatibility to the rest of the world */
895#define ecb_likely(expr) ecb_expect_true (expr)
896#define ecb_unlikely(expr) ecb_expect_false (expr)
244 897
898/* count trailing zero bits and count # of one bits */
899#if ECB_GCC_VERSION(3,4) \
900 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
901 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
902 && ECB_CLANG_BUILTIN(__builtin_popcount))
903 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
904 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
905 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
906 #define ecb_ctz32(x) __builtin_ctz (x)
907 #define ecb_ctz64(x) __builtin_ctzll (x)
908 #define ecb_popcount32(x) __builtin_popcount (x)
909 /* no popcountll */
910#else
911 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
912 ecb_function_ ecb_const int
913 ecb_ctz32 (uint32_t x)
914 {
915 int r = 0;
916
917 x &= ~x + 1; /* this isolates the lowest bit */
918
919#if ECB_branchless_on_i386
920 r += !!(x & 0xaaaaaaaa) << 0;
921 r += !!(x & 0xcccccccc) << 1;
922 r += !!(x & 0xf0f0f0f0) << 2;
923 r += !!(x & 0xff00ff00) << 3;
924 r += !!(x & 0xffff0000) << 4;
925#else
926 if (x & 0xaaaaaaaa) r += 1;
927 if (x & 0xcccccccc) r += 2;
928 if (x & 0xf0f0f0f0) r += 4;
929 if (x & 0xff00ff00) r += 8;
930 if (x & 0xffff0000) r += 16;
931#endif
932
933 return r;
934 }
935
936 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
937 ecb_function_ ecb_const int
938 ecb_ctz64 (uint64_t x)
939 {
940 int shift = x & 0xffffffffU ? 0 : 32;
941 return ecb_ctz32 (x >> shift) + shift;
942 }
943
944 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
945 ecb_function_ ecb_const int
946 ecb_popcount32 (uint32_t x)
947 {
948 x -= (x >> 1) & 0x55555555;
949 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
950 x = ((x >> 4) + x) & 0x0f0f0f0f;
951 x *= 0x01010101;
952
953 return x >> 24;
954 }
955
956 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
957 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
958 {
959 int r = 0;
960
961 if (x >> 16) { x >>= 16; r += 16; }
962 if (x >> 8) { x >>= 8; r += 8; }
963 if (x >> 4) { x >>= 4; r += 4; }
964 if (x >> 2) { x >>= 2; r += 2; }
965 if (x >> 1) { r += 1; }
966
967 return r;
968 }
969
970 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
971 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
972 {
973 int r = 0;
974
975 if (x >> 32) { x >>= 32; r += 32; }
976
977 return r + ecb_ld32 (x);
978 }
979#endif
980
981ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
982ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
983ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
984ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
985
986ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
987ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
988{
989 return ( (x * 0x0802U & 0x22110U)
990 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
991}
992
993ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
994ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
995{
996 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
997 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
998 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
999 x = ( x >> 8 ) | ( x << 8);
1000
1001 return x;
1002}
1003
1004ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1005ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1006{
1007 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1008 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1009 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1010 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1011 x = ( x >> 16 ) | ( x << 16);
1012
1013 return x;
1014}
1015
1016/* popcount64 is only available on 64 bit cpus as gcc builtin */
1017/* so for this version we are lazy */
1018ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1019ecb_function_ ecb_const int
1020ecb_popcount64 (uint64_t x)
1021{
1022 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1023}
1024
1025ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1026ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1027ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1028ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1029ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1030ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1031ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1032ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1033
1034ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1035ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1036ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1037ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1038ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1039ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1040ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1041ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1042
1043#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1044 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1045 #define ecb_bswap32(x) __builtin_bswap32 (x)
1046 #define ecb_bswap64(x) __builtin_bswap64 (x)
1047#else
1048 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1049 ecb_function_ ecb_const uint16_t
1050 ecb_bswap16 (uint16_t x)
1051 {
1052 return ecb_rotl16 (x, 8);
1053 }
1054
1055 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1056 ecb_function_ ecb_const uint32_t
1057 ecb_bswap32 (uint32_t x)
1058 {
1059 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1060 }
1061
1062 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1063 ecb_function_ ecb_const uint64_t
1064 ecb_bswap64 (uint64_t x)
1065 {
1066 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1067 }
1068#endif
1069
1070#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1071 #define ecb_unreachable() __builtin_unreachable ()
1072#else
1073 /* this seems to work fine, but gcc always emits a warning for it :/ */
1074 ecb_inline ecb_noreturn void ecb_unreachable (void);
1075 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1076#endif
1077
1078/* try to tell the compiler that some condition is definitely true */
1079#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1080
1081ecb_inline ecb_const unsigned char ecb_byteorder_helper (void);
1082ecb_inline ecb_const unsigned char
1083ecb_byteorder_helper (void)
1084{
1085 /* the union code still generates code under pressure in gcc, */
1086 /* but less than using pointers, and always seems to */
1087 /* successfully return a constant. */
1088 /* the reason why we have this horrible preprocessor mess */
1089 /* is to avoid it in all cases, at least on common architectures */
1090 /* or when using a recent enough gcc version (>= 4.6) */
1091#if ((__i386 || __i386__) && !__VOS__) || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64
1092 return 0x44;
1093#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1094 return 0x44;
1095#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1096 return 0x11;
1097#else
1098 union
1099 {
1100 uint32_t i;
1101 uint8_t c;
1102 } u = { 0x11223344 };
1103 return u.c;
1104#endif
1105}
1106
1107ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1108ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
1109ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1110ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
1111
1112#if ECB_GCC_VERSION(3,0) || ECB_C99
1113 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1114#else
1115 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1116#endif
1117
1118#if ECB_CPP
1119 template<typename T>
1120 static inline T ecb_div_rd (T val, T div)
1121 {
1122 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1123 }
1124 template<typename T>
1125 static inline T ecb_div_ru (T val, T div)
1126 {
1127 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1128 }
1129#else
1130 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1131 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1132#endif
1133
1134#if ecb_cplusplus_does_not_suck
1135 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1136 template<typename T, int N>
1137 static inline int ecb_array_length (const T (&arr)[N])
1138 {
1139 return N;
1140 }
1141#else
1142 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1143#endif
1144
1145/*******************************************************************************/
1146/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1147
1148/* basically, everything uses "ieee pure-endian" floating point numbers */
1149/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1150#if 0 \
1151 || __i386 || __i386__ \
1152 || ECB_GCC_AMD64 \
1153 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1154 || defined __s390__ || defined __s390x__ \
1155 || defined __mips__ \
1156 || defined __alpha__ \
1157 || defined __hppa__ \
1158 || defined __ia64__ \
1159 || defined __m68k__ \
1160 || defined __m88k__ \
1161 || defined __sh__ \
1162 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1163 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1164 || defined __aarch64__
1165 #define ECB_STDFP 1
1166 #include <string.h> /* for memcpy */
1167#else
1168 #define ECB_STDFP 0
1169#endif
1170
1171#ifndef ECB_NO_LIBM
1172
1173 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1174
1175 /* only the oldest of old doesn't have this one. solaris. */
1176 #ifdef INFINITY
1177 #define ECB_INFINITY INFINITY
1178 #else
1179 #define ECB_INFINITY HUGE_VAL
1180 #endif
1181
1182 #ifdef NAN
1183 #define ECB_NAN NAN
1184 #else
1185 #define ECB_NAN ECB_INFINITY
1186 #endif
1187
1188 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1189 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1190 #else
1191 #define ecb_ldexpf(x,e) (float) ldexp ((float) (x), (e))
1192 #endif
1193
1194 /* converts an ieee half/binary16 to a float */
1195 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1196 ecb_function_ ecb_const float
1197 ecb_binary16_to_float (uint16_t x)
1198 {
1199 int e = (x >> 10) & 0x1f;
1200 int m = x & 0x3ff;
1201 float r;
1202
1203 if (!e ) r = ecb_ldexpf (m , -24);
1204 else if (e != 31) r = ecb_ldexpf (m + 0x400, e - 25);
1205 else if (m ) r = ECB_NAN;
1206 else r = ECB_INFINITY;
1207
1208 return x & 0x8000 ? -r : r;
1209 }
1210
1211 /* convert a float to ieee single/binary32 */
1212 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1213 ecb_function_ ecb_const uint32_t
1214 ecb_float_to_binary32 (float x)
1215 {
1216 uint32_t r;
1217
1218 #if ECB_STDFP
1219 memcpy (&r, &x, 4);
1220 #else
1221 /* slow emulation, works for anything but -0 */
1222 uint32_t m;
1223 int e;
1224
1225 if (x == 0e0f ) return 0x00000000U;
1226 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1227 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1228 if (x != x ) return 0x7fbfffffU;
1229
1230 m = frexpf (x, &e) * 0x1000000U;
1231
1232 r = m & 0x80000000U;
1233
1234 if (r)
1235 m = -m;
1236
1237 if (e <= -126)
1238 {
1239 m &= 0xffffffU;
1240 m >>= (-125 - e);
1241 e = -126;
1242 }
1243
1244 r |= (e + 126) << 23;
1245 r |= m & 0x7fffffU;
1246 #endif
1247
1248 return r;
1249 }
1250
1251 /* converts an ieee single/binary32 to a float */
1252 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1253 ecb_function_ ecb_const float
1254 ecb_binary32_to_float (uint32_t x)
1255 {
1256 float r;
1257
1258 #if ECB_STDFP
1259 memcpy (&r, &x, 4);
1260 #else
1261 /* emulation, only works for normals and subnormals and +0 */
1262 int neg = x >> 31;
1263 int e = (x >> 23) & 0xffU;
1264
1265 x &= 0x7fffffU;
1266
1267 if (e)
1268 x |= 0x800000U;
1269 else
1270 e = 1;
1271
1272 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1273 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1274
1275 r = neg ? -r : r;
1276 #endif
1277
1278 return r;
1279 }
1280
1281 /* convert a double to ieee double/binary64 */
1282 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1283 ecb_function_ ecb_const uint64_t
1284 ecb_double_to_binary64 (double x)
1285 {
1286 uint64_t r;
1287
1288 #if ECB_STDFP
1289 memcpy (&r, &x, 8);
1290 #else
1291 /* slow emulation, works for anything but -0 */
1292 uint64_t m;
1293 int e;
1294
1295 if (x == 0e0 ) return 0x0000000000000000U;
1296 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1297 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1298 if (x != x ) return 0X7ff7ffffffffffffU;
1299
1300 m = frexp (x, &e) * 0x20000000000000U;
1301
1302 r = m & 0x8000000000000000;;
1303
1304 if (r)
1305 m = -m;
1306
1307 if (e <= -1022)
1308 {
1309 m &= 0x1fffffffffffffU;
1310 m >>= (-1021 - e);
1311 e = -1022;
1312 }
1313
1314 r |= ((uint64_t)(e + 1022)) << 52;
1315 r |= m & 0xfffffffffffffU;
1316 #endif
1317
1318 return r;
1319 }
1320
1321 /* converts an ieee double/binary64 to a double */
1322 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1323 ecb_function_ ecb_const double
1324 ecb_binary64_to_double (uint64_t x)
1325 {
1326 double r;
1327
1328 #if ECB_STDFP
1329 memcpy (&r, &x, 8);
1330 #else
1331 /* emulation, only works for normals and subnormals and +0 */
1332 int neg = x >> 63;
1333 int e = (x >> 52) & 0x7ffU;
1334
1335 x &= 0xfffffffffffffU;
1336
1337 if (e)
1338 x |= 0x10000000000000U;
1339 else
1340 e = 1;
1341
1342 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1343 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1344
1345 r = neg ? -r : r;
1346 #endif
1347
1348 return r;
1349 }
1350
1351#endif
1352
1353#endif
1354
1355/* ECB.H END */
1356
1357#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1358/* if your architecture doesn't need memory fences, e.g. because it is
1359 * single-cpu/core, or if you use libev in a project that doesn't use libev
1360 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1361 * libev, in which cases the memory fences become nops.
1362 * alternatively, you can remove this #error and link against libpthread,
1363 * which will then provide the memory fences.
1364 */
1365# error "memory fences not defined for your architecture, please report"
1366#endif
1367
1368#ifndef ECB_MEMORY_FENCE
1369# define ECB_MEMORY_FENCE do { } while (0)
1370# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1371# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1372#endif
1373
1374#define expect_false(cond) ecb_expect_false (cond)
1375#define expect_true(cond) ecb_expect_true (cond)
1376#define noinline ecb_noinline
1377
1378#define inline_size ecb_inline
1379
1380#if EV_FEATURE_CODE
1381# define inline_speed ecb_inline
1382#else
1383# define inline_speed static noinline
1384#endif
1385
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 1386#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1387
1388#if EV_MINPRI == EV_MAXPRI
1389# define ABSPRI(w) (((W)w), 0)
1390#else
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 1391# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1392#endif
247 1393
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 1394#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 1395#define EMPTY2(a,b) /* used to suppress some warnings */
250 1396
251typedef ev_watcher *W; 1397typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 1398typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 1399typedef ev_watcher_time *WT;
254 1400
1401#define ev_active(w) ((W)(w))->active
1402#define ev_at(w) ((WT)(w))->at
1403
1404#if EV_USE_REALTIME
1405/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1406/* giving it a reasonably high chance of working on typical architectures */
1407static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1408#endif
1409
1410#if EV_USE_MONOTONIC
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1411static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1412#endif
1413
1414#ifndef EV_FD_TO_WIN32_HANDLE
1415# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1416#endif
1417#ifndef EV_WIN32_HANDLE_TO_FD
1418# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1419#endif
1420#ifndef EV_WIN32_CLOSE_FD
1421# define EV_WIN32_CLOSE_FD(fd) close (fd)
1422#endif
256 1423
257#ifdef _WIN32 1424#ifdef _WIN32
258# include "ev_win32.c" 1425# include "ev_win32.c"
259#endif 1426#endif
260 1427
261/*****************************************************************************/ 1428/*****************************************************************************/
262 1429
1430/* define a suitable floor function (only used by periodics atm) */
1431
1432#if EV_USE_FLOOR
1433# include <math.h>
1434# define ev_floor(v) floor (v)
1435#else
1436
1437#include <float.h>
1438
1439/* a floor() replacement function, should be independent of ev_tstamp type */
1440static ev_tstamp noinline
1441ev_floor (ev_tstamp v)
1442{
1443 /* the choice of shift factor is not terribly important */
1444#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1445 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1446#else
1447 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1448#endif
1449
1450 /* argument too large for an unsigned long? */
1451 if (expect_false (v >= shift))
1452 {
1453 ev_tstamp f;
1454
1455 if (v == v - 1.)
1456 return v; /* very large number */
1457
1458 f = shift * ev_floor (v * (1. / shift));
1459 return f + ev_floor (v - f);
1460 }
1461
1462 /* special treatment for negative args? */
1463 if (expect_false (v < 0.))
1464 {
1465 ev_tstamp f = -ev_floor (-v);
1466
1467 return f - (f == v ? 0 : 1);
1468 }
1469
1470 /* fits into an unsigned long */
1471 return (unsigned long)v;
1472}
1473
1474#endif
1475
1476/*****************************************************************************/
1477
1478#ifdef __linux
1479# include <sys/utsname.h>
1480#endif
1481
1482static unsigned int noinline ecb_cold
1483ev_linux_version (void)
1484{
1485#ifdef __linux
1486 unsigned int v = 0;
1487 struct utsname buf;
1488 int i;
1489 char *p = buf.release;
1490
1491 if (uname (&buf))
1492 return 0;
1493
1494 for (i = 3+1; --i; )
1495 {
1496 unsigned int c = 0;
1497
1498 for (;;)
1499 {
1500 if (*p >= '0' && *p <= '9')
1501 c = c * 10 + *p++ - '0';
1502 else
1503 {
1504 p += *p == '.';
1505 break;
1506 }
1507 }
1508
1509 v = (v << 8) | c;
1510 }
1511
1512 return v;
1513#else
1514 return 0;
1515#endif
1516}
1517
1518/*****************************************************************************/
1519
1520#if EV_AVOID_STDIO
1521static void noinline ecb_cold
1522ev_printerr (const char *msg)
1523{
1524 write (STDERR_FILENO, msg, strlen (msg));
1525}
1526#endif
1527
263static void (*syserr_cb)(const char *msg); 1528static void (*syserr_cb)(const char *msg) EV_THROW;
264 1529
265void 1530void ecb_cold
266ev_set_syserr_cb (void (*cb)(const char *msg)) 1531ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
267{ 1532{
268 syserr_cb = cb; 1533 syserr_cb = cb;
269} 1534}
270 1535
271static void noinline 1536static void noinline ecb_cold
272syserr (const char *msg) 1537ev_syserr (const char *msg)
273{ 1538{
274 if (!msg) 1539 if (!msg)
275 msg = "(libev) system error"; 1540 msg = "(libev) system error";
276 1541
277 if (syserr_cb) 1542 if (syserr_cb)
278 syserr_cb (msg); 1543 syserr_cb (msg);
279 else 1544 else
280 { 1545 {
1546#if EV_AVOID_STDIO
1547 ev_printerr (msg);
1548 ev_printerr (": ");
1549 ev_printerr (strerror (errno));
1550 ev_printerr ("\n");
1551#else
281 perror (msg); 1552 perror (msg);
1553#endif
282 abort (); 1554 abort ();
283 } 1555 }
284} 1556}
285 1557
1558static void *
1559ev_realloc_emul (void *ptr, long size) EV_THROW
1560{
1561 /* some systems, notably openbsd and darwin, fail to properly
1562 * implement realloc (x, 0) (as required by both ansi c-89 and
1563 * the single unix specification, so work around them here.
1564 * recently, also (at least) fedora and debian started breaking it,
1565 * despite documenting it otherwise.
1566 */
1567
1568 if (size)
1569 return realloc (ptr, size);
1570
1571 free (ptr);
1572 return 0;
1573}
1574
286static void *(*alloc)(void *ptr, long size); 1575static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
287 1576
288void 1577void ecb_cold
289ev_set_allocator (void *(*cb)(void *ptr, long size)) 1578ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
290{ 1579{
291 alloc = cb; 1580 alloc = cb;
292} 1581}
293 1582
294inline_speed void * 1583inline_speed void *
295ev_realloc (void *ptr, long size) 1584ev_realloc (void *ptr, long size)
296{ 1585{
297 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1586 ptr = alloc (ptr, size);
298 1587
299 if (!ptr && size) 1588 if (!ptr && size)
300 { 1589 {
1590#if EV_AVOID_STDIO
1591 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1592#else
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1593 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1594#endif
302 abort (); 1595 abort ();
303 } 1596 }
304 1597
305 return ptr; 1598 return ptr;
306} 1599}
308#define ev_malloc(size) ev_realloc (0, (size)) 1601#define ev_malloc(size) ev_realloc (0, (size))
309#define ev_free(ptr) ev_realloc ((ptr), 0) 1602#define ev_free(ptr) ev_realloc ((ptr), 0)
310 1603
311/*****************************************************************************/ 1604/*****************************************************************************/
312 1605
1606/* set in reify when reification needed */
1607#define EV_ANFD_REIFY 1
1608
1609/* file descriptor info structure */
313typedef struct 1610typedef struct
314{ 1611{
315 WL head; 1612 WL head;
316 unsigned char events; 1613 unsigned char events; /* the events watched for */
1614 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1615 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
317 unsigned char reify; 1616 unsigned char unused;
1617#if EV_USE_EPOLL
1618 unsigned int egen; /* generation counter to counter epoll bugs */
1619#endif
318#if EV_SELECT_IS_WINSOCKET 1620#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
319 SOCKET handle; 1621 SOCKET handle;
320#endif 1622#endif
1623#if EV_USE_IOCP
1624 OVERLAPPED or, ow;
1625#endif
321} ANFD; 1626} ANFD;
322 1627
1628/* stores the pending event set for a given watcher */
323typedef struct 1629typedef struct
324{ 1630{
325 W w; 1631 W w;
326 int events; 1632 int events; /* the pending event set for the given watcher */
327} ANPENDING; 1633} ANPENDING;
328 1634
329#if EV_USE_INOTIFY 1635#if EV_USE_INOTIFY
1636/* hash table entry per inotify-id */
330typedef struct 1637typedef struct
331{ 1638{
332 WL head; 1639 WL head;
333} ANFS; 1640} ANFS;
1641#endif
1642
1643/* Heap Entry */
1644#if EV_HEAP_CACHE_AT
1645 /* a heap element */
1646 typedef struct {
1647 ev_tstamp at;
1648 WT w;
1649 } ANHE;
1650
1651 #define ANHE_w(he) (he).w /* access watcher, read-write */
1652 #define ANHE_at(he) (he).at /* access cached at, read-only */
1653 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1654#else
1655 /* a heap element */
1656 typedef WT ANHE;
1657
1658 #define ANHE_w(he) (he)
1659 #define ANHE_at(he) (he)->at
1660 #define ANHE_at_cache(he)
334#endif 1661#endif
335 1662
336#if EV_MULTIPLICITY 1663#if EV_MULTIPLICITY
337 1664
338 struct ev_loop 1665 struct ev_loop
344 #undef VAR 1671 #undef VAR
345 }; 1672 };
346 #include "ev_wrap.h" 1673 #include "ev_wrap.h"
347 1674
348 static struct ev_loop default_loop_struct; 1675 static struct ev_loop default_loop_struct;
349 struct ev_loop *ev_default_loop_ptr; 1676 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
350 1677
351#else 1678#else
352 1679
353 ev_tstamp ev_rt_now; 1680 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
354 #define VAR(name,decl) static decl; 1681 #define VAR(name,decl) static decl;
355 #include "ev_vars.h" 1682 #include "ev_vars.h"
356 #undef VAR 1683 #undef VAR
357 1684
358 static int ev_default_loop_ptr; 1685 static int ev_default_loop_ptr;
359 1686
360#endif 1687#endif
361 1688
1689#if EV_FEATURE_API
1690# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1691# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1692# define EV_INVOKE_PENDING invoke_cb (EV_A)
1693#else
1694# define EV_RELEASE_CB (void)0
1695# define EV_ACQUIRE_CB (void)0
1696# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1697#endif
1698
1699#define EVBREAK_RECURSE 0x80
1700
362/*****************************************************************************/ 1701/*****************************************************************************/
363 1702
1703#ifndef EV_HAVE_EV_TIME
364ev_tstamp 1704ev_tstamp
365ev_time (void) 1705ev_time (void) EV_THROW
366{ 1706{
367#if EV_USE_REALTIME 1707#if EV_USE_REALTIME
1708 if (expect_true (have_realtime))
1709 {
368 struct timespec ts; 1710 struct timespec ts;
369 clock_gettime (CLOCK_REALTIME, &ts); 1711 clock_gettime (CLOCK_REALTIME, &ts);
370 return ts.tv_sec + ts.tv_nsec * 1e-9; 1712 return ts.tv_sec + ts.tv_nsec * 1e-9;
371#else 1713 }
1714#endif
1715
372 struct timeval tv; 1716 struct timeval tv;
373 gettimeofday (&tv, 0); 1717 gettimeofday (&tv, 0);
374 return tv.tv_sec + tv.tv_usec * 1e-6; 1718 return tv.tv_sec + tv.tv_usec * 1e-6;
375#endif
376} 1719}
1720#endif
377 1721
378ev_tstamp inline_size 1722inline_size ev_tstamp
379get_clock (void) 1723get_clock (void)
380{ 1724{
381#if EV_USE_MONOTONIC 1725#if EV_USE_MONOTONIC
382 if (expect_true (have_monotonic)) 1726 if (expect_true (have_monotonic))
383 { 1727 {
390 return ev_time (); 1734 return ev_time ();
391} 1735}
392 1736
393#if EV_MULTIPLICITY 1737#if EV_MULTIPLICITY
394ev_tstamp 1738ev_tstamp
395ev_now (EV_P) 1739ev_now (EV_P) EV_THROW
396{ 1740{
397 return ev_rt_now; 1741 return ev_rt_now;
398} 1742}
399#endif 1743#endif
400 1744
401#define array_roundsize(type,n) (((n) | 4) & ~3) 1745void
1746ev_sleep (ev_tstamp delay) EV_THROW
1747{
1748 if (delay > 0.)
1749 {
1750#if EV_USE_NANOSLEEP
1751 struct timespec ts;
1752
1753 EV_TS_SET (ts, delay);
1754 nanosleep (&ts, 0);
1755#elif defined _WIN32
1756 Sleep ((unsigned long)(delay * 1e3));
1757#else
1758 struct timeval tv;
1759
1760 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1761 /* something not guaranteed by newer posix versions, but guaranteed */
1762 /* by older ones */
1763 EV_TV_SET (tv, delay);
1764 select (0, 0, 0, 0, &tv);
1765#endif
1766 }
1767}
1768
1769/*****************************************************************************/
1770
1771#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1772
1773/* find a suitable new size for the given array, */
1774/* hopefully by rounding to a nice-to-malloc size */
1775inline_size int
1776array_nextsize (int elem, int cur, int cnt)
1777{
1778 int ncur = cur + 1;
1779
1780 do
1781 ncur <<= 1;
1782 while (cnt > ncur);
1783
1784 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1785 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1786 {
1787 ncur *= elem;
1788 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1789 ncur = ncur - sizeof (void *) * 4;
1790 ncur /= elem;
1791 }
1792
1793 return ncur;
1794}
1795
1796static void * noinline ecb_cold
1797array_realloc (int elem, void *base, int *cur, int cnt)
1798{
1799 *cur = array_nextsize (elem, *cur, cnt);
1800 return ev_realloc (base, elem * *cur);
1801}
1802
1803#define array_init_zero(base,count) \
1804 memset ((void *)(base), 0, sizeof (*(base)) * (count))
402 1805
403#define array_needsize(type,base,cur,cnt,init) \ 1806#define array_needsize(type,base,cur,cnt,init) \
404 if (expect_false ((cnt) > cur)) \ 1807 if (expect_false ((cnt) > (cur))) \
405 { \ 1808 { \
406 int newcnt = cur; \ 1809 int ecb_unused ocur_ = (cur); \
407 do \ 1810 (base) = (type *)array_realloc \
408 { \ 1811 (sizeof (type), (base), &(cur), (cnt)); \
409 newcnt = array_roundsize (type, newcnt << 1); \ 1812 init ((base) + (ocur_), (cur) - ocur_); \
410 } \
411 while ((cnt) > newcnt); \
412 \
413 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
414 init (base + cur, newcnt - cur); \
415 cur = newcnt; \
416 } 1813 }
417 1814
1815#if 0
418#define array_slim(type,stem) \ 1816#define array_slim(type,stem) \
419 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 1817 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
420 { \ 1818 { \
421 stem ## max = array_roundsize (stem ## cnt >> 1); \ 1819 stem ## max = array_roundsize (stem ## cnt >> 1); \
422 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 1820 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
423 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1821 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
424 } 1822 }
1823#endif
425 1824
426#define array_free(stem, idx) \ 1825#define array_free(stem, idx) \
427 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1826 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
428 1827
429/*****************************************************************************/ 1828/*****************************************************************************/
430 1829
1830/* dummy callback for pending events */
1831static void noinline
1832pendingcb (EV_P_ ev_prepare *w, int revents)
1833{
1834}
1835
431void noinline 1836void noinline
432ev_feed_event (EV_P_ void *w, int revents) 1837ev_feed_event (EV_P_ void *w, int revents) EV_THROW
433{ 1838{
434 W w_ = (W)w; 1839 W w_ = (W)w;
1840 int pri = ABSPRI (w_);
435 1841
436 if (expect_false (w_->pending)) 1842 if (expect_false (w_->pending))
1843 pendings [pri][w_->pending - 1].events |= revents;
1844 else
437 { 1845 {
1846 w_->pending = ++pendingcnt [pri];
1847 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1848 pendings [pri][w_->pending - 1].w = w_;
438 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 1849 pendings [pri][w_->pending - 1].events = revents;
439 return;
440 } 1850 }
441 1851
442 w_->pending = ++pendingcnt [ABSPRI (w_)]; 1852 pendingpri = NUMPRI - 1;
443 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
444 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
445 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
446} 1853}
447 1854
448void inline_size 1855inline_speed void
1856feed_reverse (EV_P_ W w)
1857{
1858 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1859 rfeeds [rfeedcnt++] = w;
1860}
1861
1862inline_size void
1863feed_reverse_done (EV_P_ int revents)
1864{
1865 do
1866 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1867 while (rfeedcnt);
1868}
1869
1870inline_speed void
449queue_events (EV_P_ W *events, int eventcnt, int type) 1871queue_events (EV_P_ W *events, int eventcnt, int type)
450{ 1872{
451 int i; 1873 int i;
452 1874
453 for (i = 0; i < eventcnt; ++i) 1875 for (i = 0; i < eventcnt; ++i)
454 ev_feed_event (EV_A_ events [i], type); 1876 ev_feed_event (EV_A_ events [i], type);
455} 1877}
456 1878
457/*****************************************************************************/ 1879/*****************************************************************************/
458 1880
459void inline_size 1881inline_speed void
460anfds_init (ANFD *base, int count)
461{
462 while (count--)
463 {
464 base->head = 0;
465 base->events = EV_NONE;
466 base->reify = 0;
467
468 ++base;
469 }
470}
471
472void inline_speed
473fd_event (EV_P_ int fd, int revents) 1882fd_event_nocheck (EV_P_ int fd, int revents)
474{ 1883{
475 ANFD *anfd = anfds + fd; 1884 ANFD *anfd = anfds + fd;
476 ev_io *w; 1885 ev_io *w;
477 1886
478 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1887 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
482 if (ev) 1891 if (ev)
483 ev_feed_event (EV_A_ (W)w, ev); 1892 ev_feed_event (EV_A_ (W)w, ev);
484 } 1893 }
485} 1894}
486 1895
1896/* do not submit kernel events for fds that have reify set */
1897/* because that means they changed while we were polling for new events */
1898inline_speed void
1899fd_event (EV_P_ int fd, int revents)
1900{
1901 ANFD *anfd = anfds + fd;
1902
1903 if (expect_true (!anfd->reify))
1904 fd_event_nocheck (EV_A_ fd, revents);
1905}
1906
487void 1907void
488ev_feed_fd_event (EV_P_ int fd, int revents) 1908ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
489{ 1909{
1910 if (fd >= 0 && fd < anfdmax)
490 fd_event (EV_A_ fd, revents); 1911 fd_event_nocheck (EV_A_ fd, revents);
491} 1912}
492 1913
493void inline_size 1914/* make sure the external fd watch events are in-sync */
1915/* with the kernel/libev internal state */
1916inline_size void
494fd_reify (EV_P) 1917fd_reify (EV_P)
495{ 1918{
496 int i; 1919 int i;
1920
1921#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1922 for (i = 0; i < fdchangecnt; ++i)
1923 {
1924 int fd = fdchanges [i];
1925 ANFD *anfd = anfds + fd;
1926
1927 if (anfd->reify & EV__IOFDSET && anfd->head)
1928 {
1929 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1930
1931 if (handle != anfd->handle)
1932 {
1933 unsigned long arg;
1934
1935 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1936
1937 /* handle changed, but fd didn't - we need to do it in two steps */
1938 backend_modify (EV_A_ fd, anfd->events, 0);
1939 anfd->events = 0;
1940 anfd->handle = handle;
1941 }
1942 }
1943 }
1944#endif
497 1945
498 for (i = 0; i < fdchangecnt; ++i) 1946 for (i = 0; i < fdchangecnt; ++i)
499 { 1947 {
500 int fd = fdchanges [i]; 1948 int fd = fdchanges [i];
501 ANFD *anfd = anfds + fd; 1949 ANFD *anfd = anfds + fd;
502 ev_io *w; 1950 ev_io *w;
503 1951
504 int events = 0; 1952 unsigned char o_events = anfd->events;
1953 unsigned char o_reify = anfd->reify;
505 1954
506 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1955 anfd->reify = 0;
507 events |= w->events;
508 1956
509#if EV_SELECT_IS_WINSOCKET 1957 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
510 if (events)
511 { 1958 {
512 unsigned long argp; 1959 anfd->events = 0;
513 anfd->handle = _get_osfhandle (fd); 1960
514 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1961 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1962 anfd->events |= (unsigned char)w->events;
1963
1964 if (o_events != anfd->events)
1965 o_reify = EV__IOFDSET; /* actually |= */
515 } 1966 }
516#endif
517 1967
518 anfd->reify = 0; 1968 if (o_reify & EV__IOFDSET)
519
520 backend_modify (EV_A_ fd, anfd->events, events); 1969 backend_modify (EV_A_ fd, o_events, anfd->events);
521 anfd->events = events;
522 } 1970 }
523 1971
524 fdchangecnt = 0; 1972 fdchangecnt = 0;
525} 1973}
526 1974
527void inline_size 1975/* something about the given fd changed */
1976inline_size void
528fd_change (EV_P_ int fd) 1977fd_change (EV_P_ int fd, int flags)
529{ 1978{
530 if (expect_false (anfds [fd].reify)) 1979 unsigned char reify = anfds [fd].reify;
531 return;
532
533 anfds [fd].reify = 1; 1980 anfds [fd].reify |= flags;
534 1981
1982 if (expect_true (!reify))
1983 {
535 ++fdchangecnt; 1984 ++fdchangecnt;
536 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1985 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
537 fdchanges [fdchangecnt - 1] = fd; 1986 fdchanges [fdchangecnt - 1] = fd;
1987 }
538} 1988}
539 1989
540void inline_speed 1990/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1991inline_speed void ecb_cold
541fd_kill (EV_P_ int fd) 1992fd_kill (EV_P_ int fd)
542{ 1993{
543 ev_io *w; 1994 ev_io *w;
544 1995
545 while ((w = (ev_io *)anfds [fd].head)) 1996 while ((w = (ev_io *)anfds [fd].head))
547 ev_io_stop (EV_A_ w); 1998 ev_io_stop (EV_A_ w);
548 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1999 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
549 } 2000 }
550} 2001}
551 2002
552int inline_size 2003/* check whether the given fd is actually valid, for error recovery */
2004inline_size int ecb_cold
553fd_valid (int fd) 2005fd_valid (int fd)
554{ 2006{
555#ifdef _WIN32 2007#ifdef _WIN32
556 return _get_osfhandle (fd) != -1; 2008 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
557#else 2009#else
558 return fcntl (fd, F_GETFD) != -1; 2010 return fcntl (fd, F_GETFD) != -1;
559#endif 2011#endif
560} 2012}
561 2013
562/* called on EBADF to verify fds */ 2014/* called on EBADF to verify fds */
563static void noinline 2015static void noinline ecb_cold
564fd_ebadf (EV_P) 2016fd_ebadf (EV_P)
565{ 2017{
566 int fd; 2018 int fd;
567 2019
568 for (fd = 0; fd < anfdmax; ++fd) 2020 for (fd = 0; fd < anfdmax; ++fd)
569 if (anfds [fd].events) 2021 if (anfds [fd].events)
570 if (!fd_valid (fd) == -1 && errno == EBADF) 2022 if (!fd_valid (fd) && errno == EBADF)
571 fd_kill (EV_A_ fd); 2023 fd_kill (EV_A_ fd);
572} 2024}
573 2025
574/* called on ENOMEM in select/poll to kill some fds and retry */ 2026/* called on ENOMEM in select/poll to kill some fds and retry */
575static void noinline 2027static void noinline ecb_cold
576fd_enomem (EV_P) 2028fd_enomem (EV_P)
577{ 2029{
578 int fd; 2030 int fd;
579 2031
580 for (fd = anfdmax; fd--; ) 2032 for (fd = anfdmax; fd--; )
581 if (anfds [fd].events) 2033 if (anfds [fd].events)
582 { 2034 {
583 fd_kill (EV_A_ fd); 2035 fd_kill (EV_A_ fd);
584 return; 2036 break;
585 } 2037 }
586} 2038}
587 2039
588/* usually called after fork if backend needs to re-arm all fds from scratch */ 2040/* usually called after fork if backend needs to re-arm all fds from scratch */
589static void noinline 2041static void noinline
590fd_rearm_all (EV_P) 2042fd_rearm_all (EV_P)
591{ 2043{
592 int fd; 2044 int fd;
593 2045
594 /* this should be highly optimised to not do anything but set a flag */
595 for (fd = 0; fd < anfdmax; ++fd) 2046 for (fd = 0; fd < anfdmax; ++fd)
596 if (anfds [fd].events) 2047 if (anfds [fd].events)
597 { 2048 {
598 anfds [fd].events = 0; 2049 anfds [fd].events = 0;
599 fd_change (EV_A_ fd); 2050 anfds [fd].emask = 0;
2051 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
600 } 2052 }
601} 2053}
602 2054
603/*****************************************************************************/ 2055/* used to prepare libev internal fd's */
604 2056/* this is not fork-safe */
605void inline_speed 2057inline_speed void
606upheap (WT *heap, int k)
607{
608 WT w = heap [k];
609
610 while (k && heap [k >> 1]->at > w->at)
611 {
612 heap [k] = heap [k >> 1];
613 ((W)heap [k])->active = k + 1;
614 k >>= 1;
615 }
616
617 heap [k] = w;
618 ((W)heap [k])->active = k + 1;
619
620}
621
622void inline_speed
623downheap (WT *heap, int N, int k)
624{
625 WT w = heap [k];
626
627 while (k < (N >> 1))
628 {
629 int j = k << 1;
630
631 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
632 ++j;
633
634 if (w->at <= heap [j]->at)
635 break;
636
637 heap [k] = heap [j];
638 ((W)heap [k])->active = k + 1;
639 k = j;
640 }
641
642 heap [k] = w;
643 ((W)heap [k])->active = k + 1;
644}
645
646void inline_size
647adjustheap (WT *heap, int N, int k)
648{
649 upheap (heap, k);
650 downheap (heap, N, k);
651}
652
653/*****************************************************************************/
654
655typedef struct
656{
657 WL head;
658 sig_atomic_t volatile gotsig;
659} ANSIG;
660
661static ANSIG *signals;
662static int signalmax;
663
664static int sigpipe [2];
665static sig_atomic_t volatile gotsig;
666static ev_io sigev;
667
668void inline_size
669signals_init (ANSIG *base, int count)
670{
671 while (count--)
672 {
673 base->head = 0;
674 base->gotsig = 0;
675
676 ++base;
677 }
678}
679
680static void
681sighandler (int signum)
682{
683#if _WIN32
684 signal (signum, sighandler);
685#endif
686
687 signals [signum - 1].gotsig = 1;
688
689 if (!gotsig)
690 {
691 int old_errno = errno;
692 gotsig = 1;
693 write (sigpipe [1], &signum, 1);
694 errno = old_errno;
695 }
696}
697
698void noinline
699ev_feed_signal_event (EV_P_ int signum)
700{
701 WL w;
702
703#if EV_MULTIPLICITY
704 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
705#endif
706
707 --signum;
708
709 if (signum < 0 || signum >= signalmax)
710 return;
711
712 signals [signum].gotsig = 0;
713
714 for (w = signals [signum].head; w; w = w->next)
715 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
716}
717
718static void
719sigcb (EV_P_ ev_io *iow, int revents)
720{
721 int signum;
722
723 read (sigpipe [0], &revents, 1);
724 gotsig = 0;
725
726 for (signum = signalmax; signum--; )
727 if (signals [signum].gotsig)
728 ev_feed_signal_event (EV_A_ signum + 1);
729}
730
731void inline_size
732fd_intern (int fd) 2058fd_intern (int fd)
733{ 2059{
734#ifdef _WIN32 2060#ifdef _WIN32
735 int arg = 1; 2061 unsigned long arg = 1;
736 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 2062 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
737#else 2063#else
738 fcntl (fd, F_SETFD, FD_CLOEXEC); 2064 fcntl (fd, F_SETFD, FD_CLOEXEC);
739 fcntl (fd, F_SETFL, O_NONBLOCK); 2065 fcntl (fd, F_SETFL, O_NONBLOCK);
740#endif 2066#endif
741} 2067}
742 2068
743static void noinline
744siginit (EV_P)
745{
746 fd_intern (sigpipe [0]);
747 fd_intern (sigpipe [1]);
748
749 ev_io_set (&sigev, sigpipe [0], EV_READ);
750 ev_io_start (EV_A_ &sigev);
751 ev_unref (EV_A); /* child watcher should not keep loop alive */
752}
753
754/*****************************************************************************/ 2069/*****************************************************************************/
755 2070
756static ev_child *childs [EV_PID_HASHSIZE]; 2071/*
2072 * the heap functions want a real array index. array index 0 is guaranteed to not
2073 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
2074 * the branching factor of the d-tree.
2075 */
757 2076
2077/*
2078 * at the moment we allow libev the luxury of two heaps,
2079 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2080 * which is more cache-efficient.
2081 * the difference is about 5% with 50000+ watchers.
2082 */
2083#if EV_USE_4HEAP
2084
2085#define DHEAP 4
2086#define HEAP0 (DHEAP - 1) /* index of first element in heap */
2087#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2088#define UPHEAP_DONE(p,k) ((p) == (k))
2089
2090/* away from the root */
2091inline_speed void
2092downheap (ANHE *heap, int N, int k)
2093{
2094 ANHE he = heap [k];
2095 ANHE *E = heap + N + HEAP0;
2096
2097 for (;;)
2098 {
2099 ev_tstamp minat;
2100 ANHE *minpos;
2101 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2102
2103 /* find minimum child */
2104 if (expect_true (pos + DHEAP - 1 < E))
2105 {
2106 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2107 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2108 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2109 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2110 }
2111 else if (pos < E)
2112 {
2113 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2114 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2115 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2116 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2117 }
2118 else
2119 break;
2120
2121 if (ANHE_at (he) <= minat)
2122 break;
2123
2124 heap [k] = *minpos;
2125 ev_active (ANHE_w (*minpos)) = k;
2126
2127 k = minpos - heap;
2128 }
2129
2130 heap [k] = he;
2131 ev_active (ANHE_w (he)) = k;
2132}
2133
2134#else /* 4HEAP */
2135
2136#define HEAP0 1
2137#define HPARENT(k) ((k) >> 1)
2138#define UPHEAP_DONE(p,k) (!(p))
2139
2140/* away from the root */
2141inline_speed void
2142downheap (ANHE *heap, int N, int k)
2143{
2144 ANHE he = heap [k];
2145
2146 for (;;)
2147 {
2148 int c = k << 1;
2149
2150 if (c >= N + HEAP0)
2151 break;
2152
2153 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2154 ? 1 : 0;
2155
2156 if (ANHE_at (he) <= ANHE_at (heap [c]))
2157 break;
2158
2159 heap [k] = heap [c];
2160 ev_active (ANHE_w (heap [k])) = k;
2161
2162 k = c;
2163 }
2164
2165 heap [k] = he;
2166 ev_active (ANHE_w (he)) = k;
2167}
2168#endif
2169
2170/* towards the root */
2171inline_speed void
2172upheap (ANHE *heap, int k)
2173{
2174 ANHE he = heap [k];
2175
2176 for (;;)
2177 {
2178 int p = HPARENT (k);
2179
2180 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2181 break;
2182
2183 heap [k] = heap [p];
2184 ev_active (ANHE_w (heap [k])) = k;
2185 k = p;
2186 }
2187
2188 heap [k] = he;
2189 ev_active (ANHE_w (he)) = k;
2190}
2191
2192/* move an element suitably so it is in a correct place */
2193inline_size void
2194adjustheap (ANHE *heap, int N, int k)
2195{
2196 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2197 upheap (heap, k);
2198 else
2199 downheap (heap, N, k);
2200}
2201
2202/* rebuild the heap: this function is used only once and executed rarely */
2203inline_size void
2204reheap (ANHE *heap, int N)
2205{
2206 int i;
2207
2208 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2209 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2210 for (i = 0; i < N; ++i)
2211 upheap (heap, i + HEAP0);
2212}
2213
2214/*****************************************************************************/
2215
2216/* associate signal watchers to a signal signal */
2217typedef struct
2218{
2219 EV_ATOMIC_T pending;
2220#if EV_MULTIPLICITY
2221 EV_P;
2222#endif
2223 WL head;
2224} ANSIG;
2225
2226static ANSIG signals [EV_NSIG - 1];
2227
2228/*****************************************************************************/
2229
2230#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2231
2232static void noinline ecb_cold
2233evpipe_init (EV_P)
2234{
2235 if (!ev_is_active (&pipe_w))
2236 {
2237 int fds [2];
2238
2239# if EV_USE_EVENTFD
2240 fds [0] = -1;
2241 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2242 if (fds [1] < 0 && errno == EINVAL)
2243 fds [1] = eventfd (0, 0);
2244
2245 if (fds [1] < 0)
2246# endif
2247 {
2248 while (pipe (fds))
2249 ev_syserr ("(libev) error creating signal/async pipe");
2250
2251 fd_intern (fds [0]);
2252 }
2253
2254 evpipe [0] = fds [0];
2255
2256 if (evpipe [1] < 0)
2257 evpipe [1] = fds [1]; /* first call, set write fd */
2258 else
2259 {
2260 /* on subsequent calls, do not change evpipe [1] */
2261 /* so that evpipe_write can always rely on its value. */
2262 /* this branch does not do anything sensible on windows, */
2263 /* so must not be executed on windows */
2264
2265 dup2 (fds [1], evpipe [1]);
2266 close (fds [1]);
2267 }
2268
2269 fd_intern (evpipe [1]);
2270
2271 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2272 ev_io_start (EV_A_ &pipe_w);
2273 ev_unref (EV_A); /* watcher should not keep loop alive */
2274 }
2275}
2276
2277inline_speed void
2278evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2279{
2280 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2281
2282 if (expect_true (*flag))
2283 return;
2284
2285 *flag = 1;
2286 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2287
2288 pipe_write_skipped = 1;
2289
2290 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2291
2292 if (pipe_write_wanted)
2293 {
2294 int old_errno;
2295
2296 pipe_write_skipped = 0;
2297 ECB_MEMORY_FENCE_RELEASE;
2298
2299 old_errno = errno; /* save errno because write will clobber it */
2300
2301#if EV_USE_EVENTFD
2302 if (evpipe [0] < 0)
2303 {
2304 uint64_t counter = 1;
2305 write (evpipe [1], &counter, sizeof (uint64_t));
2306 }
2307 else
2308#endif
2309 {
758#ifndef _WIN32 2310#ifdef _WIN32
2311 WSABUF buf;
2312 DWORD sent;
2313 buf.buf = &buf;
2314 buf.len = 1;
2315 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2316#else
2317 write (evpipe [1], &(evpipe [1]), 1);
2318#endif
2319 }
2320
2321 errno = old_errno;
2322 }
2323}
2324
2325/* called whenever the libev signal pipe */
2326/* got some events (signal, async) */
2327static void
2328pipecb (EV_P_ ev_io *iow, int revents)
2329{
2330 int i;
2331
2332 if (revents & EV_READ)
2333 {
2334#if EV_USE_EVENTFD
2335 if (evpipe [0] < 0)
2336 {
2337 uint64_t counter;
2338 read (evpipe [1], &counter, sizeof (uint64_t));
2339 }
2340 else
2341#endif
2342 {
2343 char dummy[4];
2344#ifdef _WIN32
2345 WSABUF buf;
2346 DWORD recvd;
2347 DWORD flags = 0;
2348 buf.buf = dummy;
2349 buf.len = sizeof (dummy);
2350 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2351#else
2352 read (evpipe [0], &dummy, sizeof (dummy));
2353#endif
2354 }
2355 }
2356
2357 pipe_write_skipped = 0;
2358
2359 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2360
2361#if EV_SIGNAL_ENABLE
2362 if (sig_pending)
2363 {
2364 sig_pending = 0;
2365
2366 ECB_MEMORY_FENCE;
2367
2368 for (i = EV_NSIG - 1; i--; )
2369 if (expect_false (signals [i].pending))
2370 ev_feed_signal_event (EV_A_ i + 1);
2371 }
2372#endif
2373
2374#if EV_ASYNC_ENABLE
2375 if (async_pending)
2376 {
2377 async_pending = 0;
2378
2379 ECB_MEMORY_FENCE;
2380
2381 for (i = asynccnt; i--; )
2382 if (asyncs [i]->sent)
2383 {
2384 asyncs [i]->sent = 0;
2385 ECB_MEMORY_FENCE_RELEASE;
2386 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2387 }
2388 }
2389#endif
2390}
2391
2392/*****************************************************************************/
2393
2394void
2395ev_feed_signal (int signum) EV_THROW
2396{
2397#if EV_MULTIPLICITY
2398 EV_P;
2399 ECB_MEMORY_FENCE_ACQUIRE;
2400 EV_A = signals [signum - 1].loop;
2401
2402 if (!EV_A)
2403 return;
2404#endif
2405
2406 signals [signum - 1].pending = 1;
2407 evpipe_write (EV_A_ &sig_pending);
2408}
2409
2410static void
2411ev_sighandler (int signum)
2412{
2413#ifdef _WIN32
2414 signal (signum, ev_sighandler);
2415#endif
2416
2417 ev_feed_signal (signum);
2418}
2419
2420void noinline
2421ev_feed_signal_event (EV_P_ int signum) EV_THROW
2422{
2423 WL w;
2424
2425 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2426 return;
2427
2428 --signum;
2429
2430#if EV_MULTIPLICITY
2431 /* it is permissible to try to feed a signal to the wrong loop */
2432 /* or, likely more useful, feeding a signal nobody is waiting for */
2433
2434 if (expect_false (signals [signum].loop != EV_A))
2435 return;
2436#endif
2437
2438 signals [signum].pending = 0;
2439 ECB_MEMORY_FENCE_RELEASE;
2440
2441 for (w = signals [signum].head; w; w = w->next)
2442 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2443}
2444
2445#if EV_USE_SIGNALFD
2446static void
2447sigfdcb (EV_P_ ev_io *iow, int revents)
2448{
2449 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2450
2451 for (;;)
2452 {
2453 ssize_t res = read (sigfd, si, sizeof (si));
2454
2455 /* not ISO-C, as res might be -1, but works with SuS */
2456 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2457 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2458
2459 if (res < (ssize_t)sizeof (si))
2460 break;
2461 }
2462}
2463#endif
2464
2465#endif
2466
2467/*****************************************************************************/
2468
2469#if EV_CHILD_ENABLE
2470static WL childs [EV_PID_HASHSIZE];
759 2471
760static ev_signal childev; 2472static ev_signal childev;
761 2473
762void inline_speed 2474#ifndef WIFCONTINUED
2475# define WIFCONTINUED(status) 0
2476#endif
2477
2478/* handle a single child status event */
2479inline_speed void
763child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 2480child_reap (EV_P_ int chain, int pid, int status)
764{ 2481{
765 ev_child *w; 2482 ev_child *w;
2483 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
766 2484
767 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2485 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2486 {
768 if (w->pid == pid || !w->pid) 2487 if ((w->pid == pid || !w->pid)
2488 && (!traced || (w->flags & 1)))
769 { 2489 {
770 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 2490 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
771 w->rpid = pid; 2491 w->rpid = pid;
772 w->rstatus = status; 2492 w->rstatus = status;
773 ev_feed_event (EV_A_ (W)w, EV_CHILD); 2493 ev_feed_event (EV_A_ (W)w, EV_CHILD);
774 } 2494 }
2495 }
775} 2496}
776 2497
777#ifndef WCONTINUED 2498#ifndef WCONTINUED
778# define WCONTINUED 0 2499# define WCONTINUED 0
779#endif 2500#endif
780 2501
2502/* called on sigchld etc., calls waitpid */
781static void 2503static void
782childcb (EV_P_ ev_signal *sw, int revents) 2504childcb (EV_P_ ev_signal *sw, int revents)
783{ 2505{
784 int pid, status; 2506 int pid, status;
785 2507
788 if (!WCONTINUED 2510 if (!WCONTINUED
789 || errno != EINVAL 2511 || errno != EINVAL
790 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 2512 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
791 return; 2513 return;
792 2514
793 /* make sure we are called again until all childs have been reaped */ 2515 /* make sure we are called again until all children have been reaped */
794 /* we need to do it this way so that the callback gets called before we continue */ 2516 /* we need to do it this way so that the callback gets called before we continue */
795 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2517 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
796 2518
797 child_reap (EV_A_ sw, pid, pid, status); 2519 child_reap (EV_A_ pid, pid, status);
798 if (EV_PID_HASHSIZE > 1) 2520 if ((EV_PID_HASHSIZE) > 1)
799 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2521 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
800} 2522}
801 2523
802#endif 2524#endif
803 2525
804/*****************************************************************************/ 2526/*****************************************************************************/
805 2527
2528#if EV_USE_IOCP
2529# include "ev_iocp.c"
2530#endif
806#if EV_USE_PORT 2531#if EV_USE_PORT
807# include "ev_port.c" 2532# include "ev_port.c"
808#endif 2533#endif
809#if EV_USE_KQUEUE 2534#if EV_USE_KQUEUE
810# include "ev_kqueue.c" 2535# include "ev_kqueue.c"
817#endif 2542#endif
818#if EV_USE_SELECT 2543#if EV_USE_SELECT
819# include "ev_select.c" 2544# include "ev_select.c"
820#endif 2545#endif
821 2546
822int 2547int ecb_cold
823ev_version_major (void) 2548ev_version_major (void) EV_THROW
824{ 2549{
825 return EV_VERSION_MAJOR; 2550 return EV_VERSION_MAJOR;
826} 2551}
827 2552
828int 2553int ecb_cold
829ev_version_minor (void) 2554ev_version_minor (void) EV_THROW
830{ 2555{
831 return EV_VERSION_MINOR; 2556 return EV_VERSION_MINOR;
832} 2557}
833 2558
834/* return true if we are running with elevated privileges and should ignore env variables */ 2559/* return true if we are running with elevated privileges and should ignore env variables */
835int inline_size 2560int inline_size ecb_cold
836enable_secure (void) 2561enable_secure (void)
837{ 2562{
838#ifdef _WIN32 2563#ifdef _WIN32
839 return 0; 2564 return 0;
840#else 2565#else
841 return getuid () != geteuid () 2566 return getuid () != geteuid ()
842 || getgid () != getegid (); 2567 || getgid () != getegid ();
843#endif 2568#endif
844} 2569}
845 2570
846unsigned int 2571unsigned int ecb_cold
847ev_supported_backends (void) 2572ev_supported_backends (void) EV_THROW
848{ 2573{
849 unsigned int flags = 0; 2574 unsigned int flags = 0;
850 2575
851 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2576 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
852 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2577 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
855 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2580 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
856 2581
857 return flags; 2582 return flags;
858} 2583}
859 2584
860unsigned int 2585unsigned int ecb_cold
861ev_recommended_backends (void) 2586ev_recommended_backends (void) EV_THROW
862{ 2587{
863 unsigned int flags = ev_supported_backends (); 2588 unsigned int flags = ev_supported_backends ();
864 2589
865#ifndef __NetBSD__ 2590#ifndef __NetBSD__
866 /* kqueue is borked on everything but netbsd apparently */ 2591 /* kqueue is borked on everything but netbsd apparently */
867 /* it usually doesn't work correctly on anything but sockets and pipes */ 2592 /* it usually doesn't work correctly on anything but sockets and pipes */
868 flags &= ~EVBACKEND_KQUEUE; 2593 flags &= ~EVBACKEND_KQUEUE;
869#endif 2594#endif
870#ifdef __APPLE__ 2595#ifdef __APPLE__
871 // flags &= ~EVBACKEND_KQUEUE; for documentation 2596 /* only select works correctly on that "unix-certified" platform */
872 flags &= ~EVBACKEND_POLL; 2597 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2598 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2599#endif
2600#ifdef __FreeBSD__
2601 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
873#endif 2602#endif
874 2603
875 return flags; 2604 return flags;
876} 2605}
877 2606
2607unsigned int ecb_cold
2608ev_embeddable_backends (void) EV_THROW
2609{
2610 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2611
2612 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2613 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2614 flags &= ~EVBACKEND_EPOLL;
2615
2616 return flags;
2617}
2618
878unsigned int 2619unsigned int
879ev_embeddable_backends (void) 2620ev_backend (EV_P) EV_THROW
880{ 2621{
881 return EVBACKEND_EPOLL 2622 return backend;
882 | EVBACKEND_KQUEUE
883 | EVBACKEND_PORT;
884} 2623}
885 2624
2625#if EV_FEATURE_API
886unsigned int 2626unsigned int
887ev_backend (EV_P) 2627ev_iteration (EV_P) EV_THROW
888{ 2628{
889 return backend; 2629 return loop_count;
890} 2630}
891 2631
2632unsigned int
2633ev_depth (EV_P) EV_THROW
2634{
2635 return loop_depth;
2636}
2637
2638void
2639ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2640{
2641 io_blocktime = interval;
2642}
2643
2644void
2645ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2646{
2647 timeout_blocktime = interval;
2648}
2649
2650void
2651ev_set_userdata (EV_P_ void *data) EV_THROW
2652{
2653 userdata = data;
2654}
2655
2656void *
2657ev_userdata (EV_P) EV_THROW
2658{
2659 return userdata;
2660}
2661
2662void
2663ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_THROW
2664{
2665 invoke_cb = invoke_pending_cb;
2666}
2667
2668void
2669ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2670{
2671 release_cb = release;
2672 acquire_cb = acquire;
2673}
2674#endif
2675
2676/* initialise a loop structure, must be zero-initialised */
892static void noinline 2677static void noinline ecb_cold
893loop_init (EV_P_ unsigned int flags) 2678loop_init (EV_P_ unsigned int flags) EV_THROW
894{ 2679{
895 if (!backend) 2680 if (!backend)
896 { 2681 {
2682 origflags = flags;
2683
2684#if EV_USE_REALTIME
2685 if (!have_realtime)
2686 {
2687 struct timespec ts;
2688
2689 if (!clock_gettime (CLOCK_REALTIME, &ts))
2690 have_realtime = 1;
2691 }
2692#endif
2693
897#if EV_USE_MONOTONIC 2694#if EV_USE_MONOTONIC
2695 if (!have_monotonic)
898 { 2696 {
899 struct timespec ts; 2697 struct timespec ts;
2698
900 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2699 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
901 have_monotonic = 1; 2700 have_monotonic = 1;
902 } 2701 }
903#endif 2702#endif
904 2703
905 ev_rt_now = ev_time (); 2704 /* pid check not overridable via env */
906 mn_now = get_clock (); 2705#ifndef _WIN32
907 now_floor = mn_now; 2706 if (flags & EVFLAG_FORKCHECK)
908 rtmn_diff = ev_rt_now - mn_now; 2707 curpid = getpid ();
2708#endif
909 2709
910 if (!(flags & EVFLAG_NOENV) 2710 if (!(flags & EVFLAG_NOENV)
911 && !enable_secure () 2711 && !enable_secure ()
912 && getenv ("LIBEV_FLAGS")) 2712 && getenv ("LIBEV_FLAGS"))
913 flags = atoi (getenv ("LIBEV_FLAGS")); 2713 flags = atoi (getenv ("LIBEV_FLAGS"));
914 2714
915 if (!(flags & 0x0000ffffUL)) 2715 ev_rt_now = ev_time ();
2716 mn_now = get_clock ();
2717 now_floor = mn_now;
2718 rtmn_diff = ev_rt_now - mn_now;
2719#if EV_FEATURE_API
2720 invoke_cb = ev_invoke_pending;
2721#endif
2722
2723 io_blocktime = 0.;
2724 timeout_blocktime = 0.;
2725 backend = 0;
2726 backend_fd = -1;
2727 sig_pending = 0;
2728#if EV_ASYNC_ENABLE
2729 async_pending = 0;
2730#endif
2731 pipe_write_skipped = 0;
2732 pipe_write_wanted = 0;
2733 evpipe [0] = -1;
2734 evpipe [1] = -1;
2735#if EV_USE_INOTIFY
2736 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2737#endif
2738#if EV_USE_SIGNALFD
2739 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2740#endif
2741
2742 if (!(flags & EVBACKEND_MASK))
916 flags |= ev_recommended_backends (); 2743 flags |= ev_recommended_backends ();
917 2744
918 backend = 0;
919 backend_fd = -1;
920#if EV_USE_INOTIFY 2745#if EV_USE_IOCP
921 fs_fd = -2; 2746 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
922#endif 2747#endif
923
924#if EV_USE_PORT 2748#if EV_USE_PORT
925 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2749 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
926#endif 2750#endif
927#if EV_USE_KQUEUE 2751#if EV_USE_KQUEUE
928 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2752 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
935#endif 2759#endif
936#if EV_USE_SELECT 2760#if EV_USE_SELECT
937 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2761 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
938#endif 2762#endif
939 2763
2764 ev_prepare_init (&pending_w, pendingcb);
2765
2766#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
940 ev_init (&sigev, sigcb); 2767 ev_init (&pipe_w, pipecb);
941 ev_set_priority (&sigev, EV_MAXPRI); 2768 ev_set_priority (&pipe_w, EV_MAXPRI);
2769#endif
942 } 2770 }
943} 2771}
944 2772
945static void noinline 2773/* free up a loop structure */
2774void ecb_cold
946loop_destroy (EV_P) 2775ev_loop_destroy (EV_P)
947{ 2776{
948 int i; 2777 int i;
2778
2779#if EV_MULTIPLICITY
2780 /* mimic free (0) */
2781 if (!EV_A)
2782 return;
2783#endif
2784
2785#if EV_CLEANUP_ENABLE
2786 /* queue cleanup watchers (and execute them) */
2787 if (expect_false (cleanupcnt))
2788 {
2789 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2790 EV_INVOKE_PENDING;
2791 }
2792#endif
2793
2794#if EV_CHILD_ENABLE
2795 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2796 {
2797 ev_ref (EV_A); /* child watcher */
2798 ev_signal_stop (EV_A_ &childev);
2799 }
2800#endif
2801
2802 if (ev_is_active (&pipe_w))
2803 {
2804 /*ev_ref (EV_A);*/
2805 /*ev_io_stop (EV_A_ &pipe_w);*/
2806
2807 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2808 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2809 }
2810
2811#if EV_USE_SIGNALFD
2812 if (ev_is_active (&sigfd_w))
2813 close (sigfd);
2814#endif
949 2815
950#if EV_USE_INOTIFY 2816#if EV_USE_INOTIFY
951 if (fs_fd >= 0) 2817 if (fs_fd >= 0)
952 close (fs_fd); 2818 close (fs_fd);
953#endif 2819#endif
954 2820
955 if (backend_fd >= 0) 2821 if (backend_fd >= 0)
956 close (backend_fd); 2822 close (backend_fd);
957 2823
2824#if EV_USE_IOCP
2825 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2826#endif
958#if EV_USE_PORT 2827#if EV_USE_PORT
959 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2828 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
960#endif 2829#endif
961#if EV_USE_KQUEUE 2830#if EV_USE_KQUEUE
962 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2831 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
970#if EV_USE_SELECT 2839#if EV_USE_SELECT
971 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 2840 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
972#endif 2841#endif
973 2842
974 for (i = NUMPRI; i--; ) 2843 for (i = NUMPRI; i--; )
2844 {
975 array_free (pending, [i]); 2845 array_free (pending, [i]);
2846#if EV_IDLE_ENABLE
2847 array_free (idle, [i]);
2848#endif
2849 }
2850
2851 ev_free (anfds); anfds = 0; anfdmax = 0;
976 2852
977 /* have to use the microsoft-never-gets-it-right macro */ 2853 /* have to use the microsoft-never-gets-it-right macro */
2854 array_free (rfeed, EMPTY);
978 array_free (fdchange, EMPTY0); 2855 array_free (fdchange, EMPTY);
979 array_free (timer, EMPTY0); 2856 array_free (timer, EMPTY);
980#if EV_PERIODIC_ENABLE 2857#if EV_PERIODIC_ENABLE
981 array_free (periodic, EMPTY0); 2858 array_free (periodic, EMPTY);
982#endif 2859#endif
2860#if EV_FORK_ENABLE
2861 array_free (fork, EMPTY);
2862#endif
2863#if EV_CLEANUP_ENABLE
983 array_free (idle, EMPTY0); 2864 array_free (cleanup, EMPTY);
2865#endif
984 array_free (prepare, EMPTY0); 2866 array_free (prepare, EMPTY);
985 array_free (check, EMPTY0); 2867 array_free (check, EMPTY);
2868#if EV_ASYNC_ENABLE
2869 array_free (async, EMPTY);
2870#endif
986 2871
987 backend = 0; 2872 backend = 0;
988}
989 2873
2874#if EV_MULTIPLICITY
2875 if (ev_is_default_loop (EV_A))
2876#endif
2877 ev_default_loop_ptr = 0;
2878#if EV_MULTIPLICITY
2879 else
2880 ev_free (EV_A);
2881#endif
2882}
2883
2884#if EV_USE_INOTIFY
990void inline_size infy_fork (EV_P); 2885inline_size void infy_fork (EV_P);
2886#endif
991 2887
992void inline_size 2888inline_size void
993loop_fork (EV_P) 2889loop_fork (EV_P)
994{ 2890{
995#if EV_USE_PORT 2891#if EV_USE_PORT
996 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2892 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
997#endif 2893#endif
1003#endif 2899#endif
1004#if EV_USE_INOTIFY 2900#if EV_USE_INOTIFY
1005 infy_fork (EV_A); 2901 infy_fork (EV_A);
1006#endif 2902#endif
1007 2903
2904#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1008 if (ev_is_active (&sigev)) 2905 if (ev_is_active (&pipe_w))
1009 { 2906 {
1010 /* default loop */ 2907 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1011 2908
1012 ev_ref (EV_A); 2909 ev_ref (EV_A);
1013 ev_io_stop (EV_A_ &sigev); 2910 ev_io_stop (EV_A_ &pipe_w);
1014 close (sigpipe [0]);
1015 close (sigpipe [1]);
1016 2911
1017 while (pipe (sigpipe)) 2912 if (evpipe [0] >= 0)
1018 syserr ("(libev) error creating pipe"); 2913 EV_WIN32_CLOSE_FD (evpipe [0]);
1019 2914
1020 siginit (EV_A); 2915 evpipe_init (EV_A);
2916 /* iterate over everything, in case we missed something before */
2917 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
1021 } 2918 }
2919#endif
1022 2920
1023 postfork = 0; 2921 postfork = 0;
1024} 2922}
1025 2923
1026#if EV_MULTIPLICITY 2924#if EV_MULTIPLICITY
2925
1027struct ev_loop * 2926struct ev_loop * ecb_cold
1028ev_loop_new (unsigned int flags) 2927ev_loop_new (unsigned int flags) EV_THROW
1029{ 2928{
1030 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2929 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1031 2930
1032 memset (loop, 0, sizeof (struct ev_loop)); 2931 memset (EV_A, 0, sizeof (struct ev_loop));
1033
1034 loop_init (EV_A_ flags); 2932 loop_init (EV_A_ flags);
1035 2933
1036 if (ev_backend (EV_A)) 2934 if (ev_backend (EV_A))
1037 return loop; 2935 return EV_A;
1038 2936
2937 ev_free (EV_A);
1039 return 0; 2938 return 0;
1040} 2939}
1041 2940
1042void 2941#endif /* multiplicity */
1043ev_loop_destroy (EV_P)
1044{
1045 loop_destroy (EV_A);
1046 ev_free (loop);
1047}
1048 2942
1049void 2943#if EV_VERIFY
1050ev_loop_fork (EV_P) 2944static void noinline ecb_cold
2945verify_watcher (EV_P_ W w)
1051{ 2946{
1052 postfork = 1; 2947 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1053}
1054 2948
2949 if (w->pending)
2950 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2951}
2952
2953static void noinline ecb_cold
2954verify_heap (EV_P_ ANHE *heap, int N)
2955{
2956 int i;
2957
2958 for (i = HEAP0; i < N + HEAP0; ++i)
2959 {
2960 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2961 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2962 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2963
2964 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2965 }
2966}
2967
2968static void noinline ecb_cold
2969array_verify (EV_P_ W *ws, int cnt)
2970{
2971 while (cnt--)
2972 {
2973 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2974 verify_watcher (EV_A_ ws [cnt]);
2975 }
2976}
2977#endif
2978
2979#if EV_FEATURE_API
2980void ecb_cold
2981ev_verify (EV_P) EV_THROW
2982{
2983#if EV_VERIFY
2984 int i;
2985 WL w, w2;
2986
2987 assert (activecnt >= -1);
2988
2989 assert (fdchangemax >= fdchangecnt);
2990 for (i = 0; i < fdchangecnt; ++i)
2991 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2992
2993 assert (anfdmax >= 0);
2994 for (i = 0; i < anfdmax; ++i)
2995 {
2996 int j = 0;
2997
2998 for (w = w2 = anfds [i].head; w; w = w->next)
2999 {
3000 verify_watcher (EV_A_ (W)w);
3001
3002 if (j++ & 1)
3003 {
3004 assert (("libev: io watcher list contains a loop", w != w2));
3005 w2 = w2->next;
3006 }
3007
3008 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3009 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3010 }
3011 }
3012
3013 assert (timermax >= timercnt);
3014 verify_heap (EV_A_ timers, timercnt);
3015
3016#if EV_PERIODIC_ENABLE
3017 assert (periodicmax >= periodiccnt);
3018 verify_heap (EV_A_ periodics, periodiccnt);
3019#endif
3020
3021 for (i = NUMPRI; i--; )
3022 {
3023 assert (pendingmax [i] >= pendingcnt [i]);
3024#if EV_IDLE_ENABLE
3025 assert (idleall >= 0);
3026 assert (idlemax [i] >= idlecnt [i]);
3027 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3028#endif
3029 }
3030
3031#if EV_FORK_ENABLE
3032 assert (forkmax >= forkcnt);
3033 array_verify (EV_A_ (W *)forks, forkcnt);
3034#endif
3035
3036#if EV_CLEANUP_ENABLE
3037 assert (cleanupmax >= cleanupcnt);
3038 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3039#endif
3040
3041#if EV_ASYNC_ENABLE
3042 assert (asyncmax >= asynccnt);
3043 array_verify (EV_A_ (W *)asyncs, asynccnt);
3044#endif
3045
3046#if EV_PREPARE_ENABLE
3047 assert (preparemax >= preparecnt);
3048 array_verify (EV_A_ (W *)prepares, preparecnt);
3049#endif
3050
3051#if EV_CHECK_ENABLE
3052 assert (checkmax >= checkcnt);
3053 array_verify (EV_A_ (W *)checks, checkcnt);
3054#endif
3055
3056# if 0
3057#if EV_CHILD_ENABLE
3058 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3059 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3060#endif
3061# endif
3062#endif
3063}
1055#endif 3064#endif
1056 3065
1057#if EV_MULTIPLICITY 3066#if EV_MULTIPLICITY
1058struct ev_loop * 3067struct ev_loop * ecb_cold
1059ev_default_loop_init (unsigned int flags)
1060#else 3068#else
1061int 3069int
3070#endif
1062ev_default_loop (unsigned int flags) 3071ev_default_loop (unsigned int flags) EV_THROW
1063#endif
1064{ 3072{
1065 if (sigpipe [0] == sigpipe [1])
1066 if (pipe (sigpipe))
1067 return 0;
1068
1069 if (!ev_default_loop_ptr) 3073 if (!ev_default_loop_ptr)
1070 { 3074 {
1071#if EV_MULTIPLICITY 3075#if EV_MULTIPLICITY
1072 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 3076 EV_P = ev_default_loop_ptr = &default_loop_struct;
1073#else 3077#else
1074 ev_default_loop_ptr = 1; 3078 ev_default_loop_ptr = 1;
1075#endif 3079#endif
1076 3080
1077 loop_init (EV_A_ flags); 3081 loop_init (EV_A_ flags);
1078 3082
1079 if (ev_backend (EV_A)) 3083 if (ev_backend (EV_A))
1080 { 3084 {
1081 siginit (EV_A); 3085#if EV_CHILD_ENABLE
1082
1083#ifndef _WIN32
1084 ev_signal_init (&childev, childcb, SIGCHLD); 3086 ev_signal_init (&childev, childcb, SIGCHLD);
1085 ev_set_priority (&childev, EV_MAXPRI); 3087 ev_set_priority (&childev, EV_MAXPRI);
1086 ev_signal_start (EV_A_ &childev); 3088 ev_signal_start (EV_A_ &childev);
1087 ev_unref (EV_A); /* child watcher should not keep loop alive */ 3089 ev_unref (EV_A); /* child watcher should not keep loop alive */
1088#endif 3090#endif
1093 3095
1094 return ev_default_loop_ptr; 3096 return ev_default_loop_ptr;
1095} 3097}
1096 3098
1097void 3099void
1098ev_default_destroy (void) 3100ev_loop_fork (EV_P) EV_THROW
1099{ 3101{
1100#if EV_MULTIPLICITY 3102 postfork = 1;
1101 struct ev_loop *loop = ev_default_loop_ptr;
1102#endif
1103
1104#ifndef _WIN32
1105 ev_ref (EV_A); /* child watcher */
1106 ev_signal_stop (EV_A_ &childev);
1107#endif
1108
1109 ev_ref (EV_A); /* signal watcher */
1110 ev_io_stop (EV_A_ &sigev);
1111
1112 close (sigpipe [0]); sigpipe [0] = 0;
1113 close (sigpipe [1]); sigpipe [1] = 0;
1114
1115 loop_destroy (EV_A);
1116} 3103}
3104
3105/*****************************************************************************/
1117 3106
1118void 3107void
1119ev_default_fork (void) 3108ev_invoke (EV_P_ void *w, int revents)
1120{ 3109{
1121#if EV_MULTIPLICITY 3110 EV_CB_INVOKE ((W)w, revents);
1122 struct ev_loop *loop = ev_default_loop_ptr;
1123#endif
1124
1125 if (backend)
1126 postfork = 1;
1127} 3111}
1128 3112
1129/*****************************************************************************/ 3113unsigned int
1130 3114ev_pending_count (EV_P) EV_THROW
1131int inline_size
1132any_pending (EV_P)
1133{ 3115{
1134 int pri; 3116 int pri;
3117 unsigned int count = 0;
1135 3118
1136 for (pri = NUMPRI; pri--; ) 3119 for (pri = NUMPRI; pri--; )
1137 if (pendingcnt [pri]) 3120 count += pendingcnt [pri];
1138 return 1;
1139 3121
1140 return 0; 3122 return count;
1141} 3123}
1142 3124
1143void inline_speed 3125void noinline
1144call_pending (EV_P) 3126ev_invoke_pending (EV_P)
1145{ 3127{
1146 int pri; 3128 pendingpri = NUMPRI;
1147 3129
1148 for (pri = NUMPRI; pri--; ) 3130 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
3131 {
3132 --pendingpri;
3133
1149 while (pendingcnt [pri]) 3134 while (pendingcnt [pendingpri])
1150 {
1151 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1152
1153 if (expect_true (p->w))
1154 { 3135 {
1155 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 3136 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1156 3137
1157 p->w->pending = 0; 3138 p->w->pending = 0;
1158 EV_CB_INVOKE (p->w, p->events); 3139 EV_CB_INVOKE (p->w, p->events);
3140 EV_FREQUENT_CHECK;
3141 }
3142 }
3143}
3144
3145#if EV_IDLE_ENABLE
3146/* make idle watchers pending. this handles the "call-idle */
3147/* only when higher priorities are idle" logic */
3148inline_size void
3149idle_reify (EV_P)
3150{
3151 if (expect_false (idleall))
3152 {
3153 int pri;
3154
3155 for (pri = NUMPRI; pri--; )
3156 {
3157 if (pendingcnt [pri])
3158 break;
3159
3160 if (idlecnt [pri])
3161 {
3162 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3163 break;
1159 } 3164 }
1160 } 3165 }
3166 }
1161} 3167}
3168#endif
1162 3169
1163void inline_size 3170/* make timers pending */
3171inline_size void
1164timers_reify (EV_P) 3172timers_reify (EV_P)
1165{ 3173{
3174 EV_FREQUENT_CHECK;
3175
1166 while (timercnt && ((WT)timers [0])->at <= mn_now) 3176 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1167 { 3177 {
1168 ev_timer *w = timers [0]; 3178 do
1169
1170 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1171
1172 /* first reschedule or stop timer */
1173 if (w->repeat)
1174 { 3179 {
3180 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3181
3182 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3183
3184 /* first reschedule or stop timer */
3185 if (w->repeat)
3186 {
3187 ev_at (w) += w->repeat;
3188 if (ev_at (w) < mn_now)
3189 ev_at (w) = mn_now;
3190
1175 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3191 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1176 3192
1177 ((WT)w)->at += w->repeat; 3193 ANHE_at_cache (timers [HEAP0]);
1178 if (((WT)w)->at < mn_now)
1179 ((WT)w)->at = mn_now;
1180
1181 downheap ((WT *)timers, timercnt, 0); 3194 downheap (timers, timercnt, HEAP0);
3195 }
3196 else
3197 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3198
3199 EV_FREQUENT_CHECK;
3200 feed_reverse (EV_A_ (W)w);
1182 } 3201 }
1183 else 3202 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1184 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1185 3203
1186 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 3204 feed_reverse_done (EV_A_ EV_TIMER);
1187 } 3205 }
1188} 3206}
1189 3207
1190#if EV_PERIODIC_ENABLE 3208#if EV_PERIODIC_ENABLE
1191void inline_size 3209
3210static void noinline
3211periodic_recalc (EV_P_ ev_periodic *w)
3212{
3213 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3214 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3215
3216 /* the above almost always errs on the low side */
3217 while (at <= ev_rt_now)
3218 {
3219 ev_tstamp nat = at + w->interval;
3220
3221 /* when resolution fails us, we use ev_rt_now */
3222 if (expect_false (nat == at))
3223 {
3224 at = ev_rt_now;
3225 break;
3226 }
3227
3228 at = nat;
3229 }
3230
3231 ev_at (w) = at;
3232}
3233
3234/* make periodics pending */
3235inline_size void
1192periodics_reify (EV_P) 3236periodics_reify (EV_P)
1193{ 3237{
3238 EV_FREQUENT_CHECK;
3239
1194 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 3240 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1195 { 3241 {
1196 ev_periodic *w = periodics [0]; 3242 do
3243 {
3244 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1197 3245
1198 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 3246 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1199 3247
1200 /* first reschedule or stop timer */ 3248 /* first reschedule or stop timer */
3249 if (w->reschedule_cb)
3250 {
3251 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3252
3253 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3254
3255 ANHE_at_cache (periodics [HEAP0]);
3256 downheap (periodics, periodiccnt, HEAP0);
3257 }
3258 else if (w->interval)
3259 {
3260 periodic_recalc (EV_A_ w);
3261 ANHE_at_cache (periodics [HEAP0]);
3262 downheap (periodics, periodiccnt, HEAP0);
3263 }
3264 else
3265 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3266
3267 EV_FREQUENT_CHECK;
3268 feed_reverse (EV_A_ (W)w);
3269 }
3270 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3271
3272 feed_reverse_done (EV_A_ EV_PERIODIC);
3273 }
3274}
3275
3276/* simply recalculate all periodics */
3277/* TODO: maybe ensure that at least one event happens when jumping forward? */
3278static void noinline ecb_cold
3279periodics_reschedule (EV_P)
3280{
3281 int i;
3282
3283 /* adjust periodics after time jump */
3284 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3285 {
3286 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3287
1201 if (w->reschedule_cb) 3288 if (w->reschedule_cb)
3289 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3290 else if (w->interval)
3291 periodic_recalc (EV_A_ w);
3292
3293 ANHE_at_cache (periodics [i]);
3294 }
3295
3296 reheap (periodics, periodiccnt);
3297}
3298#endif
3299
3300/* adjust all timers by a given offset */
3301static void noinline ecb_cold
3302timers_reschedule (EV_P_ ev_tstamp adjust)
3303{
3304 int i;
3305
3306 for (i = 0; i < timercnt; ++i)
3307 {
3308 ANHE *he = timers + i + HEAP0;
3309 ANHE_w (*he)->at += adjust;
3310 ANHE_at_cache (*he);
3311 }
3312}
3313
3314/* fetch new monotonic and realtime times from the kernel */
3315/* also detect if there was a timejump, and act accordingly */
3316inline_speed void
3317time_update (EV_P_ ev_tstamp max_block)
3318{
3319#if EV_USE_MONOTONIC
3320 if (expect_true (have_monotonic))
3321 {
3322 int i;
3323 ev_tstamp odiff = rtmn_diff;
3324
3325 mn_now = get_clock ();
3326
3327 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3328 /* interpolate in the meantime */
3329 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1202 { 3330 {
1203 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 3331 ev_rt_now = rtmn_diff + mn_now;
1204 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 3332 return;
1205 downheap ((WT *)periodics, periodiccnt, 0);
1206 } 3333 }
1207 else if (w->interval)
1208 {
1209 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1210 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1211 downheap ((WT *)periodics, periodiccnt, 0);
1212 }
1213 else
1214 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1215 3334
1216 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1217 }
1218}
1219
1220static void noinline
1221periodics_reschedule (EV_P)
1222{
1223 int i;
1224
1225 /* adjust periodics after time jump */
1226 for (i = 0; i < periodiccnt; ++i)
1227 {
1228 ev_periodic *w = periodics [i];
1229
1230 if (w->reschedule_cb)
1231 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1232 else if (w->interval)
1233 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1234 }
1235
1236 /* now rebuild the heap */
1237 for (i = periodiccnt >> 1; i--; )
1238 downheap ((WT *)periodics, periodiccnt, i);
1239}
1240#endif
1241
1242int inline_size
1243time_update_monotonic (EV_P)
1244{
1245 mn_now = get_clock ();
1246
1247 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1248 {
1249 ev_rt_now = rtmn_diff + mn_now;
1250 return 0;
1251 }
1252 else
1253 {
1254 now_floor = mn_now; 3335 now_floor = mn_now;
1255 ev_rt_now = ev_time (); 3336 ev_rt_now = ev_time ();
1256 return 1;
1257 }
1258}
1259 3337
1260void inline_size 3338 /* loop a few times, before making important decisions.
1261time_update (EV_P) 3339 * on the choice of "4": one iteration isn't enough,
1262{ 3340 * in case we get preempted during the calls to
1263 int i; 3341 * ev_time and get_clock. a second call is almost guaranteed
1264 3342 * to succeed in that case, though. and looping a few more times
1265#if EV_USE_MONOTONIC 3343 * doesn't hurt either as we only do this on time-jumps or
1266 if (expect_true (have_monotonic)) 3344 * in the unlikely event of having been preempted here.
1267 { 3345 */
1268 if (time_update_monotonic (EV_A)) 3346 for (i = 4; --i; )
1269 { 3347 {
1270 ev_tstamp odiff = rtmn_diff; 3348 ev_tstamp diff;
1271
1272 /* loop a few times, before making important decisions.
1273 * on the choice of "4": one iteration isn't enough,
1274 * in case we get preempted during the calls to
1275 * ev_time and get_clock. a second call is almost guarenteed
1276 * to succeed in that case, though. and looping a few more times
1277 * doesn't hurt either as we only do this on time-jumps or
1278 * in the unlikely event of getting preempted here.
1279 */
1280 for (i = 4; --i; )
1281 {
1282 rtmn_diff = ev_rt_now - mn_now; 3349 rtmn_diff = ev_rt_now - mn_now;
1283 3350
1284 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 3351 diff = odiff - rtmn_diff;
3352
3353 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1285 return; /* all is well */ 3354 return; /* all is well */
1286 3355
1287 ev_rt_now = ev_time (); 3356 ev_rt_now = ev_time ();
1288 mn_now = get_clock (); 3357 mn_now = get_clock ();
1289 now_floor = mn_now; 3358 now_floor = mn_now;
1290 } 3359 }
1291 3360
3361 /* no timer adjustment, as the monotonic clock doesn't jump */
3362 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1292# if EV_PERIODIC_ENABLE 3363# if EV_PERIODIC_ENABLE
1293 periodics_reschedule (EV_A); 3364 periodics_reschedule (EV_A);
1294# endif 3365# endif
1295 /* no timer adjustment, as the monotonic clock doesn't jump */
1296 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1297 }
1298 } 3366 }
1299 else 3367 else
1300#endif 3368#endif
1301 { 3369 {
1302 ev_rt_now = ev_time (); 3370 ev_rt_now = ev_time ();
1303 3371
1304 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 3372 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1305 { 3373 {
3374 /* adjust timers. this is easy, as the offset is the same for all of them */
3375 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1306#if EV_PERIODIC_ENABLE 3376#if EV_PERIODIC_ENABLE
1307 periodics_reschedule (EV_A); 3377 periodics_reschedule (EV_A);
1308#endif 3378#endif
1309
1310 /* adjust timers. this is easy, as the offset is the same for all */
1311 for (i = 0; i < timercnt; ++i)
1312 ((WT)timers [i])->at += ev_rt_now - mn_now;
1313 } 3379 }
1314 3380
1315 mn_now = ev_rt_now; 3381 mn_now = ev_rt_now;
1316 } 3382 }
1317} 3383}
1318 3384
1319void 3385int
1320ev_ref (EV_P)
1321{
1322 ++activecnt;
1323}
1324
1325void
1326ev_unref (EV_P)
1327{
1328 --activecnt;
1329}
1330
1331static int loop_done;
1332
1333void
1334ev_loop (EV_P_ int flags) 3386ev_run (EV_P_ int flags)
1335{ 3387{
1336 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 3388#if EV_FEATURE_API
1337 ? EVUNLOOP_ONE 3389 ++loop_depth;
1338 : EVUNLOOP_CANCEL; 3390#endif
1339 3391
1340 while (activecnt) 3392 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3393
3394 loop_done = EVBREAK_CANCEL;
3395
3396 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
3397
3398 do
1341 { 3399 {
1342 /* we might have forked, so reify kernel state if necessary */ 3400#if EV_VERIFY >= 2
3401 ev_verify (EV_A);
3402#endif
3403
3404#ifndef _WIN32
3405 if (expect_false (curpid)) /* penalise the forking check even more */
3406 if (expect_false (getpid () != curpid))
3407 {
3408 curpid = getpid ();
3409 postfork = 1;
3410 }
3411#endif
3412
1343 #if EV_FORK_ENABLE 3413#if EV_FORK_ENABLE
3414 /* we might have forked, so queue fork handlers */
1344 if (expect_false (postfork)) 3415 if (expect_false (postfork))
1345 if (forkcnt) 3416 if (forkcnt)
1346 { 3417 {
1347 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3418 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1348 call_pending (EV_A); 3419 EV_INVOKE_PENDING;
1349 } 3420 }
1350 #endif 3421#endif
1351 3422
3423#if EV_PREPARE_ENABLE
1352 /* queue check watchers (and execute them) */ 3424 /* queue prepare watchers (and execute them) */
1353 if (expect_false (preparecnt)) 3425 if (expect_false (preparecnt))
1354 { 3426 {
1355 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3427 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1356 call_pending (EV_A); 3428 EV_INVOKE_PENDING;
1357 } 3429 }
3430#endif
3431
3432 if (expect_false (loop_done))
3433 break;
1358 3434
1359 /* we might have forked, so reify kernel state if necessary */ 3435 /* we might have forked, so reify kernel state if necessary */
1360 if (expect_false (postfork)) 3436 if (expect_false (postfork))
1361 loop_fork (EV_A); 3437 loop_fork (EV_A);
1362 3438
1363 /* update fd-related kernel structures */ 3439 /* update fd-related kernel structures */
1364 fd_reify (EV_A); 3440 fd_reify (EV_A);
1365 3441
1366 /* calculate blocking time */ 3442 /* calculate blocking time */
1367 { 3443 {
1368 double block; 3444 ev_tstamp waittime = 0.;
3445 ev_tstamp sleeptime = 0.;
1369 3446
1370 if (flags & EVLOOP_NONBLOCK || idlecnt) 3447 /* remember old timestamp for io_blocktime calculation */
1371 block = 0.; /* do not block at all */ 3448 ev_tstamp prev_mn_now = mn_now;
1372 else 3449
3450 /* update time to cancel out callback processing overhead */
3451 time_update (EV_A_ 1e100);
3452
3453 /* from now on, we want a pipe-wake-up */
3454 pipe_write_wanted = 1;
3455
3456 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3457
3458 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1373 { 3459 {
1374 /* update time to cancel out callback processing overhead */
1375#if EV_USE_MONOTONIC
1376 if (expect_true (have_monotonic))
1377 time_update_monotonic (EV_A);
1378 else
1379#endif
1380 {
1381 ev_rt_now = ev_time ();
1382 mn_now = ev_rt_now;
1383 }
1384
1385 block = MAX_BLOCKTIME; 3460 waittime = MAX_BLOCKTIME;
1386 3461
1387 if (timercnt) 3462 if (timercnt)
1388 { 3463 {
1389 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 3464 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1390 if (block > to) block = to; 3465 if (waittime > to) waittime = to;
1391 } 3466 }
1392 3467
1393#if EV_PERIODIC_ENABLE 3468#if EV_PERIODIC_ENABLE
1394 if (periodiccnt) 3469 if (periodiccnt)
1395 { 3470 {
1396 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 3471 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1397 if (block > to) block = to; 3472 if (waittime > to) waittime = to;
1398 } 3473 }
1399#endif 3474#endif
1400 3475
3476 /* don't let timeouts decrease the waittime below timeout_blocktime */
3477 if (expect_false (waittime < timeout_blocktime))
3478 waittime = timeout_blocktime;
3479
3480 /* at this point, we NEED to wait, so we have to ensure */
3481 /* to pass a minimum nonzero value to the backend */
3482 if (expect_false (waittime < backend_mintime))
3483 waittime = backend_mintime;
3484
3485 /* extra check because io_blocktime is commonly 0 */
1401 if (expect_false (block < 0.)) block = 0.; 3486 if (expect_false (io_blocktime))
3487 {
3488 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3489
3490 if (sleeptime > waittime - backend_mintime)
3491 sleeptime = waittime - backend_mintime;
3492
3493 if (expect_true (sleeptime > 0.))
3494 {
3495 ev_sleep (sleeptime);
3496 waittime -= sleeptime;
3497 }
3498 }
1402 } 3499 }
1403 3500
3501#if EV_FEATURE_API
3502 ++loop_count;
3503#endif
3504 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1404 backend_poll (EV_A_ block); 3505 backend_poll (EV_A_ waittime);
3506 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3507
3508 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3509
3510 ECB_MEMORY_FENCE_ACQUIRE;
3511 if (pipe_write_skipped)
3512 {
3513 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3514 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3515 }
3516
3517
3518 /* update ev_rt_now, do magic */
3519 time_update (EV_A_ waittime + sleeptime);
1405 } 3520 }
1406
1407 /* update ev_rt_now, do magic */
1408 time_update (EV_A);
1409 3521
1410 /* queue pending timers and reschedule them */ 3522 /* queue pending timers and reschedule them */
1411 timers_reify (EV_A); /* relative timers called last */ 3523 timers_reify (EV_A); /* relative timers called last */
1412#if EV_PERIODIC_ENABLE 3524#if EV_PERIODIC_ENABLE
1413 periodics_reify (EV_A); /* absolute timers called first */ 3525 periodics_reify (EV_A); /* absolute timers called first */
1414#endif 3526#endif
1415 3527
3528#if EV_IDLE_ENABLE
1416 /* queue idle watchers unless other events are pending */ 3529 /* queue idle watchers unless other events are pending */
1417 if (idlecnt && !any_pending (EV_A)) 3530 idle_reify (EV_A);
1418 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 3531#endif
1419 3532
3533#if EV_CHECK_ENABLE
1420 /* queue check watchers, to be executed first */ 3534 /* queue check watchers, to be executed first */
1421 if (expect_false (checkcnt)) 3535 if (expect_false (checkcnt))
1422 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3536 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3537#endif
1423 3538
1424 call_pending (EV_A); 3539 EV_INVOKE_PENDING;
1425
1426 if (expect_false (loop_done))
1427 break;
1428 } 3540 }
3541 while (expect_true (
3542 activecnt
3543 && !loop_done
3544 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3545 ));
1429 3546
1430 if (loop_done == EVUNLOOP_ONE) 3547 if (loop_done == EVBREAK_ONE)
1431 loop_done = EVUNLOOP_CANCEL; 3548 loop_done = EVBREAK_CANCEL;
3549
3550#if EV_FEATURE_API
3551 --loop_depth;
3552#endif
3553
3554 return activecnt;
1432} 3555}
1433 3556
1434void 3557void
1435ev_unloop (EV_P_ int how) 3558ev_break (EV_P_ int how) EV_THROW
1436{ 3559{
1437 loop_done = how; 3560 loop_done = how;
1438} 3561}
1439 3562
3563void
3564ev_ref (EV_P) EV_THROW
3565{
3566 ++activecnt;
3567}
3568
3569void
3570ev_unref (EV_P) EV_THROW
3571{
3572 --activecnt;
3573}
3574
3575void
3576ev_now_update (EV_P) EV_THROW
3577{
3578 time_update (EV_A_ 1e100);
3579}
3580
3581void
3582ev_suspend (EV_P) EV_THROW
3583{
3584 ev_now_update (EV_A);
3585}
3586
3587void
3588ev_resume (EV_P) EV_THROW
3589{
3590 ev_tstamp mn_prev = mn_now;
3591
3592 ev_now_update (EV_A);
3593 timers_reschedule (EV_A_ mn_now - mn_prev);
3594#if EV_PERIODIC_ENABLE
3595 /* TODO: really do this? */
3596 periodics_reschedule (EV_A);
3597#endif
3598}
3599
1440/*****************************************************************************/ 3600/*****************************************************************************/
3601/* singly-linked list management, used when the expected list length is short */
1441 3602
1442void inline_size 3603inline_size void
1443wlist_add (WL *head, WL elem) 3604wlist_add (WL *head, WL elem)
1444{ 3605{
1445 elem->next = *head; 3606 elem->next = *head;
1446 *head = elem; 3607 *head = elem;
1447} 3608}
1448 3609
1449void inline_size 3610inline_size void
1450wlist_del (WL *head, WL elem) 3611wlist_del (WL *head, WL elem)
1451{ 3612{
1452 while (*head) 3613 while (*head)
1453 { 3614 {
1454 if (*head == elem) 3615 if (expect_true (*head == elem))
1455 { 3616 {
1456 *head = elem->next; 3617 *head = elem->next;
1457 return; 3618 break;
1458 } 3619 }
1459 3620
1460 head = &(*head)->next; 3621 head = &(*head)->next;
1461 } 3622 }
1462} 3623}
1463 3624
1464void inline_speed 3625/* internal, faster, version of ev_clear_pending */
3626inline_speed void
1465ev_clear_pending (EV_P_ W w) 3627clear_pending (EV_P_ W w)
1466{ 3628{
1467 if (w->pending) 3629 if (w->pending)
1468 { 3630 {
1469 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3631 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1470 w->pending = 0; 3632 w->pending = 0;
1471 } 3633 }
1472} 3634}
1473 3635
1474void inline_speed 3636int
3637ev_clear_pending (EV_P_ void *w) EV_THROW
3638{
3639 W w_ = (W)w;
3640 int pending = w_->pending;
3641
3642 if (expect_true (pending))
3643 {
3644 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3645 p->w = (W)&pending_w;
3646 w_->pending = 0;
3647 return p->events;
3648 }
3649 else
3650 return 0;
3651}
3652
3653inline_size void
3654pri_adjust (EV_P_ W w)
3655{
3656 int pri = ev_priority (w);
3657 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3658 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3659 ev_set_priority (w, pri);
3660}
3661
3662inline_speed void
1475ev_start (EV_P_ W w, int active) 3663ev_start (EV_P_ W w, int active)
1476{ 3664{
1477 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 3665 pri_adjust (EV_A_ w);
1478 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1479
1480 w->active = active; 3666 w->active = active;
1481 ev_ref (EV_A); 3667 ev_ref (EV_A);
1482} 3668}
1483 3669
1484void inline_size 3670inline_size void
1485ev_stop (EV_P_ W w) 3671ev_stop (EV_P_ W w)
1486{ 3672{
1487 ev_unref (EV_A); 3673 ev_unref (EV_A);
1488 w->active = 0; 3674 w->active = 0;
1489} 3675}
1490 3676
1491/*****************************************************************************/ 3677/*****************************************************************************/
1492 3678
1493void 3679void noinline
1494ev_io_start (EV_P_ ev_io *w) 3680ev_io_start (EV_P_ ev_io *w) EV_THROW
1495{ 3681{
1496 int fd = w->fd; 3682 int fd = w->fd;
1497 3683
1498 if (expect_false (ev_is_active (w))) 3684 if (expect_false (ev_is_active (w)))
1499 return; 3685 return;
1500 3686
1501 assert (("ev_io_start called with negative fd", fd >= 0)); 3687 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3688 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3689
3690 EV_FREQUENT_CHECK;
1502 3691
1503 ev_start (EV_A_ (W)w, 1); 3692 ev_start (EV_A_ (W)w, 1);
1504 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3693 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1505 wlist_add ((WL *)&anfds[fd].head, (WL)w); 3694 wlist_add (&anfds[fd].head, (WL)w);
1506 3695
1507 fd_change (EV_A_ fd); 3696 /* common bug, apparently */
1508} 3697 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
1509 3698
1510void 3699 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3700 w->events &= ~EV__IOFDSET;
3701
3702 EV_FREQUENT_CHECK;
3703}
3704
3705void noinline
1511ev_io_stop (EV_P_ ev_io *w) 3706ev_io_stop (EV_P_ ev_io *w) EV_THROW
1512{ 3707{
1513 ev_clear_pending (EV_A_ (W)w); 3708 clear_pending (EV_A_ (W)w);
1514 if (expect_false (!ev_is_active (w))) 3709 if (expect_false (!ev_is_active (w)))
1515 return; 3710 return;
1516 3711
1517 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3712 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1518 3713
3714 EV_FREQUENT_CHECK;
3715
1519 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 3716 wlist_del (&anfds[w->fd].head, (WL)w);
1520 ev_stop (EV_A_ (W)w); 3717 ev_stop (EV_A_ (W)w);
1521 3718
1522 fd_change (EV_A_ w->fd); 3719 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1523}
1524 3720
1525void 3721 EV_FREQUENT_CHECK;
3722}
3723
3724void noinline
1526ev_timer_start (EV_P_ ev_timer *w) 3725ev_timer_start (EV_P_ ev_timer *w) EV_THROW
1527{ 3726{
1528 if (expect_false (ev_is_active (w))) 3727 if (expect_false (ev_is_active (w)))
1529 return; 3728 return;
1530 3729
1531 ((WT)w)->at += mn_now; 3730 ev_at (w) += mn_now;
1532 3731
1533 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3732 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1534 3733
3734 EV_FREQUENT_CHECK;
3735
3736 ++timercnt;
1535 ev_start (EV_A_ (W)w, ++timercnt); 3737 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1536 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 3738 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1537 timers [timercnt - 1] = w; 3739 ANHE_w (timers [ev_active (w)]) = (WT)w;
1538 upheap ((WT *)timers, timercnt - 1); 3740 ANHE_at_cache (timers [ev_active (w)]);
3741 upheap (timers, ev_active (w));
1539 3742
3743 EV_FREQUENT_CHECK;
3744
1540 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 3745 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1541} 3746}
1542 3747
1543void 3748void noinline
1544ev_timer_stop (EV_P_ ev_timer *w) 3749ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
1545{ 3750{
1546 ev_clear_pending (EV_A_ (W)w); 3751 clear_pending (EV_A_ (W)w);
1547 if (expect_false (!ev_is_active (w))) 3752 if (expect_false (!ev_is_active (w)))
1548 return; 3753 return;
1549 3754
1550 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3755 EV_FREQUENT_CHECK;
1551 3756
1552 { 3757 {
1553 int active = ((W)w)->active; 3758 int active = ev_active (w);
1554 3759
3760 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3761
3762 --timercnt;
3763
1555 if (expect_true (--active < --timercnt)) 3764 if (expect_true (active < timercnt + HEAP0))
1556 { 3765 {
1557 timers [active] = timers [timercnt]; 3766 timers [active] = timers [timercnt + HEAP0];
1558 adjustheap ((WT *)timers, timercnt, active); 3767 adjustheap (timers, timercnt, active);
1559 } 3768 }
1560 } 3769 }
1561 3770
1562 ((WT)w)->at -= mn_now; 3771 ev_at (w) -= mn_now;
1563 3772
1564 ev_stop (EV_A_ (W)w); 3773 ev_stop (EV_A_ (W)w);
1565}
1566 3774
1567void 3775 EV_FREQUENT_CHECK;
3776}
3777
3778void noinline
1568ev_timer_again (EV_P_ ev_timer *w) 3779ev_timer_again (EV_P_ ev_timer *w) EV_THROW
1569{ 3780{
3781 EV_FREQUENT_CHECK;
3782
3783 clear_pending (EV_A_ (W)w);
3784
1570 if (ev_is_active (w)) 3785 if (ev_is_active (w))
1571 { 3786 {
1572 if (w->repeat) 3787 if (w->repeat)
1573 { 3788 {
1574 ((WT)w)->at = mn_now + w->repeat; 3789 ev_at (w) = mn_now + w->repeat;
3790 ANHE_at_cache (timers [ev_active (w)]);
1575 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 3791 adjustheap (timers, timercnt, ev_active (w));
1576 } 3792 }
1577 else 3793 else
1578 ev_timer_stop (EV_A_ w); 3794 ev_timer_stop (EV_A_ w);
1579 } 3795 }
1580 else if (w->repeat) 3796 else if (w->repeat)
1581 { 3797 {
1582 w->at = w->repeat; 3798 ev_at (w) = w->repeat;
1583 ev_timer_start (EV_A_ w); 3799 ev_timer_start (EV_A_ w);
1584 } 3800 }
3801
3802 EV_FREQUENT_CHECK;
3803}
3804
3805ev_tstamp
3806ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3807{
3808 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1585} 3809}
1586 3810
1587#if EV_PERIODIC_ENABLE 3811#if EV_PERIODIC_ENABLE
1588void 3812void noinline
1589ev_periodic_start (EV_P_ ev_periodic *w) 3813ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
1590{ 3814{
1591 if (expect_false (ev_is_active (w))) 3815 if (expect_false (ev_is_active (w)))
1592 return; 3816 return;
1593 3817
1594 if (w->reschedule_cb) 3818 if (w->reschedule_cb)
1595 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 3819 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1596 else if (w->interval) 3820 else if (w->interval)
1597 { 3821 {
1598 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3822 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1599 /* this formula differs from the one in periodic_reify because we do not always round up */ 3823 periodic_recalc (EV_A_ w);
1600 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1601 } 3824 }
3825 else
3826 ev_at (w) = w->offset;
1602 3827
3828 EV_FREQUENT_CHECK;
3829
3830 ++periodiccnt;
1603 ev_start (EV_A_ (W)w, ++periodiccnt); 3831 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1604 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 3832 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1605 periodics [periodiccnt - 1] = w; 3833 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1606 upheap ((WT *)periodics, periodiccnt - 1); 3834 ANHE_at_cache (periodics [ev_active (w)]);
3835 upheap (periodics, ev_active (w));
1607 3836
3837 EV_FREQUENT_CHECK;
3838
1608 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 3839 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1609} 3840}
1610 3841
1611void 3842void noinline
1612ev_periodic_stop (EV_P_ ev_periodic *w) 3843ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
1613{ 3844{
1614 ev_clear_pending (EV_A_ (W)w); 3845 clear_pending (EV_A_ (W)w);
1615 if (expect_false (!ev_is_active (w))) 3846 if (expect_false (!ev_is_active (w)))
1616 return; 3847 return;
1617 3848
1618 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3849 EV_FREQUENT_CHECK;
1619 3850
1620 { 3851 {
1621 int active = ((W)w)->active; 3852 int active = ev_active (w);
1622 3853
3854 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3855
3856 --periodiccnt;
3857
1623 if (expect_true (--active < --periodiccnt)) 3858 if (expect_true (active < periodiccnt + HEAP0))
1624 { 3859 {
1625 periodics [active] = periodics [periodiccnt]; 3860 periodics [active] = periodics [periodiccnt + HEAP0];
1626 adjustheap ((WT *)periodics, periodiccnt, active); 3861 adjustheap (periodics, periodiccnt, active);
1627 } 3862 }
1628 } 3863 }
1629 3864
1630 ev_stop (EV_A_ (W)w); 3865 ev_stop (EV_A_ (W)w);
1631}
1632 3866
1633void 3867 EV_FREQUENT_CHECK;
3868}
3869
3870void noinline
1634ev_periodic_again (EV_P_ ev_periodic *w) 3871ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
1635{ 3872{
1636 /* TODO: use adjustheap and recalculation */ 3873 /* TODO: use adjustheap and recalculation */
1637 ev_periodic_stop (EV_A_ w); 3874 ev_periodic_stop (EV_A_ w);
1638 ev_periodic_start (EV_A_ w); 3875 ev_periodic_start (EV_A_ w);
1639} 3876}
1641 3878
1642#ifndef SA_RESTART 3879#ifndef SA_RESTART
1643# define SA_RESTART 0 3880# define SA_RESTART 0
1644#endif 3881#endif
1645 3882
1646void 3883#if EV_SIGNAL_ENABLE
3884
3885void noinline
1647ev_signal_start (EV_P_ ev_signal *w) 3886ev_signal_start (EV_P_ ev_signal *w) EV_THROW
1648{ 3887{
1649#if EV_MULTIPLICITY
1650 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1651#endif
1652 if (expect_false (ev_is_active (w))) 3888 if (expect_false (ev_is_active (w)))
1653 return; 3889 return;
1654 3890
1655 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3891 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3892
3893#if EV_MULTIPLICITY
3894 assert (("libev: a signal must not be attached to two different loops",
3895 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3896
3897 signals [w->signum - 1].loop = EV_A;
3898 ECB_MEMORY_FENCE_RELEASE;
3899#endif
3900
3901 EV_FREQUENT_CHECK;
3902
3903#if EV_USE_SIGNALFD
3904 if (sigfd == -2)
3905 {
3906 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3907 if (sigfd < 0 && errno == EINVAL)
3908 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3909
3910 if (sigfd >= 0)
3911 {
3912 fd_intern (sigfd); /* doing it twice will not hurt */
3913
3914 sigemptyset (&sigfd_set);
3915
3916 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3917 ev_set_priority (&sigfd_w, EV_MAXPRI);
3918 ev_io_start (EV_A_ &sigfd_w);
3919 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3920 }
3921 }
3922
3923 if (sigfd >= 0)
3924 {
3925 /* TODO: check .head */
3926 sigaddset (&sigfd_set, w->signum);
3927 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3928
3929 signalfd (sigfd, &sigfd_set, 0);
3930 }
3931#endif
1656 3932
1657 ev_start (EV_A_ (W)w, 1); 3933 ev_start (EV_A_ (W)w, 1);
1658 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1659 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 3934 wlist_add (&signals [w->signum - 1].head, (WL)w);
1660 3935
1661 if (!((WL)w)->next) 3936 if (!((WL)w)->next)
3937# if EV_USE_SIGNALFD
3938 if (sigfd < 0) /*TODO*/
3939# endif
1662 { 3940 {
1663#if _WIN32 3941# ifdef _WIN32
3942 evpipe_init (EV_A);
3943
1664 signal (w->signum, sighandler); 3944 signal (w->signum, ev_sighandler);
1665#else 3945# else
1666 struct sigaction sa; 3946 struct sigaction sa;
3947
3948 evpipe_init (EV_A);
3949
1667 sa.sa_handler = sighandler; 3950 sa.sa_handler = ev_sighandler;
1668 sigfillset (&sa.sa_mask); 3951 sigfillset (&sa.sa_mask);
1669 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3952 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1670 sigaction (w->signum, &sa, 0); 3953 sigaction (w->signum, &sa, 0);
3954
3955 if (origflags & EVFLAG_NOSIGMASK)
3956 {
3957 sigemptyset (&sa.sa_mask);
3958 sigaddset (&sa.sa_mask, w->signum);
3959 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3960 }
1671#endif 3961#endif
1672 } 3962 }
1673}
1674 3963
1675void 3964 EV_FREQUENT_CHECK;
3965}
3966
3967void noinline
1676ev_signal_stop (EV_P_ ev_signal *w) 3968ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
1677{ 3969{
1678 ev_clear_pending (EV_A_ (W)w); 3970 clear_pending (EV_A_ (W)w);
1679 if (expect_false (!ev_is_active (w))) 3971 if (expect_false (!ev_is_active (w)))
1680 return; 3972 return;
1681 3973
3974 EV_FREQUENT_CHECK;
3975
1682 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3976 wlist_del (&signals [w->signum - 1].head, (WL)w);
1683 ev_stop (EV_A_ (W)w); 3977 ev_stop (EV_A_ (W)w);
1684 3978
1685 if (!signals [w->signum - 1].head) 3979 if (!signals [w->signum - 1].head)
3980 {
3981#if EV_MULTIPLICITY
3982 signals [w->signum - 1].loop = 0; /* unattach from signal */
3983#endif
3984#if EV_USE_SIGNALFD
3985 if (sigfd >= 0)
3986 {
3987 sigset_t ss;
3988
3989 sigemptyset (&ss);
3990 sigaddset (&ss, w->signum);
3991 sigdelset (&sigfd_set, w->signum);
3992
3993 signalfd (sigfd, &sigfd_set, 0);
3994 sigprocmask (SIG_UNBLOCK, &ss, 0);
3995 }
3996 else
3997#endif
1686 signal (w->signum, SIG_DFL); 3998 signal (w->signum, SIG_DFL);
3999 }
4000
4001 EV_FREQUENT_CHECK;
1687} 4002}
4003
4004#endif
4005
4006#if EV_CHILD_ENABLE
1688 4007
1689void 4008void
1690ev_child_start (EV_P_ ev_child *w) 4009ev_child_start (EV_P_ ev_child *w) EV_THROW
1691{ 4010{
1692#if EV_MULTIPLICITY 4011#if EV_MULTIPLICITY
1693 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 4012 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1694#endif 4013#endif
1695 if (expect_false (ev_is_active (w))) 4014 if (expect_false (ev_is_active (w)))
1696 return; 4015 return;
1697 4016
4017 EV_FREQUENT_CHECK;
4018
1698 ev_start (EV_A_ (W)w, 1); 4019 ev_start (EV_A_ (W)w, 1);
1699 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4020 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4021
4022 EV_FREQUENT_CHECK;
1700} 4023}
1701 4024
1702void 4025void
1703ev_child_stop (EV_P_ ev_child *w) 4026ev_child_stop (EV_P_ ev_child *w) EV_THROW
1704{ 4027{
1705 ev_clear_pending (EV_A_ (W)w); 4028 clear_pending (EV_A_ (W)w);
1706 if (expect_false (!ev_is_active (w))) 4029 if (expect_false (!ev_is_active (w)))
1707 return; 4030 return;
1708 4031
4032 EV_FREQUENT_CHECK;
4033
1709 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4034 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1710 ev_stop (EV_A_ (W)w); 4035 ev_stop (EV_A_ (W)w);
4036
4037 EV_FREQUENT_CHECK;
1711} 4038}
4039
4040#endif
1712 4041
1713#if EV_STAT_ENABLE 4042#if EV_STAT_ENABLE
1714 4043
1715# ifdef _WIN32 4044# ifdef _WIN32
1716# undef lstat 4045# undef lstat
1717# define lstat(a,b) _stati64 (a,b) 4046# define lstat(a,b) _stati64 (a,b)
1718# endif 4047# endif
1719 4048
1720#define DEF_STAT_INTERVAL 5.0074891 4049#define DEF_STAT_INTERVAL 5.0074891
4050#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1721#define MIN_STAT_INTERVAL 0.1074891 4051#define MIN_STAT_INTERVAL 0.1074891
1722 4052
1723void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 4053static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1724 4054
1725#if EV_USE_INOTIFY 4055#if EV_USE_INOTIFY
1726# define EV_INOTIFY_BUFSIZE 8192 4056
4057/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4058# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
1727 4059
1728static void noinline 4060static void noinline
1729infy_add (EV_P_ ev_stat *w) 4061infy_add (EV_P_ ev_stat *w)
1730{ 4062{
1731 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 4063 w->wd = inotify_add_watch (fs_fd, w->path,
4064 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4065 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4066 | IN_DONT_FOLLOW | IN_MASK_ADD);
1732 4067
1733 if (w->wd < 0) 4068 if (w->wd >= 0)
4069 {
4070 struct statfs sfs;
4071
4072 /* now local changes will be tracked by inotify, but remote changes won't */
4073 /* unless the filesystem is known to be local, we therefore still poll */
4074 /* also do poll on <2.6.25, but with normal frequency */
4075
4076 if (!fs_2625)
4077 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4078 else if (!statfs (w->path, &sfs)
4079 && (sfs.f_type == 0x1373 /* devfs */
4080 || sfs.f_type == 0x4006 /* fat */
4081 || sfs.f_type == 0x4d44 /* msdos */
4082 || sfs.f_type == 0xEF53 /* ext2/3 */
4083 || sfs.f_type == 0x72b6 /* jffs2 */
4084 || sfs.f_type == 0x858458f6 /* ramfs */
4085 || sfs.f_type == 0x5346544e /* ntfs */
4086 || sfs.f_type == 0x3153464a /* jfs */
4087 || sfs.f_type == 0x9123683e /* btrfs */
4088 || sfs.f_type == 0x52654973 /* reiser3 */
4089 || sfs.f_type == 0x01021994 /* tmpfs */
4090 || sfs.f_type == 0x58465342 /* xfs */))
4091 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4092 else
4093 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1734 { 4094 }
1735 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 4095 else
4096 {
4097 /* can't use inotify, continue to stat */
4098 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1736 4099
1737 /* monitor some parent directory for speedup hints */ 4100 /* if path is not there, monitor some parent directory for speedup hints */
4101 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4102 /* but an efficiency issue only */
1738 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 4103 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1739 { 4104 {
1740 char path [4096]; 4105 char path [4096];
1741 strcpy (path, w->path); 4106 strcpy (path, w->path);
1742 4107
1745 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 4110 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1746 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 4111 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1747 4112
1748 char *pend = strrchr (path, '/'); 4113 char *pend = strrchr (path, '/');
1749 4114
1750 if (!pend) 4115 if (!pend || pend == path)
1751 break; /* whoops, no '/', complain to your admin */ 4116 break;
1752 4117
1753 *pend = 0; 4118 *pend = 0;
1754 w->wd = inotify_add_watch (fs_fd, path, mask); 4119 w->wd = inotify_add_watch (fs_fd, path, mask);
1755 } 4120 }
1756 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 4121 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1757 } 4122 }
1758 } 4123 }
1759 else
1760 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1761 4124
1762 if (w->wd >= 0) 4125 if (w->wd >= 0)
1763 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 4126 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4127
4128 /* now re-arm timer, if required */
4129 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4130 ev_timer_again (EV_A_ &w->timer);
4131 if (ev_is_active (&w->timer)) ev_unref (EV_A);
1764} 4132}
1765 4133
1766static void noinline 4134static void noinline
1767infy_del (EV_P_ ev_stat *w) 4135infy_del (EV_P_ ev_stat *w)
1768{ 4136{
1771 4139
1772 if (wd < 0) 4140 if (wd < 0)
1773 return; 4141 return;
1774 4142
1775 w->wd = -2; 4143 w->wd = -2;
1776 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 4144 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
1777 wlist_del (&fs_hash [slot].head, (WL)w); 4145 wlist_del (&fs_hash [slot].head, (WL)w);
1778 4146
1779 /* remove this watcher, if others are watching it, they will rearm */ 4147 /* remove this watcher, if others are watching it, they will rearm */
1780 inotify_rm_watch (fs_fd, wd); 4148 inotify_rm_watch (fs_fd, wd);
1781} 4149}
1782 4150
1783static void noinline 4151static void noinline
1784infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 4152infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1785{ 4153{
1786 if (slot < 0) 4154 if (slot < 0)
1787 /* overflow, need to check for all hahs slots */ 4155 /* overflow, need to check for all hash slots */
1788 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4156 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1789 infy_wd (EV_A_ slot, wd, ev); 4157 infy_wd (EV_A_ slot, wd, ev);
1790 else 4158 else
1791 { 4159 {
1792 WL w_; 4160 WL w_;
1793 4161
1794 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 4162 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
1795 { 4163 {
1796 ev_stat *w = (ev_stat *)w_; 4164 ev_stat *w = (ev_stat *)w_;
1797 w_ = w_->next; /* lets us remove this watcher and all before it */ 4165 w_ = w_->next; /* lets us remove this watcher and all before it */
1798 4166
1799 if (w->wd == wd || wd == -1) 4167 if (w->wd == wd || wd == -1)
1800 { 4168 {
1801 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 4169 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1802 { 4170 {
4171 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
1803 w->wd = -1; 4172 w->wd = -1;
1804 infy_add (EV_A_ w); /* re-add, no matter what */ 4173 infy_add (EV_A_ w); /* re-add, no matter what */
1805 } 4174 }
1806 4175
1807 stat_timer_cb (EV_A_ &w->timer, 0); 4176 stat_timer_cb (EV_A_ &w->timer, 0);
1812 4181
1813static void 4182static void
1814infy_cb (EV_P_ ev_io *w, int revents) 4183infy_cb (EV_P_ ev_io *w, int revents)
1815{ 4184{
1816 char buf [EV_INOTIFY_BUFSIZE]; 4185 char buf [EV_INOTIFY_BUFSIZE];
1817 struct inotify_event *ev = (struct inotify_event *)buf;
1818 int ofs; 4186 int ofs;
1819 int len = read (fs_fd, buf, sizeof (buf)); 4187 int len = read (fs_fd, buf, sizeof (buf));
1820 4188
1821 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 4189 for (ofs = 0; ofs < len; )
4190 {
4191 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
1822 infy_wd (EV_A_ ev->wd, ev->wd, ev); 4192 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4193 ofs += sizeof (struct inotify_event) + ev->len;
4194 }
1823} 4195}
1824 4196
1825void inline_size 4197inline_size void ecb_cold
4198ev_check_2625 (EV_P)
4199{
4200 /* kernels < 2.6.25 are borked
4201 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4202 */
4203 if (ev_linux_version () < 0x020619)
4204 return;
4205
4206 fs_2625 = 1;
4207}
4208
4209inline_size int
4210infy_newfd (void)
4211{
4212#if defined IN_CLOEXEC && defined IN_NONBLOCK
4213 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4214 if (fd >= 0)
4215 return fd;
4216#endif
4217 return inotify_init ();
4218}
4219
4220inline_size void
1826infy_init (EV_P) 4221infy_init (EV_P)
1827{ 4222{
1828 if (fs_fd != -2) 4223 if (fs_fd != -2)
1829 return; 4224 return;
1830 4225
4226 fs_fd = -1;
4227
4228 ev_check_2625 (EV_A);
4229
1831 fs_fd = inotify_init (); 4230 fs_fd = infy_newfd ();
1832 4231
1833 if (fs_fd >= 0) 4232 if (fs_fd >= 0)
1834 { 4233 {
4234 fd_intern (fs_fd);
1835 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 4235 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1836 ev_set_priority (&fs_w, EV_MAXPRI); 4236 ev_set_priority (&fs_w, EV_MAXPRI);
1837 ev_io_start (EV_A_ &fs_w); 4237 ev_io_start (EV_A_ &fs_w);
4238 ev_unref (EV_A);
1838 } 4239 }
1839} 4240}
1840 4241
1841void inline_size 4242inline_size void
1842infy_fork (EV_P) 4243infy_fork (EV_P)
1843{ 4244{
1844 int slot; 4245 int slot;
1845 4246
1846 if (fs_fd < 0) 4247 if (fs_fd < 0)
1847 return; 4248 return;
1848 4249
4250 ev_ref (EV_A);
4251 ev_io_stop (EV_A_ &fs_w);
1849 close (fs_fd); 4252 close (fs_fd);
1850 fs_fd = inotify_init (); 4253 fs_fd = infy_newfd ();
1851 4254
4255 if (fs_fd >= 0)
4256 {
4257 fd_intern (fs_fd);
4258 ev_io_set (&fs_w, fs_fd, EV_READ);
4259 ev_io_start (EV_A_ &fs_w);
4260 ev_unref (EV_A);
4261 }
4262
1852 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4263 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1853 { 4264 {
1854 WL w_ = fs_hash [slot].head; 4265 WL w_ = fs_hash [slot].head;
1855 fs_hash [slot].head = 0; 4266 fs_hash [slot].head = 0;
1856 4267
1857 while (w_) 4268 while (w_)
1862 w->wd = -1; 4273 w->wd = -1;
1863 4274
1864 if (fs_fd >= 0) 4275 if (fs_fd >= 0)
1865 infy_add (EV_A_ w); /* re-add, no matter what */ 4276 infy_add (EV_A_ w); /* re-add, no matter what */
1866 else 4277 else
4278 {
4279 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4280 if (ev_is_active (&w->timer)) ev_ref (EV_A);
1867 ev_timer_start (EV_A_ &w->timer); 4281 ev_timer_again (EV_A_ &w->timer);
4282 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4283 }
1868 } 4284 }
1869
1870 } 4285 }
1871} 4286}
1872 4287
4288#endif
4289
4290#ifdef _WIN32
4291# define EV_LSTAT(p,b) _stati64 (p, b)
4292#else
4293# define EV_LSTAT(p,b) lstat (p, b)
1873#endif 4294#endif
1874 4295
1875void 4296void
1876ev_stat_stat (EV_P_ ev_stat *w) 4297ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
1877{ 4298{
1878 if (lstat (w->path, &w->attr) < 0) 4299 if (lstat (w->path, &w->attr) < 0)
1879 w->attr.st_nlink = 0; 4300 w->attr.st_nlink = 0;
1880 else if (!w->attr.st_nlink) 4301 else if (!w->attr.st_nlink)
1881 w->attr.st_nlink = 1; 4302 w->attr.st_nlink = 1;
1882} 4303}
1883 4304
1884void noinline 4305static void noinline
1885stat_timer_cb (EV_P_ ev_timer *w_, int revents) 4306stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1886{ 4307{
1887 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 4308 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1888 4309
1889 /* we copy this here each the time so that */ 4310 ev_statdata prev = w->attr;
1890 /* prev has the old value when the callback gets invoked */
1891 w->prev = w->attr;
1892 ev_stat_stat (EV_A_ w); 4311 ev_stat_stat (EV_A_ w);
1893 4312
1894 if (memcmp (&w->prev, &w->attr, sizeof (ev_statdata))) 4313 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4314 if (
4315 prev.st_dev != w->attr.st_dev
4316 || prev.st_ino != w->attr.st_ino
4317 || prev.st_mode != w->attr.st_mode
4318 || prev.st_nlink != w->attr.st_nlink
4319 || prev.st_uid != w->attr.st_uid
4320 || prev.st_gid != w->attr.st_gid
4321 || prev.st_rdev != w->attr.st_rdev
4322 || prev.st_size != w->attr.st_size
4323 || prev.st_atime != w->attr.st_atime
4324 || prev.st_mtime != w->attr.st_mtime
4325 || prev.st_ctime != w->attr.st_ctime
1895 { 4326 ) {
4327 /* we only update w->prev on actual differences */
4328 /* in case we test more often than invoke the callback, */
4329 /* to ensure that prev is always different to attr */
4330 w->prev = prev;
4331
1896 #if EV_USE_INOTIFY 4332 #if EV_USE_INOTIFY
4333 if (fs_fd >= 0)
4334 {
1897 infy_del (EV_A_ w); 4335 infy_del (EV_A_ w);
1898 infy_add (EV_A_ w); 4336 infy_add (EV_A_ w);
1899 ev_stat_stat (EV_A_ w); /* avoid race... */ 4337 ev_stat_stat (EV_A_ w); /* avoid race... */
4338 }
1900 #endif 4339 #endif
1901 4340
1902 ev_feed_event (EV_A_ w, EV_STAT); 4341 ev_feed_event (EV_A_ w, EV_STAT);
1903 } 4342 }
1904} 4343}
1905 4344
1906void 4345void
1907ev_stat_start (EV_P_ ev_stat *w) 4346ev_stat_start (EV_P_ ev_stat *w) EV_THROW
1908{ 4347{
1909 if (expect_false (ev_is_active (w))) 4348 if (expect_false (ev_is_active (w)))
1910 return; 4349 return;
1911 4350
1912 /* since we use memcmp, we need to clear any padding data etc. */
1913 memset (&w->prev, 0, sizeof (ev_statdata));
1914 memset (&w->attr, 0, sizeof (ev_statdata));
1915
1916 ev_stat_stat (EV_A_ w); 4351 ev_stat_stat (EV_A_ w);
1917 4352
4353 if (w->interval < MIN_STAT_INTERVAL && w->interval)
1918 if (w->interval < MIN_STAT_INTERVAL) 4354 w->interval = MIN_STAT_INTERVAL;
1919 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
1920 4355
1921 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 4356 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
1922 ev_set_priority (&w->timer, ev_priority (w)); 4357 ev_set_priority (&w->timer, ev_priority (w));
1923 4358
1924#if EV_USE_INOTIFY 4359#if EV_USE_INOTIFY
1925 infy_init (EV_A); 4360 infy_init (EV_A);
1926 4361
1927 if (fs_fd >= 0) 4362 if (fs_fd >= 0)
1928 infy_add (EV_A_ w); 4363 infy_add (EV_A_ w);
1929 else 4364 else
1930#endif 4365#endif
4366 {
1931 ev_timer_start (EV_A_ &w->timer); 4367 ev_timer_again (EV_A_ &w->timer);
4368 ev_unref (EV_A);
4369 }
1932 4370
1933 ev_start (EV_A_ (W)w, 1); 4371 ev_start (EV_A_ (W)w, 1);
4372
4373 EV_FREQUENT_CHECK;
1934} 4374}
1935 4375
1936void 4376void
1937ev_stat_stop (EV_P_ ev_stat *w) 4377ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
1938{ 4378{
1939 ev_clear_pending (EV_A_ (W)w); 4379 clear_pending (EV_A_ (W)w);
1940 if (expect_false (!ev_is_active (w))) 4380 if (expect_false (!ev_is_active (w)))
1941 return; 4381 return;
1942 4382
4383 EV_FREQUENT_CHECK;
4384
1943#if EV_USE_INOTIFY 4385#if EV_USE_INOTIFY
1944 infy_del (EV_A_ w); 4386 infy_del (EV_A_ w);
1945#endif 4387#endif
4388
4389 if (ev_is_active (&w->timer))
4390 {
4391 ev_ref (EV_A);
1946 ev_timer_stop (EV_A_ &w->timer); 4392 ev_timer_stop (EV_A_ &w->timer);
4393 }
1947 4394
1948 ev_stop (EV_A_ (W)w); 4395 ev_stop (EV_A_ (W)w);
1949}
1950#endif
1951 4396
4397 EV_FREQUENT_CHECK;
4398}
4399#endif
4400
4401#if EV_IDLE_ENABLE
1952void 4402void
1953ev_idle_start (EV_P_ ev_idle *w) 4403ev_idle_start (EV_P_ ev_idle *w) EV_THROW
1954{ 4404{
1955 if (expect_false (ev_is_active (w))) 4405 if (expect_false (ev_is_active (w)))
1956 return; 4406 return;
1957 4407
4408 pri_adjust (EV_A_ (W)w);
4409
4410 EV_FREQUENT_CHECK;
4411
4412 {
4413 int active = ++idlecnt [ABSPRI (w)];
4414
4415 ++idleall;
1958 ev_start (EV_A_ (W)w, ++idlecnt); 4416 ev_start (EV_A_ (W)w, active);
4417
1959 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 4418 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1960 idles [idlecnt - 1] = w; 4419 idles [ABSPRI (w)][active - 1] = w;
4420 }
4421
4422 EV_FREQUENT_CHECK;
1961} 4423}
1962 4424
1963void 4425void
1964ev_idle_stop (EV_P_ ev_idle *w) 4426ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
1965{ 4427{
1966 ev_clear_pending (EV_A_ (W)w); 4428 clear_pending (EV_A_ (W)w);
1967 if (expect_false (!ev_is_active (w))) 4429 if (expect_false (!ev_is_active (w)))
1968 return; 4430 return;
1969 4431
4432 EV_FREQUENT_CHECK;
4433
1970 { 4434 {
1971 int active = ((W)w)->active; 4435 int active = ev_active (w);
1972 idles [active - 1] = idles [--idlecnt]; 4436
1973 ((W)idles [active - 1])->active = active; 4437 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4438 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4439
4440 ev_stop (EV_A_ (W)w);
4441 --idleall;
1974 } 4442 }
1975 4443
1976 ev_stop (EV_A_ (W)w); 4444 EV_FREQUENT_CHECK;
1977} 4445}
4446#endif
1978 4447
4448#if EV_PREPARE_ENABLE
1979void 4449void
1980ev_prepare_start (EV_P_ ev_prepare *w) 4450ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
1981{ 4451{
1982 if (expect_false (ev_is_active (w))) 4452 if (expect_false (ev_is_active (w)))
1983 return; 4453 return;
4454
4455 EV_FREQUENT_CHECK;
1984 4456
1985 ev_start (EV_A_ (W)w, ++preparecnt); 4457 ev_start (EV_A_ (W)w, ++preparecnt);
1986 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 4458 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1987 prepares [preparecnt - 1] = w; 4459 prepares [preparecnt - 1] = w;
4460
4461 EV_FREQUENT_CHECK;
1988} 4462}
1989 4463
1990void 4464void
1991ev_prepare_stop (EV_P_ ev_prepare *w) 4465ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
1992{ 4466{
1993 ev_clear_pending (EV_A_ (W)w); 4467 clear_pending (EV_A_ (W)w);
1994 if (expect_false (!ev_is_active (w))) 4468 if (expect_false (!ev_is_active (w)))
1995 return; 4469 return;
1996 4470
4471 EV_FREQUENT_CHECK;
4472
1997 { 4473 {
1998 int active = ((W)w)->active; 4474 int active = ev_active (w);
4475
1999 prepares [active - 1] = prepares [--preparecnt]; 4476 prepares [active - 1] = prepares [--preparecnt];
2000 ((W)prepares [active - 1])->active = active; 4477 ev_active (prepares [active - 1]) = active;
2001 } 4478 }
2002 4479
2003 ev_stop (EV_A_ (W)w); 4480 ev_stop (EV_A_ (W)w);
2004}
2005 4481
4482 EV_FREQUENT_CHECK;
4483}
4484#endif
4485
4486#if EV_CHECK_ENABLE
2006void 4487void
2007ev_check_start (EV_P_ ev_check *w) 4488ev_check_start (EV_P_ ev_check *w) EV_THROW
2008{ 4489{
2009 if (expect_false (ev_is_active (w))) 4490 if (expect_false (ev_is_active (w)))
2010 return; 4491 return;
4492
4493 EV_FREQUENT_CHECK;
2011 4494
2012 ev_start (EV_A_ (W)w, ++checkcnt); 4495 ev_start (EV_A_ (W)w, ++checkcnt);
2013 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 4496 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2014 checks [checkcnt - 1] = w; 4497 checks [checkcnt - 1] = w;
4498
4499 EV_FREQUENT_CHECK;
2015} 4500}
2016 4501
2017void 4502void
2018ev_check_stop (EV_P_ ev_check *w) 4503ev_check_stop (EV_P_ ev_check *w) EV_THROW
2019{ 4504{
2020 ev_clear_pending (EV_A_ (W)w); 4505 clear_pending (EV_A_ (W)w);
2021 if (expect_false (!ev_is_active (w))) 4506 if (expect_false (!ev_is_active (w)))
2022 return; 4507 return;
2023 4508
4509 EV_FREQUENT_CHECK;
4510
2024 { 4511 {
2025 int active = ((W)w)->active; 4512 int active = ev_active (w);
4513
2026 checks [active - 1] = checks [--checkcnt]; 4514 checks [active - 1] = checks [--checkcnt];
2027 ((W)checks [active - 1])->active = active; 4515 ev_active (checks [active - 1]) = active;
2028 } 4516 }
2029 4517
2030 ev_stop (EV_A_ (W)w); 4518 ev_stop (EV_A_ (W)w);
4519
4520 EV_FREQUENT_CHECK;
2031} 4521}
4522#endif
2032 4523
2033#if EV_EMBED_ENABLE 4524#if EV_EMBED_ENABLE
2034void noinline 4525void noinline
2035ev_embed_sweep (EV_P_ ev_embed *w) 4526ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
2036{ 4527{
2037 ev_loop (w->loop, EVLOOP_NONBLOCK); 4528 ev_run (w->other, EVRUN_NOWAIT);
2038} 4529}
2039 4530
2040static void 4531static void
2041embed_cb (EV_P_ ev_io *io, int revents) 4532embed_io_cb (EV_P_ ev_io *io, int revents)
2042{ 4533{
2043 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4534 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2044 4535
2045 if (ev_cb (w)) 4536 if (ev_cb (w))
2046 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4537 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2047 else 4538 else
2048 ev_embed_sweep (loop, w); 4539 ev_run (w->other, EVRUN_NOWAIT);
2049} 4540}
4541
4542static void
4543embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4544{
4545 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4546
4547 {
4548 EV_P = w->other;
4549
4550 while (fdchangecnt)
4551 {
4552 fd_reify (EV_A);
4553 ev_run (EV_A_ EVRUN_NOWAIT);
4554 }
4555 }
4556}
4557
4558static void
4559embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4560{
4561 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4562
4563 ev_embed_stop (EV_A_ w);
4564
4565 {
4566 EV_P = w->other;
4567
4568 ev_loop_fork (EV_A);
4569 ev_run (EV_A_ EVRUN_NOWAIT);
4570 }
4571
4572 ev_embed_start (EV_A_ w);
4573}
4574
4575#if 0
4576static void
4577embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4578{
4579 ev_idle_stop (EV_A_ idle);
4580}
4581#endif
2050 4582
2051void 4583void
2052ev_embed_start (EV_P_ ev_embed *w) 4584ev_embed_start (EV_P_ ev_embed *w) EV_THROW
2053{ 4585{
2054 if (expect_false (ev_is_active (w))) 4586 if (expect_false (ev_is_active (w)))
2055 return; 4587 return;
2056 4588
2057 { 4589 {
2058 struct ev_loop *loop = w->loop; 4590 EV_P = w->other;
2059 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4591 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2060 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 4592 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2061 } 4593 }
4594
4595 EV_FREQUENT_CHECK;
2062 4596
2063 ev_set_priority (&w->io, ev_priority (w)); 4597 ev_set_priority (&w->io, ev_priority (w));
2064 ev_io_start (EV_A_ &w->io); 4598 ev_io_start (EV_A_ &w->io);
2065 4599
4600 ev_prepare_init (&w->prepare, embed_prepare_cb);
4601 ev_set_priority (&w->prepare, EV_MINPRI);
4602 ev_prepare_start (EV_A_ &w->prepare);
4603
4604 ev_fork_init (&w->fork, embed_fork_cb);
4605 ev_fork_start (EV_A_ &w->fork);
4606
4607 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4608
2066 ev_start (EV_A_ (W)w, 1); 4609 ev_start (EV_A_ (W)w, 1);
4610
4611 EV_FREQUENT_CHECK;
2067} 4612}
2068 4613
2069void 4614void
2070ev_embed_stop (EV_P_ ev_embed *w) 4615ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
2071{ 4616{
2072 ev_clear_pending (EV_A_ (W)w); 4617 clear_pending (EV_A_ (W)w);
2073 if (expect_false (!ev_is_active (w))) 4618 if (expect_false (!ev_is_active (w)))
2074 return; 4619 return;
2075 4620
4621 EV_FREQUENT_CHECK;
4622
2076 ev_io_stop (EV_A_ &w->io); 4623 ev_io_stop (EV_A_ &w->io);
4624 ev_prepare_stop (EV_A_ &w->prepare);
4625 ev_fork_stop (EV_A_ &w->fork);
2077 4626
2078 ev_stop (EV_A_ (W)w); 4627 ev_stop (EV_A_ (W)w);
4628
4629 EV_FREQUENT_CHECK;
2079} 4630}
2080#endif 4631#endif
2081 4632
2082#if EV_FORK_ENABLE 4633#if EV_FORK_ENABLE
2083void 4634void
2084ev_fork_start (EV_P_ ev_fork *w) 4635ev_fork_start (EV_P_ ev_fork *w) EV_THROW
2085{ 4636{
2086 if (expect_false (ev_is_active (w))) 4637 if (expect_false (ev_is_active (w)))
2087 return; 4638 return;
4639
4640 EV_FREQUENT_CHECK;
2088 4641
2089 ev_start (EV_A_ (W)w, ++forkcnt); 4642 ev_start (EV_A_ (W)w, ++forkcnt);
2090 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 4643 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2091 forks [forkcnt - 1] = w; 4644 forks [forkcnt - 1] = w;
4645
4646 EV_FREQUENT_CHECK;
2092} 4647}
2093 4648
2094void 4649void
2095ev_fork_stop (EV_P_ ev_fork *w) 4650ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
2096{ 4651{
2097 ev_clear_pending (EV_A_ (W)w); 4652 clear_pending (EV_A_ (W)w);
2098 if (expect_false (!ev_is_active (w))) 4653 if (expect_false (!ev_is_active (w)))
2099 return; 4654 return;
2100 4655
4656 EV_FREQUENT_CHECK;
4657
2101 { 4658 {
2102 int active = ((W)w)->active; 4659 int active = ev_active (w);
4660
2103 forks [active - 1] = forks [--forkcnt]; 4661 forks [active - 1] = forks [--forkcnt];
2104 ((W)forks [active - 1])->active = active; 4662 ev_active (forks [active - 1]) = active;
2105 } 4663 }
2106 4664
2107 ev_stop (EV_A_ (W)w); 4665 ev_stop (EV_A_ (W)w);
4666
4667 EV_FREQUENT_CHECK;
4668}
4669#endif
4670
4671#if EV_CLEANUP_ENABLE
4672void
4673ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4674{
4675 if (expect_false (ev_is_active (w)))
4676 return;
4677
4678 EV_FREQUENT_CHECK;
4679
4680 ev_start (EV_A_ (W)w, ++cleanupcnt);
4681 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4682 cleanups [cleanupcnt - 1] = w;
4683
4684 /* cleanup watchers should never keep a refcount on the loop */
4685 ev_unref (EV_A);
4686 EV_FREQUENT_CHECK;
4687}
4688
4689void
4690ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4691{
4692 clear_pending (EV_A_ (W)w);
4693 if (expect_false (!ev_is_active (w)))
4694 return;
4695
4696 EV_FREQUENT_CHECK;
4697 ev_ref (EV_A);
4698
4699 {
4700 int active = ev_active (w);
4701
4702 cleanups [active - 1] = cleanups [--cleanupcnt];
4703 ev_active (cleanups [active - 1]) = active;
4704 }
4705
4706 ev_stop (EV_A_ (W)w);
4707
4708 EV_FREQUENT_CHECK;
4709}
4710#endif
4711
4712#if EV_ASYNC_ENABLE
4713void
4714ev_async_start (EV_P_ ev_async *w) EV_THROW
4715{
4716 if (expect_false (ev_is_active (w)))
4717 return;
4718
4719 w->sent = 0;
4720
4721 evpipe_init (EV_A);
4722
4723 EV_FREQUENT_CHECK;
4724
4725 ev_start (EV_A_ (W)w, ++asynccnt);
4726 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4727 asyncs [asynccnt - 1] = w;
4728
4729 EV_FREQUENT_CHECK;
4730}
4731
4732void
4733ev_async_stop (EV_P_ ev_async *w) EV_THROW
4734{
4735 clear_pending (EV_A_ (W)w);
4736 if (expect_false (!ev_is_active (w)))
4737 return;
4738
4739 EV_FREQUENT_CHECK;
4740
4741 {
4742 int active = ev_active (w);
4743
4744 asyncs [active - 1] = asyncs [--asynccnt];
4745 ev_active (asyncs [active - 1]) = active;
4746 }
4747
4748 ev_stop (EV_A_ (W)w);
4749
4750 EV_FREQUENT_CHECK;
4751}
4752
4753void
4754ev_async_send (EV_P_ ev_async *w) EV_THROW
4755{
4756 w->sent = 1;
4757 evpipe_write (EV_A_ &async_pending);
2108} 4758}
2109#endif 4759#endif
2110 4760
2111/*****************************************************************************/ 4761/*****************************************************************************/
2112 4762
2122once_cb (EV_P_ struct ev_once *once, int revents) 4772once_cb (EV_P_ struct ev_once *once, int revents)
2123{ 4773{
2124 void (*cb)(int revents, void *arg) = once->cb; 4774 void (*cb)(int revents, void *arg) = once->cb;
2125 void *arg = once->arg; 4775 void *arg = once->arg;
2126 4776
2127 ev_io_stop (EV_A_ &once->io); 4777 ev_io_stop (EV_A_ &once->io);
2128 ev_timer_stop (EV_A_ &once->to); 4778 ev_timer_stop (EV_A_ &once->to);
2129 ev_free (once); 4779 ev_free (once);
2130 4780
2131 cb (revents, arg); 4781 cb (revents, arg);
2132} 4782}
2133 4783
2134static void 4784static void
2135once_cb_io (EV_P_ ev_io *w, int revents) 4785once_cb_io (EV_P_ ev_io *w, int revents)
2136{ 4786{
2137 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4787 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4788
4789 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2138} 4790}
2139 4791
2140static void 4792static void
2141once_cb_to (EV_P_ ev_timer *w, int revents) 4793once_cb_to (EV_P_ ev_timer *w, int revents)
2142{ 4794{
2143 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4795 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4796
4797 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2144} 4798}
2145 4799
2146void 4800void
2147ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4801ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
2148{ 4802{
2149 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4803 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2150 4804
2151 if (expect_false (!once)) 4805 if (expect_false (!once))
2152 { 4806 {
2153 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4807 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2154 return; 4808 return;
2155 } 4809 }
2156 4810
2157 once->cb = cb; 4811 once->cb = cb;
2158 once->arg = arg; 4812 once->arg = arg;
2170 ev_timer_set (&once->to, timeout, 0.); 4824 ev_timer_set (&once->to, timeout, 0.);
2171 ev_timer_start (EV_A_ &once->to); 4825 ev_timer_start (EV_A_ &once->to);
2172 } 4826 }
2173} 4827}
2174 4828
2175#ifdef __cplusplus 4829/*****************************************************************************/
2176} 4830
4831#if EV_WALK_ENABLE
4832void ecb_cold
4833ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4834{
4835 int i, j;
4836 ev_watcher_list *wl, *wn;
4837
4838 if (types & (EV_IO | EV_EMBED))
4839 for (i = 0; i < anfdmax; ++i)
4840 for (wl = anfds [i].head; wl; )
4841 {
4842 wn = wl->next;
4843
4844#if EV_EMBED_ENABLE
4845 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4846 {
4847 if (types & EV_EMBED)
4848 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4849 }
4850 else
4851#endif
4852#if EV_USE_INOTIFY
4853 if (ev_cb ((ev_io *)wl) == infy_cb)
4854 ;
4855 else
4856#endif
4857 if ((ev_io *)wl != &pipe_w)
4858 if (types & EV_IO)
4859 cb (EV_A_ EV_IO, wl);
4860
4861 wl = wn;
4862 }
4863
4864 if (types & (EV_TIMER | EV_STAT))
4865 for (i = timercnt + HEAP0; i-- > HEAP0; )
4866#if EV_STAT_ENABLE
4867 /*TODO: timer is not always active*/
4868 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4869 {
4870 if (types & EV_STAT)
4871 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4872 }
4873 else
4874#endif
4875 if (types & EV_TIMER)
4876 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4877
4878#if EV_PERIODIC_ENABLE
4879 if (types & EV_PERIODIC)
4880 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4881 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4882#endif
4883
4884#if EV_IDLE_ENABLE
4885 if (types & EV_IDLE)
4886 for (j = NUMPRI; j--; )
4887 for (i = idlecnt [j]; i--; )
4888 cb (EV_A_ EV_IDLE, idles [j][i]);
4889#endif
4890
4891#if EV_FORK_ENABLE
4892 if (types & EV_FORK)
4893 for (i = forkcnt; i--; )
4894 if (ev_cb (forks [i]) != embed_fork_cb)
4895 cb (EV_A_ EV_FORK, forks [i]);
4896#endif
4897
4898#if EV_ASYNC_ENABLE
4899 if (types & EV_ASYNC)
4900 for (i = asynccnt; i--; )
4901 cb (EV_A_ EV_ASYNC, asyncs [i]);
4902#endif
4903
4904#if EV_PREPARE_ENABLE
4905 if (types & EV_PREPARE)
4906 for (i = preparecnt; i--; )
4907# if EV_EMBED_ENABLE
4908 if (ev_cb (prepares [i]) != embed_prepare_cb)
2177#endif 4909# endif
4910 cb (EV_A_ EV_PREPARE, prepares [i]);
4911#endif
2178 4912
4913#if EV_CHECK_ENABLE
4914 if (types & EV_CHECK)
4915 for (i = checkcnt; i--; )
4916 cb (EV_A_ EV_CHECK, checks [i]);
4917#endif
4918
4919#if EV_SIGNAL_ENABLE
4920 if (types & EV_SIGNAL)
4921 for (i = 0; i < EV_NSIG - 1; ++i)
4922 for (wl = signals [i].head; wl; )
4923 {
4924 wn = wl->next;
4925 cb (EV_A_ EV_SIGNAL, wl);
4926 wl = wn;
4927 }
4928#endif
4929
4930#if EV_CHILD_ENABLE
4931 if (types & EV_CHILD)
4932 for (i = (EV_PID_HASHSIZE); i--; )
4933 for (wl = childs [i]; wl; )
4934 {
4935 wn = wl->next;
4936 cb (EV_A_ EV_CHILD, wl);
4937 wl = wn;
4938 }
4939#endif
4940/* EV_STAT 0x00001000 /* stat data changed */
4941/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4942}
4943#endif
4944
4945#if EV_MULTIPLICITY
4946 #include "ev_wrap.h"
4947#endif
4948

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines