ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.225 by root, Wed Apr 16 01:37:14 2008 UTC vs.
Revision 1.475 by sf-exg, Wed Apr 1 06:57:41 2015 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012,2013 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48# if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52# endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
52# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
55# endif 71# endif
56# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
58# endif 74# endif
59# else 75# else
60# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
62# endif 78# endif
63# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
65# endif 81# endif
66# endif 82# endif
67 83
84# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
71# else 88# else
89# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
74# endif 100# endif
75 101
102# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 105# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 106# else
107# undef EV_USE_POLL
88# define EV_USE_POLL 0 108# define EV_USE_POLL 0
89# endif
90# endif 109# endif
91 110
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
95# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
98# endif 118# endif
99 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
106# endif 127# endif
107 128
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
111# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
114# endif 136# endif
115 137
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
122# endif 145# endif
123 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 148# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 149# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
130# endif 154# endif
131 155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
132#endif 163# endif
164
165#endif
133 166
134#include <math.h>
135#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
136#include <fcntl.h> 169#include <fcntl.h>
137#include <stddef.h> 170#include <stddef.h>
138 171
139#include <stdio.h> 172#include <stdio.h>
140 173
141#include <assert.h> 174#include <assert.h>
142#include <errno.h> 175#include <errno.h>
143#include <sys/types.h> 176#include <sys/types.h>
144#include <time.h> 177#include <time.h>
178#include <limits.h>
145 179
146#include <signal.h> 180#include <signal.h>
147 181
148#ifdef EV_H 182#ifdef EV_H
149# include EV_H 183# include EV_H
150#else 184#else
151# include "ev.h" 185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
152#endif 197#endif
153 198
154#ifndef _WIN32 199#ifndef _WIN32
155# include <sys/time.h> 200# include <sys/time.h>
156# include <sys/wait.h> 201# include <sys/wait.h>
157# include <unistd.h> 202# include <unistd.h>
158#else 203#else
204# include <io.h>
159# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
160# include <windows.h> 207# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 208# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 209# define EV_SELECT_IS_WINSOCKET 1
163# endif 210# endif
211# undef EV_AVOID_STDIO
164#endif 212#endif
213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
165 221
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 222/* this block tries to deduce configuration from header-defined symbols and defaults */
167 223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# define EV_NSIG (8 * sizeof (sigset_t) + 1)
247#endif
248
249#ifndef EV_USE_FLOOR
250# define EV_USE_FLOOR 0
251#endif
252
253#ifndef EV_USE_CLOCK_SYSCALL
254# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
255# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
256# else
257# define EV_USE_CLOCK_SYSCALL 0
258# endif
259#endif
260
261#if !(_POSIX_TIMERS > 0)
262# ifndef EV_USE_MONOTONIC
263# define EV_USE_MONOTONIC 0
264# endif
265# ifndef EV_USE_REALTIME
266# define EV_USE_REALTIME 0
267# endif
268#endif
269
168#ifndef EV_USE_MONOTONIC 270#ifndef EV_USE_MONOTONIC
271# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
272# define EV_USE_MONOTONIC EV_FEATURE_OS
273# else
169# define EV_USE_MONOTONIC 0 274# define EV_USE_MONOTONIC 0
275# endif
170#endif 276#endif
171 277
172#ifndef EV_USE_REALTIME 278#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 279# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 280#endif
175 281
176#ifndef EV_USE_NANOSLEEP 282#ifndef EV_USE_NANOSLEEP
283# if _POSIX_C_SOURCE >= 199309L
284# define EV_USE_NANOSLEEP EV_FEATURE_OS
285# else
177# define EV_USE_NANOSLEEP 0 286# define EV_USE_NANOSLEEP 0
287# endif
178#endif 288#endif
179 289
180#ifndef EV_USE_SELECT 290#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 291# define EV_USE_SELECT EV_FEATURE_BACKENDS
182#endif 292#endif
183 293
184#ifndef EV_USE_POLL 294#ifndef EV_USE_POLL
185# ifdef _WIN32 295# ifdef _WIN32
186# define EV_USE_POLL 0 296# define EV_USE_POLL 0
187# else 297# else
188# define EV_USE_POLL 1 298# define EV_USE_POLL EV_FEATURE_BACKENDS
189# endif 299# endif
190#endif 300#endif
191 301
192#ifndef EV_USE_EPOLL 302#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 303# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1 304# define EV_USE_EPOLL EV_FEATURE_BACKENDS
195# else 305# else
196# define EV_USE_EPOLL 0 306# define EV_USE_EPOLL 0
197# endif 307# endif
198#endif 308#endif
199 309
205# define EV_USE_PORT 0 315# define EV_USE_PORT 0
206#endif 316#endif
207 317
208#ifndef EV_USE_INOTIFY 318#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 319# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1 320# define EV_USE_INOTIFY EV_FEATURE_OS
211# else 321# else
212# define EV_USE_INOTIFY 0 322# define EV_USE_INOTIFY 0
213# endif 323# endif
214#endif 324#endif
215 325
216#ifndef EV_PID_HASHSIZE 326#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL 327# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif 328#endif
223 329
224#ifndef EV_INOTIFY_HASHSIZE 330#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL 331# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif 332#endif
231 333
232#ifndef EV_USE_EVENTFD 334#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 335# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 336# define EV_USE_EVENTFD EV_FEATURE_OS
235# else 337# else
236# define EV_USE_EVENTFD 0 338# define EV_USE_EVENTFD 0
237# endif 339# endif
238#endif 340#endif
239 341
342#ifndef EV_USE_SIGNALFD
343# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
344# define EV_USE_SIGNALFD EV_FEATURE_OS
345# else
346# define EV_USE_SIGNALFD 0
347# endif
348#endif
349
350#if 0 /* debugging */
351# define EV_VERIFY 3
352# define EV_USE_4HEAP 1
353# define EV_HEAP_CACHE_AT 1
354#endif
355
356#ifndef EV_VERIFY
357# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
358#endif
359
360#ifndef EV_USE_4HEAP
361# define EV_USE_4HEAP EV_FEATURE_DATA
362#endif
363
364#ifndef EV_HEAP_CACHE_AT
365# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
366#endif
367
368#ifdef ANDROID
369/* supposedly, android doesn't typedef fd_mask */
370# undef EV_USE_SELECT
371# define EV_USE_SELECT 0
372/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
373# undef EV_USE_CLOCK_SYSCALL
374# define EV_USE_CLOCK_SYSCALL 0
375#endif
376
377/* aix's poll.h seems to cause lots of trouble */
378#ifdef _AIX
379/* AIX has a completely broken poll.h header */
380# undef EV_USE_POLL
381# define EV_USE_POLL 0
382#endif
383
384/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
385/* which makes programs even slower. might work on other unices, too. */
386#if EV_USE_CLOCK_SYSCALL
387# include <sys/syscall.h>
388# ifdef SYS_clock_gettime
389# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
390# undef EV_USE_MONOTONIC
391# define EV_USE_MONOTONIC 1
392# else
393# undef EV_USE_CLOCK_SYSCALL
394# define EV_USE_CLOCK_SYSCALL 0
395# endif
396#endif
397
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 398/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 399
242#ifndef CLOCK_MONOTONIC 400#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 401# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 402# define EV_USE_MONOTONIC 0
253# undef EV_USE_INOTIFY 411# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0 412# define EV_USE_INOTIFY 0
255#endif 413#endif
256 414
257#if !EV_USE_NANOSLEEP 415#if !EV_USE_NANOSLEEP
258# ifndef _WIN32 416/* hp-ux has it in sys/time.h, which we unconditionally include above */
417# if !defined _WIN32 && !defined __hpux
259# include <sys/select.h> 418# include <sys/select.h>
260# endif 419# endif
261#endif 420#endif
262 421
263#if EV_USE_INOTIFY 422#if EV_USE_INOTIFY
423# include <sys/statfs.h>
264# include <sys/inotify.h> 424# include <sys/inotify.h>
425/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
426# ifndef IN_DONT_FOLLOW
427# undef EV_USE_INOTIFY
428# define EV_USE_INOTIFY 0
265#endif 429# endif
266
267#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h>
269#endif 430#endif
270 431
271#if EV_USE_EVENTFD 432#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 433/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h> 434# include <stdint.h>
274# ifdef __cplusplus 435# ifndef EFD_NONBLOCK
275extern "C" { 436# define EFD_NONBLOCK O_NONBLOCK
276# endif 437# endif
277int eventfd (unsigned int initval, int flags); 438# ifndef EFD_CLOEXEC
278# ifdef __cplusplus 439# ifdef O_CLOEXEC
279} 440# define EFD_CLOEXEC O_CLOEXEC
441# else
442# define EFD_CLOEXEC 02000000
443# endif
280# endif 444# endif
445EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
446#endif
447
448#if EV_USE_SIGNALFD
449/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
450# include <stdint.h>
451# ifndef SFD_NONBLOCK
452# define SFD_NONBLOCK O_NONBLOCK
453# endif
454# ifndef SFD_CLOEXEC
455# ifdef O_CLOEXEC
456# define SFD_CLOEXEC O_CLOEXEC
457# else
458# define SFD_CLOEXEC 02000000
459# endif
460# endif
461EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
462
463struct signalfd_siginfo
464{
465 uint32_t ssi_signo;
466 char pad[128 - sizeof (uint32_t)];
467};
281#endif 468#endif
282 469
283/**/ 470/**/
284 471
472#if EV_VERIFY >= 3
473# define EV_FREQUENT_CHECK ev_verify (EV_A)
474#else
475# define EV_FREQUENT_CHECK do { } while (0)
476#endif
477
285/* 478/*
286 * This is used to avoid floating point rounding problems. 479 * This is used to work around floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding
289 * errors are against us.
290 * This value is good at least till the year 4000. 480 * This value is good at least till the year 4000.
291 * Better solutions welcome.
292 */ 481 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 482#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
483/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
294 484
295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 485#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 486#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
298 487
488#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
489#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
490
491/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
492/* ECB.H BEGIN */
493/*
494 * libecb - http://software.schmorp.de/pkg/libecb
495 *
496 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
497 * Copyright (©) 2011 Emanuele Giaquinta
498 * All rights reserved.
499 *
500 * Redistribution and use in source and binary forms, with or without modifica-
501 * tion, are permitted provided that the following conditions are met:
502 *
503 * 1. Redistributions of source code must retain the above copyright notice,
504 * this list of conditions and the following disclaimer.
505 *
506 * 2. Redistributions in binary form must reproduce the above copyright
507 * notice, this list of conditions and the following disclaimer in the
508 * documentation and/or other materials provided with the distribution.
509 *
510 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
511 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
512 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
513 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
514 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
515 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
516 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
517 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
518 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
519 * OF THE POSSIBILITY OF SUCH DAMAGE.
520 *
521 * Alternatively, the contents of this file may be used under the terms of
522 * the GNU General Public License ("GPL") version 2 or any later version,
523 * in which case the provisions of the GPL are applicable instead of
524 * the above. If you wish to allow the use of your version of this file
525 * only under the terms of the GPL and not to allow others to use your
526 * version of this file under the BSD license, indicate your decision
527 * by deleting the provisions above and replace them with the notice
528 * and other provisions required by the GPL. If you do not delete the
529 * provisions above, a recipient may use your version of this file under
530 * either the BSD or the GPL.
531 */
532
533#ifndef ECB_H
534#define ECB_H
535
536/* 16 bits major, 16 bits minor */
537#define ECB_VERSION 0x00010004
538
539#ifdef _WIN32
540 typedef signed char int8_t;
541 typedef unsigned char uint8_t;
542 typedef signed short int16_t;
543 typedef unsigned short uint16_t;
544 typedef signed int int32_t;
545 typedef unsigned int uint32_t;
299#if __GNUC__ >= 4 546 #if __GNUC__
300# define expect(expr,value) __builtin_expect ((expr),(value)) 547 typedef signed long long int64_t;
301# define noinline __attribute__ ((noinline)) 548 typedef unsigned long long uint64_t;
549 #else /* _MSC_VER || __BORLANDC__ */
550 typedef signed __int64 int64_t;
551 typedef unsigned __int64 uint64_t;
552 #endif
553 #ifdef _WIN64
554 #define ECB_PTRSIZE 8
555 typedef uint64_t uintptr_t;
556 typedef int64_t intptr_t;
557 #else
558 #define ECB_PTRSIZE 4
559 typedef uint32_t uintptr_t;
560 typedef int32_t intptr_t;
561 #endif
302#else 562#else
303# define expect(expr,value) (expr) 563 #include <inttypes.h>
304# define noinline 564 #if UINTMAX_MAX > 0xffffffffU
305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2 565 #define ECB_PTRSIZE 8
306# define inline 566 #else
567 #define ECB_PTRSIZE 4
568 #endif
307# endif 569#endif
570
571#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
572#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
573
574/* work around x32 idiocy by defining proper macros */
575#if ECB_GCC_AMD64 || ECB_MSVC_AMD64
576 #if _ILP32
577 #define ECB_AMD64_X32 1
578 #else
579 #define ECB_AMD64 1
308#endif 580 #endif
581#endif
309 582
583/* many compilers define _GNUC_ to some versions but then only implement
584 * what their idiot authors think are the "more important" extensions,
585 * causing enormous grief in return for some better fake benchmark numbers.
586 * or so.
587 * we try to detect these and simply assume they are not gcc - if they have
588 * an issue with that they should have done it right in the first place.
589 */
590#if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
591 #define ECB_GCC_VERSION(major,minor) 0
592#else
593 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
594#endif
595
596#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
597
598#if __clang__ && defined __has_builtin
599 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
600#else
601 #define ECB_CLANG_BUILTIN(x) 0
602#endif
603
604#if __clang__ && defined __has_extension
605 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
606#else
607 #define ECB_CLANG_EXTENSION(x) 0
608#endif
609
610#define ECB_CPP (__cplusplus+0)
611#define ECB_CPP11 (__cplusplus >= 201103L)
612
613#if ECB_CPP
614 #define ECB_C 0
615 #define ECB_STDC_VERSION 0
616#else
617 #define ECB_C 1
618 #define ECB_STDC_VERSION __STDC_VERSION__
619#endif
620
621#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
622#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
623
624#if ECB_CPP
625 #define ECB_EXTERN_C extern "C"
626 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
627 #define ECB_EXTERN_C_END }
628#else
629 #define ECB_EXTERN_C extern
630 #define ECB_EXTERN_C_BEG
631 #define ECB_EXTERN_C_END
632#endif
633
634/*****************************************************************************/
635
636/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
637/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
638
639#if ECB_NO_THREADS
640 #define ECB_NO_SMP 1
641#endif
642
643#if ECB_NO_SMP
644 #define ECB_MEMORY_FENCE do { } while (0)
645#endif
646
647#ifndef ECB_MEMORY_FENCE
648 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
649 #if __i386 || __i386__
650 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
651 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
652 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
653 #elif ECB_GCC_AMD64
654 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
655 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
656 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
657 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
658 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
659 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
660 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
661 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
662 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
663 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
664 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
665 #elif __aarch64__
666 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
667 #elif (__sparc || __sparc__) && !__sparcv8
668 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
669 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
670 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
671 #elif defined __s390__ || defined __s390x__
672 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
673 #elif defined __mips__
674 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
675 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
676 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
677 #elif defined __alpha__
678 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
679 #elif defined __hppa__
680 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
681 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
682 #elif defined __ia64__
683 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
684 #elif defined __m68k__
685 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
686 #elif defined __m88k__
687 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
688 #elif defined __sh__
689 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
690 #endif
691 #endif
692#endif
693
694#ifndef ECB_MEMORY_FENCE
695 #if ECB_GCC_VERSION(4,7)
696 /* see comment below (stdatomic.h) about the C11 memory model. */
697 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
698 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
699 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
700
701 #elif ECB_CLANG_EXTENSION(c_atomic)
702 /* see comment below (stdatomic.h) about the C11 memory model. */
703 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
704 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
705 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
706
707 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
708 #define ECB_MEMORY_FENCE __sync_synchronize ()
709 #elif _MSC_VER >= 1500 /* VC++ 2008 */
710 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
711 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
712 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
713 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
714 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
715 #elif _MSC_VER >= 1400 /* VC++ 2005 */
716 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
717 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
718 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
719 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
720 #elif defined _WIN32
721 #include <WinNT.h>
722 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
723 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
724 #include <mbarrier.h>
725 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
726 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
727 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
728 #elif __xlC__
729 #define ECB_MEMORY_FENCE __sync ()
730 #endif
731#endif
732
733#ifndef ECB_MEMORY_FENCE
734 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
735 /* we assume that these memory fences work on all variables/all memory accesses, */
736 /* not just C11 atomics and atomic accesses */
737 #include <stdatomic.h>
738 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
739 /* any fence other than seq_cst, which isn't very efficient for us. */
740 /* Why that is, we don't know - either the C11 memory model is quite useless */
741 /* for most usages, or gcc and clang have a bug */
742 /* I *currently* lean towards the latter, and inefficiently implement */
743 /* all three of ecb's fences as a seq_cst fence */
744 /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */
745 /* for all __atomic_thread_fence's except seq_cst */
746 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
747 #endif
748#endif
749
750#ifndef ECB_MEMORY_FENCE
751 #if !ECB_AVOID_PTHREADS
752 /*
753 * if you get undefined symbol references to pthread_mutex_lock,
754 * or failure to find pthread.h, then you should implement
755 * the ECB_MEMORY_FENCE operations for your cpu/compiler
756 * OR provide pthread.h and link against the posix thread library
757 * of your system.
758 */
759 #include <pthread.h>
760 #define ECB_NEEDS_PTHREADS 1
761 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
762
763 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
764 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
765 #endif
766#endif
767
768#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
769 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
770#endif
771
772#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
773 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
774#endif
775
776/*****************************************************************************/
777
778#if ECB_CPP
779 #define ecb_inline static inline
780#elif ECB_GCC_VERSION(2,5)
781 #define ecb_inline static __inline__
782#elif ECB_C99
783 #define ecb_inline static inline
784#else
785 #define ecb_inline static
786#endif
787
788#if ECB_GCC_VERSION(3,3)
789 #define ecb_restrict __restrict__
790#elif ECB_C99
791 #define ecb_restrict restrict
792#else
793 #define ecb_restrict
794#endif
795
796typedef int ecb_bool;
797
798#define ECB_CONCAT_(a, b) a ## b
799#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
800#define ECB_STRINGIFY_(a) # a
801#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
802#define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
803
804#define ecb_function_ ecb_inline
805
806#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
807 #define ecb_attribute(attrlist) __attribute__ (attrlist)
808#else
809 #define ecb_attribute(attrlist)
810#endif
811
812#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
813 #define ecb_is_constant(expr) __builtin_constant_p (expr)
814#else
815 /* possible C11 impl for integral types
816 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
817 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
818
819 #define ecb_is_constant(expr) 0
820#endif
821
822#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
823 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
824#else
825 #define ecb_expect(expr,value) (expr)
826#endif
827
828#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
829 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
830#else
831 #define ecb_prefetch(addr,rw,locality)
832#endif
833
834/* no emulation for ecb_decltype */
835#if ECB_CPP11
836 // older implementations might have problems with decltype(x)::type, work around it
837 template<class T> struct ecb_decltype_t { typedef T type; };
838 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
839#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
840 #define ecb_decltype(x) __typeof__ (x)
841#endif
842
843#if _MSC_VER >= 1300
844 #define ecb_deprecated __declspec (deprecated)
845#else
846 #define ecb_deprecated ecb_attribute ((__deprecated__))
847#endif
848
849#if __MSC_VER >= 1500
850 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
851#elif ECB_GCC_VERSION(4,5)
852 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
853#else
854 #define ecb_deprecated_message(msg) ecb_deprecated
855#endif
856
857#if _MSC_VER >= 1400
858 #define ecb_noinline __declspec (noinline)
859#else
860 #define ecb_noinline ecb_attribute ((__noinline__))
861#endif
862
863#define ecb_unused ecb_attribute ((__unused__))
864#define ecb_const ecb_attribute ((__const__))
865#define ecb_pure ecb_attribute ((__pure__))
866
867#if ECB_C11 || __IBMC_NORETURN
868 /* http://pic.dhe.ibm.com/infocenter/compbg/v121v141/topic/com.ibm.xlcpp121.bg.doc/language_ref/noreturn.html */
869 #define ecb_noreturn _Noreturn
870#elif ECB_CPP11
871 #define ecb_noreturn [[noreturn]]
872#elif _MSC_VER >= 1200
873 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
874 #define ecb_noreturn __declspec (noreturn)
875#else
876 #define ecb_noreturn ecb_attribute ((__noreturn__))
877#endif
878
879#if ECB_GCC_VERSION(4,3)
880 #define ecb_artificial ecb_attribute ((__artificial__))
881 #define ecb_hot ecb_attribute ((__hot__))
882 #define ecb_cold ecb_attribute ((__cold__))
883#else
884 #define ecb_artificial
885 #define ecb_hot
886 #define ecb_cold
887#endif
888
889/* put around conditional expressions if you are very sure that the */
890/* expression is mostly true or mostly false. note that these return */
891/* booleans, not the expression. */
310#define expect_false(expr) expect ((expr) != 0, 0) 892#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
311#define expect_true(expr) expect ((expr) != 0, 1) 893#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
894/* for compatibility to the rest of the world */
895#define ecb_likely(expr) ecb_expect_true (expr)
896#define ecb_unlikely(expr) ecb_expect_false (expr)
897
898/* count trailing zero bits and count # of one bits */
899#if ECB_GCC_VERSION(3,4) \
900 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
901 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
902 && ECB_CLANG_BUILTIN(__builtin_popcount))
903 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
904 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
905 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
906 #define ecb_ctz32(x) __builtin_ctz (x)
907 #define ecb_ctz64(x) __builtin_ctzll (x)
908 #define ecb_popcount32(x) __builtin_popcount (x)
909 /* no popcountll */
910#else
911 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
912 ecb_function_ ecb_const int
913 ecb_ctz32 (uint32_t x)
914 {
915 int r = 0;
916
917 x &= ~x + 1; /* this isolates the lowest bit */
918
919#if ECB_branchless_on_i386
920 r += !!(x & 0xaaaaaaaa) << 0;
921 r += !!(x & 0xcccccccc) << 1;
922 r += !!(x & 0xf0f0f0f0) << 2;
923 r += !!(x & 0xff00ff00) << 3;
924 r += !!(x & 0xffff0000) << 4;
925#else
926 if (x & 0xaaaaaaaa) r += 1;
927 if (x & 0xcccccccc) r += 2;
928 if (x & 0xf0f0f0f0) r += 4;
929 if (x & 0xff00ff00) r += 8;
930 if (x & 0xffff0000) r += 16;
931#endif
932
933 return r;
934 }
935
936 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
937 ecb_function_ ecb_const int
938 ecb_ctz64 (uint64_t x)
939 {
940 int shift = x & 0xffffffffU ? 0 : 32;
941 return ecb_ctz32 (x >> shift) + shift;
942 }
943
944 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
945 ecb_function_ ecb_const int
946 ecb_popcount32 (uint32_t x)
947 {
948 x -= (x >> 1) & 0x55555555;
949 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
950 x = ((x >> 4) + x) & 0x0f0f0f0f;
951 x *= 0x01010101;
952
953 return x >> 24;
954 }
955
956 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
957 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
958 {
959 int r = 0;
960
961 if (x >> 16) { x >>= 16; r += 16; }
962 if (x >> 8) { x >>= 8; r += 8; }
963 if (x >> 4) { x >>= 4; r += 4; }
964 if (x >> 2) { x >>= 2; r += 2; }
965 if (x >> 1) { r += 1; }
966
967 return r;
968 }
969
970 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
971 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
972 {
973 int r = 0;
974
975 if (x >> 32) { x >>= 32; r += 32; }
976
977 return r + ecb_ld32 (x);
978 }
979#endif
980
981ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
982ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
983ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
984ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
985
986ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
987ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
988{
989 return ( (x * 0x0802U & 0x22110U)
990 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
991}
992
993ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
994ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
995{
996 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
997 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
998 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
999 x = ( x >> 8 ) | ( x << 8);
1000
1001 return x;
1002}
1003
1004ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1005ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1006{
1007 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1008 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1009 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1010 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1011 x = ( x >> 16 ) | ( x << 16);
1012
1013 return x;
1014}
1015
1016/* popcount64 is only available on 64 bit cpus as gcc builtin */
1017/* so for this version we are lazy */
1018ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1019ecb_function_ ecb_const int
1020ecb_popcount64 (uint64_t x)
1021{
1022 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1023}
1024
1025ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1026ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1027ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1028ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1029ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1030ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1031ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1032ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1033
1034ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1035ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1036ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1037ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1038ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1039ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1040ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1041ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1042
1043#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1044 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1045 #define ecb_bswap32(x) __builtin_bswap32 (x)
1046 #define ecb_bswap64(x) __builtin_bswap64 (x)
1047#else
1048 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1049 ecb_function_ ecb_const uint16_t
1050 ecb_bswap16 (uint16_t x)
1051 {
1052 return ecb_rotl16 (x, 8);
1053 }
1054
1055 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1056 ecb_function_ ecb_const uint32_t
1057 ecb_bswap32 (uint32_t x)
1058 {
1059 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1060 }
1061
1062 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1063 ecb_function_ ecb_const uint64_t
1064 ecb_bswap64 (uint64_t x)
1065 {
1066 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1067 }
1068#endif
1069
1070#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1071 #define ecb_unreachable() __builtin_unreachable ()
1072#else
1073 /* this seems to work fine, but gcc always emits a warning for it :/ */
1074 ecb_inline ecb_noreturn void ecb_unreachable (void);
1075 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1076#endif
1077
1078/* try to tell the compiler that some condition is definitely true */
1079#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1080
1081ecb_inline ecb_const unsigned char ecb_byteorder_helper (void);
1082ecb_inline ecb_const unsigned char
1083ecb_byteorder_helper (void)
1084{
1085 /* the union code still generates code under pressure in gcc, */
1086 /* but less than using pointers, and always seems to */
1087 /* successfully return a constant. */
1088 /* the reason why we have this horrible preprocessor mess */
1089 /* is to avoid it in all cases, at least on common architectures */
1090 /* or when using a recent enough gcc version (>= 4.6) */
1091#if ((__i386 || __i386__) && !__VOS__) || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64
1092 return 0x44;
1093#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1094 return 0x44;
1095#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1096 return 0x11;
1097#else
1098 union
1099 {
1100 uint32_t i;
1101 uint8_t c;
1102 } u = { 0x11223344 };
1103 return u.c;
1104#endif
1105}
1106
1107ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1108ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
1109ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1110ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
1111
1112#if ECB_GCC_VERSION(3,0) || ECB_C99
1113 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1114#else
1115 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1116#endif
1117
1118#if ECB_CPP
1119 template<typename T>
1120 static inline T ecb_div_rd (T val, T div)
1121 {
1122 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1123 }
1124 template<typename T>
1125 static inline T ecb_div_ru (T val, T div)
1126 {
1127 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1128 }
1129#else
1130 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1131 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1132#endif
1133
1134#if ecb_cplusplus_does_not_suck
1135 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1136 template<typename T, int N>
1137 static inline int ecb_array_length (const T (&arr)[N])
1138 {
1139 return N;
1140 }
1141#else
1142 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1143#endif
1144
1145/*******************************************************************************/
1146/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1147
1148/* basically, everything uses "ieee pure-endian" floating point numbers */
1149/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1150#if 0 \
1151 || __i386 || __i386__ \
1152 || ECB_GCC_AMD64 \
1153 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1154 || defined __s390__ || defined __s390x__ \
1155 || defined __mips__ \
1156 || defined __alpha__ \
1157 || defined __hppa__ \
1158 || defined __ia64__ \
1159 || defined __m68k__ \
1160 || defined __m88k__ \
1161 || defined __sh__ \
1162 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1163 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1164 || defined __aarch64__
1165 #define ECB_STDFP 1
1166 #include <string.h> /* for memcpy */
1167#else
1168 #define ECB_STDFP 0
1169#endif
1170
1171#ifndef ECB_NO_LIBM
1172
1173 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1174
1175 /* only the oldest of old doesn't have this one. solaris. */
1176 #ifdef INFINITY
1177 #define ECB_INFINITY INFINITY
1178 #else
1179 #define ECB_INFINITY HUGE_VAL
1180 #endif
1181
1182 #ifdef NAN
1183 #define ECB_NAN NAN
1184 #else
1185 #define ECB_NAN ECB_INFINITY
1186 #endif
1187
1188 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1189 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1190 #else
1191 #define ecb_ldexpf(x,e) (float) ldexp ((float) (x), (e))
1192 #endif
1193
1194 /* converts an ieee half/binary16 to a float */
1195 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1196 ecb_function_ ecb_const float
1197 ecb_binary16_to_float (uint16_t x)
1198 {
1199 int e = (x >> 10) & 0x1f;
1200 int m = x & 0x3ff;
1201 float r;
1202
1203 if (!e ) r = ecb_ldexpf (m , -24);
1204 else if (e != 31) r = ecb_ldexpf (m + 0x400, e - 25);
1205 else if (m ) r = ECB_NAN;
1206 else r = ECB_INFINITY;
1207
1208 return x & 0x8000 ? -r : r;
1209 }
1210
1211 /* convert a float to ieee single/binary32 */
1212 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1213 ecb_function_ ecb_const uint32_t
1214 ecb_float_to_binary32 (float x)
1215 {
1216 uint32_t r;
1217
1218 #if ECB_STDFP
1219 memcpy (&r, &x, 4);
1220 #else
1221 /* slow emulation, works for anything but -0 */
1222 uint32_t m;
1223 int e;
1224
1225 if (x == 0e0f ) return 0x00000000U;
1226 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1227 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1228 if (x != x ) return 0x7fbfffffU;
1229
1230 m = frexpf (x, &e) * 0x1000000U;
1231
1232 r = m & 0x80000000U;
1233
1234 if (r)
1235 m = -m;
1236
1237 if (e <= -126)
1238 {
1239 m &= 0xffffffU;
1240 m >>= (-125 - e);
1241 e = -126;
1242 }
1243
1244 r |= (e + 126) << 23;
1245 r |= m & 0x7fffffU;
1246 #endif
1247
1248 return r;
1249 }
1250
1251 /* converts an ieee single/binary32 to a float */
1252 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1253 ecb_function_ ecb_const float
1254 ecb_binary32_to_float (uint32_t x)
1255 {
1256 float r;
1257
1258 #if ECB_STDFP
1259 memcpy (&r, &x, 4);
1260 #else
1261 /* emulation, only works for normals and subnormals and +0 */
1262 int neg = x >> 31;
1263 int e = (x >> 23) & 0xffU;
1264
1265 x &= 0x7fffffU;
1266
1267 if (e)
1268 x |= 0x800000U;
1269 else
1270 e = 1;
1271
1272 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1273 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1274
1275 r = neg ? -r : r;
1276 #endif
1277
1278 return r;
1279 }
1280
1281 /* convert a double to ieee double/binary64 */
1282 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1283 ecb_function_ ecb_const uint64_t
1284 ecb_double_to_binary64 (double x)
1285 {
1286 uint64_t r;
1287
1288 #if ECB_STDFP
1289 memcpy (&r, &x, 8);
1290 #else
1291 /* slow emulation, works for anything but -0 */
1292 uint64_t m;
1293 int e;
1294
1295 if (x == 0e0 ) return 0x0000000000000000U;
1296 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1297 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1298 if (x != x ) return 0X7ff7ffffffffffffU;
1299
1300 m = frexp (x, &e) * 0x20000000000000U;
1301
1302 r = m & 0x8000000000000000;;
1303
1304 if (r)
1305 m = -m;
1306
1307 if (e <= -1022)
1308 {
1309 m &= 0x1fffffffffffffU;
1310 m >>= (-1021 - e);
1311 e = -1022;
1312 }
1313
1314 r |= ((uint64_t)(e + 1022)) << 52;
1315 r |= m & 0xfffffffffffffU;
1316 #endif
1317
1318 return r;
1319 }
1320
1321 /* converts an ieee double/binary64 to a double */
1322 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1323 ecb_function_ ecb_const double
1324 ecb_binary64_to_double (uint64_t x)
1325 {
1326 double r;
1327
1328 #if ECB_STDFP
1329 memcpy (&r, &x, 8);
1330 #else
1331 /* emulation, only works for normals and subnormals and +0 */
1332 int neg = x >> 63;
1333 int e = (x >> 52) & 0x7ffU;
1334
1335 x &= 0xfffffffffffffU;
1336
1337 if (e)
1338 x |= 0x10000000000000U;
1339 else
1340 e = 1;
1341
1342 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1343 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1344
1345 r = neg ? -r : r;
1346 #endif
1347
1348 return r;
1349 }
1350
1351#endif
1352
1353#endif
1354
1355/* ECB.H END */
1356
1357#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1358/* if your architecture doesn't need memory fences, e.g. because it is
1359 * single-cpu/core, or if you use libev in a project that doesn't use libev
1360 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1361 * libev, in which cases the memory fences become nops.
1362 * alternatively, you can remove this #error and link against libpthread,
1363 * which will then provide the memory fences.
1364 */
1365# error "memory fences not defined for your architecture, please report"
1366#endif
1367
1368#ifndef ECB_MEMORY_FENCE
1369# define ECB_MEMORY_FENCE do { } while (0)
1370# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1371# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1372#endif
1373
1374#define expect_false(cond) ecb_expect_false (cond)
1375#define expect_true(cond) ecb_expect_true (cond)
1376#define noinline ecb_noinline
1377
312#define inline_size static inline 1378#define inline_size ecb_inline
313 1379
314#if EV_MINIMAL 1380#if EV_FEATURE_CODE
1381# define inline_speed ecb_inline
1382#else
315# define inline_speed static noinline 1383# define inline_speed static noinline
1384#endif
1385
1386#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1387
1388#if EV_MINPRI == EV_MAXPRI
1389# define ABSPRI(w) (((W)w), 0)
316#else 1390#else
317# define inline_speed static inline
318#endif
319
320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1391# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1392#endif
322 1393
323#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1394#define EMPTY /* required for microsofts broken pseudo-c compiler */
324#define EMPTY2(a,b) /* used to suppress some warnings */ 1395#define EMPTY2(a,b) /* used to suppress some warnings */
325 1396
326typedef ev_watcher *W; 1397typedef ev_watcher *W;
327typedef ev_watcher_list *WL; 1398typedef ev_watcher_list *WL;
328typedef ev_watcher_time *WT; 1399typedef ev_watcher_time *WT;
329 1400
1401#define ev_active(w) ((W)(w))->active
1402#define ev_at(w) ((WT)(w))->at
1403
1404#if EV_USE_REALTIME
1405/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1406/* giving it a reasonably high chance of working on typical architectures */
1407static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1408#endif
1409
330#if EV_USE_MONOTONIC 1410#if EV_USE_MONOTONIC
331/* sig_atomic_t is used to avoid per-thread variables or locking but still */
332/* giving it a reasonably high chance of working on typical architetcures */
333static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1411static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1412#endif
1413
1414#ifndef EV_FD_TO_WIN32_HANDLE
1415# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1416#endif
1417#ifndef EV_WIN32_HANDLE_TO_FD
1418# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1419#endif
1420#ifndef EV_WIN32_CLOSE_FD
1421# define EV_WIN32_CLOSE_FD(fd) close (fd)
334#endif 1422#endif
335 1423
336#ifdef _WIN32 1424#ifdef _WIN32
337# include "ev_win32.c" 1425# include "ev_win32.c"
338#endif 1426#endif
339 1427
340/*****************************************************************************/ 1428/*****************************************************************************/
341 1429
1430/* define a suitable floor function (only used by periodics atm) */
1431
1432#if EV_USE_FLOOR
1433# include <math.h>
1434# define ev_floor(v) floor (v)
1435#else
1436
1437#include <float.h>
1438
1439/* a floor() replacement function, should be independent of ev_tstamp type */
1440static ev_tstamp noinline
1441ev_floor (ev_tstamp v)
1442{
1443 /* the choice of shift factor is not terribly important */
1444#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1445 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1446#else
1447 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1448#endif
1449
1450 /* argument too large for an unsigned long? */
1451 if (expect_false (v >= shift))
1452 {
1453 ev_tstamp f;
1454
1455 if (v == v - 1.)
1456 return v; /* very large number */
1457
1458 f = shift * ev_floor (v * (1. / shift));
1459 return f + ev_floor (v - f);
1460 }
1461
1462 /* special treatment for negative args? */
1463 if (expect_false (v < 0.))
1464 {
1465 ev_tstamp f = -ev_floor (-v);
1466
1467 return f - (f == v ? 0 : 1);
1468 }
1469
1470 /* fits into an unsigned long */
1471 return (unsigned long)v;
1472}
1473
1474#endif
1475
1476/*****************************************************************************/
1477
1478#ifdef __linux
1479# include <sys/utsname.h>
1480#endif
1481
1482static unsigned int noinline ecb_cold
1483ev_linux_version (void)
1484{
1485#ifdef __linux
1486 unsigned int v = 0;
1487 struct utsname buf;
1488 int i;
1489 char *p = buf.release;
1490
1491 if (uname (&buf))
1492 return 0;
1493
1494 for (i = 3+1; --i; )
1495 {
1496 unsigned int c = 0;
1497
1498 for (;;)
1499 {
1500 if (*p >= '0' && *p <= '9')
1501 c = c * 10 + *p++ - '0';
1502 else
1503 {
1504 p += *p == '.';
1505 break;
1506 }
1507 }
1508
1509 v = (v << 8) | c;
1510 }
1511
1512 return v;
1513#else
1514 return 0;
1515#endif
1516}
1517
1518/*****************************************************************************/
1519
1520#if EV_AVOID_STDIO
1521static void noinline ecb_cold
1522ev_printerr (const char *msg)
1523{
1524 write (STDERR_FILENO, msg, strlen (msg));
1525}
1526#endif
1527
342static void (*syserr_cb)(const char *msg); 1528static void (*syserr_cb)(const char *msg) EV_THROW;
343 1529
344void 1530void ecb_cold
345ev_set_syserr_cb (void (*cb)(const char *msg)) 1531ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
346{ 1532{
347 syserr_cb = cb; 1533 syserr_cb = cb;
348} 1534}
349 1535
350static void noinline 1536static void noinline ecb_cold
351syserr (const char *msg) 1537ev_syserr (const char *msg)
352{ 1538{
353 if (!msg) 1539 if (!msg)
354 msg = "(libev) system error"; 1540 msg = "(libev) system error";
355 1541
356 if (syserr_cb) 1542 if (syserr_cb)
357 syserr_cb (msg); 1543 syserr_cb (msg);
358 else 1544 else
359 { 1545 {
1546#if EV_AVOID_STDIO
1547 ev_printerr (msg);
1548 ev_printerr (": ");
1549 ev_printerr (strerror (errno));
1550 ev_printerr ("\n");
1551#else
360 perror (msg); 1552 perror (msg);
1553#endif
361 abort (); 1554 abort ();
362 } 1555 }
363} 1556}
364 1557
365static void * 1558static void *
366ev_realloc_emul (void *ptr, long size) 1559ev_realloc_emul (void *ptr, long size) EV_THROW
367{ 1560{
368 /* some systems, notably openbsd and darwin, fail to properly 1561 /* some systems, notably openbsd and darwin, fail to properly
369 * implement realloc (x, 0) (as required by both ansi c-98 and 1562 * implement realloc (x, 0) (as required by both ansi c-89 and
370 * the single unix specification, so work around them here. 1563 * the single unix specification, so work around them here.
1564 * recently, also (at least) fedora and debian started breaking it,
1565 * despite documenting it otherwise.
371 */ 1566 */
372 1567
373 if (size) 1568 if (size)
374 return realloc (ptr, size); 1569 return realloc (ptr, size);
375 1570
376 free (ptr); 1571 free (ptr);
377 return 0; 1572 return 0;
378} 1573}
379 1574
380static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 1575static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
381 1576
382void 1577void ecb_cold
383ev_set_allocator (void *(*cb)(void *ptr, long size)) 1578ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
384{ 1579{
385 alloc = cb; 1580 alloc = cb;
386} 1581}
387 1582
388inline_speed void * 1583inline_speed void *
390{ 1585{
391 ptr = alloc (ptr, size); 1586 ptr = alloc (ptr, size);
392 1587
393 if (!ptr && size) 1588 if (!ptr && size)
394 { 1589 {
1590#if EV_AVOID_STDIO
1591 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1592#else
395 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1593 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1594#endif
396 abort (); 1595 abort ();
397 } 1596 }
398 1597
399 return ptr; 1598 return ptr;
400} 1599}
402#define ev_malloc(size) ev_realloc (0, (size)) 1601#define ev_malloc(size) ev_realloc (0, (size))
403#define ev_free(ptr) ev_realloc ((ptr), 0) 1602#define ev_free(ptr) ev_realloc ((ptr), 0)
404 1603
405/*****************************************************************************/ 1604/*****************************************************************************/
406 1605
1606/* set in reify when reification needed */
1607#define EV_ANFD_REIFY 1
1608
1609/* file descriptor info structure */
407typedef struct 1610typedef struct
408{ 1611{
409 WL head; 1612 WL head;
410 unsigned char events; 1613 unsigned char events; /* the events watched for */
1614 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1615 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
411 unsigned char reify; 1616 unsigned char unused;
1617#if EV_USE_EPOLL
1618 unsigned int egen; /* generation counter to counter epoll bugs */
1619#endif
412#if EV_SELECT_IS_WINSOCKET 1620#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
413 SOCKET handle; 1621 SOCKET handle;
414#endif 1622#endif
1623#if EV_USE_IOCP
1624 OVERLAPPED or, ow;
1625#endif
415} ANFD; 1626} ANFD;
416 1627
1628/* stores the pending event set for a given watcher */
417typedef struct 1629typedef struct
418{ 1630{
419 W w; 1631 W w;
420 int events; 1632 int events; /* the pending event set for the given watcher */
421} ANPENDING; 1633} ANPENDING;
422 1634
423#if EV_USE_INOTIFY 1635#if EV_USE_INOTIFY
1636/* hash table entry per inotify-id */
424typedef struct 1637typedef struct
425{ 1638{
426 WL head; 1639 WL head;
427} ANFS; 1640} ANFS;
1641#endif
1642
1643/* Heap Entry */
1644#if EV_HEAP_CACHE_AT
1645 /* a heap element */
1646 typedef struct {
1647 ev_tstamp at;
1648 WT w;
1649 } ANHE;
1650
1651 #define ANHE_w(he) (he).w /* access watcher, read-write */
1652 #define ANHE_at(he) (he).at /* access cached at, read-only */
1653 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1654#else
1655 /* a heap element */
1656 typedef WT ANHE;
1657
1658 #define ANHE_w(he) (he)
1659 #define ANHE_at(he) (he)->at
1660 #define ANHE_at_cache(he)
428#endif 1661#endif
429 1662
430#if EV_MULTIPLICITY 1663#if EV_MULTIPLICITY
431 1664
432 struct ev_loop 1665 struct ev_loop
438 #undef VAR 1671 #undef VAR
439 }; 1672 };
440 #include "ev_wrap.h" 1673 #include "ev_wrap.h"
441 1674
442 static struct ev_loop default_loop_struct; 1675 static struct ev_loop default_loop_struct;
443 struct ev_loop *ev_default_loop_ptr; 1676 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
444 1677
445#else 1678#else
446 1679
447 ev_tstamp ev_rt_now; 1680 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
448 #define VAR(name,decl) static decl; 1681 #define VAR(name,decl) static decl;
449 #include "ev_vars.h" 1682 #include "ev_vars.h"
450 #undef VAR 1683 #undef VAR
451 1684
452 static int ev_default_loop_ptr; 1685 static int ev_default_loop_ptr;
453 1686
454#endif 1687#endif
455 1688
1689#if EV_FEATURE_API
1690# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1691# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1692# define EV_INVOKE_PENDING invoke_cb (EV_A)
1693#else
1694# define EV_RELEASE_CB (void)0
1695# define EV_ACQUIRE_CB (void)0
1696# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1697#endif
1698
1699#define EVBREAK_RECURSE 0x80
1700
456/*****************************************************************************/ 1701/*****************************************************************************/
457 1702
1703#ifndef EV_HAVE_EV_TIME
458ev_tstamp 1704ev_tstamp
459ev_time (void) 1705ev_time (void) EV_THROW
460{ 1706{
461#if EV_USE_REALTIME 1707#if EV_USE_REALTIME
1708 if (expect_true (have_realtime))
1709 {
462 struct timespec ts; 1710 struct timespec ts;
463 clock_gettime (CLOCK_REALTIME, &ts); 1711 clock_gettime (CLOCK_REALTIME, &ts);
464 return ts.tv_sec + ts.tv_nsec * 1e-9; 1712 return ts.tv_sec + ts.tv_nsec * 1e-9;
465#else 1713 }
1714#endif
1715
466 struct timeval tv; 1716 struct timeval tv;
467 gettimeofday (&tv, 0); 1717 gettimeofday (&tv, 0);
468 return tv.tv_sec + tv.tv_usec * 1e-6; 1718 return tv.tv_sec + tv.tv_usec * 1e-6;
469#endif
470} 1719}
1720#endif
471 1721
472ev_tstamp inline_size 1722inline_size ev_tstamp
473get_clock (void) 1723get_clock (void)
474{ 1724{
475#if EV_USE_MONOTONIC 1725#if EV_USE_MONOTONIC
476 if (expect_true (have_monotonic)) 1726 if (expect_true (have_monotonic))
477 { 1727 {
484 return ev_time (); 1734 return ev_time ();
485} 1735}
486 1736
487#if EV_MULTIPLICITY 1737#if EV_MULTIPLICITY
488ev_tstamp 1738ev_tstamp
489ev_now (EV_P) 1739ev_now (EV_P) EV_THROW
490{ 1740{
491 return ev_rt_now; 1741 return ev_rt_now;
492} 1742}
493#endif 1743#endif
494 1744
495void 1745void
496ev_sleep (ev_tstamp delay) 1746ev_sleep (ev_tstamp delay) EV_THROW
497{ 1747{
498 if (delay > 0.) 1748 if (delay > 0.)
499 { 1749 {
500#if EV_USE_NANOSLEEP 1750#if EV_USE_NANOSLEEP
501 struct timespec ts; 1751 struct timespec ts;
502 1752
503 ts.tv_sec = (time_t)delay; 1753 EV_TS_SET (ts, delay);
504 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
505
506 nanosleep (&ts, 0); 1754 nanosleep (&ts, 0);
507#elif defined(_WIN32) 1755#elif defined _WIN32
508 Sleep ((unsigned long)(delay * 1e3)); 1756 Sleep ((unsigned long)(delay * 1e3));
509#else 1757#else
510 struct timeval tv; 1758 struct timeval tv;
511 1759
512 tv.tv_sec = (time_t)delay; 1760 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
513 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 1761 /* something not guaranteed by newer posix versions, but guaranteed */
514 1762 /* by older ones */
1763 EV_TV_SET (tv, delay);
515 select (0, 0, 0, 0, &tv); 1764 select (0, 0, 0, 0, &tv);
516#endif 1765#endif
517 } 1766 }
518} 1767}
519 1768
520/*****************************************************************************/ 1769/*****************************************************************************/
521 1770
522int inline_size 1771#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1772
1773/* find a suitable new size for the given array, */
1774/* hopefully by rounding to a nice-to-malloc size */
1775inline_size int
523array_nextsize (int elem, int cur, int cnt) 1776array_nextsize (int elem, int cur, int cnt)
524{ 1777{
525 int ncur = cur + 1; 1778 int ncur = cur + 1;
526 1779
527 do 1780 do
528 ncur <<= 1; 1781 ncur <<= 1;
529 while (cnt > ncur); 1782 while (cnt > ncur);
530 1783
531 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 1784 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
532 if (elem * ncur > 4096) 1785 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
533 { 1786 {
534 ncur *= elem; 1787 ncur *= elem;
535 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 1788 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
536 ncur = ncur - sizeof (void *) * 4; 1789 ncur = ncur - sizeof (void *) * 4;
537 ncur /= elem; 1790 ncur /= elem;
538 } 1791 }
539 1792
540 return ncur; 1793 return ncur;
541} 1794}
542 1795
543static noinline void * 1796static void * noinline ecb_cold
544array_realloc (int elem, void *base, int *cur, int cnt) 1797array_realloc (int elem, void *base, int *cur, int cnt)
545{ 1798{
546 *cur = array_nextsize (elem, *cur, cnt); 1799 *cur = array_nextsize (elem, *cur, cnt);
547 return ev_realloc (base, elem * *cur); 1800 return ev_realloc (base, elem * *cur);
548} 1801}
1802
1803#define array_init_zero(base,count) \
1804 memset ((void *)(base), 0, sizeof (*(base)) * (count))
549 1805
550#define array_needsize(type,base,cur,cnt,init) \ 1806#define array_needsize(type,base,cur,cnt,init) \
551 if (expect_false ((cnt) > (cur))) \ 1807 if (expect_false ((cnt) > (cur))) \
552 { \ 1808 { \
553 int ocur_ = (cur); \ 1809 int ecb_unused ocur_ = (cur); \
554 (base) = (type *)array_realloc \ 1810 (base) = (type *)array_realloc \
555 (sizeof (type), (base), &(cur), (cnt)); \ 1811 (sizeof (type), (base), &(cur), (cnt)); \
556 init ((base) + (ocur_), (cur) - ocur_); \ 1812 init ((base) + (ocur_), (cur) - ocur_); \
557 } 1813 }
558 1814
565 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1821 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
566 } 1822 }
567#endif 1823#endif
568 1824
569#define array_free(stem, idx) \ 1825#define array_free(stem, idx) \
570 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1826 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
571 1827
572/*****************************************************************************/ 1828/*****************************************************************************/
573 1829
1830/* dummy callback for pending events */
1831static void noinline
1832pendingcb (EV_P_ ev_prepare *w, int revents)
1833{
1834}
1835
574void noinline 1836void noinline
575ev_feed_event (EV_P_ void *w, int revents) 1837ev_feed_event (EV_P_ void *w, int revents) EV_THROW
576{ 1838{
577 W w_ = (W)w; 1839 W w_ = (W)w;
578 int pri = ABSPRI (w_); 1840 int pri = ABSPRI (w_);
579 1841
580 if (expect_false (w_->pending)) 1842 if (expect_false (w_->pending))
584 w_->pending = ++pendingcnt [pri]; 1846 w_->pending = ++pendingcnt [pri];
585 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 1847 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
586 pendings [pri][w_->pending - 1].w = w_; 1848 pendings [pri][w_->pending - 1].w = w_;
587 pendings [pri][w_->pending - 1].events = revents; 1849 pendings [pri][w_->pending - 1].events = revents;
588 } 1850 }
589}
590 1851
591void inline_speed 1852 pendingpri = NUMPRI - 1;
1853}
1854
1855inline_speed void
1856feed_reverse (EV_P_ W w)
1857{
1858 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1859 rfeeds [rfeedcnt++] = w;
1860}
1861
1862inline_size void
1863feed_reverse_done (EV_P_ int revents)
1864{
1865 do
1866 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1867 while (rfeedcnt);
1868}
1869
1870inline_speed void
592queue_events (EV_P_ W *events, int eventcnt, int type) 1871queue_events (EV_P_ W *events, int eventcnt, int type)
593{ 1872{
594 int i; 1873 int i;
595 1874
596 for (i = 0; i < eventcnt; ++i) 1875 for (i = 0; i < eventcnt; ++i)
597 ev_feed_event (EV_A_ events [i], type); 1876 ev_feed_event (EV_A_ events [i], type);
598} 1877}
599 1878
600/*****************************************************************************/ 1879/*****************************************************************************/
601 1880
602void inline_size 1881inline_speed void
603anfds_init (ANFD *base, int count)
604{
605 while (count--)
606 {
607 base->head = 0;
608 base->events = EV_NONE;
609 base->reify = 0;
610
611 ++base;
612 }
613}
614
615void inline_speed
616fd_event (EV_P_ int fd, int revents) 1882fd_event_nocheck (EV_P_ int fd, int revents)
617{ 1883{
618 ANFD *anfd = anfds + fd; 1884 ANFD *anfd = anfds + fd;
619 ev_io *w; 1885 ev_io *w;
620 1886
621 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1887 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
625 if (ev) 1891 if (ev)
626 ev_feed_event (EV_A_ (W)w, ev); 1892 ev_feed_event (EV_A_ (W)w, ev);
627 } 1893 }
628} 1894}
629 1895
1896/* do not submit kernel events for fds that have reify set */
1897/* because that means they changed while we were polling for new events */
1898inline_speed void
1899fd_event (EV_P_ int fd, int revents)
1900{
1901 ANFD *anfd = anfds + fd;
1902
1903 if (expect_true (!anfd->reify))
1904 fd_event_nocheck (EV_A_ fd, revents);
1905}
1906
630void 1907void
631ev_feed_fd_event (EV_P_ int fd, int revents) 1908ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
632{ 1909{
633 if (fd >= 0 && fd < anfdmax) 1910 if (fd >= 0 && fd < anfdmax)
634 fd_event (EV_A_ fd, revents); 1911 fd_event_nocheck (EV_A_ fd, revents);
635} 1912}
636 1913
637void inline_size 1914/* make sure the external fd watch events are in-sync */
1915/* with the kernel/libev internal state */
1916inline_size void
638fd_reify (EV_P) 1917fd_reify (EV_P)
639{ 1918{
640 int i; 1919 int i;
1920
1921#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1922 for (i = 0; i < fdchangecnt; ++i)
1923 {
1924 int fd = fdchanges [i];
1925 ANFD *anfd = anfds + fd;
1926
1927 if (anfd->reify & EV__IOFDSET && anfd->head)
1928 {
1929 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1930
1931 if (handle != anfd->handle)
1932 {
1933 unsigned long arg;
1934
1935 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1936
1937 /* handle changed, but fd didn't - we need to do it in two steps */
1938 backend_modify (EV_A_ fd, anfd->events, 0);
1939 anfd->events = 0;
1940 anfd->handle = handle;
1941 }
1942 }
1943 }
1944#endif
641 1945
642 for (i = 0; i < fdchangecnt; ++i) 1946 for (i = 0; i < fdchangecnt; ++i)
643 { 1947 {
644 int fd = fdchanges [i]; 1948 int fd = fdchanges [i];
645 ANFD *anfd = anfds + fd; 1949 ANFD *anfd = anfds + fd;
646 ev_io *w; 1950 ev_io *w;
647 1951
648 unsigned char events = 0; 1952 unsigned char o_events = anfd->events;
1953 unsigned char o_reify = anfd->reify;
649 1954
650 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1955 anfd->reify = 0;
651 events |= (unsigned char)w->events;
652 1956
653#if EV_SELECT_IS_WINSOCKET 1957 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
654 if (events)
655 { 1958 {
656 unsigned long argp; 1959 anfd->events = 0;
657 #ifdef EV_FD_TO_WIN32_HANDLE 1960
658 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1961 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
659 #else 1962 anfd->events |= (unsigned char)w->events;
660 anfd->handle = _get_osfhandle (fd); 1963
661 #endif 1964 if (o_events != anfd->events)
662 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1965 o_reify = EV__IOFDSET; /* actually |= */
663 } 1966 }
664#endif
665 1967
666 { 1968 if (o_reify & EV__IOFDSET)
667 unsigned char o_events = anfd->events;
668 unsigned char o_reify = anfd->reify;
669
670 anfd->reify = 0;
671 anfd->events = events;
672
673 if (o_events != events || o_reify & EV_IOFDSET)
674 backend_modify (EV_A_ fd, o_events, events); 1969 backend_modify (EV_A_ fd, o_events, anfd->events);
675 }
676 } 1970 }
677 1971
678 fdchangecnt = 0; 1972 fdchangecnt = 0;
679} 1973}
680 1974
681void inline_size 1975/* something about the given fd changed */
1976inline_size void
682fd_change (EV_P_ int fd, int flags) 1977fd_change (EV_P_ int fd, int flags)
683{ 1978{
684 unsigned char reify = anfds [fd].reify; 1979 unsigned char reify = anfds [fd].reify;
685 anfds [fd].reify |= flags; 1980 anfds [fd].reify |= flags;
686 1981
690 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1985 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
691 fdchanges [fdchangecnt - 1] = fd; 1986 fdchanges [fdchangecnt - 1] = fd;
692 } 1987 }
693} 1988}
694 1989
695void inline_speed 1990/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1991inline_speed void ecb_cold
696fd_kill (EV_P_ int fd) 1992fd_kill (EV_P_ int fd)
697{ 1993{
698 ev_io *w; 1994 ev_io *w;
699 1995
700 while ((w = (ev_io *)anfds [fd].head)) 1996 while ((w = (ev_io *)anfds [fd].head))
702 ev_io_stop (EV_A_ w); 1998 ev_io_stop (EV_A_ w);
703 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1999 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
704 } 2000 }
705} 2001}
706 2002
707int inline_size 2003/* check whether the given fd is actually valid, for error recovery */
2004inline_size int ecb_cold
708fd_valid (int fd) 2005fd_valid (int fd)
709{ 2006{
710#ifdef _WIN32 2007#ifdef _WIN32
711 return _get_osfhandle (fd) != -1; 2008 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
712#else 2009#else
713 return fcntl (fd, F_GETFD) != -1; 2010 return fcntl (fd, F_GETFD) != -1;
714#endif 2011#endif
715} 2012}
716 2013
717/* called on EBADF to verify fds */ 2014/* called on EBADF to verify fds */
718static void noinline 2015static void noinline ecb_cold
719fd_ebadf (EV_P) 2016fd_ebadf (EV_P)
720{ 2017{
721 int fd; 2018 int fd;
722 2019
723 for (fd = 0; fd < anfdmax; ++fd) 2020 for (fd = 0; fd < anfdmax; ++fd)
724 if (anfds [fd].events) 2021 if (anfds [fd].events)
725 if (!fd_valid (fd) == -1 && errno == EBADF) 2022 if (!fd_valid (fd) && errno == EBADF)
726 fd_kill (EV_A_ fd); 2023 fd_kill (EV_A_ fd);
727} 2024}
728 2025
729/* called on ENOMEM in select/poll to kill some fds and retry */ 2026/* called on ENOMEM in select/poll to kill some fds and retry */
730static void noinline 2027static void noinline ecb_cold
731fd_enomem (EV_P) 2028fd_enomem (EV_P)
732{ 2029{
733 int fd; 2030 int fd;
734 2031
735 for (fd = anfdmax; fd--; ) 2032 for (fd = anfdmax; fd--; )
736 if (anfds [fd].events) 2033 if (anfds [fd].events)
737 { 2034 {
738 fd_kill (EV_A_ fd); 2035 fd_kill (EV_A_ fd);
739 return; 2036 break;
740 } 2037 }
741} 2038}
742 2039
743/* usually called after fork if backend needs to re-arm all fds from scratch */ 2040/* usually called after fork if backend needs to re-arm all fds from scratch */
744static void noinline 2041static void noinline
748 2045
749 for (fd = 0; fd < anfdmax; ++fd) 2046 for (fd = 0; fd < anfdmax; ++fd)
750 if (anfds [fd].events) 2047 if (anfds [fd].events)
751 { 2048 {
752 anfds [fd].events = 0; 2049 anfds [fd].events = 0;
2050 anfds [fd].emask = 0;
753 fd_change (EV_A_ fd, EV_IOFDSET | 1); 2051 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
754 } 2052 }
755} 2053}
756 2054
757/*****************************************************************************/ 2055/* used to prepare libev internal fd's */
758 2056/* this is not fork-safe */
759void inline_speed 2057inline_speed void
760upheap (WT *heap, int k)
761{
762 WT w = heap [k];
763
764 while (k)
765 {
766 int p = (k - 1) >> 1;
767
768 if (heap [p]->at <= w->at)
769 break;
770
771 heap [k] = heap [p];
772 ((W)heap [k])->active = k + 1;
773 k = p;
774 }
775
776 heap [k] = w;
777 ((W)heap [k])->active = k + 1;
778}
779
780void inline_speed
781downheap (WT *heap, int N, int k)
782{
783 WT w = heap [k];
784
785 for (;;)
786 {
787 int c = (k << 1) + 1;
788
789 if (c >= N)
790 break;
791
792 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
793 ? 1 : 0;
794
795 if (w->at <= heap [c]->at)
796 break;
797
798 heap [k] = heap [c];
799 ((W)heap [k])->active = k + 1;
800
801 k = c;
802 }
803
804 heap [k] = w;
805 ((W)heap [k])->active = k + 1;
806}
807
808void inline_size
809adjustheap (WT *heap, int N, int k)
810{
811 upheap (heap, k);
812 downheap (heap, N, k);
813}
814
815/*****************************************************************************/
816
817typedef struct
818{
819 WL head;
820 EV_ATOMIC_T gotsig;
821} ANSIG;
822
823static ANSIG *signals;
824static int signalmax;
825
826static EV_ATOMIC_T gotsig;
827
828void inline_size
829signals_init (ANSIG *base, int count)
830{
831 while (count--)
832 {
833 base->head = 0;
834 base->gotsig = 0;
835
836 ++base;
837 }
838}
839
840/*****************************************************************************/
841
842void inline_speed
843fd_intern (int fd) 2058fd_intern (int fd)
844{ 2059{
845#ifdef _WIN32 2060#ifdef _WIN32
846 int arg = 1; 2061 unsigned long arg = 1;
847 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 2062 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
848#else 2063#else
849 fcntl (fd, F_SETFD, FD_CLOEXEC); 2064 fcntl (fd, F_SETFD, FD_CLOEXEC);
850 fcntl (fd, F_SETFL, O_NONBLOCK); 2065 fcntl (fd, F_SETFL, O_NONBLOCK);
851#endif 2066#endif
852} 2067}
853 2068
854static void noinline 2069/*****************************************************************************/
855evpipe_init (EV_P) 2070
2071/*
2072 * the heap functions want a real array index. array index 0 is guaranteed to not
2073 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
2074 * the branching factor of the d-tree.
2075 */
2076
2077/*
2078 * at the moment we allow libev the luxury of two heaps,
2079 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2080 * which is more cache-efficient.
2081 * the difference is about 5% with 50000+ watchers.
2082 */
2083#if EV_USE_4HEAP
2084
2085#define DHEAP 4
2086#define HEAP0 (DHEAP - 1) /* index of first element in heap */
2087#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2088#define UPHEAP_DONE(p,k) ((p) == (k))
2089
2090/* away from the root */
2091inline_speed void
2092downheap (ANHE *heap, int N, int k)
856{ 2093{
857 if (!ev_is_active (&pipeev)) 2094 ANHE he = heap [k];
2095 ANHE *E = heap + N + HEAP0;
2096
2097 for (;;)
858 { 2098 {
859#if EV_USE_EVENTFD 2099 ev_tstamp minat;
860 if ((evfd = eventfd (0, 0)) >= 0) 2100 ANHE *minpos;
2101 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2102
2103 /* find minimum child */
2104 if (expect_true (pos + DHEAP - 1 < E))
861 { 2105 {
862 evpipe [0] = -1; 2106 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
863 fd_intern (evfd); 2107 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
864 ev_io_set (&pipeev, evfd, EV_READ); 2108 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2109 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2110 }
2111 else if (pos < E)
2112 {
2113 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2114 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2115 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2116 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
865 } 2117 }
866 else 2118 else
2119 break;
2120
2121 if (ANHE_at (he) <= minat)
2122 break;
2123
2124 heap [k] = *minpos;
2125 ev_active (ANHE_w (*minpos)) = k;
2126
2127 k = minpos - heap;
2128 }
2129
2130 heap [k] = he;
2131 ev_active (ANHE_w (he)) = k;
2132}
2133
2134#else /* 4HEAP */
2135
2136#define HEAP0 1
2137#define HPARENT(k) ((k) >> 1)
2138#define UPHEAP_DONE(p,k) (!(p))
2139
2140/* away from the root */
2141inline_speed void
2142downheap (ANHE *heap, int N, int k)
2143{
2144 ANHE he = heap [k];
2145
2146 for (;;)
2147 {
2148 int c = k << 1;
2149
2150 if (c >= N + HEAP0)
2151 break;
2152
2153 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2154 ? 1 : 0;
2155
2156 if (ANHE_at (he) <= ANHE_at (heap [c]))
2157 break;
2158
2159 heap [k] = heap [c];
2160 ev_active (ANHE_w (heap [k])) = k;
2161
2162 k = c;
2163 }
2164
2165 heap [k] = he;
2166 ev_active (ANHE_w (he)) = k;
2167}
2168#endif
2169
2170/* towards the root */
2171inline_speed void
2172upheap (ANHE *heap, int k)
2173{
2174 ANHE he = heap [k];
2175
2176 for (;;)
2177 {
2178 int p = HPARENT (k);
2179
2180 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2181 break;
2182
2183 heap [k] = heap [p];
2184 ev_active (ANHE_w (heap [k])) = k;
2185 k = p;
2186 }
2187
2188 heap [k] = he;
2189 ev_active (ANHE_w (he)) = k;
2190}
2191
2192/* move an element suitably so it is in a correct place */
2193inline_size void
2194adjustheap (ANHE *heap, int N, int k)
2195{
2196 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2197 upheap (heap, k);
2198 else
2199 downheap (heap, N, k);
2200}
2201
2202/* rebuild the heap: this function is used only once and executed rarely */
2203inline_size void
2204reheap (ANHE *heap, int N)
2205{
2206 int i;
2207
2208 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2209 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2210 for (i = 0; i < N; ++i)
2211 upheap (heap, i + HEAP0);
2212}
2213
2214/*****************************************************************************/
2215
2216/* associate signal watchers to a signal signal */
2217typedef struct
2218{
2219 EV_ATOMIC_T pending;
2220#if EV_MULTIPLICITY
2221 EV_P;
2222#endif
2223 WL head;
2224} ANSIG;
2225
2226static ANSIG signals [EV_NSIG - 1];
2227
2228/*****************************************************************************/
2229
2230#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2231
2232static void noinline ecb_cold
2233evpipe_init (EV_P)
2234{
2235 if (!ev_is_active (&pipe_w))
2236 {
2237 int fds [2];
2238
2239# if EV_USE_EVENTFD
2240 fds [0] = -1;
2241 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2242 if (fds [1] < 0 && errno == EINVAL)
2243 fds [1] = eventfd (0, 0);
2244
2245 if (fds [1] < 0)
867#endif 2246# endif
868 { 2247 {
869 while (pipe (evpipe)) 2248 while (pipe (fds))
870 syserr ("(libev) error creating signal/async pipe"); 2249 ev_syserr ("(libev) error creating signal/async pipe");
871 2250
872 fd_intern (evpipe [0]); 2251 fd_intern (fds [0]);
873 fd_intern (evpipe [1]);
874 ev_io_set (&pipeev, evpipe [0], EV_READ);
875 } 2252 }
876 2253
2254 evpipe [0] = fds [0];
2255
2256 if (evpipe [1] < 0)
2257 evpipe [1] = fds [1]; /* first call, set write fd */
2258 else
2259 {
2260 /* on subsequent calls, do not change evpipe [1] */
2261 /* so that evpipe_write can always rely on its value. */
2262 /* this branch does not do anything sensible on windows, */
2263 /* so must not be executed on windows */
2264
2265 dup2 (fds [1], evpipe [1]);
2266 close (fds [1]);
2267 }
2268
2269 fd_intern (evpipe [1]);
2270
2271 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
877 ev_io_start (EV_A_ &pipeev); 2272 ev_io_start (EV_A_ &pipe_w);
878 ev_unref (EV_A); /* watcher should not keep loop alive */ 2273 ev_unref (EV_A); /* watcher should not keep loop alive */
879 } 2274 }
880} 2275}
881 2276
882void inline_size 2277inline_speed void
883evpipe_write (EV_P_ EV_ATOMIC_T *flag) 2278evpipe_write (EV_P_ EV_ATOMIC_T *flag)
884{ 2279{
885 if (!*flag) 2280 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2281
2282 if (expect_true (*flag))
2283 return;
2284
2285 *flag = 1;
2286 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2287
2288 pipe_write_skipped = 1;
2289
2290 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2291
2292 if (pipe_write_wanted)
886 { 2293 {
2294 int old_errno;
2295
2296 pipe_write_skipped = 0;
2297 ECB_MEMORY_FENCE_RELEASE;
2298
887 int old_errno = errno; /* save errno because write might clobber it */ 2299 old_errno = errno; /* save errno because write will clobber it */
888
889 *flag = 1;
890 2300
891#if EV_USE_EVENTFD 2301#if EV_USE_EVENTFD
892 if (evfd >= 0) 2302 if (evpipe [0] < 0)
893 { 2303 {
894 uint64_t counter = 1; 2304 uint64_t counter = 1;
895 write (evfd, &counter, sizeof (uint64_t)); 2305 write (evpipe [1], &counter, sizeof (uint64_t));
896 } 2306 }
897 else 2307 else
898#endif 2308#endif
2309 {
2310#ifdef _WIN32
2311 WSABUF buf;
2312 DWORD sent;
2313 buf.buf = &buf;
2314 buf.len = 1;
2315 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2316#else
899 write (evpipe [1], &old_errno, 1); 2317 write (evpipe [1], &(evpipe [1]), 1);
2318#endif
2319 }
900 2320
901 errno = old_errno; 2321 errno = old_errno;
902 } 2322 }
903} 2323}
904 2324
2325/* called whenever the libev signal pipe */
2326/* got some events (signal, async) */
905static void 2327static void
906pipecb (EV_P_ ev_io *iow, int revents) 2328pipecb (EV_P_ ev_io *iow, int revents)
907{ 2329{
2330 int i;
2331
2332 if (revents & EV_READ)
2333 {
908#if EV_USE_EVENTFD 2334#if EV_USE_EVENTFD
909 if (evfd >= 0) 2335 if (evpipe [0] < 0)
910 { 2336 {
911 uint64_t counter = 1; 2337 uint64_t counter;
912 read (evfd, &counter, sizeof (uint64_t)); 2338 read (evpipe [1], &counter, sizeof (uint64_t));
913 } 2339 }
914 else 2340 else
915#endif 2341#endif
916 { 2342 {
917 char dummy; 2343 char dummy[4];
2344#ifdef _WIN32
2345 WSABUF buf;
2346 DWORD recvd;
2347 DWORD flags = 0;
2348 buf.buf = dummy;
2349 buf.len = sizeof (dummy);
2350 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2351#else
918 read (evpipe [0], &dummy, 1); 2352 read (evpipe [0], &dummy, sizeof (dummy));
2353#endif
2354 }
2355 }
2356
2357 pipe_write_skipped = 0;
2358
2359 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2360
2361#if EV_SIGNAL_ENABLE
2362 if (sig_pending)
919 } 2363 {
2364 sig_pending = 0;
920 2365
921 if (gotsig && ev_is_default_loop (EV_A)) 2366 ECB_MEMORY_FENCE;
922 {
923 int signum;
924 gotsig = 0;
925 2367
926 for (signum = signalmax; signum--; ) 2368 for (i = EV_NSIG - 1; i--; )
927 if (signals [signum].gotsig) 2369 if (expect_false (signals [i].pending))
928 ev_feed_signal_event (EV_A_ signum + 1); 2370 ev_feed_signal_event (EV_A_ i + 1);
929 } 2371 }
2372#endif
930 2373
931#if EV_ASYNC_ENABLE 2374#if EV_ASYNC_ENABLE
932 if (gotasync) 2375 if (async_pending)
933 { 2376 {
934 int i; 2377 async_pending = 0;
935 gotasync = 0; 2378
2379 ECB_MEMORY_FENCE;
936 2380
937 for (i = asynccnt; i--; ) 2381 for (i = asynccnt; i--; )
938 if (asyncs [i]->sent) 2382 if (asyncs [i]->sent)
939 { 2383 {
940 asyncs [i]->sent = 0; 2384 asyncs [i]->sent = 0;
2385 ECB_MEMORY_FENCE_RELEASE;
941 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); 2386 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
942 } 2387 }
943 } 2388 }
944#endif 2389#endif
945} 2390}
946 2391
947/*****************************************************************************/ 2392/*****************************************************************************/
948 2393
2394void
2395ev_feed_signal (int signum) EV_THROW
2396{
2397#if EV_MULTIPLICITY
2398 EV_P;
2399 ECB_MEMORY_FENCE_ACQUIRE;
2400 EV_A = signals [signum - 1].loop;
2401
2402 if (!EV_A)
2403 return;
2404#endif
2405
2406 signals [signum - 1].pending = 1;
2407 evpipe_write (EV_A_ &sig_pending);
2408}
2409
949static void 2410static void
950ev_sighandler (int signum) 2411ev_sighandler (int signum)
951{ 2412{
2413#ifdef _WIN32
2414 signal (signum, ev_sighandler);
2415#endif
2416
2417 ev_feed_signal (signum);
2418}
2419
2420void noinline
2421ev_feed_signal_event (EV_P_ int signum) EV_THROW
2422{
2423 WL w;
2424
2425 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2426 return;
2427
2428 --signum;
2429
952#if EV_MULTIPLICITY 2430#if EV_MULTIPLICITY
953 struct ev_loop *loop = &default_loop_struct; 2431 /* it is permissible to try to feed a signal to the wrong loop */
954#endif 2432 /* or, likely more useful, feeding a signal nobody is waiting for */
955 2433
956#if _WIN32 2434 if (expect_false (signals [signum].loop != EV_A))
957 signal (signum, ev_sighandler);
958#endif
959
960 signals [signum - 1].gotsig = 1;
961 evpipe_write (EV_A_ &gotsig);
962}
963
964void noinline
965ev_feed_signal_event (EV_P_ int signum)
966{
967 WL w;
968
969#if EV_MULTIPLICITY
970 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
971#endif
972
973 --signum;
974
975 if (signum < 0 || signum >= signalmax)
976 return; 2435 return;
2436#endif
977 2437
978 signals [signum].gotsig = 0; 2438 signals [signum].pending = 0;
2439 ECB_MEMORY_FENCE_RELEASE;
979 2440
980 for (w = signals [signum].head; w; w = w->next) 2441 for (w = signals [signum].head; w; w = w->next)
981 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2442 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
982} 2443}
983 2444
2445#if EV_USE_SIGNALFD
2446static void
2447sigfdcb (EV_P_ ev_io *iow, int revents)
2448{
2449 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2450
2451 for (;;)
2452 {
2453 ssize_t res = read (sigfd, si, sizeof (si));
2454
2455 /* not ISO-C, as res might be -1, but works with SuS */
2456 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2457 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2458
2459 if (res < (ssize_t)sizeof (si))
2460 break;
2461 }
2462}
2463#endif
2464
2465#endif
2466
984/*****************************************************************************/ 2467/*****************************************************************************/
985 2468
2469#if EV_CHILD_ENABLE
986static WL childs [EV_PID_HASHSIZE]; 2470static WL childs [EV_PID_HASHSIZE];
987
988#ifndef _WIN32
989 2471
990static ev_signal childev; 2472static ev_signal childev;
991 2473
992#ifndef WIFCONTINUED 2474#ifndef WIFCONTINUED
993# define WIFCONTINUED(status) 0 2475# define WIFCONTINUED(status) 0
994#endif 2476#endif
995 2477
996void inline_speed 2478/* handle a single child status event */
2479inline_speed void
997child_reap (EV_P_ int chain, int pid, int status) 2480child_reap (EV_P_ int chain, int pid, int status)
998{ 2481{
999 ev_child *w; 2482 ev_child *w;
1000 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2483 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1001 2484
1002 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2485 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1003 { 2486 {
1004 if ((w->pid == pid || !w->pid) 2487 if ((w->pid == pid || !w->pid)
1005 && (!traced || (w->flags & 1))) 2488 && (!traced || (w->flags & 1)))
1006 { 2489 {
1007 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 2490 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1014 2497
1015#ifndef WCONTINUED 2498#ifndef WCONTINUED
1016# define WCONTINUED 0 2499# define WCONTINUED 0
1017#endif 2500#endif
1018 2501
2502/* called on sigchld etc., calls waitpid */
1019static void 2503static void
1020childcb (EV_P_ ev_signal *sw, int revents) 2504childcb (EV_P_ ev_signal *sw, int revents)
1021{ 2505{
1022 int pid, status; 2506 int pid, status;
1023 2507
1031 /* make sure we are called again until all children have been reaped */ 2515 /* make sure we are called again until all children have been reaped */
1032 /* we need to do it this way so that the callback gets called before we continue */ 2516 /* we need to do it this way so that the callback gets called before we continue */
1033 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2517 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1034 2518
1035 child_reap (EV_A_ pid, pid, status); 2519 child_reap (EV_A_ pid, pid, status);
1036 if (EV_PID_HASHSIZE > 1) 2520 if ((EV_PID_HASHSIZE) > 1)
1037 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2521 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1038} 2522}
1039 2523
1040#endif 2524#endif
1041 2525
1042/*****************************************************************************/ 2526/*****************************************************************************/
1043 2527
2528#if EV_USE_IOCP
2529# include "ev_iocp.c"
2530#endif
1044#if EV_USE_PORT 2531#if EV_USE_PORT
1045# include "ev_port.c" 2532# include "ev_port.c"
1046#endif 2533#endif
1047#if EV_USE_KQUEUE 2534#if EV_USE_KQUEUE
1048# include "ev_kqueue.c" 2535# include "ev_kqueue.c"
1055#endif 2542#endif
1056#if EV_USE_SELECT 2543#if EV_USE_SELECT
1057# include "ev_select.c" 2544# include "ev_select.c"
1058#endif 2545#endif
1059 2546
1060int 2547int ecb_cold
1061ev_version_major (void) 2548ev_version_major (void) EV_THROW
1062{ 2549{
1063 return EV_VERSION_MAJOR; 2550 return EV_VERSION_MAJOR;
1064} 2551}
1065 2552
1066int 2553int ecb_cold
1067ev_version_minor (void) 2554ev_version_minor (void) EV_THROW
1068{ 2555{
1069 return EV_VERSION_MINOR; 2556 return EV_VERSION_MINOR;
1070} 2557}
1071 2558
1072/* return true if we are running with elevated privileges and should ignore env variables */ 2559/* return true if we are running with elevated privileges and should ignore env variables */
1073int inline_size 2560int inline_size ecb_cold
1074enable_secure (void) 2561enable_secure (void)
1075{ 2562{
1076#ifdef _WIN32 2563#ifdef _WIN32
1077 return 0; 2564 return 0;
1078#else 2565#else
1079 return getuid () != geteuid () 2566 return getuid () != geteuid ()
1080 || getgid () != getegid (); 2567 || getgid () != getegid ();
1081#endif 2568#endif
1082} 2569}
1083 2570
1084unsigned int 2571unsigned int ecb_cold
1085ev_supported_backends (void) 2572ev_supported_backends (void) EV_THROW
1086{ 2573{
1087 unsigned int flags = 0; 2574 unsigned int flags = 0;
1088 2575
1089 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2576 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1090 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2577 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1093 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2580 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1094 2581
1095 return flags; 2582 return flags;
1096} 2583}
1097 2584
1098unsigned int 2585unsigned int ecb_cold
1099ev_recommended_backends (void) 2586ev_recommended_backends (void) EV_THROW
1100{ 2587{
1101 unsigned int flags = ev_supported_backends (); 2588 unsigned int flags = ev_supported_backends ();
1102 2589
1103#ifndef __NetBSD__ 2590#ifndef __NetBSD__
1104 /* kqueue is borked on everything but netbsd apparently */ 2591 /* kqueue is borked on everything but netbsd apparently */
1105 /* it usually doesn't work correctly on anything but sockets and pipes */ 2592 /* it usually doesn't work correctly on anything but sockets and pipes */
1106 flags &= ~EVBACKEND_KQUEUE; 2593 flags &= ~EVBACKEND_KQUEUE;
1107#endif 2594#endif
1108#ifdef __APPLE__ 2595#ifdef __APPLE__
1109 // flags &= ~EVBACKEND_KQUEUE; for documentation 2596 /* only select works correctly on that "unix-certified" platform */
1110 flags &= ~EVBACKEND_POLL; 2597 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2598 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2599#endif
2600#ifdef __FreeBSD__
2601 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1111#endif 2602#endif
1112 2603
1113 return flags; 2604 return flags;
1114} 2605}
1115 2606
2607unsigned int ecb_cold
2608ev_embeddable_backends (void) EV_THROW
2609{
2610 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2611
2612 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2613 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2614 flags &= ~EVBACKEND_EPOLL;
2615
2616 return flags;
2617}
2618
1116unsigned int 2619unsigned int
1117ev_embeddable_backends (void) 2620ev_backend (EV_P) EV_THROW
1118{ 2621{
1119 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2622 return backend;
1120
1121 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1122 /* please fix it and tell me how to detect the fix */
1123 flags &= ~EVBACKEND_EPOLL;
1124
1125 return flags;
1126} 2623}
1127 2624
2625#if EV_FEATURE_API
1128unsigned int 2626unsigned int
1129ev_backend (EV_P) 2627ev_iteration (EV_P) EV_THROW
1130{ 2628{
1131 return backend; 2629 return loop_count;
1132} 2630}
1133 2631
1134unsigned int 2632unsigned int
1135ev_loop_count (EV_P) 2633ev_depth (EV_P) EV_THROW
1136{ 2634{
1137 return loop_count; 2635 return loop_depth;
1138} 2636}
1139 2637
1140void 2638void
1141ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2639ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1142{ 2640{
1143 io_blocktime = interval; 2641 io_blocktime = interval;
1144} 2642}
1145 2643
1146void 2644void
1147ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2645ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1148{ 2646{
1149 timeout_blocktime = interval; 2647 timeout_blocktime = interval;
1150} 2648}
1151 2649
2650void
2651ev_set_userdata (EV_P_ void *data) EV_THROW
2652{
2653 userdata = data;
2654}
2655
2656void *
2657ev_userdata (EV_P) EV_THROW
2658{
2659 return userdata;
2660}
2661
2662void
2663ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_THROW
2664{
2665 invoke_cb = invoke_pending_cb;
2666}
2667
2668void
2669ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2670{
2671 release_cb = release;
2672 acquire_cb = acquire;
2673}
2674#endif
2675
2676/* initialise a loop structure, must be zero-initialised */
1152static void noinline 2677static void noinline ecb_cold
1153loop_init (EV_P_ unsigned int flags) 2678loop_init (EV_P_ unsigned int flags) EV_THROW
1154{ 2679{
1155 if (!backend) 2680 if (!backend)
1156 { 2681 {
2682 origflags = flags;
2683
2684#if EV_USE_REALTIME
2685 if (!have_realtime)
2686 {
2687 struct timespec ts;
2688
2689 if (!clock_gettime (CLOCK_REALTIME, &ts))
2690 have_realtime = 1;
2691 }
2692#endif
2693
1157#if EV_USE_MONOTONIC 2694#if EV_USE_MONOTONIC
2695 if (!have_monotonic)
1158 { 2696 {
1159 struct timespec ts; 2697 struct timespec ts;
2698
1160 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2699 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1161 have_monotonic = 1; 2700 have_monotonic = 1;
1162 } 2701 }
1163#endif
1164
1165 ev_rt_now = ev_time ();
1166 mn_now = get_clock ();
1167 now_floor = mn_now;
1168 rtmn_diff = ev_rt_now - mn_now;
1169
1170 io_blocktime = 0.;
1171 timeout_blocktime = 0.;
1172 backend = 0;
1173 backend_fd = -1;
1174 gotasync = 0;
1175#if EV_USE_INOTIFY
1176 fs_fd = -2;
1177#endif 2702#endif
1178 2703
1179 /* pid check not overridable via env */ 2704 /* pid check not overridable via env */
1180#ifndef _WIN32 2705#ifndef _WIN32
1181 if (flags & EVFLAG_FORKCHECK) 2706 if (flags & EVFLAG_FORKCHECK)
1185 if (!(flags & EVFLAG_NOENV) 2710 if (!(flags & EVFLAG_NOENV)
1186 && !enable_secure () 2711 && !enable_secure ()
1187 && getenv ("LIBEV_FLAGS")) 2712 && getenv ("LIBEV_FLAGS"))
1188 flags = atoi (getenv ("LIBEV_FLAGS")); 2713 flags = atoi (getenv ("LIBEV_FLAGS"));
1189 2714
1190 if (!(flags & 0x0000ffffU)) 2715 ev_rt_now = ev_time ();
2716 mn_now = get_clock ();
2717 now_floor = mn_now;
2718 rtmn_diff = ev_rt_now - mn_now;
2719#if EV_FEATURE_API
2720 invoke_cb = ev_invoke_pending;
2721#endif
2722
2723 io_blocktime = 0.;
2724 timeout_blocktime = 0.;
2725 backend = 0;
2726 backend_fd = -1;
2727 sig_pending = 0;
2728#if EV_ASYNC_ENABLE
2729 async_pending = 0;
2730#endif
2731 pipe_write_skipped = 0;
2732 pipe_write_wanted = 0;
2733 evpipe [0] = -1;
2734 evpipe [1] = -1;
2735#if EV_USE_INOTIFY
2736 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2737#endif
2738#if EV_USE_SIGNALFD
2739 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2740#endif
2741
2742 if (!(flags & EVBACKEND_MASK))
1191 flags |= ev_recommended_backends (); 2743 flags |= ev_recommended_backends ();
1192 2744
2745#if EV_USE_IOCP
2746 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2747#endif
1193#if EV_USE_PORT 2748#if EV_USE_PORT
1194 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2749 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1195#endif 2750#endif
1196#if EV_USE_KQUEUE 2751#if EV_USE_KQUEUE
1197 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2752 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1204#endif 2759#endif
1205#if EV_USE_SELECT 2760#if EV_USE_SELECT
1206 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2761 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1207#endif 2762#endif
1208 2763
2764 ev_prepare_init (&pending_w, pendingcb);
2765
2766#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1209 ev_init (&pipeev, pipecb); 2767 ev_init (&pipe_w, pipecb);
1210 ev_set_priority (&pipeev, EV_MAXPRI); 2768 ev_set_priority (&pipe_w, EV_MAXPRI);
2769#endif
1211 } 2770 }
1212} 2771}
1213 2772
1214static void noinline 2773/* free up a loop structure */
2774void ecb_cold
1215loop_destroy (EV_P) 2775ev_loop_destroy (EV_P)
1216{ 2776{
1217 int i; 2777 int i;
1218 2778
2779#if EV_MULTIPLICITY
2780 /* mimic free (0) */
2781 if (!EV_A)
2782 return;
2783#endif
2784
2785#if EV_CLEANUP_ENABLE
2786 /* queue cleanup watchers (and execute them) */
2787 if (expect_false (cleanupcnt))
2788 {
2789 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2790 EV_INVOKE_PENDING;
2791 }
2792#endif
2793
2794#if EV_CHILD_ENABLE
2795 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2796 {
2797 ev_ref (EV_A); /* child watcher */
2798 ev_signal_stop (EV_A_ &childev);
2799 }
2800#endif
2801
1219 if (ev_is_active (&pipeev)) 2802 if (ev_is_active (&pipe_w))
1220 { 2803 {
1221 ev_ref (EV_A); /* signal watcher */ 2804 /*ev_ref (EV_A);*/
1222 ev_io_stop (EV_A_ &pipeev); 2805 /*ev_io_stop (EV_A_ &pipe_w);*/
1223 2806
2807 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2808 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2809 }
2810
1224#if EV_USE_EVENTFD 2811#if EV_USE_SIGNALFD
1225 if (evfd >= 0) 2812 if (ev_is_active (&sigfd_w))
1226 close (evfd); 2813 close (sigfd);
1227#endif 2814#endif
1228
1229 if (evpipe [0] >= 0)
1230 {
1231 close (evpipe [0]);
1232 close (evpipe [1]);
1233 }
1234 }
1235 2815
1236#if EV_USE_INOTIFY 2816#if EV_USE_INOTIFY
1237 if (fs_fd >= 0) 2817 if (fs_fd >= 0)
1238 close (fs_fd); 2818 close (fs_fd);
1239#endif 2819#endif
1240 2820
1241 if (backend_fd >= 0) 2821 if (backend_fd >= 0)
1242 close (backend_fd); 2822 close (backend_fd);
1243 2823
2824#if EV_USE_IOCP
2825 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2826#endif
1244#if EV_USE_PORT 2827#if EV_USE_PORT
1245 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2828 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1246#endif 2829#endif
1247#if EV_USE_KQUEUE 2830#if EV_USE_KQUEUE
1248 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2831 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1263#if EV_IDLE_ENABLE 2846#if EV_IDLE_ENABLE
1264 array_free (idle, [i]); 2847 array_free (idle, [i]);
1265#endif 2848#endif
1266 } 2849 }
1267 2850
1268 ev_free (anfds); anfdmax = 0; 2851 ev_free (anfds); anfds = 0; anfdmax = 0;
1269 2852
1270 /* have to use the microsoft-never-gets-it-right macro */ 2853 /* have to use the microsoft-never-gets-it-right macro */
2854 array_free (rfeed, EMPTY);
1271 array_free (fdchange, EMPTY); 2855 array_free (fdchange, EMPTY);
1272 array_free (timer, EMPTY); 2856 array_free (timer, EMPTY);
1273#if EV_PERIODIC_ENABLE 2857#if EV_PERIODIC_ENABLE
1274 array_free (periodic, EMPTY); 2858 array_free (periodic, EMPTY);
1275#endif 2859#endif
1276#if EV_FORK_ENABLE 2860#if EV_FORK_ENABLE
1277 array_free (fork, EMPTY); 2861 array_free (fork, EMPTY);
1278#endif 2862#endif
2863#if EV_CLEANUP_ENABLE
2864 array_free (cleanup, EMPTY);
2865#endif
1279 array_free (prepare, EMPTY); 2866 array_free (prepare, EMPTY);
1280 array_free (check, EMPTY); 2867 array_free (check, EMPTY);
1281#if EV_ASYNC_ENABLE 2868#if EV_ASYNC_ENABLE
1282 array_free (async, EMPTY); 2869 array_free (async, EMPTY);
1283#endif 2870#endif
1284 2871
1285 backend = 0; 2872 backend = 0;
1286}
1287 2873
2874#if EV_MULTIPLICITY
2875 if (ev_is_default_loop (EV_A))
2876#endif
2877 ev_default_loop_ptr = 0;
2878#if EV_MULTIPLICITY
2879 else
2880 ev_free (EV_A);
2881#endif
2882}
2883
2884#if EV_USE_INOTIFY
1288void inline_size infy_fork (EV_P); 2885inline_size void infy_fork (EV_P);
2886#endif
1289 2887
1290void inline_size 2888inline_size void
1291loop_fork (EV_P) 2889loop_fork (EV_P)
1292{ 2890{
1293#if EV_USE_PORT 2891#if EV_USE_PORT
1294 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2892 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1295#endif 2893#endif
1301#endif 2899#endif
1302#if EV_USE_INOTIFY 2900#if EV_USE_INOTIFY
1303 infy_fork (EV_A); 2901 infy_fork (EV_A);
1304#endif 2902#endif
1305 2903
2904#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1306 if (ev_is_active (&pipeev)) 2905 if (ev_is_active (&pipe_w))
2906 {
2907 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2908
2909 ev_ref (EV_A);
2910 ev_io_stop (EV_A_ &pipe_w);
2911
2912 if (evpipe [0] >= 0)
2913 EV_WIN32_CLOSE_FD (evpipe [0]);
2914
2915 evpipe_init (EV_A);
2916 /* iterate over everything, in case we missed something before */
2917 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
1307 { 2918 }
1308 /* this "locks" the handlers against writing to the pipe */ 2919#endif
1309 /* while we modify the fd vars */ 2920
1310 gotsig = 1; 2921 postfork = 0;
2922}
2923
2924#if EV_MULTIPLICITY
2925
2926struct ev_loop * ecb_cold
2927ev_loop_new (unsigned int flags) EV_THROW
2928{
2929 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2930
2931 memset (EV_A, 0, sizeof (struct ev_loop));
2932 loop_init (EV_A_ flags);
2933
2934 if (ev_backend (EV_A))
2935 return EV_A;
2936
2937 ev_free (EV_A);
2938 return 0;
2939}
2940
2941#endif /* multiplicity */
2942
2943#if EV_VERIFY
2944static void noinline ecb_cold
2945verify_watcher (EV_P_ W w)
2946{
2947 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2948
2949 if (w->pending)
2950 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2951}
2952
2953static void noinline ecb_cold
2954verify_heap (EV_P_ ANHE *heap, int N)
2955{
2956 int i;
2957
2958 for (i = HEAP0; i < N + HEAP0; ++i)
2959 {
2960 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2961 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2962 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2963
2964 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2965 }
2966}
2967
2968static void noinline ecb_cold
2969array_verify (EV_P_ W *ws, int cnt)
2970{
2971 while (cnt--)
2972 {
2973 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2974 verify_watcher (EV_A_ ws [cnt]);
2975 }
2976}
2977#endif
2978
2979#if EV_FEATURE_API
2980void ecb_cold
2981ev_verify (EV_P) EV_THROW
2982{
2983#if EV_VERIFY
2984 int i;
2985 WL w, w2;
2986
2987 assert (activecnt >= -1);
2988
2989 assert (fdchangemax >= fdchangecnt);
2990 for (i = 0; i < fdchangecnt; ++i)
2991 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2992
2993 assert (anfdmax >= 0);
2994 for (i = 0; i < anfdmax; ++i)
2995 {
2996 int j = 0;
2997
2998 for (w = w2 = anfds [i].head; w; w = w->next)
2999 {
3000 verify_watcher (EV_A_ (W)w);
3001
3002 if (j++ & 1)
3003 {
3004 assert (("libev: io watcher list contains a loop", w != w2));
3005 w2 = w2->next;
3006 }
3007
3008 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3009 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3010 }
3011 }
3012
3013 assert (timermax >= timercnt);
3014 verify_heap (EV_A_ timers, timercnt);
3015
3016#if EV_PERIODIC_ENABLE
3017 assert (periodicmax >= periodiccnt);
3018 verify_heap (EV_A_ periodics, periodiccnt);
3019#endif
3020
3021 for (i = NUMPRI; i--; )
3022 {
3023 assert (pendingmax [i] >= pendingcnt [i]);
3024#if EV_IDLE_ENABLE
3025 assert (idleall >= 0);
3026 assert (idlemax [i] >= idlecnt [i]);
3027 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3028#endif
3029 }
3030
3031#if EV_FORK_ENABLE
3032 assert (forkmax >= forkcnt);
3033 array_verify (EV_A_ (W *)forks, forkcnt);
3034#endif
3035
3036#if EV_CLEANUP_ENABLE
3037 assert (cleanupmax >= cleanupcnt);
3038 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3039#endif
3040
1311#if EV_ASYNC_ENABLE 3041#if EV_ASYNC_ENABLE
1312 gotasync = 1; 3042 assert (asyncmax >= asynccnt);
3043 array_verify (EV_A_ (W *)asyncs, asynccnt);
3044#endif
3045
3046#if EV_PREPARE_ENABLE
3047 assert (preparemax >= preparecnt);
3048 array_verify (EV_A_ (W *)prepares, preparecnt);
3049#endif
3050
3051#if EV_CHECK_ENABLE
3052 assert (checkmax >= checkcnt);
3053 array_verify (EV_A_ (W *)checks, checkcnt);
3054#endif
3055
3056# if 0
3057#if EV_CHILD_ENABLE
3058 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3059 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3060#endif
1313#endif 3061# endif
1314
1315 ev_ref (EV_A);
1316 ev_io_stop (EV_A_ &pipeev);
1317
1318#if EV_USE_EVENTFD
1319 if (evfd >= 0)
1320 close (evfd);
1321#endif 3062#endif
1322
1323 if (evpipe [0] >= 0)
1324 {
1325 close (evpipe [0]);
1326 close (evpipe [1]);
1327 }
1328
1329 evpipe_init (EV_A);
1330 /* now iterate over everything, in case we missed something */
1331 pipecb (EV_A_ &pipeev, EV_READ);
1332 }
1333
1334 postfork = 0;
1335} 3063}
3064#endif
1336 3065
1337#if EV_MULTIPLICITY 3066#if EV_MULTIPLICITY
1338struct ev_loop * 3067struct ev_loop * ecb_cold
1339ev_loop_new (unsigned int flags)
1340{
1341 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1342
1343 memset (loop, 0, sizeof (struct ev_loop));
1344
1345 loop_init (EV_A_ flags);
1346
1347 if (ev_backend (EV_A))
1348 return loop;
1349
1350 return 0;
1351}
1352
1353void
1354ev_loop_destroy (EV_P)
1355{
1356 loop_destroy (EV_A);
1357 ev_free (loop);
1358}
1359
1360void
1361ev_loop_fork (EV_P)
1362{
1363 postfork = 1; /* must be in line with ev_default_fork */
1364}
1365
1366#endif
1367
1368#if EV_MULTIPLICITY
1369struct ev_loop *
1370ev_default_loop_init (unsigned int flags)
1371#else 3068#else
1372int 3069int
3070#endif
1373ev_default_loop (unsigned int flags) 3071ev_default_loop (unsigned int flags) EV_THROW
1374#endif
1375{ 3072{
1376 if (!ev_default_loop_ptr) 3073 if (!ev_default_loop_ptr)
1377 { 3074 {
1378#if EV_MULTIPLICITY 3075#if EV_MULTIPLICITY
1379 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 3076 EV_P = ev_default_loop_ptr = &default_loop_struct;
1380#else 3077#else
1381 ev_default_loop_ptr = 1; 3078 ev_default_loop_ptr = 1;
1382#endif 3079#endif
1383 3080
1384 loop_init (EV_A_ flags); 3081 loop_init (EV_A_ flags);
1385 3082
1386 if (ev_backend (EV_A)) 3083 if (ev_backend (EV_A))
1387 { 3084 {
1388#ifndef _WIN32 3085#if EV_CHILD_ENABLE
1389 ev_signal_init (&childev, childcb, SIGCHLD); 3086 ev_signal_init (&childev, childcb, SIGCHLD);
1390 ev_set_priority (&childev, EV_MAXPRI); 3087 ev_set_priority (&childev, EV_MAXPRI);
1391 ev_signal_start (EV_A_ &childev); 3088 ev_signal_start (EV_A_ &childev);
1392 ev_unref (EV_A); /* child watcher should not keep loop alive */ 3089 ev_unref (EV_A); /* child watcher should not keep loop alive */
1393#endif 3090#endif
1398 3095
1399 return ev_default_loop_ptr; 3096 return ev_default_loop_ptr;
1400} 3097}
1401 3098
1402void 3099void
1403ev_default_destroy (void) 3100ev_loop_fork (EV_P) EV_THROW
1404{ 3101{
1405#if EV_MULTIPLICITY 3102 postfork = 1;
1406 struct ev_loop *loop = ev_default_loop_ptr;
1407#endif
1408
1409#ifndef _WIN32
1410 ev_ref (EV_A); /* child watcher */
1411 ev_signal_stop (EV_A_ &childev);
1412#endif
1413
1414 loop_destroy (EV_A);
1415}
1416
1417void
1418ev_default_fork (void)
1419{
1420#if EV_MULTIPLICITY
1421 struct ev_loop *loop = ev_default_loop_ptr;
1422#endif
1423
1424 if (backend)
1425 postfork = 1; /* must be in line with ev_loop_fork */
1426} 3103}
1427 3104
1428/*****************************************************************************/ 3105/*****************************************************************************/
1429 3106
1430void 3107void
1431ev_invoke (EV_P_ void *w, int revents) 3108ev_invoke (EV_P_ void *w, int revents)
1432{ 3109{
1433 EV_CB_INVOKE ((W)w, revents); 3110 EV_CB_INVOKE ((W)w, revents);
1434} 3111}
1435 3112
1436void inline_speed 3113unsigned int
1437call_pending (EV_P) 3114ev_pending_count (EV_P) EV_THROW
1438{ 3115{
1439 int pri; 3116 int pri;
3117 unsigned int count = 0;
1440 3118
1441 for (pri = NUMPRI; pri--; ) 3119 for (pri = NUMPRI; pri--; )
3120 count += pendingcnt [pri];
3121
3122 return count;
3123}
3124
3125void noinline
3126ev_invoke_pending (EV_P)
3127{
3128 pendingpri = NUMPRI;
3129
3130 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
3131 {
3132 --pendingpri;
3133
1442 while (pendingcnt [pri]) 3134 while (pendingcnt [pendingpri])
1443 {
1444 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1445
1446 if (expect_true (p->w))
1447 {
1448 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1449
1450 p->w->pending = 0;
1451 EV_CB_INVOKE (p->w, p->events);
1452 }
1453 }
1454}
1455
1456void inline_size
1457timers_reify (EV_P)
1458{
1459 while (timercnt && ((WT)timers [0])->at <= mn_now)
1460 {
1461 ev_timer *w = (ev_timer *)timers [0];
1462
1463 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1464
1465 /* first reschedule or stop timer */
1466 if (w->repeat)
1467 { 3135 {
1468 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3136 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1469 3137
1470 ((WT)w)->at += w->repeat; 3138 p->w->pending = 0;
1471 if (((WT)w)->at < mn_now) 3139 EV_CB_INVOKE (p->w, p->events);
1472 ((WT)w)->at = mn_now; 3140 EV_FREQUENT_CHECK;
1473
1474 downheap (timers, timercnt, 0);
1475 } 3141 }
1476 else
1477 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1478
1479 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1480 }
1481}
1482
1483#if EV_PERIODIC_ENABLE
1484void inline_size
1485periodics_reify (EV_P)
1486{
1487 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1488 { 3142 }
1489 ev_periodic *w = (ev_periodic *)periodics [0];
1490
1491 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1492
1493 /* first reschedule or stop timer */
1494 if (w->reschedule_cb)
1495 {
1496 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1497 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1498 downheap (periodics, periodiccnt, 0);
1499 }
1500 else if (w->interval)
1501 {
1502 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1503 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1504 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1505 downheap (periodics, periodiccnt, 0);
1506 }
1507 else
1508 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1509
1510 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1511 }
1512} 3143}
1513
1514static void noinline
1515periodics_reschedule (EV_P)
1516{
1517 int i;
1518
1519 /* adjust periodics after time jump */
1520 for (i = 0; i < periodiccnt; ++i)
1521 {
1522 ev_periodic *w = (ev_periodic *)periodics [i];
1523
1524 if (w->reschedule_cb)
1525 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1526 else if (w->interval)
1527 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1528 }
1529
1530 /* now rebuild the heap */
1531 for (i = periodiccnt >> 1; i--; )
1532 downheap (periodics, periodiccnt, i);
1533}
1534#endif
1535 3144
1536#if EV_IDLE_ENABLE 3145#if EV_IDLE_ENABLE
1537void inline_size 3146/* make idle watchers pending. this handles the "call-idle */
3147/* only when higher priorities are idle" logic */
3148inline_size void
1538idle_reify (EV_P) 3149idle_reify (EV_P)
1539{ 3150{
1540 if (expect_false (idleall)) 3151 if (expect_false (idleall))
1541 { 3152 {
1542 int pri; 3153 int pri;
1554 } 3165 }
1555 } 3166 }
1556} 3167}
1557#endif 3168#endif
1558 3169
1559void inline_speed 3170/* make timers pending */
3171inline_size void
3172timers_reify (EV_P)
3173{
3174 EV_FREQUENT_CHECK;
3175
3176 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3177 {
3178 do
3179 {
3180 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3181
3182 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3183
3184 /* first reschedule or stop timer */
3185 if (w->repeat)
3186 {
3187 ev_at (w) += w->repeat;
3188 if (ev_at (w) < mn_now)
3189 ev_at (w) = mn_now;
3190
3191 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3192
3193 ANHE_at_cache (timers [HEAP0]);
3194 downheap (timers, timercnt, HEAP0);
3195 }
3196 else
3197 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3198
3199 EV_FREQUENT_CHECK;
3200 feed_reverse (EV_A_ (W)w);
3201 }
3202 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3203
3204 feed_reverse_done (EV_A_ EV_TIMER);
3205 }
3206}
3207
3208#if EV_PERIODIC_ENABLE
3209
3210static void noinline
3211periodic_recalc (EV_P_ ev_periodic *w)
3212{
3213 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3214 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3215
3216 /* the above almost always errs on the low side */
3217 while (at <= ev_rt_now)
3218 {
3219 ev_tstamp nat = at + w->interval;
3220
3221 /* when resolution fails us, we use ev_rt_now */
3222 if (expect_false (nat == at))
3223 {
3224 at = ev_rt_now;
3225 break;
3226 }
3227
3228 at = nat;
3229 }
3230
3231 ev_at (w) = at;
3232}
3233
3234/* make periodics pending */
3235inline_size void
3236periodics_reify (EV_P)
3237{
3238 EV_FREQUENT_CHECK;
3239
3240 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3241 {
3242 do
3243 {
3244 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3245
3246 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3247
3248 /* first reschedule or stop timer */
3249 if (w->reschedule_cb)
3250 {
3251 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3252
3253 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3254
3255 ANHE_at_cache (periodics [HEAP0]);
3256 downheap (periodics, periodiccnt, HEAP0);
3257 }
3258 else if (w->interval)
3259 {
3260 periodic_recalc (EV_A_ w);
3261 ANHE_at_cache (periodics [HEAP0]);
3262 downheap (periodics, periodiccnt, HEAP0);
3263 }
3264 else
3265 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3266
3267 EV_FREQUENT_CHECK;
3268 feed_reverse (EV_A_ (W)w);
3269 }
3270 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3271
3272 feed_reverse_done (EV_A_ EV_PERIODIC);
3273 }
3274}
3275
3276/* simply recalculate all periodics */
3277/* TODO: maybe ensure that at least one event happens when jumping forward? */
3278static void noinline ecb_cold
3279periodics_reschedule (EV_P)
3280{
3281 int i;
3282
3283 /* adjust periodics after time jump */
3284 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3285 {
3286 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3287
3288 if (w->reschedule_cb)
3289 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3290 else if (w->interval)
3291 periodic_recalc (EV_A_ w);
3292
3293 ANHE_at_cache (periodics [i]);
3294 }
3295
3296 reheap (periodics, periodiccnt);
3297}
3298#endif
3299
3300/* adjust all timers by a given offset */
3301static void noinline ecb_cold
3302timers_reschedule (EV_P_ ev_tstamp adjust)
3303{
3304 int i;
3305
3306 for (i = 0; i < timercnt; ++i)
3307 {
3308 ANHE *he = timers + i + HEAP0;
3309 ANHE_w (*he)->at += adjust;
3310 ANHE_at_cache (*he);
3311 }
3312}
3313
3314/* fetch new monotonic and realtime times from the kernel */
3315/* also detect if there was a timejump, and act accordingly */
3316inline_speed void
1560time_update (EV_P_ ev_tstamp max_block) 3317time_update (EV_P_ ev_tstamp max_block)
1561{ 3318{
1562 int i;
1563
1564#if EV_USE_MONOTONIC 3319#if EV_USE_MONOTONIC
1565 if (expect_true (have_monotonic)) 3320 if (expect_true (have_monotonic))
1566 { 3321 {
3322 int i;
1567 ev_tstamp odiff = rtmn_diff; 3323 ev_tstamp odiff = rtmn_diff;
1568 3324
1569 mn_now = get_clock (); 3325 mn_now = get_clock ();
1570 3326
1571 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 3327 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1587 * doesn't hurt either as we only do this on time-jumps or 3343 * doesn't hurt either as we only do this on time-jumps or
1588 * in the unlikely event of having been preempted here. 3344 * in the unlikely event of having been preempted here.
1589 */ 3345 */
1590 for (i = 4; --i; ) 3346 for (i = 4; --i; )
1591 { 3347 {
3348 ev_tstamp diff;
1592 rtmn_diff = ev_rt_now - mn_now; 3349 rtmn_diff = ev_rt_now - mn_now;
1593 3350
1594 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 3351 diff = odiff - rtmn_diff;
3352
3353 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1595 return; /* all is well */ 3354 return; /* all is well */
1596 3355
1597 ev_rt_now = ev_time (); 3356 ev_rt_now = ev_time ();
1598 mn_now = get_clock (); 3357 mn_now = get_clock ();
1599 now_floor = mn_now; 3358 now_floor = mn_now;
1600 } 3359 }
1601 3360
3361 /* no timer adjustment, as the monotonic clock doesn't jump */
3362 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1602# if EV_PERIODIC_ENABLE 3363# if EV_PERIODIC_ENABLE
1603 periodics_reschedule (EV_A); 3364 periodics_reschedule (EV_A);
1604# endif 3365# endif
1605 /* no timer adjustment, as the monotonic clock doesn't jump */
1606 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1607 } 3366 }
1608 else 3367 else
1609#endif 3368#endif
1610 { 3369 {
1611 ev_rt_now = ev_time (); 3370 ev_rt_now = ev_time ();
1612 3371
1613 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 3372 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1614 { 3373 {
3374 /* adjust timers. this is easy, as the offset is the same for all of them */
3375 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1615#if EV_PERIODIC_ENABLE 3376#if EV_PERIODIC_ENABLE
1616 periodics_reschedule (EV_A); 3377 periodics_reschedule (EV_A);
1617#endif 3378#endif
1618 /* adjust timers. this is easy, as the offset is the same for all of them */
1619 for (i = 0; i < timercnt; ++i)
1620 ((WT)timers [i])->at += ev_rt_now - mn_now;
1621 } 3379 }
1622 3380
1623 mn_now = ev_rt_now; 3381 mn_now = ev_rt_now;
1624 } 3382 }
1625} 3383}
1626 3384
1627void 3385int
1628ev_ref (EV_P)
1629{
1630 ++activecnt;
1631}
1632
1633void
1634ev_unref (EV_P)
1635{
1636 --activecnt;
1637}
1638
1639static int loop_done;
1640
1641void
1642ev_loop (EV_P_ int flags) 3386ev_run (EV_P_ int flags)
1643{ 3387{
3388#if EV_FEATURE_API
3389 ++loop_depth;
3390#endif
3391
3392 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3393
1644 loop_done = EVUNLOOP_CANCEL; 3394 loop_done = EVBREAK_CANCEL;
1645 3395
1646 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3396 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1647 3397
1648 do 3398 do
1649 { 3399 {
3400#if EV_VERIFY >= 2
3401 ev_verify (EV_A);
3402#endif
3403
1650#ifndef _WIN32 3404#ifndef _WIN32
1651 if (expect_false (curpid)) /* penalise the forking check even more */ 3405 if (expect_false (curpid)) /* penalise the forking check even more */
1652 if (expect_false (getpid () != curpid)) 3406 if (expect_false (getpid () != curpid))
1653 { 3407 {
1654 curpid = getpid (); 3408 curpid = getpid ();
1660 /* we might have forked, so queue fork handlers */ 3414 /* we might have forked, so queue fork handlers */
1661 if (expect_false (postfork)) 3415 if (expect_false (postfork))
1662 if (forkcnt) 3416 if (forkcnt)
1663 { 3417 {
1664 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3418 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1665 call_pending (EV_A); 3419 EV_INVOKE_PENDING;
1666 } 3420 }
1667#endif 3421#endif
1668 3422
3423#if EV_PREPARE_ENABLE
1669 /* queue prepare watchers (and execute them) */ 3424 /* queue prepare watchers (and execute them) */
1670 if (expect_false (preparecnt)) 3425 if (expect_false (preparecnt))
1671 { 3426 {
1672 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3427 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1673 call_pending (EV_A); 3428 EV_INVOKE_PENDING;
1674 } 3429 }
3430#endif
1675 3431
1676 if (expect_false (!activecnt)) 3432 if (expect_false (loop_done))
1677 break; 3433 break;
1678 3434
1679 /* we might have forked, so reify kernel state if necessary */ 3435 /* we might have forked, so reify kernel state if necessary */
1680 if (expect_false (postfork)) 3436 if (expect_false (postfork))
1681 loop_fork (EV_A); 3437 loop_fork (EV_A);
1686 /* calculate blocking time */ 3442 /* calculate blocking time */
1687 { 3443 {
1688 ev_tstamp waittime = 0.; 3444 ev_tstamp waittime = 0.;
1689 ev_tstamp sleeptime = 0.; 3445 ev_tstamp sleeptime = 0.;
1690 3446
3447 /* remember old timestamp for io_blocktime calculation */
3448 ev_tstamp prev_mn_now = mn_now;
3449
3450 /* update time to cancel out callback processing overhead */
3451 time_update (EV_A_ 1e100);
3452
3453 /* from now on, we want a pipe-wake-up */
3454 pipe_write_wanted = 1;
3455
3456 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3457
1691 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3458 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1692 { 3459 {
1693 /* update time to cancel out callback processing overhead */
1694 time_update (EV_A_ 1e100);
1695
1696 waittime = MAX_BLOCKTIME; 3460 waittime = MAX_BLOCKTIME;
1697 3461
1698 if (timercnt) 3462 if (timercnt)
1699 { 3463 {
1700 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 3464 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1701 if (waittime > to) waittime = to; 3465 if (waittime > to) waittime = to;
1702 } 3466 }
1703 3467
1704#if EV_PERIODIC_ENABLE 3468#if EV_PERIODIC_ENABLE
1705 if (periodiccnt) 3469 if (periodiccnt)
1706 { 3470 {
1707 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 3471 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1708 if (waittime > to) waittime = to; 3472 if (waittime > to) waittime = to;
1709 } 3473 }
1710#endif 3474#endif
1711 3475
3476 /* don't let timeouts decrease the waittime below timeout_blocktime */
1712 if (expect_false (waittime < timeout_blocktime)) 3477 if (expect_false (waittime < timeout_blocktime))
1713 waittime = timeout_blocktime; 3478 waittime = timeout_blocktime;
1714 3479
1715 sleeptime = waittime - backend_fudge; 3480 /* at this point, we NEED to wait, so we have to ensure */
3481 /* to pass a minimum nonzero value to the backend */
3482 if (expect_false (waittime < backend_mintime))
3483 waittime = backend_mintime;
1716 3484
3485 /* extra check because io_blocktime is commonly 0 */
1717 if (expect_true (sleeptime > io_blocktime)) 3486 if (expect_false (io_blocktime))
1718 sleeptime = io_blocktime;
1719
1720 if (sleeptime)
1721 { 3487 {
3488 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3489
3490 if (sleeptime > waittime - backend_mintime)
3491 sleeptime = waittime - backend_mintime;
3492
3493 if (expect_true (sleeptime > 0.))
3494 {
1722 ev_sleep (sleeptime); 3495 ev_sleep (sleeptime);
1723 waittime -= sleeptime; 3496 waittime -= sleeptime;
3497 }
1724 } 3498 }
1725 } 3499 }
1726 3500
3501#if EV_FEATURE_API
1727 ++loop_count; 3502 ++loop_count;
3503#endif
3504 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1728 backend_poll (EV_A_ waittime); 3505 backend_poll (EV_A_ waittime);
3506 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3507
3508 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3509
3510 ECB_MEMORY_FENCE_ACQUIRE;
3511 if (pipe_write_skipped)
3512 {
3513 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3514 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3515 }
3516
1729 3517
1730 /* update ev_rt_now, do magic */ 3518 /* update ev_rt_now, do magic */
1731 time_update (EV_A_ waittime + sleeptime); 3519 time_update (EV_A_ waittime + sleeptime);
1732 } 3520 }
1733 3521
1740#if EV_IDLE_ENABLE 3528#if EV_IDLE_ENABLE
1741 /* queue idle watchers unless other events are pending */ 3529 /* queue idle watchers unless other events are pending */
1742 idle_reify (EV_A); 3530 idle_reify (EV_A);
1743#endif 3531#endif
1744 3532
3533#if EV_CHECK_ENABLE
1745 /* queue check watchers, to be executed first */ 3534 /* queue check watchers, to be executed first */
1746 if (expect_false (checkcnt)) 3535 if (expect_false (checkcnt))
1747 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3536 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3537#endif
1748 3538
1749 call_pending (EV_A); 3539 EV_INVOKE_PENDING;
1750 } 3540 }
1751 while (expect_true ( 3541 while (expect_true (
1752 activecnt 3542 activecnt
1753 && !loop_done 3543 && !loop_done
1754 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 3544 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
1755 )); 3545 ));
1756 3546
1757 if (loop_done == EVUNLOOP_ONE) 3547 if (loop_done == EVBREAK_ONE)
1758 loop_done = EVUNLOOP_CANCEL; 3548 loop_done = EVBREAK_CANCEL;
3549
3550#if EV_FEATURE_API
3551 --loop_depth;
3552#endif
3553
3554 return activecnt;
1759} 3555}
1760 3556
1761void 3557void
1762ev_unloop (EV_P_ int how) 3558ev_break (EV_P_ int how) EV_THROW
1763{ 3559{
1764 loop_done = how; 3560 loop_done = how;
1765} 3561}
1766 3562
3563void
3564ev_ref (EV_P) EV_THROW
3565{
3566 ++activecnt;
3567}
3568
3569void
3570ev_unref (EV_P) EV_THROW
3571{
3572 --activecnt;
3573}
3574
3575void
3576ev_now_update (EV_P) EV_THROW
3577{
3578 time_update (EV_A_ 1e100);
3579}
3580
3581void
3582ev_suspend (EV_P) EV_THROW
3583{
3584 ev_now_update (EV_A);
3585}
3586
3587void
3588ev_resume (EV_P) EV_THROW
3589{
3590 ev_tstamp mn_prev = mn_now;
3591
3592 ev_now_update (EV_A);
3593 timers_reschedule (EV_A_ mn_now - mn_prev);
3594#if EV_PERIODIC_ENABLE
3595 /* TODO: really do this? */
3596 periodics_reschedule (EV_A);
3597#endif
3598}
3599
1767/*****************************************************************************/ 3600/*****************************************************************************/
3601/* singly-linked list management, used when the expected list length is short */
1768 3602
1769void inline_size 3603inline_size void
1770wlist_add (WL *head, WL elem) 3604wlist_add (WL *head, WL elem)
1771{ 3605{
1772 elem->next = *head; 3606 elem->next = *head;
1773 *head = elem; 3607 *head = elem;
1774} 3608}
1775 3609
1776void inline_size 3610inline_size void
1777wlist_del (WL *head, WL elem) 3611wlist_del (WL *head, WL elem)
1778{ 3612{
1779 while (*head) 3613 while (*head)
1780 { 3614 {
1781 if (*head == elem) 3615 if (expect_true (*head == elem))
1782 { 3616 {
1783 *head = elem->next; 3617 *head = elem->next;
1784 return; 3618 break;
1785 } 3619 }
1786 3620
1787 head = &(*head)->next; 3621 head = &(*head)->next;
1788 } 3622 }
1789} 3623}
1790 3624
1791void inline_speed 3625/* internal, faster, version of ev_clear_pending */
3626inline_speed void
1792clear_pending (EV_P_ W w) 3627clear_pending (EV_P_ W w)
1793{ 3628{
1794 if (w->pending) 3629 if (w->pending)
1795 { 3630 {
1796 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3631 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1797 w->pending = 0; 3632 w->pending = 0;
1798 } 3633 }
1799} 3634}
1800 3635
1801int 3636int
1802ev_clear_pending (EV_P_ void *w) 3637ev_clear_pending (EV_P_ void *w) EV_THROW
1803{ 3638{
1804 W w_ = (W)w; 3639 W w_ = (W)w;
1805 int pending = w_->pending; 3640 int pending = w_->pending;
1806 3641
1807 if (expect_true (pending)) 3642 if (expect_true (pending))
1808 { 3643 {
1809 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3644 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3645 p->w = (W)&pending_w;
1810 w_->pending = 0; 3646 w_->pending = 0;
1811 p->w = 0;
1812 return p->events; 3647 return p->events;
1813 } 3648 }
1814 else 3649 else
1815 return 0; 3650 return 0;
1816} 3651}
1817 3652
1818void inline_size 3653inline_size void
1819pri_adjust (EV_P_ W w) 3654pri_adjust (EV_P_ W w)
1820{ 3655{
1821 int pri = w->priority; 3656 int pri = ev_priority (w);
1822 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3657 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1823 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3658 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1824 w->priority = pri; 3659 ev_set_priority (w, pri);
1825} 3660}
1826 3661
1827void inline_speed 3662inline_speed void
1828ev_start (EV_P_ W w, int active) 3663ev_start (EV_P_ W w, int active)
1829{ 3664{
1830 pri_adjust (EV_A_ w); 3665 pri_adjust (EV_A_ w);
1831 w->active = active; 3666 w->active = active;
1832 ev_ref (EV_A); 3667 ev_ref (EV_A);
1833} 3668}
1834 3669
1835void inline_size 3670inline_size void
1836ev_stop (EV_P_ W w) 3671ev_stop (EV_P_ W w)
1837{ 3672{
1838 ev_unref (EV_A); 3673 ev_unref (EV_A);
1839 w->active = 0; 3674 w->active = 0;
1840} 3675}
1841 3676
1842/*****************************************************************************/ 3677/*****************************************************************************/
1843 3678
1844void noinline 3679void noinline
1845ev_io_start (EV_P_ ev_io *w) 3680ev_io_start (EV_P_ ev_io *w) EV_THROW
1846{ 3681{
1847 int fd = w->fd; 3682 int fd = w->fd;
1848 3683
1849 if (expect_false (ev_is_active (w))) 3684 if (expect_false (ev_is_active (w)))
1850 return; 3685 return;
1851 3686
1852 assert (("ev_io_start called with negative fd", fd >= 0)); 3687 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3688 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3689
3690 EV_FREQUENT_CHECK;
1853 3691
1854 ev_start (EV_A_ (W)w, 1); 3692 ev_start (EV_A_ (W)w, 1);
1855 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3693 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1856 wlist_add (&anfds[fd].head, (WL)w); 3694 wlist_add (&anfds[fd].head, (WL)w);
1857 3695
3696 /* common bug, apparently */
3697 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3698
1858 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3699 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1859 w->events &= ~EV_IOFDSET; 3700 w->events &= ~EV__IOFDSET;
3701
3702 EV_FREQUENT_CHECK;
1860} 3703}
1861 3704
1862void noinline 3705void noinline
1863ev_io_stop (EV_P_ ev_io *w) 3706ev_io_stop (EV_P_ ev_io *w) EV_THROW
1864{ 3707{
1865 clear_pending (EV_A_ (W)w); 3708 clear_pending (EV_A_ (W)w);
1866 if (expect_false (!ev_is_active (w))) 3709 if (expect_false (!ev_is_active (w)))
1867 return; 3710 return;
1868 3711
1869 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3712 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3713
3714 EV_FREQUENT_CHECK;
1870 3715
1871 wlist_del (&anfds[w->fd].head, (WL)w); 3716 wlist_del (&anfds[w->fd].head, (WL)w);
1872 ev_stop (EV_A_ (W)w); 3717 ev_stop (EV_A_ (W)w);
1873 3718
1874 fd_change (EV_A_ w->fd, 1); 3719 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3720
3721 EV_FREQUENT_CHECK;
1875} 3722}
1876 3723
1877void noinline 3724void noinline
1878ev_timer_start (EV_P_ ev_timer *w) 3725ev_timer_start (EV_P_ ev_timer *w) EV_THROW
1879{ 3726{
1880 if (expect_false (ev_is_active (w))) 3727 if (expect_false (ev_is_active (w)))
1881 return; 3728 return;
1882 3729
1883 ((WT)w)->at += mn_now; 3730 ev_at (w) += mn_now;
1884 3731
1885 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3732 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1886 3733
3734 EV_FREQUENT_CHECK;
3735
3736 ++timercnt;
1887 ev_start (EV_A_ (W)w, ++timercnt); 3737 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1888 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 3738 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1889 timers [timercnt - 1] = (WT)w; 3739 ANHE_w (timers [ev_active (w)]) = (WT)w;
1890 upheap (timers, timercnt - 1); 3740 ANHE_at_cache (timers [ev_active (w)]);
3741 upheap (timers, ev_active (w));
1891 3742
3743 EV_FREQUENT_CHECK;
3744
1892 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 3745 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1893} 3746}
1894 3747
1895void noinline 3748void noinline
1896ev_timer_stop (EV_P_ ev_timer *w) 3749ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
1897{ 3750{
1898 clear_pending (EV_A_ (W)w); 3751 clear_pending (EV_A_ (W)w);
1899 if (expect_false (!ev_is_active (w))) 3752 if (expect_false (!ev_is_active (w)))
1900 return; 3753 return;
1901 3754
1902 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 3755 EV_FREQUENT_CHECK;
1903 3756
1904 { 3757 {
1905 int active = ((W)w)->active; 3758 int active = ev_active (w);
1906 3759
3760 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3761
3762 --timercnt;
3763
1907 if (expect_true (--active < --timercnt)) 3764 if (expect_true (active < timercnt + HEAP0))
1908 { 3765 {
1909 timers [active] = timers [timercnt]; 3766 timers [active] = timers [timercnt + HEAP0];
1910 adjustheap (timers, timercnt, active); 3767 adjustheap (timers, timercnt, active);
1911 } 3768 }
1912 } 3769 }
1913 3770
1914 ((WT)w)->at -= mn_now; 3771 ev_at (w) -= mn_now;
1915 3772
1916 ev_stop (EV_A_ (W)w); 3773 ev_stop (EV_A_ (W)w);
3774
3775 EV_FREQUENT_CHECK;
1917} 3776}
1918 3777
1919void noinline 3778void noinline
1920ev_timer_again (EV_P_ ev_timer *w) 3779ev_timer_again (EV_P_ ev_timer *w) EV_THROW
1921{ 3780{
3781 EV_FREQUENT_CHECK;
3782
3783 clear_pending (EV_A_ (W)w);
3784
1922 if (ev_is_active (w)) 3785 if (ev_is_active (w))
1923 { 3786 {
1924 if (w->repeat) 3787 if (w->repeat)
1925 { 3788 {
1926 ((WT)w)->at = mn_now + w->repeat; 3789 ev_at (w) = mn_now + w->repeat;
3790 ANHE_at_cache (timers [ev_active (w)]);
1927 adjustheap (timers, timercnt, ((W)w)->active - 1); 3791 adjustheap (timers, timercnt, ev_active (w));
1928 } 3792 }
1929 else 3793 else
1930 ev_timer_stop (EV_A_ w); 3794 ev_timer_stop (EV_A_ w);
1931 } 3795 }
1932 else if (w->repeat) 3796 else if (w->repeat)
1933 { 3797 {
1934 w->at = w->repeat; 3798 ev_at (w) = w->repeat;
1935 ev_timer_start (EV_A_ w); 3799 ev_timer_start (EV_A_ w);
1936 } 3800 }
3801
3802 EV_FREQUENT_CHECK;
3803}
3804
3805ev_tstamp
3806ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3807{
3808 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1937} 3809}
1938 3810
1939#if EV_PERIODIC_ENABLE 3811#if EV_PERIODIC_ENABLE
1940void noinline 3812void noinline
1941ev_periodic_start (EV_P_ ev_periodic *w) 3813ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
1942{ 3814{
1943 if (expect_false (ev_is_active (w))) 3815 if (expect_false (ev_is_active (w)))
1944 return; 3816 return;
1945 3817
1946 if (w->reschedule_cb) 3818 if (w->reschedule_cb)
1947 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 3819 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1948 else if (w->interval) 3820 else if (w->interval)
1949 { 3821 {
1950 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3822 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1951 /* this formula differs from the one in periodic_reify because we do not always round up */ 3823 periodic_recalc (EV_A_ w);
1952 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1953 } 3824 }
1954 else 3825 else
1955 ((WT)w)->at = w->offset; 3826 ev_at (w) = w->offset;
1956 3827
3828 EV_FREQUENT_CHECK;
3829
3830 ++periodiccnt;
1957 ev_start (EV_A_ (W)w, ++periodiccnt); 3831 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1958 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 3832 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1959 periodics [periodiccnt - 1] = (WT)w; 3833 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1960 upheap (periodics, periodiccnt - 1); 3834 ANHE_at_cache (periodics [ev_active (w)]);
3835 upheap (periodics, ev_active (w));
1961 3836
3837 EV_FREQUENT_CHECK;
3838
1962 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 3839 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1963} 3840}
1964 3841
1965void noinline 3842void noinline
1966ev_periodic_stop (EV_P_ ev_periodic *w) 3843ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
1967{ 3844{
1968 clear_pending (EV_A_ (W)w); 3845 clear_pending (EV_A_ (W)w);
1969 if (expect_false (!ev_is_active (w))) 3846 if (expect_false (!ev_is_active (w)))
1970 return; 3847 return;
1971 3848
1972 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 3849 EV_FREQUENT_CHECK;
1973 3850
1974 { 3851 {
1975 int active = ((W)w)->active; 3852 int active = ev_active (w);
1976 3853
3854 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3855
3856 --periodiccnt;
3857
1977 if (expect_true (--active < --periodiccnt)) 3858 if (expect_true (active < periodiccnt + HEAP0))
1978 { 3859 {
1979 periodics [active] = periodics [periodiccnt]; 3860 periodics [active] = periodics [periodiccnt + HEAP0];
1980 adjustheap (periodics, periodiccnt, active); 3861 adjustheap (periodics, periodiccnt, active);
1981 } 3862 }
1982 } 3863 }
1983 3864
1984 ev_stop (EV_A_ (W)w); 3865 ev_stop (EV_A_ (W)w);
3866
3867 EV_FREQUENT_CHECK;
1985} 3868}
1986 3869
1987void noinline 3870void noinline
1988ev_periodic_again (EV_P_ ev_periodic *w) 3871ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
1989{ 3872{
1990 /* TODO: use adjustheap and recalculation */ 3873 /* TODO: use adjustheap and recalculation */
1991 ev_periodic_stop (EV_A_ w); 3874 ev_periodic_stop (EV_A_ w);
1992 ev_periodic_start (EV_A_ w); 3875 ev_periodic_start (EV_A_ w);
1993} 3876}
1995 3878
1996#ifndef SA_RESTART 3879#ifndef SA_RESTART
1997# define SA_RESTART 0 3880# define SA_RESTART 0
1998#endif 3881#endif
1999 3882
3883#if EV_SIGNAL_ENABLE
3884
2000void noinline 3885void noinline
2001ev_signal_start (EV_P_ ev_signal *w) 3886ev_signal_start (EV_P_ ev_signal *w) EV_THROW
2002{ 3887{
2003#if EV_MULTIPLICITY
2004 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2005#endif
2006 if (expect_false (ev_is_active (w))) 3888 if (expect_false (ev_is_active (w)))
2007 return; 3889 return;
2008 3890
2009 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3891 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2010 3892
2011 evpipe_init (EV_A); 3893#if EV_MULTIPLICITY
3894 assert (("libev: a signal must not be attached to two different loops",
3895 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2012 3896
3897 signals [w->signum - 1].loop = EV_A;
3898 ECB_MEMORY_FENCE_RELEASE;
3899#endif
3900
3901 EV_FREQUENT_CHECK;
3902
3903#if EV_USE_SIGNALFD
3904 if (sigfd == -2)
2013 { 3905 {
2014#ifndef _WIN32 3906 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2015 sigset_t full, prev; 3907 if (sigfd < 0 && errno == EINVAL)
2016 sigfillset (&full); 3908 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2017 sigprocmask (SIG_SETMASK, &full, &prev);
2018#endif
2019 3909
2020 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3910 if (sigfd >= 0)
3911 {
3912 fd_intern (sigfd); /* doing it twice will not hurt */
2021 3913
2022#ifndef _WIN32 3914 sigemptyset (&sigfd_set);
2023 sigprocmask (SIG_SETMASK, &prev, 0); 3915
2024#endif 3916 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3917 ev_set_priority (&sigfd_w, EV_MAXPRI);
3918 ev_io_start (EV_A_ &sigfd_w);
3919 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3920 }
2025 } 3921 }
3922
3923 if (sigfd >= 0)
3924 {
3925 /* TODO: check .head */
3926 sigaddset (&sigfd_set, w->signum);
3927 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3928
3929 signalfd (sigfd, &sigfd_set, 0);
3930 }
3931#endif
2026 3932
2027 ev_start (EV_A_ (W)w, 1); 3933 ev_start (EV_A_ (W)w, 1);
2028 wlist_add (&signals [w->signum - 1].head, (WL)w); 3934 wlist_add (&signals [w->signum - 1].head, (WL)w);
2029 3935
2030 if (!((WL)w)->next) 3936 if (!((WL)w)->next)
3937# if EV_USE_SIGNALFD
3938 if (sigfd < 0) /*TODO*/
3939# endif
2031 { 3940 {
2032#if _WIN32 3941# ifdef _WIN32
3942 evpipe_init (EV_A);
3943
2033 signal (w->signum, ev_sighandler); 3944 signal (w->signum, ev_sighandler);
2034#else 3945# else
2035 struct sigaction sa; 3946 struct sigaction sa;
3947
3948 evpipe_init (EV_A);
3949
2036 sa.sa_handler = ev_sighandler; 3950 sa.sa_handler = ev_sighandler;
2037 sigfillset (&sa.sa_mask); 3951 sigfillset (&sa.sa_mask);
2038 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3952 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2039 sigaction (w->signum, &sa, 0); 3953 sigaction (w->signum, &sa, 0);
3954
3955 if (origflags & EVFLAG_NOSIGMASK)
3956 {
3957 sigemptyset (&sa.sa_mask);
3958 sigaddset (&sa.sa_mask, w->signum);
3959 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3960 }
2040#endif 3961#endif
2041 } 3962 }
3963
3964 EV_FREQUENT_CHECK;
2042} 3965}
2043 3966
2044void noinline 3967void noinline
2045ev_signal_stop (EV_P_ ev_signal *w) 3968ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
2046{ 3969{
2047 clear_pending (EV_A_ (W)w); 3970 clear_pending (EV_A_ (W)w);
2048 if (expect_false (!ev_is_active (w))) 3971 if (expect_false (!ev_is_active (w)))
2049 return; 3972 return;
2050 3973
3974 EV_FREQUENT_CHECK;
3975
2051 wlist_del (&signals [w->signum - 1].head, (WL)w); 3976 wlist_del (&signals [w->signum - 1].head, (WL)w);
2052 ev_stop (EV_A_ (W)w); 3977 ev_stop (EV_A_ (W)w);
2053 3978
2054 if (!signals [w->signum - 1].head) 3979 if (!signals [w->signum - 1].head)
3980 {
3981#if EV_MULTIPLICITY
3982 signals [w->signum - 1].loop = 0; /* unattach from signal */
3983#endif
3984#if EV_USE_SIGNALFD
3985 if (sigfd >= 0)
3986 {
3987 sigset_t ss;
3988
3989 sigemptyset (&ss);
3990 sigaddset (&ss, w->signum);
3991 sigdelset (&sigfd_set, w->signum);
3992
3993 signalfd (sigfd, &sigfd_set, 0);
3994 sigprocmask (SIG_UNBLOCK, &ss, 0);
3995 }
3996 else
3997#endif
2055 signal (w->signum, SIG_DFL); 3998 signal (w->signum, SIG_DFL);
3999 }
4000
4001 EV_FREQUENT_CHECK;
2056} 4002}
4003
4004#endif
4005
4006#if EV_CHILD_ENABLE
2057 4007
2058void 4008void
2059ev_child_start (EV_P_ ev_child *w) 4009ev_child_start (EV_P_ ev_child *w) EV_THROW
2060{ 4010{
2061#if EV_MULTIPLICITY 4011#if EV_MULTIPLICITY
2062 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 4012 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2063#endif 4013#endif
2064 if (expect_false (ev_is_active (w))) 4014 if (expect_false (ev_is_active (w)))
2065 return; 4015 return;
2066 4016
4017 EV_FREQUENT_CHECK;
4018
2067 ev_start (EV_A_ (W)w, 1); 4019 ev_start (EV_A_ (W)w, 1);
2068 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4020 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4021
4022 EV_FREQUENT_CHECK;
2069} 4023}
2070 4024
2071void 4025void
2072ev_child_stop (EV_P_ ev_child *w) 4026ev_child_stop (EV_P_ ev_child *w) EV_THROW
2073{ 4027{
2074 clear_pending (EV_A_ (W)w); 4028 clear_pending (EV_A_ (W)w);
2075 if (expect_false (!ev_is_active (w))) 4029 if (expect_false (!ev_is_active (w)))
2076 return; 4030 return;
2077 4031
4032 EV_FREQUENT_CHECK;
4033
2078 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4034 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2079 ev_stop (EV_A_ (W)w); 4035 ev_stop (EV_A_ (W)w);
4036
4037 EV_FREQUENT_CHECK;
2080} 4038}
4039
4040#endif
2081 4041
2082#if EV_STAT_ENABLE 4042#if EV_STAT_ENABLE
2083 4043
2084# ifdef _WIN32 4044# ifdef _WIN32
2085# undef lstat 4045# undef lstat
2086# define lstat(a,b) _stati64 (a,b) 4046# define lstat(a,b) _stati64 (a,b)
2087# endif 4047# endif
2088 4048
2089#define DEF_STAT_INTERVAL 5.0074891 4049#define DEF_STAT_INTERVAL 5.0074891
4050#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2090#define MIN_STAT_INTERVAL 0.1074891 4051#define MIN_STAT_INTERVAL 0.1074891
2091 4052
2092static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 4053static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2093 4054
2094#if EV_USE_INOTIFY 4055#if EV_USE_INOTIFY
2095# define EV_INOTIFY_BUFSIZE 8192 4056
4057/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4058# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2096 4059
2097static void noinline 4060static void noinline
2098infy_add (EV_P_ ev_stat *w) 4061infy_add (EV_P_ ev_stat *w)
2099{ 4062{
2100 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 4063 w->wd = inotify_add_watch (fs_fd, w->path,
4064 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4065 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4066 | IN_DONT_FOLLOW | IN_MASK_ADD);
2101 4067
2102 if (w->wd < 0) 4068 if (w->wd >= 0)
4069 {
4070 struct statfs sfs;
4071
4072 /* now local changes will be tracked by inotify, but remote changes won't */
4073 /* unless the filesystem is known to be local, we therefore still poll */
4074 /* also do poll on <2.6.25, but with normal frequency */
4075
4076 if (!fs_2625)
4077 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4078 else if (!statfs (w->path, &sfs)
4079 && (sfs.f_type == 0x1373 /* devfs */
4080 || sfs.f_type == 0x4006 /* fat */
4081 || sfs.f_type == 0x4d44 /* msdos */
4082 || sfs.f_type == 0xEF53 /* ext2/3 */
4083 || sfs.f_type == 0x72b6 /* jffs2 */
4084 || sfs.f_type == 0x858458f6 /* ramfs */
4085 || sfs.f_type == 0x5346544e /* ntfs */
4086 || sfs.f_type == 0x3153464a /* jfs */
4087 || sfs.f_type == 0x9123683e /* btrfs */
4088 || sfs.f_type == 0x52654973 /* reiser3 */
4089 || sfs.f_type == 0x01021994 /* tmpfs */
4090 || sfs.f_type == 0x58465342 /* xfs */))
4091 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4092 else
4093 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2103 { 4094 }
2104 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 4095 else
4096 {
4097 /* can't use inotify, continue to stat */
4098 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2105 4099
2106 /* monitor some parent directory for speedup hints */ 4100 /* if path is not there, monitor some parent directory for speedup hints */
4101 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4102 /* but an efficiency issue only */
2107 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 4103 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2108 { 4104 {
2109 char path [4096]; 4105 char path [4096];
2110 strcpy (path, w->path); 4106 strcpy (path, w->path);
2111 4107
2114 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 4110 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2115 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 4111 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2116 4112
2117 char *pend = strrchr (path, '/'); 4113 char *pend = strrchr (path, '/');
2118 4114
2119 if (!pend) 4115 if (!pend || pend == path)
2120 break; /* whoops, no '/', complain to your admin */ 4116 break;
2121 4117
2122 *pend = 0; 4118 *pend = 0;
2123 w->wd = inotify_add_watch (fs_fd, path, mask); 4119 w->wd = inotify_add_watch (fs_fd, path, mask);
2124 } 4120 }
2125 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 4121 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2126 } 4122 }
2127 } 4123 }
2128 else
2129 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2130 4124
2131 if (w->wd >= 0) 4125 if (w->wd >= 0)
2132 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 4126 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4127
4128 /* now re-arm timer, if required */
4129 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4130 ev_timer_again (EV_A_ &w->timer);
4131 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2133} 4132}
2134 4133
2135static void noinline 4134static void noinline
2136infy_del (EV_P_ ev_stat *w) 4135infy_del (EV_P_ ev_stat *w)
2137{ 4136{
2140 4139
2141 if (wd < 0) 4140 if (wd < 0)
2142 return; 4141 return;
2143 4142
2144 w->wd = -2; 4143 w->wd = -2;
2145 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 4144 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2146 wlist_del (&fs_hash [slot].head, (WL)w); 4145 wlist_del (&fs_hash [slot].head, (WL)w);
2147 4146
2148 /* remove this watcher, if others are watching it, they will rearm */ 4147 /* remove this watcher, if others are watching it, they will rearm */
2149 inotify_rm_watch (fs_fd, wd); 4148 inotify_rm_watch (fs_fd, wd);
2150} 4149}
2151 4150
2152static void noinline 4151static void noinline
2153infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 4152infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2154{ 4153{
2155 if (slot < 0) 4154 if (slot < 0)
2156 /* overflow, need to check for all hahs slots */ 4155 /* overflow, need to check for all hash slots */
2157 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4156 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2158 infy_wd (EV_A_ slot, wd, ev); 4157 infy_wd (EV_A_ slot, wd, ev);
2159 else 4158 else
2160 { 4159 {
2161 WL w_; 4160 WL w_;
2162 4161
2163 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 4162 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2164 { 4163 {
2165 ev_stat *w = (ev_stat *)w_; 4164 ev_stat *w = (ev_stat *)w_;
2166 w_ = w_->next; /* lets us remove this watcher and all before it */ 4165 w_ = w_->next; /* lets us remove this watcher and all before it */
2167 4166
2168 if (w->wd == wd || wd == -1) 4167 if (w->wd == wd || wd == -1)
2169 { 4168 {
2170 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 4169 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2171 { 4170 {
4171 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2172 w->wd = -1; 4172 w->wd = -1;
2173 infy_add (EV_A_ w); /* re-add, no matter what */ 4173 infy_add (EV_A_ w); /* re-add, no matter what */
2174 } 4174 }
2175 4175
2176 stat_timer_cb (EV_A_ &w->timer, 0); 4176 stat_timer_cb (EV_A_ &w->timer, 0);
2181 4181
2182static void 4182static void
2183infy_cb (EV_P_ ev_io *w, int revents) 4183infy_cb (EV_P_ ev_io *w, int revents)
2184{ 4184{
2185 char buf [EV_INOTIFY_BUFSIZE]; 4185 char buf [EV_INOTIFY_BUFSIZE];
2186 struct inotify_event *ev = (struct inotify_event *)buf;
2187 int ofs; 4186 int ofs;
2188 int len = read (fs_fd, buf, sizeof (buf)); 4187 int len = read (fs_fd, buf, sizeof (buf));
2189 4188
2190 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 4189 for (ofs = 0; ofs < len; )
4190 {
4191 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2191 infy_wd (EV_A_ ev->wd, ev->wd, ev); 4192 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4193 ofs += sizeof (struct inotify_event) + ev->len;
4194 }
2192} 4195}
2193 4196
2194void inline_size 4197inline_size void ecb_cold
4198ev_check_2625 (EV_P)
4199{
4200 /* kernels < 2.6.25 are borked
4201 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4202 */
4203 if (ev_linux_version () < 0x020619)
4204 return;
4205
4206 fs_2625 = 1;
4207}
4208
4209inline_size int
4210infy_newfd (void)
4211{
4212#if defined IN_CLOEXEC && defined IN_NONBLOCK
4213 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4214 if (fd >= 0)
4215 return fd;
4216#endif
4217 return inotify_init ();
4218}
4219
4220inline_size void
2195infy_init (EV_P) 4221infy_init (EV_P)
2196{ 4222{
2197 if (fs_fd != -2) 4223 if (fs_fd != -2)
2198 return; 4224 return;
2199 4225
4226 fs_fd = -1;
4227
4228 ev_check_2625 (EV_A);
4229
2200 fs_fd = inotify_init (); 4230 fs_fd = infy_newfd ();
2201 4231
2202 if (fs_fd >= 0) 4232 if (fs_fd >= 0)
2203 { 4233 {
4234 fd_intern (fs_fd);
2204 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 4235 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2205 ev_set_priority (&fs_w, EV_MAXPRI); 4236 ev_set_priority (&fs_w, EV_MAXPRI);
2206 ev_io_start (EV_A_ &fs_w); 4237 ev_io_start (EV_A_ &fs_w);
4238 ev_unref (EV_A);
2207 } 4239 }
2208} 4240}
2209 4241
2210void inline_size 4242inline_size void
2211infy_fork (EV_P) 4243infy_fork (EV_P)
2212{ 4244{
2213 int slot; 4245 int slot;
2214 4246
2215 if (fs_fd < 0) 4247 if (fs_fd < 0)
2216 return; 4248 return;
2217 4249
4250 ev_ref (EV_A);
4251 ev_io_stop (EV_A_ &fs_w);
2218 close (fs_fd); 4252 close (fs_fd);
2219 fs_fd = inotify_init (); 4253 fs_fd = infy_newfd ();
2220 4254
4255 if (fs_fd >= 0)
4256 {
4257 fd_intern (fs_fd);
4258 ev_io_set (&fs_w, fs_fd, EV_READ);
4259 ev_io_start (EV_A_ &fs_w);
4260 ev_unref (EV_A);
4261 }
4262
2221 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4263 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2222 { 4264 {
2223 WL w_ = fs_hash [slot].head; 4265 WL w_ = fs_hash [slot].head;
2224 fs_hash [slot].head = 0; 4266 fs_hash [slot].head = 0;
2225 4267
2226 while (w_) 4268 while (w_)
2231 w->wd = -1; 4273 w->wd = -1;
2232 4274
2233 if (fs_fd >= 0) 4275 if (fs_fd >= 0)
2234 infy_add (EV_A_ w); /* re-add, no matter what */ 4276 infy_add (EV_A_ w); /* re-add, no matter what */
2235 else 4277 else
4278 {
4279 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4280 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2236 ev_timer_start (EV_A_ &w->timer); 4281 ev_timer_again (EV_A_ &w->timer);
4282 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4283 }
2237 } 4284 }
2238
2239 } 4285 }
2240} 4286}
2241 4287
4288#endif
4289
4290#ifdef _WIN32
4291# define EV_LSTAT(p,b) _stati64 (p, b)
4292#else
4293# define EV_LSTAT(p,b) lstat (p, b)
2242#endif 4294#endif
2243 4295
2244void 4296void
2245ev_stat_stat (EV_P_ ev_stat *w) 4297ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
2246{ 4298{
2247 if (lstat (w->path, &w->attr) < 0) 4299 if (lstat (w->path, &w->attr) < 0)
2248 w->attr.st_nlink = 0; 4300 w->attr.st_nlink = 0;
2249 else if (!w->attr.st_nlink) 4301 else if (!w->attr.st_nlink)
2250 w->attr.st_nlink = 1; 4302 w->attr.st_nlink = 1;
2253static void noinline 4305static void noinline
2254stat_timer_cb (EV_P_ ev_timer *w_, int revents) 4306stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2255{ 4307{
2256 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 4308 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2257 4309
2258 /* we copy this here each the time so that */ 4310 ev_statdata prev = w->attr;
2259 /* prev has the old value when the callback gets invoked */
2260 w->prev = w->attr;
2261 ev_stat_stat (EV_A_ w); 4311 ev_stat_stat (EV_A_ w);
2262 4312
2263 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 4313 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2264 if ( 4314 if (
2265 w->prev.st_dev != w->attr.st_dev 4315 prev.st_dev != w->attr.st_dev
2266 || w->prev.st_ino != w->attr.st_ino 4316 || prev.st_ino != w->attr.st_ino
2267 || w->prev.st_mode != w->attr.st_mode 4317 || prev.st_mode != w->attr.st_mode
2268 || w->prev.st_nlink != w->attr.st_nlink 4318 || prev.st_nlink != w->attr.st_nlink
2269 || w->prev.st_uid != w->attr.st_uid 4319 || prev.st_uid != w->attr.st_uid
2270 || w->prev.st_gid != w->attr.st_gid 4320 || prev.st_gid != w->attr.st_gid
2271 || w->prev.st_rdev != w->attr.st_rdev 4321 || prev.st_rdev != w->attr.st_rdev
2272 || w->prev.st_size != w->attr.st_size 4322 || prev.st_size != w->attr.st_size
2273 || w->prev.st_atime != w->attr.st_atime 4323 || prev.st_atime != w->attr.st_atime
2274 || w->prev.st_mtime != w->attr.st_mtime 4324 || prev.st_mtime != w->attr.st_mtime
2275 || w->prev.st_ctime != w->attr.st_ctime 4325 || prev.st_ctime != w->attr.st_ctime
2276 ) { 4326 ) {
4327 /* we only update w->prev on actual differences */
4328 /* in case we test more often than invoke the callback, */
4329 /* to ensure that prev is always different to attr */
4330 w->prev = prev;
4331
2277 #if EV_USE_INOTIFY 4332 #if EV_USE_INOTIFY
4333 if (fs_fd >= 0)
4334 {
2278 infy_del (EV_A_ w); 4335 infy_del (EV_A_ w);
2279 infy_add (EV_A_ w); 4336 infy_add (EV_A_ w);
2280 ev_stat_stat (EV_A_ w); /* avoid race... */ 4337 ev_stat_stat (EV_A_ w); /* avoid race... */
4338 }
2281 #endif 4339 #endif
2282 4340
2283 ev_feed_event (EV_A_ w, EV_STAT); 4341 ev_feed_event (EV_A_ w, EV_STAT);
2284 } 4342 }
2285} 4343}
2286 4344
2287void 4345void
2288ev_stat_start (EV_P_ ev_stat *w) 4346ev_stat_start (EV_P_ ev_stat *w) EV_THROW
2289{ 4347{
2290 if (expect_false (ev_is_active (w))) 4348 if (expect_false (ev_is_active (w)))
2291 return; 4349 return;
2292 4350
2293 /* since we use memcmp, we need to clear any padding data etc. */
2294 memset (&w->prev, 0, sizeof (ev_statdata));
2295 memset (&w->attr, 0, sizeof (ev_statdata));
2296
2297 ev_stat_stat (EV_A_ w); 4351 ev_stat_stat (EV_A_ w);
2298 4352
4353 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2299 if (w->interval < MIN_STAT_INTERVAL) 4354 w->interval = MIN_STAT_INTERVAL;
2300 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2301 4355
2302 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 4356 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2303 ev_set_priority (&w->timer, ev_priority (w)); 4357 ev_set_priority (&w->timer, ev_priority (w));
2304 4358
2305#if EV_USE_INOTIFY 4359#if EV_USE_INOTIFY
2306 infy_init (EV_A); 4360 infy_init (EV_A);
2307 4361
2308 if (fs_fd >= 0) 4362 if (fs_fd >= 0)
2309 infy_add (EV_A_ w); 4363 infy_add (EV_A_ w);
2310 else 4364 else
2311#endif 4365#endif
4366 {
2312 ev_timer_start (EV_A_ &w->timer); 4367 ev_timer_again (EV_A_ &w->timer);
4368 ev_unref (EV_A);
4369 }
2313 4370
2314 ev_start (EV_A_ (W)w, 1); 4371 ev_start (EV_A_ (W)w, 1);
4372
4373 EV_FREQUENT_CHECK;
2315} 4374}
2316 4375
2317void 4376void
2318ev_stat_stop (EV_P_ ev_stat *w) 4377ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
2319{ 4378{
2320 clear_pending (EV_A_ (W)w); 4379 clear_pending (EV_A_ (W)w);
2321 if (expect_false (!ev_is_active (w))) 4380 if (expect_false (!ev_is_active (w)))
2322 return; 4381 return;
2323 4382
4383 EV_FREQUENT_CHECK;
4384
2324#if EV_USE_INOTIFY 4385#if EV_USE_INOTIFY
2325 infy_del (EV_A_ w); 4386 infy_del (EV_A_ w);
2326#endif 4387#endif
4388
4389 if (ev_is_active (&w->timer))
4390 {
4391 ev_ref (EV_A);
2327 ev_timer_stop (EV_A_ &w->timer); 4392 ev_timer_stop (EV_A_ &w->timer);
4393 }
2328 4394
2329 ev_stop (EV_A_ (W)w); 4395 ev_stop (EV_A_ (W)w);
4396
4397 EV_FREQUENT_CHECK;
2330} 4398}
2331#endif 4399#endif
2332 4400
2333#if EV_IDLE_ENABLE 4401#if EV_IDLE_ENABLE
2334void 4402void
2335ev_idle_start (EV_P_ ev_idle *w) 4403ev_idle_start (EV_P_ ev_idle *w) EV_THROW
2336{ 4404{
2337 if (expect_false (ev_is_active (w))) 4405 if (expect_false (ev_is_active (w)))
2338 return; 4406 return;
2339 4407
2340 pri_adjust (EV_A_ (W)w); 4408 pri_adjust (EV_A_ (W)w);
4409
4410 EV_FREQUENT_CHECK;
2341 4411
2342 { 4412 {
2343 int active = ++idlecnt [ABSPRI (w)]; 4413 int active = ++idlecnt [ABSPRI (w)];
2344 4414
2345 ++idleall; 4415 ++idleall;
2346 ev_start (EV_A_ (W)w, active); 4416 ev_start (EV_A_ (W)w, active);
2347 4417
2348 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 4418 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2349 idles [ABSPRI (w)][active - 1] = w; 4419 idles [ABSPRI (w)][active - 1] = w;
2350 } 4420 }
4421
4422 EV_FREQUENT_CHECK;
2351} 4423}
2352 4424
2353void 4425void
2354ev_idle_stop (EV_P_ ev_idle *w) 4426ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
2355{ 4427{
2356 clear_pending (EV_A_ (W)w); 4428 clear_pending (EV_A_ (W)w);
2357 if (expect_false (!ev_is_active (w))) 4429 if (expect_false (!ev_is_active (w)))
2358 return; 4430 return;
2359 4431
4432 EV_FREQUENT_CHECK;
4433
2360 { 4434 {
2361 int active = ((W)w)->active; 4435 int active = ev_active (w);
2362 4436
2363 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 4437 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2364 ((W)idles [ABSPRI (w)][active - 1])->active = active; 4438 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2365 4439
2366 ev_stop (EV_A_ (W)w); 4440 ev_stop (EV_A_ (W)w);
2367 --idleall; 4441 --idleall;
2368 } 4442 }
2369}
2370#endif
2371 4443
4444 EV_FREQUENT_CHECK;
4445}
4446#endif
4447
4448#if EV_PREPARE_ENABLE
2372void 4449void
2373ev_prepare_start (EV_P_ ev_prepare *w) 4450ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
2374{ 4451{
2375 if (expect_false (ev_is_active (w))) 4452 if (expect_false (ev_is_active (w)))
2376 return; 4453 return;
4454
4455 EV_FREQUENT_CHECK;
2377 4456
2378 ev_start (EV_A_ (W)w, ++preparecnt); 4457 ev_start (EV_A_ (W)w, ++preparecnt);
2379 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 4458 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2380 prepares [preparecnt - 1] = w; 4459 prepares [preparecnt - 1] = w;
4460
4461 EV_FREQUENT_CHECK;
2381} 4462}
2382 4463
2383void 4464void
2384ev_prepare_stop (EV_P_ ev_prepare *w) 4465ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
2385{ 4466{
2386 clear_pending (EV_A_ (W)w); 4467 clear_pending (EV_A_ (W)w);
2387 if (expect_false (!ev_is_active (w))) 4468 if (expect_false (!ev_is_active (w)))
2388 return; 4469 return;
2389 4470
4471 EV_FREQUENT_CHECK;
4472
2390 { 4473 {
2391 int active = ((W)w)->active; 4474 int active = ev_active (w);
4475
2392 prepares [active - 1] = prepares [--preparecnt]; 4476 prepares [active - 1] = prepares [--preparecnt];
2393 ((W)prepares [active - 1])->active = active; 4477 ev_active (prepares [active - 1]) = active;
2394 } 4478 }
2395 4479
2396 ev_stop (EV_A_ (W)w); 4480 ev_stop (EV_A_ (W)w);
2397}
2398 4481
4482 EV_FREQUENT_CHECK;
4483}
4484#endif
4485
4486#if EV_CHECK_ENABLE
2399void 4487void
2400ev_check_start (EV_P_ ev_check *w) 4488ev_check_start (EV_P_ ev_check *w) EV_THROW
2401{ 4489{
2402 if (expect_false (ev_is_active (w))) 4490 if (expect_false (ev_is_active (w)))
2403 return; 4491 return;
4492
4493 EV_FREQUENT_CHECK;
2404 4494
2405 ev_start (EV_A_ (W)w, ++checkcnt); 4495 ev_start (EV_A_ (W)w, ++checkcnt);
2406 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 4496 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2407 checks [checkcnt - 1] = w; 4497 checks [checkcnt - 1] = w;
4498
4499 EV_FREQUENT_CHECK;
2408} 4500}
2409 4501
2410void 4502void
2411ev_check_stop (EV_P_ ev_check *w) 4503ev_check_stop (EV_P_ ev_check *w) EV_THROW
2412{ 4504{
2413 clear_pending (EV_A_ (W)w); 4505 clear_pending (EV_A_ (W)w);
2414 if (expect_false (!ev_is_active (w))) 4506 if (expect_false (!ev_is_active (w)))
2415 return; 4507 return;
2416 4508
4509 EV_FREQUENT_CHECK;
4510
2417 { 4511 {
2418 int active = ((W)w)->active; 4512 int active = ev_active (w);
4513
2419 checks [active - 1] = checks [--checkcnt]; 4514 checks [active - 1] = checks [--checkcnt];
2420 ((W)checks [active - 1])->active = active; 4515 ev_active (checks [active - 1]) = active;
2421 } 4516 }
2422 4517
2423 ev_stop (EV_A_ (W)w); 4518 ev_stop (EV_A_ (W)w);
4519
4520 EV_FREQUENT_CHECK;
2424} 4521}
4522#endif
2425 4523
2426#if EV_EMBED_ENABLE 4524#if EV_EMBED_ENABLE
2427void noinline 4525void noinline
2428ev_embed_sweep (EV_P_ ev_embed *w) 4526ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
2429{ 4527{
2430 ev_loop (w->other, EVLOOP_NONBLOCK); 4528 ev_run (w->other, EVRUN_NOWAIT);
2431} 4529}
2432 4530
2433static void 4531static void
2434embed_io_cb (EV_P_ ev_io *io, int revents) 4532embed_io_cb (EV_P_ ev_io *io, int revents)
2435{ 4533{
2436 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4534 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2437 4535
2438 if (ev_cb (w)) 4536 if (ev_cb (w))
2439 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4537 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2440 else 4538 else
2441 ev_loop (w->other, EVLOOP_NONBLOCK); 4539 ev_run (w->other, EVRUN_NOWAIT);
2442} 4540}
2443 4541
2444static void 4542static void
2445embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4543embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2446{ 4544{
2447 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4545 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2448 4546
2449 { 4547 {
2450 struct ev_loop *loop = w->other; 4548 EV_P = w->other;
2451 4549
2452 while (fdchangecnt) 4550 while (fdchangecnt)
2453 { 4551 {
2454 fd_reify (EV_A); 4552 fd_reify (EV_A);
2455 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4553 ev_run (EV_A_ EVRUN_NOWAIT);
2456 } 4554 }
2457 } 4555 }
4556}
4557
4558static void
4559embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4560{
4561 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4562
4563 ev_embed_stop (EV_A_ w);
4564
4565 {
4566 EV_P = w->other;
4567
4568 ev_loop_fork (EV_A);
4569 ev_run (EV_A_ EVRUN_NOWAIT);
4570 }
4571
4572 ev_embed_start (EV_A_ w);
2458} 4573}
2459 4574
2460#if 0 4575#if 0
2461static void 4576static void
2462embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4577embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2464 ev_idle_stop (EV_A_ idle); 4579 ev_idle_stop (EV_A_ idle);
2465} 4580}
2466#endif 4581#endif
2467 4582
2468void 4583void
2469ev_embed_start (EV_P_ ev_embed *w) 4584ev_embed_start (EV_P_ ev_embed *w) EV_THROW
2470{ 4585{
2471 if (expect_false (ev_is_active (w))) 4586 if (expect_false (ev_is_active (w)))
2472 return; 4587 return;
2473 4588
2474 { 4589 {
2475 struct ev_loop *loop = w->other; 4590 EV_P = w->other;
2476 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4591 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2477 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4592 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2478 } 4593 }
4594
4595 EV_FREQUENT_CHECK;
2479 4596
2480 ev_set_priority (&w->io, ev_priority (w)); 4597 ev_set_priority (&w->io, ev_priority (w));
2481 ev_io_start (EV_A_ &w->io); 4598 ev_io_start (EV_A_ &w->io);
2482 4599
2483 ev_prepare_init (&w->prepare, embed_prepare_cb); 4600 ev_prepare_init (&w->prepare, embed_prepare_cb);
2484 ev_set_priority (&w->prepare, EV_MINPRI); 4601 ev_set_priority (&w->prepare, EV_MINPRI);
2485 ev_prepare_start (EV_A_ &w->prepare); 4602 ev_prepare_start (EV_A_ &w->prepare);
2486 4603
4604 ev_fork_init (&w->fork, embed_fork_cb);
4605 ev_fork_start (EV_A_ &w->fork);
4606
2487 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 4607 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2488 4608
2489 ev_start (EV_A_ (W)w, 1); 4609 ev_start (EV_A_ (W)w, 1);
4610
4611 EV_FREQUENT_CHECK;
2490} 4612}
2491 4613
2492void 4614void
2493ev_embed_stop (EV_P_ ev_embed *w) 4615ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
2494{ 4616{
2495 clear_pending (EV_A_ (W)w); 4617 clear_pending (EV_A_ (W)w);
2496 if (expect_false (!ev_is_active (w))) 4618 if (expect_false (!ev_is_active (w)))
2497 return; 4619 return;
2498 4620
4621 EV_FREQUENT_CHECK;
4622
2499 ev_io_stop (EV_A_ &w->io); 4623 ev_io_stop (EV_A_ &w->io);
2500 ev_prepare_stop (EV_A_ &w->prepare); 4624 ev_prepare_stop (EV_A_ &w->prepare);
4625 ev_fork_stop (EV_A_ &w->fork);
2501 4626
2502 ev_stop (EV_A_ (W)w); 4627 ev_stop (EV_A_ (W)w);
4628
4629 EV_FREQUENT_CHECK;
2503} 4630}
2504#endif 4631#endif
2505 4632
2506#if EV_FORK_ENABLE 4633#if EV_FORK_ENABLE
2507void 4634void
2508ev_fork_start (EV_P_ ev_fork *w) 4635ev_fork_start (EV_P_ ev_fork *w) EV_THROW
2509{ 4636{
2510 if (expect_false (ev_is_active (w))) 4637 if (expect_false (ev_is_active (w)))
2511 return; 4638 return;
4639
4640 EV_FREQUENT_CHECK;
2512 4641
2513 ev_start (EV_A_ (W)w, ++forkcnt); 4642 ev_start (EV_A_ (W)w, ++forkcnt);
2514 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 4643 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2515 forks [forkcnt - 1] = w; 4644 forks [forkcnt - 1] = w;
4645
4646 EV_FREQUENT_CHECK;
2516} 4647}
2517 4648
2518void 4649void
2519ev_fork_stop (EV_P_ ev_fork *w) 4650ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
2520{ 4651{
2521 clear_pending (EV_A_ (W)w); 4652 clear_pending (EV_A_ (W)w);
2522 if (expect_false (!ev_is_active (w))) 4653 if (expect_false (!ev_is_active (w)))
2523 return; 4654 return;
2524 4655
4656 EV_FREQUENT_CHECK;
4657
2525 { 4658 {
2526 int active = ((W)w)->active; 4659 int active = ev_active (w);
4660
2527 forks [active - 1] = forks [--forkcnt]; 4661 forks [active - 1] = forks [--forkcnt];
2528 ((W)forks [active - 1])->active = active; 4662 ev_active (forks [active - 1]) = active;
2529 } 4663 }
2530 4664
2531 ev_stop (EV_A_ (W)w); 4665 ev_stop (EV_A_ (W)w);
4666
4667 EV_FREQUENT_CHECK;
4668}
4669#endif
4670
4671#if EV_CLEANUP_ENABLE
4672void
4673ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4674{
4675 if (expect_false (ev_is_active (w)))
4676 return;
4677
4678 EV_FREQUENT_CHECK;
4679
4680 ev_start (EV_A_ (W)w, ++cleanupcnt);
4681 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4682 cleanups [cleanupcnt - 1] = w;
4683
4684 /* cleanup watchers should never keep a refcount on the loop */
4685 ev_unref (EV_A);
4686 EV_FREQUENT_CHECK;
4687}
4688
4689void
4690ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4691{
4692 clear_pending (EV_A_ (W)w);
4693 if (expect_false (!ev_is_active (w)))
4694 return;
4695
4696 EV_FREQUENT_CHECK;
4697 ev_ref (EV_A);
4698
4699 {
4700 int active = ev_active (w);
4701
4702 cleanups [active - 1] = cleanups [--cleanupcnt];
4703 ev_active (cleanups [active - 1]) = active;
4704 }
4705
4706 ev_stop (EV_A_ (W)w);
4707
4708 EV_FREQUENT_CHECK;
2532} 4709}
2533#endif 4710#endif
2534 4711
2535#if EV_ASYNC_ENABLE 4712#if EV_ASYNC_ENABLE
2536void 4713void
2537ev_async_start (EV_P_ ev_async *w) 4714ev_async_start (EV_P_ ev_async *w) EV_THROW
2538{ 4715{
2539 if (expect_false (ev_is_active (w))) 4716 if (expect_false (ev_is_active (w)))
2540 return; 4717 return;
2541 4718
4719 w->sent = 0;
4720
2542 evpipe_init (EV_A); 4721 evpipe_init (EV_A);
4722
4723 EV_FREQUENT_CHECK;
2543 4724
2544 ev_start (EV_A_ (W)w, ++asynccnt); 4725 ev_start (EV_A_ (W)w, ++asynccnt);
2545 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 4726 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2546 asyncs [asynccnt - 1] = w; 4727 asyncs [asynccnt - 1] = w;
4728
4729 EV_FREQUENT_CHECK;
2547} 4730}
2548 4731
2549void 4732void
2550ev_async_stop (EV_P_ ev_async *w) 4733ev_async_stop (EV_P_ ev_async *w) EV_THROW
2551{ 4734{
2552 clear_pending (EV_A_ (W)w); 4735 clear_pending (EV_A_ (W)w);
2553 if (expect_false (!ev_is_active (w))) 4736 if (expect_false (!ev_is_active (w)))
2554 return; 4737 return;
2555 4738
4739 EV_FREQUENT_CHECK;
4740
2556 { 4741 {
2557 int active = ((W)w)->active; 4742 int active = ev_active (w);
4743
2558 asyncs [active - 1] = asyncs [--asynccnt]; 4744 asyncs [active - 1] = asyncs [--asynccnt];
2559 ((W)asyncs [active - 1])->active = active; 4745 ev_active (asyncs [active - 1]) = active;
2560 } 4746 }
2561 4747
2562 ev_stop (EV_A_ (W)w); 4748 ev_stop (EV_A_ (W)w);
4749
4750 EV_FREQUENT_CHECK;
2563} 4751}
2564 4752
2565void 4753void
2566ev_async_send (EV_P_ ev_async *w) 4754ev_async_send (EV_P_ ev_async *w) EV_THROW
2567{ 4755{
2568 w->sent = 1; 4756 w->sent = 1;
2569 evpipe_write (EV_A_ &gotasync); 4757 evpipe_write (EV_A_ &async_pending);
2570} 4758}
2571#endif 4759#endif
2572 4760
2573/*****************************************************************************/ 4761/*****************************************************************************/
2574 4762
2584once_cb (EV_P_ struct ev_once *once, int revents) 4772once_cb (EV_P_ struct ev_once *once, int revents)
2585{ 4773{
2586 void (*cb)(int revents, void *arg) = once->cb; 4774 void (*cb)(int revents, void *arg) = once->cb;
2587 void *arg = once->arg; 4775 void *arg = once->arg;
2588 4776
2589 ev_io_stop (EV_A_ &once->io); 4777 ev_io_stop (EV_A_ &once->io);
2590 ev_timer_stop (EV_A_ &once->to); 4778 ev_timer_stop (EV_A_ &once->to);
2591 ev_free (once); 4779 ev_free (once);
2592 4780
2593 cb (revents, arg); 4781 cb (revents, arg);
2594} 4782}
2595 4783
2596static void 4784static void
2597once_cb_io (EV_P_ ev_io *w, int revents) 4785once_cb_io (EV_P_ ev_io *w, int revents)
2598{ 4786{
2599 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4787 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4788
4789 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2600} 4790}
2601 4791
2602static void 4792static void
2603once_cb_to (EV_P_ ev_timer *w, int revents) 4793once_cb_to (EV_P_ ev_timer *w, int revents)
2604{ 4794{
2605 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4795 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4796
4797 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2606} 4798}
2607 4799
2608void 4800void
2609ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4801ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
2610{ 4802{
2611 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4803 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2612 4804
2613 if (expect_false (!once)) 4805 if (expect_false (!once))
2614 { 4806 {
2615 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4807 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2616 return; 4808 return;
2617 } 4809 }
2618 4810
2619 once->cb = cb; 4811 once->cb = cb;
2620 once->arg = arg; 4812 once->arg = arg;
2632 ev_timer_set (&once->to, timeout, 0.); 4824 ev_timer_set (&once->to, timeout, 0.);
2633 ev_timer_start (EV_A_ &once->to); 4825 ev_timer_start (EV_A_ &once->to);
2634 } 4826 }
2635} 4827}
2636 4828
4829/*****************************************************************************/
4830
4831#if EV_WALK_ENABLE
4832void ecb_cold
4833ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4834{
4835 int i, j;
4836 ev_watcher_list *wl, *wn;
4837
4838 if (types & (EV_IO | EV_EMBED))
4839 for (i = 0; i < anfdmax; ++i)
4840 for (wl = anfds [i].head; wl; )
4841 {
4842 wn = wl->next;
4843
4844#if EV_EMBED_ENABLE
4845 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4846 {
4847 if (types & EV_EMBED)
4848 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4849 }
4850 else
4851#endif
4852#if EV_USE_INOTIFY
4853 if (ev_cb ((ev_io *)wl) == infy_cb)
4854 ;
4855 else
4856#endif
4857 if ((ev_io *)wl != &pipe_w)
4858 if (types & EV_IO)
4859 cb (EV_A_ EV_IO, wl);
4860
4861 wl = wn;
4862 }
4863
4864 if (types & (EV_TIMER | EV_STAT))
4865 for (i = timercnt + HEAP0; i-- > HEAP0; )
4866#if EV_STAT_ENABLE
4867 /*TODO: timer is not always active*/
4868 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4869 {
4870 if (types & EV_STAT)
4871 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4872 }
4873 else
4874#endif
4875 if (types & EV_TIMER)
4876 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4877
4878#if EV_PERIODIC_ENABLE
4879 if (types & EV_PERIODIC)
4880 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4881 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4882#endif
4883
4884#if EV_IDLE_ENABLE
4885 if (types & EV_IDLE)
4886 for (j = NUMPRI; j--; )
4887 for (i = idlecnt [j]; i--; )
4888 cb (EV_A_ EV_IDLE, idles [j][i]);
4889#endif
4890
4891#if EV_FORK_ENABLE
4892 if (types & EV_FORK)
4893 for (i = forkcnt; i--; )
4894 if (ev_cb (forks [i]) != embed_fork_cb)
4895 cb (EV_A_ EV_FORK, forks [i]);
4896#endif
4897
4898#if EV_ASYNC_ENABLE
4899 if (types & EV_ASYNC)
4900 for (i = asynccnt; i--; )
4901 cb (EV_A_ EV_ASYNC, asyncs [i]);
4902#endif
4903
4904#if EV_PREPARE_ENABLE
4905 if (types & EV_PREPARE)
4906 for (i = preparecnt; i--; )
4907# if EV_EMBED_ENABLE
4908 if (ev_cb (prepares [i]) != embed_prepare_cb)
4909# endif
4910 cb (EV_A_ EV_PREPARE, prepares [i]);
4911#endif
4912
4913#if EV_CHECK_ENABLE
4914 if (types & EV_CHECK)
4915 for (i = checkcnt; i--; )
4916 cb (EV_A_ EV_CHECK, checks [i]);
4917#endif
4918
4919#if EV_SIGNAL_ENABLE
4920 if (types & EV_SIGNAL)
4921 for (i = 0; i < EV_NSIG - 1; ++i)
4922 for (wl = signals [i].head; wl; )
4923 {
4924 wn = wl->next;
4925 cb (EV_A_ EV_SIGNAL, wl);
4926 wl = wn;
4927 }
4928#endif
4929
4930#if EV_CHILD_ENABLE
4931 if (types & EV_CHILD)
4932 for (i = (EV_PID_HASHSIZE); i--; )
4933 for (wl = childs [i]; wl; )
4934 {
4935 wn = wl->next;
4936 cb (EV_A_ EV_CHILD, wl);
4937 wl = wn;
4938 }
4939#endif
4940/* EV_STAT 0x00001000 /* stat data changed */
4941/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4942}
4943#endif
4944
2637#if EV_MULTIPLICITY 4945#if EV_MULTIPLICITY
2638 #include "ev_wrap.h" 4946 #include "ev_wrap.h"
2639#endif 4947#endif
2640 4948
2641#ifdef __cplusplus
2642}
2643#endif
2644

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines