ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.75 by root, Tue Nov 6 19:29:20 2007 UTC vs.
Revision 1.475 by sf-exg, Wed Apr 1 06:57:41 2015 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012,2013 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
39
40/* this big block deduces configuration from config.h */
31#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
32# include "config.h" 45# include "config.h"
46# endif
47
48# if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52# endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
33 67
34# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
69# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
71# endif
72# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
74# endif
75# else
76# ifndef EV_USE_MONOTONIC
77# define EV_USE_MONOTONIC 0
78# endif
79# ifndef EV_USE_REALTIME
80# define EV_USE_REALTIME 0
81# endif
37# endif 82# endif
38 83
84# if HAVE_NANOSLEEP
85# ifndef EV_USE_NANOSLEEP
86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
91# endif
92
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
96# endif
97# else
98# undef EV_USE_SELECT
40# define EV_USE_SELECT 1 99# define EV_USE_SELECT 0
41# endif 100# endif
42 101
43# if HAVE_POLL && HAVE_POLL_H 102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
44# define EV_USE_POLL 1 108# define EV_USE_POLL 0
45# endif 109# endif
46 110
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112# ifndef EV_USE_EPOLL
113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
114# endif
115# else
116# undef EV_USE_EPOLL
48# define EV_USE_EPOLL 1 117# define EV_USE_EPOLL 0
49# endif 118# endif
50 119
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121# ifndef EV_USE_KQUEUE
122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123# endif
124# else
125# undef EV_USE_KQUEUE
52# define EV_USE_KQUEUE 1 126# define EV_USE_KQUEUE 0
53# endif 127# endif
54 128
129# if HAVE_PORT_H && HAVE_PORT_CREATE
130# ifndef EV_USE_PORT
131# define EV_USE_PORT EV_FEATURE_BACKENDS
132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
55#endif 136# endif
56 137
57#include <math.h> 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139# ifndef EV_USE_INOTIFY
140# define EV_USE_INOTIFY EV_FEATURE_OS
141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
145# endif
146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
58#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
59#include <fcntl.h> 169#include <fcntl.h>
60#include <stddef.h> 170#include <stddef.h>
61 171
62#include <stdio.h> 172#include <stdio.h>
63 173
64#include <assert.h> 174#include <assert.h>
65#include <errno.h> 175#include <errno.h>
66#include <sys/types.h> 176#include <sys/types.h>
67#include <time.h> 177#include <time.h>
178#include <limits.h>
68 179
69#include <signal.h> 180#include <signal.h>
70 181
182#ifdef EV_H
183# include EV_H
184#else
185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
197#endif
198
71#ifndef WIN32 199#ifndef _WIN32
72# include <unistd.h>
73# include <sys/time.h> 200# include <sys/time.h>
74# include <sys/wait.h> 201# include <sys/wait.h>
202# include <unistd.h>
203#else
204# include <io.h>
205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
207# include <windows.h>
208# ifndef EV_SELECT_IS_WINSOCKET
209# define EV_SELECT_IS_WINSOCKET 1
75#endif 210# endif
76/**/ 211# undef EV_AVOID_STDIO
212#endif
213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
221
222/* this block tries to deduce configuration from header-defined symbols and defaults */
223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# define EV_NSIG (8 * sizeof (sigset_t) + 1)
247#endif
248
249#ifndef EV_USE_FLOOR
250# define EV_USE_FLOOR 0
251#endif
252
253#ifndef EV_USE_CLOCK_SYSCALL
254# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
255# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
256# else
257# define EV_USE_CLOCK_SYSCALL 0
258# endif
259#endif
260
261#if !(_POSIX_TIMERS > 0)
262# ifndef EV_USE_MONOTONIC
263# define EV_USE_MONOTONIC 0
264# endif
265# ifndef EV_USE_REALTIME
266# define EV_USE_REALTIME 0
267# endif
268#endif
77 269
78#ifndef EV_USE_MONOTONIC 270#ifndef EV_USE_MONOTONIC
271# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
272# define EV_USE_MONOTONIC EV_FEATURE_OS
273# else
79# define EV_USE_MONOTONIC 1 274# define EV_USE_MONOTONIC 0
275# endif
276#endif
277
278#ifndef EV_USE_REALTIME
279# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
280#endif
281
282#ifndef EV_USE_NANOSLEEP
283# if _POSIX_C_SOURCE >= 199309L
284# define EV_USE_NANOSLEEP EV_FEATURE_OS
285# else
286# define EV_USE_NANOSLEEP 0
287# endif
80#endif 288#endif
81 289
82#ifndef EV_USE_SELECT 290#ifndef EV_USE_SELECT
83# define EV_USE_SELECT 1 291# define EV_USE_SELECT EV_FEATURE_BACKENDS
84#endif 292#endif
85 293
86#ifndef EV_USE_POLL 294#ifndef EV_USE_POLL
87# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 295# ifdef _WIN32
296# define EV_USE_POLL 0
297# else
298# define EV_USE_POLL EV_FEATURE_BACKENDS
299# endif
88#endif 300#endif
89 301
90#ifndef EV_USE_EPOLL 302#ifndef EV_USE_EPOLL
303# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
304# define EV_USE_EPOLL EV_FEATURE_BACKENDS
305# else
91# define EV_USE_EPOLL 0 306# define EV_USE_EPOLL 0
307# endif
92#endif 308#endif
93 309
94#ifndef EV_USE_KQUEUE 310#ifndef EV_USE_KQUEUE
95# define EV_USE_KQUEUE 0 311# define EV_USE_KQUEUE 0
96#endif 312#endif
97 313
314#ifndef EV_USE_PORT
315# define EV_USE_PORT 0
316#endif
317
98#ifndef EV_USE_WIN32 318#ifndef EV_USE_INOTIFY
99# ifdef WIN32 319# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
100# define EV_USE_WIN32 0 /* it does not exist, use select */ 320# define EV_USE_INOTIFY EV_FEATURE_OS
101# undef EV_USE_SELECT
102# define EV_USE_SELECT 1
103# else 321# else
104# define EV_USE_WIN32 0 322# define EV_USE_INOTIFY 0
105# endif 323# endif
106#endif 324#endif
107 325
326#ifndef EV_PID_HASHSIZE
327# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
328#endif
329
330#ifndef EV_INOTIFY_HASHSIZE
331# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
332#endif
333
108#ifndef EV_USE_REALTIME 334#ifndef EV_USE_EVENTFD
109# define EV_USE_REALTIME 1 335# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
336# define EV_USE_EVENTFD EV_FEATURE_OS
337# else
338# define EV_USE_EVENTFD 0
110#endif 339# endif
340#endif
111 341
112/**/ 342#ifndef EV_USE_SIGNALFD
343# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
344# define EV_USE_SIGNALFD EV_FEATURE_OS
345# else
346# define EV_USE_SIGNALFD 0
347# endif
348#endif
349
350#if 0 /* debugging */
351# define EV_VERIFY 3
352# define EV_USE_4HEAP 1
353# define EV_HEAP_CACHE_AT 1
354#endif
355
356#ifndef EV_VERIFY
357# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
358#endif
359
360#ifndef EV_USE_4HEAP
361# define EV_USE_4HEAP EV_FEATURE_DATA
362#endif
363
364#ifndef EV_HEAP_CACHE_AT
365# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
366#endif
367
368#ifdef ANDROID
369/* supposedly, android doesn't typedef fd_mask */
370# undef EV_USE_SELECT
371# define EV_USE_SELECT 0
372/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
373# undef EV_USE_CLOCK_SYSCALL
374# define EV_USE_CLOCK_SYSCALL 0
375#endif
376
377/* aix's poll.h seems to cause lots of trouble */
378#ifdef _AIX
379/* AIX has a completely broken poll.h header */
380# undef EV_USE_POLL
381# define EV_USE_POLL 0
382#endif
383
384/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
385/* which makes programs even slower. might work on other unices, too. */
386#if EV_USE_CLOCK_SYSCALL
387# include <sys/syscall.h>
388# ifdef SYS_clock_gettime
389# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
390# undef EV_USE_MONOTONIC
391# define EV_USE_MONOTONIC 1
392# else
393# undef EV_USE_CLOCK_SYSCALL
394# define EV_USE_CLOCK_SYSCALL 0
395# endif
396#endif
397
398/* this block fixes any misconfiguration where we know we run into trouble otherwise */
113 399
114#ifndef CLOCK_MONOTONIC 400#ifndef CLOCK_MONOTONIC
115# undef EV_USE_MONOTONIC 401# undef EV_USE_MONOTONIC
116# define EV_USE_MONOTONIC 0 402# define EV_USE_MONOTONIC 0
117#endif 403#endif
119#ifndef CLOCK_REALTIME 405#ifndef CLOCK_REALTIME
120# undef EV_USE_REALTIME 406# undef EV_USE_REALTIME
121# define EV_USE_REALTIME 0 407# define EV_USE_REALTIME 0
122#endif 408#endif
123 409
410#if !EV_STAT_ENABLE
411# undef EV_USE_INOTIFY
412# define EV_USE_INOTIFY 0
413#endif
414
415#if !EV_USE_NANOSLEEP
416/* hp-ux has it in sys/time.h, which we unconditionally include above */
417# if !defined _WIN32 && !defined __hpux
418# include <sys/select.h>
419# endif
420#endif
421
422#if EV_USE_INOTIFY
423# include <sys/statfs.h>
424# include <sys/inotify.h>
425/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
426# ifndef IN_DONT_FOLLOW
427# undef EV_USE_INOTIFY
428# define EV_USE_INOTIFY 0
429# endif
430#endif
431
432#if EV_USE_EVENTFD
433/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
434# include <stdint.h>
435# ifndef EFD_NONBLOCK
436# define EFD_NONBLOCK O_NONBLOCK
437# endif
438# ifndef EFD_CLOEXEC
439# ifdef O_CLOEXEC
440# define EFD_CLOEXEC O_CLOEXEC
441# else
442# define EFD_CLOEXEC 02000000
443# endif
444# endif
445EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
446#endif
447
448#if EV_USE_SIGNALFD
449/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
450# include <stdint.h>
451# ifndef SFD_NONBLOCK
452# define SFD_NONBLOCK O_NONBLOCK
453# endif
454# ifndef SFD_CLOEXEC
455# ifdef O_CLOEXEC
456# define SFD_CLOEXEC O_CLOEXEC
457# else
458# define SFD_CLOEXEC 02000000
459# endif
460# endif
461EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
462
463struct signalfd_siginfo
464{
465 uint32_t ssi_signo;
466 char pad[128 - sizeof (uint32_t)];
467};
468#endif
469
124/**/ 470/**/
125 471
472#if EV_VERIFY >= 3
473# define EV_FREQUENT_CHECK ev_verify (EV_A)
474#else
475# define EV_FREQUENT_CHECK do { } while (0)
476#endif
477
478/*
479 * This is used to work around floating point rounding problems.
480 * This value is good at least till the year 4000.
481 */
482#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
483/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
484
126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 485#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 486#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
130 487
131#include "ev.h" 488#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
489#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
132 490
491/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
492/* ECB.H BEGIN */
493/*
494 * libecb - http://software.schmorp.de/pkg/libecb
495 *
496 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
497 * Copyright (©) 2011 Emanuele Giaquinta
498 * All rights reserved.
499 *
500 * Redistribution and use in source and binary forms, with or without modifica-
501 * tion, are permitted provided that the following conditions are met:
502 *
503 * 1. Redistributions of source code must retain the above copyright notice,
504 * this list of conditions and the following disclaimer.
505 *
506 * 2. Redistributions in binary form must reproduce the above copyright
507 * notice, this list of conditions and the following disclaimer in the
508 * documentation and/or other materials provided with the distribution.
509 *
510 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
511 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
512 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
513 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
514 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
515 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
516 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
517 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
518 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
519 * OF THE POSSIBILITY OF SUCH DAMAGE.
520 *
521 * Alternatively, the contents of this file may be used under the terms of
522 * the GNU General Public License ("GPL") version 2 or any later version,
523 * in which case the provisions of the GPL are applicable instead of
524 * the above. If you wish to allow the use of your version of this file
525 * only under the terms of the GPL and not to allow others to use your
526 * version of this file under the BSD license, indicate your decision
527 * by deleting the provisions above and replace them with the notice
528 * and other provisions required by the GPL. If you do not delete the
529 * provisions above, a recipient may use your version of this file under
530 * either the BSD or the GPL.
531 */
532
533#ifndef ECB_H
534#define ECB_H
535
536/* 16 bits major, 16 bits minor */
537#define ECB_VERSION 0x00010004
538
539#ifdef _WIN32
540 typedef signed char int8_t;
541 typedef unsigned char uint8_t;
542 typedef signed short int16_t;
543 typedef unsigned short uint16_t;
544 typedef signed int int32_t;
545 typedef unsigned int uint32_t;
133#if __GNUC__ >= 3 546 #if __GNUC__
134# define expect(expr,value) __builtin_expect ((expr),(value)) 547 typedef signed long long int64_t;
135# define inline inline 548 typedef unsigned long long uint64_t;
549 #else /* _MSC_VER || __BORLANDC__ */
550 typedef signed __int64 int64_t;
551 typedef unsigned __int64 uint64_t;
552 #endif
553 #ifdef _WIN64
554 #define ECB_PTRSIZE 8
555 typedef uint64_t uintptr_t;
556 typedef int64_t intptr_t;
557 #else
558 #define ECB_PTRSIZE 4
559 typedef uint32_t uintptr_t;
560 typedef int32_t intptr_t;
561 #endif
136#else 562#else
137# define expect(expr,value) (expr) 563 #include <inttypes.h>
138# define inline static 564 #if UINTMAX_MAX > 0xffffffffU
565 #define ECB_PTRSIZE 8
566 #else
567 #define ECB_PTRSIZE 4
139#endif 568 #endif
569#endif
140 570
141#define expect_false(expr) expect ((expr) != 0, 0) 571#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
142#define expect_true(expr) expect ((expr) != 0, 1) 572#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
143 573
144#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 574/* work around x32 idiocy by defining proper macros */
145#define ABSPRI(w) ((w)->priority - EV_MINPRI) 575#if ECB_GCC_AMD64 || ECB_MSVC_AMD64
576 #if _ILP32
577 #define ECB_AMD64_X32 1
578 #else
579 #define ECB_AMD64 1
580 #endif
581#endif
146 582
147typedef struct ev_watcher *W; 583/* many compilers define _GNUC_ to some versions but then only implement
148typedef struct ev_watcher_list *WL; 584 * what their idiot authors think are the "more important" extensions,
149typedef struct ev_watcher_time *WT; 585 * causing enormous grief in return for some better fake benchmark numbers.
586 * or so.
587 * we try to detect these and simply assume they are not gcc - if they have
588 * an issue with that they should have done it right in the first place.
589 */
590#if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
591 #define ECB_GCC_VERSION(major,minor) 0
592#else
593 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
594#endif
150 595
151static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 596#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
152 597
153#include "ev_win32.c" 598#if __clang__ && defined __has_builtin
599 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
600#else
601 #define ECB_CLANG_BUILTIN(x) 0
602#endif
603
604#if __clang__ && defined __has_extension
605 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
606#else
607 #define ECB_CLANG_EXTENSION(x) 0
608#endif
609
610#define ECB_CPP (__cplusplus+0)
611#define ECB_CPP11 (__cplusplus >= 201103L)
612
613#if ECB_CPP
614 #define ECB_C 0
615 #define ECB_STDC_VERSION 0
616#else
617 #define ECB_C 1
618 #define ECB_STDC_VERSION __STDC_VERSION__
619#endif
620
621#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
622#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
623
624#if ECB_CPP
625 #define ECB_EXTERN_C extern "C"
626 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
627 #define ECB_EXTERN_C_END }
628#else
629 #define ECB_EXTERN_C extern
630 #define ECB_EXTERN_C_BEG
631 #define ECB_EXTERN_C_END
632#endif
154 633
155/*****************************************************************************/ 634/*****************************************************************************/
156 635
636/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
637/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
638
639#if ECB_NO_THREADS
640 #define ECB_NO_SMP 1
641#endif
642
643#if ECB_NO_SMP
644 #define ECB_MEMORY_FENCE do { } while (0)
645#endif
646
647#ifndef ECB_MEMORY_FENCE
648 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
649 #if __i386 || __i386__
650 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
651 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
652 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
653 #elif ECB_GCC_AMD64
654 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
655 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
656 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
657 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
658 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
659 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
660 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
661 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
662 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
663 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
664 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
665 #elif __aarch64__
666 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
667 #elif (__sparc || __sparc__) && !__sparcv8
668 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
669 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
670 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
671 #elif defined __s390__ || defined __s390x__
672 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
673 #elif defined __mips__
674 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
675 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
676 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
677 #elif defined __alpha__
678 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
679 #elif defined __hppa__
680 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
681 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
682 #elif defined __ia64__
683 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
684 #elif defined __m68k__
685 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
686 #elif defined __m88k__
687 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
688 #elif defined __sh__
689 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
690 #endif
691 #endif
692#endif
693
694#ifndef ECB_MEMORY_FENCE
695 #if ECB_GCC_VERSION(4,7)
696 /* see comment below (stdatomic.h) about the C11 memory model. */
697 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
698 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
699 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
700
701 #elif ECB_CLANG_EXTENSION(c_atomic)
702 /* see comment below (stdatomic.h) about the C11 memory model. */
703 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
704 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
705 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
706
707 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
708 #define ECB_MEMORY_FENCE __sync_synchronize ()
709 #elif _MSC_VER >= 1500 /* VC++ 2008 */
710 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
711 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
712 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
713 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
714 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
715 #elif _MSC_VER >= 1400 /* VC++ 2005 */
716 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
717 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
718 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
719 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
720 #elif defined _WIN32
721 #include <WinNT.h>
722 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
723 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
724 #include <mbarrier.h>
725 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
726 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
727 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
728 #elif __xlC__
729 #define ECB_MEMORY_FENCE __sync ()
730 #endif
731#endif
732
733#ifndef ECB_MEMORY_FENCE
734 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
735 /* we assume that these memory fences work on all variables/all memory accesses, */
736 /* not just C11 atomics and atomic accesses */
737 #include <stdatomic.h>
738 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
739 /* any fence other than seq_cst, which isn't very efficient for us. */
740 /* Why that is, we don't know - either the C11 memory model is quite useless */
741 /* for most usages, or gcc and clang have a bug */
742 /* I *currently* lean towards the latter, and inefficiently implement */
743 /* all three of ecb's fences as a seq_cst fence */
744 /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */
745 /* for all __atomic_thread_fence's except seq_cst */
746 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
747 #endif
748#endif
749
750#ifndef ECB_MEMORY_FENCE
751 #if !ECB_AVOID_PTHREADS
752 /*
753 * if you get undefined symbol references to pthread_mutex_lock,
754 * or failure to find pthread.h, then you should implement
755 * the ECB_MEMORY_FENCE operations for your cpu/compiler
756 * OR provide pthread.h and link against the posix thread library
757 * of your system.
758 */
759 #include <pthread.h>
760 #define ECB_NEEDS_PTHREADS 1
761 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
762
763 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
764 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
765 #endif
766#endif
767
768#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
769 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
770#endif
771
772#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
773 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
774#endif
775
776/*****************************************************************************/
777
778#if ECB_CPP
779 #define ecb_inline static inline
780#elif ECB_GCC_VERSION(2,5)
781 #define ecb_inline static __inline__
782#elif ECB_C99
783 #define ecb_inline static inline
784#else
785 #define ecb_inline static
786#endif
787
788#if ECB_GCC_VERSION(3,3)
789 #define ecb_restrict __restrict__
790#elif ECB_C99
791 #define ecb_restrict restrict
792#else
793 #define ecb_restrict
794#endif
795
796typedef int ecb_bool;
797
798#define ECB_CONCAT_(a, b) a ## b
799#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
800#define ECB_STRINGIFY_(a) # a
801#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
802#define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
803
804#define ecb_function_ ecb_inline
805
806#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
807 #define ecb_attribute(attrlist) __attribute__ (attrlist)
808#else
809 #define ecb_attribute(attrlist)
810#endif
811
812#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
813 #define ecb_is_constant(expr) __builtin_constant_p (expr)
814#else
815 /* possible C11 impl for integral types
816 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
817 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
818
819 #define ecb_is_constant(expr) 0
820#endif
821
822#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
823 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
824#else
825 #define ecb_expect(expr,value) (expr)
826#endif
827
828#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
829 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
830#else
831 #define ecb_prefetch(addr,rw,locality)
832#endif
833
834/* no emulation for ecb_decltype */
835#if ECB_CPP11
836 // older implementations might have problems with decltype(x)::type, work around it
837 template<class T> struct ecb_decltype_t { typedef T type; };
838 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
839#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
840 #define ecb_decltype(x) __typeof__ (x)
841#endif
842
843#if _MSC_VER >= 1300
844 #define ecb_deprecated __declspec (deprecated)
845#else
846 #define ecb_deprecated ecb_attribute ((__deprecated__))
847#endif
848
849#if __MSC_VER >= 1500
850 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
851#elif ECB_GCC_VERSION(4,5)
852 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
853#else
854 #define ecb_deprecated_message(msg) ecb_deprecated
855#endif
856
857#if _MSC_VER >= 1400
858 #define ecb_noinline __declspec (noinline)
859#else
860 #define ecb_noinline ecb_attribute ((__noinline__))
861#endif
862
863#define ecb_unused ecb_attribute ((__unused__))
864#define ecb_const ecb_attribute ((__const__))
865#define ecb_pure ecb_attribute ((__pure__))
866
867#if ECB_C11 || __IBMC_NORETURN
868 /* http://pic.dhe.ibm.com/infocenter/compbg/v121v141/topic/com.ibm.xlcpp121.bg.doc/language_ref/noreturn.html */
869 #define ecb_noreturn _Noreturn
870#elif ECB_CPP11
871 #define ecb_noreturn [[noreturn]]
872#elif _MSC_VER >= 1200
873 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
874 #define ecb_noreturn __declspec (noreturn)
875#else
876 #define ecb_noreturn ecb_attribute ((__noreturn__))
877#endif
878
879#if ECB_GCC_VERSION(4,3)
880 #define ecb_artificial ecb_attribute ((__artificial__))
881 #define ecb_hot ecb_attribute ((__hot__))
882 #define ecb_cold ecb_attribute ((__cold__))
883#else
884 #define ecb_artificial
885 #define ecb_hot
886 #define ecb_cold
887#endif
888
889/* put around conditional expressions if you are very sure that the */
890/* expression is mostly true or mostly false. note that these return */
891/* booleans, not the expression. */
892#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
893#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
894/* for compatibility to the rest of the world */
895#define ecb_likely(expr) ecb_expect_true (expr)
896#define ecb_unlikely(expr) ecb_expect_false (expr)
897
898/* count trailing zero bits and count # of one bits */
899#if ECB_GCC_VERSION(3,4) \
900 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
901 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
902 && ECB_CLANG_BUILTIN(__builtin_popcount))
903 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
904 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
905 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
906 #define ecb_ctz32(x) __builtin_ctz (x)
907 #define ecb_ctz64(x) __builtin_ctzll (x)
908 #define ecb_popcount32(x) __builtin_popcount (x)
909 /* no popcountll */
910#else
911 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
912 ecb_function_ ecb_const int
913 ecb_ctz32 (uint32_t x)
914 {
915 int r = 0;
916
917 x &= ~x + 1; /* this isolates the lowest bit */
918
919#if ECB_branchless_on_i386
920 r += !!(x & 0xaaaaaaaa) << 0;
921 r += !!(x & 0xcccccccc) << 1;
922 r += !!(x & 0xf0f0f0f0) << 2;
923 r += !!(x & 0xff00ff00) << 3;
924 r += !!(x & 0xffff0000) << 4;
925#else
926 if (x & 0xaaaaaaaa) r += 1;
927 if (x & 0xcccccccc) r += 2;
928 if (x & 0xf0f0f0f0) r += 4;
929 if (x & 0xff00ff00) r += 8;
930 if (x & 0xffff0000) r += 16;
931#endif
932
933 return r;
934 }
935
936 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
937 ecb_function_ ecb_const int
938 ecb_ctz64 (uint64_t x)
939 {
940 int shift = x & 0xffffffffU ? 0 : 32;
941 return ecb_ctz32 (x >> shift) + shift;
942 }
943
944 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
945 ecb_function_ ecb_const int
946 ecb_popcount32 (uint32_t x)
947 {
948 x -= (x >> 1) & 0x55555555;
949 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
950 x = ((x >> 4) + x) & 0x0f0f0f0f;
951 x *= 0x01010101;
952
953 return x >> 24;
954 }
955
956 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
957 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
958 {
959 int r = 0;
960
961 if (x >> 16) { x >>= 16; r += 16; }
962 if (x >> 8) { x >>= 8; r += 8; }
963 if (x >> 4) { x >>= 4; r += 4; }
964 if (x >> 2) { x >>= 2; r += 2; }
965 if (x >> 1) { r += 1; }
966
967 return r;
968 }
969
970 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
971 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
972 {
973 int r = 0;
974
975 if (x >> 32) { x >>= 32; r += 32; }
976
977 return r + ecb_ld32 (x);
978 }
979#endif
980
981ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
982ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
983ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
984ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
985
986ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
987ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
988{
989 return ( (x * 0x0802U & 0x22110U)
990 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
991}
992
993ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
994ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
995{
996 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
997 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
998 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
999 x = ( x >> 8 ) | ( x << 8);
1000
1001 return x;
1002}
1003
1004ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1005ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1006{
1007 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1008 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1009 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1010 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1011 x = ( x >> 16 ) | ( x << 16);
1012
1013 return x;
1014}
1015
1016/* popcount64 is only available on 64 bit cpus as gcc builtin */
1017/* so for this version we are lazy */
1018ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1019ecb_function_ ecb_const int
1020ecb_popcount64 (uint64_t x)
1021{
1022 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1023}
1024
1025ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1026ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1027ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1028ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1029ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1030ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1031ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1032ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1033
1034ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1035ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1036ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1037ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1038ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1039ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1040ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1041ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1042
1043#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1044 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1045 #define ecb_bswap32(x) __builtin_bswap32 (x)
1046 #define ecb_bswap64(x) __builtin_bswap64 (x)
1047#else
1048 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1049 ecb_function_ ecb_const uint16_t
1050 ecb_bswap16 (uint16_t x)
1051 {
1052 return ecb_rotl16 (x, 8);
1053 }
1054
1055 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1056 ecb_function_ ecb_const uint32_t
1057 ecb_bswap32 (uint32_t x)
1058 {
1059 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1060 }
1061
1062 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1063 ecb_function_ ecb_const uint64_t
1064 ecb_bswap64 (uint64_t x)
1065 {
1066 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1067 }
1068#endif
1069
1070#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1071 #define ecb_unreachable() __builtin_unreachable ()
1072#else
1073 /* this seems to work fine, but gcc always emits a warning for it :/ */
1074 ecb_inline ecb_noreturn void ecb_unreachable (void);
1075 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1076#endif
1077
1078/* try to tell the compiler that some condition is definitely true */
1079#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1080
1081ecb_inline ecb_const unsigned char ecb_byteorder_helper (void);
1082ecb_inline ecb_const unsigned char
1083ecb_byteorder_helper (void)
1084{
1085 /* the union code still generates code under pressure in gcc, */
1086 /* but less than using pointers, and always seems to */
1087 /* successfully return a constant. */
1088 /* the reason why we have this horrible preprocessor mess */
1089 /* is to avoid it in all cases, at least on common architectures */
1090 /* or when using a recent enough gcc version (>= 4.6) */
1091#if ((__i386 || __i386__) && !__VOS__) || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64
1092 return 0x44;
1093#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1094 return 0x44;
1095#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1096 return 0x11;
1097#else
1098 union
1099 {
1100 uint32_t i;
1101 uint8_t c;
1102 } u = { 0x11223344 };
1103 return u.c;
1104#endif
1105}
1106
1107ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1108ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
1109ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1110ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
1111
1112#if ECB_GCC_VERSION(3,0) || ECB_C99
1113 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1114#else
1115 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1116#endif
1117
1118#if ECB_CPP
1119 template<typename T>
1120 static inline T ecb_div_rd (T val, T div)
1121 {
1122 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1123 }
1124 template<typename T>
1125 static inline T ecb_div_ru (T val, T div)
1126 {
1127 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1128 }
1129#else
1130 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1131 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1132#endif
1133
1134#if ecb_cplusplus_does_not_suck
1135 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1136 template<typename T, int N>
1137 static inline int ecb_array_length (const T (&arr)[N])
1138 {
1139 return N;
1140 }
1141#else
1142 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1143#endif
1144
1145/*******************************************************************************/
1146/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1147
1148/* basically, everything uses "ieee pure-endian" floating point numbers */
1149/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1150#if 0 \
1151 || __i386 || __i386__ \
1152 || ECB_GCC_AMD64 \
1153 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1154 || defined __s390__ || defined __s390x__ \
1155 || defined __mips__ \
1156 || defined __alpha__ \
1157 || defined __hppa__ \
1158 || defined __ia64__ \
1159 || defined __m68k__ \
1160 || defined __m88k__ \
1161 || defined __sh__ \
1162 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1163 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1164 || defined __aarch64__
1165 #define ECB_STDFP 1
1166 #include <string.h> /* for memcpy */
1167#else
1168 #define ECB_STDFP 0
1169#endif
1170
1171#ifndef ECB_NO_LIBM
1172
1173 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1174
1175 /* only the oldest of old doesn't have this one. solaris. */
1176 #ifdef INFINITY
1177 #define ECB_INFINITY INFINITY
1178 #else
1179 #define ECB_INFINITY HUGE_VAL
1180 #endif
1181
1182 #ifdef NAN
1183 #define ECB_NAN NAN
1184 #else
1185 #define ECB_NAN ECB_INFINITY
1186 #endif
1187
1188 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1189 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1190 #else
1191 #define ecb_ldexpf(x,e) (float) ldexp ((float) (x), (e))
1192 #endif
1193
1194 /* converts an ieee half/binary16 to a float */
1195 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1196 ecb_function_ ecb_const float
1197 ecb_binary16_to_float (uint16_t x)
1198 {
1199 int e = (x >> 10) & 0x1f;
1200 int m = x & 0x3ff;
1201 float r;
1202
1203 if (!e ) r = ecb_ldexpf (m , -24);
1204 else if (e != 31) r = ecb_ldexpf (m + 0x400, e - 25);
1205 else if (m ) r = ECB_NAN;
1206 else r = ECB_INFINITY;
1207
1208 return x & 0x8000 ? -r : r;
1209 }
1210
1211 /* convert a float to ieee single/binary32 */
1212 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1213 ecb_function_ ecb_const uint32_t
1214 ecb_float_to_binary32 (float x)
1215 {
1216 uint32_t r;
1217
1218 #if ECB_STDFP
1219 memcpy (&r, &x, 4);
1220 #else
1221 /* slow emulation, works for anything but -0 */
1222 uint32_t m;
1223 int e;
1224
1225 if (x == 0e0f ) return 0x00000000U;
1226 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1227 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1228 if (x != x ) return 0x7fbfffffU;
1229
1230 m = frexpf (x, &e) * 0x1000000U;
1231
1232 r = m & 0x80000000U;
1233
1234 if (r)
1235 m = -m;
1236
1237 if (e <= -126)
1238 {
1239 m &= 0xffffffU;
1240 m >>= (-125 - e);
1241 e = -126;
1242 }
1243
1244 r |= (e + 126) << 23;
1245 r |= m & 0x7fffffU;
1246 #endif
1247
1248 return r;
1249 }
1250
1251 /* converts an ieee single/binary32 to a float */
1252 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1253 ecb_function_ ecb_const float
1254 ecb_binary32_to_float (uint32_t x)
1255 {
1256 float r;
1257
1258 #if ECB_STDFP
1259 memcpy (&r, &x, 4);
1260 #else
1261 /* emulation, only works for normals and subnormals and +0 */
1262 int neg = x >> 31;
1263 int e = (x >> 23) & 0xffU;
1264
1265 x &= 0x7fffffU;
1266
1267 if (e)
1268 x |= 0x800000U;
1269 else
1270 e = 1;
1271
1272 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1273 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1274
1275 r = neg ? -r : r;
1276 #endif
1277
1278 return r;
1279 }
1280
1281 /* convert a double to ieee double/binary64 */
1282 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1283 ecb_function_ ecb_const uint64_t
1284 ecb_double_to_binary64 (double x)
1285 {
1286 uint64_t r;
1287
1288 #if ECB_STDFP
1289 memcpy (&r, &x, 8);
1290 #else
1291 /* slow emulation, works for anything but -0 */
1292 uint64_t m;
1293 int e;
1294
1295 if (x == 0e0 ) return 0x0000000000000000U;
1296 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1297 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1298 if (x != x ) return 0X7ff7ffffffffffffU;
1299
1300 m = frexp (x, &e) * 0x20000000000000U;
1301
1302 r = m & 0x8000000000000000;;
1303
1304 if (r)
1305 m = -m;
1306
1307 if (e <= -1022)
1308 {
1309 m &= 0x1fffffffffffffU;
1310 m >>= (-1021 - e);
1311 e = -1022;
1312 }
1313
1314 r |= ((uint64_t)(e + 1022)) << 52;
1315 r |= m & 0xfffffffffffffU;
1316 #endif
1317
1318 return r;
1319 }
1320
1321 /* converts an ieee double/binary64 to a double */
1322 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1323 ecb_function_ ecb_const double
1324 ecb_binary64_to_double (uint64_t x)
1325 {
1326 double r;
1327
1328 #if ECB_STDFP
1329 memcpy (&r, &x, 8);
1330 #else
1331 /* emulation, only works for normals and subnormals and +0 */
1332 int neg = x >> 63;
1333 int e = (x >> 52) & 0x7ffU;
1334
1335 x &= 0xfffffffffffffU;
1336
1337 if (e)
1338 x |= 0x10000000000000U;
1339 else
1340 e = 1;
1341
1342 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1343 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1344
1345 r = neg ? -r : r;
1346 #endif
1347
1348 return r;
1349 }
1350
1351#endif
1352
1353#endif
1354
1355/* ECB.H END */
1356
1357#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1358/* if your architecture doesn't need memory fences, e.g. because it is
1359 * single-cpu/core, or if you use libev in a project that doesn't use libev
1360 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1361 * libev, in which cases the memory fences become nops.
1362 * alternatively, you can remove this #error and link against libpthread,
1363 * which will then provide the memory fences.
1364 */
1365# error "memory fences not defined for your architecture, please report"
1366#endif
1367
1368#ifndef ECB_MEMORY_FENCE
1369# define ECB_MEMORY_FENCE do { } while (0)
1370# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1371# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1372#endif
1373
1374#define expect_false(cond) ecb_expect_false (cond)
1375#define expect_true(cond) ecb_expect_true (cond)
1376#define noinline ecb_noinline
1377
1378#define inline_size ecb_inline
1379
1380#if EV_FEATURE_CODE
1381# define inline_speed ecb_inline
1382#else
1383# define inline_speed static noinline
1384#endif
1385
1386#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1387
1388#if EV_MINPRI == EV_MAXPRI
1389# define ABSPRI(w) (((W)w), 0)
1390#else
1391# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1392#endif
1393
1394#define EMPTY /* required for microsofts broken pseudo-c compiler */
1395#define EMPTY2(a,b) /* used to suppress some warnings */
1396
1397typedef ev_watcher *W;
1398typedef ev_watcher_list *WL;
1399typedef ev_watcher_time *WT;
1400
1401#define ev_active(w) ((W)(w))->active
1402#define ev_at(w) ((WT)(w))->at
1403
1404#if EV_USE_REALTIME
1405/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1406/* giving it a reasonably high chance of working on typical architectures */
1407static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1408#endif
1409
1410#if EV_USE_MONOTONIC
1411static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1412#endif
1413
1414#ifndef EV_FD_TO_WIN32_HANDLE
1415# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1416#endif
1417#ifndef EV_WIN32_HANDLE_TO_FD
1418# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1419#endif
1420#ifndef EV_WIN32_CLOSE_FD
1421# define EV_WIN32_CLOSE_FD(fd) close (fd)
1422#endif
1423
1424#ifdef _WIN32
1425# include "ev_win32.c"
1426#endif
1427
1428/*****************************************************************************/
1429
1430/* define a suitable floor function (only used by periodics atm) */
1431
1432#if EV_USE_FLOOR
1433# include <math.h>
1434# define ev_floor(v) floor (v)
1435#else
1436
1437#include <float.h>
1438
1439/* a floor() replacement function, should be independent of ev_tstamp type */
1440static ev_tstamp noinline
1441ev_floor (ev_tstamp v)
1442{
1443 /* the choice of shift factor is not terribly important */
1444#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1445 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1446#else
1447 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1448#endif
1449
1450 /* argument too large for an unsigned long? */
1451 if (expect_false (v >= shift))
1452 {
1453 ev_tstamp f;
1454
1455 if (v == v - 1.)
1456 return v; /* very large number */
1457
1458 f = shift * ev_floor (v * (1. / shift));
1459 return f + ev_floor (v - f);
1460 }
1461
1462 /* special treatment for negative args? */
1463 if (expect_false (v < 0.))
1464 {
1465 ev_tstamp f = -ev_floor (-v);
1466
1467 return f - (f == v ? 0 : 1);
1468 }
1469
1470 /* fits into an unsigned long */
1471 return (unsigned long)v;
1472}
1473
1474#endif
1475
1476/*****************************************************************************/
1477
1478#ifdef __linux
1479# include <sys/utsname.h>
1480#endif
1481
1482static unsigned int noinline ecb_cold
1483ev_linux_version (void)
1484{
1485#ifdef __linux
1486 unsigned int v = 0;
1487 struct utsname buf;
1488 int i;
1489 char *p = buf.release;
1490
1491 if (uname (&buf))
1492 return 0;
1493
1494 for (i = 3+1; --i; )
1495 {
1496 unsigned int c = 0;
1497
1498 for (;;)
1499 {
1500 if (*p >= '0' && *p <= '9')
1501 c = c * 10 + *p++ - '0';
1502 else
1503 {
1504 p += *p == '.';
1505 break;
1506 }
1507 }
1508
1509 v = (v << 8) | c;
1510 }
1511
1512 return v;
1513#else
1514 return 0;
1515#endif
1516}
1517
1518/*****************************************************************************/
1519
1520#if EV_AVOID_STDIO
1521static void noinline ecb_cold
1522ev_printerr (const char *msg)
1523{
1524 write (STDERR_FILENO, msg, strlen (msg));
1525}
1526#endif
1527
157static void (*syserr_cb)(const char *msg); 1528static void (*syserr_cb)(const char *msg) EV_THROW;
158 1529
1530void ecb_cold
159void ev_set_syserr_cb (void (*cb)(const char *msg)) 1531ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
160{ 1532{
161 syserr_cb = cb; 1533 syserr_cb = cb;
162} 1534}
163 1535
164static void 1536static void noinline ecb_cold
165syserr (const char *msg) 1537ev_syserr (const char *msg)
166{ 1538{
167 if (!msg) 1539 if (!msg)
168 msg = "(libev) system error"; 1540 msg = "(libev) system error";
169 1541
170 if (syserr_cb) 1542 if (syserr_cb)
171 syserr_cb (msg); 1543 syserr_cb (msg);
172 else 1544 else
173 { 1545 {
1546#if EV_AVOID_STDIO
1547 ev_printerr (msg);
1548 ev_printerr (": ");
1549 ev_printerr (strerror (errno));
1550 ev_printerr ("\n");
1551#else
174 perror (msg); 1552 perror (msg);
1553#endif
175 abort (); 1554 abort ();
176 } 1555 }
177} 1556}
178 1557
1558static void *
1559ev_realloc_emul (void *ptr, long size) EV_THROW
1560{
1561 /* some systems, notably openbsd and darwin, fail to properly
1562 * implement realloc (x, 0) (as required by both ansi c-89 and
1563 * the single unix specification, so work around them here.
1564 * recently, also (at least) fedora and debian started breaking it,
1565 * despite documenting it otherwise.
1566 */
1567
1568 if (size)
1569 return realloc (ptr, size);
1570
1571 free (ptr);
1572 return 0;
1573}
1574
179static void *(*alloc)(void *ptr, long size); 1575static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
180 1576
1577void ecb_cold
181void ev_set_allocator (void *(*cb)(void *ptr, long size)) 1578ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
182{ 1579{
183 alloc = cb; 1580 alloc = cb;
184} 1581}
185 1582
186static void * 1583inline_speed void *
187ev_realloc (void *ptr, long size) 1584ev_realloc (void *ptr, long size)
188{ 1585{
189 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1586 ptr = alloc (ptr, size);
190 1587
191 if (!ptr && size) 1588 if (!ptr && size)
192 { 1589 {
1590#if EV_AVOID_STDIO
1591 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1592#else
193 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1593 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1594#endif
194 abort (); 1595 abort ();
195 } 1596 }
196 1597
197 return ptr; 1598 return ptr;
198} 1599}
200#define ev_malloc(size) ev_realloc (0, (size)) 1601#define ev_malloc(size) ev_realloc (0, (size))
201#define ev_free(ptr) ev_realloc ((ptr), 0) 1602#define ev_free(ptr) ev_realloc ((ptr), 0)
202 1603
203/*****************************************************************************/ 1604/*****************************************************************************/
204 1605
1606/* set in reify when reification needed */
1607#define EV_ANFD_REIFY 1
1608
1609/* file descriptor info structure */
205typedef struct 1610typedef struct
206{ 1611{
207 WL head; 1612 WL head;
208 unsigned char events; 1613 unsigned char events; /* the events watched for */
1614 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1615 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
209 unsigned char reify; 1616 unsigned char unused;
1617#if EV_USE_EPOLL
1618 unsigned int egen; /* generation counter to counter epoll bugs */
1619#endif
1620#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1621 SOCKET handle;
1622#endif
1623#if EV_USE_IOCP
1624 OVERLAPPED or, ow;
1625#endif
210} ANFD; 1626} ANFD;
211 1627
1628/* stores the pending event set for a given watcher */
212typedef struct 1629typedef struct
213{ 1630{
214 W w; 1631 W w;
215 int events; 1632 int events; /* the pending event set for the given watcher */
216} ANPENDING; 1633} ANPENDING;
217 1634
1635#if EV_USE_INOTIFY
1636/* hash table entry per inotify-id */
1637typedef struct
1638{
1639 WL head;
1640} ANFS;
1641#endif
1642
1643/* Heap Entry */
1644#if EV_HEAP_CACHE_AT
1645 /* a heap element */
1646 typedef struct {
1647 ev_tstamp at;
1648 WT w;
1649 } ANHE;
1650
1651 #define ANHE_w(he) (he).w /* access watcher, read-write */
1652 #define ANHE_at(he) (he).at /* access cached at, read-only */
1653 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1654#else
1655 /* a heap element */
1656 typedef WT ANHE;
1657
1658 #define ANHE_w(he) (he)
1659 #define ANHE_at(he) (he)->at
1660 #define ANHE_at_cache(he)
1661#endif
1662
218#if EV_MULTIPLICITY 1663#if EV_MULTIPLICITY
219 1664
220struct ev_loop 1665 struct ev_loop
221{ 1666 {
1667 ev_tstamp ev_rt_now;
1668 #define ev_rt_now ((loop)->ev_rt_now)
222# define VAR(name,decl) decl; 1669 #define VAR(name,decl) decl;
223# include "ev_vars.h" 1670 #include "ev_vars.h"
224};
225# undef VAR 1671 #undef VAR
1672 };
226# include "ev_wrap.h" 1673 #include "ev_wrap.h"
1674
1675 static struct ev_loop default_loop_struct;
1676 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
227 1677
228#else 1678#else
229 1679
1680 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
230# define VAR(name,decl) static decl; 1681 #define VAR(name,decl) static decl;
231# include "ev_vars.h" 1682 #include "ev_vars.h"
232# undef VAR 1683 #undef VAR
233 1684
1685 static int ev_default_loop_ptr;
1686
234#endif 1687#endif
1688
1689#if EV_FEATURE_API
1690# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1691# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1692# define EV_INVOKE_PENDING invoke_cb (EV_A)
1693#else
1694# define EV_RELEASE_CB (void)0
1695# define EV_ACQUIRE_CB (void)0
1696# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1697#endif
1698
1699#define EVBREAK_RECURSE 0x80
235 1700
236/*****************************************************************************/ 1701/*****************************************************************************/
237 1702
238inline ev_tstamp 1703#ifndef EV_HAVE_EV_TIME
1704ev_tstamp
239ev_time (void) 1705ev_time (void) EV_THROW
240{ 1706{
241#if EV_USE_REALTIME 1707#if EV_USE_REALTIME
1708 if (expect_true (have_realtime))
1709 {
242 struct timespec ts; 1710 struct timespec ts;
243 clock_gettime (CLOCK_REALTIME, &ts); 1711 clock_gettime (CLOCK_REALTIME, &ts);
244 return ts.tv_sec + ts.tv_nsec * 1e-9; 1712 return ts.tv_sec + ts.tv_nsec * 1e-9;
245#else 1713 }
1714#endif
1715
246 struct timeval tv; 1716 struct timeval tv;
247 gettimeofday (&tv, 0); 1717 gettimeofday (&tv, 0);
248 return tv.tv_sec + tv.tv_usec * 1e-6; 1718 return tv.tv_sec + tv.tv_usec * 1e-6;
249#endif
250} 1719}
1720#endif
251 1721
252inline ev_tstamp 1722inline_size ev_tstamp
253get_clock (void) 1723get_clock (void)
254{ 1724{
255#if EV_USE_MONOTONIC 1725#if EV_USE_MONOTONIC
256 if (expect_true (have_monotonic)) 1726 if (expect_true (have_monotonic))
257 { 1727 {
262#endif 1732#endif
263 1733
264 return ev_time (); 1734 return ev_time ();
265} 1735}
266 1736
1737#if EV_MULTIPLICITY
267ev_tstamp 1738ev_tstamp
268ev_now (EV_P) 1739ev_now (EV_P) EV_THROW
269{ 1740{
270 return rt_now; 1741 return ev_rt_now;
271} 1742}
1743#endif
272 1744
273#define array_roundsize(type,n) ((n) | 4 & ~3) 1745void
1746ev_sleep (ev_tstamp delay) EV_THROW
1747{
1748 if (delay > 0.)
1749 {
1750#if EV_USE_NANOSLEEP
1751 struct timespec ts;
1752
1753 EV_TS_SET (ts, delay);
1754 nanosleep (&ts, 0);
1755#elif defined _WIN32
1756 Sleep ((unsigned long)(delay * 1e3));
1757#else
1758 struct timeval tv;
1759
1760 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1761 /* something not guaranteed by newer posix versions, but guaranteed */
1762 /* by older ones */
1763 EV_TV_SET (tv, delay);
1764 select (0, 0, 0, 0, &tv);
1765#endif
1766 }
1767}
1768
1769/*****************************************************************************/
1770
1771#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1772
1773/* find a suitable new size for the given array, */
1774/* hopefully by rounding to a nice-to-malloc size */
1775inline_size int
1776array_nextsize (int elem, int cur, int cnt)
1777{
1778 int ncur = cur + 1;
1779
1780 do
1781 ncur <<= 1;
1782 while (cnt > ncur);
1783
1784 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1785 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1786 {
1787 ncur *= elem;
1788 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1789 ncur = ncur - sizeof (void *) * 4;
1790 ncur /= elem;
1791 }
1792
1793 return ncur;
1794}
1795
1796static void * noinline ecb_cold
1797array_realloc (int elem, void *base, int *cur, int cnt)
1798{
1799 *cur = array_nextsize (elem, *cur, cnt);
1800 return ev_realloc (base, elem * *cur);
1801}
1802
1803#define array_init_zero(base,count) \
1804 memset ((void *)(base), 0, sizeof (*(base)) * (count))
274 1805
275#define array_needsize(type,base,cur,cnt,init) \ 1806#define array_needsize(type,base,cur,cnt,init) \
276 if (expect_false ((cnt) > cur)) \ 1807 if (expect_false ((cnt) > (cur))) \
277 { \ 1808 { \
278 int newcnt = cur; \ 1809 int ecb_unused ocur_ = (cur); \
279 do \ 1810 (base) = (type *)array_realloc \
280 { \ 1811 (sizeof (type), (base), &(cur), (cnt)); \
281 newcnt = array_roundsize (type, newcnt << 1); \ 1812 init ((base) + (ocur_), (cur) - ocur_); \
282 } \
283 while ((cnt) > newcnt); \
284 \
285 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
286 init (base + cur, newcnt - cur); \
287 cur = newcnt; \
288 } 1813 }
289 1814
1815#if 0
290#define array_slim(type,stem) \ 1816#define array_slim(type,stem) \
291 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 1817 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
292 { \ 1818 { \
293 stem ## max = array_roundsize (stem ## cnt >> 1); \ 1819 stem ## max = array_roundsize (stem ## cnt >> 1); \
294 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 1820 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
295 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1821 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
296 } 1822 }
297 1823#endif
298/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
299/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
300#define array_free_microshit(stem) \
301 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
302 1824
303#define array_free(stem, idx) \ 1825#define array_free(stem, idx) \
304 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1826 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
305 1827
306/*****************************************************************************/ 1828/*****************************************************************************/
307 1829
308static void 1830/* dummy callback for pending events */
309anfds_init (ANFD *base, int count) 1831static void noinline
1832pendingcb (EV_P_ ev_prepare *w, int revents)
310{ 1833{
311 while (count--) 1834}
312 {
313 base->head = 0;
314 base->events = EV_NONE;
315 base->reify = 0;
316 1835
317 ++base; 1836void noinline
1837ev_feed_event (EV_P_ void *w, int revents) EV_THROW
1838{
1839 W w_ = (W)w;
1840 int pri = ABSPRI (w_);
1841
1842 if (expect_false (w_->pending))
1843 pendings [pri][w_->pending - 1].events |= revents;
1844 else
318 } 1845 {
319} 1846 w_->pending = ++pendingcnt [pri];
320 1847 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
321static void 1848 pendings [pri][w_->pending - 1].w = w_;
322event (EV_P_ W w, int events)
323{
324 if (w->pending)
325 {
326 pendings [ABSPRI (w)][w->pending - 1].events |= events; 1849 pendings [pri][w_->pending - 1].events = revents;
327 return;
328 } 1850 }
329 1851
330 w->pending = ++pendingcnt [ABSPRI (w)]; 1852 pendingpri = NUMPRI - 1;
331 array_needsize (ANPENDING, pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], (void));
332 pendings [ABSPRI (w)][w->pending - 1].w = w;
333 pendings [ABSPRI (w)][w->pending - 1].events = events;
334} 1853}
335 1854
336static void 1855inline_speed void
1856feed_reverse (EV_P_ W w)
1857{
1858 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1859 rfeeds [rfeedcnt++] = w;
1860}
1861
1862inline_size void
1863feed_reverse_done (EV_P_ int revents)
1864{
1865 do
1866 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1867 while (rfeedcnt);
1868}
1869
1870inline_speed void
337queue_events (EV_P_ W *events, int eventcnt, int type) 1871queue_events (EV_P_ W *events, int eventcnt, int type)
338{ 1872{
339 int i; 1873 int i;
340 1874
341 for (i = 0; i < eventcnt; ++i) 1875 for (i = 0; i < eventcnt; ++i)
342 event (EV_A_ events [i], type); 1876 ev_feed_event (EV_A_ events [i], type);
343} 1877}
344 1878
345static void 1879/*****************************************************************************/
1880
1881inline_speed void
346fd_event (EV_P_ int fd, int events) 1882fd_event_nocheck (EV_P_ int fd, int revents)
347{ 1883{
348 ANFD *anfd = anfds + fd; 1884 ANFD *anfd = anfds + fd;
349 struct ev_io *w; 1885 ev_io *w;
350 1886
351 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 1887 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
352 { 1888 {
353 int ev = w->events & events; 1889 int ev = w->events & revents;
354 1890
355 if (ev) 1891 if (ev)
356 event (EV_A_ (W)w, ev); 1892 ev_feed_event (EV_A_ (W)w, ev);
357 } 1893 }
358} 1894}
359 1895
360/*****************************************************************************/ 1896/* do not submit kernel events for fds that have reify set */
1897/* because that means they changed while we were polling for new events */
1898inline_speed void
1899fd_event (EV_P_ int fd, int revents)
1900{
1901 ANFD *anfd = anfds + fd;
361 1902
362static void 1903 if (expect_true (!anfd->reify))
1904 fd_event_nocheck (EV_A_ fd, revents);
1905}
1906
1907void
1908ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
1909{
1910 if (fd >= 0 && fd < anfdmax)
1911 fd_event_nocheck (EV_A_ fd, revents);
1912}
1913
1914/* make sure the external fd watch events are in-sync */
1915/* with the kernel/libev internal state */
1916inline_size void
363fd_reify (EV_P) 1917fd_reify (EV_P)
364{ 1918{
365 int i; 1919 int i;
366 1920
1921#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
367 for (i = 0; i < fdchangecnt; ++i) 1922 for (i = 0; i < fdchangecnt; ++i)
368 { 1923 {
369 int fd = fdchanges [i]; 1924 int fd = fdchanges [i];
370 ANFD *anfd = anfds + fd; 1925 ANFD *anfd = anfds + fd;
1926
1927 if (anfd->reify & EV__IOFDSET && anfd->head)
1928 {
1929 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1930
1931 if (handle != anfd->handle)
1932 {
1933 unsigned long arg;
1934
1935 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1936
1937 /* handle changed, but fd didn't - we need to do it in two steps */
1938 backend_modify (EV_A_ fd, anfd->events, 0);
1939 anfd->events = 0;
1940 anfd->handle = handle;
1941 }
1942 }
1943 }
1944#endif
1945
1946 for (i = 0; i < fdchangecnt; ++i)
1947 {
1948 int fd = fdchanges [i];
1949 ANFD *anfd = anfds + fd;
371 struct ev_io *w; 1950 ev_io *w;
372 1951
373 int events = 0; 1952 unsigned char o_events = anfd->events;
1953 unsigned char o_reify = anfd->reify;
374 1954
375 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
376 events |= w->events;
377
378 anfd->reify = 0; 1955 anfd->reify = 0;
379 1956
380 method_modify (EV_A_ fd, anfd->events, events); 1957 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1958 {
381 anfd->events = events; 1959 anfd->events = 0;
1960
1961 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1962 anfd->events |= (unsigned char)w->events;
1963
1964 if (o_events != anfd->events)
1965 o_reify = EV__IOFDSET; /* actually |= */
1966 }
1967
1968 if (o_reify & EV__IOFDSET)
1969 backend_modify (EV_A_ fd, o_events, anfd->events);
382 } 1970 }
383 1971
384 fdchangecnt = 0; 1972 fdchangecnt = 0;
385} 1973}
386 1974
387static void 1975/* something about the given fd changed */
1976inline_size void
388fd_change (EV_P_ int fd) 1977fd_change (EV_P_ int fd, int flags)
389{ 1978{
390 if (anfds [fd].reify) 1979 unsigned char reify = anfds [fd].reify;
391 return;
392
393 anfds [fd].reify = 1; 1980 anfds [fd].reify |= flags;
394 1981
1982 if (expect_true (!reify))
1983 {
395 ++fdchangecnt; 1984 ++fdchangecnt;
396 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 1985 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
397 fdchanges [fdchangecnt - 1] = fd; 1986 fdchanges [fdchangecnt - 1] = fd;
1987 }
398} 1988}
399 1989
400static void 1990/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1991inline_speed void ecb_cold
401fd_kill (EV_P_ int fd) 1992fd_kill (EV_P_ int fd)
402{ 1993{
403 struct ev_io *w; 1994 ev_io *w;
404 1995
405 while ((w = (struct ev_io *)anfds [fd].head)) 1996 while ((w = (ev_io *)anfds [fd].head))
406 { 1997 {
407 ev_io_stop (EV_A_ w); 1998 ev_io_stop (EV_A_ w);
408 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1999 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
409 } 2000 }
410} 2001}
411 2002
412static int 2003/* check whether the given fd is actually valid, for error recovery */
2004inline_size int ecb_cold
413fd_valid (int fd) 2005fd_valid (int fd)
414{ 2006{
415#ifdef WIN32 2007#ifdef _WIN32
416 return !!win32_get_osfhandle (fd); 2008 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
417#else 2009#else
418 return fcntl (fd, F_GETFD) != -1; 2010 return fcntl (fd, F_GETFD) != -1;
419#endif 2011#endif
420} 2012}
421 2013
422/* called on EBADF to verify fds */ 2014/* called on EBADF to verify fds */
423static void 2015static void noinline ecb_cold
424fd_ebadf (EV_P) 2016fd_ebadf (EV_P)
425{ 2017{
426 int fd; 2018 int fd;
427 2019
428 for (fd = 0; fd < anfdmax; ++fd) 2020 for (fd = 0; fd < anfdmax; ++fd)
429 if (anfds [fd].events) 2021 if (anfds [fd].events)
430 if (!fd_valid (fd) == -1 && errno == EBADF) 2022 if (!fd_valid (fd) && errno == EBADF)
431 fd_kill (EV_A_ fd); 2023 fd_kill (EV_A_ fd);
432} 2024}
433 2025
434/* called on ENOMEM in select/poll to kill some fds and retry */ 2026/* called on ENOMEM in select/poll to kill some fds and retry */
435static void 2027static void noinline ecb_cold
436fd_enomem (EV_P) 2028fd_enomem (EV_P)
437{ 2029{
438 int fd; 2030 int fd;
439 2031
440 for (fd = anfdmax; fd--; ) 2032 for (fd = anfdmax; fd--; )
441 if (anfds [fd].events) 2033 if (anfds [fd].events)
442 { 2034 {
443 fd_kill (EV_A_ fd); 2035 fd_kill (EV_A_ fd);
444 return; 2036 break;
445 } 2037 }
446} 2038}
447 2039
448/* usually called after fork if method needs to re-arm all fds from scratch */ 2040/* usually called after fork if backend needs to re-arm all fds from scratch */
449static void 2041static void noinline
450fd_rearm_all (EV_P) 2042fd_rearm_all (EV_P)
451{ 2043{
452 int fd; 2044 int fd;
453 2045
454 /* this should be highly optimised to not do anything but set a flag */
455 for (fd = 0; fd < anfdmax; ++fd) 2046 for (fd = 0; fd < anfdmax; ++fd)
456 if (anfds [fd].events) 2047 if (anfds [fd].events)
457 { 2048 {
458 anfds [fd].events = 0; 2049 anfds [fd].events = 0;
459 fd_change (EV_A_ fd); 2050 anfds [fd].emask = 0;
2051 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
460 } 2052 }
461} 2053}
462 2054
2055/* used to prepare libev internal fd's */
2056/* this is not fork-safe */
2057inline_speed void
2058fd_intern (int fd)
2059{
2060#ifdef _WIN32
2061 unsigned long arg = 1;
2062 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2063#else
2064 fcntl (fd, F_SETFD, FD_CLOEXEC);
2065 fcntl (fd, F_SETFL, O_NONBLOCK);
2066#endif
2067}
2068
463/*****************************************************************************/ 2069/*****************************************************************************/
464 2070
2071/*
2072 * the heap functions want a real array index. array index 0 is guaranteed to not
2073 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
2074 * the branching factor of the d-tree.
2075 */
2076
2077/*
2078 * at the moment we allow libev the luxury of two heaps,
2079 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2080 * which is more cache-efficient.
2081 * the difference is about 5% with 50000+ watchers.
2082 */
2083#if EV_USE_4HEAP
2084
2085#define DHEAP 4
2086#define HEAP0 (DHEAP - 1) /* index of first element in heap */
2087#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2088#define UPHEAP_DONE(p,k) ((p) == (k))
2089
2090/* away from the root */
2091inline_speed void
2092downheap (ANHE *heap, int N, int k)
2093{
2094 ANHE he = heap [k];
2095 ANHE *E = heap + N + HEAP0;
2096
2097 for (;;)
2098 {
2099 ev_tstamp minat;
2100 ANHE *minpos;
2101 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2102
2103 /* find minimum child */
2104 if (expect_true (pos + DHEAP - 1 < E))
2105 {
2106 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2107 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2108 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2109 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2110 }
2111 else if (pos < E)
2112 {
2113 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2114 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2115 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2116 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2117 }
2118 else
2119 break;
2120
2121 if (ANHE_at (he) <= minat)
2122 break;
2123
2124 heap [k] = *minpos;
2125 ev_active (ANHE_w (*minpos)) = k;
2126
2127 k = minpos - heap;
2128 }
2129
2130 heap [k] = he;
2131 ev_active (ANHE_w (he)) = k;
2132}
2133
2134#else /* 4HEAP */
2135
2136#define HEAP0 1
2137#define HPARENT(k) ((k) >> 1)
2138#define UPHEAP_DONE(p,k) (!(p))
2139
2140/* away from the root */
2141inline_speed void
2142downheap (ANHE *heap, int N, int k)
2143{
2144 ANHE he = heap [k];
2145
2146 for (;;)
2147 {
2148 int c = k << 1;
2149
2150 if (c >= N + HEAP0)
2151 break;
2152
2153 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2154 ? 1 : 0;
2155
2156 if (ANHE_at (he) <= ANHE_at (heap [c]))
2157 break;
2158
2159 heap [k] = heap [c];
2160 ev_active (ANHE_w (heap [k])) = k;
2161
2162 k = c;
2163 }
2164
2165 heap [k] = he;
2166 ev_active (ANHE_w (he)) = k;
2167}
2168#endif
2169
2170/* towards the root */
2171inline_speed void
2172upheap (ANHE *heap, int k)
2173{
2174 ANHE he = heap [k];
2175
2176 for (;;)
2177 {
2178 int p = HPARENT (k);
2179
2180 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2181 break;
2182
2183 heap [k] = heap [p];
2184 ev_active (ANHE_w (heap [k])) = k;
2185 k = p;
2186 }
2187
2188 heap [k] = he;
2189 ev_active (ANHE_w (he)) = k;
2190}
2191
2192/* move an element suitably so it is in a correct place */
2193inline_size void
2194adjustheap (ANHE *heap, int N, int k)
2195{
2196 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2197 upheap (heap, k);
2198 else
2199 downheap (heap, N, k);
2200}
2201
2202/* rebuild the heap: this function is used only once and executed rarely */
2203inline_size void
2204reheap (ANHE *heap, int N)
2205{
2206 int i;
2207
2208 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2209 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2210 for (i = 0; i < N; ++i)
2211 upheap (heap, i + HEAP0);
2212}
2213
2214/*****************************************************************************/
2215
2216/* associate signal watchers to a signal signal */
2217typedef struct
2218{
2219 EV_ATOMIC_T pending;
2220#if EV_MULTIPLICITY
2221 EV_P;
2222#endif
2223 WL head;
2224} ANSIG;
2225
2226static ANSIG signals [EV_NSIG - 1];
2227
2228/*****************************************************************************/
2229
2230#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2231
2232static void noinline ecb_cold
2233evpipe_init (EV_P)
2234{
2235 if (!ev_is_active (&pipe_w))
2236 {
2237 int fds [2];
2238
2239# if EV_USE_EVENTFD
2240 fds [0] = -1;
2241 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2242 if (fds [1] < 0 && errno == EINVAL)
2243 fds [1] = eventfd (0, 0);
2244
2245 if (fds [1] < 0)
2246# endif
2247 {
2248 while (pipe (fds))
2249 ev_syserr ("(libev) error creating signal/async pipe");
2250
2251 fd_intern (fds [0]);
2252 }
2253
2254 evpipe [0] = fds [0];
2255
2256 if (evpipe [1] < 0)
2257 evpipe [1] = fds [1]; /* first call, set write fd */
2258 else
2259 {
2260 /* on subsequent calls, do not change evpipe [1] */
2261 /* so that evpipe_write can always rely on its value. */
2262 /* this branch does not do anything sensible on windows, */
2263 /* so must not be executed on windows */
2264
2265 dup2 (fds [1], evpipe [1]);
2266 close (fds [1]);
2267 }
2268
2269 fd_intern (evpipe [1]);
2270
2271 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2272 ev_io_start (EV_A_ &pipe_w);
2273 ev_unref (EV_A); /* watcher should not keep loop alive */
2274 }
2275}
2276
2277inline_speed void
2278evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2279{
2280 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2281
2282 if (expect_true (*flag))
2283 return;
2284
2285 *flag = 1;
2286 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2287
2288 pipe_write_skipped = 1;
2289
2290 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2291
2292 if (pipe_write_wanted)
2293 {
2294 int old_errno;
2295
2296 pipe_write_skipped = 0;
2297 ECB_MEMORY_FENCE_RELEASE;
2298
2299 old_errno = errno; /* save errno because write will clobber it */
2300
2301#if EV_USE_EVENTFD
2302 if (evpipe [0] < 0)
2303 {
2304 uint64_t counter = 1;
2305 write (evpipe [1], &counter, sizeof (uint64_t));
2306 }
2307 else
2308#endif
2309 {
2310#ifdef _WIN32
2311 WSABUF buf;
2312 DWORD sent;
2313 buf.buf = &buf;
2314 buf.len = 1;
2315 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2316#else
2317 write (evpipe [1], &(evpipe [1]), 1);
2318#endif
2319 }
2320
2321 errno = old_errno;
2322 }
2323}
2324
2325/* called whenever the libev signal pipe */
2326/* got some events (signal, async) */
465static void 2327static void
466upheap (WT *heap, int k) 2328pipecb (EV_P_ ev_io *iow, int revents)
467{ 2329{
468 WT w = heap [k]; 2330 int i;
469 2331
470 while (k && heap [k >> 1]->at > w->at) 2332 if (revents & EV_READ)
471 {
472 heap [k] = heap [k >> 1];
473 ((W)heap [k])->active = k + 1;
474 k >>= 1;
475 } 2333 {
2334#if EV_USE_EVENTFD
2335 if (evpipe [0] < 0)
2336 {
2337 uint64_t counter;
2338 read (evpipe [1], &counter, sizeof (uint64_t));
2339 }
2340 else
2341#endif
2342 {
2343 char dummy[4];
2344#ifdef _WIN32
2345 WSABUF buf;
2346 DWORD recvd;
2347 DWORD flags = 0;
2348 buf.buf = dummy;
2349 buf.len = sizeof (dummy);
2350 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2351#else
2352 read (evpipe [0], &dummy, sizeof (dummy));
2353#endif
2354 }
2355 }
476 2356
477 heap [k] = w; 2357 pipe_write_skipped = 0;
478 ((W)heap [k])->active = k + 1;
479 2358
2359 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2360
2361#if EV_SIGNAL_ENABLE
2362 if (sig_pending)
2363 {
2364 sig_pending = 0;
2365
2366 ECB_MEMORY_FENCE;
2367
2368 for (i = EV_NSIG - 1; i--; )
2369 if (expect_false (signals [i].pending))
2370 ev_feed_signal_event (EV_A_ i + 1);
2371 }
2372#endif
2373
2374#if EV_ASYNC_ENABLE
2375 if (async_pending)
2376 {
2377 async_pending = 0;
2378
2379 ECB_MEMORY_FENCE;
2380
2381 for (i = asynccnt; i--; )
2382 if (asyncs [i]->sent)
2383 {
2384 asyncs [i]->sent = 0;
2385 ECB_MEMORY_FENCE_RELEASE;
2386 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2387 }
2388 }
2389#endif
2390}
2391
2392/*****************************************************************************/
2393
2394void
2395ev_feed_signal (int signum) EV_THROW
2396{
2397#if EV_MULTIPLICITY
2398 EV_P;
2399 ECB_MEMORY_FENCE_ACQUIRE;
2400 EV_A = signals [signum - 1].loop;
2401
2402 if (!EV_A)
2403 return;
2404#endif
2405
2406 signals [signum - 1].pending = 1;
2407 evpipe_write (EV_A_ &sig_pending);
480} 2408}
481 2409
482static void 2410static void
483downheap (WT *heap, int N, int k) 2411ev_sighandler (int signum)
484{ 2412{
485 WT w = heap [k]; 2413#ifdef _WIN32
2414 signal (signum, ev_sighandler);
2415#endif
486 2416
487 while (k < (N >> 1)) 2417 ev_feed_signal (signum);
488 { 2418}
489 int j = k << 1;
490 2419
491 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 2420void noinline
492 ++j; 2421ev_feed_signal_event (EV_P_ int signum) EV_THROW
2422{
2423 WL w;
493 2424
494 if (w->at <= heap [j]->at) 2425 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2426 return;
2427
2428 --signum;
2429
2430#if EV_MULTIPLICITY
2431 /* it is permissible to try to feed a signal to the wrong loop */
2432 /* or, likely more useful, feeding a signal nobody is waiting for */
2433
2434 if (expect_false (signals [signum].loop != EV_A))
2435 return;
2436#endif
2437
2438 signals [signum].pending = 0;
2439 ECB_MEMORY_FENCE_RELEASE;
2440
2441 for (w = signals [signum].head; w; w = w->next)
2442 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2443}
2444
2445#if EV_USE_SIGNALFD
2446static void
2447sigfdcb (EV_P_ ev_io *iow, int revents)
2448{
2449 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2450
2451 for (;;)
2452 {
2453 ssize_t res = read (sigfd, si, sizeof (si));
2454
2455 /* not ISO-C, as res might be -1, but works with SuS */
2456 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2457 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2458
2459 if (res < (ssize_t)sizeof (si))
495 break; 2460 break;
496
497 heap [k] = heap [j];
498 ((W)heap [k])->active = k + 1;
499 k = j;
500 } 2461 }
501
502 heap [k] = w;
503 ((W)heap [k])->active = k + 1;
504} 2462}
2463#endif
2464
2465#endif
505 2466
506/*****************************************************************************/ 2467/*****************************************************************************/
507 2468
508typedef struct 2469#if EV_CHILD_ENABLE
509{ 2470static WL childs [EV_PID_HASHSIZE];
510 WL head;
511 sig_atomic_t volatile gotsig;
512} ANSIG;
513 2471
514static ANSIG *signals;
515static int signalmax;
516
517static int sigpipe [2];
518static sig_atomic_t volatile gotsig;
519static struct ev_io sigev;
520
521static void
522signals_init (ANSIG *base, int count)
523{
524 while (count--)
525 {
526 base->head = 0;
527 base->gotsig = 0;
528
529 ++base;
530 }
531}
532
533static void
534sighandler (int signum)
535{
536#if WIN32
537 signal (signum, sighandler);
538#endif
539
540 signals [signum - 1].gotsig = 1;
541
542 if (!gotsig)
543 {
544 int old_errno = errno;
545 gotsig = 1;
546#ifdef WIN32
547 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
548#else
549 write (sigpipe [1], &signum, 1);
550#endif
551 errno = old_errno;
552 }
553}
554
555static void
556sigcb (EV_P_ struct ev_io *iow, int revents)
557{
558 WL w;
559 int signum;
560
561#ifdef WIN32
562 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
563#else
564 read (sigpipe [0], &revents, 1);
565#endif
566 gotsig = 0;
567
568 for (signum = signalmax; signum--; )
569 if (signals [signum].gotsig)
570 {
571 signals [signum].gotsig = 0;
572
573 for (w = signals [signum].head; w; w = w->next)
574 event (EV_A_ (W)w, EV_SIGNAL);
575 }
576}
577
578static void
579siginit (EV_P)
580{
581#ifndef WIN32
582 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
583 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
584
585 /* rather than sort out wether we really need nb, set it */
586 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
587 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
588#endif
589
590 ev_io_set (&sigev, sigpipe [0], EV_READ);
591 ev_io_start (EV_A_ &sigev);
592 ev_unref (EV_A); /* child watcher should not keep loop alive */
593}
594
595/*****************************************************************************/
596
597static struct ev_child *childs [PID_HASHSIZE];
598
599#ifndef WIN32
600
601static struct ev_signal childev; 2472static ev_signal childev;
2473
2474#ifndef WIFCONTINUED
2475# define WIFCONTINUED(status) 0
2476#endif
2477
2478/* handle a single child status event */
2479inline_speed void
2480child_reap (EV_P_ int chain, int pid, int status)
2481{
2482 ev_child *w;
2483 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2484
2485 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2486 {
2487 if ((w->pid == pid || !w->pid)
2488 && (!traced || (w->flags & 1)))
2489 {
2490 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2491 w->rpid = pid;
2492 w->rstatus = status;
2493 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2494 }
2495 }
2496}
602 2497
603#ifndef WCONTINUED 2498#ifndef WCONTINUED
604# define WCONTINUED 0 2499# define WCONTINUED 0
605#endif 2500#endif
606 2501
2502/* called on sigchld etc., calls waitpid */
607static void 2503static void
608child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
609{
610 struct ev_child *w;
611
612 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
613 if (w->pid == pid || !w->pid)
614 {
615 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
616 w->rpid = pid;
617 w->rstatus = status;
618 event (EV_A_ (W)w, EV_CHILD);
619 }
620}
621
622static void
623childcb (EV_P_ struct ev_signal *sw, int revents) 2504childcb (EV_P_ ev_signal *sw, int revents)
624{ 2505{
625 int pid, status; 2506 int pid, status;
626 2507
2508 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
627 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 2509 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
628 { 2510 if (!WCONTINUED
2511 || errno != EINVAL
2512 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2513 return;
2514
629 /* make sure we are called again until all childs have been reaped */ 2515 /* make sure we are called again until all children have been reaped */
2516 /* we need to do it this way so that the callback gets called before we continue */
630 event (EV_A_ (W)sw, EV_SIGNAL); 2517 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
631 2518
632 child_reap (EV_A_ sw, pid, pid, status); 2519 child_reap (EV_A_ pid, pid, status);
2520 if ((EV_PID_HASHSIZE) > 1)
633 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 2521 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
634 }
635} 2522}
636 2523
637#endif 2524#endif
638 2525
639/*****************************************************************************/ 2526/*****************************************************************************/
640 2527
2528#if EV_USE_IOCP
2529# include "ev_iocp.c"
2530#endif
2531#if EV_USE_PORT
2532# include "ev_port.c"
2533#endif
641#if EV_USE_KQUEUE 2534#if EV_USE_KQUEUE
642# include "ev_kqueue.c" 2535# include "ev_kqueue.c"
643#endif 2536#endif
644#if EV_USE_EPOLL 2537#if EV_USE_EPOLL
645# include "ev_epoll.c" 2538# include "ev_epoll.c"
649#endif 2542#endif
650#if EV_USE_SELECT 2543#if EV_USE_SELECT
651# include "ev_select.c" 2544# include "ev_select.c"
652#endif 2545#endif
653 2546
654int 2547int ecb_cold
655ev_version_major (void) 2548ev_version_major (void) EV_THROW
656{ 2549{
657 return EV_VERSION_MAJOR; 2550 return EV_VERSION_MAJOR;
658} 2551}
659 2552
660int 2553int ecb_cold
661ev_version_minor (void) 2554ev_version_minor (void) EV_THROW
662{ 2555{
663 return EV_VERSION_MINOR; 2556 return EV_VERSION_MINOR;
664} 2557}
665 2558
666/* return true if we are running with elevated privileges and should ignore env variables */ 2559/* return true if we are running with elevated privileges and should ignore env variables */
667static int 2560int inline_size ecb_cold
668enable_secure (void) 2561enable_secure (void)
669{ 2562{
670#ifdef WIN32 2563#ifdef _WIN32
671 return 0; 2564 return 0;
672#else 2565#else
673 return getuid () != geteuid () 2566 return getuid () != geteuid ()
674 || getgid () != getegid (); 2567 || getgid () != getegid ();
675#endif 2568#endif
676} 2569}
677 2570
2571unsigned int ecb_cold
2572ev_supported_backends (void) EV_THROW
2573{
2574 unsigned int flags = 0;
2575
2576 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2577 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2578 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2579 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2580 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2581
2582 return flags;
2583}
2584
2585unsigned int ecb_cold
2586ev_recommended_backends (void) EV_THROW
2587{
2588 unsigned int flags = ev_supported_backends ();
2589
2590#ifndef __NetBSD__
2591 /* kqueue is borked on everything but netbsd apparently */
2592 /* it usually doesn't work correctly on anything but sockets and pipes */
2593 flags &= ~EVBACKEND_KQUEUE;
2594#endif
2595#ifdef __APPLE__
2596 /* only select works correctly on that "unix-certified" platform */
2597 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2598 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2599#endif
2600#ifdef __FreeBSD__
2601 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2602#endif
2603
2604 return flags;
2605}
2606
2607unsigned int ecb_cold
2608ev_embeddable_backends (void) EV_THROW
2609{
2610 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2611
2612 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2613 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2614 flags &= ~EVBACKEND_EPOLL;
2615
2616 return flags;
2617}
2618
2619unsigned int
2620ev_backend (EV_P) EV_THROW
2621{
2622 return backend;
2623}
2624
2625#if EV_FEATURE_API
2626unsigned int
2627ev_iteration (EV_P) EV_THROW
2628{
2629 return loop_count;
2630}
2631
2632unsigned int
2633ev_depth (EV_P) EV_THROW
2634{
2635 return loop_depth;
2636}
2637
2638void
2639ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2640{
2641 io_blocktime = interval;
2642}
2643
2644void
2645ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2646{
2647 timeout_blocktime = interval;
2648}
2649
2650void
2651ev_set_userdata (EV_P_ void *data) EV_THROW
2652{
2653 userdata = data;
2654}
2655
2656void *
2657ev_userdata (EV_P) EV_THROW
2658{
2659 return userdata;
2660}
2661
2662void
2663ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_THROW
2664{
2665 invoke_cb = invoke_pending_cb;
2666}
2667
2668void
2669ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2670{
2671 release_cb = release;
2672 acquire_cb = acquire;
2673}
2674#endif
2675
2676/* initialise a loop structure, must be zero-initialised */
2677static void noinline ecb_cold
2678loop_init (EV_P_ unsigned int flags) EV_THROW
2679{
2680 if (!backend)
2681 {
2682 origflags = flags;
2683
2684#if EV_USE_REALTIME
2685 if (!have_realtime)
2686 {
2687 struct timespec ts;
2688
2689 if (!clock_gettime (CLOCK_REALTIME, &ts))
2690 have_realtime = 1;
2691 }
2692#endif
2693
2694#if EV_USE_MONOTONIC
2695 if (!have_monotonic)
2696 {
2697 struct timespec ts;
2698
2699 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2700 have_monotonic = 1;
2701 }
2702#endif
2703
2704 /* pid check not overridable via env */
2705#ifndef _WIN32
2706 if (flags & EVFLAG_FORKCHECK)
2707 curpid = getpid ();
2708#endif
2709
2710 if (!(flags & EVFLAG_NOENV)
2711 && !enable_secure ()
2712 && getenv ("LIBEV_FLAGS"))
2713 flags = atoi (getenv ("LIBEV_FLAGS"));
2714
2715 ev_rt_now = ev_time ();
2716 mn_now = get_clock ();
2717 now_floor = mn_now;
2718 rtmn_diff = ev_rt_now - mn_now;
2719#if EV_FEATURE_API
2720 invoke_cb = ev_invoke_pending;
2721#endif
2722
2723 io_blocktime = 0.;
2724 timeout_blocktime = 0.;
2725 backend = 0;
2726 backend_fd = -1;
2727 sig_pending = 0;
2728#if EV_ASYNC_ENABLE
2729 async_pending = 0;
2730#endif
2731 pipe_write_skipped = 0;
2732 pipe_write_wanted = 0;
2733 evpipe [0] = -1;
2734 evpipe [1] = -1;
2735#if EV_USE_INOTIFY
2736 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2737#endif
2738#if EV_USE_SIGNALFD
2739 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2740#endif
2741
2742 if (!(flags & EVBACKEND_MASK))
2743 flags |= ev_recommended_backends ();
2744
2745#if EV_USE_IOCP
2746 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2747#endif
2748#if EV_USE_PORT
2749 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2750#endif
2751#if EV_USE_KQUEUE
2752 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2753#endif
2754#if EV_USE_EPOLL
2755 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2756#endif
2757#if EV_USE_POLL
2758 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2759#endif
2760#if EV_USE_SELECT
2761 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2762#endif
2763
2764 ev_prepare_init (&pending_w, pendingcb);
2765
2766#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2767 ev_init (&pipe_w, pipecb);
2768 ev_set_priority (&pipe_w, EV_MAXPRI);
2769#endif
2770 }
2771}
2772
2773/* free up a loop structure */
2774void ecb_cold
2775ev_loop_destroy (EV_P)
2776{
2777 int i;
2778
2779#if EV_MULTIPLICITY
2780 /* mimic free (0) */
2781 if (!EV_A)
2782 return;
2783#endif
2784
2785#if EV_CLEANUP_ENABLE
2786 /* queue cleanup watchers (and execute them) */
2787 if (expect_false (cleanupcnt))
2788 {
2789 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2790 EV_INVOKE_PENDING;
2791 }
2792#endif
2793
2794#if EV_CHILD_ENABLE
2795 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2796 {
2797 ev_ref (EV_A); /* child watcher */
2798 ev_signal_stop (EV_A_ &childev);
2799 }
2800#endif
2801
2802 if (ev_is_active (&pipe_w))
2803 {
2804 /*ev_ref (EV_A);*/
2805 /*ev_io_stop (EV_A_ &pipe_w);*/
2806
2807 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2808 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2809 }
2810
2811#if EV_USE_SIGNALFD
2812 if (ev_is_active (&sigfd_w))
2813 close (sigfd);
2814#endif
2815
2816#if EV_USE_INOTIFY
2817 if (fs_fd >= 0)
2818 close (fs_fd);
2819#endif
2820
2821 if (backend_fd >= 0)
2822 close (backend_fd);
2823
2824#if EV_USE_IOCP
2825 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2826#endif
2827#if EV_USE_PORT
2828 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
2829#endif
2830#if EV_USE_KQUEUE
2831 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
2832#endif
2833#if EV_USE_EPOLL
2834 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
2835#endif
2836#if EV_USE_POLL
2837 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
2838#endif
2839#if EV_USE_SELECT
2840 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
2841#endif
2842
2843 for (i = NUMPRI; i--; )
2844 {
2845 array_free (pending, [i]);
2846#if EV_IDLE_ENABLE
2847 array_free (idle, [i]);
2848#endif
2849 }
2850
2851 ev_free (anfds); anfds = 0; anfdmax = 0;
2852
2853 /* have to use the microsoft-never-gets-it-right macro */
2854 array_free (rfeed, EMPTY);
2855 array_free (fdchange, EMPTY);
2856 array_free (timer, EMPTY);
2857#if EV_PERIODIC_ENABLE
2858 array_free (periodic, EMPTY);
2859#endif
2860#if EV_FORK_ENABLE
2861 array_free (fork, EMPTY);
2862#endif
2863#if EV_CLEANUP_ENABLE
2864 array_free (cleanup, EMPTY);
2865#endif
2866 array_free (prepare, EMPTY);
2867 array_free (check, EMPTY);
2868#if EV_ASYNC_ENABLE
2869 array_free (async, EMPTY);
2870#endif
2871
2872 backend = 0;
2873
2874#if EV_MULTIPLICITY
2875 if (ev_is_default_loop (EV_A))
2876#endif
2877 ev_default_loop_ptr = 0;
2878#if EV_MULTIPLICITY
2879 else
2880 ev_free (EV_A);
2881#endif
2882}
2883
2884#if EV_USE_INOTIFY
2885inline_size void infy_fork (EV_P);
2886#endif
2887
2888inline_size void
2889loop_fork (EV_P)
2890{
2891#if EV_USE_PORT
2892 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
2893#endif
2894#if EV_USE_KQUEUE
2895 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2896#endif
2897#if EV_USE_EPOLL
2898 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
2899#endif
2900#if EV_USE_INOTIFY
2901 infy_fork (EV_A);
2902#endif
2903
2904#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2905 if (ev_is_active (&pipe_w))
2906 {
2907 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2908
2909 ev_ref (EV_A);
2910 ev_io_stop (EV_A_ &pipe_w);
2911
2912 if (evpipe [0] >= 0)
2913 EV_WIN32_CLOSE_FD (evpipe [0]);
2914
2915 evpipe_init (EV_A);
2916 /* iterate over everything, in case we missed something before */
2917 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
2918 }
2919#endif
2920
2921 postfork = 0;
2922}
2923
2924#if EV_MULTIPLICITY
2925
2926struct ev_loop * ecb_cold
2927ev_loop_new (unsigned int flags) EV_THROW
2928{
2929 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2930
2931 memset (EV_A, 0, sizeof (struct ev_loop));
2932 loop_init (EV_A_ flags);
2933
2934 if (ev_backend (EV_A))
2935 return EV_A;
2936
2937 ev_free (EV_A);
2938 return 0;
2939}
2940
2941#endif /* multiplicity */
2942
2943#if EV_VERIFY
2944static void noinline ecb_cold
2945verify_watcher (EV_P_ W w)
2946{
2947 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2948
2949 if (w->pending)
2950 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2951}
2952
2953static void noinline ecb_cold
2954verify_heap (EV_P_ ANHE *heap, int N)
2955{
2956 int i;
2957
2958 for (i = HEAP0; i < N + HEAP0; ++i)
2959 {
2960 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2961 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2962 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2963
2964 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2965 }
2966}
2967
2968static void noinline ecb_cold
2969array_verify (EV_P_ W *ws, int cnt)
2970{
2971 while (cnt--)
2972 {
2973 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2974 verify_watcher (EV_A_ ws [cnt]);
2975 }
2976}
2977#endif
2978
2979#if EV_FEATURE_API
2980void ecb_cold
2981ev_verify (EV_P) EV_THROW
2982{
2983#if EV_VERIFY
2984 int i;
2985 WL w, w2;
2986
2987 assert (activecnt >= -1);
2988
2989 assert (fdchangemax >= fdchangecnt);
2990 for (i = 0; i < fdchangecnt; ++i)
2991 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2992
2993 assert (anfdmax >= 0);
2994 for (i = 0; i < anfdmax; ++i)
2995 {
2996 int j = 0;
2997
2998 for (w = w2 = anfds [i].head; w; w = w->next)
2999 {
3000 verify_watcher (EV_A_ (W)w);
3001
3002 if (j++ & 1)
3003 {
3004 assert (("libev: io watcher list contains a loop", w != w2));
3005 w2 = w2->next;
3006 }
3007
3008 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3009 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3010 }
3011 }
3012
3013 assert (timermax >= timercnt);
3014 verify_heap (EV_A_ timers, timercnt);
3015
3016#if EV_PERIODIC_ENABLE
3017 assert (periodicmax >= periodiccnt);
3018 verify_heap (EV_A_ periodics, periodiccnt);
3019#endif
3020
3021 for (i = NUMPRI; i--; )
3022 {
3023 assert (pendingmax [i] >= pendingcnt [i]);
3024#if EV_IDLE_ENABLE
3025 assert (idleall >= 0);
3026 assert (idlemax [i] >= idlecnt [i]);
3027 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3028#endif
3029 }
3030
3031#if EV_FORK_ENABLE
3032 assert (forkmax >= forkcnt);
3033 array_verify (EV_A_ (W *)forks, forkcnt);
3034#endif
3035
3036#if EV_CLEANUP_ENABLE
3037 assert (cleanupmax >= cleanupcnt);
3038 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3039#endif
3040
3041#if EV_ASYNC_ENABLE
3042 assert (asyncmax >= asynccnt);
3043 array_verify (EV_A_ (W *)asyncs, asynccnt);
3044#endif
3045
3046#if EV_PREPARE_ENABLE
3047 assert (preparemax >= preparecnt);
3048 array_verify (EV_A_ (W *)prepares, preparecnt);
3049#endif
3050
3051#if EV_CHECK_ENABLE
3052 assert (checkmax >= checkcnt);
3053 array_verify (EV_A_ (W *)checks, checkcnt);
3054#endif
3055
3056# if 0
3057#if EV_CHILD_ENABLE
3058 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3059 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3060#endif
3061# endif
3062#endif
3063}
3064#endif
3065
3066#if EV_MULTIPLICITY
3067struct ev_loop * ecb_cold
3068#else
678int 3069int
679ev_method (EV_P) 3070#endif
3071ev_default_loop (unsigned int flags) EV_THROW
680{ 3072{
681 return method; 3073 if (!ev_default_loop_ptr)
682}
683
684static void
685loop_init (EV_P_ int methods)
686{
687 if (!method)
688 {
689#if EV_USE_MONOTONIC
690 { 3074 {
691 struct timespec ts;
692 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
693 have_monotonic = 1;
694 }
695#endif
696
697 rt_now = ev_time ();
698 mn_now = get_clock ();
699 now_floor = mn_now;
700 rtmn_diff = rt_now - mn_now;
701
702 if (methods == EVMETHOD_AUTO)
703 if (!enable_secure () && getenv ("LIBEV_METHODS"))
704 methods = atoi (getenv ("LIBEV_METHODS"));
705 else
706 methods = EVMETHOD_ANY;
707
708 method = 0;
709#if EV_USE_WIN32
710 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
711#endif
712#if EV_USE_KQUEUE
713 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
714#endif
715#if EV_USE_EPOLL
716 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
717#endif
718#if EV_USE_POLL
719 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
720#endif
721#if EV_USE_SELECT
722 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
723#endif
724
725 ev_watcher_init (&sigev, sigcb);
726 ev_set_priority (&sigev, EV_MAXPRI);
727 }
728}
729
730void
731loop_destroy (EV_P)
732{
733 int i;
734
735#if EV_USE_WIN32
736 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
737#endif
738#if EV_USE_KQUEUE
739 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
740#endif
741#if EV_USE_EPOLL
742 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
743#endif
744#if EV_USE_POLL
745 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
746#endif
747#if EV_USE_SELECT
748 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
749#endif
750
751 for (i = NUMPRI; i--; )
752 array_free (pending, [i]);
753
754 /* have to use the microsoft-never-gets-it-right macro */
755 array_free_microshit (fdchange);
756 array_free_microshit (timer);
757 array_free_microshit (periodic);
758 array_free_microshit (idle);
759 array_free_microshit (prepare);
760 array_free_microshit (check);
761
762 method = 0;
763}
764
765static void
766loop_fork (EV_P)
767{
768#if EV_USE_EPOLL
769 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
770#endif
771#if EV_USE_KQUEUE
772 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
773#endif
774
775 if (ev_is_active (&sigev))
776 {
777 /* default loop */
778
779 ev_ref (EV_A);
780 ev_io_stop (EV_A_ &sigev);
781 close (sigpipe [0]);
782 close (sigpipe [1]);
783
784 while (pipe (sigpipe))
785 syserr ("(libev) error creating pipe");
786
787 siginit (EV_A);
788 }
789
790 postfork = 0;
791}
792
793#if EV_MULTIPLICITY 3075#if EV_MULTIPLICITY
794struct ev_loop * 3076 EV_P = ev_default_loop_ptr = &default_loop_struct;
795ev_loop_new (int methods)
796{
797 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
798
799 memset (loop, 0, sizeof (struct ev_loop));
800
801 loop_init (EV_A_ methods);
802
803 if (ev_method (EV_A))
804 return loop;
805
806 return 0;
807}
808
809void
810ev_loop_destroy (EV_P)
811{
812 loop_destroy (EV_A);
813 ev_free (loop);
814}
815
816void
817ev_loop_fork (EV_P)
818{
819 postfork = 1;
820}
821
822#endif
823
824#if EV_MULTIPLICITY
825struct ev_loop default_loop_struct;
826static struct ev_loop *default_loop;
827
828struct ev_loop *
829#else 3077#else
830static int default_loop;
831
832int
833#endif
834ev_default_loop (int methods)
835{
836 if (sigpipe [0] == sigpipe [1])
837 if (pipe (sigpipe))
838 return 0;
839
840 if (!default_loop)
841 {
842#if EV_MULTIPLICITY
843 struct ev_loop *loop = default_loop = &default_loop_struct;
844#else
845 default_loop = 1; 3078 ev_default_loop_ptr = 1;
846#endif 3079#endif
847 3080
848 loop_init (EV_A_ methods); 3081 loop_init (EV_A_ flags);
849 3082
850 if (ev_method (EV_A)) 3083 if (ev_backend (EV_A))
851 { 3084 {
852 siginit (EV_A); 3085#if EV_CHILD_ENABLE
853
854#ifndef WIN32
855 ev_signal_init (&childev, childcb, SIGCHLD); 3086 ev_signal_init (&childev, childcb, SIGCHLD);
856 ev_set_priority (&childev, EV_MAXPRI); 3087 ev_set_priority (&childev, EV_MAXPRI);
857 ev_signal_start (EV_A_ &childev); 3088 ev_signal_start (EV_A_ &childev);
858 ev_unref (EV_A); /* child watcher should not keep loop alive */ 3089 ev_unref (EV_A); /* child watcher should not keep loop alive */
859#endif 3090#endif
860 } 3091 }
861 else 3092 else
862 default_loop = 0; 3093 ev_default_loop_ptr = 0;
863 } 3094 }
864 3095
865 return default_loop; 3096 return ev_default_loop_ptr;
866} 3097}
867 3098
868void 3099void
869ev_default_destroy (void) 3100ev_loop_fork (EV_P) EV_THROW
870{ 3101{
871#if EV_MULTIPLICITY 3102 postfork = 1;
872 struct ev_loop *loop = default_loop;
873#endif
874
875#ifndef WIN32
876 ev_ref (EV_A); /* child watcher */
877 ev_signal_stop (EV_A_ &childev);
878#endif
879
880 ev_ref (EV_A); /* signal watcher */
881 ev_io_stop (EV_A_ &sigev);
882
883 close (sigpipe [0]); sigpipe [0] = 0;
884 close (sigpipe [1]); sigpipe [1] = 0;
885
886 loop_destroy (EV_A);
887} 3103}
3104
3105/*****************************************************************************/
888 3106
889void 3107void
890ev_default_fork (void) 3108ev_invoke (EV_P_ void *w, int revents)
891{ 3109{
892#if EV_MULTIPLICITY 3110 EV_CB_INVOKE ((W)w, revents);
893 struct ev_loop *loop = default_loop;
894#endif
895
896 if (method)
897 postfork = 1;
898} 3111}
899 3112
900/*****************************************************************************/ 3113unsigned int
901 3114ev_pending_count (EV_P) EV_THROW
902static void
903call_pending (EV_P)
904{ 3115{
905 int pri; 3116 int pri;
3117 unsigned int count = 0;
906 3118
907 for (pri = NUMPRI; pri--; ) 3119 for (pri = NUMPRI; pri--; )
3120 count += pendingcnt [pri];
3121
3122 return count;
3123}
3124
3125void noinline
3126ev_invoke_pending (EV_P)
3127{
3128 pendingpri = NUMPRI;
3129
3130 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
3131 {
3132 --pendingpri;
3133
908 while (pendingcnt [pri]) 3134 while (pendingcnt [pendingpri])
909 {
910 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
911
912 if (p->w)
913 {
914 p->w->pending = 0;
915 p->w->cb (EV_A_ p->w, p->events);
916 }
917 }
918}
919
920static void
921timers_reify (EV_P)
922{
923 while (timercnt && ((WT)timers [0])->at <= mn_now)
924 {
925 struct ev_timer *w = timers [0];
926
927 assert (("inactive timer on timer heap detected", ev_is_active (w)));
928
929 /* first reschedule or stop timer */
930 if (w->repeat)
931 { 3135 {
932 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3136 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
933 ((WT)w)->at = mn_now + w->repeat; 3137
934 downheap ((WT *)timers, timercnt, 0); 3138 p->w->pending = 0;
3139 EV_CB_INVOKE (p->w, p->events);
3140 EV_FREQUENT_CHECK;
935 } 3141 }
936 else
937 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
938
939 event (EV_A_ (W)w, EV_TIMEOUT);
940 }
941}
942
943static void
944periodics_reify (EV_P)
945{
946 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
947 { 3142 }
948 struct ev_periodic *w = periodics [0]; 3143}
949 3144
950 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 3145#if EV_IDLE_ENABLE
3146/* make idle watchers pending. this handles the "call-idle */
3147/* only when higher priorities are idle" logic */
3148inline_size void
3149idle_reify (EV_P)
3150{
3151 if (expect_false (idleall))
3152 {
3153 int pri;
951 3154
952 /* first reschedule or stop timer */ 3155 for (pri = NUMPRI; pri--; )
953 if (w->interval)
954 { 3156 {
955 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 3157 if (pendingcnt [pri])
956 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 3158 break;
957 downheap ((WT *)periodics, periodiccnt, 0);
958 }
959 else
960 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
961 3159
962 event (EV_A_ (W)w, EV_PERIODIC); 3160 if (idlecnt [pri])
963 }
964}
965
966static void
967periodics_reschedule (EV_P)
968{
969 int i;
970
971 /* adjust periodics after time jump */
972 for (i = 0; i < periodiccnt; ++i)
973 {
974 struct ev_periodic *w = periodics [i];
975
976 if (w->interval)
977 {
978 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
979
980 if (fabs (diff) >= 1e-4)
981 { 3161 {
982 ev_periodic_stop (EV_A_ w); 3162 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
983 ev_periodic_start (EV_A_ w); 3163 break;
984
985 i = 0; /* restart loop, inefficient, but time jumps should be rare */
986 } 3164 }
987 } 3165 }
988 } 3166 }
989} 3167}
3168#endif
990 3169
991inline int 3170/* make timers pending */
992time_update_monotonic (EV_P) 3171inline_size void
3172timers_reify (EV_P)
993{ 3173{
994 mn_now = get_clock (); 3174 EV_FREQUENT_CHECK;
995 3175
996 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 3176 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
997 {
998 rt_now = rtmn_diff + mn_now;
999 return 0;
1000 } 3177 {
1001 else 3178 do
3179 {
3180 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3181
3182 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3183
3184 /* first reschedule or stop timer */
3185 if (w->repeat)
3186 {
3187 ev_at (w) += w->repeat;
3188 if (ev_at (w) < mn_now)
3189 ev_at (w) = mn_now;
3190
3191 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3192
3193 ANHE_at_cache (timers [HEAP0]);
3194 downheap (timers, timercnt, HEAP0);
3195 }
3196 else
3197 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3198
3199 EV_FREQUENT_CHECK;
3200 feed_reverse (EV_A_ (W)w);
3201 }
3202 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3203
3204 feed_reverse_done (EV_A_ EV_TIMER);
1002 { 3205 }
1003 now_floor = mn_now; 3206}
1004 rt_now = ev_time (); 3207
1005 return 1; 3208#if EV_PERIODIC_ENABLE
3209
3210static void noinline
3211periodic_recalc (EV_P_ ev_periodic *w)
3212{
3213 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3214 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3215
3216 /* the above almost always errs on the low side */
3217 while (at <= ev_rt_now)
1006 } 3218 {
1007} 3219 ev_tstamp nat = at + w->interval;
1008 3220
1009static void 3221 /* when resolution fails us, we use ev_rt_now */
1010time_update (EV_P) 3222 if (expect_false (nat == at))
3223 {
3224 at = ev_rt_now;
3225 break;
3226 }
3227
3228 at = nat;
3229 }
3230
3231 ev_at (w) = at;
3232}
3233
3234/* make periodics pending */
3235inline_size void
3236periodics_reify (EV_P)
3237{
3238 EV_FREQUENT_CHECK;
3239
3240 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3241 {
3242 do
3243 {
3244 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3245
3246 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3247
3248 /* first reschedule or stop timer */
3249 if (w->reschedule_cb)
3250 {
3251 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3252
3253 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3254
3255 ANHE_at_cache (periodics [HEAP0]);
3256 downheap (periodics, periodiccnt, HEAP0);
3257 }
3258 else if (w->interval)
3259 {
3260 periodic_recalc (EV_A_ w);
3261 ANHE_at_cache (periodics [HEAP0]);
3262 downheap (periodics, periodiccnt, HEAP0);
3263 }
3264 else
3265 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3266
3267 EV_FREQUENT_CHECK;
3268 feed_reverse (EV_A_ (W)w);
3269 }
3270 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3271
3272 feed_reverse_done (EV_A_ EV_PERIODIC);
3273 }
3274}
3275
3276/* simply recalculate all periodics */
3277/* TODO: maybe ensure that at least one event happens when jumping forward? */
3278static void noinline ecb_cold
3279periodics_reschedule (EV_P)
1011{ 3280{
1012 int i; 3281 int i;
1013 3282
3283 /* adjust periodics after time jump */
3284 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3285 {
3286 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3287
3288 if (w->reschedule_cb)
3289 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3290 else if (w->interval)
3291 periodic_recalc (EV_A_ w);
3292
3293 ANHE_at_cache (periodics [i]);
3294 }
3295
3296 reheap (periodics, periodiccnt);
3297}
3298#endif
3299
3300/* adjust all timers by a given offset */
3301static void noinline ecb_cold
3302timers_reschedule (EV_P_ ev_tstamp adjust)
3303{
3304 int i;
3305
3306 for (i = 0; i < timercnt; ++i)
3307 {
3308 ANHE *he = timers + i + HEAP0;
3309 ANHE_w (*he)->at += adjust;
3310 ANHE_at_cache (*he);
3311 }
3312}
3313
3314/* fetch new monotonic and realtime times from the kernel */
3315/* also detect if there was a timejump, and act accordingly */
3316inline_speed void
3317time_update (EV_P_ ev_tstamp max_block)
3318{
1014#if EV_USE_MONOTONIC 3319#if EV_USE_MONOTONIC
1015 if (expect_true (have_monotonic)) 3320 if (expect_true (have_monotonic))
1016 { 3321 {
1017 if (time_update_monotonic (EV_A)) 3322 int i;
3323 ev_tstamp odiff = rtmn_diff;
3324
3325 mn_now = get_clock ();
3326
3327 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3328 /* interpolate in the meantime */
3329 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1018 { 3330 {
1019 ev_tstamp odiff = rtmn_diff; 3331 ev_rt_now = rtmn_diff + mn_now;
3332 return;
3333 }
1020 3334
3335 now_floor = mn_now;
3336 ev_rt_now = ev_time ();
3337
1021 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 3338 /* loop a few times, before making important decisions.
3339 * on the choice of "4": one iteration isn't enough,
3340 * in case we get preempted during the calls to
3341 * ev_time and get_clock. a second call is almost guaranteed
3342 * to succeed in that case, though. and looping a few more times
3343 * doesn't hurt either as we only do this on time-jumps or
3344 * in the unlikely event of having been preempted here.
3345 */
3346 for (i = 4; --i; )
1022 { 3347 {
3348 ev_tstamp diff;
1023 rtmn_diff = rt_now - mn_now; 3349 rtmn_diff = ev_rt_now - mn_now;
1024 3350
1025 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 3351 diff = odiff - rtmn_diff;
3352
3353 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1026 return; /* all is well */ 3354 return; /* all is well */
1027 3355
1028 rt_now = ev_time (); 3356 ev_rt_now = ev_time ();
1029 mn_now = get_clock (); 3357 mn_now = get_clock ();
1030 now_floor = mn_now; 3358 now_floor = mn_now;
1031 } 3359 }
1032 3360
3361 /* no timer adjustment, as the monotonic clock doesn't jump */
3362 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
3363# if EV_PERIODIC_ENABLE
3364 periodics_reschedule (EV_A);
3365# endif
3366 }
3367 else
3368#endif
3369 {
3370 ev_rt_now = ev_time ();
3371
3372 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
3373 {
3374 /* adjust timers. this is easy, as the offset is the same for all of them */
3375 timers_reschedule (EV_A_ ev_rt_now - mn_now);
3376#if EV_PERIODIC_ENABLE
1033 periodics_reschedule (EV_A); 3377 periodics_reschedule (EV_A);
1034 /* no timer adjustment, as the monotonic clock doesn't jump */ 3378#endif
1035 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1036 } 3379 }
1037 }
1038 else
1039#endif
1040 {
1041 rt_now = ev_time ();
1042 3380
1043 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1044 {
1045 periodics_reschedule (EV_A);
1046
1047 /* adjust timers. this is easy, as the offset is the same for all */
1048 for (i = 0; i < timercnt; ++i)
1049 ((WT)timers [i])->at += rt_now - mn_now;
1050 }
1051
1052 mn_now = rt_now; 3381 mn_now = ev_rt_now;
1053 } 3382 }
1054} 3383}
1055 3384
1056void 3385int
1057ev_ref (EV_P)
1058{
1059 ++activecnt;
1060}
1061
1062void
1063ev_unref (EV_P)
1064{
1065 --activecnt;
1066}
1067
1068static int loop_done;
1069
1070void
1071ev_loop (EV_P_ int flags) 3386ev_run (EV_P_ int flags)
1072{ 3387{
1073 double block; 3388#if EV_FEATURE_API
1074 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 3389 ++loop_depth;
3390#endif
3391
3392 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3393
3394 loop_done = EVBREAK_CANCEL;
3395
3396 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1075 3397
1076 do 3398 do
1077 { 3399 {
3400#if EV_VERIFY >= 2
3401 ev_verify (EV_A);
3402#endif
3403
3404#ifndef _WIN32
3405 if (expect_false (curpid)) /* penalise the forking check even more */
3406 if (expect_false (getpid () != curpid))
3407 {
3408 curpid = getpid ();
3409 postfork = 1;
3410 }
3411#endif
3412
3413#if EV_FORK_ENABLE
3414 /* we might have forked, so queue fork handlers */
3415 if (expect_false (postfork))
3416 if (forkcnt)
3417 {
3418 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3419 EV_INVOKE_PENDING;
3420 }
3421#endif
3422
3423#if EV_PREPARE_ENABLE
1078 /* queue check watchers (and execute them) */ 3424 /* queue prepare watchers (and execute them) */
1079 if (expect_false (preparecnt)) 3425 if (expect_false (preparecnt))
1080 { 3426 {
1081 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3427 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1082 call_pending (EV_A); 3428 EV_INVOKE_PENDING;
1083 } 3429 }
3430#endif
3431
3432 if (expect_false (loop_done))
3433 break;
1084 3434
1085 /* we might have forked, so reify kernel state if necessary */ 3435 /* we might have forked, so reify kernel state if necessary */
1086 if (expect_false (postfork)) 3436 if (expect_false (postfork))
1087 loop_fork (EV_A); 3437 loop_fork (EV_A);
1088 3438
1089 /* update fd-related kernel structures */ 3439 /* update fd-related kernel structures */
1090 fd_reify (EV_A); 3440 fd_reify (EV_A);
1091 3441
1092 /* calculate blocking time */ 3442 /* calculate blocking time */
3443 {
3444 ev_tstamp waittime = 0.;
3445 ev_tstamp sleeptime = 0.;
1093 3446
1094 /* we only need this for !monotonic clockor timers, but as we basically 3447 /* remember old timestamp for io_blocktime calculation */
1095 always have timers, we just calculate it always */ 3448 ev_tstamp prev_mn_now = mn_now;
1096#if EV_USE_MONOTONIC 3449
1097 if (expect_true (have_monotonic)) 3450 /* update time to cancel out callback processing overhead */
1098 time_update_monotonic (EV_A); 3451 time_update (EV_A_ 1e100);
1099 else 3452
1100#endif 3453 /* from now on, we want a pipe-wake-up */
3454 pipe_write_wanted = 1;
3455
3456 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3457
3458 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1101 { 3459 {
1102 rt_now = ev_time ();
1103 mn_now = rt_now;
1104 }
1105
1106 if (flags & EVLOOP_NONBLOCK || idlecnt)
1107 block = 0.;
1108 else
1109 {
1110 block = MAX_BLOCKTIME; 3460 waittime = MAX_BLOCKTIME;
1111 3461
1112 if (timercnt) 3462 if (timercnt)
1113 { 3463 {
1114 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 3464 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1115 if (block > to) block = to; 3465 if (waittime > to) waittime = to;
1116 } 3466 }
1117 3467
3468#if EV_PERIODIC_ENABLE
1118 if (periodiccnt) 3469 if (periodiccnt)
1119 { 3470 {
1120 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 3471 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1121 if (block > to) block = to; 3472 if (waittime > to) waittime = to;
1122 } 3473 }
3474#endif
1123 3475
1124 if (block < 0.) block = 0.; 3476 /* don't let timeouts decrease the waittime below timeout_blocktime */
3477 if (expect_false (waittime < timeout_blocktime))
3478 waittime = timeout_blocktime;
3479
3480 /* at this point, we NEED to wait, so we have to ensure */
3481 /* to pass a minimum nonzero value to the backend */
3482 if (expect_false (waittime < backend_mintime))
3483 waittime = backend_mintime;
3484
3485 /* extra check because io_blocktime is commonly 0 */
3486 if (expect_false (io_blocktime))
3487 {
3488 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3489
3490 if (sleeptime > waittime - backend_mintime)
3491 sleeptime = waittime - backend_mintime;
3492
3493 if (expect_true (sleeptime > 0.))
3494 {
3495 ev_sleep (sleeptime);
3496 waittime -= sleeptime;
3497 }
3498 }
1125 } 3499 }
1126 3500
1127 method_poll (EV_A_ block); 3501#if EV_FEATURE_API
3502 ++loop_count;
3503#endif
3504 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3505 backend_poll (EV_A_ waittime);
3506 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1128 3507
3508 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3509
3510 ECB_MEMORY_FENCE_ACQUIRE;
3511 if (pipe_write_skipped)
3512 {
3513 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3514 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3515 }
3516
3517
1129 /* update rt_now, do magic */ 3518 /* update ev_rt_now, do magic */
1130 time_update (EV_A); 3519 time_update (EV_A_ waittime + sleeptime);
3520 }
1131 3521
1132 /* queue pending timers and reschedule them */ 3522 /* queue pending timers and reschedule them */
1133 timers_reify (EV_A); /* relative timers called last */ 3523 timers_reify (EV_A); /* relative timers called last */
3524#if EV_PERIODIC_ENABLE
1134 periodics_reify (EV_A); /* absolute timers called first */ 3525 periodics_reify (EV_A); /* absolute timers called first */
3526#endif
1135 3527
3528#if EV_IDLE_ENABLE
1136 /* queue idle watchers unless io or timers are pending */ 3529 /* queue idle watchers unless other events are pending */
1137 if (!pendingcnt) 3530 idle_reify (EV_A);
1138 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 3531#endif
1139 3532
3533#if EV_CHECK_ENABLE
1140 /* queue check watchers, to be executed first */ 3534 /* queue check watchers, to be executed first */
1141 if (checkcnt) 3535 if (expect_false (checkcnt))
1142 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3536 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3537#endif
1143 3538
1144 call_pending (EV_A); 3539 EV_INVOKE_PENDING;
1145 } 3540 }
1146 while (activecnt && !loop_done); 3541 while (expect_true (
3542 activecnt
3543 && !loop_done
3544 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3545 ));
1147 3546
1148 if (loop_done != 2) 3547 if (loop_done == EVBREAK_ONE)
1149 loop_done = 0; 3548 loop_done = EVBREAK_CANCEL;
3549
3550#if EV_FEATURE_API
3551 --loop_depth;
3552#endif
3553
3554 return activecnt;
1150} 3555}
1151 3556
1152void 3557void
1153ev_unloop (EV_P_ int how) 3558ev_break (EV_P_ int how) EV_THROW
1154{ 3559{
1155 loop_done = how; 3560 loop_done = how;
1156} 3561}
1157 3562
3563void
3564ev_ref (EV_P) EV_THROW
3565{
3566 ++activecnt;
3567}
3568
3569void
3570ev_unref (EV_P) EV_THROW
3571{
3572 --activecnt;
3573}
3574
3575void
3576ev_now_update (EV_P) EV_THROW
3577{
3578 time_update (EV_A_ 1e100);
3579}
3580
3581void
3582ev_suspend (EV_P) EV_THROW
3583{
3584 ev_now_update (EV_A);
3585}
3586
3587void
3588ev_resume (EV_P) EV_THROW
3589{
3590 ev_tstamp mn_prev = mn_now;
3591
3592 ev_now_update (EV_A);
3593 timers_reschedule (EV_A_ mn_now - mn_prev);
3594#if EV_PERIODIC_ENABLE
3595 /* TODO: really do this? */
3596 periodics_reschedule (EV_A);
3597#endif
3598}
3599
1158/*****************************************************************************/ 3600/*****************************************************************************/
3601/* singly-linked list management, used when the expected list length is short */
1159 3602
1160inline void 3603inline_size void
1161wlist_add (WL *head, WL elem) 3604wlist_add (WL *head, WL elem)
1162{ 3605{
1163 elem->next = *head; 3606 elem->next = *head;
1164 *head = elem; 3607 *head = elem;
1165} 3608}
1166 3609
1167inline void 3610inline_size void
1168wlist_del (WL *head, WL elem) 3611wlist_del (WL *head, WL elem)
1169{ 3612{
1170 while (*head) 3613 while (*head)
1171 { 3614 {
1172 if (*head == elem) 3615 if (expect_true (*head == elem))
1173 { 3616 {
1174 *head = elem->next; 3617 *head = elem->next;
1175 return; 3618 break;
1176 } 3619 }
1177 3620
1178 head = &(*head)->next; 3621 head = &(*head)->next;
1179 } 3622 }
1180} 3623}
1181 3624
3625/* internal, faster, version of ev_clear_pending */
1182inline void 3626inline_speed void
1183ev_clear_pending (EV_P_ W w) 3627clear_pending (EV_P_ W w)
1184{ 3628{
1185 if (w->pending) 3629 if (w->pending)
1186 { 3630 {
1187 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3631 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1188 w->pending = 0; 3632 w->pending = 0;
1189 } 3633 }
1190} 3634}
1191 3635
3636int
3637ev_clear_pending (EV_P_ void *w) EV_THROW
3638{
3639 W w_ = (W)w;
3640 int pending = w_->pending;
3641
3642 if (expect_true (pending))
3643 {
3644 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3645 p->w = (W)&pending_w;
3646 w_->pending = 0;
3647 return p->events;
3648 }
3649 else
3650 return 0;
3651}
3652
1192inline void 3653inline_size void
3654pri_adjust (EV_P_ W w)
3655{
3656 int pri = ev_priority (w);
3657 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3658 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3659 ev_set_priority (w, pri);
3660}
3661
3662inline_speed void
1193ev_start (EV_P_ W w, int active) 3663ev_start (EV_P_ W w, int active)
1194{ 3664{
1195 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 3665 pri_adjust (EV_A_ w);
1196 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1197
1198 w->active = active; 3666 w->active = active;
1199 ev_ref (EV_A); 3667 ev_ref (EV_A);
1200} 3668}
1201 3669
1202inline void 3670inline_size void
1203ev_stop (EV_P_ W w) 3671ev_stop (EV_P_ W w)
1204{ 3672{
1205 ev_unref (EV_A); 3673 ev_unref (EV_A);
1206 w->active = 0; 3674 w->active = 0;
1207} 3675}
1208 3676
1209/*****************************************************************************/ 3677/*****************************************************************************/
1210 3678
1211void 3679void noinline
1212ev_io_start (EV_P_ struct ev_io *w) 3680ev_io_start (EV_P_ ev_io *w) EV_THROW
1213{ 3681{
1214 int fd = w->fd; 3682 int fd = w->fd;
1215 3683
1216 if (ev_is_active (w)) 3684 if (expect_false (ev_is_active (w)))
1217 return; 3685 return;
1218 3686
1219 assert (("ev_io_start called with negative fd", fd >= 0)); 3687 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3688 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3689
3690 EV_FREQUENT_CHECK;
1220 3691
1221 ev_start (EV_A_ (W)w, 1); 3692 ev_start (EV_A_ (W)w, 1);
1222 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3693 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1223 wlist_add ((WL *)&anfds[fd].head, (WL)w); 3694 wlist_add (&anfds[fd].head, (WL)w);
1224 3695
1225 fd_change (EV_A_ fd); 3696 /* common bug, apparently */
1226} 3697 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
1227 3698
1228void 3699 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3700 w->events &= ~EV__IOFDSET;
3701
3702 EV_FREQUENT_CHECK;
3703}
3704
3705void noinline
1229ev_io_stop (EV_P_ struct ev_io *w) 3706ev_io_stop (EV_P_ ev_io *w) EV_THROW
1230{ 3707{
1231 ev_clear_pending (EV_A_ (W)w); 3708 clear_pending (EV_A_ (W)w);
1232 if (!ev_is_active (w)) 3709 if (expect_false (!ev_is_active (w)))
1233 return; 3710 return;
1234 3711
3712 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3713
3714 EV_FREQUENT_CHECK;
3715
1235 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 3716 wlist_del (&anfds[w->fd].head, (WL)w);
1236 ev_stop (EV_A_ (W)w); 3717 ev_stop (EV_A_ (W)w);
1237 3718
1238 fd_change (EV_A_ w->fd); 3719 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1239}
1240 3720
1241void 3721 EV_FREQUENT_CHECK;
3722}
3723
3724void noinline
1242ev_timer_start (EV_P_ struct ev_timer *w) 3725ev_timer_start (EV_P_ ev_timer *w) EV_THROW
1243{ 3726{
1244 if (ev_is_active (w)) 3727 if (expect_false (ev_is_active (w)))
1245 return; 3728 return;
1246 3729
1247 ((WT)w)->at += mn_now; 3730 ev_at (w) += mn_now;
1248 3731
1249 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3732 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1250 3733
3734 EV_FREQUENT_CHECK;
3735
3736 ++timercnt;
1251 ev_start (EV_A_ (W)w, ++timercnt); 3737 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1252 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void)); 3738 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1253 timers [timercnt - 1] = w; 3739 ANHE_w (timers [ev_active (w)]) = (WT)w;
1254 upheap ((WT *)timers, timercnt - 1); 3740 ANHE_at_cache (timers [ev_active (w)]);
3741 upheap (timers, ev_active (w));
1255 3742
3743 EV_FREQUENT_CHECK;
3744
1256 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3745 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1257} 3746}
1258 3747
1259void 3748void noinline
1260ev_timer_stop (EV_P_ struct ev_timer *w) 3749ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
1261{ 3750{
1262 ev_clear_pending (EV_A_ (W)w); 3751 clear_pending (EV_A_ (W)w);
1263 if (!ev_is_active (w)) 3752 if (expect_false (!ev_is_active (w)))
1264 return; 3753 return;
1265 3754
3755 EV_FREQUENT_CHECK;
3756
3757 {
3758 int active = ev_active (w);
3759
1266 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3760 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1267 3761
1268 if (((W)w)->active < timercnt--) 3762 --timercnt;
3763
3764 if (expect_true (active < timercnt + HEAP0))
1269 { 3765 {
1270 timers [((W)w)->active - 1] = timers [timercnt]; 3766 timers [active] = timers [timercnt + HEAP0];
1271 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 3767 adjustheap (timers, timercnt, active);
1272 } 3768 }
3769 }
1273 3770
1274 ((WT)w)->at = w->repeat; 3771 ev_at (w) -= mn_now;
1275 3772
1276 ev_stop (EV_A_ (W)w); 3773 ev_stop (EV_A_ (W)w);
1277}
1278 3774
1279void 3775 EV_FREQUENT_CHECK;
3776}
3777
3778void noinline
1280ev_timer_again (EV_P_ struct ev_timer *w) 3779ev_timer_again (EV_P_ ev_timer *w) EV_THROW
1281{ 3780{
3781 EV_FREQUENT_CHECK;
3782
3783 clear_pending (EV_A_ (W)w);
3784
1282 if (ev_is_active (w)) 3785 if (ev_is_active (w))
1283 { 3786 {
1284 if (w->repeat) 3787 if (w->repeat)
1285 { 3788 {
1286 ((WT)w)->at = mn_now + w->repeat; 3789 ev_at (w) = mn_now + w->repeat;
1287 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 3790 ANHE_at_cache (timers [ev_active (w)]);
3791 adjustheap (timers, timercnt, ev_active (w));
1288 } 3792 }
1289 else 3793 else
1290 ev_timer_stop (EV_A_ w); 3794 ev_timer_stop (EV_A_ w);
1291 } 3795 }
1292 else if (w->repeat) 3796 else if (w->repeat)
3797 {
3798 ev_at (w) = w->repeat;
1293 ev_timer_start (EV_A_ w); 3799 ev_timer_start (EV_A_ w);
1294} 3800 }
1295 3801
1296void 3802 EV_FREQUENT_CHECK;
3803}
3804
3805ev_tstamp
3806ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3807{
3808 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3809}
3810
3811#if EV_PERIODIC_ENABLE
3812void noinline
1297ev_periodic_start (EV_P_ struct ev_periodic *w) 3813ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
1298{ 3814{
1299 if (ev_is_active (w)) 3815 if (expect_false (ev_is_active (w)))
1300 return; 3816 return;
1301 3817
3818 if (w->reschedule_cb)
3819 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3820 else if (w->interval)
3821 {
1302 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3822 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
3823 periodic_recalc (EV_A_ w);
3824 }
3825 else
3826 ev_at (w) = w->offset;
1303 3827
1304 /* this formula differs from the one in periodic_reify because we do not always round up */ 3828 EV_FREQUENT_CHECK;
1305 if (w->interval)
1306 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1307 3829
3830 ++periodiccnt;
1308 ev_start (EV_A_ (W)w, ++periodiccnt); 3831 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1309 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 3832 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1310 periodics [periodiccnt - 1] = w; 3833 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1311 upheap ((WT *)periodics, periodiccnt - 1); 3834 ANHE_at_cache (periodics [ev_active (w)]);
3835 upheap (periodics, ev_active (w));
1312 3836
3837 EV_FREQUENT_CHECK;
3838
1313 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3839 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1314} 3840}
1315 3841
1316void 3842void noinline
1317ev_periodic_stop (EV_P_ struct ev_periodic *w) 3843ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
1318{ 3844{
1319 ev_clear_pending (EV_A_ (W)w); 3845 clear_pending (EV_A_ (W)w);
1320 if (!ev_is_active (w)) 3846 if (expect_false (!ev_is_active (w)))
1321 return; 3847 return;
1322 3848
3849 EV_FREQUENT_CHECK;
3850
3851 {
3852 int active = ev_active (w);
3853
1323 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3854 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1324 3855
1325 if (((W)w)->active < periodiccnt--) 3856 --periodiccnt;
3857
3858 if (expect_true (active < periodiccnt + HEAP0))
1326 { 3859 {
1327 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 3860 periodics [active] = periodics [periodiccnt + HEAP0];
1328 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 3861 adjustheap (periodics, periodiccnt, active);
1329 } 3862 }
3863 }
1330 3864
1331 ev_stop (EV_A_ (W)w); 3865 ev_stop (EV_A_ (W)w);
1332}
1333 3866
1334void 3867 EV_FREQUENT_CHECK;
1335ev_idle_start (EV_P_ struct ev_idle *w)
1336{
1337 if (ev_is_active (w))
1338 return;
1339
1340 ev_start (EV_A_ (W)w, ++idlecnt);
1341 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1342 idles [idlecnt - 1] = w;
1343} 3868}
1344 3869
1345void 3870void noinline
1346ev_idle_stop (EV_P_ struct ev_idle *w) 3871ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
1347{ 3872{
1348 ev_clear_pending (EV_A_ (W)w); 3873 /* TODO: use adjustheap and recalculation */
1349 if (ev_is_active (w))
1350 return;
1351
1352 idles [((W)w)->active - 1] = idles [--idlecnt];
1353 ev_stop (EV_A_ (W)w); 3874 ev_periodic_stop (EV_A_ w);
3875 ev_periodic_start (EV_A_ w);
1354} 3876}
1355 3877#endif
1356void
1357ev_prepare_start (EV_P_ struct ev_prepare *w)
1358{
1359 if (ev_is_active (w))
1360 return;
1361
1362 ev_start (EV_A_ (W)w, ++preparecnt);
1363 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1364 prepares [preparecnt - 1] = w;
1365}
1366
1367void
1368ev_prepare_stop (EV_P_ struct ev_prepare *w)
1369{
1370 ev_clear_pending (EV_A_ (W)w);
1371 if (ev_is_active (w))
1372 return;
1373
1374 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1375 ev_stop (EV_A_ (W)w);
1376}
1377
1378void
1379ev_check_start (EV_P_ struct ev_check *w)
1380{
1381 if (ev_is_active (w))
1382 return;
1383
1384 ev_start (EV_A_ (W)w, ++checkcnt);
1385 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1386 checks [checkcnt - 1] = w;
1387}
1388
1389void
1390ev_check_stop (EV_P_ struct ev_check *w)
1391{
1392 ev_clear_pending (EV_A_ (W)w);
1393 if (ev_is_active (w))
1394 return;
1395
1396 checks [((W)w)->active - 1] = checks [--checkcnt];
1397 ev_stop (EV_A_ (W)w);
1398}
1399 3878
1400#ifndef SA_RESTART 3879#ifndef SA_RESTART
1401# define SA_RESTART 0 3880# define SA_RESTART 0
1402#endif 3881#endif
1403 3882
3883#if EV_SIGNAL_ENABLE
3884
3885void noinline
3886ev_signal_start (EV_P_ ev_signal *w) EV_THROW
3887{
3888 if (expect_false (ev_is_active (w)))
3889 return;
3890
3891 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3892
3893#if EV_MULTIPLICITY
3894 assert (("libev: a signal must not be attached to two different loops",
3895 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3896
3897 signals [w->signum - 1].loop = EV_A;
3898 ECB_MEMORY_FENCE_RELEASE;
3899#endif
3900
3901 EV_FREQUENT_CHECK;
3902
3903#if EV_USE_SIGNALFD
3904 if (sigfd == -2)
3905 {
3906 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3907 if (sigfd < 0 && errno == EINVAL)
3908 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3909
3910 if (sigfd >= 0)
3911 {
3912 fd_intern (sigfd); /* doing it twice will not hurt */
3913
3914 sigemptyset (&sigfd_set);
3915
3916 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3917 ev_set_priority (&sigfd_w, EV_MAXPRI);
3918 ev_io_start (EV_A_ &sigfd_w);
3919 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3920 }
3921 }
3922
3923 if (sigfd >= 0)
3924 {
3925 /* TODO: check .head */
3926 sigaddset (&sigfd_set, w->signum);
3927 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3928
3929 signalfd (sigfd, &sigfd_set, 0);
3930 }
3931#endif
3932
3933 ev_start (EV_A_ (W)w, 1);
3934 wlist_add (&signals [w->signum - 1].head, (WL)w);
3935
3936 if (!((WL)w)->next)
3937# if EV_USE_SIGNALFD
3938 if (sigfd < 0) /*TODO*/
3939# endif
3940 {
3941# ifdef _WIN32
3942 evpipe_init (EV_A);
3943
3944 signal (w->signum, ev_sighandler);
3945# else
3946 struct sigaction sa;
3947
3948 evpipe_init (EV_A);
3949
3950 sa.sa_handler = ev_sighandler;
3951 sigfillset (&sa.sa_mask);
3952 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3953 sigaction (w->signum, &sa, 0);
3954
3955 if (origflags & EVFLAG_NOSIGMASK)
3956 {
3957 sigemptyset (&sa.sa_mask);
3958 sigaddset (&sa.sa_mask, w->signum);
3959 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3960 }
3961#endif
3962 }
3963
3964 EV_FREQUENT_CHECK;
3965}
3966
3967void noinline
3968ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
3969{
3970 clear_pending (EV_A_ (W)w);
3971 if (expect_false (!ev_is_active (w)))
3972 return;
3973
3974 EV_FREQUENT_CHECK;
3975
3976 wlist_del (&signals [w->signum - 1].head, (WL)w);
3977 ev_stop (EV_A_ (W)w);
3978
3979 if (!signals [w->signum - 1].head)
3980 {
3981#if EV_MULTIPLICITY
3982 signals [w->signum - 1].loop = 0; /* unattach from signal */
3983#endif
3984#if EV_USE_SIGNALFD
3985 if (sigfd >= 0)
3986 {
3987 sigset_t ss;
3988
3989 sigemptyset (&ss);
3990 sigaddset (&ss, w->signum);
3991 sigdelset (&sigfd_set, w->signum);
3992
3993 signalfd (sigfd, &sigfd_set, 0);
3994 sigprocmask (SIG_UNBLOCK, &ss, 0);
3995 }
3996 else
3997#endif
3998 signal (w->signum, SIG_DFL);
3999 }
4000
4001 EV_FREQUENT_CHECK;
4002}
4003
4004#endif
4005
4006#if EV_CHILD_ENABLE
4007
1404void 4008void
1405ev_signal_start (EV_P_ struct ev_signal *w) 4009ev_child_start (EV_P_ ev_child *w) EV_THROW
1406{ 4010{
1407#if EV_MULTIPLICITY 4011#if EV_MULTIPLICITY
1408 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 4012 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1409#endif 4013#endif
1410 if (ev_is_active (w)) 4014 if (expect_false (ev_is_active (w)))
1411 return; 4015 return;
1412 4016
1413 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 4017 EV_FREQUENT_CHECK;
1414 4018
1415 ev_start (EV_A_ (W)w, 1); 4019 ev_start (EV_A_ (W)w, 1);
1416 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 4020 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1417 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1418 4021
1419 if (!((WL)w)->next) 4022 EV_FREQUENT_CHECK;
4023}
4024
4025void
4026ev_child_stop (EV_P_ ev_child *w) EV_THROW
4027{
4028 clear_pending (EV_A_ (W)w);
4029 if (expect_false (!ev_is_active (w)))
4030 return;
4031
4032 EV_FREQUENT_CHECK;
4033
4034 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4035 ev_stop (EV_A_ (W)w);
4036
4037 EV_FREQUENT_CHECK;
4038}
4039
4040#endif
4041
4042#if EV_STAT_ENABLE
4043
4044# ifdef _WIN32
4045# undef lstat
4046# define lstat(a,b) _stati64 (a,b)
4047# endif
4048
4049#define DEF_STAT_INTERVAL 5.0074891
4050#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
4051#define MIN_STAT_INTERVAL 0.1074891
4052
4053static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
4054
4055#if EV_USE_INOTIFY
4056
4057/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4058# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4059
4060static void noinline
4061infy_add (EV_P_ ev_stat *w)
4062{
4063 w->wd = inotify_add_watch (fs_fd, w->path,
4064 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4065 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4066 | IN_DONT_FOLLOW | IN_MASK_ADD);
4067
4068 if (w->wd >= 0)
4069 {
4070 struct statfs sfs;
4071
4072 /* now local changes will be tracked by inotify, but remote changes won't */
4073 /* unless the filesystem is known to be local, we therefore still poll */
4074 /* also do poll on <2.6.25, but with normal frequency */
4075
4076 if (!fs_2625)
4077 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4078 else if (!statfs (w->path, &sfs)
4079 && (sfs.f_type == 0x1373 /* devfs */
4080 || sfs.f_type == 0x4006 /* fat */
4081 || sfs.f_type == 0x4d44 /* msdos */
4082 || sfs.f_type == 0xEF53 /* ext2/3 */
4083 || sfs.f_type == 0x72b6 /* jffs2 */
4084 || sfs.f_type == 0x858458f6 /* ramfs */
4085 || sfs.f_type == 0x5346544e /* ntfs */
4086 || sfs.f_type == 0x3153464a /* jfs */
4087 || sfs.f_type == 0x9123683e /* btrfs */
4088 || sfs.f_type == 0x52654973 /* reiser3 */
4089 || sfs.f_type == 0x01021994 /* tmpfs */
4090 || sfs.f_type == 0x58465342 /* xfs */))
4091 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4092 else
4093 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1420 { 4094 }
1421#if WIN32 4095 else
1422 signal (w->signum, sighandler); 4096 {
4097 /* can't use inotify, continue to stat */
4098 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4099
4100 /* if path is not there, monitor some parent directory for speedup hints */
4101 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4102 /* but an efficiency issue only */
4103 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
4104 {
4105 char path [4096];
4106 strcpy (path, w->path);
4107
4108 do
4109 {
4110 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
4111 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
4112
4113 char *pend = strrchr (path, '/');
4114
4115 if (!pend || pend == path)
4116 break;
4117
4118 *pend = 0;
4119 w->wd = inotify_add_watch (fs_fd, path, mask);
4120 }
4121 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
4122 }
4123 }
4124
4125 if (w->wd >= 0)
4126 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4127
4128 /* now re-arm timer, if required */
4129 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4130 ev_timer_again (EV_A_ &w->timer);
4131 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4132}
4133
4134static void noinline
4135infy_del (EV_P_ ev_stat *w)
4136{
4137 int slot;
4138 int wd = w->wd;
4139
4140 if (wd < 0)
4141 return;
4142
4143 w->wd = -2;
4144 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4145 wlist_del (&fs_hash [slot].head, (WL)w);
4146
4147 /* remove this watcher, if others are watching it, they will rearm */
4148 inotify_rm_watch (fs_fd, wd);
4149}
4150
4151static void noinline
4152infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4153{
4154 if (slot < 0)
4155 /* overflow, need to check for all hash slots */
4156 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4157 infy_wd (EV_A_ slot, wd, ev);
4158 else
4159 {
4160 WL w_;
4161
4162 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4163 {
4164 ev_stat *w = (ev_stat *)w_;
4165 w_ = w_->next; /* lets us remove this watcher and all before it */
4166
4167 if (w->wd == wd || wd == -1)
4168 {
4169 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4170 {
4171 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4172 w->wd = -1;
4173 infy_add (EV_A_ w); /* re-add, no matter what */
4174 }
4175
4176 stat_timer_cb (EV_A_ &w->timer, 0);
4177 }
4178 }
4179 }
4180}
4181
4182static void
4183infy_cb (EV_P_ ev_io *w, int revents)
4184{
4185 char buf [EV_INOTIFY_BUFSIZE];
4186 int ofs;
4187 int len = read (fs_fd, buf, sizeof (buf));
4188
4189 for (ofs = 0; ofs < len; )
4190 {
4191 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4192 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4193 ofs += sizeof (struct inotify_event) + ev->len;
4194 }
4195}
4196
4197inline_size void ecb_cold
4198ev_check_2625 (EV_P)
4199{
4200 /* kernels < 2.6.25 are borked
4201 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4202 */
4203 if (ev_linux_version () < 0x020619)
4204 return;
4205
4206 fs_2625 = 1;
4207}
4208
4209inline_size int
4210infy_newfd (void)
4211{
4212#if defined IN_CLOEXEC && defined IN_NONBLOCK
4213 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4214 if (fd >= 0)
4215 return fd;
4216#endif
4217 return inotify_init ();
4218}
4219
4220inline_size void
4221infy_init (EV_P)
4222{
4223 if (fs_fd != -2)
4224 return;
4225
4226 fs_fd = -1;
4227
4228 ev_check_2625 (EV_A);
4229
4230 fs_fd = infy_newfd ();
4231
4232 if (fs_fd >= 0)
4233 {
4234 fd_intern (fs_fd);
4235 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4236 ev_set_priority (&fs_w, EV_MAXPRI);
4237 ev_io_start (EV_A_ &fs_w);
4238 ev_unref (EV_A);
4239 }
4240}
4241
4242inline_size void
4243infy_fork (EV_P)
4244{
4245 int slot;
4246
4247 if (fs_fd < 0)
4248 return;
4249
4250 ev_ref (EV_A);
4251 ev_io_stop (EV_A_ &fs_w);
4252 close (fs_fd);
4253 fs_fd = infy_newfd ();
4254
4255 if (fs_fd >= 0)
4256 {
4257 fd_intern (fs_fd);
4258 ev_io_set (&fs_w, fs_fd, EV_READ);
4259 ev_io_start (EV_A_ &fs_w);
4260 ev_unref (EV_A);
4261 }
4262
4263 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4264 {
4265 WL w_ = fs_hash [slot].head;
4266 fs_hash [slot].head = 0;
4267
4268 while (w_)
4269 {
4270 ev_stat *w = (ev_stat *)w_;
4271 w_ = w_->next; /* lets us add this watcher */
4272
4273 w->wd = -1;
4274
4275 if (fs_fd >= 0)
4276 infy_add (EV_A_ w); /* re-add, no matter what */
4277 else
4278 {
4279 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4280 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4281 ev_timer_again (EV_A_ &w->timer);
4282 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4283 }
4284 }
4285 }
4286}
4287
4288#endif
4289
4290#ifdef _WIN32
4291# define EV_LSTAT(p,b) _stati64 (p, b)
1423#else 4292#else
1424 struct sigaction sa; 4293# define EV_LSTAT(p,b) lstat (p, b)
1425 sa.sa_handler = sighandler;
1426 sigfillset (&sa.sa_mask);
1427 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1428 sigaction (w->signum, &sa, 0);
1429#endif 4294#endif
1430 }
1431}
1432 4295
1433void 4296void
1434ev_signal_stop (EV_P_ struct ev_signal *w) 4297ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
1435{ 4298{
1436 ev_clear_pending (EV_A_ (W)w); 4299 if (lstat (w->path, &w->attr) < 0)
1437 if (!ev_is_active (w)) 4300 w->attr.st_nlink = 0;
4301 else if (!w->attr.st_nlink)
4302 w->attr.st_nlink = 1;
4303}
4304
4305static void noinline
4306stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4307{
4308 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4309
4310 ev_statdata prev = w->attr;
4311 ev_stat_stat (EV_A_ w);
4312
4313 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4314 if (
4315 prev.st_dev != w->attr.st_dev
4316 || prev.st_ino != w->attr.st_ino
4317 || prev.st_mode != w->attr.st_mode
4318 || prev.st_nlink != w->attr.st_nlink
4319 || prev.st_uid != w->attr.st_uid
4320 || prev.st_gid != w->attr.st_gid
4321 || prev.st_rdev != w->attr.st_rdev
4322 || prev.st_size != w->attr.st_size
4323 || prev.st_atime != w->attr.st_atime
4324 || prev.st_mtime != w->attr.st_mtime
4325 || prev.st_ctime != w->attr.st_ctime
4326 ) {
4327 /* we only update w->prev on actual differences */
4328 /* in case we test more often than invoke the callback, */
4329 /* to ensure that prev is always different to attr */
4330 w->prev = prev;
4331
4332 #if EV_USE_INOTIFY
4333 if (fs_fd >= 0)
4334 {
4335 infy_del (EV_A_ w);
4336 infy_add (EV_A_ w);
4337 ev_stat_stat (EV_A_ w); /* avoid race... */
4338 }
4339 #endif
4340
4341 ev_feed_event (EV_A_ w, EV_STAT);
4342 }
4343}
4344
4345void
4346ev_stat_start (EV_P_ ev_stat *w) EV_THROW
4347{
4348 if (expect_false (ev_is_active (w)))
1438 return; 4349 return;
1439 4350
1440 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 4351 ev_stat_stat (EV_A_ w);
4352
4353 if (w->interval < MIN_STAT_INTERVAL && w->interval)
4354 w->interval = MIN_STAT_INTERVAL;
4355
4356 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
4357 ev_set_priority (&w->timer, ev_priority (w));
4358
4359#if EV_USE_INOTIFY
4360 infy_init (EV_A);
4361
4362 if (fs_fd >= 0)
4363 infy_add (EV_A_ w);
4364 else
4365#endif
4366 {
4367 ev_timer_again (EV_A_ &w->timer);
4368 ev_unref (EV_A);
4369 }
4370
4371 ev_start (EV_A_ (W)w, 1);
4372
4373 EV_FREQUENT_CHECK;
4374}
4375
4376void
4377ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
4378{
4379 clear_pending (EV_A_ (W)w);
4380 if (expect_false (!ev_is_active (w)))
4381 return;
4382
4383 EV_FREQUENT_CHECK;
4384
4385#if EV_USE_INOTIFY
4386 infy_del (EV_A_ w);
4387#endif
4388
4389 if (ev_is_active (&w->timer))
4390 {
4391 ev_ref (EV_A);
4392 ev_timer_stop (EV_A_ &w->timer);
4393 }
4394
1441 ev_stop (EV_A_ (W)w); 4395 ev_stop (EV_A_ (W)w);
1442 4396
1443 if (!signals [w->signum - 1].head) 4397 EV_FREQUENT_CHECK;
1444 signal (w->signum, SIG_DFL);
1445} 4398}
4399#endif
1446 4400
4401#if EV_IDLE_ENABLE
1447void 4402void
1448ev_child_start (EV_P_ struct ev_child *w) 4403ev_idle_start (EV_P_ ev_idle *w) EV_THROW
1449{ 4404{
1450#if EV_MULTIPLICITY
1451 assert (("child watchers are only supported in the default loop", loop == default_loop));
1452#endif
1453 if (ev_is_active (w)) 4405 if (expect_false (ev_is_active (w)))
1454 return; 4406 return;
1455 4407
4408 pri_adjust (EV_A_ (W)w);
4409
4410 EV_FREQUENT_CHECK;
4411
4412 {
4413 int active = ++idlecnt [ABSPRI (w)];
4414
4415 ++idleall;
4416 ev_start (EV_A_ (W)w, active);
4417
4418 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
4419 idles [ABSPRI (w)][active - 1] = w;
4420 }
4421
4422 EV_FREQUENT_CHECK;
4423}
4424
4425void
4426ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
4427{
4428 clear_pending (EV_A_ (W)w);
4429 if (expect_false (!ev_is_active (w)))
4430 return;
4431
4432 EV_FREQUENT_CHECK;
4433
4434 {
4435 int active = ev_active (w);
4436
4437 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4438 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4439
4440 ev_stop (EV_A_ (W)w);
4441 --idleall;
4442 }
4443
4444 EV_FREQUENT_CHECK;
4445}
4446#endif
4447
4448#if EV_PREPARE_ENABLE
4449void
4450ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
4451{
4452 if (expect_false (ev_is_active (w)))
4453 return;
4454
4455 EV_FREQUENT_CHECK;
4456
4457 ev_start (EV_A_ (W)w, ++preparecnt);
4458 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
4459 prepares [preparecnt - 1] = w;
4460
4461 EV_FREQUENT_CHECK;
4462}
4463
4464void
4465ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
4466{
4467 clear_pending (EV_A_ (W)w);
4468 if (expect_false (!ev_is_active (w)))
4469 return;
4470
4471 EV_FREQUENT_CHECK;
4472
4473 {
4474 int active = ev_active (w);
4475
4476 prepares [active - 1] = prepares [--preparecnt];
4477 ev_active (prepares [active - 1]) = active;
4478 }
4479
4480 ev_stop (EV_A_ (W)w);
4481
4482 EV_FREQUENT_CHECK;
4483}
4484#endif
4485
4486#if EV_CHECK_ENABLE
4487void
4488ev_check_start (EV_P_ ev_check *w) EV_THROW
4489{
4490 if (expect_false (ev_is_active (w)))
4491 return;
4492
4493 EV_FREQUENT_CHECK;
4494
4495 ev_start (EV_A_ (W)w, ++checkcnt);
4496 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4497 checks [checkcnt - 1] = w;
4498
4499 EV_FREQUENT_CHECK;
4500}
4501
4502void
4503ev_check_stop (EV_P_ ev_check *w) EV_THROW
4504{
4505 clear_pending (EV_A_ (W)w);
4506 if (expect_false (!ev_is_active (w)))
4507 return;
4508
4509 EV_FREQUENT_CHECK;
4510
4511 {
4512 int active = ev_active (w);
4513
4514 checks [active - 1] = checks [--checkcnt];
4515 ev_active (checks [active - 1]) = active;
4516 }
4517
4518 ev_stop (EV_A_ (W)w);
4519
4520 EV_FREQUENT_CHECK;
4521}
4522#endif
4523
4524#if EV_EMBED_ENABLE
4525void noinline
4526ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
4527{
4528 ev_run (w->other, EVRUN_NOWAIT);
4529}
4530
4531static void
4532embed_io_cb (EV_P_ ev_io *io, int revents)
4533{
4534 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4535
4536 if (ev_cb (w))
4537 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4538 else
4539 ev_run (w->other, EVRUN_NOWAIT);
4540}
4541
4542static void
4543embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4544{
4545 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4546
4547 {
4548 EV_P = w->other;
4549
4550 while (fdchangecnt)
4551 {
4552 fd_reify (EV_A);
4553 ev_run (EV_A_ EVRUN_NOWAIT);
4554 }
4555 }
4556}
4557
4558static void
4559embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4560{
4561 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4562
4563 ev_embed_stop (EV_A_ w);
4564
4565 {
4566 EV_P = w->other;
4567
4568 ev_loop_fork (EV_A);
4569 ev_run (EV_A_ EVRUN_NOWAIT);
4570 }
4571
4572 ev_embed_start (EV_A_ w);
4573}
4574
4575#if 0
4576static void
4577embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4578{
4579 ev_idle_stop (EV_A_ idle);
4580}
4581#endif
4582
4583void
4584ev_embed_start (EV_P_ ev_embed *w) EV_THROW
4585{
4586 if (expect_false (ev_is_active (w)))
4587 return;
4588
4589 {
4590 EV_P = w->other;
4591 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4592 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4593 }
4594
4595 EV_FREQUENT_CHECK;
4596
4597 ev_set_priority (&w->io, ev_priority (w));
4598 ev_io_start (EV_A_ &w->io);
4599
4600 ev_prepare_init (&w->prepare, embed_prepare_cb);
4601 ev_set_priority (&w->prepare, EV_MINPRI);
4602 ev_prepare_start (EV_A_ &w->prepare);
4603
4604 ev_fork_init (&w->fork, embed_fork_cb);
4605 ev_fork_start (EV_A_ &w->fork);
4606
4607 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4608
1456 ev_start (EV_A_ (W)w, 1); 4609 ev_start (EV_A_ (W)w, 1);
1457 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 4610
4611 EV_FREQUENT_CHECK;
1458} 4612}
1459 4613
1460void 4614void
1461ev_child_stop (EV_P_ struct ev_child *w) 4615ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
1462{ 4616{
1463 ev_clear_pending (EV_A_ (W)w); 4617 clear_pending (EV_A_ (W)w);
1464 if (ev_is_active (w)) 4618 if (expect_false (!ev_is_active (w)))
1465 return; 4619 return;
1466 4620
1467 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 4621 EV_FREQUENT_CHECK;
4622
4623 ev_io_stop (EV_A_ &w->io);
4624 ev_prepare_stop (EV_A_ &w->prepare);
4625 ev_fork_stop (EV_A_ &w->fork);
4626
1468 ev_stop (EV_A_ (W)w); 4627 ev_stop (EV_A_ (W)w);
4628
4629 EV_FREQUENT_CHECK;
1469} 4630}
4631#endif
4632
4633#if EV_FORK_ENABLE
4634void
4635ev_fork_start (EV_P_ ev_fork *w) EV_THROW
4636{
4637 if (expect_false (ev_is_active (w)))
4638 return;
4639
4640 EV_FREQUENT_CHECK;
4641
4642 ev_start (EV_A_ (W)w, ++forkcnt);
4643 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4644 forks [forkcnt - 1] = w;
4645
4646 EV_FREQUENT_CHECK;
4647}
4648
4649void
4650ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
4651{
4652 clear_pending (EV_A_ (W)w);
4653 if (expect_false (!ev_is_active (w)))
4654 return;
4655
4656 EV_FREQUENT_CHECK;
4657
4658 {
4659 int active = ev_active (w);
4660
4661 forks [active - 1] = forks [--forkcnt];
4662 ev_active (forks [active - 1]) = active;
4663 }
4664
4665 ev_stop (EV_A_ (W)w);
4666
4667 EV_FREQUENT_CHECK;
4668}
4669#endif
4670
4671#if EV_CLEANUP_ENABLE
4672void
4673ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4674{
4675 if (expect_false (ev_is_active (w)))
4676 return;
4677
4678 EV_FREQUENT_CHECK;
4679
4680 ev_start (EV_A_ (W)w, ++cleanupcnt);
4681 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4682 cleanups [cleanupcnt - 1] = w;
4683
4684 /* cleanup watchers should never keep a refcount on the loop */
4685 ev_unref (EV_A);
4686 EV_FREQUENT_CHECK;
4687}
4688
4689void
4690ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4691{
4692 clear_pending (EV_A_ (W)w);
4693 if (expect_false (!ev_is_active (w)))
4694 return;
4695
4696 EV_FREQUENT_CHECK;
4697 ev_ref (EV_A);
4698
4699 {
4700 int active = ev_active (w);
4701
4702 cleanups [active - 1] = cleanups [--cleanupcnt];
4703 ev_active (cleanups [active - 1]) = active;
4704 }
4705
4706 ev_stop (EV_A_ (W)w);
4707
4708 EV_FREQUENT_CHECK;
4709}
4710#endif
4711
4712#if EV_ASYNC_ENABLE
4713void
4714ev_async_start (EV_P_ ev_async *w) EV_THROW
4715{
4716 if (expect_false (ev_is_active (w)))
4717 return;
4718
4719 w->sent = 0;
4720
4721 evpipe_init (EV_A);
4722
4723 EV_FREQUENT_CHECK;
4724
4725 ev_start (EV_A_ (W)w, ++asynccnt);
4726 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4727 asyncs [asynccnt - 1] = w;
4728
4729 EV_FREQUENT_CHECK;
4730}
4731
4732void
4733ev_async_stop (EV_P_ ev_async *w) EV_THROW
4734{
4735 clear_pending (EV_A_ (W)w);
4736 if (expect_false (!ev_is_active (w)))
4737 return;
4738
4739 EV_FREQUENT_CHECK;
4740
4741 {
4742 int active = ev_active (w);
4743
4744 asyncs [active - 1] = asyncs [--asynccnt];
4745 ev_active (asyncs [active - 1]) = active;
4746 }
4747
4748 ev_stop (EV_A_ (W)w);
4749
4750 EV_FREQUENT_CHECK;
4751}
4752
4753void
4754ev_async_send (EV_P_ ev_async *w) EV_THROW
4755{
4756 w->sent = 1;
4757 evpipe_write (EV_A_ &async_pending);
4758}
4759#endif
1470 4760
1471/*****************************************************************************/ 4761/*****************************************************************************/
1472 4762
1473struct ev_once 4763struct ev_once
1474{ 4764{
1475 struct ev_io io; 4765 ev_io io;
1476 struct ev_timer to; 4766 ev_timer to;
1477 void (*cb)(int revents, void *arg); 4767 void (*cb)(int revents, void *arg);
1478 void *arg; 4768 void *arg;
1479}; 4769};
1480 4770
1481static void 4771static void
1482once_cb (EV_P_ struct ev_once *once, int revents) 4772once_cb (EV_P_ struct ev_once *once, int revents)
1483{ 4773{
1484 void (*cb)(int revents, void *arg) = once->cb; 4774 void (*cb)(int revents, void *arg) = once->cb;
1485 void *arg = once->arg; 4775 void *arg = once->arg;
1486 4776
1487 ev_io_stop (EV_A_ &once->io); 4777 ev_io_stop (EV_A_ &once->io);
1488 ev_timer_stop (EV_A_ &once->to); 4778 ev_timer_stop (EV_A_ &once->to);
1489 ev_free (once); 4779 ev_free (once);
1490 4780
1491 cb (revents, arg); 4781 cb (revents, arg);
1492} 4782}
1493 4783
1494static void 4784static void
1495once_cb_io (EV_P_ struct ev_io *w, int revents) 4785once_cb_io (EV_P_ ev_io *w, int revents)
1496{ 4786{
1497 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4787 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4788
4789 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1498} 4790}
1499 4791
1500static void 4792static void
1501once_cb_to (EV_P_ struct ev_timer *w, int revents) 4793once_cb_to (EV_P_ ev_timer *w, int revents)
1502{ 4794{
1503 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4795 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4796
4797 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1504} 4798}
1505 4799
1506void 4800void
1507ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4801ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
1508{ 4802{
1509 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4803 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1510 4804
1511 if (!once) 4805 if (expect_false (!once))
4806 {
1512 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4807 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1513 else 4808 return;
1514 { 4809 }
4810
1515 once->cb = cb; 4811 once->cb = cb;
1516 once->arg = arg; 4812 once->arg = arg;
1517 4813
1518 ev_watcher_init (&once->io, once_cb_io); 4814 ev_init (&once->io, once_cb_io);
1519 if (fd >= 0) 4815 if (fd >= 0)
4816 {
4817 ev_io_set (&once->io, fd, events);
4818 ev_io_start (EV_A_ &once->io);
4819 }
4820
4821 ev_init (&once->to, once_cb_to);
4822 if (timeout >= 0.)
4823 {
4824 ev_timer_set (&once->to, timeout, 0.);
4825 ev_timer_start (EV_A_ &once->to);
4826 }
4827}
4828
4829/*****************************************************************************/
4830
4831#if EV_WALK_ENABLE
4832void ecb_cold
4833ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4834{
4835 int i, j;
4836 ev_watcher_list *wl, *wn;
4837
4838 if (types & (EV_IO | EV_EMBED))
4839 for (i = 0; i < anfdmax; ++i)
4840 for (wl = anfds [i].head; wl; )
1520 { 4841 {
1521 ev_io_set (&once->io, fd, events); 4842 wn = wl->next;
1522 ev_io_start (EV_A_ &once->io); 4843
4844#if EV_EMBED_ENABLE
4845 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4846 {
4847 if (types & EV_EMBED)
4848 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4849 }
4850 else
4851#endif
4852#if EV_USE_INOTIFY
4853 if (ev_cb ((ev_io *)wl) == infy_cb)
4854 ;
4855 else
4856#endif
4857 if ((ev_io *)wl != &pipe_w)
4858 if (types & EV_IO)
4859 cb (EV_A_ EV_IO, wl);
4860
4861 wl = wn;
1523 } 4862 }
1524 4863
1525 ev_watcher_init (&once->to, once_cb_to); 4864 if (types & (EV_TIMER | EV_STAT))
1526 if (timeout >= 0.) 4865 for (i = timercnt + HEAP0; i-- > HEAP0; )
4866#if EV_STAT_ENABLE
4867 /*TODO: timer is not always active*/
4868 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1527 { 4869 {
1528 ev_timer_set (&once->to, timeout, 0.); 4870 if (types & EV_STAT)
1529 ev_timer_start (EV_A_ &once->to); 4871 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1530 } 4872 }
1531 } 4873 else
1532} 4874#endif
4875 if (types & EV_TIMER)
4876 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1533 4877
4878#if EV_PERIODIC_ENABLE
4879 if (types & EV_PERIODIC)
4880 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4881 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4882#endif
4883
4884#if EV_IDLE_ENABLE
4885 if (types & EV_IDLE)
4886 for (j = NUMPRI; j--; )
4887 for (i = idlecnt [j]; i--; )
4888 cb (EV_A_ EV_IDLE, idles [j][i]);
4889#endif
4890
4891#if EV_FORK_ENABLE
4892 if (types & EV_FORK)
4893 for (i = forkcnt; i--; )
4894 if (ev_cb (forks [i]) != embed_fork_cb)
4895 cb (EV_A_ EV_FORK, forks [i]);
4896#endif
4897
4898#if EV_ASYNC_ENABLE
4899 if (types & EV_ASYNC)
4900 for (i = asynccnt; i--; )
4901 cb (EV_A_ EV_ASYNC, asyncs [i]);
4902#endif
4903
4904#if EV_PREPARE_ENABLE
4905 if (types & EV_PREPARE)
4906 for (i = preparecnt; i--; )
4907# if EV_EMBED_ENABLE
4908 if (ev_cb (prepares [i]) != embed_prepare_cb)
4909# endif
4910 cb (EV_A_ EV_PREPARE, prepares [i]);
4911#endif
4912
4913#if EV_CHECK_ENABLE
4914 if (types & EV_CHECK)
4915 for (i = checkcnt; i--; )
4916 cb (EV_A_ EV_CHECK, checks [i]);
4917#endif
4918
4919#if EV_SIGNAL_ENABLE
4920 if (types & EV_SIGNAL)
4921 for (i = 0; i < EV_NSIG - 1; ++i)
4922 for (wl = signals [i].head; wl; )
4923 {
4924 wn = wl->next;
4925 cb (EV_A_ EV_SIGNAL, wl);
4926 wl = wn;
4927 }
4928#endif
4929
4930#if EV_CHILD_ENABLE
4931 if (types & EV_CHILD)
4932 for (i = (EV_PID_HASHSIZE); i--; )
4933 for (wl = childs [i]; wl; )
4934 {
4935 wn = wl->next;
4936 cb (EV_A_ EV_CHILD, wl);
4937 wl = wn;
4938 }
4939#endif
4940/* EV_STAT 0x00001000 /* stat data changed */
4941/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4942}
4943#endif
4944
4945#if EV_MULTIPLICITY
4946 #include "ev_wrap.h"
4947#endif
4948

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines