ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.265 by root, Thu Oct 23 04:56:49 2008 UTC vs.
Revision 1.476 by root, Fri May 1 17:23:34 2015 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012,2013 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48# if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52# endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
52# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
55# endif 71# endif
56# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
58# endif 74# endif
59# else 75# else
60# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
62# endif 78# endif
63# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
65# endif 81# endif
66# endif 82# endif
67 83
84# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
71# else 88# else
89# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
74# endif 100# endif
75 101
102# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 105# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 106# else
107# undef EV_USE_POLL
88# define EV_USE_POLL 0 108# define EV_USE_POLL 0
89# endif
90# endif 109# endif
91 110
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
95# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
98# endif 118# endif
99 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
106# endif 127# endif
107 128
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
111# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
114# endif 136# endif
115 137
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
122# endif 145# endif
123 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 148# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 149# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
130# endif 163# endif
131 164
132#endif 165#endif
133 166
134#include <math.h>
135#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
136#include <fcntl.h> 169#include <fcntl.h>
137#include <stddef.h> 170#include <stddef.h>
138 171
139#include <stdio.h> 172#include <stdio.h>
140 173
141#include <assert.h> 174#include <assert.h>
142#include <errno.h> 175#include <errno.h>
143#include <sys/types.h> 176#include <sys/types.h>
144#include <time.h> 177#include <time.h>
178#include <limits.h>
145 179
146#include <signal.h> 180#include <signal.h>
147 181
148#ifdef EV_H 182#ifdef EV_H
149# include EV_H 183# include EV_H
150#else 184#else
151# include "ev.h" 185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
152#endif 197#endif
153 198
154#ifndef _WIN32 199#ifndef _WIN32
155# include <sys/time.h> 200# include <sys/time.h>
156# include <sys/wait.h> 201# include <sys/wait.h>
157# include <unistd.h> 202# include <unistd.h>
158#else 203#else
159# include <io.h> 204# include <io.h>
160# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
161# include <windows.h> 207# include <windows.h>
162# ifndef EV_SELECT_IS_WINSOCKET 208# ifndef EV_SELECT_IS_WINSOCKET
163# define EV_SELECT_IS_WINSOCKET 1 209# define EV_SELECT_IS_WINSOCKET 1
164# endif 210# endif
211# undef EV_AVOID_STDIO
165#endif 212#endif
213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
166 221
167/* this block tries to deduce configuration from header-defined symbols and defaults */ 222/* this block tries to deduce configuration from header-defined symbols and defaults */
168 223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# define EV_NSIG (8 * sizeof (sigset_t) + 1)
247#endif
248
249#ifndef EV_USE_FLOOR
250# define EV_USE_FLOOR 0
251#endif
252
253#ifndef EV_USE_CLOCK_SYSCALL
254# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
255# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
256# else
257# define EV_USE_CLOCK_SYSCALL 0
258# endif
259#endif
260
261#if !(_POSIX_TIMERS > 0)
262# ifndef EV_USE_MONOTONIC
263# define EV_USE_MONOTONIC 0
264# endif
265# ifndef EV_USE_REALTIME
266# define EV_USE_REALTIME 0
267# endif
268#endif
269
169#ifndef EV_USE_MONOTONIC 270#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0 271# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1 272# define EV_USE_MONOTONIC EV_FEATURE_OS
172# else 273# else
173# define EV_USE_MONOTONIC 0 274# define EV_USE_MONOTONIC 0
174# endif 275# endif
175#endif 276#endif
176 277
177#ifndef EV_USE_REALTIME 278#ifndef EV_USE_REALTIME
178# define EV_USE_REALTIME 0 279# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
179#endif 280#endif
180 281
181#ifndef EV_USE_NANOSLEEP 282#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L 283# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1 284# define EV_USE_NANOSLEEP EV_FEATURE_OS
184# else 285# else
185# define EV_USE_NANOSLEEP 0 286# define EV_USE_NANOSLEEP 0
186# endif 287# endif
187#endif 288#endif
188 289
189#ifndef EV_USE_SELECT 290#ifndef EV_USE_SELECT
190# define EV_USE_SELECT 1 291# define EV_USE_SELECT EV_FEATURE_BACKENDS
191#endif 292#endif
192 293
193#ifndef EV_USE_POLL 294#ifndef EV_USE_POLL
194# ifdef _WIN32 295# ifdef _WIN32
195# define EV_USE_POLL 0 296# define EV_USE_POLL 0
196# else 297# else
197# define EV_USE_POLL 1 298# define EV_USE_POLL EV_FEATURE_BACKENDS
198# endif 299# endif
199#endif 300#endif
200 301
201#ifndef EV_USE_EPOLL 302#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 303# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1 304# define EV_USE_EPOLL EV_FEATURE_BACKENDS
204# else 305# else
205# define EV_USE_EPOLL 0 306# define EV_USE_EPOLL 0
206# endif 307# endif
207#endif 308#endif
208 309
214# define EV_USE_PORT 0 315# define EV_USE_PORT 0
215#endif 316#endif
216 317
217#ifndef EV_USE_INOTIFY 318#ifndef EV_USE_INOTIFY
218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 319# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
219# define EV_USE_INOTIFY 1 320# define EV_USE_INOTIFY EV_FEATURE_OS
220# else 321# else
221# define EV_USE_INOTIFY 0 322# define EV_USE_INOTIFY 0
222# endif 323# endif
223#endif 324#endif
224 325
225#ifndef EV_PID_HASHSIZE 326#ifndef EV_PID_HASHSIZE
226# if EV_MINIMAL 327# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
227# define EV_PID_HASHSIZE 1
228# else
229# define EV_PID_HASHSIZE 16
230# endif
231#endif 328#endif
232 329
233#ifndef EV_INOTIFY_HASHSIZE 330#ifndef EV_INOTIFY_HASHSIZE
234# if EV_MINIMAL 331# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
235# define EV_INOTIFY_HASHSIZE 1
236# else
237# define EV_INOTIFY_HASHSIZE 16
238# endif
239#endif 332#endif
240 333
241#ifndef EV_USE_EVENTFD 334#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 335# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1 336# define EV_USE_EVENTFD EV_FEATURE_OS
244# else 337# else
245# define EV_USE_EVENTFD 0 338# define EV_USE_EVENTFD 0
339# endif
340#endif
341
342#ifndef EV_USE_SIGNALFD
343# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
344# define EV_USE_SIGNALFD EV_FEATURE_OS
345# else
346# define EV_USE_SIGNALFD 0
246# endif 347# endif
247#endif 348#endif
248 349
249#if 0 /* debugging */ 350#if 0 /* debugging */
250# define EV_VERIFY 3 351# define EV_VERIFY 3
251# define EV_USE_4HEAP 1 352# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1 353# define EV_HEAP_CACHE_AT 1
253#endif 354#endif
254 355
255#ifndef EV_VERIFY 356#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL 357# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
257#endif 358#endif
258 359
259#ifndef EV_USE_4HEAP 360#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL 361# define EV_USE_4HEAP EV_FEATURE_DATA
261#endif 362#endif
262 363
263#ifndef EV_HEAP_CACHE_AT 364#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL 365# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
366#endif
367
368#ifdef ANDROID
369/* supposedly, android doesn't typedef fd_mask */
370# undef EV_USE_SELECT
371# define EV_USE_SELECT 0
372/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
373# undef EV_USE_CLOCK_SYSCALL
374# define EV_USE_CLOCK_SYSCALL 0
375#endif
376
377/* aix's poll.h seems to cause lots of trouble */
378#ifdef _AIX
379/* AIX has a completely broken poll.h header */
380# undef EV_USE_POLL
381# define EV_USE_POLL 0
382#endif
383
384/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
385/* which makes programs even slower. might work on other unices, too. */
386#if EV_USE_CLOCK_SYSCALL
387# include <sys/syscall.h>
388# ifdef SYS_clock_gettime
389# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
390# undef EV_USE_MONOTONIC
391# define EV_USE_MONOTONIC 1
392# else
393# undef EV_USE_CLOCK_SYSCALL
394# define EV_USE_CLOCK_SYSCALL 0
395# endif
265#endif 396#endif
266 397
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 398/* this block fixes any misconfiguration where we know we run into trouble otherwise */
268 399
269#ifndef CLOCK_MONOTONIC 400#ifndef CLOCK_MONOTONIC
280# undef EV_USE_INOTIFY 411# undef EV_USE_INOTIFY
281# define EV_USE_INOTIFY 0 412# define EV_USE_INOTIFY 0
282#endif 413#endif
283 414
284#if !EV_USE_NANOSLEEP 415#if !EV_USE_NANOSLEEP
285# ifndef _WIN32 416/* hp-ux has it in sys/time.h, which we unconditionally include above */
417# if !defined _WIN32 && !defined __hpux
286# include <sys/select.h> 418# include <sys/select.h>
287# endif 419# endif
288#endif 420#endif
289 421
290#if EV_USE_INOTIFY 422#if EV_USE_INOTIFY
291# include <sys/utsname.h> 423# include <sys/statfs.h>
292# include <sys/inotify.h> 424# include <sys/inotify.h>
293/* some very old inotify.h headers don't have IN_DONT_FOLLOW */ 425/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
294# ifndef IN_DONT_FOLLOW 426# ifndef IN_DONT_FOLLOW
295# undef EV_USE_INOTIFY 427# undef EV_USE_INOTIFY
296# define EV_USE_INOTIFY 0 428# define EV_USE_INOTIFY 0
297# endif 429# endif
298#endif 430#endif
299 431
300#if EV_SELECT_IS_WINSOCKET
301# include <winsock.h>
302#endif
303
304#if EV_USE_EVENTFD 432#if EV_USE_EVENTFD
305/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 433/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
306# include <stdint.h> 434# include <stdint.h>
307# ifdef __cplusplus 435# ifndef EFD_NONBLOCK
308extern "C" { 436# define EFD_NONBLOCK O_NONBLOCK
309# endif 437# endif
310int eventfd (unsigned int initval, int flags); 438# ifndef EFD_CLOEXEC
311# ifdef __cplusplus 439# ifdef O_CLOEXEC
312} 440# define EFD_CLOEXEC O_CLOEXEC
441# else
442# define EFD_CLOEXEC 02000000
443# endif
313# endif 444# endif
445EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
446#endif
447
448#if EV_USE_SIGNALFD
449/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
450# include <stdint.h>
451# ifndef SFD_NONBLOCK
452# define SFD_NONBLOCK O_NONBLOCK
453# endif
454# ifndef SFD_CLOEXEC
455# ifdef O_CLOEXEC
456# define SFD_CLOEXEC O_CLOEXEC
457# else
458# define SFD_CLOEXEC 02000000
459# endif
460# endif
461EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
462
463struct signalfd_siginfo
464{
465 uint32_t ssi_signo;
466 char pad[128 - sizeof (uint32_t)];
467};
314#endif 468#endif
315 469
316/**/ 470/**/
317 471
318#if EV_VERIFY >= 3 472#if EV_VERIFY >= 3
319# define EV_FREQUENT_CHECK ev_loop_verify (EV_A) 473# define EV_FREQUENT_CHECK ev_verify (EV_A)
320#else 474#else
321# define EV_FREQUENT_CHECK do { } while (0) 475# define EV_FREQUENT_CHECK do { } while (0)
322#endif 476#endif
323 477
324/* 478/*
325 * This is used to avoid floating point rounding problems. 479 * This is used to work around floating point rounding problems.
326 * It is added to ev_rt_now when scheduling periodics
327 * to ensure progress, time-wise, even when rounding
328 * errors are against us.
329 * This value is good at least till the year 4000. 480 * This value is good at least till the year 4000.
330 * Better solutions welcome.
331 */ 481 */
332#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 482#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
483/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
333 484
334#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 485#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
335#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 486#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
336/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
337 487
488#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
489#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
490
491/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
492/* ECB.H BEGIN */
493/*
494 * libecb - http://software.schmorp.de/pkg/libecb
495 *
496 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
497 * Copyright (©) 2011 Emanuele Giaquinta
498 * All rights reserved.
499 *
500 * Redistribution and use in source and binary forms, with or without modifica-
501 * tion, are permitted provided that the following conditions are met:
502 *
503 * 1. Redistributions of source code must retain the above copyright notice,
504 * this list of conditions and the following disclaimer.
505 *
506 * 2. Redistributions in binary form must reproduce the above copyright
507 * notice, this list of conditions and the following disclaimer in the
508 * documentation and/or other materials provided with the distribution.
509 *
510 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
511 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
512 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
513 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
514 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
515 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
516 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
517 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
518 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
519 * OF THE POSSIBILITY OF SUCH DAMAGE.
520 *
521 * Alternatively, the contents of this file may be used under the terms of
522 * the GNU General Public License ("GPL") version 2 or any later version,
523 * in which case the provisions of the GPL are applicable instead of
524 * the above. If you wish to allow the use of your version of this file
525 * only under the terms of the GPL and not to allow others to use your
526 * version of this file under the BSD license, indicate your decision
527 * by deleting the provisions above and replace them with the notice
528 * and other provisions required by the GPL. If you do not delete the
529 * provisions above, a recipient may use your version of this file under
530 * either the BSD or the GPL.
531 */
532
533#ifndef ECB_H
534#define ECB_H
535
536/* 16 bits major, 16 bits minor */
537#define ECB_VERSION 0x00010004
538
539#ifdef _WIN32
540 typedef signed char int8_t;
541 typedef unsigned char uint8_t;
542 typedef signed short int16_t;
543 typedef unsigned short uint16_t;
544 typedef signed int int32_t;
545 typedef unsigned int uint32_t;
338#if __GNUC__ >= 4 546 #if __GNUC__
339# define expect(expr,value) __builtin_expect ((expr),(value)) 547 typedef signed long long int64_t;
340# define noinline __attribute__ ((noinline)) 548 typedef unsigned long long uint64_t;
549 #else /* _MSC_VER || __BORLANDC__ */
550 typedef signed __int64 int64_t;
551 typedef unsigned __int64 uint64_t;
552 #endif
553 #ifdef _WIN64
554 #define ECB_PTRSIZE 8
555 typedef uint64_t uintptr_t;
556 typedef int64_t intptr_t;
557 #else
558 #define ECB_PTRSIZE 4
559 typedef uint32_t uintptr_t;
560 typedef int32_t intptr_t;
561 #endif
341#else 562#else
342# define expect(expr,value) (expr) 563 #include <inttypes.h>
343# define noinline 564 #if UINTMAX_MAX > 0xffffffffU
344# if __STDC_VERSION__ < 199901L && __GNUC__ < 2 565 #define ECB_PTRSIZE 8
345# define inline 566 #else
567 #define ECB_PTRSIZE 4
568 #endif
346# endif 569#endif
570
571#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
572#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
573
574/* work around x32 idiocy by defining proper macros */
575#if ECB_GCC_AMD64 || ECB_MSVC_AMD64
576 #if _ILP32
577 #define ECB_AMD64_X32 1
578 #else
579 #define ECB_AMD64 1
347#endif 580 #endif
581#endif
348 582
583/* many compilers define _GNUC_ to some versions but then only implement
584 * what their idiot authors think are the "more important" extensions,
585 * causing enormous grief in return for some better fake benchmark numbers.
586 * or so.
587 * we try to detect these and simply assume they are not gcc - if they have
588 * an issue with that they should have done it right in the first place.
589 */
590#if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
591 #define ECB_GCC_VERSION(major,minor) 0
592#else
593 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
594#endif
595
596#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
597
598#if __clang__ && defined __has_builtin
599 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
600#else
601 #define ECB_CLANG_BUILTIN(x) 0
602#endif
603
604#if __clang__ && defined __has_extension
605 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
606#else
607 #define ECB_CLANG_EXTENSION(x) 0
608#endif
609
610#define ECB_CPP (__cplusplus+0)
611#define ECB_CPP11 (__cplusplus >= 201103L)
612
613#if ECB_CPP
614 #define ECB_C 0
615 #define ECB_STDC_VERSION 0
616#else
617 #define ECB_C 1
618 #define ECB_STDC_VERSION __STDC_VERSION__
619#endif
620
621#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
622#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
623
624#if ECB_CPP
625 #define ECB_EXTERN_C extern "C"
626 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
627 #define ECB_EXTERN_C_END }
628#else
629 #define ECB_EXTERN_C extern
630 #define ECB_EXTERN_C_BEG
631 #define ECB_EXTERN_C_END
632#endif
633
634/*****************************************************************************/
635
636/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
637/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
638
639#if ECB_NO_THREADS
640 #define ECB_NO_SMP 1
641#endif
642
643#if ECB_NO_SMP
644 #define ECB_MEMORY_FENCE do { } while (0)
645#endif
646
647/* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
648#if __xlC__ && ECB_CPP
649 #include <builtins.h>
650#endif
651
652#ifndef ECB_MEMORY_FENCE
653 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
654 #if __i386 || __i386__
655 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
656 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
657 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
658 #elif ECB_GCC_AMD64
659 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
660 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
661 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
662 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
663 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
664 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
665 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
666 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
667 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
668 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
669 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
670 #elif __aarch64__
671 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
672 #elif (__sparc || __sparc__) && !__sparcv8
673 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
674 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
675 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
676 #elif defined __s390__ || defined __s390x__
677 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
678 #elif defined __mips__
679 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
680 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
681 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
682 #elif defined __alpha__
683 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
684 #elif defined __hppa__
685 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
686 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
687 #elif defined __ia64__
688 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
689 #elif defined __m68k__
690 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
691 #elif defined __m88k__
692 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
693 #elif defined __sh__
694 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
695 #endif
696 #endif
697#endif
698
699#ifndef ECB_MEMORY_FENCE
700 #if ECB_GCC_VERSION(4,7)
701 /* see comment below (stdatomic.h) about the C11 memory model. */
702 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
703 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
704 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
705
706 #elif ECB_CLANG_EXTENSION(c_atomic)
707 /* see comment below (stdatomic.h) about the C11 memory model. */
708 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
709 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
710 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
711
712 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
713 #define ECB_MEMORY_FENCE __sync_synchronize ()
714 #elif _MSC_VER >= 1500 /* VC++ 2008 */
715 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
716 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
717 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
718 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
719 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
720 #elif _MSC_VER >= 1400 /* VC++ 2005 */
721 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
722 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
723 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
724 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
725 #elif defined _WIN32
726 #include <WinNT.h>
727 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
728 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
729 #include <mbarrier.h>
730 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
731 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
732 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
733 #elif __xlC__
734 #define ECB_MEMORY_FENCE __sync ()
735 #endif
736#endif
737
738#ifndef ECB_MEMORY_FENCE
739 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
740 /* we assume that these memory fences work on all variables/all memory accesses, */
741 /* not just C11 atomics and atomic accesses */
742 #include <stdatomic.h>
743 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
744 /* any fence other than seq_cst, which isn't very efficient for us. */
745 /* Why that is, we don't know - either the C11 memory model is quite useless */
746 /* for most usages, or gcc and clang have a bug */
747 /* I *currently* lean towards the latter, and inefficiently implement */
748 /* all three of ecb's fences as a seq_cst fence */
749 /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */
750 /* for all __atomic_thread_fence's except seq_cst */
751 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
752 #endif
753#endif
754
755#ifndef ECB_MEMORY_FENCE
756 #if !ECB_AVOID_PTHREADS
757 /*
758 * if you get undefined symbol references to pthread_mutex_lock,
759 * or failure to find pthread.h, then you should implement
760 * the ECB_MEMORY_FENCE operations for your cpu/compiler
761 * OR provide pthread.h and link against the posix thread library
762 * of your system.
763 */
764 #include <pthread.h>
765 #define ECB_NEEDS_PTHREADS 1
766 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
767
768 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
769 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
770 #endif
771#endif
772
773#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
774 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
775#endif
776
777#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
778 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
779#endif
780
781/*****************************************************************************/
782
783#if ECB_CPP
784 #define ecb_inline static inline
785#elif ECB_GCC_VERSION(2,5)
786 #define ecb_inline static __inline__
787#elif ECB_C99
788 #define ecb_inline static inline
789#else
790 #define ecb_inline static
791#endif
792
793#if ECB_GCC_VERSION(3,3)
794 #define ecb_restrict __restrict__
795#elif ECB_C99
796 #define ecb_restrict restrict
797#else
798 #define ecb_restrict
799#endif
800
801typedef int ecb_bool;
802
803#define ECB_CONCAT_(a, b) a ## b
804#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
805#define ECB_STRINGIFY_(a) # a
806#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
807#define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
808
809#define ecb_function_ ecb_inline
810
811#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
812 #define ecb_attribute(attrlist) __attribute__ (attrlist)
813#else
814 #define ecb_attribute(attrlist)
815#endif
816
817#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
818 #define ecb_is_constant(expr) __builtin_constant_p (expr)
819#else
820 /* possible C11 impl for integral types
821 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
822 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
823
824 #define ecb_is_constant(expr) 0
825#endif
826
827#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
828 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
829#else
830 #define ecb_expect(expr,value) (expr)
831#endif
832
833#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
834 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
835#else
836 #define ecb_prefetch(addr,rw,locality)
837#endif
838
839/* no emulation for ecb_decltype */
840#if ECB_CPP11
841 // older implementations might have problems with decltype(x)::type, work around it
842 template<class T> struct ecb_decltype_t { typedef T type; };
843 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
844#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
845 #define ecb_decltype(x) __typeof__ (x)
846#endif
847
848#if _MSC_VER >= 1300
849 #define ecb_deprecated __declspec (deprecated)
850#else
851 #define ecb_deprecated ecb_attribute ((__deprecated__))
852#endif
853
854#if _MSC_VER >= 1500
855 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
856#elif ECB_GCC_VERSION(4,5)
857 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
858#else
859 #define ecb_deprecated_message(msg) ecb_deprecated
860#endif
861
862#if _MSC_VER >= 1400
863 #define ecb_noinline __declspec (noinline)
864#else
865 #define ecb_noinline ecb_attribute ((__noinline__))
866#endif
867
868#define ecb_unused ecb_attribute ((__unused__))
869#define ecb_const ecb_attribute ((__const__))
870#define ecb_pure ecb_attribute ((__pure__))
871
872#if ECB_C11 || __IBMC_NORETURN
873 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
874 #define ecb_noreturn _Noreturn
875#elif ECB_CPP11
876 #define ecb_noreturn [[noreturn]]
877#elif _MSC_VER >= 1200
878 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
879 #define ecb_noreturn __declspec (noreturn)
880#else
881 #define ecb_noreturn ecb_attribute ((__noreturn__))
882#endif
883
884#if ECB_GCC_VERSION(4,3)
885 #define ecb_artificial ecb_attribute ((__artificial__))
886 #define ecb_hot ecb_attribute ((__hot__))
887 #define ecb_cold ecb_attribute ((__cold__))
888#else
889 #define ecb_artificial
890 #define ecb_hot
891 #define ecb_cold
892#endif
893
894/* put around conditional expressions if you are very sure that the */
895/* expression is mostly true or mostly false. note that these return */
896/* booleans, not the expression. */
349#define expect_false(expr) expect ((expr) != 0, 0) 897#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
350#define expect_true(expr) expect ((expr) != 0, 1) 898#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
899/* for compatibility to the rest of the world */
900#define ecb_likely(expr) ecb_expect_true (expr)
901#define ecb_unlikely(expr) ecb_expect_false (expr)
902
903/* count trailing zero bits and count # of one bits */
904#if ECB_GCC_VERSION(3,4) \
905 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
906 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
907 && ECB_CLANG_BUILTIN(__builtin_popcount))
908 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
909 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
910 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
911 #define ecb_ctz32(x) __builtin_ctz (x)
912 #define ecb_ctz64(x) __builtin_ctzll (x)
913 #define ecb_popcount32(x) __builtin_popcount (x)
914 /* no popcountll */
915#else
916 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
917 ecb_function_ ecb_const int
918 ecb_ctz32 (uint32_t x)
919 {
920 int r = 0;
921
922 x &= ~x + 1; /* this isolates the lowest bit */
923
924#if ECB_branchless_on_i386
925 r += !!(x & 0xaaaaaaaa) << 0;
926 r += !!(x & 0xcccccccc) << 1;
927 r += !!(x & 0xf0f0f0f0) << 2;
928 r += !!(x & 0xff00ff00) << 3;
929 r += !!(x & 0xffff0000) << 4;
930#else
931 if (x & 0xaaaaaaaa) r += 1;
932 if (x & 0xcccccccc) r += 2;
933 if (x & 0xf0f0f0f0) r += 4;
934 if (x & 0xff00ff00) r += 8;
935 if (x & 0xffff0000) r += 16;
936#endif
937
938 return r;
939 }
940
941 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
942 ecb_function_ ecb_const int
943 ecb_ctz64 (uint64_t x)
944 {
945 int shift = x & 0xffffffffU ? 0 : 32;
946 return ecb_ctz32 (x >> shift) + shift;
947 }
948
949 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
950 ecb_function_ ecb_const int
951 ecb_popcount32 (uint32_t x)
952 {
953 x -= (x >> 1) & 0x55555555;
954 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
955 x = ((x >> 4) + x) & 0x0f0f0f0f;
956 x *= 0x01010101;
957
958 return x >> 24;
959 }
960
961 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
962 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
963 {
964 int r = 0;
965
966 if (x >> 16) { x >>= 16; r += 16; }
967 if (x >> 8) { x >>= 8; r += 8; }
968 if (x >> 4) { x >>= 4; r += 4; }
969 if (x >> 2) { x >>= 2; r += 2; }
970 if (x >> 1) { r += 1; }
971
972 return r;
973 }
974
975 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
976 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
977 {
978 int r = 0;
979
980 if (x >> 32) { x >>= 32; r += 32; }
981
982 return r + ecb_ld32 (x);
983 }
984#endif
985
986ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
987ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
988ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
989ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
990
991ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
992ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
993{
994 return ( (x * 0x0802U & 0x22110U)
995 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
996}
997
998ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
999ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1000{
1001 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1002 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1003 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1004 x = ( x >> 8 ) | ( x << 8);
1005
1006 return x;
1007}
1008
1009ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1010ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1011{
1012 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1013 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1014 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1015 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1016 x = ( x >> 16 ) | ( x << 16);
1017
1018 return x;
1019}
1020
1021/* popcount64 is only available on 64 bit cpus as gcc builtin */
1022/* so for this version we are lazy */
1023ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1024ecb_function_ ecb_const int
1025ecb_popcount64 (uint64_t x)
1026{
1027 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1028}
1029
1030ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1031ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1032ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1033ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1034ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1035ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1036ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1037ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1038
1039ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1040ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1041ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1042ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1043ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1044ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1045ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1046ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1047
1048#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1049 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1050 #define ecb_bswap16(x) __builtin_bswap16 (x)
1051 #else
1052 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1053 #endif
1054 #define ecb_bswap32(x) __builtin_bswap32 (x)
1055 #define ecb_bswap64(x) __builtin_bswap64 (x)
1056#elif _MSC_VER
1057 #include <stdlib.h>
1058 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1059 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1060 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1061#else
1062 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1063 ecb_function_ ecb_const uint16_t
1064 ecb_bswap16 (uint16_t x)
1065 {
1066 return ecb_rotl16 (x, 8);
1067 }
1068
1069 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1070 ecb_function_ ecb_const uint32_t
1071 ecb_bswap32 (uint32_t x)
1072 {
1073 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1074 }
1075
1076 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1077 ecb_function_ ecb_const uint64_t
1078 ecb_bswap64 (uint64_t x)
1079 {
1080 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1081 }
1082#endif
1083
1084#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1085 #define ecb_unreachable() __builtin_unreachable ()
1086#else
1087 /* this seems to work fine, but gcc always emits a warning for it :/ */
1088 ecb_inline ecb_noreturn void ecb_unreachable (void);
1089 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1090#endif
1091
1092/* try to tell the compiler that some condition is definitely true */
1093#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1094
1095ecb_inline ecb_const unsigned char ecb_byteorder_helper (void);
1096ecb_inline ecb_const unsigned char
1097ecb_byteorder_helper (void)
1098{
1099 /* the union code still generates code under pressure in gcc, */
1100 /* but less than using pointers, and always seems to */
1101 /* successfully return a constant. */
1102 /* the reason why we have this horrible preprocessor mess */
1103 /* is to avoid it in all cases, at least on common architectures */
1104 /* or when using a recent enough gcc version (>= 4.6) */
1105#if ((__i386 || __i386__) && !__VOS__) || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64
1106 return 0x44;
1107#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1108 return 0x44;
1109#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1110 return 0x11;
1111#else
1112 union
1113 {
1114 uint32_t i;
1115 uint8_t c;
1116 } u = { 0x11223344 };
1117 return u.c;
1118#endif
1119}
1120
1121ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1122ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
1123ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1124ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
1125
1126#if ECB_GCC_VERSION(3,0) || ECB_C99
1127 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1128#else
1129 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1130#endif
1131
1132#if ECB_CPP
1133 template<typename T>
1134 static inline T ecb_div_rd (T val, T div)
1135 {
1136 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1137 }
1138 template<typename T>
1139 static inline T ecb_div_ru (T val, T div)
1140 {
1141 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1142 }
1143#else
1144 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1145 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1146#endif
1147
1148#if ecb_cplusplus_does_not_suck
1149 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1150 template<typename T, int N>
1151 static inline int ecb_array_length (const T (&arr)[N])
1152 {
1153 return N;
1154 }
1155#else
1156 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1157#endif
1158
1159/*******************************************************************************/
1160/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1161
1162/* basically, everything uses "ieee pure-endian" floating point numbers */
1163/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1164#if 0 \
1165 || __i386 || __i386__ \
1166 || ECB_GCC_AMD64 \
1167 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1168 || defined __s390__ || defined __s390x__ \
1169 || defined __mips__ \
1170 || defined __alpha__ \
1171 || defined __hppa__ \
1172 || defined __ia64__ \
1173 || defined __m68k__ \
1174 || defined __m88k__ \
1175 || defined __sh__ \
1176 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1177 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1178 || defined __aarch64__
1179 #define ECB_STDFP 1
1180 #include <string.h> /* for memcpy */
1181#else
1182 #define ECB_STDFP 0
1183#endif
1184
1185#ifndef ECB_NO_LIBM
1186
1187 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1188
1189 /* only the oldest of old doesn't have this one. solaris. */
1190 #ifdef INFINITY
1191 #define ECB_INFINITY INFINITY
1192 #else
1193 #define ECB_INFINITY HUGE_VAL
1194 #endif
1195
1196 #ifdef NAN
1197 #define ECB_NAN NAN
1198 #else
1199 #define ECB_NAN ECB_INFINITY
1200 #endif
1201
1202 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1203 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1204 #define ecb_frexpf(x,e) frexpf ((x), (e))
1205 #else
1206 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1207 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1208 #endif
1209
1210 /* converts an ieee half/binary16 to a float */
1211 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1212 ecb_function_ ecb_const float
1213 ecb_binary16_to_float (uint16_t x)
1214 {
1215 int e = (x >> 10) & 0x1f;
1216 int m = x & 0x3ff;
1217 float r;
1218
1219 if (!e ) r = ecb_ldexpf (m , -24);
1220 else if (e != 31) r = ecb_ldexpf (m + 0x400, e - 25);
1221 else if (m ) r = ECB_NAN;
1222 else r = ECB_INFINITY;
1223
1224 return x & 0x8000 ? -r : r;
1225 }
1226
1227 /* convert a float to ieee single/binary32 */
1228 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1229 ecb_function_ ecb_const uint32_t
1230 ecb_float_to_binary32 (float x)
1231 {
1232 uint32_t r;
1233
1234 #if ECB_STDFP
1235 memcpy (&r, &x, 4);
1236 #else
1237 /* slow emulation, works for anything but -0 */
1238 uint32_t m;
1239 int e;
1240
1241 if (x == 0e0f ) return 0x00000000U;
1242 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1243 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1244 if (x != x ) return 0x7fbfffffU;
1245
1246 m = ecb_frexpf (x, &e) * 0x1000000U;
1247
1248 r = m & 0x80000000U;
1249
1250 if (r)
1251 m = -m;
1252
1253 if (e <= -126)
1254 {
1255 m &= 0xffffffU;
1256 m >>= (-125 - e);
1257 e = -126;
1258 }
1259
1260 r |= (e + 126) << 23;
1261 r |= m & 0x7fffffU;
1262 #endif
1263
1264 return r;
1265 }
1266
1267 /* converts an ieee single/binary32 to a float */
1268 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1269 ecb_function_ ecb_const float
1270 ecb_binary32_to_float (uint32_t x)
1271 {
1272 float r;
1273
1274 #if ECB_STDFP
1275 memcpy (&r, &x, 4);
1276 #else
1277 /* emulation, only works for normals and subnormals and +0 */
1278 int neg = x >> 31;
1279 int e = (x >> 23) & 0xffU;
1280
1281 x &= 0x7fffffU;
1282
1283 if (e)
1284 x |= 0x800000U;
1285 else
1286 e = 1;
1287
1288 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1289 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1290
1291 r = neg ? -r : r;
1292 #endif
1293
1294 return r;
1295 }
1296
1297 /* convert a double to ieee double/binary64 */
1298 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1299 ecb_function_ ecb_const uint64_t
1300 ecb_double_to_binary64 (double x)
1301 {
1302 uint64_t r;
1303
1304 #if ECB_STDFP
1305 memcpy (&r, &x, 8);
1306 #else
1307 /* slow emulation, works for anything but -0 */
1308 uint64_t m;
1309 int e;
1310
1311 if (x == 0e0 ) return 0x0000000000000000U;
1312 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1313 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1314 if (x != x ) return 0X7ff7ffffffffffffU;
1315
1316 m = frexp (x, &e) * 0x20000000000000U;
1317
1318 r = m & 0x8000000000000000;;
1319
1320 if (r)
1321 m = -m;
1322
1323 if (e <= -1022)
1324 {
1325 m &= 0x1fffffffffffffU;
1326 m >>= (-1021 - e);
1327 e = -1022;
1328 }
1329
1330 r |= ((uint64_t)(e + 1022)) << 52;
1331 r |= m & 0xfffffffffffffU;
1332 #endif
1333
1334 return r;
1335 }
1336
1337 /* converts an ieee double/binary64 to a double */
1338 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1339 ecb_function_ ecb_const double
1340 ecb_binary64_to_double (uint64_t x)
1341 {
1342 double r;
1343
1344 #if ECB_STDFP
1345 memcpy (&r, &x, 8);
1346 #else
1347 /* emulation, only works for normals and subnormals and +0 */
1348 int neg = x >> 63;
1349 int e = (x >> 52) & 0x7ffU;
1350
1351 x &= 0xfffffffffffffU;
1352
1353 if (e)
1354 x |= 0x10000000000000U;
1355 else
1356 e = 1;
1357
1358 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1359 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1360
1361 r = neg ? -r : r;
1362 #endif
1363
1364 return r;
1365 }
1366
1367#endif
1368
1369#endif
1370
1371/* ECB.H END */
1372
1373#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1374/* if your architecture doesn't need memory fences, e.g. because it is
1375 * single-cpu/core, or if you use libev in a project that doesn't use libev
1376 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1377 * libev, in which cases the memory fences become nops.
1378 * alternatively, you can remove this #error and link against libpthread,
1379 * which will then provide the memory fences.
1380 */
1381# error "memory fences not defined for your architecture, please report"
1382#endif
1383
1384#ifndef ECB_MEMORY_FENCE
1385# define ECB_MEMORY_FENCE do { } while (0)
1386# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1387# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1388#endif
1389
1390#define expect_false(cond) ecb_expect_false (cond)
1391#define expect_true(cond) ecb_expect_true (cond)
1392#define noinline ecb_noinline
1393
351#define inline_size static inline 1394#define inline_size ecb_inline
352 1395
353#if EV_MINIMAL 1396#if EV_FEATURE_CODE
1397# define inline_speed ecb_inline
1398#else
354# define inline_speed static noinline 1399# define inline_speed static noinline
1400#endif
1401
1402#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1403
1404#if EV_MINPRI == EV_MAXPRI
1405# define ABSPRI(w) (((W)w), 0)
355#else 1406#else
356# define inline_speed static inline
357#endif
358
359#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
360#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1407# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1408#endif
361 1409
362#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1410#define EMPTY /* required for microsofts broken pseudo-c compiler */
363#define EMPTY2(a,b) /* used to suppress some warnings */ 1411#define EMPTY2(a,b) /* used to suppress some warnings */
364 1412
365typedef ev_watcher *W; 1413typedef ev_watcher *W;
367typedef ev_watcher_time *WT; 1415typedef ev_watcher_time *WT;
368 1416
369#define ev_active(w) ((W)(w))->active 1417#define ev_active(w) ((W)(w))->active
370#define ev_at(w) ((WT)(w))->at 1418#define ev_at(w) ((WT)(w))->at
371 1419
1420#if EV_USE_REALTIME
1421/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1422/* giving it a reasonably high chance of working on typical architectures */
1423static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1424#endif
1425
372#if EV_USE_MONOTONIC 1426#if EV_USE_MONOTONIC
373/* sig_atomic_t is used to avoid per-thread variables or locking but still */
374/* giving it a reasonably high chance of working on typical architetcures */
375static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1427static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1428#endif
1429
1430#ifndef EV_FD_TO_WIN32_HANDLE
1431# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1432#endif
1433#ifndef EV_WIN32_HANDLE_TO_FD
1434# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1435#endif
1436#ifndef EV_WIN32_CLOSE_FD
1437# define EV_WIN32_CLOSE_FD(fd) close (fd)
376#endif 1438#endif
377 1439
378#ifdef _WIN32 1440#ifdef _WIN32
379# include "ev_win32.c" 1441# include "ev_win32.c"
380#endif 1442#endif
381 1443
382/*****************************************************************************/ 1444/*****************************************************************************/
383 1445
1446/* define a suitable floor function (only used by periodics atm) */
1447
1448#if EV_USE_FLOOR
1449# include <math.h>
1450# define ev_floor(v) floor (v)
1451#else
1452
1453#include <float.h>
1454
1455/* a floor() replacement function, should be independent of ev_tstamp type */
1456static ev_tstamp noinline
1457ev_floor (ev_tstamp v)
1458{
1459 /* the choice of shift factor is not terribly important */
1460#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1461 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1462#else
1463 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1464#endif
1465
1466 /* argument too large for an unsigned long? */
1467 if (expect_false (v >= shift))
1468 {
1469 ev_tstamp f;
1470
1471 if (v == v - 1.)
1472 return v; /* very large number */
1473
1474 f = shift * ev_floor (v * (1. / shift));
1475 return f + ev_floor (v - f);
1476 }
1477
1478 /* special treatment for negative args? */
1479 if (expect_false (v < 0.))
1480 {
1481 ev_tstamp f = -ev_floor (-v);
1482
1483 return f - (f == v ? 0 : 1);
1484 }
1485
1486 /* fits into an unsigned long */
1487 return (unsigned long)v;
1488}
1489
1490#endif
1491
1492/*****************************************************************************/
1493
1494#ifdef __linux
1495# include <sys/utsname.h>
1496#endif
1497
1498static unsigned int noinline ecb_cold
1499ev_linux_version (void)
1500{
1501#ifdef __linux
1502 unsigned int v = 0;
1503 struct utsname buf;
1504 int i;
1505 char *p = buf.release;
1506
1507 if (uname (&buf))
1508 return 0;
1509
1510 for (i = 3+1; --i; )
1511 {
1512 unsigned int c = 0;
1513
1514 for (;;)
1515 {
1516 if (*p >= '0' && *p <= '9')
1517 c = c * 10 + *p++ - '0';
1518 else
1519 {
1520 p += *p == '.';
1521 break;
1522 }
1523 }
1524
1525 v = (v << 8) | c;
1526 }
1527
1528 return v;
1529#else
1530 return 0;
1531#endif
1532}
1533
1534/*****************************************************************************/
1535
1536#if EV_AVOID_STDIO
1537static void noinline ecb_cold
1538ev_printerr (const char *msg)
1539{
1540 write (STDERR_FILENO, msg, strlen (msg));
1541}
1542#endif
1543
384static void (*syserr_cb)(const char *msg); 1544static void (*syserr_cb)(const char *msg) EV_THROW;
385 1545
386void 1546void ecb_cold
387ev_set_syserr_cb (void (*cb)(const char *msg)) 1547ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
388{ 1548{
389 syserr_cb = cb; 1549 syserr_cb = cb;
390} 1550}
391 1551
392static void noinline 1552static void noinline ecb_cold
393syserr (const char *msg) 1553ev_syserr (const char *msg)
394{ 1554{
395 if (!msg) 1555 if (!msg)
396 msg = "(libev) system error"; 1556 msg = "(libev) system error";
397 1557
398 if (syserr_cb) 1558 if (syserr_cb)
399 syserr_cb (msg); 1559 syserr_cb (msg);
400 else 1560 else
401 { 1561 {
1562#if EV_AVOID_STDIO
1563 ev_printerr (msg);
1564 ev_printerr (": ");
1565 ev_printerr (strerror (errno));
1566 ev_printerr ("\n");
1567#else
402 perror (msg); 1568 perror (msg);
1569#endif
403 abort (); 1570 abort ();
404 } 1571 }
405} 1572}
406 1573
407static void * 1574static void *
408ev_realloc_emul (void *ptr, long size) 1575ev_realloc_emul (void *ptr, long size) EV_THROW
409{ 1576{
410 /* some systems, notably openbsd and darwin, fail to properly 1577 /* some systems, notably openbsd and darwin, fail to properly
411 * implement realloc (x, 0) (as required by both ansi c-98 and 1578 * implement realloc (x, 0) (as required by both ansi c-89 and
412 * the single unix specification, so work around them here. 1579 * the single unix specification, so work around them here.
1580 * recently, also (at least) fedora and debian started breaking it,
1581 * despite documenting it otherwise.
413 */ 1582 */
414 1583
415 if (size) 1584 if (size)
416 return realloc (ptr, size); 1585 return realloc (ptr, size);
417 1586
418 free (ptr); 1587 free (ptr);
419 return 0; 1588 return 0;
420} 1589}
421 1590
422static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 1591static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
423 1592
424void 1593void ecb_cold
425ev_set_allocator (void *(*cb)(void *ptr, long size)) 1594ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
426{ 1595{
427 alloc = cb; 1596 alloc = cb;
428} 1597}
429 1598
430inline_speed void * 1599inline_speed void *
432{ 1601{
433 ptr = alloc (ptr, size); 1602 ptr = alloc (ptr, size);
434 1603
435 if (!ptr && size) 1604 if (!ptr && size)
436 { 1605 {
1606#if EV_AVOID_STDIO
1607 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1608#else
437 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1609 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1610#endif
438 abort (); 1611 abort ();
439 } 1612 }
440 1613
441 return ptr; 1614 return ptr;
442} 1615}
444#define ev_malloc(size) ev_realloc (0, (size)) 1617#define ev_malloc(size) ev_realloc (0, (size))
445#define ev_free(ptr) ev_realloc ((ptr), 0) 1618#define ev_free(ptr) ev_realloc ((ptr), 0)
446 1619
447/*****************************************************************************/ 1620/*****************************************************************************/
448 1621
1622/* set in reify when reification needed */
1623#define EV_ANFD_REIFY 1
1624
1625/* file descriptor info structure */
449typedef struct 1626typedef struct
450{ 1627{
451 WL head; 1628 WL head;
452 unsigned char events; 1629 unsigned char events; /* the events watched for */
453 unsigned char reify; 1630 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
454 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */ 1631 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
455 unsigned char unused; /* currently unused padding */ 1632 unsigned char unused;
1633#if EV_USE_EPOLL
1634 unsigned int egen; /* generation counter to counter epoll bugs */
1635#endif
456#if EV_SELECT_IS_WINSOCKET 1636#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
457 SOCKET handle; 1637 SOCKET handle;
458#endif 1638#endif
1639#if EV_USE_IOCP
1640 OVERLAPPED or, ow;
1641#endif
459} ANFD; 1642} ANFD;
460 1643
1644/* stores the pending event set for a given watcher */
461typedef struct 1645typedef struct
462{ 1646{
463 W w; 1647 W w;
464 int events; 1648 int events; /* the pending event set for the given watcher */
465} ANPENDING; 1649} ANPENDING;
466 1650
467#if EV_USE_INOTIFY 1651#if EV_USE_INOTIFY
468/* hash table entry per inotify-id */ 1652/* hash table entry per inotify-id */
469typedef struct 1653typedef struct
472} ANFS; 1656} ANFS;
473#endif 1657#endif
474 1658
475/* Heap Entry */ 1659/* Heap Entry */
476#if EV_HEAP_CACHE_AT 1660#if EV_HEAP_CACHE_AT
1661 /* a heap element */
477 typedef struct { 1662 typedef struct {
478 ev_tstamp at; 1663 ev_tstamp at;
479 WT w; 1664 WT w;
480 } ANHE; 1665 } ANHE;
481 1666
482 #define ANHE_w(he) (he).w /* access watcher, read-write */ 1667 #define ANHE_w(he) (he).w /* access watcher, read-write */
483 #define ANHE_at(he) (he).at /* access cached at, read-only */ 1668 #define ANHE_at(he) (he).at /* access cached at, read-only */
484 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 1669 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
485#else 1670#else
1671 /* a heap element */
486 typedef WT ANHE; 1672 typedef WT ANHE;
487 1673
488 #define ANHE_w(he) (he) 1674 #define ANHE_w(he) (he)
489 #define ANHE_at(he) (he)->at 1675 #define ANHE_at(he) (he)->at
490 #define ANHE_at_cache(he) 1676 #define ANHE_at_cache(he)
501 #undef VAR 1687 #undef VAR
502 }; 1688 };
503 #include "ev_wrap.h" 1689 #include "ev_wrap.h"
504 1690
505 static struct ev_loop default_loop_struct; 1691 static struct ev_loop default_loop_struct;
506 struct ev_loop *ev_default_loop_ptr; 1692 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
507 1693
508#else 1694#else
509 1695
510 ev_tstamp ev_rt_now; 1696 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
511 #define VAR(name,decl) static decl; 1697 #define VAR(name,decl) static decl;
512 #include "ev_vars.h" 1698 #include "ev_vars.h"
513 #undef VAR 1699 #undef VAR
514 1700
515 static int ev_default_loop_ptr; 1701 static int ev_default_loop_ptr;
516 1702
517#endif 1703#endif
518 1704
1705#if EV_FEATURE_API
1706# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1707# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1708# define EV_INVOKE_PENDING invoke_cb (EV_A)
1709#else
1710# define EV_RELEASE_CB (void)0
1711# define EV_ACQUIRE_CB (void)0
1712# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1713#endif
1714
1715#define EVBREAK_RECURSE 0x80
1716
519/*****************************************************************************/ 1717/*****************************************************************************/
520 1718
1719#ifndef EV_HAVE_EV_TIME
521ev_tstamp 1720ev_tstamp
522ev_time (void) 1721ev_time (void) EV_THROW
523{ 1722{
524#if EV_USE_REALTIME 1723#if EV_USE_REALTIME
1724 if (expect_true (have_realtime))
1725 {
525 struct timespec ts; 1726 struct timespec ts;
526 clock_gettime (CLOCK_REALTIME, &ts); 1727 clock_gettime (CLOCK_REALTIME, &ts);
527 return ts.tv_sec + ts.tv_nsec * 1e-9; 1728 return ts.tv_sec + ts.tv_nsec * 1e-9;
528#else 1729 }
1730#endif
1731
529 struct timeval tv; 1732 struct timeval tv;
530 gettimeofday (&tv, 0); 1733 gettimeofday (&tv, 0);
531 return tv.tv_sec + tv.tv_usec * 1e-6; 1734 return tv.tv_sec + tv.tv_usec * 1e-6;
532#endif
533} 1735}
1736#endif
534 1737
535ev_tstamp inline_size 1738inline_size ev_tstamp
536get_clock (void) 1739get_clock (void)
537{ 1740{
538#if EV_USE_MONOTONIC 1741#if EV_USE_MONOTONIC
539 if (expect_true (have_monotonic)) 1742 if (expect_true (have_monotonic))
540 { 1743 {
547 return ev_time (); 1750 return ev_time ();
548} 1751}
549 1752
550#if EV_MULTIPLICITY 1753#if EV_MULTIPLICITY
551ev_tstamp 1754ev_tstamp
552ev_now (EV_P) 1755ev_now (EV_P) EV_THROW
553{ 1756{
554 return ev_rt_now; 1757 return ev_rt_now;
555} 1758}
556#endif 1759#endif
557 1760
558void 1761void
559ev_sleep (ev_tstamp delay) 1762ev_sleep (ev_tstamp delay) EV_THROW
560{ 1763{
561 if (delay > 0.) 1764 if (delay > 0.)
562 { 1765 {
563#if EV_USE_NANOSLEEP 1766#if EV_USE_NANOSLEEP
564 struct timespec ts; 1767 struct timespec ts;
565 1768
566 ts.tv_sec = (time_t)delay; 1769 EV_TS_SET (ts, delay);
567 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
568
569 nanosleep (&ts, 0); 1770 nanosleep (&ts, 0);
570#elif defined(_WIN32) 1771#elif defined _WIN32
571 Sleep ((unsigned long)(delay * 1e3)); 1772 Sleep ((unsigned long)(delay * 1e3));
572#else 1773#else
573 struct timeval tv; 1774 struct timeval tv;
574 1775
575 tv.tv_sec = (time_t)delay;
576 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
577
578 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */ 1776 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
579 /* somehting nto guaranteed by newer posix versions, but guaranteed */ 1777 /* something not guaranteed by newer posix versions, but guaranteed */
580 /* by older ones */ 1778 /* by older ones */
1779 EV_TV_SET (tv, delay);
581 select (0, 0, 0, 0, &tv); 1780 select (0, 0, 0, 0, &tv);
582#endif 1781#endif
583 } 1782 }
584} 1783}
585 1784
586/*****************************************************************************/ 1785/*****************************************************************************/
587 1786
588#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 1787#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
589 1788
590int inline_size 1789/* find a suitable new size for the given array, */
1790/* hopefully by rounding to a nice-to-malloc size */
1791inline_size int
591array_nextsize (int elem, int cur, int cnt) 1792array_nextsize (int elem, int cur, int cnt)
592{ 1793{
593 int ncur = cur + 1; 1794 int ncur = cur + 1;
594 1795
595 do 1796 do
596 ncur <<= 1; 1797 ncur <<= 1;
597 while (cnt > ncur); 1798 while (cnt > ncur);
598 1799
599 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */ 1800 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
600 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4) 1801 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
601 { 1802 {
602 ncur *= elem; 1803 ncur *= elem;
603 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1); 1804 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
604 ncur = ncur - sizeof (void *) * 4; 1805 ncur = ncur - sizeof (void *) * 4;
606 } 1807 }
607 1808
608 return ncur; 1809 return ncur;
609} 1810}
610 1811
611static noinline void * 1812static void * noinline ecb_cold
612array_realloc (int elem, void *base, int *cur, int cnt) 1813array_realloc (int elem, void *base, int *cur, int cnt)
613{ 1814{
614 *cur = array_nextsize (elem, *cur, cnt); 1815 *cur = array_nextsize (elem, *cur, cnt);
615 return ev_realloc (base, elem * *cur); 1816 return ev_realloc (base, elem * *cur);
616} 1817}
619 memset ((void *)(base), 0, sizeof (*(base)) * (count)) 1820 memset ((void *)(base), 0, sizeof (*(base)) * (count))
620 1821
621#define array_needsize(type,base,cur,cnt,init) \ 1822#define array_needsize(type,base,cur,cnt,init) \
622 if (expect_false ((cnt) > (cur))) \ 1823 if (expect_false ((cnt) > (cur))) \
623 { \ 1824 { \
624 int ocur_ = (cur); \ 1825 int ecb_unused ocur_ = (cur); \
625 (base) = (type *)array_realloc \ 1826 (base) = (type *)array_realloc \
626 (sizeof (type), (base), &(cur), (cnt)); \ 1827 (sizeof (type), (base), &(cur), (cnt)); \
627 init ((base) + (ocur_), (cur) - ocur_); \ 1828 init ((base) + (ocur_), (cur) - ocur_); \
628 } 1829 }
629 1830
636 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1837 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
637 } 1838 }
638#endif 1839#endif
639 1840
640#define array_free(stem, idx) \ 1841#define array_free(stem, idx) \
641 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1842 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
642 1843
643/*****************************************************************************/ 1844/*****************************************************************************/
644 1845
1846/* dummy callback for pending events */
1847static void noinline
1848pendingcb (EV_P_ ev_prepare *w, int revents)
1849{
1850}
1851
645void noinline 1852void noinline
646ev_feed_event (EV_P_ void *w, int revents) 1853ev_feed_event (EV_P_ void *w, int revents) EV_THROW
647{ 1854{
648 W w_ = (W)w; 1855 W w_ = (W)w;
649 int pri = ABSPRI (w_); 1856 int pri = ABSPRI (w_);
650 1857
651 if (expect_false (w_->pending)) 1858 if (expect_false (w_->pending))
655 w_->pending = ++pendingcnt [pri]; 1862 w_->pending = ++pendingcnt [pri];
656 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 1863 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
657 pendings [pri][w_->pending - 1].w = w_; 1864 pendings [pri][w_->pending - 1].w = w_;
658 pendings [pri][w_->pending - 1].events = revents; 1865 pendings [pri][w_->pending - 1].events = revents;
659 } 1866 }
660}
661 1867
662void inline_speed 1868 pendingpri = NUMPRI - 1;
1869}
1870
1871inline_speed void
1872feed_reverse (EV_P_ W w)
1873{
1874 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1875 rfeeds [rfeedcnt++] = w;
1876}
1877
1878inline_size void
1879feed_reverse_done (EV_P_ int revents)
1880{
1881 do
1882 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1883 while (rfeedcnt);
1884}
1885
1886inline_speed void
663queue_events (EV_P_ W *events, int eventcnt, int type) 1887queue_events (EV_P_ W *events, int eventcnt, int type)
664{ 1888{
665 int i; 1889 int i;
666 1890
667 for (i = 0; i < eventcnt; ++i) 1891 for (i = 0; i < eventcnt; ++i)
668 ev_feed_event (EV_A_ events [i], type); 1892 ev_feed_event (EV_A_ events [i], type);
669} 1893}
670 1894
671/*****************************************************************************/ 1895/*****************************************************************************/
672 1896
673void inline_speed 1897inline_speed void
674fd_event (EV_P_ int fd, int revents) 1898fd_event_nocheck (EV_P_ int fd, int revents)
675{ 1899{
676 ANFD *anfd = anfds + fd; 1900 ANFD *anfd = anfds + fd;
677 ev_io *w; 1901 ev_io *w;
678 1902
679 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1903 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
683 if (ev) 1907 if (ev)
684 ev_feed_event (EV_A_ (W)w, ev); 1908 ev_feed_event (EV_A_ (W)w, ev);
685 } 1909 }
686} 1910}
687 1911
1912/* do not submit kernel events for fds that have reify set */
1913/* because that means they changed while we were polling for new events */
1914inline_speed void
1915fd_event (EV_P_ int fd, int revents)
1916{
1917 ANFD *anfd = anfds + fd;
1918
1919 if (expect_true (!anfd->reify))
1920 fd_event_nocheck (EV_A_ fd, revents);
1921}
1922
688void 1923void
689ev_feed_fd_event (EV_P_ int fd, int revents) 1924ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
690{ 1925{
691 if (fd >= 0 && fd < anfdmax) 1926 if (fd >= 0 && fd < anfdmax)
692 fd_event (EV_A_ fd, revents); 1927 fd_event_nocheck (EV_A_ fd, revents);
693} 1928}
694 1929
695void inline_size 1930/* make sure the external fd watch events are in-sync */
1931/* with the kernel/libev internal state */
1932inline_size void
696fd_reify (EV_P) 1933fd_reify (EV_P)
697{ 1934{
698 int i; 1935 int i;
1936
1937#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1938 for (i = 0; i < fdchangecnt; ++i)
1939 {
1940 int fd = fdchanges [i];
1941 ANFD *anfd = anfds + fd;
1942
1943 if (anfd->reify & EV__IOFDSET && anfd->head)
1944 {
1945 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1946
1947 if (handle != anfd->handle)
1948 {
1949 unsigned long arg;
1950
1951 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1952
1953 /* handle changed, but fd didn't - we need to do it in two steps */
1954 backend_modify (EV_A_ fd, anfd->events, 0);
1955 anfd->events = 0;
1956 anfd->handle = handle;
1957 }
1958 }
1959 }
1960#endif
699 1961
700 for (i = 0; i < fdchangecnt; ++i) 1962 for (i = 0; i < fdchangecnt; ++i)
701 { 1963 {
702 int fd = fdchanges [i]; 1964 int fd = fdchanges [i];
703 ANFD *anfd = anfds + fd; 1965 ANFD *anfd = anfds + fd;
704 ev_io *w; 1966 ev_io *w;
705 1967
706 unsigned char events = 0; 1968 unsigned char o_events = anfd->events;
1969 unsigned char o_reify = anfd->reify;
707 1970
708 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1971 anfd->reify = 0;
709 events |= (unsigned char)w->events;
710 1972
711#if EV_SELECT_IS_WINSOCKET 1973 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
712 if (events)
713 { 1974 {
714 unsigned long arg; 1975 anfd->events = 0;
715 #ifdef EV_FD_TO_WIN32_HANDLE 1976
716 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1977 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
717 #else 1978 anfd->events |= (unsigned char)w->events;
718 anfd->handle = _get_osfhandle (fd); 1979
719 #endif 1980 if (o_events != anfd->events)
720 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0)); 1981 o_reify = EV__IOFDSET; /* actually |= */
721 } 1982 }
722#endif
723 1983
724 { 1984 if (o_reify & EV__IOFDSET)
725 unsigned char o_events = anfd->events;
726 unsigned char o_reify = anfd->reify;
727
728 anfd->reify = 0;
729 anfd->events = events;
730
731 if (o_events != events || o_reify & EV_IOFDSET)
732 backend_modify (EV_A_ fd, o_events, events); 1985 backend_modify (EV_A_ fd, o_events, anfd->events);
733 }
734 } 1986 }
735 1987
736 fdchangecnt = 0; 1988 fdchangecnt = 0;
737} 1989}
738 1990
739void inline_size 1991/* something about the given fd changed */
1992inline_size void
740fd_change (EV_P_ int fd, int flags) 1993fd_change (EV_P_ int fd, int flags)
741{ 1994{
742 unsigned char reify = anfds [fd].reify; 1995 unsigned char reify = anfds [fd].reify;
743 anfds [fd].reify |= flags; 1996 anfds [fd].reify |= flags;
744 1997
748 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 2001 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
749 fdchanges [fdchangecnt - 1] = fd; 2002 fdchanges [fdchangecnt - 1] = fd;
750 } 2003 }
751} 2004}
752 2005
753void inline_speed 2006/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2007inline_speed void ecb_cold
754fd_kill (EV_P_ int fd) 2008fd_kill (EV_P_ int fd)
755{ 2009{
756 ev_io *w; 2010 ev_io *w;
757 2011
758 while ((w = (ev_io *)anfds [fd].head)) 2012 while ((w = (ev_io *)anfds [fd].head))
760 ev_io_stop (EV_A_ w); 2014 ev_io_stop (EV_A_ w);
761 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 2015 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
762 } 2016 }
763} 2017}
764 2018
765int inline_size 2019/* check whether the given fd is actually valid, for error recovery */
2020inline_size int ecb_cold
766fd_valid (int fd) 2021fd_valid (int fd)
767{ 2022{
768#ifdef _WIN32 2023#ifdef _WIN32
769 return _get_osfhandle (fd) != -1; 2024 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
770#else 2025#else
771 return fcntl (fd, F_GETFD) != -1; 2026 return fcntl (fd, F_GETFD) != -1;
772#endif 2027#endif
773} 2028}
774 2029
775/* called on EBADF to verify fds */ 2030/* called on EBADF to verify fds */
776static void noinline 2031static void noinline ecb_cold
777fd_ebadf (EV_P) 2032fd_ebadf (EV_P)
778{ 2033{
779 int fd; 2034 int fd;
780 2035
781 for (fd = 0; fd < anfdmax; ++fd) 2036 for (fd = 0; fd < anfdmax; ++fd)
783 if (!fd_valid (fd) && errno == EBADF) 2038 if (!fd_valid (fd) && errno == EBADF)
784 fd_kill (EV_A_ fd); 2039 fd_kill (EV_A_ fd);
785} 2040}
786 2041
787/* called on ENOMEM in select/poll to kill some fds and retry */ 2042/* called on ENOMEM in select/poll to kill some fds and retry */
788static void noinline 2043static void noinline ecb_cold
789fd_enomem (EV_P) 2044fd_enomem (EV_P)
790{ 2045{
791 int fd; 2046 int fd;
792 2047
793 for (fd = anfdmax; fd--; ) 2048 for (fd = anfdmax; fd--; )
794 if (anfds [fd].events) 2049 if (anfds [fd].events)
795 { 2050 {
796 fd_kill (EV_A_ fd); 2051 fd_kill (EV_A_ fd);
797 return; 2052 break;
798 } 2053 }
799} 2054}
800 2055
801/* usually called after fork if backend needs to re-arm all fds from scratch */ 2056/* usually called after fork if backend needs to re-arm all fds from scratch */
802static void noinline 2057static void noinline
806 2061
807 for (fd = 0; fd < anfdmax; ++fd) 2062 for (fd = 0; fd < anfdmax; ++fd)
808 if (anfds [fd].events) 2063 if (anfds [fd].events)
809 { 2064 {
810 anfds [fd].events = 0; 2065 anfds [fd].events = 0;
2066 anfds [fd].emask = 0;
811 fd_change (EV_A_ fd, EV_IOFDSET | 1); 2067 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
812 } 2068 }
813} 2069}
814 2070
2071/* used to prepare libev internal fd's */
2072/* this is not fork-safe */
2073inline_speed void
2074fd_intern (int fd)
2075{
2076#ifdef _WIN32
2077 unsigned long arg = 1;
2078 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2079#else
2080 fcntl (fd, F_SETFD, FD_CLOEXEC);
2081 fcntl (fd, F_SETFL, O_NONBLOCK);
2082#endif
2083}
2084
815/*****************************************************************************/ 2085/*****************************************************************************/
816 2086
817/* 2087/*
818 * the heap functions want a real array index. array index 0 uis guaranteed to not 2088 * the heap functions want a real array index. array index 0 is guaranteed to not
819 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 2089 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
820 * the branching factor of the d-tree. 2090 * the branching factor of the d-tree.
821 */ 2091 */
822 2092
823/* 2093/*
832#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 2102#define HEAP0 (DHEAP - 1) /* index of first element in heap */
833#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 2103#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
834#define UPHEAP_DONE(p,k) ((p) == (k)) 2104#define UPHEAP_DONE(p,k) ((p) == (k))
835 2105
836/* away from the root */ 2106/* away from the root */
837void inline_speed 2107inline_speed void
838downheap (ANHE *heap, int N, int k) 2108downheap (ANHE *heap, int N, int k)
839{ 2109{
840 ANHE he = heap [k]; 2110 ANHE he = heap [k];
841 ANHE *E = heap + N + HEAP0; 2111 ANHE *E = heap + N + HEAP0;
842 2112
882#define HEAP0 1 2152#define HEAP0 1
883#define HPARENT(k) ((k) >> 1) 2153#define HPARENT(k) ((k) >> 1)
884#define UPHEAP_DONE(p,k) (!(p)) 2154#define UPHEAP_DONE(p,k) (!(p))
885 2155
886/* away from the root */ 2156/* away from the root */
887void inline_speed 2157inline_speed void
888downheap (ANHE *heap, int N, int k) 2158downheap (ANHE *heap, int N, int k)
889{ 2159{
890 ANHE he = heap [k]; 2160 ANHE he = heap [k];
891 2161
892 for (;;) 2162 for (;;)
893 { 2163 {
894 int c = k << 1; 2164 int c = k << 1;
895 2165
896 if (c > N + HEAP0 - 1) 2166 if (c >= N + HEAP0)
897 break; 2167 break;
898 2168
899 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 2169 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
900 ? 1 : 0; 2170 ? 1 : 0;
901 2171
912 ev_active (ANHE_w (he)) = k; 2182 ev_active (ANHE_w (he)) = k;
913} 2183}
914#endif 2184#endif
915 2185
916/* towards the root */ 2186/* towards the root */
917void inline_speed 2187inline_speed void
918upheap (ANHE *heap, int k) 2188upheap (ANHE *heap, int k)
919{ 2189{
920 ANHE he = heap [k]; 2190 ANHE he = heap [k];
921 2191
922 for (;;) 2192 for (;;)
933 2203
934 heap [k] = he; 2204 heap [k] = he;
935 ev_active (ANHE_w (he)) = k; 2205 ev_active (ANHE_w (he)) = k;
936} 2206}
937 2207
938void inline_size 2208/* move an element suitably so it is in a correct place */
2209inline_size void
939adjustheap (ANHE *heap, int N, int k) 2210adjustheap (ANHE *heap, int N, int k)
940{ 2211{
941 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 2212 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
942 upheap (heap, k); 2213 upheap (heap, k);
943 else 2214 else
944 downheap (heap, N, k); 2215 downheap (heap, N, k);
945} 2216}
946 2217
947/* rebuild the heap: this function is used only once and executed rarely */ 2218/* rebuild the heap: this function is used only once and executed rarely */
948void inline_size 2219inline_size void
949reheap (ANHE *heap, int N) 2220reheap (ANHE *heap, int N)
950{ 2221{
951 int i; 2222 int i;
952 2223
953 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 2224 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
956 upheap (heap, i + HEAP0); 2227 upheap (heap, i + HEAP0);
957} 2228}
958 2229
959/*****************************************************************************/ 2230/*****************************************************************************/
960 2231
2232/* associate signal watchers to a signal signal */
961typedef struct 2233typedef struct
962{ 2234{
2235 EV_ATOMIC_T pending;
2236#if EV_MULTIPLICITY
2237 EV_P;
2238#endif
963 WL head; 2239 WL head;
964 EV_ATOMIC_T gotsig;
965} ANSIG; 2240} ANSIG;
966 2241
967static ANSIG *signals; 2242static ANSIG signals [EV_NSIG - 1];
968static int signalmax;
969
970static EV_ATOMIC_T gotsig;
971 2243
972/*****************************************************************************/ 2244/*****************************************************************************/
973 2245
974void inline_speed 2246#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
975fd_intern (int fd)
976{
977#ifdef _WIN32
978 unsigned long arg = 1;
979 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
980#else
981 fcntl (fd, F_SETFD, FD_CLOEXEC);
982 fcntl (fd, F_SETFL, O_NONBLOCK);
983#endif
984}
985 2247
986static void noinline 2248static void noinline ecb_cold
987evpipe_init (EV_P) 2249evpipe_init (EV_P)
988{ 2250{
989 if (!ev_is_active (&pipeev)) 2251 if (!ev_is_active (&pipe_w))
2252 {
2253 int fds [2];
2254
2255# if EV_USE_EVENTFD
2256 fds [0] = -1;
2257 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2258 if (fds [1] < 0 && errno == EINVAL)
2259 fds [1] = eventfd (0, 0);
2260
2261 if (fds [1] < 0)
2262# endif
2263 {
2264 while (pipe (fds))
2265 ev_syserr ("(libev) error creating signal/async pipe");
2266
2267 fd_intern (fds [0]);
2268 }
2269
2270 evpipe [0] = fds [0];
2271
2272 if (evpipe [1] < 0)
2273 evpipe [1] = fds [1]; /* first call, set write fd */
2274 else
2275 {
2276 /* on subsequent calls, do not change evpipe [1] */
2277 /* so that evpipe_write can always rely on its value. */
2278 /* this branch does not do anything sensible on windows, */
2279 /* so must not be executed on windows */
2280
2281 dup2 (fds [1], evpipe [1]);
2282 close (fds [1]);
2283 }
2284
2285 fd_intern (evpipe [1]);
2286
2287 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2288 ev_io_start (EV_A_ &pipe_w);
2289 ev_unref (EV_A); /* watcher should not keep loop alive */
990 { 2290 }
2291}
2292
2293inline_speed void
2294evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2295{
2296 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2297
2298 if (expect_true (*flag))
2299 return;
2300
2301 *flag = 1;
2302 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2303
2304 pipe_write_skipped = 1;
2305
2306 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2307
2308 if (pipe_write_wanted)
2309 {
2310 int old_errno;
2311
2312 pipe_write_skipped = 0;
2313 ECB_MEMORY_FENCE_RELEASE;
2314
2315 old_errno = errno; /* save errno because write will clobber it */
2316
991#if EV_USE_EVENTFD 2317#if EV_USE_EVENTFD
992 if ((evfd = eventfd (0, 0)) >= 0) 2318 if (evpipe [0] < 0)
993 { 2319 {
994 evpipe [0] = -1; 2320 uint64_t counter = 1;
995 fd_intern (evfd); 2321 write (evpipe [1], &counter, sizeof (uint64_t));
996 ev_io_set (&pipeev, evfd, EV_READ);
997 } 2322 }
998 else 2323 else
999#endif 2324#endif
1000 { 2325 {
1001 while (pipe (evpipe)) 2326#ifdef _WIN32
1002 syserr ("(libev) error creating signal/async pipe"); 2327 WSABUF buf;
1003 2328 DWORD sent;
1004 fd_intern (evpipe [0]); 2329 buf.buf = &buf;
1005 fd_intern (evpipe [1]); 2330 buf.len = 1;
1006 ev_io_set (&pipeev, evpipe [0], EV_READ); 2331 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2332#else
2333 write (evpipe [1], &(evpipe [1]), 1);
2334#endif
1007 } 2335 }
1008 2336
1009 ev_io_start (EV_A_ &pipeev); 2337 errno = old_errno;
1010 ev_unref (EV_A); /* watcher should not keep loop alive */
1011 }
1012}
1013
1014void inline_size
1015evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1016{
1017 if (!*flag)
1018 { 2338 }
1019 int old_errno = errno; /* save errno because write might clobber it */ 2339}
1020 2340
1021 *flag = 1; 2341/* called whenever the libev signal pipe */
2342/* got some events (signal, async) */
2343static void
2344pipecb (EV_P_ ev_io *iow, int revents)
2345{
2346 int i;
1022 2347
2348 if (revents & EV_READ)
2349 {
1023#if EV_USE_EVENTFD 2350#if EV_USE_EVENTFD
1024 if (evfd >= 0) 2351 if (evpipe [0] < 0)
1025 { 2352 {
1026 uint64_t counter = 1; 2353 uint64_t counter;
1027 write (evfd, &counter, sizeof (uint64_t)); 2354 read (evpipe [1], &counter, sizeof (uint64_t));
1028 } 2355 }
1029 else 2356 else
1030#endif 2357#endif
1031 write (evpipe [1], &old_errno, 1); 2358 {
1032
1033 errno = old_errno;
1034 }
1035}
1036
1037static void
1038pipecb (EV_P_ ev_io *iow, int revents)
1039{
1040#if EV_USE_EVENTFD
1041 if (evfd >= 0)
1042 {
1043 uint64_t counter;
1044 read (evfd, &counter, sizeof (uint64_t));
1045 }
1046 else
1047#endif
1048 {
1049 char dummy; 2359 char dummy[4];
2360#ifdef _WIN32
2361 WSABUF buf;
2362 DWORD recvd;
2363 DWORD flags = 0;
2364 buf.buf = dummy;
2365 buf.len = sizeof (dummy);
2366 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2367#else
1050 read (evpipe [0], &dummy, 1); 2368 read (evpipe [0], &dummy, sizeof (dummy));
2369#endif
2370 }
2371 }
2372
2373 pipe_write_skipped = 0;
2374
2375 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2376
2377#if EV_SIGNAL_ENABLE
2378 if (sig_pending)
1051 } 2379 {
2380 sig_pending = 0;
1052 2381
1053 if (gotsig && ev_is_default_loop (EV_A)) 2382 ECB_MEMORY_FENCE;
1054 {
1055 int signum;
1056 gotsig = 0;
1057 2383
1058 for (signum = signalmax; signum--; ) 2384 for (i = EV_NSIG - 1; i--; )
1059 if (signals [signum].gotsig) 2385 if (expect_false (signals [i].pending))
1060 ev_feed_signal_event (EV_A_ signum + 1); 2386 ev_feed_signal_event (EV_A_ i + 1);
1061 } 2387 }
2388#endif
1062 2389
1063#if EV_ASYNC_ENABLE 2390#if EV_ASYNC_ENABLE
1064 if (gotasync) 2391 if (async_pending)
1065 { 2392 {
1066 int i; 2393 async_pending = 0;
1067 gotasync = 0; 2394
2395 ECB_MEMORY_FENCE;
1068 2396
1069 for (i = asynccnt; i--; ) 2397 for (i = asynccnt; i--; )
1070 if (asyncs [i]->sent) 2398 if (asyncs [i]->sent)
1071 { 2399 {
1072 asyncs [i]->sent = 0; 2400 asyncs [i]->sent = 0;
2401 ECB_MEMORY_FENCE_RELEASE;
1073 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); 2402 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1074 } 2403 }
1075 } 2404 }
1076#endif 2405#endif
1077} 2406}
1078 2407
1079/*****************************************************************************/ 2408/*****************************************************************************/
1080 2409
2410void
2411ev_feed_signal (int signum) EV_THROW
2412{
2413#if EV_MULTIPLICITY
2414 EV_P;
2415 ECB_MEMORY_FENCE_ACQUIRE;
2416 EV_A = signals [signum - 1].loop;
2417
2418 if (!EV_A)
2419 return;
2420#endif
2421
2422 signals [signum - 1].pending = 1;
2423 evpipe_write (EV_A_ &sig_pending);
2424}
2425
1081static void 2426static void
1082ev_sighandler (int signum) 2427ev_sighandler (int signum)
1083{ 2428{
2429#ifdef _WIN32
2430 signal (signum, ev_sighandler);
2431#endif
2432
2433 ev_feed_signal (signum);
2434}
2435
2436void noinline
2437ev_feed_signal_event (EV_P_ int signum) EV_THROW
2438{
2439 WL w;
2440
2441 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2442 return;
2443
2444 --signum;
2445
1084#if EV_MULTIPLICITY 2446#if EV_MULTIPLICITY
1085 struct ev_loop *loop = &default_loop_struct; 2447 /* it is permissible to try to feed a signal to the wrong loop */
1086#endif 2448 /* or, likely more useful, feeding a signal nobody is waiting for */
1087 2449
1088#if _WIN32 2450 if (expect_false (signals [signum].loop != EV_A))
1089 signal (signum, ev_sighandler);
1090#endif
1091
1092 signals [signum - 1].gotsig = 1;
1093 evpipe_write (EV_A_ &gotsig);
1094}
1095
1096void noinline
1097ev_feed_signal_event (EV_P_ int signum)
1098{
1099 WL w;
1100
1101#if EV_MULTIPLICITY
1102 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1103#endif
1104
1105 --signum;
1106
1107 if (signum < 0 || signum >= signalmax)
1108 return; 2451 return;
2452#endif
1109 2453
1110 signals [signum].gotsig = 0; 2454 signals [signum].pending = 0;
2455 ECB_MEMORY_FENCE_RELEASE;
1111 2456
1112 for (w = signals [signum].head; w; w = w->next) 2457 for (w = signals [signum].head; w; w = w->next)
1113 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2458 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1114} 2459}
1115 2460
2461#if EV_USE_SIGNALFD
2462static void
2463sigfdcb (EV_P_ ev_io *iow, int revents)
2464{
2465 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2466
2467 for (;;)
2468 {
2469 ssize_t res = read (sigfd, si, sizeof (si));
2470
2471 /* not ISO-C, as res might be -1, but works with SuS */
2472 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2473 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2474
2475 if (res < (ssize_t)sizeof (si))
2476 break;
2477 }
2478}
2479#endif
2480
2481#endif
2482
1116/*****************************************************************************/ 2483/*****************************************************************************/
1117 2484
2485#if EV_CHILD_ENABLE
1118static WL childs [EV_PID_HASHSIZE]; 2486static WL childs [EV_PID_HASHSIZE];
1119
1120#ifndef _WIN32
1121 2487
1122static ev_signal childev; 2488static ev_signal childev;
1123 2489
1124#ifndef WIFCONTINUED 2490#ifndef WIFCONTINUED
1125# define WIFCONTINUED(status) 0 2491# define WIFCONTINUED(status) 0
1126#endif 2492#endif
1127 2493
1128void inline_speed 2494/* handle a single child status event */
2495inline_speed void
1129child_reap (EV_P_ int chain, int pid, int status) 2496child_reap (EV_P_ int chain, int pid, int status)
1130{ 2497{
1131 ev_child *w; 2498 ev_child *w;
1132 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2499 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1133 2500
1134 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2501 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1135 { 2502 {
1136 if ((w->pid == pid || !w->pid) 2503 if ((w->pid == pid || !w->pid)
1137 && (!traced || (w->flags & 1))) 2504 && (!traced || (w->flags & 1)))
1138 { 2505 {
1139 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 2506 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1146 2513
1147#ifndef WCONTINUED 2514#ifndef WCONTINUED
1148# define WCONTINUED 0 2515# define WCONTINUED 0
1149#endif 2516#endif
1150 2517
2518/* called on sigchld etc., calls waitpid */
1151static void 2519static void
1152childcb (EV_P_ ev_signal *sw, int revents) 2520childcb (EV_P_ ev_signal *sw, int revents)
1153{ 2521{
1154 int pid, status; 2522 int pid, status;
1155 2523
1163 /* make sure we are called again until all children have been reaped */ 2531 /* make sure we are called again until all children have been reaped */
1164 /* we need to do it this way so that the callback gets called before we continue */ 2532 /* we need to do it this way so that the callback gets called before we continue */
1165 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2533 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1166 2534
1167 child_reap (EV_A_ pid, pid, status); 2535 child_reap (EV_A_ pid, pid, status);
1168 if (EV_PID_HASHSIZE > 1) 2536 if ((EV_PID_HASHSIZE) > 1)
1169 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2537 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1170} 2538}
1171 2539
1172#endif 2540#endif
1173 2541
1174/*****************************************************************************/ 2542/*****************************************************************************/
1175 2543
2544#if EV_USE_IOCP
2545# include "ev_iocp.c"
2546#endif
1176#if EV_USE_PORT 2547#if EV_USE_PORT
1177# include "ev_port.c" 2548# include "ev_port.c"
1178#endif 2549#endif
1179#if EV_USE_KQUEUE 2550#if EV_USE_KQUEUE
1180# include "ev_kqueue.c" 2551# include "ev_kqueue.c"
1187#endif 2558#endif
1188#if EV_USE_SELECT 2559#if EV_USE_SELECT
1189# include "ev_select.c" 2560# include "ev_select.c"
1190#endif 2561#endif
1191 2562
1192int 2563int ecb_cold
1193ev_version_major (void) 2564ev_version_major (void) EV_THROW
1194{ 2565{
1195 return EV_VERSION_MAJOR; 2566 return EV_VERSION_MAJOR;
1196} 2567}
1197 2568
1198int 2569int ecb_cold
1199ev_version_minor (void) 2570ev_version_minor (void) EV_THROW
1200{ 2571{
1201 return EV_VERSION_MINOR; 2572 return EV_VERSION_MINOR;
1202} 2573}
1203 2574
1204/* return true if we are running with elevated privileges and should ignore env variables */ 2575/* return true if we are running with elevated privileges and should ignore env variables */
1205int inline_size 2576int inline_size ecb_cold
1206enable_secure (void) 2577enable_secure (void)
1207{ 2578{
1208#ifdef _WIN32 2579#ifdef _WIN32
1209 return 0; 2580 return 0;
1210#else 2581#else
1211 return getuid () != geteuid () 2582 return getuid () != geteuid ()
1212 || getgid () != getegid (); 2583 || getgid () != getegid ();
1213#endif 2584#endif
1214} 2585}
1215 2586
1216unsigned int 2587unsigned int ecb_cold
1217ev_supported_backends (void) 2588ev_supported_backends (void) EV_THROW
1218{ 2589{
1219 unsigned int flags = 0; 2590 unsigned int flags = 0;
1220 2591
1221 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2592 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1222 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2593 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1225 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2596 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1226 2597
1227 return flags; 2598 return flags;
1228} 2599}
1229 2600
1230unsigned int 2601unsigned int ecb_cold
1231ev_recommended_backends (void) 2602ev_recommended_backends (void) EV_THROW
1232{ 2603{
1233 unsigned int flags = ev_supported_backends (); 2604 unsigned int flags = ev_supported_backends ();
1234 2605
1235#ifndef __NetBSD__ 2606#ifndef __NetBSD__
1236 /* kqueue is borked on everything but netbsd apparently */ 2607 /* kqueue is borked on everything but netbsd apparently */
1237 /* it usually doesn't work correctly on anything but sockets and pipes */ 2608 /* it usually doesn't work correctly on anything but sockets and pipes */
1238 flags &= ~EVBACKEND_KQUEUE; 2609 flags &= ~EVBACKEND_KQUEUE;
1239#endif 2610#endif
1240#ifdef __APPLE__ 2611#ifdef __APPLE__
1241 // flags &= ~EVBACKEND_KQUEUE; for documentation 2612 /* only select works correctly on that "unix-certified" platform */
1242 flags &= ~EVBACKEND_POLL; 2613 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2614 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2615#endif
2616#ifdef __FreeBSD__
2617 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1243#endif 2618#endif
1244 2619
1245 return flags; 2620 return flags;
1246} 2621}
1247 2622
2623unsigned int ecb_cold
2624ev_embeddable_backends (void) EV_THROW
2625{
2626 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2627
2628 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2629 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2630 flags &= ~EVBACKEND_EPOLL;
2631
2632 return flags;
2633}
2634
1248unsigned int 2635unsigned int
1249ev_embeddable_backends (void) 2636ev_backend (EV_P) EV_THROW
1250{ 2637{
1251 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2638 return backend;
1252
1253 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1254 /* please fix it and tell me how to detect the fix */
1255 flags &= ~EVBACKEND_EPOLL;
1256
1257 return flags;
1258} 2639}
1259 2640
2641#if EV_FEATURE_API
1260unsigned int 2642unsigned int
1261ev_backend (EV_P) 2643ev_iteration (EV_P) EV_THROW
1262{ 2644{
1263 return backend; 2645 return loop_count;
1264} 2646}
1265 2647
1266unsigned int 2648unsigned int
1267ev_loop_count (EV_P) 2649ev_depth (EV_P) EV_THROW
1268{ 2650{
1269 return loop_count; 2651 return loop_depth;
1270} 2652}
1271 2653
1272void 2654void
1273ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2655ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1274{ 2656{
1275 io_blocktime = interval; 2657 io_blocktime = interval;
1276} 2658}
1277 2659
1278void 2660void
1279ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2661ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1280{ 2662{
1281 timeout_blocktime = interval; 2663 timeout_blocktime = interval;
1282} 2664}
1283 2665
2666void
2667ev_set_userdata (EV_P_ void *data) EV_THROW
2668{
2669 userdata = data;
2670}
2671
2672void *
2673ev_userdata (EV_P) EV_THROW
2674{
2675 return userdata;
2676}
2677
2678void
2679ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_THROW
2680{
2681 invoke_cb = invoke_pending_cb;
2682}
2683
2684void
2685ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2686{
2687 release_cb = release;
2688 acquire_cb = acquire;
2689}
2690#endif
2691
2692/* initialise a loop structure, must be zero-initialised */
1284static void noinline 2693static void noinline ecb_cold
1285loop_init (EV_P_ unsigned int flags) 2694loop_init (EV_P_ unsigned int flags) EV_THROW
1286{ 2695{
1287 if (!backend) 2696 if (!backend)
1288 { 2697 {
2698 origflags = flags;
2699
2700#if EV_USE_REALTIME
2701 if (!have_realtime)
2702 {
2703 struct timespec ts;
2704
2705 if (!clock_gettime (CLOCK_REALTIME, &ts))
2706 have_realtime = 1;
2707 }
2708#endif
2709
1289#if EV_USE_MONOTONIC 2710#if EV_USE_MONOTONIC
2711 if (!have_monotonic)
1290 { 2712 {
1291 struct timespec ts; 2713 struct timespec ts;
2714
1292 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2715 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1293 have_monotonic = 1; 2716 have_monotonic = 1;
1294 } 2717 }
1295#endif
1296
1297 ev_rt_now = ev_time ();
1298 mn_now = get_clock ();
1299 now_floor = mn_now;
1300 rtmn_diff = ev_rt_now - mn_now;
1301
1302 io_blocktime = 0.;
1303 timeout_blocktime = 0.;
1304 backend = 0;
1305 backend_fd = -1;
1306 gotasync = 0;
1307#if EV_USE_INOTIFY
1308 fs_fd = -2;
1309#endif 2718#endif
1310 2719
1311 /* pid check not overridable via env */ 2720 /* pid check not overridable via env */
1312#ifndef _WIN32 2721#ifndef _WIN32
1313 if (flags & EVFLAG_FORKCHECK) 2722 if (flags & EVFLAG_FORKCHECK)
1317 if (!(flags & EVFLAG_NOENV) 2726 if (!(flags & EVFLAG_NOENV)
1318 && !enable_secure () 2727 && !enable_secure ()
1319 && getenv ("LIBEV_FLAGS")) 2728 && getenv ("LIBEV_FLAGS"))
1320 flags = atoi (getenv ("LIBEV_FLAGS")); 2729 flags = atoi (getenv ("LIBEV_FLAGS"));
1321 2730
1322 if (!(flags & 0x0000ffffU)) 2731 ev_rt_now = ev_time ();
2732 mn_now = get_clock ();
2733 now_floor = mn_now;
2734 rtmn_diff = ev_rt_now - mn_now;
2735#if EV_FEATURE_API
2736 invoke_cb = ev_invoke_pending;
2737#endif
2738
2739 io_blocktime = 0.;
2740 timeout_blocktime = 0.;
2741 backend = 0;
2742 backend_fd = -1;
2743 sig_pending = 0;
2744#if EV_ASYNC_ENABLE
2745 async_pending = 0;
2746#endif
2747 pipe_write_skipped = 0;
2748 pipe_write_wanted = 0;
2749 evpipe [0] = -1;
2750 evpipe [1] = -1;
2751#if EV_USE_INOTIFY
2752 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2753#endif
2754#if EV_USE_SIGNALFD
2755 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2756#endif
2757
2758 if (!(flags & EVBACKEND_MASK))
1323 flags |= ev_recommended_backends (); 2759 flags |= ev_recommended_backends ();
1324 2760
2761#if EV_USE_IOCP
2762 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2763#endif
1325#if EV_USE_PORT 2764#if EV_USE_PORT
1326 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2765 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1327#endif 2766#endif
1328#if EV_USE_KQUEUE 2767#if EV_USE_KQUEUE
1329 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2768 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1336#endif 2775#endif
1337#if EV_USE_SELECT 2776#if EV_USE_SELECT
1338 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2777 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1339#endif 2778#endif
1340 2779
2780 ev_prepare_init (&pending_w, pendingcb);
2781
2782#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1341 ev_init (&pipeev, pipecb); 2783 ev_init (&pipe_w, pipecb);
1342 ev_set_priority (&pipeev, EV_MAXPRI); 2784 ev_set_priority (&pipe_w, EV_MAXPRI);
2785#endif
1343 } 2786 }
1344} 2787}
1345 2788
1346static void noinline 2789/* free up a loop structure */
2790void ecb_cold
1347loop_destroy (EV_P) 2791ev_loop_destroy (EV_P)
1348{ 2792{
1349 int i; 2793 int i;
1350 2794
2795#if EV_MULTIPLICITY
2796 /* mimic free (0) */
2797 if (!EV_A)
2798 return;
2799#endif
2800
2801#if EV_CLEANUP_ENABLE
2802 /* queue cleanup watchers (and execute them) */
2803 if (expect_false (cleanupcnt))
2804 {
2805 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2806 EV_INVOKE_PENDING;
2807 }
2808#endif
2809
2810#if EV_CHILD_ENABLE
2811 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2812 {
2813 ev_ref (EV_A); /* child watcher */
2814 ev_signal_stop (EV_A_ &childev);
2815 }
2816#endif
2817
1351 if (ev_is_active (&pipeev)) 2818 if (ev_is_active (&pipe_w))
1352 { 2819 {
1353 ev_ref (EV_A); /* signal watcher */ 2820 /*ev_ref (EV_A);*/
1354 ev_io_stop (EV_A_ &pipeev); 2821 /*ev_io_stop (EV_A_ &pipe_w);*/
1355 2822
2823 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2824 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2825 }
2826
1356#if EV_USE_EVENTFD 2827#if EV_USE_SIGNALFD
1357 if (evfd >= 0) 2828 if (ev_is_active (&sigfd_w))
1358 close (evfd); 2829 close (sigfd);
1359#endif 2830#endif
1360
1361 if (evpipe [0] >= 0)
1362 {
1363 close (evpipe [0]);
1364 close (evpipe [1]);
1365 }
1366 }
1367 2831
1368#if EV_USE_INOTIFY 2832#if EV_USE_INOTIFY
1369 if (fs_fd >= 0) 2833 if (fs_fd >= 0)
1370 close (fs_fd); 2834 close (fs_fd);
1371#endif 2835#endif
1372 2836
1373 if (backend_fd >= 0) 2837 if (backend_fd >= 0)
1374 close (backend_fd); 2838 close (backend_fd);
1375 2839
2840#if EV_USE_IOCP
2841 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2842#endif
1376#if EV_USE_PORT 2843#if EV_USE_PORT
1377 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2844 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1378#endif 2845#endif
1379#if EV_USE_KQUEUE 2846#if EV_USE_KQUEUE
1380 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2847 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1395#if EV_IDLE_ENABLE 2862#if EV_IDLE_ENABLE
1396 array_free (idle, [i]); 2863 array_free (idle, [i]);
1397#endif 2864#endif
1398 } 2865 }
1399 2866
1400 ev_free (anfds); anfdmax = 0; 2867 ev_free (anfds); anfds = 0; anfdmax = 0;
1401 2868
1402 /* have to use the microsoft-never-gets-it-right macro */ 2869 /* have to use the microsoft-never-gets-it-right macro */
2870 array_free (rfeed, EMPTY);
1403 array_free (fdchange, EMPTY); 2871 array_free (fdchange, EMPTY);
1404 array_free (timer, EMPTY); 2872 array_free (timer, EMPTY);
1405#if EV_PERIODIC_ENABLE 2873#if EV_PERIODIC_ENABLE
1406 array_free (periodic, EMPTY); 2874 array_free (periodic, EMPTY);
1407#endif 2875#endif
1408#if EV_FORK_ENABLE 2876#if EV_FORK_ENABLE
1409 array_free (fork, EMPTY); 2877 array_free (fork, EMPTY);
1410#endif 2878#endif
2879#if EV_CLEANUP_ENABLE
2880 array_free (cleanup, EMPTY);
2881#endif
1411 array_free (prepare, EMPTY); 2882 array_free (prepare, EMPTY);
1412 array_free (check, EMPTY); 2883 array_free (check, EMPTY);
1413#if EV_ASYNC_ENABLE 2884#if EV_ASYNC_ENABLE
1414 array_free (async, EMPTY); 2885 array_free (async, EMPTY);
1415#endif 2886#endif
1416 2887
1417 backend = 0; 2888 backend = 0;
2889
2890#if EV_MULTIPLICITY
2891 if (ev_is_default_loop (EV_A))
2892#endif
2893 ev_default_loop_ptr = 0;
2894#if EV_MULTIPLICITY
2895 else
2896 ev_free (EV_A);
2897#endif
1418} 2898}
1419 2899
1420#if EV_USE_INOTIFY 2900#if EV_USE_INOTIFY
1421void inline_size infy_fork (EV_P); 2901inline_size void infy_fork (EV_P);
1422#endif 2902#endif
1423 2903
1424void inline_size 2904inline_size void
1425loop_fork (EV_P) 2905loop_fork (EV_P)
1426{ 2906{
1427#if EV_USE_PORT 2907#if EV_USE_PORT
1428 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2908 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1429#endif 2909#endif
1435#endif 2915#endif
1436#if EV_USE_INOTIFY 2916#if EV_USE_INOTIFY
1437 infy_fork (EV_A); 2917 infy_fork (EV_A);
1438#endif 2918#endif
1439 2919
2920#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1440 if (ev_is_active (&pipeev)) 2921 if (ev_is_active (&pipe_w))
1441 { 2922 {
1442 /* this "locks" the handlers against writing to the pipe */ 2923 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1443 /* while we modify the fd vars */
1444 gotsig = 1;
1445#if EV_ASYNC_ENABLE
1446 gotasync = 1;
1447#endif
1448 2924
1449 ev_ref (EV_A); 2925 ev_ref (EV_A);
1450 ev_io_stop (EV_A_ &pipeev); 2926 ev_io_stop (EV_A_ &pipe_w);
1451
1452#if EV_USE_EVENTFD
1453 if (evfd >= 0)
1454 close (evfd);
1455#endif
1456 2927
1457 if (evpipe [0] >= 0) 2928 if (evpipe [0] >= 0)
1458 { 2929 EV_WIN32_CLOSE_FD (evpipe [0]);
1459 close (evpipe [0]);
1460 close (evpipe [1]);
1461 }
1462 2930
1463 evpipe_init (EV_A); 2931 evpipe_init (EV_A);
1464 /* now iterate over everything, in case we missed something */ 2932 /* iterate over everything, in case we missed something before */
1465 pipecb (EV_A_ &pipeev, EV_READ); 2933 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
1466 } 2934 }
2935#endif
1467 2936
1468 postfork = 0; 2937 postfork = 0;
1469} 2938}
1470 2939
1471#if EV_MULTIPLICITY 2940#if EV_MULTIPLICITY
1472 2941
1473struct ev_loop * 2942struct ev_loop * ecb_cold
1474ev_loop_new (unsigned int flags) 2943ev_loop_new (unsigned int flags) EV_THROW
1475{ 2944{
1476 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2945 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1477 2946
1478 memset (loop, 0, sizeof (struct ev_loop)); 2947 memset (EV_A, 0, sizeof (struct ev_loop));
1479
1480 loop_init (EV_A_ flags); 2948 loop_init (EV_A_ flags);
1481 2949
1482 if (ev_backend (EV_A)) 2950 if (ev_backend (EV_A))
1483 return loop; 2951 return EV_A;
1484 2952
2953 ev_free (EV_A);
1485 return 0; 2954 return 0;
1486} 2955}
1487 2956
1488void 2957#endif /* multiplicity */
1489ev_loop_destroy (EV_P)
1490{
1491 loop_destroy (EV_A);
1492 ev_free (loop);
1493}
1494
1495void
1496ev_loop_fork (EV_P)
1497{
1498 postfork = 1; /* must be in line with ev_default_fork */
1499}
1500 2958
1501#if EV_VERIFY 2959#if EV_VERIFY
1502static void noinline 2960static void noinline ecb_cold
1503verify_watcher (EV_P_ W w) 2961verify_watcher (EV_P_ W w)
1504{ 2962{
1505 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI)); 2963 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1506 2964
1507 if (w->pending) 2965 if (w->pending)
1508 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w)); 2966 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1509} 2967}
1510 2968
1511static void noinline 2969static void noinline ecb_cold
1512verify_heap (EV_P_ ANHE *heap, int N) 2970verify_heap (EV_P_ ANHE *heap, int N)
1513{ 2971{
1514 int i; 2972 int i;
1515 2973
1516 for (i = HEAP0; i < N + HEAP0; ++i) 2974 for (i = HEAP0; i < N + HEAP0; ++i)
1517 { 2975 {
1518 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i)); 2976 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1519 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i]))); 2977 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1520 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i])))); 2978 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1521 2979
1522 verify_watcher (EV_A_ (W)ANHE_w (heap [i])); 2980 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1523 } 2981 }
1524} 2982}
1525 2983
1526static void noinline 2984static void noinline ecb_cold
1527array_verify (EV_P_ W *ws, int cnt) 2985array_verify (EV_P_ W *ws, int cnt)
1528{ 2986{
1529 while (cnt--) 2987 while (cnt--)
1530 { 2988 {
1531 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1)); 2989 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1532 verify_watcher (EV_A_ ws [cnt]); 2990 verify_watcher (EV_A_ ws [cnt]);
1533 } 2991 }
1534} 2992}
1535#endif 2993#endif
1536 2994
1537void 2995#if EV_FEATURE_API
1538ev_loop_verify (EV_P) 2996void ecb_cold
2997ev_verify (EV_P) EV_THROW
1539{ 2998{
1540#if EV_VERIFY 2999#if EV_VERIFY
1541 int i; 3000 int i;
1542 WL w; 3001 WL w, w2;
1543 3002
1544 assert (activecnt >= -1); 3003 assert (activecnt >= -1);
1545 3004
1546 assert (fdchangemax >= fdchangecnt); 3005 assert (fdchangemax >= fdchangecnt);
1547 for (i = 0; i < fdchangecnt; ++i) 3006 for (i = 0; i < fdchangecnt; ++i)
1548 assert (("negative fd in fdchanges", fdchanges [i] >= 0)); 3007 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1549 3008
1550 assert (anfdmax >= 0); 3009 assert (anfdmax >= 0);
1551 for (i = 0; i < anfdmax; ++i) 3010 for (i = 0; i < anfdmax; ++i)
3011 {
3012 int j = 0;
3013
1552 for (w = anfds [i].head; w; w = w->next) 3014 for (w = w2 = anfds [i].head; w; w = w->next)
1553 { 3015 {
1554 verify_watcher (EV_A_ (W)w); 3016 verify_watcher (EV_A_ (W)w);
3017
3018 if (j++ & 1)
3019 {
3020 assert (("libev: io watcher list contains a loop", w != w2));
3021 w2 = w2->next;
3022 }
3023
1555 assert (("inactive fd watcher on anfd list", ev_active (w) == 1)); 3024 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1556 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i)); 3025 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1557 } 3026 }
3027 }
1558 3028
1559 assert (timermax >= timercnt); 3029 assert (timermax >= timercnt);
1560 verify_heap (EV_A_ timers, timercnt); 3030 verify_heap (EV_A_ timers, timercnt);
1561 3031
1562#if EV_PERIODIC_ENABLE 3032#if EV_PERIODIC_ENABLE
1577#if EV_FORK_ENABLE 3047#if EV_FORK_ENABLE
1578 assert (forkmax >= forkcnt); 3048 assert (forkmax >= forkcnt);
1579 array_verify (EV_A_ (W *)forks, forkcnt); 3049 array_verify (EV_A_ (W *)forks, forkcnt);
1580#endif 3050#endif
1581 3051
3052#if EV_CLEANUP_ENABLE
3053 assert (cleanupmax >= cleanupcnt);
3054 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3055#endif
3056
1582#if EV_ASYNC_ENABLE 3057#if EV_ASYNC_ENABLE
1583 assert (asyncmax >= asynccnt); 3058 assert (asyncmax >= asynccnt);
1584 array_verify (EV_A_ (W *)asyncs, asynccnt); 3059 array_verify (EV_A_ (W *)asyncs, asynccnt);
1585#endif 3060#endif
1586 3061
3062#if EV_PREPARE_ENABLE
1587 assert (preparemax >= preparecnt); 3063 assert (preparemax >= preparecnt);
1588 array_verify (EV_A_ (W *)prepares, preparecnt); 3064 array_verify (EV_A_ (W *)prepares, preparecnt);
3065#endif
1589 3066
3067#if EV_CHECK_ENABLE
1590 assert (checkmax >= checkcnt); 3068 assert (checkmax >= checkcnt);
1591 array_verify (EV_A_ (W *)checks, checkcnt); 3069 array_verify (EV_A_ (W *)checks, checkcnt);
3070#endif
1592 3071
1593# if 0 3072# if 0
3073#if EV_CHILD_ENABLE
1594 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 3074 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1595 for (signum = signalmax; signum--; ) if (signals [signum].gotsig) 3075 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3076#endif
1596# endif 3077# endif
1597#endif 3078#endif
1598} 3079}
1599 3080#endif
1600#endif /* multiplicity */
1601 3081
1602#if EV_MULTIPLICITY 3082#if EV_MULTIPLICITY
1603struct ev_loop * 3083struct ev_loop * ecb_cold
1604ev_default_loop_init (unsigned int flags)
1605#else 3084#else
1606int 3085int
3086#endif
1607ev_default_loop (unsigned int flags) 3087ev_default_loop (unsigned int flags) EV_THROW
1608#endif
1609{ 3088{
1610 if (!ev_default_loop_ptr) 3089 if (!ev_default_loop_ptr)
1611 { 3090 {
1612#if EV_MULTIPLICITY 3091#if EV_MULTIPLICITY
1613 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 3092 EV_P = ev_default_loop_ptr = &default_loop_struct;
1614#else 3093#else
1615 ev_default_loop_ptr = 1; 3094 ev_default_loop_ptr = 1;
1616#endif 3095#endif
1617 3096
1618 loop_init (EV_A_ flags); 3097 loop_init (EV_A_ flags);
1619 3098
1620 if (ev_backend (EV_A)) 3099 if (ev_backend (EV_A))
1621 { 3100 {
1622#ifndef _WIN32 3101#if EV_CHILD_ENABLE
1623 ev_signal_init (&childev, childcb, SIGCHLD); 3102 ev_signal_init (&childev, childcb, SIGCHLD);
1624 ev_set_priority (&childev, EV_MAXPRI); 3103 ev_set_priority (&childev, EV_MAXPRI);
1625 ev_signal_start (EV_A_ &childev); 3104 ev_signal_start (EV_A_ &childev);
1626 ev_unref (EV_A); /* child watcher should not keep loop alive */ 3105 ev_unref (EV_A); /* child watcher should not keep loop alive */
1627#endif 3106#endif
1632 3111
1633 return ev_default_loop_ptr; 3112 return ev_default_loop_ptr;
1634} 3113}
1635 3114
1636void 3115void
1637ev_default_destroy (void) 3116ev_loop_fork (EV_P) EV_THROW
1638{ 3117{
1639#if EV_MULTIPLICITY 3118 postfork = 1;
1640 struct ev_loop *loop = ev_default_loop_ptr;
1641#endif
1642
1643#ifndef _WIN32
1644 ev_ref (EV_A); /* child watcher */
1645 ev_signal_stop (EV_A_ &childev);
1646#endif
1647
1648 loop_destroy (EV_A);
1649}
1650
1651void
1652ev_default_fork (void)
1653{
1654#if EV_MULTIPLICITY
1655 struct ev_loop *loop = ev_default_loop_ptr;
1656#endif
1657
1658 if (backend)
1659 postfork = 1; /* must be in line with ev_loop_fork */
1660} 3119}
1661 3120
1662/*****************************************************************************/ 3121/*****************************************************************************/
1663 3122
1664void 3123void
1665ev_invoke (EV_P_ void *w, int revents) 3124ev_invoke (EV_P_ void *w, int revents)
1666{ 3125{
1667 EV_CB_INVOKE ((W)w, revents); 3126 EV_CB_INVOKE ((W)w, revents);
1668} 3127}
1669 3128
1670void inline_speed 3129unsigned int
1671call_pending (EV_P) 3130ev_pending_count (EV_P) EV_THROW
1672{ 3131{
1673 int pri; 3132 int pri;
3133 unsigned int count = 0;
1674 3134
1675 for (pri = NUMPRI; pri--; ) 3135 for (pri = NUMPRI; pri--; )
3136 count += pendingcnt [pri];
3137
3138 return count;
3139}
3140
3141void noinline
3142ev_invoke_pending (EV_P)
3143{
3144 pendingpri = NUMPRI;
3145
3146 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
3147 {
3148 --pendingpri;
3149
1676 while (pendingcnt [pri]) 3150 while (pendingcnt [pendingpri])
1677 {
1678 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1679
1680 if (expect_true (p->w))
1681 { 3151 {
1682 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 3152 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1683 3153
1684 p->w->pending = 0; 3154 p->w->pending = 0;
1685 EV_CB_INVOKE (p->w, p->events); 3155 EV_CB_INVOKE (p->w, p->events);
1686 EV_FREQUENT_CHECK; 3156 EV_FREQUENT_CHECK;
1687 } 3157 }
1688 } 3158 }
1689} 3159}
1690 3160
1691#if EV_IDLE_ENABLE 3161#if EV_IDLE_ENABLE
1692void inline_size 3162/* make idle watchers pending. this handles the "call-idle */
3163/* only when higher priorities are idle" logic */
3164inline_size void
1693idle_reify (EV_P) 3165idle_reify (EV_P)
1694{ 3166{
1695 if (expect_false (idleall)) 3167 if (expect_false (idleall))
1696 { 3168 {
1697 int pri; 3169 int pri;
1709 } 3181 }
1710 } 3182 }
1711} 3183}
1712#endif 3184#endif
1713 3185
1714void inline_size 3186/* make timers pending */
3187inline_size void
1715timers_reify (EV_P) 3188timers_reify (EV_P)
1716{ 3189{
1717 EV_FREQUENT_CHECK; 3190 EV_FREQUENT_CHECK;
1718 3191
1719 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 3192 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1720 { 3193 {
1721 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 3194 do
1722
1723 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1724
1725 /* first reschedule or stop timer */
1726 if (w->repeat)
1727 { 3195 {
3196 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3197
3198 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3199
3200 /* first reschedule or stop timer */
3201 if (w->repeat)
3202 {
1728 ev_at (w) += w->repeat; 3203 ev_at (w) += w->repeat;
1729 if (ev_at (w) < mn_now) 3204 if (ev_at (w) < mn_now)
1730 ev_at (w) = mn_now; 3205 ev_at (w) = mn_now;
1731 3206
1732 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3207 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1733 3208
1734 ANHE_at_cache (timers [HEAP0]); 3209 ANHE_at_cache (timers [HEAP0]);
1735 downheap (timers, timercnt, HEAP0); 3210 downheap (timers, timercnt, HEAP0);
3211 }
3212 else
3213 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3214
3215 EV_FREQUENT_CHECK;
3216 feed_reverse (EV_A_ (W)w);
1736 } 3217 }
1737 else 3218 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1738 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1739 3219
1740 EV_FREQUENT_CHECK; 3220 feed_reverse_done (EV_A_ EV_TIMER);
1741 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1742 } 3221 }
1743} 3222}
1744 3223
1745#if EV_PERIODIC_ENABLE 3224#if EV_PERIODIC_ENABLE
1746void inline_size 3225
3226static void noinline
3227periodic_recalc (EV_P_ ev_periodic *w)
3228{
3229 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3230 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3231
3232 /* the above almost always errs on the low side */
3233 while (at <= ev_rt_now)
3234 {
3235 ev_tstamp nat = at + w->interval;
3236
3237 /* when resolution fails us, we use ev_rt_now */
3238 if (expect_false (nat == at))
3239 {
3240 at = ev_rt_now;
3241 break;
3242 }
3243
3244 at = nat;
3245 }
3246
3247 ev_at (w) = at;
3248}
3249
3250/* make periodics pending */
3251inline_size void
1747periodics_reify (EV_P) 3252periodics_reify (EV_P)
1748{ 3253{
1749 EV_FREQUENT_CHECK; 3254 EV_FREQUENT_CHECK;
1750 3255
1751 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 3256 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1752 { 3257 {
1753 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 3258 do
1754
1755 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1756
1757 /* first reschedule or stop timer */
1758 if (w->reschedule_cb)
1759 { 3259 {
3260 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3261
3262 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3263
3264 /* first reschedule or stop timer */
3265 if (w->reschedule_cb)
3266 {
1760 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3267 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1761 3268
1762 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 3269 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1763 3270
1764 ANHE_at_cache (periodics [HEAP0]); 3271 ANHE_at_cache (periodics [HEAP0]);
1765 downheap (periodics, periodiccnt, HEAP0); 3272 downheap (periodics, periodiccnt, HEAP0);
3273 }
3274 else if (w->interval)
3275 {
3276 periodic_recalc (EV_A_ w);
3277 ANHE_at_cache (periodics [HEAP0]);
3278 downheap (periodics, periodiccnt, HEAP0);
3279 }
3280 else
3281 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3282
3283 EV_FREQUENT_CHECK;
3284 feed_reverse (EV_A_ (W)w);
1766 } 3285 }
1767 else if (w->interval) 3286 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1768 {
1769 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1770 /* if next trigger time is not sufficiently in the future, put it there */
1771 /* this might happen because of floating point inexactness */
1772 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1773 {
1774 ev_at (w) += w->interval;
1775 3287
1776 /* if interval is unreasonably low we might still have a time in the past */
1777 /* so correct this. this will make the periodic very inexact, but the user */
1778 /* has effectively asked to get triggered more often than possible */
1779 if (ev_at (w) < ev_rt_now)
1780 ev_at (w) = ev_rt_now;
1781 }
1782
1783 ANHE_at_cache (periodics [HEAP0]);
1784 downheap (periodics, periodiccnt, HEAP0);
1785 }
1786 else
1787 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1788
1789 EV_FREQUENT_CHECK;
1790 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 3288 feed_reverse_done (EV_A_ EV_PERIODIC);
1791 } 3289 }
1792} 3290}
1793 3291
3292/* simply recalculate all periodics */
3293/* TODO: maybe ensure that at least one event happens when jumping forward? */
1794static void noinline 3294static void noinline ecb_cold
1795periodics_reschedule (EV_P) 3295periodics_reschedule (EV_P)
1796{ 3296{
1797 int i; 3297 int i;
1798 3298
1799 /* adjust periodics after time jump */ 3299 /* adjust periodics after time jump */
1802 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]); 3302 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1803 3303
1804 if (w->reschedule_cb) 3304 if (w->reschedule_cb)
1805 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3305 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1806 else if (w->interval) 3306 else if (w->interval)
1807 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 3307 periodic_recalc (EV_A_ w);
1808 3308
1809 ANHE_at_cache (periodics [i]); 3309 ANHE_at_cache (periodics [i]);
1810 } 3310 }
1811 3311
1812 reheap (periodics, periodiccnt); 3312 reheap (periodics, periodiccnt);
1813} 3313}
1814#endif 3314#endif
1815 3315
1816void inline_speed 3316/* adjust all timers by a given offset */
3317static void noinline ecb_cold
3318timers_reschedule (EV_P_ ev_tstamp adjust)
3319{
3320 int i;
3321
3322 for (i = 0; i < timercnt; ++i)
3323 {
3324 ANHE *he = timers + i + HEAP0;
3325 ANHE_w (*he)->at += adjust;
3326 ANHE_at_cache (*he);
3327 }
3328}
3329
3330/* fetch new monotonic and realtime times from the kernel */
3331/* also detect if there was a timejump, and act accordingly */
3332inline_speed void
1817time_update (EV_P_ ev_tstamp max_block) 3333time_update (EV_P_ ev_tstamp max_block)
1818{ 3334{
1819 int i;
1820
1821#if EV_USE_MONOTONIC 3335#if EV_USE_MONOTONIC
1822 if (expect_true (have_monotonic)) 3336 if (expect_true (have_monotonic))
1823 { 3337 {
3338 int i;
1824 ev_tstamp odiff = rtmn_diff; 3339 ev_tstamp odiff = rtmn_diff;
1825 3340
1826 mn_now = get_clock (); 3341 mn_now = get_clock ();
1827 3342
1828 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 3343 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1844 * doesn't hurt either as we only do this on time-jumps or 3359 * doesn't hurt either as we only do this on time-jumps or
1845 * in the unlikely event of having been preempted here. 3360 * in the unlikely event of having been preempted here.
1846 */ 3361 */
1847 for (i = 4; --i; ) 3362 for (i = 4; --i; )
1848 { 3363 {
3364 ev_tstamp diff;
1849 rtmn_diff = ev_rt_now - mn_now; 3365 rtmn_diff = ev_rt_now - mn_now;
1850 3366
3367 diff = odiff - rtmn_diff;
3368
1851 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)) 3369 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1852 return; /* all is well */ 3370 return; /* all is well */
1853 3371
1854 ev_rt_now = ev_time (); 3372 ev_rt_now = ev_time ();
1855 mn_now = get_clock (); 3373 mn_now = get_clock ();
1856 now_floor = mn_now; 3374 now_floor = mn_now;
1857 } 3375 }
1858 3376
3377 /* no timer adjustment, as the monotonic clock doesn't jump */
3378 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1859# if EV_PERIODIC_ENABLE 3379# if EV_PERIODIC_ENABLE
1860 periodics_reschedule (EV_A); 3380 periodics_reschedule (EV_A);
1861# endif 3381# endif
1862 /* no timer adjustment, as the monotonic clock doesn't jump */
1863 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1864 } 3382 }
1865 else 3383 else
1866#endif 3384#endif
1867 { 3385 {
1868 ev_rt_now = ev_time (); 3386 ev_rt_now = ev_time ();
1869 3387
1870 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 3388 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1871 { 3389 {
3390 /* adjust timers. this is easy, as the offset is the same for all of them */
3391 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1872#if EV_PERIODIC_ENABLE 3392#if EV_PERIODIC_ENABLE
1873 periodics_reschedule (EV_A); 3393 periodics_reschedule (EV_A);
1874#endif 3394#endif
1875 /* adjust timers. this is easy, as the offset is the same for all of them */
1876 for (i = 0; i < timercnt; ++i)
1877 {
1878 ANHE *he = timers + i + HEAP0;
1879 ANHE_w (*he)->at += ev_rt_now - mn_now;
1880 ANHE_at_cache (*he);
1881 }
1882 } 3395 }
1883 3396
1884 mn_now = ev_rt_now; 3397 mn_now = ev_rt_now;
1885 } 3398 }
1886} 3399}
1887 3400
1888void 3401int
1889ev_ref (EV_P)
1890{
1891 ++activecnt;
1892}
1893
1894void
1895ev_unref (EV_P)
1896{
1897 --activecnt;
1898}
1899
1900void
1901ev_now_update (EV_P)
1902{
1903 time_update (EV_A_ 1e100);
1904}
1905
1906static int loop_done;
1907
1908void
1909ev_loop (EV_P_ int flags) 3402ev_run (EV_P_ int flags)
1910{ 3403{
3404#if EV_FEATURE_API
3405 ++loop_depth;
3406#endif
3407
3408 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3409
1911 loop_done = EVUNLOOP_CANCEL; 3410 loop_done = EVBREAK_CANCEL;
1912 3411
1913 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3412 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1914 3413
1915 do 3414 do
1916 { 3415 {
1917#if EV_VERIFY >= 2 3416#if EV_VERIFY >= 2
1918 ev_loop_verify (EV_A); 3417 ev_verify (EV_A);
1919#endif 3418#endif
1920 3419
1921#ifndef _WIN32 3420#ifndef _WIN32
1922 if (expect_false (curpid)) /* penalise the forking check even more */ 3421 if (expect_false (curpid)) /* penalise the forking check even more */
1923 if (expect_false (getpid () != curpid)) 3422 if (expect_false (getpid () != curpid))
1931 /* we might have forked, so queue fork handlers */ 3430 /* we might have forked, so queue fork handlers */
1932 if (expect_false (postfork)) 3431 if (expect_false (postfork))
1933 if (forkcnt) 3432 if (forkcnt)
1934 { 3433 {
1935 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3434 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1936 call_pending (EV_A); 3435 EV_INVOKE_PENDING;
1937 } 3436 }
1938#endif 3437#endif
1939 3438
3439#if EV_PREPARE_ENABLE
1940 /* queue prepare watchers (and execute them) */ 3440 /* queue prepare watchers (and execute them) */
1941 if (expect_false (preparecnt)) 3441 if (expect_false (preparecnt))
1942 { 3442 {
1943 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3443 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1944 call_pending (EV_A); 3444 EV_INVOKE_PENDING;
1945 } 3445 }
3446#endif
1946 3447
1947 if (expect_false (!activecnt)) 3448 if (expect_false (loop_done))
1948 break; 3449 break;
1949 3450
1950 /* we might have forked, so reify kernel state if necessary */ 3451 /* we might have forked, so reify kernel state if necessary */
1951 if (expect_false (postfork)) 3452 if (expect_false (postfork))
1952 loop_fork (EV_A); 3453 loop_fork (EV_A);
1957 /* calculate blocking time */ 3458 /* calculate blocking time */
1958 { 3459 {
1959 ev_tstamp waittime = 0.; 3460 ev_tstamp waittime = 0.;
1960 ev_tstamp sleeptime = 0.; 3461 ev_tstamp sleeptime = 0.;
1961 3462
3463 /* remember old timestamp for io_blocktime calculation */
3464 ev_tstamp prev_mn_now = mn_now;
3465
3466 /* update time to cancel out callback processing overhead */
3467 time_update (EV_A_ 1e100);
3468
3469 /* from now on, we want a pipe-wake-up */
3470 pipe_write_wanted = 1;
3471
3472 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3473
1962 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3474 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1963 { 3475 {
1964 /* update time to cancel out callback processing overhead */
1965 time_update (EV_A_ 1e100);
1966
1967 waittime = MAX_BLOCKTIME; 3476 waittime = MAX_BLOCKTIME;
1968 3477
1969 if (timercnt) 3478 if (timercnt)
1970 { 3479 {
1971 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 3480 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1972 if (waittime > to) waittime = to; 3481 if (waittime > to) waittime = to;
1973 } 3482 }
1974 3483
1975#if EV_PERIODIC_ENABLE 3484#if EV_PERIODIC_ENABLE
1976 if (periodiccnt) 3485 if (periodiccnt)
1977 { 3486 {
1978 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 3487 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1979 if (waittime > to) waittime = to; 3488 if (waittime > to) waittime = to;
1980 } 3489 }
1981#endif 3490#endif
1982 3491
3492 /* don't let timeouts decrease the waittime below timeout_blocktime */
1983 if (expect_false (waittime < timeout_blocktime)) 3493 if (expect_false (waittime < timeout_blocktime))
1984 waittime = timeout_blocktime; 3494 waittime = timeout_blocktime;
1985 3495
1986 sleeptime = waittime - backend_fudge; 3496 /* at this point, we NEED to wait, so we have to ensure */
3497 /* to pass a minimum nonzero value to the backend */
3498 if (expect_false (waittime < backend_mintime))
3499 waittime = backend_mintime;
1987 3500
3501 /* extra check because io_blocktime is commonly 0 */
1988 if (expect_true (sleeptime > io_blocktime)) 3502 if (expect_false (io_blocktime))
1989 sleeptime = io_blocktime;
1990
1991 if (sleeptime)
1992 { 3503 {
3504 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3505
3506 if (sleeptime > waittime - backend_mintime)
3507 sleeptime = waittime - backend_mintime;
3508
3509 if (expect_true (sleeptime > 0.))
3510 {
1993 ev_sleep (sleeptime); 3511 ev_sleep (sleeptime);
1994 waittime -= sleeptime; 3512 waittime -= sleeptime;
3513 }
1995 } 3514 }
1996 } 3515 }
1997 3516
3517#if EV_FEATURE_API
1998 ++loop_count; 3518 ++loop_count;
3519#endif
3520 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1999 backend_poll (EV_A_ waittime); 3521 backend_poll (EV_A_ waittime);
3522 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3523
3524 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3525
3526 ECB_MEMORY_FENCE_ACQUIRE;
3527 if (pipe_write_skipped)
3528 {
3529 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3530 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3531 }
3532
2000 3533
2001 /* update ev_rt_now, do magic */ 3534 /* update ev_rt_now, do magic */
2002 time_update (EV_A_ waittime + sleeptime); 3535 time_update (EV_A_ waittime + sleeptime);
2003 } 3536 }
2004 3537
2011#if EV_IDLE_ENABLE 3544#if EV_IDLE_ENABLE
2012 /* queue idle watchers unless other events are pending */ 3545 /* queue idle watchers unless other events are pending */
2013 idle_reify (EV_A); 3546 idle_reify (EV_A);
2014#endif 3547#endif
2015 3548
3549#if EV_CHECK_ENABLE
2016 /* queue check watchers, to be executed first */ 3550 /* queue check watchers, to be executed first */
2017 if (expect_false (checkcnt)) 3551 if (expect_false (checkcnt))
2018 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3552 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3553#endif
2019 3554
2020 call_pending (EV_A); 3555 EV_INVOKE_PENDING;
2021 } 3556 }
2022 while (expect_true ( 3557 while (expect_true (
2023 activecnt 3558 activecnt
2024 && !loop_done 3559 && !loop_done
2025 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 3560 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2026 )); 3561 ));
2027 3562
2028 if (loop_done == EVUNLOOP_ONE) 3563 if (loop_done == EVBREAK_ONE)
2029 loop_done = EVUNLOOP_CANCEL; 3564 loop_done = EVBREAK_CANCEL;
3565
3566#if EV_FEATURE_API
3567 --loop_depth;
3568#endif
3569
3570 return activecnt;
2030} 3571}
2031 3572
2032void 3573void
2033ev_unloop (EV_P_ int how) 3574ev_break (EV_P_ int how) EV_THROW
2034{ 3575{
2035 loop_done = how; 3576 loop_done = how;
2036} 3577}
2037 3578
3579void
3580ev_ref (EV_P) EV_THROW
3581{
3582 ++activecnt;
3583}
3584
3585void
3586ev_unref (EV_P) EV_THROW
3587{
3588 --activecnt;
3589}
3590
3591void
3592ev_now_update (EV_P) EV_THROW
3593{
3594 time_update (EV_A_ 1e100);
3595}
3596
3597void
3598ev_suspend (EV_P) EV_THROW
3599{
3600 ev_now_update (EV_A);
3601}
3602
3603void
3604ev_resume (EV_P) EV_THROW
3605{
3606 ev_tstamp mn_prev = mn_now;
3607
3608 ev_now_update (EV_A);
3609 timers_reschedule (EV_A_ mn_now - mn_prev);
3610#if EV_PERIODIC_ENABLE
3611 /* TODO: really do this? */
3612 periodics_reschedule (EV_A);
3613#endif
3614}
3615
2038/*****************************************************************************/ 3616/*****************************************************************************/
3617/* singly-linked list management, used when the expected list length is short */
2039 3618
2040void inline_size 3619inline_size void
2041wlist_add (WL *head, WL elem) 3620wlist_add (WL *head, WL elem)
2042{ 3621{
2043 elem->next = *head; 3622 elem->next = *head;
2044 *head = elem; 3623 *head = elem;
2045} 3624}
2046 3625
2047void inline_size 3626inline_size void
2048wlist_del (WL *head, WL elem) 3627wlist_del (WL *head, WL elem)
2049{ 3628{
2050 while (*head) 3629 while (*head)
2051 { 3630 {
2052 if (*head == elem) 3631 if (expect_true (*head == elem))
2053 { 3632 {
2054 *head = elem->next; 3633 *head = elem->next;
2055 return; 3634 break;
2056 } 3635 }
2057 3636
2058 head = &(*head)->next; 3637 head = &(*head)->next;
2059 } 3638 }
2060} 3639}
2061 3640
2062void inline_speed 3641/* internal, faster, version of ev_clear_pending */
3642inline_speed void
2063clear_pending (EV_P_ W w) 3643clear_pending (EV_P_ W w)
2064{ 3644{
2065 if (w->pending) 3645 if (w->pending)
2066 { 3646 {
2067 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3647 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2068 w->pending = 0; 3648 w->pending = 0;
2069 } 3649 }
2070} 3650}
2071 3651
2072int 3652int
2073ev_clear_pending (EV_P_ void *w) 3653ev_clear_pending (EV_P_ void *w) EV_THROW
2074{ 3654{
2075 W w_ = (W)w; 3655 W w_ = (W)w;
2076 int pending = w_->pending; 3656 int pending = w_->pending;
2077 3657
2078 if (expect_true (pending)) 3658 if (expect_true (pending))
2079 { 3659 {
2080 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3660 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3661 p->w = (W)&pending_w;
2081 w_->pending = 0; 3662 w_->pending = 0;
2082 p->w = 0;
2083 return p->events; 3663 return p->events;
2084 } 3664 }
2085 else 3665 else
2086 return 0; 3666 return 0;
2087} 3667}
2088 3668
2089void inline_size 3669inline_size void
2090pri_adjust (EV_P_ W w) 3670pri_adjust (EV_P_ W w)
2091{ 3671{
2092 int pri = w->priority; 3672 int pri = ev_priority (w);
2093 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3673 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2094 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3674 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2095 w->priority = pri; 3675 ev_set_priority (w, pri);
2096} 3676}
2097 3677
2098void inline_speed 3678inline_speed void
2099ev_start (EV_P_ W w, int active) 3679ev_start (EV_P_ W w, int active)
2100{ 3680{
2101 pri_adjust (EV_A_ w); 3681 pri_adjust (EV_A_ w);
2102 w->active = active; 3682 w->active = active;
2103 ev_ref (EV_A); 3683 ev_ref (EV_A);
2104} 3684}
2105 3685
2106void inline_size 3686inline_size void
2107ev_stop (EV_P_ W w) 3687ev_stop (EV_P_ W w)
2108{ 3688{
2109 ev_unref (EV_A); 3689 ev_unref (EV_A);
2110 w->active = 0; 3690 w->active = 0;
2111} 3691}
2112 3692
2113/*****************************************************************************/ 3693/*****************************************************************************/
2114 3694
2115void noinline 3695void noinline
2116ev_io_start (EV_P_ ev_io *w) 3696ev_io_start (EV_P_ ev_io *w) EV_THROW
2117{ 3697{
2118 int fd = w->fd; 3698 int fd = w->fd;
2119 3699
2120 if (expect_false (ev_is_active (w))) 3700 if (expect_false (ev_is_active (w)))
2121 return; 3701 return;
2122 3702
2123 assert (("ev_io_start called with negative fd", fd >= 0)); 3703 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2124 assert (("ev_io start called with illegal event mask", !(w->events & ~(EV_IOFDSET | EV_READ | EV_WRITE)))); 3704 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2125 3705
2126 EV_FREQUENT_CHECK; 3706 EV_FREQUENT_CHECK;
2127 3707
2128 ev_start (EV_A_ (W)w, 1); 3708 ev_start (EV_A_ (W)w, 1);
2129 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero); 3709 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2130 wlist_add (&anfds[fd].head, (WL)w); 3710 wlist_add (&anfds[fd].head, (WL)w);
2131 3711
3712 /* common bug, apparently */
3713 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3714
2132 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3715 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2133 w->events &= ~EV_IOFDSET; 3716 w->events &= ~EV__IOFDSET;
2134 3717
2135 EV_FREQUENT_CHECK; 3718 EV_FREQUENT_CHECK;
2136} 3719}
2137 3720
2138void noinline 3721void noinline
2139ev_io_stop (EV_P_ ev_io *w) 3722ev_io_stop (EV_P_ ev_io *w) EV_THROW
2140{ 3723{
2141 clear_pending (EV_A_ (W)w); 3724 clear_pending (EV_A_ (W)w);
2142 if (expect_false (!ev_is_active (w))) 3725 if (expect_false (!ev_is_active (w)))
2143 return; 3726 return;
2144 3727
2145 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3728 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2146 3729
2147 EV_FREQUENT_CHECK; 3730 EV_FREQUENT_CHECK;
2148 3731
2149 wlist_del (&anfds[w->fd].head, (WL)w); 3732 wlist_del (&anfds[w->fd].head, (WL)w);
2150 ev_stop (EV_A_ (W)w); 3733 ev_stop (EV_A_ (W)w);
2151 3734
2152 fd_change (EV_A_ w->fd, 1); 3735 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2153 3736
2154 EV_FREQUENT_CHECK; 3737 EV_FREQUENT_CHECK;
2155} 3738}
2156 3739
2157void noinline 3740void noinline
2158ev_timer_start (EV_P_ ev_timer *w) 3741ev_timer_start (EV_P_ ev_timer *w) EV_THROW
2159{ 3742{
2160 if (expect_false (ev_is_active (w))) 3743 if (expect_false (ev_is_active (w)))
2161 return; 3744 return;
2162 3745
2163 ev_at (w) += mn_now; 3746 ev_at (w) += mn_now;
2164 3747
2165 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3748 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2166 3749
2167 EV_FREQUENT_CHECK; 3750 EV_FREQUENT_CHECK;
2168 3751
2169 ++timercnt; 3752 ++timercnt;
2170 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1); 3753 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2173 ANHE_at_cache (timers [ev_active (w)]); 3756 ANHE_at_cache (timers [ev_active (w)]);
2174 upheap (timers, ev_active (w)); 3757 upheap (timers, ev_active (w));
2175 3758
2176 EV_FREQUENT_CHECK; 3759 EV_FREQUENT_CHECK;
2177 3760
2178 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 3761 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2179} 3762}
2180 3763
2181void noinline 3764void noinline
2182ev_timer_stop (EV_P_ ev_timer *w) 3765ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
2183{ 3766{
2184 clear_pending (EV_A_ (W)w); 3767 clear_pending (EV_A_ (W)w);
2185 if (expect_false (!ev_is_active (w))) 3768 if (expect_false (!ev_is_active (w)))
2186 return; 3769 return;
2187 3770
2188 EV_FREQUENT_CHECK; 3771 EV_FREQUENT_CHECK;
2189 3772
2190 { 3773 {
2191 int active = ev_active (w); 3774 int active = ev_active (w);
2192 3775
2193 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 3776 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2194 3777
2195 --timercnt; 3778 --timercnt;
2196 3779
2197 if (expect_true (active < timercnt + HEAP0)) 3780 if (expect_true (active < timercnt + HEAP0))
2198 { 3781 {
2199 timers [active] = timers [timercnt + HEAP0]; 3782 timers [active] = timers [timercnt + HEAP0];
2200 adjustheap (timers, timercnt, active); 3783 adjustheap (timers, timercnt, active);
2201 } 3784 }
2202 } 3785 }
2203 3786
2204 EV_FREQUENT_CHECK;
2205
2206 ev_at (w) -= mn_now; 3787 ev_at (w) -= mn_now;
2207 3788
2208 ev_stop (EV_A_ (W)w); 3789 ev_stop (EV_A_ (W)w);
3790
3791 EV_FREQUENT_CHECK;
2209} 3792}
2210 3793
2211void noinline 3794void noinline
2212ev_timer_again (EV_P_ ev_timer *w) 3795ev_timer_again (EV_P_ ev_timer *w) EV_THROW
2213{ 3796{
2214 EV_FREQUENT_CHECK; 3797 EV_FREQUENT_CHECK;
3798
3799 clear_pending (EV_A_ (W)w);
2215 3800
2216 if (ev_is_active (w)) 3801 if (ev_is_active (w))
2217 { 3802 {
2218 if (w->repeat) 3803 if (w->repeat)
2219 { 3804 {
2231 } 3816 }
2232 3817
2233 EV_FREQUENT_CHECK; 3818 EV_FREQUENT_CHECK;
2234} 3819}
2235 3820
3821ev_tstamp
3822ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3823{
3824 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3825}
3826
2236#if EV_PERIODIC_ENABLE 3827#if EV_PERIODIC_ENABLE
2237void noinline 3828void noinline
2238ev_periodic_start (EV_P_ ev_periodic *w) 3829ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
2239{ 3830{
2240 if (expect_false (ev_is_active (w))) 3831 if (expect_false (ev_is_active (w)))
2241 return; 3832 return;
2242 3833
2243 if (w->reschedule_cb) 3834 if (w->reschedule_cb)
2244 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3835 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2245 else if (w->interval) 3836 else if (w->interval)
2246 { 3837 {
2247 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3838 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2248 /* this formula differs from the one in periodic_reify because we do not always round up */ 3839 periodic_recalc (EV_A_ w);
2249 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2250 } 3840 }
2251 else 3841 else
2252 ev_at (w) = w->offset; 3842 ev_at (w) = w->offset;
2253 3843
2254 EV_FREQUENT_CHECK; 3844 EV_FREQUENT_CHECK;
2260 ANHE_at_cache (periodics [ev_active (w)]); 3850 ANHE_at_cache (periodics [ev_active (w)]);
2261 upheap (periodics, ev_active (w)); 3851 upheap (periodics, ev_active (w));
2262 3852
2263 EV_FREQUENT_CHECK; 3853 EV_FREQUENT_CHECK;
2264 3854
2265 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 3855 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2266} 3856}
2267 3857
2268void noinline 3858void noinline
2269ev_periodic_stop (EV_P_ ev_periodic *w) 3859ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
2270{ 3860{
2271 clear_pending (EV_A_ (W)w); 3861 clear_pending (EV_A_ (W)w);
2272 if (expect_false (!ev_is_active (w))) 3862 if (expect_false (!ev_is_active (w)))
2273 return; 3863 return;
2274 3864
2275 EV_FREQUENT_CHECK; 3865 EV_FREQUENT_CHECK;
2276 3866
2277 { 3867 {
2278 int active = ev_active (w); 3868 int active = ev_active (w);
2279 3869
2280 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 3870 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2281 3871
2282 --periodiccnt; 3872 --periodiccnt;
2283 3873
2284 if (expect_true (active < periodiccnt + HEAP0)) 3874 if (expect_true (active < periodiccnt + HEAP0))
2285 { 3875 {
2286 periodics [active] = periodics [periodiccnt + HEAP0]; 3876 periodics [active] = periodics [periodiccnt + HEAP0];
2287 adjustheap (periodics, periodiccnt, active); 3877 adjustheap (periodics, periodiccnt, active);
2288 } 3878 }
2289 } 3879 }
2290 3880
2291 EV_FREQUENT_CHECK;
2292
2293 ev_stop (EV_A_ (W)w); 3881 ev_stop (EV_A_ (W)w);
3882
3883 EV_FREQUENT_CHECK;
2294} 3884}
2295 3885
2296void noinline 3886void noinline
2297ev_periodic_again (EV_P_ ev_periodic *w) 3887ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
2298{ 3888{
2299 /* TODO: use adjustheap and recalculation */ 3889 /* TODO: use adjustheap and recalculation */
2300 ev_periodic_stop (EV_A_ w); 3890 ev_periodic_stop (EV_A_ w);
2301 ev_periodic_start (EV_A_ w); 3891 ev_periodic_start (EV_A_ w);
2302} 3892}
2304 3894
2305#ifndef SA_RESTART 3895#ifndef SA_RESTART
2306# define SA_RESTART 0 3896# define SA_RESTART 0
2307#endif 3897#endif
2308 3898
3899#if EV_SIGNAL_ENABLE
3900
2309void noinline 3901void noinline
2310ev_signal_start (EV_P_ ev_signal *w) 3902ev_signal_start (EV_P_ ev_signal *w) EV_THROW
2311{ 3903{
2312#if EV_MULTIPLICITY
2313 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2314#endif
2315 if (expect_false (ev_is_active (w))) 3904 if (expect_false (ev_is_active (w)))
2316 return; 3905 return;
2317 3906
2318 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3907 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2319 3908
2320 evpipe_init (EV_A); 3909#if EV_MULTIPLICITY
3910 assert (("libev: a signal must not be attached to two different loops",
3911 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2321 3912
2322 EV_FREQUENT_CHECK; 3913 signals [w->signum - 1].loop = EV_A;
3914 ECB_MEMORY_FENCE_RELEASE;
3915#endif
2323 3916
3917 EV_FREQUENT_CHECK;
3918
3919#if EV_USE_SIGNALFD
3920 if (sigfd == -2)
2324 { 3921 {
2325#ifndef _WIN32 3922 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2326 sigset_t full, prev; 3923 if (sigfd < 0 && errno == EINVAL)
2327 sigfillset (&full); 3924 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2328 sigprocmask (SIG_SETMASK, &full, &prev);
2329#endif
2330 3925
2331 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero); 3926 if (sigfd >= 0)
3927 {
3928 fd_intern (sigfd); /* doing it twice will not hurt */
2332 3929
2333#ifndef _WIN32 3930 sigemptyset (&sigfd_set);
2334 sigprocmask (SIG_SETMASK, &prev, 0); 3931
2335#endif 3932 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3933 ev_set_priority (&sigfd_w, EV_MAXPRI);
3934 ev_io_start (EV_A_ &sigfd_w);
3935 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3936 }
2336 } 3937 }
3938
3939 if (sigfd >= 0)
3940 {
3941 /* TODO: check .head */
3942 sigaddset (&sigfd_set, w->signum);
3943 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3944
3945 signalfd (sigfd, &sigfd_set, 0);
3946 }
3947#endif
2337 3948
2338 ev_start (EV_A_ (W)w, 1); 3949 ev_start (EV_A_ (W)w, 1);
2339 wlist_add (&signals [w->signum - 1].head, (WL)w); 3950 wlist_add (&signals [w->signum - 1].head, (WL)w);
2340 3951
2341 if (!((WL)w)->next) 3952 if (!((WL)w)->next)
3953# if EV_USE_SIGNALFD
3954 if (sigfd < 0) /*TODO*/
3955# endif
2342 { 3956 {
2343#if _WIN32 3957# ifdef _WIN32
3958 evpipe_init (EV_A);
3959
2344 signal (w->signum, ev_sighandler); 3960 signal (w->signum, ev_sighandler);
2345#else 3961# else
2346 struct sigaction sa; 3962 struct sigaction sa;
3963
3964 evpipe_init (EV_A);
3965
2347 sa.sa_handler = ev_sighandler; 3966 sa.sa_handler = ev_sighandler;
2348 sigfillset (&sa.sa_mask); 3967 sigfillset (&sa.sa_mask);
2349 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3968 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2350 sigaction (w->signum, &sa, 0); 3969 sigaction (w->signum, &sa, 0);
3970
3971 if (origflags & EVFLAG_NOSIGMASK)
3972 {
3973 sigemptyset (&sa.sa_mask);
3974 sigaddset (&sa.sa_mask, w->signum);
3975 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3976 }
2351#endif 3977#endif
2352 } 3978 }
2353 3979
2354 EV_FREQUENT_CHECK; 3980 EV_FREQUENT_CHECK;
2355} 3981}
2356 3982
2357void noinline 3983void noinline
2358ev_signal_stop (EV_P_ ev_signal *w) 3984ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
2359{ 3985{
2360 clear_pending (EV_A_ (W)w); 3986 clear_pending (EV_A_ (W)w);
2361 if (expect_false (!ev_is_active (w))) 3987 if (expect_false (!ev_is_active (w)))
2362 return; 3988 return;
2363 3989
2365 3991
2366 wlist_del (&signals [w->signum - 1].head, (WL)w); 3992 wlist_del (&signals [w->signum - 1].head, (WL)w);
2367 ev_stop (EV_A_ (W)w); 3993 ev_stop (EV_A_ (W)w);
2368 3994
2369 if (!signals [w->signum - 1].head) 3995 if (!signals [w->signum - 1].head)
3996 {
3997#if EV_MULTIPLICITY
3998 signals [w->signum - 1].loop = 0; /* unattach from signal */
3999#endif
4000#if EV_USE_SIGNALFD
4001 if (sigfd >= 0)
4002 {
4003 sigset_t ss;
4004
4005 sigemptyset (&ss);
4006 sigaddset (&ss, w->signum);
4007 sigdelset (&sigfd_set, w->signum);
4008
4009 signalfd (sigfd, &sigfd_set, 0);
4010 sigprocmask (SIG_UNBLOCK, &ss, 0);
4011 }
4012 else
4013#endif
2370 signal (w->signum, SIG_DFL); 4014 signal (w->signum, SIG_DFL);
4015 }
2371 4016
2372 EV_FREQUENT_CHECK; 4017 EV_FREQUENT_CHECK;
2373} 4018}
4019
4020#endif
4021
4022#if EV_CHILD_ENABLE
2374 4023
2375void 4024void
2376ev_child_start (EV_P_ ev_child *w) 4025ev_child_start (EV_P_ ev_child *w) EV_THROW
2377{ 4026{
2378#if EV_MULTIPLICITY 4027#if EV_MULTIPLICITY
2379 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 4028 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2380#endif 4029#endif
2381 if (expect_false (ev_is_active (w))) 4030 if (expect_false (ev_is_active (w)))
2382 return; 4031 return;
2383 4032
2384 EV_FREQUENT_CHECK; 4033 EV_FREQUENT_CHECK;
2385 4034
2386 ev_start (EV_A_ (W)w, 1); 4035 ev_start (EV_A_ (W)w, 1);
2387 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4036 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2388 4037
2389 EV_FREQUENT_CHECK; 4038 EV_FREQUENT_CHECK;
2390} 4039}
2391 4040
2392void 4041void
2393ev_child_stop (EV_P_ ev_child *w) 4042ev_child_stop (EV_P_ ev_child *w) EV_THROW
2394{ 4043{
2395 clear_pending (EV_A_ (W)w); 4044 clear_pending (EV_A_ (W)w);
2396 if (expect_false (!ev_is_active (w))) 4045 if (expect_false (!ev_is_active (w)))
2397 return; 4046 return;
2398 4047
2399 EV_FREQUENT_CHECK; 4048 EV_FREQUENT_CHECK;
2400 4049
2401 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4050 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2402 ev_stop (EV_A_ (W)w); 4051 ev_stop (EV_A_ (W)w);
2403 4052
2404 EV_FREQUENT_CHECK; 4053 EV_FREQUENT_CHECK;
2405} 4054}
4055
4056#endif
2406 4057
2407#if EV_STAT_ENABLE 4058#if EV_STAT_ENABLE
2408 4059
2409# ifdef _WIN32 4060# ifdef _WIN32
2410# undef lstat 4061# undef lstat
2411# define lstat(a,b) _stati64 (a,b) 4062# define lstat(a,b) _stati64 (a,b)
2412# endif 4063# endif
2413 4064
2414#define DEF_STAT_INTERVAL 5.0074891 4065#define DEF_STAT_INTERVAL 5.0074891
4066#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2415#define MIN_STAT_INTERVAL 0.1074891 4067#define MIN_STAT_INTERVAL 0.1074891
2416 4068
2417static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 4069static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2418 4070
2419#if EV_USE_INOTIFY 4071#if EV_USE_INOTIFY
2420# define EV_INOTIFY_BUFSIZE 8192 4072
4073/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4074# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2421 4075
2422static void noinline 4076static void noinline
2423infy_add (EV_P_ ev_stat *w) 4077infy_add (EV_P_ ev_stat *w)
2424{ 4078{
2425 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 4079 w->wd = inotify_add_watch (fs_fd, w->path,
4080 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4081 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4082 | IN_DONT_FOLLOW | IN_MASK_ADD);
2426 4083
2427 if (w->wd < 0) 4084 if (w->wd >= 0)
4085 {
4086 struct statfs sfs;
4087
4088 /* now local changes will be tracked by inotify, but remote changes won't */
4089 /* unless the filesystem is known to be local, we therefore still poll */
4090 /* also do poll on <2.6.25, but with normal frequency */
4091
4092 if (!fs_2625)
4093 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4094 else if (!statfs (w->path, &sfs)
4095 && (sfs.f_type == 0x1373 /* devfs */
4096 || sfs.f_type == 0x4006 /* fat */
4097 || sfs.f_type == 0x4d44 /* msdos */
4098 || sfs.f_type == 0xEF53 /* ext2/3 */
4099 || sfs.f_type == 0x72b6 /* jffs2 */
4100 || sfs.f_type == 0x858458f6 /* ramfs */
4101 || sfs.f_type == 0x5346544e /* ntfs */
4102 || sfs.f_type == 0x3153464a /* jfs */
4103 || sfs.f_type == 0x9123683e /* btrfs */
4104 || sfs.f_type == 0x52654973 /* reiser3 */
4105 || sfs.f_type == 0x01021994 /* tmpfs */
4106 || sfs.f_type == 0x58465342 /* xfs */))
4107 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4108 else
4109 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2428 { 4110 }
2429 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 4111 else
4112 {
4113 /* can't use inotify, continue to stat */
4114 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2430 4115
2431 /* monitor some parent directory for speedup hints */ 4116 /* if path is not there, monitor some parent directory for speedup hints */
2432 /* note that exceeding the hardcoded limit is not a correctness issue, */ 4117 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2433 /* but an efficiency issue only */ 4118 /* but an efficiency issue only */
2434 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 4119 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2435 { 4120 {
2436 char path [4096]; 4121 char path [4096];
2437 strcpy (path, w->path); 4122 strcpy (path, w->path);
2441 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 4126 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2442 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 4127 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2443 4128
2444 char *pend = strrchr (path, '/'); 4129 char *pend = strrchr (path, '/');
2445 4130
2446 if (!pend) 4131 if (!pend || pend == path)
2447 break; /* whoops, no '/', complain to your admin */ 4132 break;
2448 4133
2449 *pend = 0; 4134 *pend = 0;
2450 w->wd = inotify_add_watch (fs_fd, path, mask); 4135 w->wd = inotify_add_watch (fs_fd, path, mask);
2451 } 4136 }
2452 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 4137 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2453 } 4138 }
2454 } 4139 }
2455 else
2456 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2457 4140
2458 if (w->wd >= 0) 4141 if (w->wd >= 0)
2459 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 4142 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4143
4144 /* now re-arm timer, if required */
4145 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4146 ev_timer_again (EV_A_ &w->timer);
4147 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2460} 4148}
2461 4149
2462static void noinline 4150static void noinline
2463infy_del (EV_P_ ev_stat *w) 4151infy_del (EV_P_ ev_stat *w)
2464{ 4152{
2467 4155
2468 if (wd < 0) 4156 if (wd < 0)
2469 return; 4157 return;
2470 4158
2471 w->wd = -2; 4159 w->wd = -2;
2472 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 4160 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2473 wlist_del (&fs_hash [slot].head, (WL)w); 4161 wlist_del (&fs_hash [slot].head, (WL)w);
2474 4162
2475 /* remove this watcher, if others are watching it, they will rearm */ 4163 /* remove this watcher, if others are watching it, they will rearm */
2476 inotify_rm_watch (fs_fd, wd); 4164 inotify_rm_watch (fs_fd, wd);
2477} 4165}
2479static void noinline 4167static void noinline
2480infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 4168infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2481{ 4169{
2482 if (slot < 0) 4170 if (slot < 0)
2483 /* overflow, need to check for all hash slots */ 4171 /* overflow, need to check for all hash slots */
2484 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4172 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2485 infy_wd (EV_A_ slot, wd, ev); 4173 infy_wd (EV_A_ slot, wd, ev);
2486 else 4174 else
2487 { 4175 {
2488 WL w_; 4176 WL w_;
2489 4177
2490 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 4178 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2491 { 4179 {
2492 ev_stat *w = (ev_stat *)w_; 4180 ev_stat *w = (ev_stat *)w_;
2493 w_ = w_->next; /* lets us remove this watcher and all before it */ 4181 w_ = w_->next; /* lets us remove this watcher and all before it */
2494 4182
2495 if (w->wd == wd || wd == -1) 4183 if (w->wd == wd || wd == -1)
2496 { 4184 {
2497 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 4185 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2498 { 4186 {
4187 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2499 w->wd = -1; 4188 w->wd = -1;
2500 infy_add (EV_A_ w); /* re-add, no matter what */ 4189 infy_add (EV_A_ w); /* re-add, no matter what */
2501 } 4190 }
2502 4191
2503 stat_timer_cb (EV_A_ &w->timer, 0); 4192 stat_timer_cb (EV_A_ &w->timer, 0);
2508 4197
2509static void 4198static void
2510infy_cb (EV_P_ ev_io *w, int revents) 4199infy_cb (EV_P_ ev_io *w, int revents)
2511{ 4200{
2512 char buf [EV_INOTIFY_BUFSIZE]; 4201 char buf [EV_INOTIFY_BUFSIZE];
2513 struct inotify_event *ev = (struct inotify_event *)buf;
2514 int ofs; 4202 int ofs;
2515 int len = read (fs_fd, buf, sizeof (buf)); 4203 int len = read (fs_fd, buf, sizeof (buf));
2516 4204
2517 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 4205 for (ofs = 0; ofs < len; )
4206 {
4207 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2518 infy_wd (EV_A_ ev->wd, ev->wd, ev); 4208 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4209 ofs += sizeof (struct inotify_event) + ev->len;
4210 }
2519} 4211}
2520 4212
2521void inline_size 4213inline_size void ecb_cold
2522infy_init (EV_P) 4214ev_check_2625 (EV_P)
2523{ 4215{
2524 if (fs_fd != -2)
2525 return;
2526
2527 /* kernels < 2.6.25 are borked 4216 /* kernels < 2.6.25 are borked
2528 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html 4217 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2529 */ 4218 */
2530 { 4219 if (ev_linux_version () < 0x020619)
2531 struct utsname buf; 4220 return;
2532 int major, minor, micro;
2533 4221
4222 fs_2625 = 1;
4223}
4224
4225inline_size int
4226infy_newfd (void)
4227{
4228#if defined IN_CLOEXEC && defined IN_NONBLOCK
4229 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4230 if (fd >= 0)
4231 return fd;
4232#endif
4233 return inotify_init ();
4234}
4235
4236inline_size void
4237infy_init (EV_P)
4238{
4239 if (fs_fd != -2)
4240 return;
4241
2534 fs_fd = -1; 4242 fs_fd = -1;
2535 4243
2536 if (uname (&buf)) 4244 ev_check_2625 (EV_A);
2537 return;
2538 4245
2539 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2540 return;
2541
2542 if (major < 2
2543 || (major == 2 && minor < 6)
2544 || (major == 2 && minor == 6 && micro < 25))
2545 return;
2546 }
2547
2548 fs_fd = inotify_init (); 4246 fs_fd = infy_newfd ();
2549 4247
2550 if (fs_fd >= 0) 4248 if (fs_fd >= 0)
2551 { 4249 {
4250 fd_intern (fs_fd);
2552 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 4251 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2553 ev_set_priority (&fs_w, EV_MAXPRI); 4252 ev_set_priority (&fs_w, EV_MAXPRI);
2554 ev_io_start (EV_A_ &fs_w); 4253 ev_io_start (EV_A_ &fs_w);
4254 ev_unref (EV_A);
2555 } 4255 }
2556} 4256}
2557 4257
2558void inline_size 4258inline_size void
2559infy_fork (EV_P) 4259infy_fork (EV_P)
2560{ 4260{
2561 int slot; 4261 int slot;
2562 4262
2563 if (fs_fd < 0) 4263 if (fs_fd < 0)
2564 return; 4264 return;
2565 4265
4266 ev_ref (EV_A);
4267 ev_io_stop (EV_A_ &fs_w);
2566 close (fs_fd); 4268 close (fs_fd);
2567 fs_fd = inotify_init (); 4269 fs_fd = infy_newfd ();
2568 4270
4271 if (fs_fd >= 0)
4272 {
4273 fd_intern (fs_fd);
4274 ev_io_set (&fs_w, fs_fd, EV_READ);
4275 ev_io_start (EV_A_ &fs_w);
4276 ev_unref (EV_A);
4277 }
4278
2569 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4279 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2570 { 4280 {
2571 WL w_ = fs_hash [slot].head; 4281 WL w_ = fs_hash [slot].head;
2572 fs_hash [slot].head = 0; 4282 fs_hash [slot].head = 0;
2573 4283
2574 while (w_) 4284 while (w_)
2579 w->wd = -1; 4289 w->wd = -1;
2580 4290
2581 if (fs_fd >= 0) 4291 if (fs_fd >= 0)
2582 infy_add (EV_A_ w); /* re-add, no matter what */ 4292 infy_add (EV_A_ w); /* re-add, no matter what */
2583 else 4293 else
4294 {
4295 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4296 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2584 ev_timer_start (EV_A_ &w->timer); 4297 ev_timer_again (EV_A_ &w->timer);
4298 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4299 }
2585 } 4300 }
2586 } 4301 }
2587} 4302}
2588 4303
2589#endif 4304#endif
2593#else 4308#else
2594# define EV_LSTAT(p,b) lstat (p, b) 4309# define EV_LSTAT(p,b) lstat (p, b)
2595#endif 4310#endif
2596 4311
2597void 4312void
2598ev_stat_stat (EV_P_ ev_stat *w) 4313ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
2599{ 4314{
2600 if (lstat (w->path, &w->attr) < 0) 4315 if (lstat (w->path, &w->attr) < 0)
2601 w->attr.st_nlink = 0; 4316 w->attr.st_nlink = 0;
2602 else if (!w->attr.st_nlink) 4317 else if (!w->attr.st_nlink)
2603 w->attr.st_nlink = 1; 4318 w->attr.st_nlink = 1;
2606static void noinline 4321static void noinline
2607stat_timer_cb (EV_P_ ev_timer *w_, int revents) 4322stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2608{ 4323{
2609 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 4324 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2610 4325
2611 /* we copy this here each the time so that */ 4326 ev_statdata prev = w->attr;
2612 /* prev has the old value when the callback gets invoked */
2613 w->prev = w->attr;
2614 ev_stat_stat (EV_A_ w); 4327 ev_stat_stat (EV_A_ w);
2615 4328
2616 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 4329 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2617 if ( 4330 if (
2618 w->prev.st_dev != w->attr.st_dev 4331 prev.st_dev != w->attr.st_dev
2619 || w->prev.st_ino != w->attr.st_ino 4332 || prev.st_ino != w->attr.st_ino
2620 || w->prev.st_mode != w->attr.st_mode 4333 || prev.st_mode != w->attr.st_mode
2621 || w->prev.st_nlink != w->attr.st_nlink 4334 || prev.st_nlink != w->attr.st_nlink
2622 || w->prev.st_uid != w->attr.st_uid 4335 || prev.st_uid != w->attr.st_uid
2623 || w->prev.st_gid != w->attr.st_gid 4336 || prev.st_gid != w->attr.st_gid
2624 || w->prev.st_rdev != w->attr.st_rdev 4337 || prev.st_rdev != w->attr.st_rdev
2625 || w->prev.st_size != w->attr.st_size 4338 || prev.st_size != w->attr.st_size
2626 || w->prev.st_atime != w->attr.st_atime 4339 || prev.st_atime != w->attr.st_atime
2627 || w->prev.st_mtime != w->attr.st_mtime 4340 || prev.st_mtime != w->attr.st_mtime
2628 || w->prev.st_ctime != w->attr.st_ctime 4341 || prev.st_ctime != w->attr.st_ctime
2629 ) { 4342 ) {
4343 /* we only update w->prev on actual differences */
4344 /* in case we test more often than invoke the callback, */
4345 /* to ensure that prev is always different to attr */
4346 w->prev = prev;
4347
2630 #if EV_USE_INOTIFY 4348 #if EV_USE_INOTIFY
2631 if (fs_fd >= 0) 4349 if (fs_fd >= 0)
2632 { 4350 {
2633 infy_del (EV_A_ w); 4351 infy_del (EV_A_ w);
2634 infy_add (EV_A_ w); 4352 infy_add (EV_A_ w);
2639 ev_feed_event (EV_A_ w, EV_STAT); 4357 ev_feed_event (EV_A_ w, EV_STAT);
2640 } 4358 }
2641} 4359}
2642 4360
2643void 4361void
2644ev_stat_start (EV_P_ ev_stat *w) 4362ev_stat_start (EV_P_ ev_stat *w) EV_THROW
2645{ 4363{
2646 if (expect_false (ev_is_active (w))) 4364 if (expect_false (ev_is_active (w)))
2647 return; 4365 return;
2648 4366
2649 /* since we use memcmp, we need to clear any padding data etc. */
2650 memset (&w->prev, 0, sizeof (ev_statdata));
2651 memset (&w->attr, 0, sizeof (ev_statdata));
2652
2653 ev_stat_stat (EV_A_ w); 4367 ev_stat_stat (EV_A_ w);
2654 4368
4369 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2655 if (w->interval < MIN_STAT_INTERVAL) 4370 w->interval = MIN_STAT_INTERVAL;
2656 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2657 4371
2658 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 4372 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2659 ev_set_priority (&w->timer, ev_priority (w)); 4373 ev_set_priority (&w->timer, ev_priority (w));
2660 4374
2661#if EV_USE_INOTIFY 4375#if EV_USE_INOTIFY
2662 infy_init (EV_A); 4376 infy_init (EV_A);
2663 4377
2664 if (fs_fd >= 0) 4378 if (fs_fd >= 0)
2665 infy_add (EV_A_ w); 4379 infy_add (EV_A_ w);
2666 else 4380 else
2667#endif 4381#endif
4382 {
2668 ev_timer_start (EV_A_ &w->timer); 4383 ev_timer_again (EV_A_ &w->timer);
4384 ev_unref (EV_A);
4385 }
2669 4386
2670 ev_start (EV_A_ (W)w, 1); 4387 ev_start (EV_A_ (W)w, 1);
2671 4388
2672 EV_FREQUENT_CHECK; 4389 EV_FREQUENT_CHECK;
2673} 4390}
2674 4391
2675void 4392void
2676ev_stat_stop (EV_P_ ev_stat *w) 4393ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
2677{ 4394{
2678 clear_pending (EV_A_ (W)w); 4395 clear_pending (EV_A_ (W)w);
2679 if (expect_false (!ev_is_active (w))) 4396 if (expect_false (!ev_is_active (w)))
2680 return; 4397 return;
2681 4398
2682 EV_FREQUENT_CHECK; 4399 EV_FREQUENT_CHECK;
2683 4400
2684#if EV_USE_INOTIFY 4401#if EV_USE_INOTIFY
2685 infy_del (EV_A_ w); 4402 infy_del (EV_A_ w);
2686#endif 4403#endif
4404
4405 if (ev_is_active (&w->timer))
4406 {
4407 ev_ref (EV_A);
2687 ev_timer_stop (EV_A_ &w->timer); 4408 ev_timer_stop (EV_A_ &w->timer);
4409 }
2688 4410
2689 ev_stop (EV_A_ (W)w); 4411 ev_stop (EV_A_ (W)w);
2690 4412
2691 EV_FREQUENT_CHECK; 4413 EV_FREQUENT_CHECK;
2692} 4414}
2693#endif 4415#endif
2694 4416
2695#if EV_IDLE_ENABLE 4417#if EV_IDLE_ENABLE
2696void 4418void
2697ev_idle_start (EV_P_ ev_idle *w) 4419ev_idle_start (EV_P_ ev_idle *w) EV_THROW
2698{ 4420{
2699 if (expect_false (ev_is_active (w))) 4421 if (expect_false (ev_is_active (w)))
2700 return; 4422 return;
2701 4423
2702 pri_adjust (EV_A_ (W)w); 4424 pri_adjust (EV_A_ (W)w);
2715 4437
2716 EV_FREQUENT_CHECK; 4438 EV_FREQUENT_CHECK;
2717} 4439}
2718 4440
2719void 4441void
2720ev_idle_stop (EV_P_ ev_idle *w) 4442ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
2721{ 4443{
2722 clear_pending (EV_A_ (W)w); 4444 clear_pending (EV_A_ (W)w);
2723 if (expect_false (!ev_is_active (w))) 4445 if (expect_false (!ev_is_active (w)))
2724 return; 4446 return;
2725 4447
2737 4459
2738 EV_FREQUENT_CHECK; 4460 EV_FREQUENT_CHECK;
2739} 4461}
2740#endif 4462#endif
2741 4463
4464#if EV_PREPARE_ENABLE
2742void 4465void
2743ev_prepare_start (EV_P_ ev_prepare *w) 4466ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
2744{ 4467{
2745 if (expect_false (ev_is_active (w))) 4468 if (expect_false (ev_is_active (w)))
2746 return; 4469 return;
2747 4470
2748 EV_FREQUENT_CHECK; 4471 EV_FREQUENT_CHECK;
2753 4476
2754 EV_FREQUENT_CHECK; 4477 EV_FREQUENT_CHECK;
2755} 4478}
2756 4479
2757void 4480void
2758ev_prepare_stop (EV_P_ ev_prepare *w) 4481ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
2759{ 4482{
2760 clear_pending (EV_A_ (W)w); 4483 clear_pending (EV_A_ (W)w);
2761 if (expect_false (!ev_is_active (w))) 4484 if (expect_false (!ev_is_active (w)))
2762 return; 4485 return;
2763 4486
2772 4495
2773 ev_stop (EV_A_ (W)w); 4496 ev_stop (EV_A_ (W)w);
2774 4497
2775 EV_FREQUENT_CHECK; 4498 EV_FREQUENT_CHECK;
2776} 4499}
4500#endif
2777 4501
4502#if EV_CHECK_ENABLE
2778void 4503void
2779ev_check_start (EV_P_ ev_check *w) 4504ev_check_start (EV_P_ ev_check *w) EV_THROW
2780{ 4505{
2781 if (expect_false (ev_is_active (w))) 4506 if (expect_false (ev_is_active (w)))
2782 return; 4507 return;
2783 4508
2784 EV_FREQUENT_CHECK; 4509 EV_FREQUENT_CHECK;
2789 4514
2790 EV_FREQUENT_CHECK; 4515 EV_FREQUENT_CHECK;
2791} 4516}
2792 4517
2793void 4518void
2794ev_check_stop (EV_P_ ev_check *w) 4519ev_check_stop (EV_P_ ev_check *w) EV_THROW
2795{ 4520{
2796 clear_pending (EV_A_ (W)w); 4521 clear_pending (EV_A_ (W)w);
2797 if (expect_false (!ev_is_active (w))) 4522 if (expect_false (!ev_is_active (w)))
2798 return; 4523 return;
2799 4524
2808 4533
2809 ev_stop (EV_A_ (W)w); 4534 ev_stop (EV_A_ (W)w);
2810 4535
2811 EV_FREQUENT_CHECK; 4536 EV_FREQUENT_CHECK;
2812} 4537}
4538#endif
2813 4539
2814#if EV_EMBED_ENABLE 4540#if EV_EMBED_ENABLE
2815void noinline 4541void noinline
2816ev_embed_sweep (EV_P_ ev_embed *w) 4542ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
2817{ 4543{
2818 ev_loop (w->other, EVLOOP_NONBLOCK); 4544 ev_run (w->other, EVRUN_NOWAIT);
2819} 4545}
2820 4546
2821static void 4547static void
2822embed_io_cb (EV_P_ ev_io *io, int revents) 4548embed_io_cb (EV_P_ ev_io *io, int revents)
2823{ 4549{
2824 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4550 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2825 4551
2826 if (ev_cb (w)) 4552 if (ev_cb (w))
2827 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4553 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2828 else 4554 else
2829 ev_loop (w->other, EVLOOP_NONBLOCK); 4555 ev_run (w->other, EVRUN_NOWAIT);
2830} 4556}
2831 4557
2832static void 4558static void
2833embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4559embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2834{ 4560{
2835 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4561 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2836 4562
2837 { 4563 {
2838 struct ev_loop *loop = w->other; 4564 EV_P = w->other;
2839 4565
2840 while (fdchangecnt) 4566 while (fdchangecnt)
2841 { 4567 {
2842 fd_reify (EV_A); 4568 fd_reify (EV_A);
2843 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4569 ev_run (EV_A_ EVRUN_NOWAIT);
2844 } 4570 }
2845 } 4571 }
2846} 4572}
2847 4573
2848static void 4574static void
2849embed_fork_cb (EV_P_ ev_fork *fork_w, int revents) 4575embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2850{ 4576{
2851 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork)); 4577 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2852 4578
4579 ev_embed_stop (EV_A_ w);
4580
2853 { 4581 {
2854 struct ev_loop *loop = w->other; 4582 EV_P = w->other;
2855 4583
2856 ev_loop_fork (EV_A); 4584 ev_loop_fork (EV_A);
4585 ev_run (EV_A_ EVRUN_NOWAIT);
2857 } 4586 }
4587
4588 ev_embed_start (EV_A_ w);
2858} 4589}
2859 4590
2860#if 0 4591#if 0
2861static void 4592static void
2862embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4593embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2864 ev_idle_stop (EV_A_ idle); 4595 ev_idle_stop (EV_A_ idle);
2865} 4596}
2866#endif 4597#endif
2867 4598
2868void 4599void
2869ev_embed_start (EV_P_ ev_embed *w) 4600ev_embed_start (EV_P_ ev_embed *w) EV_THROW
2870{ 4601{
2871 if (expect_false (ev_is_active (w))) 4602 if (expect_false (ev_is_active (w)))
2872 return; 4603 return;
2873 4604
2874 { 4605 {
2875 struct ev_loop *loop = w->other; 4606 EV_P = w->other;
2876 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4607 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2877 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4608 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2878 } 4609 }
2879 4610
2880 EV_FREQUENT_CHECK; 4611 EV_FREQUENT_CHECK;
2881 4612
2895 4626
2896 EV_FREQUENT_CHECK; 4627 EV_FREQUENT_CHECK;
2897} 4628}
2898 4629
2899void 4630void
2900ev_embed_stop (EV_P_ ev_embed *w) 4631ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
2901{ 4632{
2902 clear_pending (EV_A_ (W)w); 4633 clear_pending (EV_A_ (W)w);
2903 if (expect_false (!ev_is_active (w))) 4634 if (expect_false (!ev_is_active (w)))
2904 return; 4635 return;
2905 4636
2907 4638
2908 ev_io_stop (EV_A_ &w->io); 4639 ev_io_stop (EV_A_ &w->io);
2909 ev_prepare_stop (EV_A_ &w->prepare); 4640 ev_prepare_stop (EV_A_ &w->prepare);
2910 ev_fork_stop (EV_A_ &w->fork); 4641 ev_fork_stop (EV_A_ &w->fork);
2911 4642
4643 ev_stop (EV_A_ (W)w);
4644
2912 EV_FREQUENT_CHECK; 4645 EV_FREQUENT_CHECK;
2913} 4646}
2914#endif 4647#endif
2915 4648
2916#if EV_FORK_ENABLE 4649#if EV_FORK_ENABLE
2917void 4650void
2918ev_fork_start (EV_P_ ev_fork *w) 4651ev_fork_start (EV_P_ ev_fork *w) EV_THROW
2919{ 4652{
2920 if (expect_false (ev_is_active (w))) 4653 if (expect_false (ev_is_active (w)))
2921 return; 4654 return;
2922 4655
2923 EV_FREQUENT_CHECK; 4656 EV_FREQUENT_CHECK;
2928 4661
2929 EV_FREQUENT_CHECK; 4662 EV_FREQUENT_CHECK;
2930} 4663}
2931 4664
2932void 4665void
2933ev_fork_stop (EV_P_ ev_fork *w) 4666ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
2934{ 4667{
2935 clear_pending (EV_A_ (W)w); 4668 clear_pending (EV_A_ (W)w);
2936 if (expect_false (!ev_is_active (w))) 4669 if (expect_false (!ev_is_active (w)))
2937 return; 4670 return;
2938 4671
2949 4682
2950 EV_FREQUENT_CHECK; 4683 EV_FREQUENT_CHECK;
2951} 4684}
2952#endif 4685#endif
2953 4686
4687#if EV_CLEANUP_ENABLE
4688void
4689ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4690{
4691 if (expect_false (ev_is_active (w)))
4692 return;
4693
4694 EV_FREQUENT_CHECK;
4695
4696 ev_start (EV_A_ (W)w, ++cleanupcnt);
4697 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4698 cleanups [cleanupcnt - 1] = w;
4699
4700 /* cleanup watchers should never keep a refcount on the loop */
4701 ev_unref (EV_A);
4702 EV_FREQUENT_CHECK;
4703}
4704
4705void
4706ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4707{
4708 clear_pending (EV_A_ (W)w);
4709 if (expect_false (!ev_is_active (w)))
4710 return;
4711
4712 EV_FREQUENT_CHECK;
4713 ev_ref (EV_A);
4714
4715 {
4716 int active = ev_active (w);
4717
4718 cleanups [active - 1] = cleanups [--cleanupcnt];
4719 ev_active (cleanups [active - 1]) = active;
4720 }
4721
4722 ev_stop (EV_A_ (W)w);
4723
4724 EV_FREQUENT_CHECK;
4725}
4726#endif
4727
2954#if EV_ASYNC_ENABLE 4728#if EV_ASYNC_ENABLE
2955void 4729void
2956ev_async_start (EV_P_ ev_async *w) 4730ev_async_start (EV_P_ ev_async *w) EV_THROW
2957{ 4731{
2958 if (expect_false (ev_is_active (w))) 4732 if (expect_false (ev_is_active (w)))
2959 return; 4733 return;
4734
4735 w->sent = 0;
2960 4736
2961 evpipe_init (EV_A); 4737 evpipe_init (EV_A);
2962 4738
2963 EV_FREQUENT_CHECK; 4739 EV_FREQUENT_CHECK;
2964 4740
2968 4744
2969 EV_FREQUENT_CHECK; 4745 EV_FREQUENT_CHECK;
2970} 4746}
2971 4747
2972void 4748void
2973ev_async_stop (EV_P_ ev_async *w) 4749ev_async_stop (EV_P_ ev_async *w) EV_THROW
2974{ 4750{
2975 clear_pending (EV_A_ (W)w); 4751 clear_pending (EV_A_ (W)w);
2976 if (expect_false (!ev_is_active (w))) 4752 if (expect_false (!ev_is_active (w)))
2977 return; 4753 return;
2978 4754
2989 4765
2990 EV_FREQUENT_CHECK; 4766 EV_FREQUENT_CHECK;
2991} 4767}
2992 4768
2993void 4769void
2994ev_async_send (EV_P_ ev_async *w) 4770ev_async_send (EV_P_ ev_async *w) EV_THROW
2995{ 4771{
2996 w->sent = 1; 4772 w->sent = 1;
2997 evpipe_write (EV_A_ &gotasync); 4773 evpipe_write (EV_A_ &async_pending);
2998} 4774}
2999#endif 4775#endif
3000 4776
3001/*****************************************************************************/ 4777/*****************************************************************************/
3002 4778
3036 4812
3037 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io)); 4813 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3038} 4814}
3039 4815
3040void 4816void
3041ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4817ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
3042{ 4818{
3043 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4819 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3044 4820
3045 if (expect_false (!once)) 4821 if (expect_false (!once))
3046 { 4822 {
3047 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4823 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
3048 return; 4824 return;
3049 } 4825 }
3050 4826
3051 once->cb = cb; 4827 once->cb = cb;
3052 once->arg = arg; 4828 once->arg = arg;
3064 ev_timer_set (&once->to, timeout, 0.); 4840 ev_timer_set (&once->to, timeout, 0.);
3065 ev_timer_start (EV_A_ &once->to); 4841 ev_timer_start (EV_A_ &once->to);
3066 } 4842 }
3067} 4843}
3068 4844
4845/*****************************************************************************/
4846
4847#if EV_WALK_ENABLE
4848void ecb_cold
4849ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4850{
4851 int i, j;
4852 ev_watcher_list *wl, *wn;
4853
4854 if (types & (EV_IO | EV_EMBED))
4855 for (i = 0; i < anfdmax; ++i)
4856 for (wl = anfds [i].head; wl; )
4857 {
4858 wn = wl->next;
4859
4860#if EV_EMBED_ENABLE
4861 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4862 {
4863 if (types & EV_EMBED)
4864 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4865 }
4866 else
4867#endif
4868#if EV_USE_INOTIFY
4869 if (ev_cb ((ev_io *)wl) == infy_cb)
4870 ;
4871 else
4872#endif
4873 if ((ev_io *)wl != &pipe_w)
4874 if (types & EV_IO)
4875 cb (EV_A_ EV_IO, wl);
4876
4877 wl = wn;
4878 }
4879
4880 if (types & (EV_TIMER | EV_STAT))
4881 for (i = timercnt + HEAP0; i-- > HEAP0; )
4882#if EV_STAT_ENABLE
4883 /*TODO: timer is not always active*/
4884 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4885 {
4886 if (types & EV_STAT)
4887 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4888 }
4889 else
4890#endif
4891 if (types & EV_TIMER)
4892 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4893
4894#if EV_PERIODIC_ENABLE
4895 if (types & EV_PERIODIC)
4896 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4897 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4898#endif
4899
4900#if EV_IDLE_ENABLE
4901 if (types & EV_IDLE)
4902 for (j = NUMPRI; j--; )
4903 for (i = idlecnt [j]; i--; )
4904 cb (EV_A_ EV_IDLE, idles [j][i]);
4905#endif
4906
4907#if EV_FORK_ENABLE
4908 if (types & EV_FORK)
4909 for (i = forkcnt; i--; )
4910 if (ev_cb (forks [i]) != embed_fork_cb)
4911 cb (EV_A_ EV_FORK, forks [i]);
4912#endif
4913
4914#if EV_ASYNC_ENABLE
4915 if (types & EV_ASYNC)
4916 for (i = asynccnt; i--; )
4917 cb (EV_A_ EV_ASYNC, asyncs [i]);
4918#endif
4919
4920#if EV_PREPARE_ENABLE
4921 if (types & EV_PREPARE)
4922 for (i = preparecnt; i--; )
4923# if EV_EMBED_ENABLE
4924 if (ev_cb (prepares [i]) != embed_prepare_cb)
4925# endif
4926 cb (EV_A_ EV_PREPARE, prepares [i]);
4927#endif
4928
4929#if EV_CHECK_ENABLE
4930 if (types & EV_CHECK)
4931 for (i = checkcnt; i--; )
4932 cb (EV_A_ EV_CHECK, checks [i]);
4933#endif
4934
4935#if EV_SIGNAL_ENABLE
4936 if (types & EV_SIGNAL)
4937 for (i = 0; i < EV_NSIG - 1; ++i)
4938 for (wl = signals [i].head; wl; )
4939 {
4940 wn = wl->next;
4941 cb (EV_A_ EV_SIGNAL, wl);
4942 wl = wn;
4943 }
4944#endif
4945
4946#if EV_CHILD_ENABLE
4947 if (types & EV_CHILD)
4948 for (i = (EV_PID_HASHSIZE); i--; )
4949 for (wl = childs [i]; wl; )
4950 {
4951 wn = wl->next;
4952 cb (EV_A_ EV_CHILD, wl);
4953 wl = wn;
4954 }
4955#endif
4956/* EV_STAT 0x00001000 /* stat data changed */
4957/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4958}
4959#endif
4960
3069#if EV_MULTIPLICITY 4961#if EV_MULTIPLICITY
3070 #include "ev_wrap.h" 4962 #include "ev_wrap.h"
3071#endif 4963#endif
3072 4964
3073#ifdef __cplusplus
3074}
3075#endif
3076

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines